WorldWideScience

Sample records for composite modelling approach

  1. A Composite Modelling Approach to Decision Support by the Use of the CBA-DK Model

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; Salling, Kim Bang; Leleur, Steen

    2007-01-01

    This paper presents a decision support system for assessment of transport infrastructure projects. The composite modelling approach, COSIMA, combines a cost-benefit analysis by use of the CBA-DK model with multi-criteria analysis applying the AHP and SMARTER techniques. The modelling uncertaintie...

  2. Optimization of the piezoelectric response of 0–3 composites: a modeling approach

    International Nuclear Information System (INIS)

    Chambion, B; Goujon, L; Badie, L; Mugnier, Y; Barthod, C; Galez, C; Wiebel, S; Venet, C

    2011-01-01

    Finite element modeling is used in this study to optimize the electromechanical behavior of 0–3 composites according to the material properties of their constituents. Our modeling approach considers an 'extended' 2D representative volume element (RVE) with randomly dispersed piezoelectric particles. A variable distribution of their polarization axes is also implemented because a full periodic arrangement of fillers and a unique poling orientation are unrealistic in practice. Comparisons with a simpler RVE and with an analytical model based on the Mori–Tanaka approach are performed as a function of the particle concentration for the elastic, dielectric and piezoelectric homogenized properties. An optimization of the piezoelectric response of 0–3 composites according to material considerations is then computed, allowing it to be shown that the piezoelectric strain coefficient is not the only relevant parameter and that lead-free piezoelectric fillers such as LiNbO 3 and ZnO are competitive alternatives. Finally, the piezoelectric responses of 0–3 composites with different filler arrangements are quantitatively compared to 1–3 composites and to the corresponding bulk material

  3. A composite computational model of liver glucose homeostasis. I. Building the composite model.

    Science.gov (United States)

    Hetherington, J; Sumner, T; Seymour, R M; Li, L; Rey, M Varela; Yamaji, S; Saffrey, P; Margoninski, O; Bogle, I D L; Finkelstein, A; Warner, A

    2012-04-07

    A computational model of the glucagon/insulin-driven liver glucohomeostasis function, focusing on the buffering of glucose into glycogen, has been developed. The model exemplifies an 'engineering' approach to modelling in systems biology, and was produced by linking together seven component models of separate aspects of the physiology. The component models use a variety of modelling paradigms and degrees of simplification. Model parameters were determined by an iterative hybrid of fitting to high-scale physiological data, and determination from small-scale in vitro experiments or molecular biological techniques. The component models were not originally designed for inclusion within such a composite model, but were integrated, with modification, using our published modelling software and computational frameworks. This approach facilitates the development of large and complex composite models, although, inevitably, some compromises must be made when composing the individual models. Composite models of this form have not previously been demonstrated.

  4. A META-COMPOSITE SOFTWARE DEVELOPMENT APPROACH FOR TRANSLATIONAL RESEARCH

    Science.gov (United States)

    Sadasivam, Rajani S.; Tanik, Murat M.

    2013-01-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users’ needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements. PMID:23504436

  5. A meta-composite software development approach for translational research.

    Science.gov (United States)

    Sadasivam, Rajani S; Tanik, Murat M

    2013-06-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users' needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements.

  6. A new approach for modeling composite materials

    Science.gov (United States)

    Alcaraz de la Osa, R.; Moreno, F.; Saiz, J. M.

    2013-03-01

    The increasing use of composite materials is due to their ability to tailor materials for special purposes, with applications evolving day by day. This is why predicting the properties of these systems from their constituents, or phases, has become so important. However, assigning macroscopical optical properties for these materials from the bulk properties of their constituents is not a straightforward task. In this research, we present a spectral analysis of three-dimensional random composite typical nanostructures using an Extension of the Discrete Dipole Approximation (E-DDA code), comparing different approaches and emphasizing the influences of optical properties of constituents and their concentration. In particular, we hypothesize a new approach that preserves the individual nature of the constituents introducing at the same time a variation in the optical properties of each discrete element that is driven by the surrounding medium. The results obtained with this new approach compare more favorably with the experiment than previous ones. We have also applied it to a non-conventional material composed of a metamaterial embedded in a dielectric matrix. Our version of the Discrete Dipole Approximation code, the EDDA code, has been formulated specifically to tackle this kind of problem, including materials with either magnetic and tensor properties.

  7. New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid

    Science.gov (United States)

    Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.

    2018-03-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite

  8. A modeling approach for compounds affecting body composition.

    Science.gov (United States)

    Gennemark, Peter; Jansson-Löfmark, Rasmus; Hyberg, Gina; Wigstrand, Maria; Kakol-Palm, Dorota; Håkansson, Pernilla; Hovdal, Daniel; Brodin, Peter; Fritsch-Fredin, Maria; Antonsson, Madeleine; Ploj, Karolina; Gabrielsson, Johan

    2013-12-01

    Body composition and body mass are pivotal clinical endpoints in studies of welfare diseases. We present a combined effort of established and new mathematical models based on rigorous monitoring of energy intake (EI) and body mass in mice. Specifically, we parameterize a mechanistic turnover model based on the law of energy conservation coupled to a drug mechanism model. Key model variables are fat-free mass (FFM) and fat mass (FM), governed by EI and energy expenditure (EE). An empirical Forbes curve relating FFM to FM was derived experimentally for female C57BL/6 mice. The Forbes curve differs from a previously reported curve for male C57BL/6 mice, and we thoroughly analyse how the choice of Forbes curve impacts model predictions. The drug mechanism function acts on EI or EE, or both. Drug mechanism parameters (two to three parameters) and system parameters (up to six free parameters) could be estimated with good precision (coefficients of variation typically mass and FM changes at different drug provocations using a similar model for man. Surprisingly, model simulations indicate that an increase in EI (e.g. 10 %) was more efficient than an equal lowering of EI. Also, the relative change in body mass and FM is greater in man than in mouse at the same relative change in either EI or EE. We acknowledge that this assumes the same drug mechanism impact across the two species. A set of recommendations regarding the Forbes curve, vehicle control groups, dual action on EI and loss, and translational aspects are discussed. This quantitative approach significantly improves data interpretation, disease system understanding, safety assessment and translation across species.

  9. Modeling thrombin generation: plasma composition based approach.

    Science.gov (United States)

    Brummel-Ziedins, Kathleen E; Everse, Stephen J; Mann, Kenneth G; Orfeo, Thomas

    2014-01-01

    Thrombin has multiple functions in blood coagulation and its regulation is central to maintaining the balance between hemorrhage and thrombosis. Empirical and computational methods that capture thrombin generation can provide advancements to current clinical screening of the hemostatic balance at the level of the individual. In any individual, procoagulant and anticoagulant factor levels together act to generate a unique coagulation phenotype (net balance) that is reflective of the sum of its developmental, environmental, genetic, nutritional and pharmacological influences. Defining such thrombin phenotypes may provide a means to track disease progression pre-crisis. In this review we briefly describe thrombin function, methods for assessing thrombin dynamics as a phenotypic marker, computationally derived thrombin phenotypes versus determined clinical phenotypes, the boundaries of normal range thrombin generation using plasma composition based approaches and the feasibility of these approaches for predicting risk.

  10. A Knowledge-driven Approach to Composite Activity Recognition in Smart Environments

    OpenAIRE

    Chen, Liming; Wang, H.; Sterritt, Roy; Okeyo, George

    2012-01-01

    Knowledge-driven activity recognition has recently attracted increasing attention but mainly focused on simple activities. This paper extends previous work to introduce a knowledge-driven approach to recognition of composite activities such as interleaved and concurrent activities. The approach combines ontological and temporal knowledge modelling formalisms for composite activity modelling. It exploits ontological reasoning for simple activity recognition and rule-based temporal inference to...

  11. Composite Linear Models | Division of Cancer Prevention

    Science.gov (United States)

    By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty

  12. A model-based approach to studying changes in compositional heterogeneity

    NARCIS (Netherlands)

    Baeten, L.; Warton, D.; Calster, van H.; Frenne, De P.; Verstraeten, G.; Bonte, D.; Bernhardt-Romermann, M.; Cornelis, R.; Decocq, G.; Eriksson, O.; Hommel, P.W.F.M.

    2014-01-01

    1. Non-random species loss and gain in local communities change the compositional heterogeneity between communities over time, which is traditionally quantified with dissimilarity-based approaches. Yet, dissimilarities summarize the multivariate species data into a univariate index and obscure the

  13. Multi-scale modeling of composites

    DEFF Research Database (Denmark)

    Azizi, Reza

    A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale......-Mandel’s energy principle is used to find macroscopic operators based on micro-mechanical analyses using the finite element method under generalized plane strain condition. A phenomenologically macroscopic model for metal matrix composites is developed based on constitutive operators describing the elastic...... to plastic deformation. The macroscopic operators found, can be used to model metal matrix composites on the macroscopic scale using a hierarchical multi-scale approach. Finally, decohesion under tension and shear loading is studied using a cohesive law for the interface between matrix and fiber....

  14. Second quantization approach to composite hadron interactions in quark models

    International Nuclear Information System (INIS)

    Hadjimichef, D.; Krein, G.; Veiga, J.S. da; Szpigel, S.

    1995-11-01

    Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions. (author). 13 refs., 1 fig

  15. Mechanical Model Development for Composite Structural Supercapacitors

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.

    2016-01-01

    Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.

  16. Stochastic identification of temperature effects on the dynamics of a smart composite beam: assessment of multi-model and global model approaches

    International Nuclear Information System (INIS)

    Hios, J D; Fassois, S D

    2009-01-01

    The temperature effects on the dynamics of a smart composite beam are experimentally studied via conventional multi-model and novel global model identification approaches. The multi-model approaches are based on non-parametric and parametric VARX representations, whereas the global model approaches are based on novel constant coefficient pooled (CCP) and functionally pooled (FP) VARX parametric representations. The analysis indicates that the obtained multi-model and global model representations are in rough overall agreement. Nevertheless, the latter simultaneously use all available data records offering more compact descriptions of the dynamics, improved numerical robustness and estimation accuracy, which is reflected in significantly reduced modal parameter uncertainties. Although the CCP-VARX representations provide only 'averaged' descriptions of the structural dynamics over temperature, their FP-VARX counterparts allow for the explicit, analytical modeling of temperature dependence exhibiting a 'smooth' deterministic dependence of the dynamics on temperature which is compatible with the physics of the problem. In accordance with previous studies, the obtained natural frequencies decrease with temperature in a weakly nonlinear or approximately linear fashion. The damping factors are less affected, although their dependence on temperature may be of a potentially more complex nature

  17. A finite element model of myocardial infarction using a composite material approach.

    Science.gov (United States)

    Haddad, Seyyed M H; Samani, Abbas

    2018-01-01

    Computational models are effective tools to study cardiac mechanics under normal and pathological conditions. They can be used to gain insight into the physiology of the heart under these conditions while they are adaptable to computer assisted patient-specific clinical diagnosis and therapeutic procedures. Realistic cardiac mechanics models incorporate tissue active/passive response in conjunction with hyperelasticity and anisotropy. Conventional formulation of such models leads to mathematically-complex problems usually solved by custom-developed non-linear finite element (FE) codes. With a few exceptions, such codes are not available to the research community. This article describes a computational cardiac mechanics model developed such that it can be implemented using off-the-shelf FE solvers while tissue pathologies can be introduced in the model in a straight-forward manner. The model takes into account myocardial hyperelasticity, anisotropy, and active contraction forces. It follows a composite tissue modeling approach where the cardiac tissue is decomposed into two major parts: background and myofibers. The latter is modelled as rebars under initial stresses mimicking the contraction forces. The model was applied in silico to study the mechanics of infarcted left ventricle (LV) of a canine. End-systolic strain components, ejection fraction, and stress distribution attained using this LV model were compared quantitatively and qualitatively to corresponding data obtained from measurements as well as to other corresponding LV mechanics models. This comparison showed very good agreement.

  18. Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches

    Science.gov (United States)

    Cherouat, Abel; Borouchaki, Houman

    2009-01-01

    Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.

  19. Multi-scale approach to the mechanical behavior of SiC/SiC composites: the concept of mini-composite

    International Nuclear Information System (INIS)

    Lamon, J.

    2007-01-01

    Full text of publication follows: The concept of composite materials is very powerful, since one can tailor the properties with respect to end use applications, through a sound combination of constituents, including fibre, matrix and inter-phases. Ceramic matrix composites (CMCs) are at the forefront of advanced materials technology because of their light weight, high strength and toughness, high temperature capabilities and graceful failure under loading. This key behaviour is achieved by proper design of the fiber/matrix interface which helps in arresting and deflecting the cracks formed in the brittle matrix under load and preventing the early failure of the fiber arrangement. Ceramic matrix composites are considered as enabling technology for advanced aero-propulsion, space power, aerospace vehicles, space structures, ground transportation, as well as nuclear and chemical industries. During the last 30 years, tremendous progress has been made in the development of CMCs. Much research work has been conducted by LCTS on those SiC/SiC composites made via Chemical Vapor Infiltration. A multi-scale approach to mechanical behaviour has been developed. This multi-scale approach is aimed at relating the mechanical behaviour at macroscopic scale to constituent properties. It involves experiments and modelling. It allows chemical effects to be introduced in the models of mechanical behaviour. The present paper discusses the main features of the mechanical behaviour of textile SiC/SiC composites. These features are related to composite microstructure, properties of constituents (fibers, matrix and interphase) and fiber arrangement. Relationships between properties at different scales are established. Then the mini-composite concept is addressed. This concept is very powerful for composite design and investigation. Mini-composites consist of unidirectional composites reinforced by multi-filament tows. Mini-composites represent the mesoscale of textile composites. In

  20. Supersymmetric sigma models and composite Yang-Mills theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1980-04-01

    We describe two types of supersymmetric sigma models: with field values in supercoset space and with superfields. The notion of Riemannian symmetric pair (H,G/H) is generalized to supergroups. Using the supercoset approach the superconformal-invariant model of composite U(n) Yang-Mills fields in introduced. In the framework of the superfield approach we present with some details two versions of the composite N=1 supersymmetric Yang-Mills theory in four dimensions with U(n) and U(m) x U(n) local invariance. We argue that especially the superfield sigma models can be used for the description of pre-QCD supersymmetric dynamics. (author)

  1. Explicit modeling the progressive interface damage in fibrous composite: Analytical vs. numerical approach

    DEFF Research Database (Denmark)

    Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon

    2011-01-01

    of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  2. Position paper: A generic approach for security policies composition

    DEFF Research Database (Denmark)

    Hernandez, Alejandro Mario; Nielson, Flemming

    2012-01-01

    When modelling access control in distributed systems, the problem of security policies composition arises. Much work has been done on different ways of combining policies, and using different logics to do this. In this paper, we propose a more general approach based on a 4-valued logic, that abst...

  3. Nonlinear modeling of ferroelectric-ferromagnetic composites based on condensed and finite element approaches (Presentation Video)

    Science.gov (United States)

    Ricoeur, Andreas; Lange, Stephan; Avakian, Artjom

    2015-04-01

    Magnetoelectric (ME) coupling is an inherent property of only a few crystals exhibiting very low coupling coefficients at low temperatures. On the other hand, these materials are desirable due to many promising applications, e.g. as efficient data storage devices or medical or geophysical sensors. Efficient coupling of magnetic and electric fields in materials can only be achieved in composite structures. Here, ferromagnetic (FM) and ferroelectric (FE) phases are combined e.g. including FM particles in a FE matrix or embedding fibers of the one phase into a matrix of the other. The ME coupling is then accomplished indirectly via strain fields exploiting magnetostrictive and piezoelectric effects. This requires a poling of the composite, where the structure is exposed to both large magnetic and electric fields. The efficiency of ME coupling will strongly depend on the poling process. Besides the alignment of local polarization and magnetization, it is going along with cracking, also being decisive for the coupling properties. Nonlinear ferroelectric and ferromagnetic constitutive equations have been developed and implemented within the framework of a multifield, two-scale FE approach. The models are microphysically motivated, accounting for domain and Bloch wall motions. A second, so called condensed approach is presented which doesn't require the implementation of a spatial discretisation scheme, however still considering grain interactions and residual stresses. A micromechanically motivated continuum damage model is established to simulate degradation processes. The goal of the simulation tools is to predict the different constitutive behaviors, ME coupling properties and lifetime of smart magnetoelectric devices.

  4. Composite spectral functions for solving Volterra's population model

    International Nuclear Information System (INIS)

    Ramezani, M.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result

  5. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    Science.gov (United States)

    2017-03-30

    manufacturing defects in the intermediately -homogenized model of fiber-reinforced composites. 15. SUBJECT TERMS Computational micromechanics; Cavitation...defects in the intermediately -homogenized model of fiber-reinforced composites. Task 1.1 Micro-level crack initiation Background and motivation In...new Intermediate Homogenization Peridynamic approach (IH-PD model) for failure in multiphase materials. We plan to apply this IH-PD model for the

  6. A nonlinear magnetoelectric model for magnetoelectric layered composite with coupling stress

    International Nuclear Information System (INIS)

    Shi, Yang; Gao, Yuanwen

    2014-01-01

    Based on a linear piezoelectric relation and a nonlinear magnetostrictive constitutive relation, A nonlinear magnetoelectric (ME) effect model for flexural layered ME composites is established in in-plane magnetic field. In the proposed model, the true coupling stress and the equivalent piezomagnetic coefficient are taken into account and obtained through an iterative approach. Some calculations on nonlinear ME coefficient are conducted and discussed. Our results show that for both the flexural bilayer and trilayer composites, the true coupling stress in the composites first increase and then approach to a constant value with the increase of applied magnetic fields, affecting the nonlinear ME effect significantly. With consideration of the true coupling stress, the ME effect is smaller than that without consideration of the true coupling stress. Moreover, the proposed theoretical model predicts that the ME coefficient of the trilayer composite (does not generate the bending deflection) is much larger than that of bilayer composite (generates the bending deflection), which is in well agreement with the previous works. The influences of the applied magnetic field on the true coupling stress and fraction ratio corresponding to the extreme ME coefficients of layered structures are also investigated. - Highlights: • This paper develops a nonlinear model for layered ME composite. • The true coupling stress is obtained through an iterative approach. • The influences of coupling stress and flexural deformation are discussed. • The dependence of ME coefficient on magnetic field is studied

  7. Constitutive modeling of SMA SMP multifunctional high performance smart adaptive shape memory composite

    International Nuclear Information System (INIS)

    Jarali, Chetan S; Raja, S; Upadhya, A R

    2010-01-01

    Materials design involving the thermomechanical constitutive modeling of shape memory alloy (SMA) and shape memory polymer (SMP) composites is a key topic in the development of smart adaptive shape memory composites (SASMC). In this work, a constitutive model for SASMC is developed. First, a one-dimensional SMA model, which can simulate the pseudoelastic (PE) and shape memory effects (SME) is presented. Subsequently, a one-dimensional SMP model able to reproduce the SME is addressed. Both SMA and SMP models are based on a single internal state variable, namely the martensite fraction and the frozen fraction, which can be expressed as a function of temperature. A consistent form of the analytical solution for the SMP model is obtained using the fourth-order Runge–Kutta method. Finally, the SASMC constitutive model is proposed, following two analytical homogenization approaches. One approach is based on an equivalent inclusion method and the other approach is the rule of mixtures. The SMA and SMP constitutive models are validated independently with experimental results. However, the validation of the composite model is performed using the two homogenization approaches and a close agreement in results is observed. Results regarding the isothermal and thermomechanical stress–strain responses are analyzed as a function of SMA volume fraction. Further, it is concluded that the proposed composite model is able to reproduce consistently the overall composite response by taking into consideration not only the phase transformations, variable modulus and transformation stresses in SMA but also the variable modulus, the evolution of stored strain and thermal strain in the SMP

  8. Understanding latent structures of clinical information logistics: A bottom-up approach for model building and validating the workflow composite score.

    Science.gov (United States)

    Esdar, Moritz; Hübner, Ursula; Liebe, Jan-David; Hüsers, Jens; Thye, Johannes

    2017-01-01

    Clinical information logistics is a construct that aims to describe and explain various phenomena of information provision to drive clinical processes. It can be measured by the workflow composite score, an aggregated indicator of the degree of IT support in clinical processes. This study primarily aimed to investigate the yet unknown empirical patterns constituting this construct. The second goal was to derive a data-driven weighting scheme for the constituents of the workflow composite score and to contrast this scheme with a literature based, top-down procedure. This approach should finally test the validity and robustness of the workflow composite score. Based on secondary data from 183 German hospitals, a tiered factor analytic approach (confirmatory and subsequent exploratory factor analysis) was pursued. A weighting scheme, which was based on factor loadings obtained in the analyses, was put into practice. We were able to identify five statistically significant factors of clinical information logistics that accounted for 63% of the overall variance. These factors were "flow of data and information", "mobility", "clinical decision support and patient safety", "electronic patient record" and "integration and distribution". The system of weights derived from the factor loadings resulted in values for the workflow composite score that differed only slightly from the score values that had been previously published based on a top-down approach. Our findings give insight into the internal composition of clinical information logistics both in terms of factors and weights. They also allowed us to propose a coherent model of clinical information logistics from a technical perspective that joins empirical findings with theoretical knowledge. Despite the new scheme of weights applied to the calculation of the workflow composite score, the score behaved robustly, which is yet another hint of its validity and therefore its usefulness. Copyright © 2016 Elsevier Ireland

  9. An object-oriented language-database integration model: The composition filters approach

    NARCIS (Netherlands)

    Aksit, Mehmet; Bergmans, Lodewijk; Vural, Sinan; Vural, S.

    1991-01-01

    This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,

  10. An Object-Oriented Language-Database Integration Model: The Composition-Filters Approach

    NARCIS (Netherlands)

    Aksit, Mehmet; Bergmans, Lodewijk; Vural, S.; Vural, Sinan; Lehrmann Madsen, O.

    1992-01-01

    This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,

  11. Structural modeling for multicell composite rotor blades

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  12. An Ice Model That is Consistent with Composite Rheology in GIA Modelling

    Science.gov (United States)

    Huang, P.; Patrick, W.

    2017-12-01

    There are several popular approaches in constructing ice history models. One of them is mainly based on thermo-mechanical ice models with forcing or boundary conditions inferred from paleoclimate data. The second one is mainly based on the observed response of the Earth to glacial loading and unloading, a process called Glacial Isostatic Adjustment or GIA. The third approach is a hybrid version of the first and second approaches. In this presentation, we will follow the second approach which also uses geological data such as ice flow, terminal moraine data and simple ice dynamic for the ice sheet re-construction (Peltier & Andrew 1976). The global ice model ICE-6G (Peltier et al. 2015) and all its predecessors (Tushingham & Peltier 1991, Peltier 1994, 1996, 2004, Lambeck et al. 2014) are constructed this way with the assumption that mantle rheology is linear. However, high temperature creep experiments on mantle rocks show that non-linear creep laws can also operate in the mantle. Since both linear (e.g. diffusion creep) and non-linear (e.g. dislocation) creep laws can operate simultaneously in the mantle, mantle rheology is likely composite, where the total creep is the sum of both linear and onlinear creep. Preliminary GIA studies found that composite rheology can fit regional RSL observations better than that from linear rheology(e.g. van der Wal et al. 2010). The aim of this paper is to construct ice models in Laurentia and Fennoscandia using this second approach, but with composite rheology, so that its predictions can fit GIA observations such as global RSL data, land uplift rate and g-dot simultaneously in addition to geological data and simple ice dynamics. The g-dot or gravity-rate-of-change data is from the GRACE gravity mission but with the effects of hydrology removed. Our GIA model is based on the Coupled Laplace-Finite Element method as described in Wu(2004) and van der Wal et al.(2010). It is found that composite rheology generally supports a thicker

  13. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  14. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  15. Tapered composite likelihood for spatial max-stable models

    KAUST Repository

    Sang, Huiyan

    2014-05-01

    Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.

  16. Tapered composite likelihood for spatial max-stable models

    KAUST Repository

    Sang, Huiyan; Genton, Marc G.

    2014-01-01

    Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.

  17. Self-Regulation and Approaches to Learning in English Composition Writing

    Science.gov (United States)

    Magno, Carlo

    2009-01-01

    It is hypothesized in the present study that when learners are tasked to write a composition in a second language (such as English language for Filipinos), they use specific approaches to learning and eventually undergo self-regulatory processes. The present study tested a model showing the shift from process to outcome in writing (Zimmerman &…

  18. On flavour and naturalness of composite Higgs models

    International Nuclear Information System (INIS)

    Matsedonskyi, Oleksii

    2015-01-01

    We analyse the interplay of the constraints imposed on flavour-symmetric Composite Higgs models by Naturalness considerations and the constraints derived from Flavour Physics and Electroweak Precision Tests. Our analysis is based on the Effective Field Theory which describes the Higgs as a pseudo-Nambu-Goldstone boson and also includes the composite fermionic resonances. Within this approach one is able to identify the directions in the parameter space where the U(3)-symmetric flavour models can pass the current experimental constraints, without conflicting with the light Higgs mass. We also derive the general features of the U(2)-symmetric models required by the experimental bounds, in case of elementary and totally composite t R . An effect in the Zb-barb coupling, which can potentially allow for sizable deviations in Z→b-barb decay parameters without modifying flavour physics observables, is identified. We also present the analysis of the mixed scenario, where the top quark mass is generated due to Partial Compositeness while the light quark masses are Technicolor-like.

  19. Synthesizing Service Composition Models on the Basis of Temporal Business Rules

    Institute of Scientific and Technical Information of China (English)

    Jian Yu; Yan-Bo Han; Jun Han; Yan Jin; Paolo Falcarin; Maurizio Morisio

    2008-01-01

    Transformational approaches to generating design and implementation models from requirements can bring effectiveness and quality to software development. In this paper we present a framework and associated techniques to generate the process model of a service composition from a set of temporal business rules. Dedicated techniques including pathfinding, branching structure identification and parallel structure identification are used for semi-automatically synthesizing the process model from the semantics-equivalent Finite State Automata of the rules. These process models naturally satisfy the prescribed behavioral constraints of the rules. With the domain knowledge encoded in the temporal business rules,an executable service composition program, e.g., a BPEL program, can be further generated from the process models. A running example in the e-business domain is used for illustrating our approach throughout this paper.

  20. A composite likelihood approach for spatially correlated survival data

    Science.gov (United States)

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  1. A composite likelihood approach for spatially correlated survival data.

    Science.gov (United States)

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  2. A Variational Approach to the Estimate of the Permittivity of a Composite with Dispersed Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are inhomogeneous materials (heterogeneous solid body, which fall into the matrix and inclusions. The matrix in a composite is a binder between the inclusions. The properties of the inclusions mainly determine the application of composites. Selection of the characteristics of the matrix and inclusions enables us to meet the requirements for materials to be used in various fields of technology. Composites are widely used as structural or thermal protection material and as functional materials in various electrical devices, including dielectrics. One of the most important characteristics of the composite dielectric is the relative permittivity. The latter is primarily determined by the dielectric properties of the matrix and inclusions, as well as the shape and volume concentration of inclusions.For a composite with dispersed inclusions we are able to construct adequate mathematical models which enable us to predict sufficiently reliably the dependence of its dielectric constant on these defining parameters. In this paper, among the various approaches to the construction of such models we emphasize a variational approach which allows us not only to determine this dependence, but also obtain guaranteed bilateral boundaries of the area of possible values of the dielectric constant of the composite used to estimate the highest accuracy of calculated values.The representative element of the composite structure with inclusions of spherical shape modeling the form of dispersed inclusions with dimensions close to all directions is considered. For the representative element we obtained the electrostatic potential distribution that is permissible for the minimized functional. The latter is the part of the variational form of a mathematical model which describes the dielectric properties of the considered composite. From the equality of the values of this functional on the received permissible distribution in a representative element of the

  3. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  4. The Ritz - Sublaminate Generalized Unified Formulation approach for piezoelectric composite plates

    Science.gov (United States)

    D'Ottavio, Michele; Dozio, Lorenzo; Vescovini, Riccardo; Polit, Olivier

    2018-01-01

    This paper extends to composite plates including piezoelectric plies the variable kinematics plate modeling approach called Sublaminate Generalized Unified Formulation (SGUF). Two-dimensional plate equations are obtained upon defining a priori the through-thickness distribution of the displacement field and electric potential. According to SGUF, independent approximations can be adopted for the four components of these generalized displacements: an Equivalent Single Layer (ESL) or Layer-Wise (LW) description over an arbitrary group of plies constituting the composite plate (the sublaminate) and the polynomial order employed in each sublaminate. The solution of the two-dimensional equations is sought in weak form by means of a Ritz method. In this work, boundary functions are used in conjunction with the domain approximation expressed by an orthogonal basis spanned by Legendre polynomials. The proposed computational tool is capable to represent electroded surfaces with equipotentiality conditions. Free-vibration problems as well as static problems involving actuator and sensor configurations are addressed. Two case studies are presented, which demonstrate the high accuracy of the proposed Ritz-SGUF approach. A model assessment is proposed for showcasing to which extent the SGUF approach allows a reduction of the number of unknowns with a controlled impact on the accuracy of the result.

  5. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  6. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    DEFF Research Database (Denmark)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, Leon

    2017-01-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped......A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog......-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model...... by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors....

  7. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics

  8. A web service for service composition to aid geospatial modelers

    Science.gov (United States)

    Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.

    2012-04-01

    The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and

  9. A first principle approach for encapsulated type composite detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A first principle approach is presented for modeling a composite detector consisting of several high-purity germanium detector modules. Without making assumptions, if we consider the full energy peak counts from single and multiple detector module interactions, and the decomposition of background counts to counts corresponding to the escaping γ-rays and counts for γ-rays which could be recovered in addback mode, it is observed that the addback mode of a composite detector could be described in terms of four probability amplitudes only. Expressions for peak-to-total and peak-to-background ratios are obtained. Considering details of the scattering and absorption processes in a composite detector, a formalism is introduced for understanding the probability amplitudes. Detailed investigation has been performed on the effect of shape and size of composite detectors on peak-to-total and peak-to-background ratios. In accordance with isoperimetric inequality for hexagonal shapes, we have discussed about the optimal design of detector layout for extremely large values of detector modules. Using experimental data on relative single crystal efficiency, addback factor and peak-to-total ratio at 1332 keV for cluster detector, the peak-to-total and peak-to-background ratios have been calculated for several composite detectors.

  10. A systematic comparison of recurrent event models for application to composite endpoints.

    Science.gov (United States)

    Ozga, Ann-Kathrin; Kieser, Meinhard; Rauch, Geraldine

    2018-01-04

    Many clinical trials focus on the comparison of the treatment effect between two or more groups concerning a rarely occurring event. In this situation, showing a relevant effect with an acceptable power requires the observation of a large number of patients over a long period of time. For feasibility issues, it is therefore often considered to include several event types of interest, non-fatal or fatal, and to combine them within a composite endpoint. Commonly, a composite endpoint is analyzed with standard survival analysis techniques by assessing the time to the first occurring event. This approach neglects that an individual may experience more than one event which leads to a loss of information. As an alternative, composite endpoints could be analyzed by models for recurrent events. There exists a number of such models, e.g. regression models based on count data or Cox-based models such as the approaches of Andersen and Gill, Prentice, Williams and Peterson or, Wei, Lin and Weissfeld. Although some of the methods were already compared within the literature there exists no systematic investigation for the special requirements regarding composite endpoints. Within this work a simulation-based comparison of recurrent event models applied to composite endpoints is provided for different realistic clinical trial scenarios. We demonstrate that the Andersen-Gill model and the Prentice- Williams-Petersen models show similar results under various data scenarios whereas the Wei-Lin-Weissfeld model delivers effect estimators which can considerably deviate under commonly met data scenarios. Based on the conducted simulation study, this paper helps to understand the pros and cons of the investigated methods in the context of composite endpoints and provides therefore recommendations for an adequate statistical analysis strategy and a meaningful interpretation of results.

  11. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  12. Modeling healthcare authorization and claim submissions using the openEHR dual-model approach

    Science.gov (United States)

    2011-01-01

    Background The TISS standard is a set of mandatory forms and electronic messages for healthcare authorization and claim submissions among healthcare plans and providers in Brazil. It is not based on formal models as the new generation of health informatics standards suggests. The objective of this paper is to model the TISS in terms of the openEHR archetype-based approach and integrate it into a patient-centered EHR architecture. Methods Three approaches were adopted to model TISS. In the first approach, a set of archetypes was designed using ENTRY subclasses. In the second one, a set of archetypes was designed using exclusively ADMIN_ENTRY and CLUSTERs as their root classes. In the third approach, the openEHR ADMIN_ENTRY is extended with classes designed for authorization and claim submissions, and an ISM_TRANSITION attribute is added to the COMPOSITION class. Another set of archetypes was designed based on this model. For all three approaches, templates were designed to represent the TISS forms. Results The archetypes based on the openEHR RM (Reference Model) can represent all TISS data structures. The extended model adds subclasses and an attribute to the COMPOSITION class to represent information on authorization and claim submissions. The archetypes based on all three approaches have similar structures, although rooted in different classes. The extended openEHR RM model is more semantically aligned with the concepts involved in a claim submission, but may disrupt interoperability with other systems and the current tools must be adapted to deal with it. Conclusions Modeling the TISS standard by means of the openEHR approach makes it aligned with ISO recommendations and provides a solid foundation on which the TISS can evolve. Although there are few administrative archetypes available, the openEHR RM is expressive enough to represent the TISS standard. This paper focuses on the TISS but its results may be extended to other billing processes. A complete

  13. An Improved Design Methodology for Modeling Thick-Section Composite Structures Using a Multiscale Approach

    Science.gov (United States)

    2012-09-01

    case study no. 2. The multiaxial loading combined with XZ and YZ Poisson ratio effects contributes to strains in the Z-direction of the sample. The...E. A Continuum Damage Model for Fiber Reinforced Laminates Based on Ply Failure Mechanisms, Composite Structures. Fifteenth International...output parameters, stiffness ratios , to analyze the nonlinear response and progressive failure of the composite structure is developed. These new

  14. An FEM-based AI approach to model parameter identification for low vibration modes of wind turbine composite rotor blades

    Science.gov (United States)

    Navadeh, N.; Goroshko, I. O.; Zhuk, Y. A.; Fallah, A. S.

    2017-11-01

    An approach to construction of a beam-type simplified model of a horizontal axis wind turbine composite blade based on the finite element method is proposed. The model allows effective and accurate description of low vibration bending modes taking into account the effects of coupling between flapwise and lead-lag modes of vibration transpiring due to the non-uniform distribution of twist angle in the blade geometry along its length. The identification of model parameters is carried out on the basis of modal data obtained by more detailed finite element simulations and subsequent adoption of the 'DIRECT' optimisation algorithm. Stable identification results were obtained using absolute deviations in frequencies and in modal displacements in the objective function and additional a priori information (boundedness and monotony) on the solution properties.

  15. Progressive fracture of polymer matrix composite structures: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.

  16. Access Control Model for Sharing Composite Electronic Health Records

    Science.gov (United States)

    Jin, Jing; Ahn, Gail-Joon; Covington, Michael J.; Zhang, Xinwen

    The adoption of electronically formatted medical records, so called Electronic Health Records (EHRs), has become extremely important in healthcare systems to enable the exchange of medical information among stakeholders. An EHR generally consists of data with different types and sensitivity degrees which must be selectively shared based on the need-to-know principle. Security mechanisms are required to guarantee that only authorized users have access to specific portions of such critical record for legitimate purposes. In this paper, we propose a novel approach for modelling access control scheme for composite EHRs. Our model formulates the semantics and structural composition of an EHR document, from which we introduce a notion of authorized zones of the composite EHR at different granularity levels, taking into consideration of several important criteria such as data types, intended purposes and information sensitivities.

  17. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  18. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    Science.gov (United States)

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. The Absolute Deviation Rank Diagnostic Approach to Gear Tooth Composite Fault

    Directory of Open Access Journals (Sweden)

    Guangbin Wang

    2017-01-01

    Full Text Available Aiming at nonlinear and nonstationary characteristics of the different degree with single fault gear tooth broken, pitting, and composite fault gear tooth broken-pitting, a method for the diagnosis of absolute deviation of gear faults is presented. The method uses ADAMS, respectively, set-up dynamics model of single fault gear tooth broken, pitting, and composite fault gear tooth broken-pitting, to obtain the result of different degree of broken teeth, pitting the single fault and compound faults in the meshing frequency, and the amplitude frequency doubling through simulating analysis. Through the comparison with the normal state to obtain the sensitive characteristic of the fault, the absolute value deviation diagnostic approach is used to identify the fault and validate it through experiments. The results show that absolute deviation rank diagnostic approach can realize the recognition of gear single faults and compound faults with different degrees and provide quick reference to determine the degree of gear fault.

  20. The approach to engineering tasks composition on knowledge portals

    Science.gov (United States)

    Novogrudska, Rina; Globa, Larysa; Schill, Alexsander; Romaniuk, Ryszard; Wójcik, Waldemar; Karnakova, Gaini; Kalizhanova, Aliya

    2017-08-01

    The paper presents an approach to engineering tasks composition on engineering knowledge portals. The specific features of engineering tasks are highlighted, their analysis makes the basis for partial engineering tasks integration. The formal algebraic system for engineering tasks composition is proposed, allowing to set the context-independent formal structures for engineering tasks elements' description. The method of engineering tasks composition is developed that allows to integrate partial calculation tasks into general calculation tasks on engineering portals, performed on user request demand. The real world scenario «Calculation of the strength for the power components of magnetic systems» is represented, approving the applicability and efficiency of proposed approach.

  1. A systematic composite service design modeling method using graph-based theory.

    Science.gov (United States)

    Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh

    2015-01-01

    The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.

  2. Modeling healthcare authorization and claim submissions using the openEHR dual-model approach

    Directory of Open Access Journals (Sweden)

    Freire Sergio M

    2011-10-01

    Full Text Available Abstract Background The TISS standard is a set of mandatory forms and electronic messages for healthcare authorization and claim submissions among healthcare plans and providers in Brazil. It is not based on formal models as the new generation of health informatics standards suggests. The objective of this paper is to model the TISS in terms of the openEHR archetype-based approach and integrate it into a patient-centered EHR architecture. Methods Three approaches were adopted to model TISS. In the first approach, a set of archetypes was designed using ENTRY subclasses. In the second one, a set of archetypes was designed using exclusively ADMIN_ENTRY and CLUSTERs as their root classes. In the third approach, the openEHR ADMIN_ENTRY is extended with classes designed for authorization and claim submissions, and an ISM_TRANSITION attribute is added to the COMPOSITION class. Another set of archetypes was designed based on this model. For all three approaches, templates were designed to represent the TISS forms. Results The archetypes based on the openEHR RM (Reference Model can represent all TISS data structures. The extended model adds subclasses and an attribute to the COMPOSITION class to represent information on authorization and claim submissions. The archetypes based on all three approaches have similar structures, although rooted in different classes. The extended openEHR RM model is more semantically aligned with the concepts involved in a claim submission, but may disrupt interoperability with other systems and the current tools must be adapted to deal with it. Conclusions Modeling the TISS standard by means of the openEHR approach makes it aligned with ISO recommendations and provides a solid foundation on which the TISS can evolve. Although there are few administrative archetypes available, the openEHR RM is expressive enough to represent the TISS standard. This paper focuses on the TISS but its results may be extended to other billing

  3. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    Science.gov (United States)

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  4. TAX COMPOSITION AND ECONOMIC GROWTH. A PANEL-MODEL APPROACH FOR EASTERN EUROPE

    Directory of Open Access Journals (Sweden)

    MURA PETRU-OVIDIU

    2015-03-01

    Full Text Available In this paper, we investigate the impact of tax composition on economic growth, based on a panel-model approach. The dataset includes six East-European countries and covers the period 1995-2012. Specifically, the study explores the relative impact of different components of tax revenue (direct and indirect tax revenue, as percentage of total tax revenue on economic growth. The paper adds marginally to the empirical literature, showing how the two types of tax revenue influence economic growth in Eastern Europe, under an extended set of economic and sociopolitical control variables. The most important empirical output, for the 6 investigated East-European countries during 1995-2012, suggests that direct taxes are significant and negatively correlated with economic growth, while indirect taxes exert a positive influence on the dependent variable, though insignificant. As for the control variables, it seems that only freedom from corruption and political stability have a significant impact on economic growth. The study suggests that the design of tax systems in Eastern European countries is in accordance with the Commission’s priorities regarding its growth-friendliness. As for policy implications, governments should continue shifting the tax burden away from labour on to tax bases linked to consumption, property, and combating pollution, with potential positive effects both for growth and for fighting against tax evasion.

  5. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus...

  6. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  7. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    Science.gov (United States)

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  8. Mathematical Modeling of Dielectric Characteristics of the Metallic Band Inclusion Composite

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    structural model of the composite these inclusions are replaced by the uniform ellipsoidal inclusions with equivalent anisotropic dielectric characteristics that with the ordered arrangement of the inclusions leads to anisotropy of effective dielectric characteristics of the composite as a whole.There are known various approaches [1, 8, 9, 10] to the mathematical modeling that allow us to build calculated curves to determine dielectric characteristics of the composites having inclusions of different forms. When building such models, the analogy between the formulations and problem solutions of electrostatics and steady thermal conductivity [11, 12, 13, 14] can be used. Variation approaches [15, 16, 17] to estimate effective dielectric properties of the composite allow us to obtain bilateral borders between which there are their true values, and evaluate the maximum possible error occurring in using a particular mathematical model. Such borders can be set on the basis of the dual variation formulation of the problem for a potential field in an inhomogeneous solid [18]. This formulation contains two alternative functionals (minimized and maximized, taking the same extreme values in the true problem solving.

  9. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach

    Science.gov (United States)

    Le Duy, Nguyen; Heidbüchel, Ingo; Meyer, Hanno; Merz, Bruno; Apel, Heiko

    2018-02-01

    for δ18O and δ2H, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the seasons and that the source regions and transport pathways, and particularly the climatic conditions along the pathways, have a large influence on the isotopic composition of rainfall. Although the general results have been reported qualitatively in previous studies (proving the validity of the approach), the proposed method provides quantitative estimates of the controlling factors, both for the whole data set and for distinct seasons. Therefore, it is argued that the approach constitutes an advancement in the statistical analysis of isotopic records in rainfall that can supplement or precede more complex studies utilizing atmospheric models. Due to its relative simplicity, the method can be easily transferred to other regions, or extended with other factors. The results illustrate that the interpretation of the isotopic composition of precipitation as a recorder of local climatic conditions, as for example performed for paleorecords of water isotopes, may not be adequate in the southern part of the Indochinese Peninsula, and likely neither in other regions affected by monsoon processes. However, the presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records.

  10. A Hierarchical FEM approach for Simulation of Geometrical and Material induced Instability of Composite Structures

    DEFF Research Database (Denmark)

    Hansen, Anders L.; Lund, Erik; Pinho, Silvestre T.

    2009-01-01

    In this paper a hierarchical FE approach is utilized to simulate delamination in a composite plate loaded in uni-axial compression. Progressive delamination is modelled by use of cohesive interface elements that are automatically embedded. The non-linear problem is solved quasi-statically in whic...

  11. Constitutive modeling and control of 1D smart composite structures

    Science.gov (United States)

    Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro

    1998-07-01

    Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.

  12. Survey of composite particle models of electroweak interaction

    International Nuclear Information System (INIS)

    Suzuki, Mahiko.

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t R -quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, t2 /4π = 0.1 for m t = 200 GeV, is too small for a coupling of a composite particle

  13. A thick level set interface model for simulating fatigue-drive delamination in composites

    NARCIS (Netherlands)

    Latifi, M.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    This paper presents a new damage model for simulating fatigue-driven delamination in composite laminates. This model is developed based on the Thick Level Set approach (TLS) and provides a favorable link between damage mechanics and fracture mechanics through the non-local evaluation of the energy

  14. Modeling the Effects of the Cathode Composition of a Lithium Iron Phosphate Battery on the Discharge Behavior

    Directory of Open Access Journals (Sweden)

    Won Il Cho

    2013-10-01

    Full Text Available This paper reports a modeling methodology to predict the effects on the discharge behavior of the cathode composition of a lithium iron phosphate (LFP battery cell comprising a LFP cathode, a lithium metal anode, and an organic electrolyte. A one-dimensional model based on a finite element method is presented to calculate the cell voltage change of a LFP battery cell during galvanostatic discharge. To test the validity of the modeling approach, the modeling results for the variations of the cell voltage of the LFP battery as a function of time are compared with the experimental measurements during galvanostatic discharge at various discharge rates of 0.1C, 0.5C, 1.0C, and 2.0C for three different compositions of the LFP cathode. The discharge curves obtained from the model are in good agreement with the experimental measurements. On the basis of the validated modeling approach, the effects of the cathode composition on the discharge behavior of a LFP battery cell are estimated. The modeling results exhibit highly nonlinear dependencies of the discharge behavior of a LFP battery cell on the discharge C-rate and cathode composition.

  15. A numerical approach to model and predict the energy absorption and crush mechanics within a long-fiber composite crush tube

    Science.gov (United States)

    Pickett, Leon, Jr.

    Past research has conclusively shown that long fiber structural composites possess superior specific energy absorption characteristics as compared to steel and aluminum structures. However, destructive physical testing of composites is very costly and time consuming. As a result, numerical solutions are desirable as an alternative to experimental testing. Up until this point, very little numerical work has been successful in predicting the energy absorption of composite crush structures. This research investigates the ability to use commercially available numerical modeling tools to approximate the energy absorption capability of long-fiber composite crush tubes. This study is significant because it provides a preliminary analysis of the suitability of LS-DYNA to numerically characterize the crushing behavior of a dynamic axial impact crushing event. Composite crushing theory suggests that there are several crushing mechanisms occurring during a composite crush event. This research evaluates the capability and suitability of employing, LS-DYNA, to simulate the dynamic crush event of an E-glass/epoxy cylindrical tube. The model employed is the composite "progressive failure model", a much more limited failure model when compared to the experimental failure events which naturally occur. This numerical model employs (1) matrix cracking, (2) compression, and (3) fiber breakage failure modes only. The motivation for the work comes from the need to reduce the significant cost associated with experimental trials. This research chronicles some preliminary efforts to better understand the mechanics essential in pursuit of this goal. The immediate goal is to begin to provide deeper understanding of a composite crush event and ultimately create a viable alternative to destructive testing of composite crush tubes.

  16. Modeling of solidification of MMC composites during gravity casting process

    Directory of Open Access Journals (Sweden)

    R. Zagórski

    2013-04-01

    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  17. Statistical approaches for evaluating body composition markers in clinical cancer research.

    Science.gov (United States)

    Bayar, Mohamed Amine; Antoun, Sami; Lanoy, Emilie

    2017-04-01

    The term 'morphomics' stands for the markers of body composition in muscle and adipose tissues. in recent years, as part of clinical cancer research, several associations between morphomics and outcome or toxicity were found in different treatment settings leading to a growing interest. we aim to review statistical approaches used to evaluate these markers and suggest practical statistical recommendations. Area covered: We identified statistical methods used recently to take into account properties of morphomics measurements. We also reviewed adjustment methods on major confounding factors such as gender and approaches to model morphomic data, especially mixed models for repeated measures. Finally, we focused on methods for determining a cut-off for a morphomic marker that could be used in clinical practice and how to assess its robustness. Expert commentary: From our review, we proposed 13 key points to strengthen analyses and reporting of clinical research assessing associations between morphomics and outcome or toxicity.

  18. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach

    Directory of Open Access Journals (Sweden)

    N. Le Duy

    2018-02-01

    place mainly in the dry season, either locally for δ18O and δ2H, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the seasons and that the source regions and transport pathways, and particularly the climatic conditions along the pathways, have a large influence on the isotopic composition of rainfall. Although the general results have been reported qualitatively in previous studies (proving the validity of the approach, the proposed method provides quantitative estimates of the controlling factors, both for the whole data set and for distinct seasons. Therefore, it is argued that the approach constitutes an advancement in the statistical analysis of isotopic records in rainfall that can supplement or precede more complex studies utilizing atmospheric models. Due to its relative simplicity, the method can be easily transferred to other regions, or extended with other factors. The results illustrate that the interpretation of the isotopic composition of precipitation as a recorder of local climatic conditions, as for example performed for paleorecords of water isotopes, may not be adequate in the southern part of the Indochinese Peninsula, and likely neither in other regions affected by monsoon processes. However, the presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records.

  19. Approaches to modeling landscape-scale drought-induced forest mortality

    Science.gov (United States)

    Gustafson, Eric J.; Shinneman, Douglas

    2015-01-01

    Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.

  20. Neural network approach to modelling the behaviour of quantum tunnelling composites as multifunctional sensors

    International Nuclear Information System (INIS)

    Lantada, Andrés Díaz; Morgado, Pilar Lafont; Otero, Javier Echavarri; Munoz-Guijosa, Juan Manuel; Sanz, José Luis Muñoz

    2010-01-01

    Quantum tunnelling composites, or 'QTCs', are composites with an elastomeric polymer matrix and a metal particle filling (usually nickel). At rest, these metal particles do not touch each other and the polymer acts as an insulator. When the material is suitably deformed, however, the particles come together (without actually touching) and the quantum tunnelling effect is promoted, which causes the electrical resistance to fall drastically. This paper contains a detailed description of neural networks for a faster, simpler and more accurate modelling and simulation of QTC behaviour that is based on properly training these neural models with the help of data from characterization tests. Instead of using analytical equations that integrate different quantum and thermomechanical effects, neural networks are used here due to the notable nonlinearity of the aforementioned effects, which involve developing analytical models that are too complex to be of practical use. By conducting tests under different pressures and temperatures that encompass a wide range of operating conditions for these materials, different neural networks are trained and compared as the number of neurons is increased. The results of these tests have also enabled certain previously described phenomena to be simulated with more accuracy, especially those involving the response of QTCs to changes in pressure and temperature

  1. Modelling the development of defects during composite reinforcements and prepreg forming

    Science.gov (United States)

    Hamila, N.; Madeo, A.

    2016-01-01

    Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of ‘locking angle’ is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar ‘transition zones’ that are directly related to the bending stiffness of the fibres. The ‘transition zones’ are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242300

  2. 3D modelling of squeeze flow of unidirectional and fabric composite inserts

    Science.gov (United States)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland

    2016-10-01

    The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.

  3. Composite hadron models

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    Composite models of hadrons are considered. The main attention is paid to the Sakata, S model. In the framework of the model it is presupposed that proton, neutron and Λ particle are the fundamental particles. Theoretical studies of unknown fundamental constituents of a substance have led to the creation of the quark model. In the framework of the quark model using the theory of SU(6)-symmetry the classification of mesons and baryons is considered. Using the quark model relations between hadron masses, their spins and electromagnetic properties are explained. The problem of three-colour model with many flavours is briefly presented

  4. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  5. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    Science.gov (United States)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix

  6. Statistical approach for uncertainty quantification of experimental modal model parameters

    DEFF Research Database (Denmark)

    Luczak, M.; Peeters, B.; Kahsin, M.

    2014-01-01

    Composite materials are widely used in manufacture of aerospace and wind energy structural components. These load carrying structures are subjected to dynamic time-varying loading conditions. Robust structural dynamics identification procedure impose tight constraints on the quality of modal models...... represent different complexity levels ranging from coupon, through sub-component up to fully assembled aerospace and wind energy structural components made of composite materials. The proposed method is demonstrated on two application cases of a small and large wind turbine blade........ This paper aims at a systematic approach for uncertainty quantification of the parameters of the modal models estimated from experimentally obtained data. Statistical analysis of modal parameters is implemented to derive an assessment of the entire modal model uncertainty measure. Investigated structures...

  7. Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.

    2008-01-01

    Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression

  8. Towards the improvement of the oxidation resistance of Nb-silicides in situ composites: A solid state diffusion approach

    International Nuclear Information System (INIS)

    Mathieu, S.; Knittel, S.; François, M.; Portebois, L.; Mathieu, S.; Vilasi, M.

    2014-01-01

    Highlights: •Local equilibrium is attained during oxidation at phase boundaries (steady state conditions). •A solid state diffusion model explains the oxidation mechanism of Nb-silicides composites. •The Nb ss fraction is not the only parameters governing the oxidation rate of Nb-silicides. •Aluminium increases the thermodynamic activity of Si in the Nb-silicides composites. •The results indicate the need to develop a Nb–Ti–Hf–Al–Cr–Si thermodynamic database. -- Abstract: The present study focuses on the oxidation mechanism of Nb-silicide composites and on the effect of the composition on the oxidation rate at 1100 °C. A theoretical approach is proposed based on experimental results and used to optimise the oxidation resistance. The growth model based on multiphase diffusion was experimentally tested and confirmed by manufacturing seven composites with different compositions. It was also found that the effect of the composition has to be evaluated at 1100 °C within a short time duration (50 h), where the oxide scale and the internal oxidation zone both grow according to parabolic kinetics

  9. A structural model for composite rotor blades and lifting surfaces

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.

  10. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  11. Composite quantum collision models

    Science.gov (United States)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  12. A Model of Composite \\textit{B}\\,--\\,\\textit{L} Asymmetric Dark Matter

    OpenAIRE

    Ibe, Masahiro; Kamada, Ayuki; Kobayashi, Shin; Nakano, Wakutaka

    2018-01-01

    As the $B-L$ gauge symmetry is the most plausible addition among the various extensions of the Standard Model, it is attractive to identify symmetry which stabilizes dark matter with the $B-L$ gauge symmetry. Besides, dark matter which is stabilized by $B-L$ naturally leads to asymmetric dark matter. In this paper, we construct a model of composite asymmetric dark matter in a bottom-up approach. By assuming that the entropy of the dark sector is released to the Standard Model sector through a...

  13. Constitutive modeling of fiber-reinforced cement composites

    Science.gov (United States)

    Boulfiza, Mohamed

    The role of fibers in the enhancement of the inherently low tensile stress and strain capacities of fiber reinforced cementitious composites (FRC) has been addressed through both the phenomenological, using concepts of continuum damage mechanics, and micro-mechanical approaches leading to the development of a closing pressure that could be used in a cohesive crack analysis. The observed enhancements in the matrix behavior is assumed to be related to the ability of the material to transfer stress across cracks. In the micromechanics approach, this is modeled by the introduction of a nonlinear closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak and post peak regimes, two different micro-mechanical models of the cohesive pressure have been proposed, one for the strain hardening stage and another for the strain softening regime. This cohesive pressure is subsequently incorporated into a finite element code so that a nonlinear fracture analysis can be carried out. On top of the fact that a direct fracture analysis has been performed to predict the response of some FRC structural elements, a numerical procedure for the homogenization of FRC materials has been proposed. In this latter approach, a link is established between the cracking taking place at the meso-scale and its mechanical characteristics as represented by the Young's modulus. A parametric study has been carried out to investigate the effect of crack patterning and fiber volume fractions on the overall Young's modulus and the thermodynamic force associated with the tensorial damage variable. After showing the usefulness and power of phenomenological continuum damage mechanics (PCDM) in the prediction of ERC materials' response to a stimuli (loading), a combined PCDM-NLFMsp1 approach is proposed to model (predict, forecast) the complete response of the composite up to failure. Based on experimental observations, this approach assumes that damage mechanics which predicts

  14. Negative Saturation Approach for Non-Isothermal Compositional Two-Phase Flow Simulations

    NARCIS (Netherlands)

    Salimi, H.; Wolf, K.H.; Bruining, J.

    2011-01-01

    This article deals with developing a solution approach, called the non-isothermal negative saturation (NegSat) solution approach. The NegSat solution approach solves efficiently any non-isothermal compositional flow problem that involves phase disappearance, phase appearance, and phase transition.

  15. Export of microplastics from land to sea. A modelling approach

    NARCIS (Netherlands)

    Siegfried, Max; Koelmans, A.A.; Besseling, E.; Kroeze, C.

    2017-01-01

    Quantifying the transport of plastic debris from river to sea is crucial for assessing the risks of plastic debris to human health and the environment. We present a global modelling approach to analyse the composition and quantity of point-source microplastic fluxes from European rivers to the sea.

  16. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    Science.gov (United States)

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  17. Finite element modelling and analysis of composites toecaps

    International Nuclear Information System (INIS)

    Yang, C C; Duhovic, M; Lin, R J T; Bhattacharyya, D

    2009-01-01

    Composite toe-caps have attracted considerable attention due to their advantageous properties over traditional metallic toe-caps. However, the anisotropic properties of composite materials also make the toe-cap performance more complex to analyse. This project aims at developing a Finite Element (FE) model for composite toe-caps with the aid of compression testing data. The geometry of the toe-cap was first scanned and imported into an FEA software package to create a workable FE model. The method was then validated by comparing the FE model with experimental results of steel toe-caps. Manufacturing, modelling and testing of custom-made composite toe-cap samples were then carried out. Modelling outputs of composite toe-caps were compared with compression test data for validation. The stress distributions and deformations of the toe-caps were also analysed. Modelling of the steel and composite toe-caps was realized using LS-DYNA Solver and PrePost (registered) . All FE analyses were modelled with reference to European Standards. The developed FE models can in the future be used to model toe-caps with various materials to determine the effects of fibre orientation relating to structural strength, and to achieve structural optimisation.

  18. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  19. Mathematical methods and models in composites

    CERN Document Server

    Mantic, Vladislav

    2014-01-01

    This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover

  20. Micro-Scale Experiments and Models for Composite Materials with Materials Research

    DEFF Research Database (Denmark)

    Zike, Sanita

    Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... properties acquired at macro-scale are used for micro-mechanical models. This is because material properties at the macro-scale are much more available and the test procedures to obtain them are well defined. The aim of this research was to find methods to extract the micro-mechanical properties of the epoxy...... resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam...

  1. A Process Mining Based Service Composition Approach for Mobile Information Systems

    Directory of Open Access Journals (Sweden)

    Chengxi Huang

    2017-01-01

    Full Text Available Due to the growing trend in applying big data and cloud computing technologies in information systems, it is becoming an important issue to handle the connection between large scale of data and the associated business processes in the Internet of Everything (IoE environment. Service composition as a widely used phase in system development has some limits when the complexity of relationship among data increases. Considering the expanding scale and the variety of devices in mobile information systems, a process mining based service composition approach is proposed in this paper in order to improve the adaptiveness and efficiency of compositions. Firstly, a preprocessing is conducted to extract existing service execution information from server-side logs. Then process mining algorithms are applied to discover the overall event sequence with preprocessed data. After that, a scene-based service composition is applied to aggregate scene information and relocate services of the system. Finally, a case study that applied the work in mobile medical application proves that the approach is practical and valuable in improving service composition adaptiveness and efficiency.

  2. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum mechanics. The key computational issues, including the peculiar homogenization technique and treatment of periodical boundary conditions in the non-local continuum model, are clarified. Both models are implemented through a three-dimensional geometric representation of the carbon nanotubes network, which has been detailed in Part I. Numerical results are shown and compared for both models in order to test convergence and sensitivity toward input parameters. It is found that both approaches provide similar results in terms of homogenized quantities but locally can lead to very different microscopic fields. © 2013 Elsevier B.V. All rights reserved.

  3. Mechanical characterization and modeling of SiCF/SiC composite tubes

    International Nuclear Information System (INIS)

    Rohmer, E.

    2013-01-01

    This work is part of the development of the 4. generation of nuclear reactors. It relates more precisely to the composite portion of the sandwich type tubular cladding considered by the CEA for RNR-NA/Gaz type reactors. The texture is formed by a braiding technique and the study focuses on interlocks braided composite. These relatively new structures require extensive mechanical characterization. Two experimental protocols were developed to conduct tensile and internal pressure tests on tubes. Three different textures have been characterized. In addition, a multi-scale model was developed to connect the microstructure of the tube to its mechanical properties. This model is validated for the elastic behavior of a characterized texture. A first approach to the damage in the structure is proposed and a possible improved protocol is discussed. (author) [fr

  4. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  5. Content Discovery from Composite Audio : An unsupervised approach

    NARCIS (Netherlands)

    Lu, L.

    2009-01-01

    In this thesis, we developed and assessed a novel robust and unsupervised framework for semantic inference from composite audio signals. We focused on the problem of detecting audio scenes and grouping them into meaningful clusters. Our approach addressed all major steps in a general process of

  6. Global Risk Evolution and Diversification: a Copula-DCC-GARCH Model Approach

    Directory of Open Access Journals (Sweden)

    Marcelo Brutti Righi

    2012-12-01

    Full Text Available In this paper we estimate a dynamic portfolio composed by the U.S., German, British, Brazilian, Hong Kong and Australian markets, the period considered started on September 2001 and finished in September 2011. We ran the Copula-DCC-GARCH model on the daily returns conditional covariance matrix. The results allow us to conclude that there were changes in portfolio composition, occasioned by modifications in volatility and dependence between markets. The dynamic approach significantly reduced the portfolio risk if compared to the traditional static approach, especially in turbulent periods. Furthermore, we verified that the estimated copula model outperformed the conventional DCC model for the sample studied.

  7. Foundations of compositional model theory

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Radim

    2011-01-01

    Roč. 40, č. 6 (2011), s. 623-678 ISSN 0308-1079 R&D Projects: GA MŠk 1M0572; GA ČR GA201/09/1891; GA ČR GEICC/08/E010 Institutional research plan: CEZ:AV0Z10750506 Keywords : multidimensional probability distribution * conditional independence * graphical Markov model * composition of distributions Subject RIV: IN - Informatics, Computer Science Impact factor: 0.667, year: 2011 http://library.utia.cas.cz/separaty/2011/MTR/jirousek-foundations of compositional model theory.pdf

  8. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Science.gov (United States)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  9. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    Science.gov (United States)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  10. METHODOLOGICAL APPROACHES FOR MODELING THE RURAL SETTLEMENT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Gorbenkova Elena Vladimirovna

    2017-10-01

    Full Text Available Subject: the paper describes the research results on validation of a rural settlement developmental model. The basic methods and approaches for solving the problem of assessment of the urban and rural settlement development efficiency are considered. Research objectives: determination of methodological approaches to modeling and creating a model for the development of rural settlements. Materials and methods: domestic and foreign experience in modeling the territorial development of urban and rural settlements and settlement structures was generalized. The motivation for using the Pentagon-model for solving similar problems was demonstrated. Based on a systematic analysis of existing development models of urban and rural settlements as well as the authors-developed method for assessing the level of agro-towns development, the systems/factors that are necessary for a rural settlement sustainable development are identified. Results: we created the rural development model which consists of five major systems that include critical factors essential for achieving a sustainable development of a settlement system: ecological system, economic system, administrative system, anthropogenic (physical system and social system (supra-structure. The methodological approaches for creating an evaluation model of rural settlements development were revealed; the basic motivating factors that provide interrelations of systems were determined; the critical factors for each subsystem were identified and substantiated. Such an approach was justified by the composition of tasks for territorial planning of the local and state administration levels. The feasibility of applying the basic Pentagon-model, which was successfully used for solving the analogous problems of sustainable development, was shown. Conclusions: the resulting model can be used for identifying and substantiating the critical factors for rural sustainable development and also become the basis of

  11. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  12. Statistical Models for Inferring Vegetation Composition from Fossil Pollen

    Science.gov (United States)

    Paciorek, C.; McLachlan, J. S.; Shang, Z.

    2011-12-01

    Fossil pollen provide information about vegetation composition that can be used to help understand how vegetation has changed over the past. However, these data have not traditionally been analyzed in a way that allows for statistical inference about spatio-temporal patterns and trends. We build a Bayesian hierarchical model called STEPPS (Spatio-Temporal Empirical Prediction from Pollen in Sediments) that predicts forest composition in southern New England, USA, over the last two millenia based on fossil pollen. The critical relationships between abundances of tree taxa in the pollen record and abundances in actual vegetation are estimated using modern (Forest Inventory Analysis) data and (witness tree) data from colonial records. This gives us two time points at which both pollen and direct vegetation data are available. Based on these relationships, and incorporating our uncertainty about them, we predict forest composition using fossil pollen. We estimate the spatial distribution and relative abundances of tree species and draw inference about how these patterns have changed over time. Finally, we describe ongoing work to extend the modeling to the upper Midwest of the U.S., including an approach to infer tree density and thereby estimate the prairie-forest boundary in Minnesota and Wisconsin. This work is part of the PalEON project, which brings together a team of ecosystem modelers, paleoecologists, and statisticians with the goal of reconstructing vegetation responses to climate during the last two millenia in the northeastern and midwestern United States. The estimates from the statistical modeling will be used to assess and calibrate ecosystem models that are used to project ecological changes in response to global change.

  13. Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies

    Science.gov (United States)

    Ibañez, Ruben; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Huerta, Antonio

    2016-10-01

    Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid - TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.

  14. Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite

    Science.gov (United States)

    Wang, Ning; Du, Huihui; Huang, Qiaoyun; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Chen, Wenli

    2016-10-01

    Surface complexation modeling (SCM) has emerged as a powerful tool for simulating heavy metal adsorption processes on the surface of soil solid components under different geochemical conditions. The component additivity (CA) approach is one of the strategies that have been widely used in multicomponent systems. In this study, potentiometric titration, isothermal adsorption, zeta potential measurement, and extended X-ray absorption fine-structure (EXAFS) spectra analysis were conducted to investigate Cd adsorption on 2 : 1 clay mineral montmorillonite, on Gram-positive bacteria Bacillus subtilis, and their mineral-organic composite. We developed constant capacitance models of Cd adsorption on montmorillonite, bacterial cells, and mineral-organic composite. The adsorption behavior of Cd on the surface of the composite was well explained by CA-SCM. Some deviations were observed from the model simulations at pH SCM closely coincided with the estimated value of EXAFS at pH 6. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils and associated environments.

  15. Supersymmetric composite models on intersecting D-branes

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2004-01-01

    We construct supersymmetric composite models of quarks and leptons from type IIA T6/(Z2xZ2) orientifold with intersecting D6-branes. In case of T6=T2xT2xT2 with no tilted T2, a composite model of supersymmetric SU(5) grand unified theory with four generations is constructed. In case of that one T2 is tilted, a composite model with SU(3)cxSU(2)LxU(1)Y gauge symmetry with three generations of left-handed quarks and leptons is constructed. These models are not realistic, but contain relatively fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The masses of some exotic particles are naturally generated through the Yukawa interactions among 'preons'

  16. A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY ASSOCIATED NCF COMPOSITE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; McAuliffe, Colin [Altair Engineering, Inc.; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors

    2016-06-06

    multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.

  17. Versatile Micromechanics Model for Multiscale Analysis of Composite Structures

    Science.gov (United States)

    Kwon, Y. W.; Park, M. S.

    2013-08-01

    A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.

  18. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  19. The Composite OLAP-Object Data Model

    Energy Technology Data Exchange (ETDEWEB)

    Pourabbas, Elaheh; Shoshani, Arie

    2005-12-07

    In this paper, we define an OLAP-Object model that combines the main characteristics of OLAP and Object data models in order to achieve their functionalities in a common framework. We classify three different object classes: primitive, regular and composite. Then, we define a query language which uses the path concept in order to facilitate data navigation and data manipulation. The main feature of the proposed language is an anchor. It allows us to fix dynamically an object class (primitive, regular or composite) along the paths over the OLAP-Object data model for expressing queries. The queries can be formulated on objects, composite objects and combination of both. The power of the proposed query language is investigated through multiple query examples. The semantic of different clauses and syntax of the proposed language are investigated.

  20. Exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, K.; Hattori, T.; Yasue, M.

    1991-01-01

    An exotic composite vector boson V is introduced in two dynamical models of composite quarks, leptons, W, and Z. One is based on four-Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ, and V

  1. ADVANCED APPROACH TO PRODUCTION WORKFLOW COMPOSITION ON ENGINEERING KNOWLEDGE PORTALS

    OpenAIRE

    Novogrudska, Rina; Kot, Tatyana; Globa, Larisa; Schill, Alexander

    2016-01-01

    Background. In the environment of engineering knowledge portals great amount of partial workflows is concentrated. Such workflows are composed into general workflow aiming to perform real complex production task. Characteristics of partial workflows and general workflow structure are not studied enough, that affects the impossibility of general production workflowdynamic composition.Objective. Creating an approach to the general production workflow dynamic composition based on the partial wor...

  2. A synchrotron-based local computed tomography combined with data-constrained modelling approach for quantitative analysis of anthracite coal microstructure

    International Nuclear Information System (INIS)

    Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng

    2014-01-01

    A quantitative local computed tomography combined with data-constrained modelling has been developed. The method could improve distinctly the spatial resolution and the composition resolution in a sample larger than the field of view, for quantitative characterization of three-dimensional distributions of material compositions and void. Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials

  3. An online model composition tool for system biology models.

    Science.gov (United States)

    Coskun, Sarp A; Cicek, A Ercument; Lai, Nicola; Dash, Ranjan K; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2013-09-05

    There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user's input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well.

  4. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-03-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  5. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-06-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  6. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry.

    Directory of Open Access Journals (Sweden)

    Satyan Sharma

    Full Text Available The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.

  7. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    Science.gov (United States)

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mathematical Modeling of an Active-Fiber Composite Energy Harvester with Interdigitated Electrodes

    Directory of Open Access Journals (Sweden)

    A. Jemai

    2014-01-01

    Full Text Available The use of active-fiber composites (AFC instead of traditional ceramic piezoelectric materials is motivated by flexibility and relatively high actuation capacity. Nevertheless, their energy harvesting capabilities remain low. As a first step toward the enhancement of AFC’s performances, a mathematical model that accurately simulates the dynamic behavior of the AFC is proposed. In fact, most of the modeling approaches found in the literature for AFC are based on finite element methods. In this work, we use homogenization techniques to mathematically describe piezoelectric properties taking into consideration the composite structure of the AFC. We model the interdigitated electrodes as a series of capacitances and current sources linked in parallel; then we integrate these properties into the structural model of the AFC. The proposed model is incorporated into a vibration based energy harvesting system consisting of a cantilever beam on top of which an AFC patch is attached. Finally, analytical solutions of the dynamic behavior and the harvested voltage are proposed and validated with finite element simulations.

  9. Analysis and Characterization of Damage and Failure Utilizing a Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.

  10. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...

  11. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  12. Simulation of High Velocity Impact on Composite Structures - Model Implementation and Validation

    Science.gov (United States)

    Schueler, Dominik; Toso-Pentecôte, Nathalie; Voggenreiter, Heinz

    2016-08-01

    High velocity impact on composite aircraft structures leads to the formation of flexural waves that can cause severe damage to the structure. Damage and failure can occur within the plies and/or in the resin rich interface layers between adjacent plies. In the present paper a modelling methodology is documented that captures intra- and inter-laminar damage and their interrelations by use of shell element layers representing sub-laminates that are connected with cohesive interface layers to simulate delamination. This approach allows the simulation of large structures while still capturing the governing damage mechanisms and their interactions. The paper describes numerical algorithms for the implementation of a Ladevèze continuum damage model for the ply and methods to derive input parameters for the cohesive zone model. By comparison with experimental results from gas gun impact tests the potential and limitations of the modelling approach are discussed.

  13. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach.

    Science.gov (United States)

    Chronopoulos, Dimitrios; Collet, Manuel; Ichchou, Mohamed

    2015-02-17

    The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  14. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach

    Directory of Open Access Journals (Sweden)

    Dimitrios Chronopoulos

    2015-02-01

    Full Text Available The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  15. Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA

    Science.gov (United States)

    van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.

    2011-01-01

    Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).

  16. Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves

    Science.gov (United States)

    Wang, Qiang; Ma, Shuxian; Yue, Dong

    2018-04-01

    Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.

  17. Compositional and Quantitative Model Checking

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand

    2010-01-01

    This paper gives a survey of a composition model checking methodology and its succesfull instantiation to the model checking of networks of finite-state, timed, hybrid and probabilistic systems with respect; to suitable quantitative versions of the modal mu-calculus [Koz82]. The method is based...

  18. Modeling and performance analysis for composite network–compute service provisioning in software-defined cloud environments

    Directory of Open Access Journals (Sweden)

    Qiang Duan

    2015-08-01

    Full Text Available The crucial role of networking in Cloud computing calls for a holistic vision of both networking and computing systems that leads to composite network–compute service provisioning. Software-Defined Network (SDN is a fundamental advancement in networking that enables network programmability. SDN and software-defined compute/storage systems form a Software-Defined Cloud Environment (SDCE that may greatly facilitate composite network–compute service provisioning to Cloud users. Therefore, networking and computing systems need to be modeled and analyzed as composite service provisioning systems in order to obtain thorough understanding about service performance in SDCEs. In this paper, a novel approach for modeling composite network–compute service capabilities and a technique for evaluating composite network–compute service performance are developed. The analytic method proposed in this paper is general and agnostic to service implementation technologies; thus is applicable to a wide variety of network–compute services in SDCEs. The results obtained in this paper provide useful guidelines for federated control and management of networking and computing resources to achieve Cloud service performance guarantees.

  19. A novel approach towards fatigue damage prognostics of composite materials utilizing SHM data and stochastic degradation modeling

    NARCIS (Netherlands)

    Loutas, T.; Eleftheroglou, N.

    2016-01-01

    A prognostic framework is proposed in order to estimate the remaining useful life of composite materials under fatigue loading based on acoustic emission data and a sophisticated Non Homogenous Hidden Semi Markov Model. Bayesian neural networks are also utilized as an alternative machine learning

  20. Multi-scale modeling of the thermo-mechanical behavior of particle-based composites

    International Nuclear Information System (INIS)

    Di Paola, F.

    2010-01-01

    The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45%). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author) [fr

  1. Multi-scale modeling of the thermo-mechanical behavior of particle-based composites

    International Nuclear Information System (INIS)

    Di Paola, F.

    2010-11-01

    The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45 %). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author)

  2. An exotic composite vector boson

    International Nuclear Information System (INIS)

    Akama, Keiichi; Hattori, Takashi; Yasue, Masaki.

    1990-08-01

    An exotic composite vector boson, V, is introduced in two dynamical models of composite quarks, leptons, W and Z. One is based on four Fermi interactions, in which composite vector bosons are regarded as fermion-antifermion bound states and the other is based on the confining SU(2) L gauge model, in which they are given by scalar-antiscalar bound states. Both approaches describe the same effective interactions for the sector of composite quarks, leptons, W, Z, γ and V. (author)

  3. AWSCS-A System to Evaluate Different Approaches for the Automatic Composition and Execution of Web Services Flows.

    Science.gov (United States)

    Tardiole Kuehne, Bruno; Estrella, Julio Cezar; Nunes, Luiz Henrique; Martins de Oliveira, Edvard; Hideo Nakamura, Luis; Gomes Ferreira, Carlos Henrique; Carlucci Santana, Regina Helena; Reiff-Marganiec, Stephan; Santana, Marcos José

    2015-01-01

    This paper proposes a system named AWSCS (Automatic Web Service Composition System) to evaluate different approaches for automatic composition of Web services, based on QoS parameters that are measured at execution time. The AWSCS is a system to implement different approaches for automatic composition of Web services and also to execute the resulting flows from these approaches. Aiming at demonstrating the results of this paper, a scenario was developed, where empirical flows were built to demonstrate the operation of AWSCS, since algorithms for automatic composition are not readily available to test. The results allow us to study the behaviour of running composite Web services, when flows with the same functionality but different problem-solving strategies were compared. Furthermore, we observed that the influence of the load applied on the running system as the type of load submitted to the system is an important factor to define which approach for the Web service composition can achieve the best performance in production.

  4. AWSCS-A System to Evaluate Different Approaches for the Automatic Composition and Execution of Web Services Flows.

    Directory of Open Access Journals (Sweden)

    Bruno Tardiole Kuehne

    Full Text Available This paper proposes a system named AWSCS (Automatic Web Service Composition System to evaluate different approaches for automatic composition of Web services, based on QoS parameters that are measured at execution time. The AWSCS is a system to implement different approaches for automatic composition of Web services and also to execute the resulting flows from these approaches. Aiming at demonstrating the results of this paper, a scenario was developed, where empirical flows were built to demonstrate the operation of AWSCS, since algorithms for automatic composition are not readily available to test. The results allow us to study the behaviour of running composite Web services, when flows with the same functionality but different problem-solving strategies were compared. Furthermore, we observed that the influence of the load applied on the running system as the type of load submitted to the system is an important factor to define which approach for the Web service composition can achieve the best performance in production.

  5. Exploring the dynamics of bacterial community composition in soil: the pan-bacteriome approach.

    Science.gov (United States)

    Bacci, Giovanni; Ceccherini, Maria Teresa; Bani, Alessia; Bazzicalupo, Marco; Castaldini, Maurizio; Galardini, Marco; Giovannetti, Luciana; Mocali, Stefano; Pastorelli, Roberta; Pantani, Ottorino Luca; Arfaioli, Paola; Pietramellara, Giacomo; Viti, Carlo; Nannipieri, Paolo; Mengoni, Alessio

    2015-03-01

    We performed a longitudinal study (repeated observations of the same sample over time) to investigate both the composition and structure of temporal changes of bacterial community composition in soil mesocosms, subjected to three different treatments (water and 5 or 25 mg kg(-1) of dried soil Cd(2+)). By analogy with the pan genome concept, we identified a core bacteriome and an accessory bacteriome. Resident taxa were assigned to the core bacteriome, while occasional taxa were assigned to the accessory bacteriome. Core and accessory bacteriome represented roughly 35 and 50 % of the taxa detected, respectively, and were characterized by different taxonomic signatures from phylum to genus level while 15 % of the taxa were found to be unique to a particular sample. In particular, the core bacteriome was characterized by higher abundance of members of Planctomycetes, Actinobacteria, Verrucomicrobia and Acidobacteria, while the accessory bacteriome included more members of Firmicutes, Clamydiae and Proteobacteria, suggesting potentially different responses to environmental changes of members from these phyla. We conclude that the pan-bacteriome model may be a useful approach to gain insight for modeling bacterial community structure and inferring different abilities of bacteria taxa.

  6. Flavor and CP invariant composite Higgs models

    International Nuclear Information System (INIS)

    Redi, Michele; Weiler, Andreas

    2011-09-01

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3) U x SU(3) D which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  7. Characterizing new compositions of [001]C relaxor ferroelectric single crystals using a work-energy model

    Science.gov (United States)

    Gallagher, John A.

    2016-04-01

    The desired operating range of ferroelectric materials with compositions near the morphotropic phase boundary is limited by field induced phase transformations. In [001]C cut and poled relaxor ferroelectric single crystals the mechanically driven ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation is hindered by antagonistic electrical loading. Instability around the phase transformation makes the current experimental technique for characterization of the large field behavior very time consuming. Characterization requires specialized equipment and involves an extensive set of measurements under combined electrical, mechanical, and thermal loads. In this work a mechanism-based model is combined with a more limited set of experiments to obtain the same results. The model utilizes a work-energy criterion that calculates the mechanical work required to induce the transformation and the required electrical work that is removed to reverse the transformation. This is done by defining energy barriers to the transformation. The results of the combined experiment and modeling approach are compared to the fully experimental approach and error is discussed. The model shows excellent predictive capability and is used to substantially reduce the total number of experiments required for characterization. This decreases the time and resources required for characterization of new compositions.

  8. Resin flow/fiber deformation model for composites

    International Nuclear Information System (INIS)

    Gutowski, T.G.

    1985-01-01

    This paper presents a resin flow/fiber deformation model that can be used to predict the behavior of composites during the molding cycle. The model can take into account time varying pressure and viscosity and output the time history of the fiber volume fraction. With this known, the composite thickness, resin pressure, and fiber pressure can all be determined as a function of time. The results of this model are in good agreement with experimentally measured values. 10 references, 9 figures

  9. Geo-information processing service composition for concurrent tasks: A QoS-aware game theory approach

    Science.gov (United States)

    Li, Haifeng; Zhu, Qing; Yang, Xiaoxia; Xu, Linrong

    2012-10-01

    Typical characteristics of remote sensing applications are concurrent tasks, such as those found in disaster rapid response. The existing composition approach to geographical information processing service chain, searches for an optimisation solution and is what can be deemed a "selfish" way. This way leads to problems of conflict amongst concurrent tasks and decreases the performance of all service chains. In this study, a non-cooperative game-based mathematical model to analyse the competitive relationships between tasks, is proposed. A best response function is used, to assure each task maintains utility optimisation by considering composition strategies of other tasks and quantifying conflicts between tasks. Based on this, an iterative algorithm that converges to Nash equilibrium is presented, the aim being to provide good convergence and maximise the utilisation of all tasks under concurrent task conditions. Theoretical analyses and experiments showed that the newly proposed method, when compared to existing service composition methods, has better practical utility in all tasks.

  10. Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions

    DEFF Research Database (Denmark)

    Nielsen, Jan; Parner, Erik

    2010-01-01

    In this paper, we model multivariate time-to-event data by composite likelihood of pairwise frailty likelihoods and marginal hazards using natural cubic splines. Both right- and interval-censored data are considered. The suggested approach is applied on two types of family studies using the gamma...

  11. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  12. Modelling and analysing interoperability in service compositions using COSMO

    NARCIS (Netherlands)

    Quartel, Dick; van Sinderen, Marten J.

    2008-01-01

    A service composition process typically involves multiple service models. These models may represent the composite and composed services from distinct perspectives, e.g. to model the role of some system that is involved in a service, and at distinct abstraction levels, e.g. to model the goal,

  13. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches

    Science.gov (United States)

    van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.

    2016-03-01

    Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner

  14. Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling.

    Science.gov (United States)

    Ausiello, Pietro; Ciaramella, Stefano; Fabianelli, Andrea; Gloria, Antonio; Martorelli, Massimo; Lanzotti, Antonio; Watts, David C

    2017-06-01

    To study the influence of resin based and lithium disilicate materials on the stress and strain distributions in adhesive class II mesio-occlusal-distal (MOD) restorations using numerical finite element analysis (FEA). To investigate the materials combinations in the restored teeth during mastication and their ability to relieve stresses. One 3D model of a sound lower molar and three 3D class II MOD cavity models with 95° cavity-margin-angle shapes were modelled. Different material combinations were simulated: model A, with a 10μm thick resin bonding layer and a resin composite bulk filling material; model B, with a 70μm resin cement with an indirect CAD-CAM resin composite inlay; model C, with a 70μm thick resin cement with an indirect lithium disilicate machinable inlay. To simulate polymerization shrinkage effects in the adhesive layers and bulk fill composite, the thermal expansion approach was used. Shell elements were employed for representing the adhesive layers. 3D solid CTETRA elements with four grid points were employed for modelling the food bolus and tooth. Slide-type contact elements were used between the tooth surface and food. A vertical occlusal load of 600 N was applied, and nodal displacements on the bottom cutting surfaces were constrained in all directions. All the materials were assumed to be isotropic and elastic and a static linear analysis was performed. Displacements were different in models A, B and C. Polymerization shrinkage hardly affected model A and mastication only partially affected mechanical behavior. Shrinkage stress peaks were mainly located marginally along the enamel-restoration interface at occlusal and mesio-distal sites. However, at the internal dentinal walls, stress distributions were critical with the highest maximum stresses concentrated in the proximal boxes. In models B and C, shrinkage stress was only produced by the 70μm thick resin layer, but the magnitudes depended on the Young's modulus (E) of the inlay

  15. Finite elements modeling of delaminations in composite laminates

    DEFF Research Database (Denmark)

    Gaiotti, m.; Rizzo, C.M.; Branner, Kim

    2011-01-01

    of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.......e., delaminations, which may affect the stiffness and stability of structural components. Especially deep delaminations in the mid surface of laminates are expected to reduce the effective flexural stiffness and lead to collapse, often due to buckling behaviour. This paper deals with the numerical modelling...

  16. Flavor and CP invariant composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; INFN, Firenze (Italy); Weiler, Andreas [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3){sub U} x SU(3){sub D} which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  17. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    International Nuclear Information System (INIS)

    Das, Palash; Biswas, Dhrubes

    2014-01-01

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT

  18. Serpentinization reaction pathways: implications for modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, D.R.

    1986-01-01

    Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.

  19. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.; Kadoura, A.; Valstar, J.; Sun, S.; Hoteit, Ibrahim

    2014-01-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system's processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  20. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.

    2014-03-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system\\'s processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  1. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  2. Accurate phenotyping: Reconciling approaches through Bayesian model averaging.

    Directory of Open Access Journals (Sweden)

    Carla Chia-Ming Chen

    Full Text Available Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder-an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method.

  3. Estimation of effective permeability for magnetoactive composites containing multi-chain-structured particles based on the generalized Mori–Tanaka approach

    International Nuclear Information System (INIS)

    Zhang, Haiyu; Wang, Xingzhe

    2014-01-01

    We present an analytic approach to evaluate the effective permeability of multi-chain-structured magnetic particle-filled composites which is formulated by a microstructure-based double-inclusion magnetic model with the generalized Mori–Tanaka theorem. The local magnetic field in a representative volume element (RVE) containing multi-chain-structured particles is derived by using a modified Green’s function. The average fields in the particles, in a matrix coated by particles, and in an effective medium far away from particles are rendered by homogenization of the local magnetic distributions. By means of the relation between the average magnetic field and induction, the effective magnetic permeability of magnetoactive composites is explicitly derived; it exhibits anisotropic and universal behavior. The proposed model has been compared with the available experimental data and other microstructure-based models in the literature; it shows good agreement and gives reliable predictions for magnetic particle-filled composites, especially in terms of capturing the magnetic anisotropic characteristics with respect to the multi-chain-structured particle distribution. (paper)

  4. Model for the resistive critical current transition in composite superconductors

    International Nuclear Information System (INIS)

    Warnes, W.H.

    1988-01-01

    Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites

  5. Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Cezar, Gustavo V.; /SLAC

    2017-07-17

    This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliable and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.

  6. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  7. Unified continuum damage model for matrix cracking in composite rotor blades

    International Nuclear Information System (INIS)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-01-01

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load

  8. Polynomial Chaos Characterization of Uncertainty in Multiscale Models and Behavior of Carbon Reinforced Composites

    Energy Technology Data Exchange (ETDEWEB)

    Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors

    2017-10-23

    Design of non-crimp fabric (NCF) composites entails major challenges pertaining to (1) the complex fine-scale morphology of the constituents, (2) the manufacturing-produced inconsistency of this morphology spatially, and thus (3) the ability to build reliable, robust, and efficient computational surrogate models to account for this complex nature. Traditional approaches to construct computational surrogate models have been to average over the fluctuations of the material properties at different scale lengths. This fails to account for the fine-scale features and fluctuations in morphology, material properties of the constituents, as well as fine-scale phenomena such as damage and cracks. In addition, it fails to accurately predict the scatter in macroscopic properties, which is vital to the design process and behavior prediction. In this work, funded in part by the Department of Energy, we present an approach for addressing these challenges by relying on polynomial chaos representations of both input parameters and material properties at different scales. Moreover, we emphasize the efficiency and robustness of integrating the polynomial chaos expansion with multiscale tools to perform multiscale assimilation, characterization, propagation, and prediction, all of which are necessary to construct the data-driven surrogate models required to design under the uncertainty of composites. These data-driven constructions provide an accurate map from parameters (and their uncertainties) at all scales and the system-level behavior relevant for design. While this perspective is quite general and applicable to all multiscale systems, NCF composites present a particular hierarchy of scales that permits the efficient implementation of these concepts.

  9. Assessing compositional variability through graphical analysis and Bayesian statistical approaches: case studies on transgenic crops.

    Science.gov (United States)

    Harrigan, George G; Harrison, Jay M

    2012-01-01

    New transgenic (GM) crops are subjected to extensive safety assessments that include compositional comparisons with conventional counterparts as a cornerstone of the process. The influence of germplasm, location, environment, and agronomic treatments on compositional variability is, however, often obscured in these pair-wise comparisons. Furthermore, classical statistical significance testing can often provide an incomplete and over-simplified summary of highly responsive variables such as crop composition. In order to more clearly describe the influence of the numerous sources of compositional variation we present an introduction to two alternative but complementary approaches to data analysis and interpretation. These include i) exploratory data analysis (EDA) with its emphasis on visualization and graphics-based approaches and ii) Bayesian statistical methodology that provides easily interpretable and meaningful evaluations of data in terms of probability distributions. The EDA case-studies include analyses of herbicide-tolerant GM soybean and insect-protected GM maize and soybean. Bayesian approaches are presented in an analysis of herbicide-tolerant GM soybean. Advantages of these approaches over classical frequentist significance testing include the more direct interpretation of results in terms of probabilities pertaining to quantities of interest and no confusion over the application of corrections for multiple comparisons. It is concluded that a standardized framework for these methodologies could provide specific advantages through enhanced clarity of presentation and interpretation in comparative assessments of crop composition.

  10. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  11. Composite Measures of Health Care Provider Performance: A Description of Approaches

    Science.gov (United States)

    Shwartz, Michael; Restuccia, Joseph D; Rosen, Amy K

    2015-01-01

    Context Since the Institute of Medicine’s 2001 report Crossing the Quality Chasm, there has been a rapid proliferation of quality measures used in quality-monitoring, provider-profiling, and pay-for-performance (P4P) programs. Although individual performance measures are useful for identifying specific processes and outcomes for improvement and tracking progress, they do not easily provide an accessible overview of performance. Composite measures aggregate individual performance measures into a summary score. By reducing the amount of data that must be processed, they facilitate (1) benchmarking of an organization’s performance, encouraging quality improvement initiatives to match performance against high-performing organizations, and (2) profiling and P4P programs based on an organization’s overall performance. Methods We describe different approaches to creating composite measures, discuss their advantages and disadvantages, and provide examples of their use. Findings The major issues in creating composite measures are (1) whether to aggregate measures at the patient level through all-or-none approaches or the facility level, using one of the several possible weighting schemes; (2) when combining measures on different scales, how to rescale measures (using z scores, range percentages, ranks, or 5-star categorizations); and (3) whether to use shrinkage estimators, which increase precision by smoothing rates from smaller facilities but also decrease transparency. Conclusions Because provider rankings and rewards under P4P programs may be sensitive to both context and the data, careful analysis is warranted before deciding to implement a particular method. A better understanding of both when and where to use composite measures and the incentives created by composite measures are likely to be important areas of research as the use of composite measures grows. PMID:26626986

  12. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  13. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre...

  14. Data Quality Indicators Composition and Calculus: Engineering and Information Systems Approaches

    Directory of Open Access Journals (Sweden)

    Leon REZNIK

    2015-02-01

    Full Text Available Big Data phenomenon is a result of novel technological developments in sensor, computer and communication technologies. Nowadays more and more data are produced by nanoscale photonic, optoelectronic and electronic devices. However, their quality characteristics could be very low. The paper proposes new methods of the data management with huge data amounts that is based on associating of data quality indicators with each data entity. To achieve this goal, one needs to define the composition of the data quality indicators and to develop their integration calculus. As data quality evaluation involves multi-disciplinary research, various metrics have been investigated. The paper describes two major approaches in assigning the data quality indicators and developing their integration calculus. The information systems approach employs traditional high-level metrics like data accuracy, consistency and completeness. The engineering approach utilizes signal characteristics processed with the probability based calculus. The data quality metrics composition and calculus are discussed. The tools developed to automate the metrics selection and calculus procedures are presented. The user- friendly interface examples are provided.

  15. Multilevel probabilistic approach to evaluate manufacturing defect in composite aircraft structures

    International Nuclear Information System (INIS)

    Caracciolo, Paola

    2014-01-01

    In this work it is developed a reliable approach and its feasibility to the design and analysis of a composite structures. The metric is compared the robustness and reliability designs versus the traditional design, to demonstrate the gain that can be achieved with a probabilistic approach. The use of the stochastic approach of the uncertain parameteters in combination with the multi-scale levels analysis is the main objective of this paper. The work is dedicated to analyze the uncertainties in the design, tests, manufacturing process, and key gates such as materials characteristic

  16. Multilevel probabilistic approach to evaluate manufacturing defect in composite aircraft structures

    Energy Technology Data Exchange (ETDEWEB)

    Caracciolo, Paola, E-mail: paola.caracciolo@airbus.com [AIRBUS INDUSTRIES Germany, Department of Airframe Architecture and Integration-Research and Technology-Kreetslag, 10, D-21129, Hamburg (Germany)

    2014-05-15

    In this work it is developed a reliable approach and its feasibility to the design and analysis of a composite structures. The metric is compared the robustness and reliability designs versus the traditional design, to demonstrate the gain that can be achieved with a probabilistic approach. The use of the stochastic approach of the uncertain parameteters in combination with the multi-scale levels analysis is the main objective of this paper. The work is dedicated to analyze the uncertainties in the design, tests, manufacturing process, and key gates such as materials characteristic.

  17. Shape Memory Alloy Modeling and Applications to Porous and Composite Structures

    Science.gov (United States)

    Zhu, Pingping

    underlying mechanism of pore interactions in the SMA foams. Additionally, the influence of geometric features including the number, size and locations of pores are studied to guide the design and optimization of porous SMAs. Thirdly, modeling and simulation are performed on a series of cracked self-healing SMA composite systems. These composites are to be applied in aeronautic structures where fatigue crack initiation and propagation is a significant safety and economic concern, based on a liquid-assisted SMA self-healing technology. We develop a modeling approach in Abaqus to create composite models with the as-is or pre-strained SMA wires. The modeling approach is validated by two simulation cases following the experiment setups. The amount of crack closure in the SMA-reinforced MMC is then focused, especially on the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. Composites with various geometric configurations of SMA are also created to study how the number, location, length and orientation of the SMA wires would affect the crack closure and self-healing behavior. These studies, from three aspects, provide deep insights to SMA and its related applications from the modeling and simulation point of view, which can further guide the development and application of this unique material.

  18. Formal Model of Web Service Composition: An Actor-Based Approach to Unifying Orchestration and Choreography

    OpenAIRE

    Wang, Yong

    2013-01-01

    Web Service Composition creates new composite Web Services from the collection of existing ones to be composed further and embodies the added values and potential usages of Web Services. Web Service Composition includes two aspects: Web Service orchestration denoting a workflow-like composition pattern and Web Service choreography which represents an aggregate composition pattern. There were only a few works which give orchestration and choreography a relationship. In this paper, we introduce...

  19. Analysis of an emergency diesel generator control system by compositional model checking. MODSAFE 2010 work report

    International Nuclear Information System (INIS)

    Lahtinen, J.; Bjoerkman, K.; Valkonen, J.; Frits, J.; Niemelae, I.

    2010-12-01

    Digital instrumentation and control (I and C) systems containing programmable logic controllers are challenging to verify. They enable complicated control functions and the state spaces (number of distinct values of inputs, outputs and internal memory) of the designs easily become too large for comprehensive manual inspection. Model checking is a formal method that can be used for verifying that systems have been correctly designed. A number of efficient model checking systems are available which provide analysis tools that are able to determine automatically whether a given state machine model satisfies the desired safety properties. The practical case analysed in this research project is called an 'emergency diesel generator control system' and its purpose is to provide reserve power to critical devices and computers that must be available without interruption. This report describes 1) the development of a compositional approach for checking the models in large system designs, 2) the development of a modular model checking approach for modelling function block diagrams with the Uppaal model checker and 3) the experience of utilising the new modelling approaches in practice. (orig.)

  20. Hanford Site Composite Analysis Technical Approach Description: Groundwater Pathway Dose Calculation.

    Energy Technology Data Exchange (ETDEWEB)

    Morgans, D. L. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Lindberg, S. L. [Intera Inc., Austin, TX (United States)

    2017-09-20

    The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”

  1. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  2. Composite Higgs Models and the tt-bar H Channel

    International Nuclear Information System (INIS)

    Carmona, A.; Chala, M.; Santiago, J.

    2012-01-01

    Despite its suppressed couplings to Standard Model particles, a composite Higgs with mass m H = 125 GeV and a moderate degree of compositeness can be consistent with current Higgs searches, including a sizable enhancement in the H → γγ channel. Heavy resonances common to many composite Higgs models can mediate new Higgs production mechanisms. In particular, the tt-bar H channel can be accessible at the LHC in these models through the exchange of colored vector and fermion resonances. In this case, the tt-bar H channel is not a direct measure of the top Yukawa coupling. (authors)

  3. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  4. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    Science.gov (United States)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  5. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle; Su, Xuming

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for the crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.

  6. Development of constitutive model for composites exhibiting time dependent properties

    International Nuclear Information System (INIS)

    Pupure, L; Joffe, R; Varna, J; Nyström, B

    2013-01-01

    Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model

  7. Towards Quantitative Spatial Models of Seabed Sediment Composition.

    Directory of Open Access Journals (Sweden)

    David Stephens

    Full Text Available There is a need for fit-for-purpose maps for accurately depicting the types of seabed substrate and habitat and the properties of the seabed for the benefits of research, resource management, conservation and spatial planning. The aim of this study is to determine whether it is possible to predict substrate composition across a large area of seabed using legacy grain-size data and environmental predictors. The study area includes the North Sea up to approximately 58.44°N and the United Kingdom's parts of the English Channel and the Celtic Seas. The analysis combines outputs from hydrodynamic models as well as optical remote sensing data from satellite platforms and bathymetric variables, which are mainly derived from acoustic remote sensing. We build a statistical regression model to make quantitative predictions of sediment composition (fractions of mud, sand and gravel using the random forest algorithm. The compositional data is analysed on the additive log-ratio scale. An independent test set indicates that approximately 66% and 71% of the variability of the two log-ratio variables are explained by the predictive models. A EUNIS substrate model, derived from the predicted sediment composition, achieved an overall accuracy of 83% and a kappa coefficient of 0.60. We demonstrate that it is feasible to spatially predict the seabed sediment composition across a large area of continental shelf in a repeatable and validated way. We also highlight the potential for further improvements to the method.

  8. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  9. Composite Dos Attack Model

    Directory of Open Access Journals (Sweden)

    Simona Ramanauskaitė

    2012-04-01

    Full Text Available Preparation for potential threats is one of the most important phases ensuring system security. It allows evaluating possible losses, changes in the attack process, the effectiveness of used countermeasures, optimal system settings, etc. In cyber-attack cases, executing real experiments can be difficult for many reasons. However, mathematical or programming models can be used instead of conducting experiments in a real environment. This work proposes a composite denial of service attack model that combines bandwidth exhaustion, filtering and memory depletion models for a more real representation of similar cyber-attacks. On the basis of the introduced model, different experiments were done. They showed the main dependencies of the influence of attacker and victim’s properties on the success probability of denial of service attack. In the future, this model can be used for the denial of service attack or countermeasure optimization.

  10. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    Science.gov (United States)

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  11. Models for Textile Composites Forming

    NARCIS (Netherlands)

    Akkerman, Remko; ten Thije, R.H.W.

    2009-01-01

    Drape of dry fabrics or prepregs was recognised as an important feature in composites forming operations from the start. In the 1950s the first mathematical models were developed based on purely kinematic arguments. The assumption of zero fibre strains and trellis deformations led to the socalled

  12. Thermospheric Density and Composition: an Integrated Research Approach

    Science.gov (United States)

    Richmond, A. D.; Akmaev, R.; Anderson, P. C.; Crowley, G.; Drob, D. P.; Lummerzheim, D.; Solomon, S. C.; Tobiska, W.

    2006-12-01

    The thermosphere, at altitudes of approximately 90-500 km, affects human technological systems through the drag it exerts on low-Earth-orbit spacecraft and debris, and through its influence on the embedded ionosphere, affecting radio-wave transmissions, and, consequently, communications and geolocation. We have formed a team under the NASA Living With a Star Targeted Research and Technology program to carry out an integrated research program on the focused science topic of thermospheric density and composition. Our goal is to improve scientific understanding of the thermosphere-ionosphere system, leading to improved first-principles models that accurately specify the variations of thermospheric density and composition with latitude, longitude, local time, solar flux, season, magnetic activity level, and orientation of the interplanetary magnetic field. We are developing improved quantitative models of solar and magnetospheric inputs to the thermosphere and improved physical parameterizations in the first-principles global models; we are analyzing thermospheric responses to solar and magnetospheric inputs on time scales from minutes to the length of the solar cycle; and we are developing an improved empirical model of thermospheric winds. These research products will be made available to the scientific community. This work is helping to clarify critical problem areas in thermospheric physics for planned NASA missions like the Ionosphere-Thermosphere Storm Probes, Geospace Electrodynamics Connections, and the Global-scale Observation of the Limb and Disk.

  13. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  14. arXiv Minimal Fundamental Partial Compositeness

    CERN Document Server

    Cacciapaglia, Giacomo; Sannino, Francesco; Thomsen, Anders Eller

    Building upon the fundamental partial compositeness framework we provide consistent and complete composite extensions of the standard model. These are used to determine the effective operators emerging at the electroweak scale in terms of the standard model fields upon consistently integrating out the heavy composite dynamics. We exhibit the first effective field theories matching these complete composite theories of flavour and analyse their physical consequences for the third generation quarks. Relations with other approaches, ranging from effective analyses for partial compositeness to extra dimensions as well as purely fermionic extensions, are briefly discussed. Our methodology is applicable to any composite theory of dynamical electroweak symmetry breaking featuring a complete theory of flavour.

  15. Models of fragmentation with composite power laws

    Science.gov (United States)

    Tavassoli, Z.; Rodgers, G. J.

    1999-06-01

    Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.

  16. Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures

    OpenAIRE

    Darryl V. Murray; Oliver J. Myers

    2013-01-01

    A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will c...

  17. Micromechanical modeling and inverse identification of damage using cohesive approaches

    International Nuclear Information System (INIS)

    Blal, Nawfal

    2013-01-01

    In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr

  18. Normalization of natural gas composition data measured by gas chromatography

    International Nuclear Information System (INIS)

    Milton, Martin J T; Harris, Peter M; Brown, Andrew S; Cowper, Chris J

    2009-01-01

    The composition of natural gas determined by gas chromatography is routinely used as the basis for calculating physico-chemical properties of the gas. Since the data measured by gas chromatography have particular statistical properties, the methods used to determine the composition can make use of a priori assumptions about the statistical model for the data. We discuss a generalized approach to determining the composition, and show that there are particular statistical models for the data for which the generalized approach reduces to the widely used method of post-normalization. We also show that the post-normalization approach provides reasonable estimates of the composition for cases where it cannot be shown to arise rigorously from the statistical structure of the data

  19. Mechanical modelling of SiC/SiC composites and design criteria

    International Nuclear Information System (INIS)

    Bernachy, F.; Gélébart, L.; Crépin, J.; Bornert, M.

    2013-01-01

    Outcomes and perspectives: • Definition of damage criteria, easy to measure and reproducible: → Useful for design purposes. • Results about the biaxial mechanical behavior of the tubes: → Construction and identification of a damage model. • Measurement of elastic properties in good agreement with multiscale simulations: → Non-linear behavior has still to be adressed using a multiscale approach. Possible strategies: - Building of a 3D homogeneous damage model of the tow; - Simulation of the initiation and propagation of cracks through the composite. • More experimental results coming to address several issues: → Non proportional tests (complex loading paths): - Investigation of crack opening/closure mechanism. → Tension-internal pressure tests: - Mechanical properties along the orthoradial direction; → Tests on other microstructures (braiding and winding angles); → Bending tests: - Test of the mechanical model and close to industrial issues

  20. Spatiotemporal variation of stable isotopic composition in precipitation

    DEFF Research Database (Denmark)

    Müller, Sascha; Stumpp, Christine; Sørensen, Jens Havskov

    2017-01-01

    influences the isotopic composition at the study site. A simple model of evaporation on falling rain was applied with the aim to reproduce observational data and show the potential influence of changing humidity conditions on precipitation compositions. The rather simple model approach did not fully explain...

  1. Consolidation modelling for thermoplastic composites forming simulation

    Science.gov (United States)

    Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.

    2016-10-01

    Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.

  2. Resolving Nuclear Reactor Lifetime Extension Questions: A Combined Multiscale Modeling and Positron Characterization approach

    International Nuclear Information System (INIS)

    Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P

    2004-01-01

    The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are

  3. Micromechanical modelling of shape memory alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.F.; Wang, X.M.; Yue, Z.F. [School of Mechanic, Civil Engineering and Architecture, Northwestern Polytechnical University, Xian, 710072 (China)

    2004-03-01

    An isothermal finite element method (FEM) model has been applied to study the behavior of two kinds of shape memory alloy (SMA) composites. For SMA-fiber reinforced normal metal composites, the FEM analysis shows that the mechanical behavior of the composites depends on the SMA volume fraction. For normal metal-fiber reinforced SMA matrix composites, the SMA phase transformation is affected by the increasing Young's modulus of the metal fiber. The phase transformation was also treated using a simple numerical analysis, which assumes that there are uniform stresses and strains distributions in the fiber and the matrix respectively. It is found that there is an obvious difference between the FEM analysis and the simple numerical assessment. Only FEM can provide reasonable predictions of phase transformations in SMA/normal metal composites. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  4. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    Science.gov (United States)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  5. Composite nucleon approach to the deuteron problem

    International Nuclear Information System (INIS)

    Agarwal, B.K.

    1975-01-01

    A composite model is suggested for the nucleons by assuming a long-range strong gluon force between a diquark boson B and a quark A. In the proton, A is trapped inside B in an oscillator potential; and in the neutron, A is on the surface of B in a hydrogenlike state. Nucleon form factors are obtained in agreement with experiments. The model contains a mechanism for a large effective mass of the quark A. When B is identified with π and A with μ, one can fix the gluon charge value and obtain the magnetic moments of the proton and neutron. The (μπ) atomic model for the nucleon can be used to construct the deuteron on a hydrogen molecule model. It leads to values for the binding energy, electric quadrupole moment, and form factors of the deuteron that are in agreement with experiments

  6. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2013-11-01

    Full Text Available In this paper, a new approach based on Experimental of design methodology (DoE is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC. This proposed approach combines the central composite face-centered (CCF and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value of the previous model and (CCF design methodology is used for parametric analysis of electrochemical model. Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. However this methodology is able to define the exact values of the parameters from the manufacture data. It was tested for the BCS 500-W stack PEM Generator, a stack rated at 500 W, manufactured by American Company BCS Technologies FC.

  7. Dust Composition in Climate Models: Current Status and Prospects

    Science.gov (United States)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.

    2015-12-01

    Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.

  8. Finite element modelling of composite castellated beam

    Directory of Open Access Journals (Sweden)

    Frans Richard

    2017-01-01

    Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.

  9. A verification strategy for web services composition using enhanced stacked automata model.

    Science.gov (United States)

    Nagamouttou, Danapaquiame; Egambaram, Ilavarasan; Krishnan, Muthumanickam; Narasingam, Poonkuzhali

    2015-01-01

    Currently, Service-Oriented Architecture (SOA) is becoming the most popular software architecture of contemporary enterprise applications, and one crucial technique of its implementation is web services. Individual service offered by some service providers may symbolize limited business functionality; however, by composing individual services from different service providers, a composite service describing the intact business process of an enterprise can be made. Many new standards have been defined to decipher web service composition problem namely Business Process Execution Language (BPEL). BPEL provides an initial work for forming an Extended Markup Language (XML) specification language for defining and implementing business practice workflows for web services. The problems with most realistic approaches to service composition are the verification of composed web services. It has to depend on formal verification method to ensure the correctness of composed services. A few research works has been carried out in the literature survey for verification of web services for deterministic system. Moreover the existing models did not address the verification properties like dead transition, deadlock, reachability and safetyness. In this paper, a new model to verify the composed web services using Enhanced Stacked Automata Model (ESAM) has been proposed. The correctness properties of the non-deterministic system have been evaluated based on the properties like dead transition, deadlock, safetyness, liveness and reachability. Initially web services are composed using Business Process Execution Language for Web Service (BPEL4WS) and it is converted into ESAM (combination of Muller Automata (MA) and Push Down Automata (PDA)) and it is transformed into Promela language, an input language for Simple ProMeLa Interpreter (SPIN) tool. The model is verified using SPIN tool and the results revealed better recital in terms of finding dead transition and deadlock in contrast to the

  10. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    Science.gov (United States)

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  11. Fabrication and modelling of 3-3 piezoelectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Andrew John

    2002-07-01

    Three-dimensional modelling of a 3-3 piezoelectric structure was carried out using ANSYS finite element modelling software. Hydrophone figures of merit were calculated for structures with increasing amounts of interconnecting porosity. In addition to air being the second phase, polymer fillers were added to the three dimensional model in order to observe the effect of polymer Young's modulus and Poisson's ratio on the piezoelectric response of the composite material. Results show that increasing the porosity has the effect of improving the hydrostatic piezoelectric properties for applications such as low frequency hydrophones. The optimum amount of porosity depends on the figure of merit to be maximised. In order to validate model predictions, porous piezoelectric structures were fabricated by either the BurPS (Burnt out Polymer Spheres) method or polymer foam reticulation. Corresponding measurements of piezoelectric coefficients were carried out on the porous samples. Experimental results confirmed finite element modelling predictions. PZT-porosity composites and PZT-polymer composites were produced exhibiting superior hydrostatic strain constant (d{sub h}), hydrostatic voltage constant (g{sub h}) and hydrostatic figure of merit (d{sub h}g{sub h}) compared to that of dense PZT. (author)

  12. Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling

    Directory of Open Access Journals (Sweden)

    Kamal Sharma

    2014-01-01

    Full Text Available The present paper discusses the key issues of carbon nanotube (CNT dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt% in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.

  13. The 4D Composite Higgs

    CERN Document Server

    De Curtis, Stefania; Tesi, Andrea

    2012-01-01

    We propose a four dimensional description of Composite Higgs Models which represents a complete framework for the physics of the Higgs as a pseudo-Nambu-Goldstone boson. Our setup captures all the relevant features of 5D models and more in general of composite Higgs models with partial compositeness. We focus on the minimal scenario where we include a single multiplet of resonances of the composite sector, as these will be the only degrees of freedom which might be accessible at the LHC. This turns out to be sufficient to compute the effective potential and derive phenomenological consequences of the theory. Moreover our simplified approach is well adapted to simulate these models at the LHC. We also consider the impact of non-minimal terms in the effective lagrangian which do not descend from a 5D theory and could be of phenomenological relevance, for example contributing to the S-parameter.

  14. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    Science.gov (United States)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  15. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe

    International Nuclear Information System (INIS)

    Lu, W.R.; Gao, C.Y.; Ke, Y.L.

    2014-01-01

    The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models

  16. A model for simulation of coupled microstructural and compositional evolution

    International Nuclear Information System (INIS)

    Tikare, Veena; Homer, Eric R.; Holm, Elizabeth A.

    2011-01-01

    The formation, transport and segregation of components in nuclear fuels fundamentally control their behavior, performance, longevity and safety. Most nuclear fuels enter service with a uniform composition consisting of a single phase with two or three components. Fission products form, introducing more components. The segregation and transport of the components is complicated by the underlying microstructure consisting of grains, pores, bubbles and more, which is evolving under temperature gradients during service. As they evolve, components and microstructural features interact such that composition affects microstructure and vice versa. The ability to predict the interdependent compositional and microstructural evolution in 3D as a function of burn-up would greatly improve the ability to design safe, high burn-up nuclear fuels. We present a model that combines elements of Potts Monte Carlo, MC, and the phase-field model to treat coupled microstructural-compositional evolution. This hybrid model uses an equation of state, EOS, based on the microstructural state and the composition. The microstructural portion uses the traditional MC EOS and the compositional portion uses the phase-field EOS: E hyb = N Σ i=1 (E v (q i ,C)+1/2 n Σ j=1 J(q i ,q j )) + ∫κ c (∇C) 2 dV. E v is the bulk free energy of each site i and J is the bond energy between neighboring sites i and j; thus, this term defines the microstructural interfacial energy. The last term is the compositional interfacial energy as defined in the traditional phase-field model. Evolution of coupled microstructure-composition is simulated by minimizing free energy in a path dependent manner. This model will be presented and will be demonstrated by applying it to evolution of nuclear fuels during service. (author)

  17. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  18. Thermal Conductivity of Polymer Composite poypropilene-Sand

    International Nuclear Information System (INIS)

    Betha; Mashuri; Sudirman; Karo Karo, Aloma

    2001-01-01

    Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium

  19. Text Manipulation Techniques and Foreign Language Composition.

    Science.gov (United States)

    Walker, Ronald W.

    1982-01-01

    Discusses an approach to teaching second language composition which emphasizes (1) careful analysis of model texts from a limited, but well-defined perspective and (2) the application of text manipulation techniques developed by the word processing industry to student compositions. (EKN)

  20. Constitutive modelling of composite biopolymer networks.

    Science.gov (United States)

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. COMPUTER MODELING OF STRUCTURAL - CONCENTRATION CHARACTERISTICS OF BUILDING COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    I. I. Zaripova

    2015-09-01

    Full Text Available In the article the computer modeling of structural and concentration characteristics of the building composite material on the basis of the theory of the package. The main provisions of the algorithmon the basis of which it was possible to get the package with a significant number of packaged elements, making it more representative in comparison with existing analogues modeling. We describe the modeled area related areas, the presence of which determines the possibility of a percolation process, which in turn makes it possible to study and management of individual properties of the composite material of construction. As an example of the construction of a composite material is considered concrete that does not exclude the possibility of using algorithms and modeling results of similar studies for composite matrix type (matrix of the same material and distributed in a certain way by volume particles of another substance. Based on modeling results can be manufactured parts and construction elementsfor various purposes with improved technical characteristics (by controlling the concentration composition substance.

  2. Radiolytic and thermolytic bubble gas hydrogen composition

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-11

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  3. A new integrated micro-macro approach to damage and fracture of composites

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Tong-Earn [Department of Mechanical Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 119260 (Singapore)]. E-mail: mpetayte@nus.edu.sg; Tan, Vincent B.C. [Department of Mechanical Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 119260 (Singapore); Liu, Guangyan [Department of Mechanical Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 119260 (Singapore)

    2006-07-25

    The element-failure method (EFM) is a novel finite element-based method for the modeling of damage, fracture and delamination in fibre-reinforced composite laminates. The nature of damage in composite laminates is generally diffused and complex, characterized by multiple matrix cracks, fibre pullout, fibre breakage and delaminations. It is usually not possible to model or identify crack tips in the conventional fashion of fracture mechanics. The central idea of the EFM, on the other hand, is to model the damaged portions with partially failed elements, whose nodal forces have been modified to take into account the local damage modes. This has the additional benefit of unconditional computational stability compared to other methods such as material property degradation (MPD) models. Here, we present the application of EFM with a recently-proposed failure criterion called the strain invariant failure theory (SIFT) in the prediction of complex damage progression in open-hole tension (OHT) composite laminates, and show that the damage patterns and predicted final failure loads are in very good agreement with experiments.

  4. A new integrated micro-macro approach to damage and fracture of composites

    International Nuclear Information System (INIS)

    Tay, Tong-Earn; Tan, Vincent B.C.; Liu, Guangyan

    2006-01-01

    The element-failure method (EFM) is a novel finite element-based method for the modeling of damage, fracture and delamination in fibre-reinforced composite laminates. The nature of damage in composite laminates is generally diffused and complex, characterized by multiple matrix cracks, fibre pullout, fibre breakage and delaminations. It is usually not possible to model or identify crack tips in the conventional fashion of fracture mechanics. The central idea of the EFM, on the other hand, is to model the damaged portions with partially failed elements, whose nodal forces have been modified to take into account the local damage modes. This has the additional benefit of unconditional computational stability compared to other methods such as material property degradation (MPD) models. Here, we present the application of EFM with a recently-proposed failure criterion called the strain invariant failure theory (SIFT) in the prediction of complex damage progression in open-hole tension (OHT) composite laminates, and show that the damage patterns and predicted final failure loads are in very good agreement with experiments

  5. Unblockable Compositions of Software Components

    DEFF Research Database (Denmark)

    Dong, Ruzhen; Faber, Johannes; Liu, Zhiming

    2012-01-01

    We present a new automata-based interface model describing the interaction behavior of software components. Contrary to earlier component- or interface-based approaches, the interface model we propose specifies all the non-blockable interaction behaviors of a component with any environment...... composition of interface models preserves unblockable sequences of provided services....

  6. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  7. Coherent modeling and forecasting of mortality patterns for subpopulations using multi-way analysis of compositions: an application to Canadian Provinces and Territories

    DEFF Research Database (Denmark)

    Bergeron Boucher, Marie-Pier; Simonacci, Violetta; Oeppen, James

    2018-01-01

    Mortality levels for subpopulations, such as countries in a region or Provinces within a country, generally change in a similar fashion over time, as a result of common historical experiences in terms of health, culture and economics. Forecasting mortality for such populations should consider...... to Compositional Data Analysis (CoDa) methodology. Compositional data are strictly positive values summing to a constant and represent part of a whole. Life table deaths are compositional by definition as they provide the age composition of deaths per year and sum to the life table radix. In bilinear models...... the use of life table deaths treated as compositions generally leads to less bias forecasts than other commonly used models by not assuming a constant rate of mortality improvement. As a consequence, an extension of this approach to multi-way data is here presented. Specifically, a CoDa adaptation...

  8. Classification of NLO operators for composite Higgs models

    Science.gov (United States)

    Alanne, Tommi; Bizot, Nicolas; Cacciapaglia, Giacomo; Sannino, Francesco

    2018-04-01

    We provide a general classification of template operators, up to next-to-leading order, that appear in chiral perturbation theories based on the two flavor patterns of spontaneous symmetry breaking SU (NF)/Sp (NF) and SU (NF)/SO (NF). All possible explicit-breaking sources parametrized by spurions transforming in the fundamental and in the two-index representations of the flavor symmetry are included. While our general framework can be applied to any model of strong dynamics, we specialize to composite-Higgs models, where the main explicit breaking sources are a current mass, the gauging of flavor symmetries, and the Yukawa couplings (for the top). For the top, we consider both bilinear couplings and linear ones à la partial compositeness. Our templates provide a basis for lattice calculations in specific models. As a special example, we consider the SU (4 )/Sp (4 )≅SO (6 )/SO (5 ) pattern which corresponds to the minimal fundamental composite-Higgs model. We further revisit issues related to the misalignment of the vacuum. In particular, we shed light on the physical properties of the singlet η , showing that it cannot develop a vacuum expectation value without explicit C P violation in the underlying theory.

  9. Modelling of Damage Evolution in Braided Composites: Recent Developments

    Science.gov (United States)

    Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong

    2017-12-01

    Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.

  10. Predictive Model to determine the composition of the gas generated in a downdraft gasifier

    International Nuclear Information System (INIS)

    D'Espaux Shelton, Elbis; Copa Rey, José Ramón; Brito Sauvanel, Angel Luis

    2017-01-01

    There is currently a trend of using gasification modeling to describe the process without the need to develop experiments, which can be costly. This work presented the necessary tools to analyze the development of a mathematical model with the objective of predicting the chemical composition of the gas generated in a fixed bed downdraft gasifier, with parallel flows and air as a gasification agent as a function of kind of biomass used and the operating parameters of the equipment. This model allows the calculation of thermochemical processes that occur inside a downdraft gasifier and also the determination of temperature profiles. The model developed was based on the energy balance and species equations approach and the control volumes method was used. (author)

  11. Mathematical micro-model of a solid oxide fuel cell composite cathode

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2004-01-01

    In a solid oxide fuel cell (SOFC), the cathode processes account for a majority of the overall electrochemical losses. A composite cathode comprising a mixture of ion-conducting electrolyte and electron-conducting electro-catalyst can help minimize cathode losses provided microstructural parameters such as particle-size, composition, and porosity are optimized. The cost of composite cathode research can be greatly reduced by incorporating mathematical models into the development cycle. Incorporated with reliable experimental data, it is possible to conduct a parametric study using a model and the predicted results can be used as guides for component design. Many electrode models treat the cathode process simplistically by considering only the charge-transfer reaction for low overpotentials or the gas-diffusion at high overpotentials. Further, in these models an average property of the cathode internal microstructure is assumed. This paper will outline the development of a 1-dimensional SOFC composite cathode micro-model and the experimental procedures for obtaining accurate parameter estimates. The micro-model considers the details of the cathode microstructure such as porosity, composition and particle-size of the ionic and electronic phases, and their interrelationship to the charge-transfer reaction and mass transport processes. The micro-model will be validated against experimental data to determine its usefulness for performance prediction. (author)

  12. A composite mouse model of aplastic anemia complicated with iron overload.

    Science.gov (United States)

    Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong

    2018-02-01

    Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (Poverload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.

  13. Modelling asset correlations during the recent financial crisis: A semiparametric approach

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Casas, Isabel

    This article proposes alternatives to the Dynamic Conditional Correlation (DCC) model to study assets' correlations during the recent financial crisis. In particular, we adopt a semiparametric and nonparametric approach to estimate the conditional correlations for two interesting portfolios....... The first portfolio consists of equity sectors SPDRs and the S&P 500 composite, while the second one contains major currencies that are actively traded in the foreign exchange market. Methodologically, our contribution is two fold. First, we propose the Local Linear (LL) estimator for the correlations...

  14. Numerical Tools for Composite Woven Fabric Preforming

    Directory of Open Access Journals (Sweden)

    Abel Cherouat

    2013-01-01

    Full Text Available An important step in the manufacturing processes of thin composite components is the layingup of the reinforcement onto the mould surface. The prediction of the angular distortion of the reinforcement during draping and the changes in fibre orientation are essential for the understanding of the manufacture process and the evaluation of the mechanical properties of the composite structures. This paper presents an optimization-based method for the simulation of the forming processes of woven fabric reinforced composites. Two different approaches are proposed for the simulation of the draping of woven fabric onto complex geometries: geometrical and mechanical approaches. The geometrical approach is based on a fishnet model. It is well adapted to predimensioning fabrics and to give a suitable quantification of the resulting flat patterns. The mechanical approach is based on a mesostructural model. It allows us to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Some numerical simulations of the forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of our approaches.

  15. Toward a Grid Work flow Formal Composition

    International Nuclear Information System (INIS)

    Hlaoui, Y. B.; BenAyed, L. J.

    2007-01-01

    This paper exposes a new approach for the composition of grid work flow models. This approach proposes an abstract syntax for the UML Activity Diagrams (UML-AD) and a formal foundation for grid work flow composition in form of a work flow algebra based on UML-AD. This composition fulfils the need for collaborative model development particularly the specification and the reduction of the complexity of grid work flow model verification. This complexity has arisen with the increase in scale of grid work flow applications such as science and e-business applications since large amounts of computational resources are required and multiple parties could be involved in the development process and in the use of grid work flows. Furthermore, the proposed algebra allows the definition of work flow views which are useful to limit the access to predefined users in order to ensure the security of grid work flow applications. (Author)

  16. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Flores Alsina, Xavier; Batstone, Damien John

    2016-01-01

    approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation...... plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts......The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust...

  17. Hanford Site Composite Analysis Technical Approach Description: Atmospheric Transport Modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, B. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Lehman, L. L. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions or assessment needs, if potential problems are identified.

  18. Multi-physics modeling of multifunctional composite materials for damage detection

    Science.gov (United States)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to

  19. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  20. PRAGMATICS DRIVEN LAND COVER SERVICE COMPOSITION UTILIZING BEHAVIOR-INTENTION MODEL

    Directory of Open Access Journals (Sweden)

    H. Wu

    2016-06-01

    Full Text Available Web service composition is one of the key issues to develop a global land cover (GLC information service portal. Aiming at the defect that traditional syntax and semantic service compositionare difficult to take pragmatic information into account, the paper firstly analyses three tiers of web service language and their succession relations, discusses the conceptual model of pragmatic web service, and proposes the idea of pragmatics-oriented adaptive composition method based on the analysis of some examples. On this basis it puts forward the pragmatic web service model based on Behavior-Intention through presetting and expression of service usability, users' intention, and other pragmatic information, develops the on-demand assembly method based on the agent theory and matching and reconstruction method on heterogeneous message, solves the key technological issue of algorithm applicability and heterogeneous message transformation in the process of covering web service composition on the ground, applies these methods into service combination, puts forward the pragmatic driven service composition method based on behavior-intention model, and effectively settles the issue of coordination and interaction of composite service invocation.

  1. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method

  2. Composite Dry Structure Cost Improvement Approach

    Science.gov (United States)

    Nettles, Alan; Nettles, Mindy

    2015-01-01

    This effort demonstrates that by focusing only on properties of relevance, composite interstage and shroud structures can be placed on the Space Launch System vehicle that simultaneously reduces cost, improves reliability, and maximizes performance, thus providing the Advanced Development Group with a new methodology of how to utilize composites to reduce weight for composite structures on launch vehicles. Interstage and shroud structures were chosen since both of these structures are simple in configuration and do not experience extreme environments (such as cryogenic or hot gas temperatures) and should represent a good starting point for flying composites on a 'man-rated' vehicle. They are used as an example only. The project involves using polymer matrix composites for launch vehicle structures, and the logic and rationale behind the proposed new methodology.

  3. THE PRINCIPLES OF MODELING OF DYNAMICS OF IONIC COMPOSITION OF INDOOR AIR

    Directory of Open Access Journals (Sweden)

    О. Запорожець

    2011-02-01

    Full Text Available Ionic composition of indoor air is one of the most significant physical factors of influence on human health. Nowadays research in this field  are continued, and mainly it is directed to  development of equipment for normalization of ionic composition of air and equipment for control of ionic composition of air. At  the same time researches in the field of development of  mathematical apparatus for modeling time and spatial changes of concentrations of air ions are not numerous. In the article authors proposed to use continuity equation for description of dynamics of spreading of air ions indoors. It’s transformed to linear differential equation of order 1 with usage of  simplification and transformation, and for it’s solution was used Bernoulli equation. Solution of equation shows that concentration of air ions increases with approaching  to source, that was  confirmed by experiment. Also in article is proposed to use diffusion coefficient for characterizing of spreading of air ions, it allows to get linear nonhomogenous equation of order 2. In general  results of solution of such equation correlate with experimental data satisfactorily

  4. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  5. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Science.gov (United States)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  6. Micromechanics approach to the magnetoelectric properties of laminate and fibrous piezoelectric/magnetostrictive composites

    International Nuclear Information System (INIS)

    Huang Haitao; Zhou, L.M.

    2004-01-01

    We use a micromechanics approach to study the magnetoelectric (ME) properties of the piezoelectric/magnetostrictive composite with a 2-2 laminate structure and a 3-1 fibrous structure. It is found that the 3-1 composite has a higher ME coefficient than the 2-2 one, if the volume ratio of piezoelectric material is the same. The reason is that the 3-1 fibrous composite makes use of the longitudinal piezoelectric response and the piezoelectric voltage constant g 33 is 2-3 times that of g 31 . Generally, a smaller volume ratio of the piezoelectric material will generate a higher ME response. The tensile stress at the piezoelectric/magnetostrictive interface of the 3-1 fibrous composite, however, could be high enough to induce plastic deformation or microcracks, which leads to a ME coefficient lower than the theoretically predicted one

  7. Composite model for quarks and leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1982-12-01

    We discuss the motivation for constructing composite models for quarks and leptons, the hopes we have for a successful model and the difficulties encountered, so far, in this field. This paper corresponds to the contents of lectures given at the SLAC Summer Institute (August 1982), at the DESY Workshop on ''Electroweak Interactions at High Energies'' (September 1982) and at the Solvay Conference at the University of Texas, Austin, Texas (November 1982). (author)

  8. A compositional modelling framework for exploring MPSoC systems

    DEFF Research Database (Denmark)

    Tranberg-Hansen, Anders Sejer; Madsen, Jan

    2009-01-01

    This paper presents a novel compositional framework for system level performance estimation and exploration of Multi-Processor System On Chip (MPSoC) based systems. The main contributions are the definition of a compositional model which allows quantitative performance estimation to be carried ou...

  9. Applications of a composite model of microstructural evolution

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1986-01-01

    Near-term fusion reactors will have to be designed using radiation effects data from experiments conducted in fast fission reactors. These fast reactors generate atomic displacements at a rate similar to that expected in a DT fusion reactor first wall. However, the transmutant helium production in an austenitic stainless steel first wall will exceed that in fast reactor fuel cladding by about a factor of 30. Hence, the use of the fast reactor data will involve some extrapolation. A major goal of this work is to develop theoretical models of microstructural evolution to aid in this extrapolation. In the present work a detailed rate-theory-based model of microstructural evolution under fast neutron irradiation has been developed. The prominent new aspect of this model is a treatment of dislocation evolution in which Frank faulted loops nucleate, grow and unfault to provide a source for network dislocations while the dislocation network can be simultaneously annihilated by a climb/glide process. The predictions of this model compare very favorably with the observed dose and temperature dependence of these key microstructural features over a broad range. In addition, this new description of dislocation evolution has been coupled with a previously developed model of cavity evolution and good agreement has been obtained between the predictions of the composite model and fast reactor swelling data. The results from the composite model also reveal that the various components of the irradiation-induced microstructure evolve in a highly coupled manner. The predictions of the composite model are more sensitive to parametric variations than more simple models. Hence, its value as a tool in data analysis and extrapolation is enhanced

  10. Modeling of Magnetoelectric Interaction in Magnetostrictive-Piezoelectric Composites

    Directory of Open Access Journals (Sweden)

    M. I. Bichurin

    2012-01-01

    Full Text Available The paper dwells on the theoretical modeling of magnetoelectric (ME effect in layered and bulk composites based on magnetostrictive and piezoelectric materials. Our analysis rests on the simultaneous solution of elastodynamic or elastostatic and electro/magnetostatic equations. The expressions for ME coefficients as the functions of material parameters and volume fractions of components are obtained. Longitudinal, transverse, and in-plane cases are considered. The use of the offered model has allowed to present the ME effect in ferrite cobalt-barium titanate, ferrite cobalt-PZT, ferrite nickel-PZT, and lanthanum strontium manganite-PZT composites adequately.

  11. Mathematical model predicts the elastic behavior of composite materials

    Directory of Open Access Journals (Sweden)

    Zoroastro de Miranda Boari

    2005-03-01

    Full Text Available Several studies have found that the non-uniform distribution of reinforcing elements in a composite material can markedly influence its characteristics of elastic and plastic deformation and that a composite's overall response is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method, Eshelby's method and dislocation mechanisms are usually employed in formulating a composite's constitutive response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose of this study was to find the correlation between a composite material's particle distribution and its resistance, and to come up with a mathematical model to predict the material's elastic behavior. The proposed formulation was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It is also shown that Maxwell-Boltzmann's distribution law can be applied to identify the correlation between the material's particle distribution and its resistance, using Eshelby's thermal stresses.

  12. High-Fidelity Microstructural Characterization and Performance Modeling of Aluminized Composite Propellant

    International Nuclear Information System (INIS)

    Kosiba, Graham D.; Wixom, Ryan R.; Oehlschlaeger, Matthew A.

    2017-01-01

    Image processing and stereological techniques were used to characterize the heterogeneity of composite propellant and inform a predictive burn rate model. Composite propellant samples made up of ammonium perchlorate (AP), hydroxyl-terminated polybutadiene (HTPB), and aluminum (Al) were faced with an ion mill and imaged with a scanning electron microscope (SEM) and x-ray tomography (micro-CT). Properties of both the bulk and individual components of the composite propellant were determined from a variety of image processing tools. An algebraic model, based on the improved Beckstead-Derr-Price model developed by Cohen and Strand, was used to predict the steady-state burning of the aluminized composite propellant. In the presented model the presence of aluminum particles within the propellant was introduced. The thermal effects of aluminum particles are accounted for at the solid-gas propellant surface interface and aluminum combustion is considered in the gas phase using a single global reaction. In conclusion, properties derived from image processing were used directly as model inputs, leading to a sample-specific predictive combustion model.

  13. School Processes Mediate School Compositional Effects: Model Specification and Estimation

    Science.gov (United States)

    Liu, Hongqiang; Van Damme, Jan; Gielen, Sarah; Van Den Noortgate, Wim

    2015-01-01

    School composition effects have been consistently verified, but few studies ever attempted to study how school composition affects school achievement. Based on prior research findings, we employed multilevel mediation modeling to examine whether school processes mediate the effect of school composition upon school outcomes based on the data of 28…

  14. Vector-like bottom quarks in composite Higgs models

    DEFF Research Database (Denmark)

    Gillioz, M.; Grober, R.; Kapuvari, A.

    2014-01-01

    Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility of ...

  15. Household Income Composition and Household Goods

    OpenAIRE

    Voynov, Ivan

    2005-01-01

    The paper focuses on the change in household income composition and the factors that determine it. The results bring additional knowledge about household poverty dynamics. Based on the collective approach to the family and the cooperative game theory it is constructed theoretical model of household income composition change. The change in income composition is a result from bargaining between household members in attempt to defend the most suitable for them income source. Decisive influence i...

  16. An approach to the flavor problem through supersymmetry and compositeness

    International Nuclear Information System (INIS)

    Pati, J.C.

    1989-01-01

    In this talk I propose a new picture to address to the so-called 'flavor' problem - in particular to the issue of the origin of scales. The picture in question may be implemented more generally, but it has a natural origin within a class of local supersymmetric composite models. The motivations behind these models are that they are economical, viable and predictive. (orig./HSI)

  17. Minimal composite Higgs models at the LHC

    Science.gov (United States)

    Carena, Marcela; Da Rold, Leandro; Pontón, Eduardo

    2014-06-01

    We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5) → SO(4) symmetry breaking pattern, assuming the "partial compositeness" paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.

  18. Minimal composite Higgs models at the LHC

    International Nuclear Information System (INIS)

    Carena, Marcela; Rold, Leandro Da; Pontón, Eduardo

    2014-01-01

    We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5)→SO(4) symmetry breaking pattern, assuming the “partial compositeness" paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the Zb-barb coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.

  19. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  20. Meshfree modeling in laminated composites

    KAUST Repository

    Simkins, Daniel Craig; Collier, Nathan; Alford, Joseph B.

    2012-01-01

    A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.

  1. Meshfree modeling in laminated composites

    KAUST Repository

    Simkins, Daniel Craig

    2012-09-27

    A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.

  2. Composite model approach to the 2He4 nucleus ground state

    International Nuclear Information System (INIS)

    Mehrotra, I.; Agarwal, B.K.

    1986-12-01

    Assuming that the nucleons are (πμ) composite systems the helium nucleus is compared to a molecule consisting of four hydrogen-like atoms where pions are like nuclei and muons are like electrons. Ground state energy of 2 He 4 nucleus has been estimated in the framework of valence-bond method. Good agreement with the experimental value can be obtained if it is assumed that μ + μ - coupling is 3% stronger than the μ ± μ ± coupling. (author). 11 refs, 1 tab

  3. Modeling Mechanical Properties of Aluminum Composite Produced Using Stir Casting Method

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available ANN (Artificial Neural Networks modeling methodology was adopted for predicting mechanical properties of aluminum cast composite materials. For this purpose aluminum alloy were developed using conventional foundry method. The composite materials have complex nature which posses the nonlinear relationship among heat treatment, processing parameters, and composition and affects their mechanical properties. These nonlinear relation ships with properties can more efficiently be modeled by ANNs. Neural networks modeling needs sufficient data base consisting of mechanical properties, chemical composition and processing parameters. Such data base is not available for modeling. Therefore, a large range of experimental work was carried out for the development of aluminum composite materials. Alloys containing Cu, Mg and Zn as matrix were reinforced with 1- 15% Al2O3 particles using stir casting method. Alloys composites were cast in a metal mold. More than eighty standard samples were prepared for tensile tests. Sixty samples were given solution treatments at 580oC for half an hour and tempered at 120oC for 24 hours. The samples were characterized to investigate mechanical properties using Scanning Electron Microscope, X-Ray Spectrometer, Optical Metallurgical Microscope, Vickers Hardness, Universal Testing Machine and Abrasive Wear Testing Machine. A MLP (Multilayer Perceptron feedforward was developed and used for modeling purpose. Training, testing and validation of the model were carried out using back propagation learning algorithm. The modeling results show that an architecture of 14 inputs with 9 hidden neurons and 4 outputs which includes the tensile strength, elongation, hardness and abrasive wear resistance gives reasonably accurate results with an error within the range of 2-7 % in training, testing and validation.

  4. Modeling mechanical properties of aluminum composite produced using stir casting method

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    ANN (Artificial Neural Networks) modeling methodology was adopted for predicting mechanical properties of aluminum cast composite materials. For this purpose aluminum alloy were developed using conventional foundry method. The composite materials have complex nature which posses the nonlinear relationship among heat treatment, processing parameters, and composition and affects their mechanical properties. These nonlinear relation ships with properties can more efficiently be modeled by ANNs. Neural networks modeling needs sufficient data base consisting of mechanical properties, chemical composition and processing parameters. Such data base is not available for modeling. Therefore, a large range of experimental work was carried out for the development of aluminum composite materials. Alloys containing Cu, Mg and Zn as matrix were reinforced with 1- 15% AI/sub 2/O/sub 3/ particles using stir casting method. Alloys composites were cast in a metal mold. More than eighty standard samples were prepared for tensile tests. Sixty samples were given solution treatments at 580 deg. C for half an hour and tempered at 120 deg. C for 24 hours. The samples were characterized to investigate mechanical properties using Scanning Electron Microscope, X-Ray Spectrometer, Optical Metallurgical Microscope, Vickers Hardness, Universal Testing Machine and Abrasive Wear Testing Machine. A MLP (Multilayer Perceptron) feed forward was developed and used for modeling purpose. Training, testing and validation of the model were carried out using back propagation learning algorithm. The modeling results show that an architecture of 14 inputs with 9 hidden neurons and 4 outputs which includes the tensile strength, elongation, hardness and abrasive wear resistance gives reasonably accurate results with an error within the range of 2-7 % in training, testing and validation. (author)

  5. Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 2. Model evaluation

    NARCIS (Netherlands)

    Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2004-01-01

    The objective of the present paper was to evaluate a dynamic mechanistic model for growing and fattening pigs presented in a companion paper. The model predicted the rate of protein and fat deposition (chemical composition), rate of tissue deposition (anatomical composition) and performance of pigs

  6. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption

    Science.gov (United States)

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-10-01

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g

  7. Modelling of End Milling of AA6061-TiCp Metal Matrix Composite

    Science.gov (United States)

    Vijay Kumar, S.; Cheepu, Muralimohan; Venkateswarlu, D.; Asohan, P.; Senthil Kumar, V.

    2018-03-01

    The metal-matrix composites (MMCs) are used in various applications hence lot of research has been carried out on MMCs. To increase the properties of Al-based MMCs many ceramic reinforcements have been identified, among which TiC is played vital role because of its properties like high hardness, stiffness and wear resistance. In the present work, a neural network and statistical modelling approach is going to use for the prediction of surface roughness (Ra) and cutting forces in computerised numerical control milling machine. Experiments conducted on a CNC milling machine based on the full factorial design and resulted data used to train and checking the network performance. The sample prepared from in-situ technique and heat treated to get uniform properties. The ANN model has shown satisfactory performance comparatively.

  8. A Finite Difference, Semi-implicit, Equation-of-State Efficient Algorithm for the Compositional Flow Modeling in the Subsurface: Numerical Examples

    KAUST Repository

    Saavedra, Sebastian

    2012-07-01

    The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.

  9. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Parameters for Fickian diffusion and polymer relaxation models were determined by .... Water transport process of resin and polymer composite specimens at ..... simulation. ... Kwon Y W and Bang H 1997 Finite element method using matlab.

  10. Hierarchical composites: Analysis of damage evolution based on fiber bundle model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2011-01-01

    A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...

  11. Modelling of a multi-temperature plasma composition

    International Nuclear Information System (INIS)

    Liani, B.; Benallal, R.; Bentalha, Z.

    2005-01-01

    Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. The authors use the Saha equation and Debye length equation to calculate the non-local thermodynamic-equilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32(1999)1711] can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature T e varies in the range 8000∼20000 K at atmospheric pressure. (authors)

  12. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking...... and microvoids on the microscopic and macroscopic mechanical response of composite materials. To this end, first a numerical study is carried out to explore ways to stabilize interfacial crack growth under dominant Mode-I fracture using the cohesive zone model. Consequently, this study suggests a method...... composites. In the first approach, the J2 plasticity model is implemented to model the elasto-plastic behavior of the matrix while in the second strategy the modified Drucker-Prager plasticity model is utilized to account for brittle-like and pressure dependent behavior of an epoxy matrix. In addition...

  13. A tool kit for builders of composite models

    International Nuclear Information System (INIS)

    Georgi, H.

    1986-01-01

    I motivate and discuss a dynamical picture of strong gauge interactions in a simple class of models, some of which yield massless composite fermions. I show how to put simple components together into models that can describe quarks with color and flavor. (orig.)

  14. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  15. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  16. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    International Nuclear Information System (INIS)

    Calio, I.; Cannizzaro, F.; Marletta, M.; Panto, B.; D'Amore, E.

    2008-01-01

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria

  17. Super-cool paints: optimizing composition with a modified four-flux model

    Science.gov (United States)

    Gali, Marc A.; Arnold, Matthew D.; Gentle, Angus R.; Smith, Geoffrey B.

    2017-09-01

    The scope for maximizing the albedo of a painted surface to produce low cost new and retro-fitted super-cool roofing is explored systematically. The aim is easy to apply, low cost paint formulations yielding albedos in the range 0.90 to 0.95. This requires raising the near-infrared (NIR) spectral reflectance into this range, while not reducing the more easily obtained high visible reflectance values. Our modified version of the four-flux method has enabled results on more complex composites. Key parameters to be optimized include; fill factors, particle size and material, using more than one mean size, thickness, substrate and binder materials. The model used is a variation of the classical four-flux method that solves the energy transfer problem through four balance differential equations. We use a different approach to the characteristic parameters to define the absorptance and scattering of the complete composite. This generalization allows extension to inclusion of size dispersion of the pigment particle and various binder resins, including those most commonly in use based on acrylics. Thus, the pigment scattering model has to take account of the matrix having loss in the NIR. A paint ranking index aimed specifically at separating paints with albedo above 0.80 is introduced representing the fraction of time at a sub-ambient temperature.

  18. Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis

    Science.gov (United States)

    Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.

    2015-06-01

    This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.

  19. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    Science.gov (United States)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as

  20. Development and Validation of a Constitutive Model for Dental Composites during the Curing Process

    Science.gov (United States)

    Wickham Kolstad, Lauren

    Debonding is a critical failure of a dental composites used for dental restorations. Debonding of dental composites can be determined by comparing the shrinkage stress of to the debonding strength of the adhesive that bonds it to the tooth surface. It is difficult to measure shrinkage stress experimentally. In this study, finite element analysis is used to predict the stress in the composite during cure. A new constitutive law is presented that will allow composite developers to evaluate composite shrinkage stress at early stages in the material development. Shrinkage stress and shrinkage strain experimental data were gathered for three dental resins, Z250, Z350, and P90. Experimental data were used to develop a constitutive model for the Young's modulus as a function of time of the dental composite during cure. A Maxwell model, spring and dashpot in series, was used to simulate the composite. The compliance of the shrinkage stress device was also taken into account by including a spring in series with the Maxwell model. A coefficient of thermal expansion was also determined for internal loading of the composite by dividing shrinkage strain by time. Three FEA models are presented. A spring-disk model validates that the constitutive law is self-consistent. A quarter cuspal deflection model uses separate experimental data to verify that the constitutive law is valid. Finally, an axisymmetric tooth model is used to predict interfacial stresses in the composite. These stresses are compared to the debonding strength to check if the composite debonds. The new constitutive model accurately predicted cuspal deflection data. Predictions for interfacial bond stress in the tooth model compare favorably with debonding characteristics observed in practice for dental resins.

  1. Understanding Service Composition with Non-functional Properties Using Declarative Model-to-model Transformations

    Directory of Open Access Journals (Sweden)

    Max Mäuhlhäuser

    2011-01-01

    Full Text Available Developing applications comprising service composition is a complex task. Therefore, to lower the skill barrier for developers, it is important to describe the problem at hand on an abstract level and not to focus on implementation details. This can be done using declarative programming which allows to describe only the result of the problem (which is what the developer wants rather than the description of the implementation. We therefore use purely declarative model-to-model transformations written in a universal model transformation language which is capable of handling even non functional properties using optimization and mathematical programming. This makes it easier to understand and describe service composition and non-functional properties for the developer.

  2. Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling

    International Nuclear Information System (INIS)

    Shirvanimoghaddam, K.; Khayyam, H.; Abdizadeh, H.; Karbalaei Akbari, M.; Pakseresht, A.H.; Ghasali, E.; Naebe, M.

    2016-01-01

    This paper investigates the manufacturing of aluminium–boron carbide composites using the stir casting method. Mechanical and physical properties tests to obtain hardness, ultimate tensile strength (UTS) and density are performed after solidification of specimens. The results show that hardness and tensile strength of aluminium based composite are higher than monolithic metal. Increasing the volume fraction of B_4C, enhances the tensile strength and hardness of the composite; however over-loading of B_4C caused particle agglomeration, rejection from molten metal and migration to slag. This phenomenon decreases the tensile strength and hardness of the aluminium based composite samples cast at 800 °C. For Al-15 vol% B_4C samples, the ultimate tensile strength and Vickers hardness of the samples that were cast at 1000 °C, are the highest among all composites. To predict the mechanical properties of aluminium matrix composites, two key prediction modelling methods including Neural Network learned by Levenberg–Marquardt Algorithm (NN-LMA) and Thin Plate Spline (TPS) models are constructed based on experimental data. Although the results revealed that both mathematical models of mechanical properties of Al–B_4C are reliable with a high level of accuracy, the TPS models predict the hardness and tensile strength values with less error compared to NN-LMA models.

  3. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication

    International Nuclear Information System (INIS)

    Tai, N.H.; Chou, T.W.

    1990-01-01

    A quasi-steady-state approach is applied to model the pressure-driven, temperature-gradient chemical vapor infiltration (improved CVI process) for ceramic matrix composites fabrication. The deposited matrix in this study is SiC which is converted from the thermal decomposition of methyltrichlorosilane gas under excess hydrogen. A three-dimensional unit cell is adopted to simulate the spatial arrangements of reinforcements in discontinuous fiber mats and three-dimensionally woven fabrics. The objectives of this paper are to predict the temperature and density distributions in a fibrous preform during processing, the advancement of the solidified front, the total fabrication period, and the vapor inlet pressure variation for maintaining a constant flow rate

  4. REST based service composition

    DEFF Research Database (Denmark)

    Grönvall, Erik; Ingstrup, Mads; Pløger, Morten

    2011-01-01

    This paper presents an ongoing work developing and testing a Service Composition framework based upon the REST architecture named SECREST. A minimalistic approach have been favored instead of a creating a complete infrastructure. One focus has been on the system's interaction model. Indeed, an aim...

  5. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Anthony [General Motors Company, Flint, MI (United States); Faruque, Omar [Ford Motor Company, Dearborn, MI (United States); Truskin, James F [FCA US LLC, Auburn Hills, MI (United States); Board, Derek [Ford Motor Company, Dearborn, MI (United States); Jones, Martin [Ford Motor Company, Dearborn, MI (United States); Tao, Jian [FCA US LLC, Auburn Hills, MI (United States); Chen, Yijung [Ford Motor Company, Dearborn, MI (United States); Mehta, Manish [M-Tech International LLC, Dubai (United Arab Emirates)

    2017-09-27

    As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared research project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing

  6. A conjugate thermo-electric model for a composite medium.

    Directory of Open Access Journals (Sweden)

    Oscar Chávez

    Full Text Available Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.

  7. A Compositional Relevance Model for Adaptive Information Retrieval

    Science.gov (United States)

    Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.

  8. On two-particle N=1 supersymmetric composite grand unified models

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1984-01-01

    A class of two-particle N=1 supersymmetric composite grand unified models, satisfying the anomaly matching and cancellation conditions, n-independence and survival hypothesis is considered. A unique admissible set of the light states, containing spectator states on a par with the composite ones is found. At low mass scales this set contains exactly four families of ordinary fermions without any additional exotics. The interactions of the light states at distances greater than the compositeness radius are described by the N=1 sypersymmetric chiral grand unified model [SU(6)] 2 (or [SU(8)] 2 with a fixed set of four second-rank tensors as matter fields

  9. Implications of a Light Higgs in Composite Models

    CERN Document Server

    Redi, Michele

    2012-01-01

    We study the Higgs mass in composite Higgs models with partial compositeness, extending the results of Ref. [1] to different representations of the composite sector for SO(5)/SO(4) and to the coset SO(6)/SO(5). For a given tuning we find in general a strong correlation between the mass of the top partners and the Higgs mass, akin to the one in supersymmetry. If the theory is natural a Higgs mass of 125 GeV typically requires fermionic partners below TeV which might be within the reach of the present run of LHC. A discussion of CP properties of both cosets is also presented.

  10. Search strategies for top partners in composite Higgs models

    Science.gov (United States)

    Gripaios, Ben; Müller, Thibaut; Parker, M. A.; Sutherland, Dave

    2014-08-01

    We consider how best to search for top partners in generic composite Higgs models. We begin by classifying the possible group representations carried by top partners in models with and without a custodial SU(2) × SU(2) ⋊ 2 symmetry protecting the rate for Z → decays. We identify a number of minimal models whose top partners only have electric charges of , , or and thus decay to top or bottom quarks via a single Higgs or electroweak gauge boson. We develop an inclusive search for these based on a top veto, which we find to be more effective than existing searches. Less minimal models feature light states that can be sought in final states with like-sign leptons and so we find that 2 straightforward LHC searches give a reasonable coverage of the gamut of composite Higgs models.

  11. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  12. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  13. Bayesian inference model for fatigue life of laminated composites

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian

    2016-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference. The ...

  14. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  15. Bias-dependent model of the electrical impedance of ionic polymer-metal composites.

    Science.gov (United States)

    Cha, Youngsu; Porfiri, Maurizio

    2013-02-01

    In this paper, we analyze the charge dynamics of ionic polymer-metal composites (IPMCs) in response to voltage inputs composed of a large dc bias and a small superimposed time-varying voltage. The IPMC chemoelectrical behavior is described through the modified Poisson-Nernst-Planck framework, in which steric effects are taken into consideration. The physics of charge build-up and mass transfer in the proximity of the high surface electrodes is modeled by schematizing the IPMC as the stacked sequence of five layers, in which the ionomeric membrane is separated from the metal electrodes by two composite layers. The method of matched asymptotic expansions is used to derive a semianalytical solution for the concentration of mobile counterions and the electric potential in the IPMC, which is, in turn, used to establish an equivalent circuit model for the IPMC electrical response. The circuit model consists of the series connection of a resistor and two complex elements, each constituted by the parallel connection of a capacitor and a Warburg impedance. The resistor is associated with ion transport in the ionomeric membrane and is independent of the dc bias. The capacitors and the Warburg impedance idealize charge build-up and mass transfer in the vicinity of the electrodes and their value is controlled by the dc bias. The proposed approach is validated against experimental results on in-house fabricated IPMCs and the accuracy of the equivalent circuit is assessed through comparison with finite element results.

  16. Thermoresistive mechanisms of carbon nanotube/polymer composites

    Science.gov (United States)

    Cen-Puc, M.; Oliva-Avilés, A. I.; Avilés, F.

    2018-01-01

    The mechanisms governing thermoresistivity of carbon nanotube (CNT)/polymer composites are theoretically and experimentally investigated. Two modeling approaches are proposed to this aim considering a broad range of CNT concentrations (0.5-50 wt%). In the first model, thermal expansion of the polymer composite is predicted using a finite element model; the resulting CNT-to-CNT separation distance feeds a classical tunneling model to predict the dependence of the electrical resistance with temperature. The second approach uses the general effective medium considering the dilution of the CNT volume fraction due to the thermal expansion of the polymer. Both models predict that the electrical resistance increases with increased temperature (i.e. a positive temperature coefficient of resistance, TCR) for all investigated CNT concentrations, with higher TCRs for lower CNT concentrations. Comparison between modeling outcomes and experimental data suggests that polymer thermal expansion (and tunneling) play a dominant role for low CNT concentrations (≤ 10 wt%) heated above room temperature. On the other hand, for composites at high CNT concentrations (50 wt%) or for freezing temperatures (-110 °C), a negative TCR was experimentally obtained, suggesting that for those conditions the CNT intrinsic thermoresistivity and the electronic conduction between CNTs by thermal activation may play a paramount role.

  17. A study of composite models at LEP with ALEPH

    International Nuclear Information System (INIS)

    Badaud, F.

    1992-04-01

    Tests of composite models are performed in e + e - collisions in the vicinity of the Z 0 pole using the ALEPH detector. Two kinds of substructure effects are searched for: deviations of differential cross section for reactions e + e - → l + l - and e + e - → γ γ from standard model predictions, and direct search for excited neutrino. A new interaction, parametrized by a 4-fermion contact term, cell, is studied in lepton pair production reactions, assuming different chiralities of the currents. Lower limits on the compositeness scale Λ are obtained by fitting model predictions to the data. They are in the range from 1 to a few TeV depending on model and lepton flavour. Researches for the lightest excited particle that could be the excited neutrino, are presented

  18. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    Science.gov (United States)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other

  19. Development of an Input Suite for an Orthotropic Composite Material Model

    Science.gov (United States)

    Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther

    2017-01-01

    An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.

  20. Combination of a crop model and a geochemical model as a new approach to evaluate the sustainability of an intensive agriculture system.

    Science.gov (United States)

    Mohammed, Gihan; Trolard, Fabienne; Gillon, Marina; Cognard-Plancq, Anne-Laure; Chanzy, André; Bourrié, Guilhem

    2017-10-01

    By combining a crop model (STICS) and a geochemical model (PHREEQC), a new approach to assess the sustainability of agrosystems is proposed. It is based upon aqueous geochemistry and the stepwise modifications of soil solution during its transfer from the surface till aquifer. Meadows of Crau (SE France), irrigated since the 16th century, were field monitored (2012-2015) and modelled. Except for N, the mineral requirements of hay are largely covered by dissolved elements brought by irrigation water with only slight deficits in K and P, which are compensated by P-K fertilizers and the winter pasture by sheep. N cycle results in a very small nitrate leakage. The main determinants of the chemical composition changes of water are: concentration by evaporation, equilibration with soil pCO 2 , mineral nutrition of plants, input of fertilizers, sheep grazing, mineral-solution interactions in superficial formations till the aquifer, including ion exchange. Inverse modelling with PHREEQC allows for quantifying these processes. For groundwater, measured composition fit statistically very well with those computed, validating thus this approach. This long-term established agrosystem protects both soil and water resources: soil nutritional status remains constant with even some P and (minor) K fixation in soils; long-term decarbonatation occurs but it is greatly slowed by saturation of irrigation water by carbonate; P fixation in soil protects groundwater from eutrophication. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    International Nuclear Information System (INIS)

    Grassia, Luigi; D'Amore, Alberto

    2010-01-01

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.

  2. Relativistic instant-form approach to the structure of two-body composite systems

    International Nuclear Information System (INIS)

    Krutov, A.F.; Troitsky, V.E.

    2002-01-01

    An approach to the electroweak properties of two-particle composite systems is developed. The approach is based on the use of the instant form of relativistic Hamiltonian dynamics. The main feature of this approach is the method of construction of the matrix element of the electroweak current operator. The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also the conservation law automatically. The properties of the system as well as the approximations are formulated in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in such a way that the Lorentz covariance of the current is ensured. In the electromagnetic case the current conservation law is also ensured. Our approach gives good results for the pion electromagnetic form factor in the whole range of momentum transfers available for experiments at present time, as well as for the lepton decay constant of pions

  3. A novel combinatorial approach for the realization of advanced cBN composite coating

    International Nuclear Information System (INIS)

    Russell, W.C.; Yedave, S.N.; Sundaram, N.; Brown, W.D.; Malshe, A.P.

    2001-01-01

    The paper reports a novel coating process for the synthesis of hard material composite coatings. It consists of electrostatic spray coating (ESC) of powder particles (of micron-nanometer size) followed by chemical vapor infiltration (CVI) of a suitable binder phase. This novel approach enables fabrication of unique compositions such as cubic boron nitride (cBN) and titanium nitride (TiN) in a coating form. Recently, we have demonstrated the success of this technology by first coating a uniform over-layer (in excess of ∼ 10 μm) of cBN particles an carbide cutting tool inserts using ESC, followed by infiltration of particulate cBN matrix with TiN from its vapor phase using CVI to synthesize cBN-TiN a composite coating. The composite has shown excellent cBN-to-TiN and composite coating-to-carbide substrate adhesion. One of the main emphases of the paper is to discuss optimization and scale up of the ESC technology to achieve the desired microstructure and tailor the thickness across the cutting tool for better performance. Further, the cutting tools have been successfully tested for advanced machining applications. (author)

  4. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  5. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  6. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    Science.gov (United States)

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.

    2004-06-01

    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  7. Modeling compositional dynamics based on GC and purine contents of protein-coding sequences

    KAUST Repository

    Zhang, Zhang

    2010-11-08

    Background: Understanding the compositional dynamics of genomes and their coding sequences is of great significance in gaining clues into molecular evolution and a large number of publically-available genome sequences have allowed us to quantitatively predict deviations of empirical data from their theoretical counterparts. However, the quantification of theoretical compositional variations for a wide diversity of genomes remains a major challenge.Results: To model the compositional dynamics of protein-coding sequences, we propose two simple models that take into account both mutation and selection effects, which act differently at the three codon positions, and use both GC and purine contents as compositional parameters. The two models concern the theoretical composition of nucleotides, codons, and amino acids, with no prerequisite of homologous sequences or their alignments. We evaluated the two models by quantifying theoretical compositions of a large collection of protein-coding sequences (including 46 of Archaea, 686 of Bacteria, and 826 of Eukarya), yielding consistent theoretical compositions across all the collected sequences.Conclusions: We show that the compositions of nucleotides, codons, and amino acids are largely determined by both GC and purine contents and suggest that deviations of the observed from the expected compositions may reflect compositional signatures that arise from a complex interplay between mutation and selection via DNA replication and repair mechanisms.Reviewers: This article was reviewed by Zhaolei Zhang (nominated by Mark Gerstein), Guruprasad Ananda (nominated by Kateryna Makova), and Daniel Haft. 2010 Zhang and Yu; licensee BioMed Central Ltd.

  8. Modeling compositional dynamics based on GC and purine contents of protein-coding sequences

    KAUST Repository

    Zhang, Zhang; Yu, Jun

    2010-01-01

    Background: Understanding the compositional dynamics of genomes and their coding sequences is of great significance in gaining clues into molecular evolution and a large number of publically-available genome sequences have allowed us to quantitatively predict deviations of empirical data from their theoretical counterparts. However, the quantification of theoretical compositional variations for a wide diversity of genomes remains a major challenge.Results: To model the compositional dynamics of protein-coding sequences, we propose two simple models that take into account both mutation and selection effects, which act differently at the three codon positions, and use both GC and purine contents as compositional parameters. The two models concern the theoretical composition of nucleotides, codons, and amino acids, with no prerequisite of homologous sequences or their alignments. We evaluated the two models by quantifying theoretical compositions of a large collection of protein-coding sequences (including 46 of Archaea, 686 of Bacteria, and 826 of Eukarya), yielding consistent theoretical compositions across all the collected sequences.Conclusions: We show that the compositions of nucleotides, codons, and amino acids are largely determined by both GC and purine contents and suggest that deviations of the observed from the expected compositions may reflect compositional signatures that arise from a complex interplay between mutation and selection via DNA replication and repair mechanisms.Reviewers: This article was reviewed by Zhaolei Zhang (nominated by Mark Gerstein), Guruprasad Ananda (nominated by Kateryna Makova), and Daniel Haft. 2010 Zhang and Yu; licensee BioMed Central Ltd.

  9. Thermal modeling of the ceramic composite fuel for light water reactors

    International Nuclear Information System (INIS)

    Revankar, S.T.; Latta, R.; Solomon, A.A.

    2005-01-01

    Full text of publication follows: Composite fuel designs capable of providing improved thermal performance are of great interest in advanced reactor designs where high efficiency and long fuel cycles are desired. Thermal modeling of the composite fuel consisting of continuous second phase in a ceramic (uranium oxide) matrix has been carried out with detailed examination of the microstructure of the composite and the interface. Assuming that constituent phases are arranged as slabs, upper and lower bounds for the thermal conductivity of the composite are derived analytically. Bounding calculations on the thermal conductivity of the composite were performed for SiC dispersed in the UO 2 matrix. It is found that with 10% SiC, the thermal conductivity increases from 5.8 to 9.8 W/m.deg. K at 500 K, or an increase of 69% was observed in UO 2 matrix. The finite element analysis computer program ANSYS was used to create composite fuel geometries with set boundary conditions to produce accurate thermal conductivity predictions. A model developed also accounts for SiC-matrix interface resistance and the addition of coatings or interaction barriers. The first set of calculations using the code was to model simple series and parallel fuel slab geometries, and then advance to inter-connected parallel pathways. The analytical calculations were compared with the ANSYS results. The geometry of the model was set up as a 1 cm long by 400 micron wide rectangle. This rectangle was then divided into one hundred sections with the first ninety percent of a single section being UO 2 and the remaining ten percent consisting of SiC. The model was then meshed using triangular type elements. The boundary conditions were set with the sides of the rectangle being adiabatic and having an assigned temperature at the end of the rectangle. A heat flux was then applied to one end of the model producing a temperature gradient. The effective thermal conductivity was then calculated using the geometry

  10. Low-energy phenomenology of a realistic composite model

    International Nuclear Information System (INIS)

    Korpa, C.; Ryzak, Z.

    1986-01-01

    The low-energy limit of the strongly coupled standard model (Abbott-Farhi composite model) is analyzed. The effects of the excited W isotriplet and isoscalar bosons are investigated and compared with experimental data. As a result, constraints on parameters (masses, coupling constants, etc.) of these vector bosons are obtained. They are not severe enough (certain cancellations are possible) to exclude the model on experimental basis

  11. Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites

    Directory of Open Access Journals (Sweden)

    Shang-Chang Lin

    2015-01-01

    Full Text Available We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors.

  12. Review of probabilistic models of the strength of composite materials

    International Nuclear Information System (INIS)

    Sutherland, L.S.; Guedes Soares, C.

    1997-01-01

    The available literature concerning probabilistic models describing the strength of composite materials has been reviewed to highlight the important aspects of this behaviour which will be of interest to the modelling and analysis of a complex system. The success with which these theories have been used to predict experimental results has been discussed. Since the brittle reinforcement phase largely controls the strength of composites, the probabilistic theories used to describe the strength of brittle materials, fibres and bundles of fibres have been detailed. The use of these theories to predict the strength of composite materials has been considered, along with further developments incorporating the damage accumulation observed in the failure of such materials. Probabilistic theories of the strength of short-fibre composites have been outlined. Emphasis has been placed throughout on straightforward engineering explanations of these theories and how they may be used, rather than providing comprehensive statistical descriptions

  13. Molecular Dynamics Modeling of Carbon Nanotube Composite Fracture Using ReaxFF

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2016-01-01

    Carbon nanotube (CNT) fiber reinforced composites with specific tensile strengths and moduli approaching those of aerospace grade carbon fiber composites have recently been reported. This achievement was enabled by the emerging availability of high N/tex yarns in kilometer-scale quantities. While the production of this yarn is an impressive advance, its strength is still much lower than that of the individual CNTs comprising the yarn. Closing this gap requires understanding load transfer between CNTs at the nanometer dimensional scale. This work uses reactive molecular dynamics simulations to gain an understanding at the nanometer scale of the key factors that determine CNT nanocomposite mechanical performance, and to place more realistic upper bounds on the target properties. While molecular dynamics simulations using conventional force fields can predict elastic properties, the ReaxFF reactive forcefield can also model fracture behavior because of its ability to accurately describe bond breaking and formation during a simulation. The upper and lower bounds of CNT composite properties are investigated by comparing systems composed of CNTs continuously connected across the periodic boundary with systems composed of finite length CNTs. These lengths, effectively infinite for the continuous tubes and an aspect ratio of 13 for the finite length case, result from practical limitations on the number of atoms that can be included in a simulation. Experimentally measured aspect ratios are typically on the order of 100,000, so the calculated results should represent upper and lower limits on experimental mechanical properties. Finally, the effect of various degrees of covalent crosslinking between the CNTs and amorphous carbon matrix is considered to identify the amount of CNT-matrix covalent bonding that maximizes overall composite properties.

  14. Modeling of the physico-chemical ablation of carbon-based composites

    International Nuclear Information System (INIS)

    Lachaud, J.

    2006-12-01

    Carbon-based composites are used in extreme conditions: Tokamaks, re-entry bodies, nozzle throats, plane brakes. Their walls undergo a surface recession, called ablation, mainly due to some gasification phenomena (oxidation or even sublimation). This work is a contribution to the improvement of the understanding of the near-wall material/environment interaction and to its modeling. Some original gasification experiments have been carried out, modeled, and quantitatively analyzed; a complex multi-scale behavior of the materials is observed through their average recession velocity and a surface roughness onset mainly caused by their heterogeneous anisotropic structure. In order to explain these observations, a multi-scale modeling strategy has been set up; it follows the characteristic scales of the composites: nano-scopic (carbon texture), microscopic (fiber, inter-fiber matrix), mesoscopic (yarn, inter-yarn matrix), and macroscopic (homogenized composite) scales. The proposed models notably integrate the local recession of the wall, the heterogeneous gasification reactions, and mass transfer. A numerical simulation tool, based on Monte-Carlo Random Walks with Simplified Marching Cubes for the front tracking, has been implemented, validated, and used to solve these models. Using some numerically validated hypotheses, an analytical solution has been obtained; it provides a comprehensive understanding of ablation phenomena. It provides the effective behavior of the composites from that of their microscopic components through two changes of scale. The results of these phenomenological models have been validated by comparison to the laboratory experiments and applied for the analysis of actual applications. Physics-based criterions are made available for the choice or the fabrication of ideal materials. (author)

  15. Representing general theoretical concepts in structural equation models: The role of composite variables

    Science.gov (United States)

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  16. Modelling Spatial Compositional Data: Reconstructions of past land cover and uncertainties

    DEFF Research Database (Denmark)

    Pirzamanbein, Behnaz; Lindström, Johan; Poska, Anneli

    2018-01-01

    In this paper, we construct a hierarchical model for spatial compositional data, which is used to reconstruct past land-cover compositions (in terms of coniferous forest, broadleaved forest, and unforested/open land) for five time periods during the past $6\\,000$ years over Europe. The model...... to a fast MCMC algorithm. Reconstructions are obtained by combining pollen-based estimates of vegetation cover at a limited number of locations with scenarios of past deforestation and output from a dynamic vegetation model. To evaluate uncertainties in the predictions a novel way of constructing joint...... confidence regions for the entire composition at each prediction location is proposed. The hierarchical model's ability to reconstruct past land cover is evaluated through cross validation for all time periods, and by comparing reconstructions for the recent past to a present day European forest map...

  17. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    Science.gov (United States)

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  18. Magnetic monopoles in a model of a composite photon

    International Nuclear Information System (INIS)

    Iwazaki, Aiichi.

    1984-10-01

    We show that there are monopole solutions in a composite model where the photon is regarded as a composite of elementary constituents. These monopoles have magnetic charges of the Dirac unit but are essencially different from 't Hooft-Polyakov monopoles since they are boundstates of the constituents. The stability of the monopoles is guaranteed by the conservation of the magnetic charges. (author)

  19. Computational Tools and Approaches for Design and Control of Coating and Composite Color, Appearance, and Electromagnetic Signature

    Directory of Open Access Journals (Sweden)

    Erik D. Sapper

    2013-04-01

    Full Text Available The transport behavior of electromagnetic radiation through a polymeric coating or composite is the basis for the material color, appearance, and overall electromagnetic signature. As multifunctional materials become more advanced and next generation in-service applications become more demanding, a need for predictive design of electromagnetic signature is desired. This paper presents various components developed and used in a computational suite for the study and design of electromagnetic radiation transport properties in polymeric coatings and composites. Focus is given to the treatment of the forward or direct scattering problem on surfaces and in bulk matrices of polymeric materials. The suite consists of surface and bulk light scattering simulation modules that may be coupled together to produce a multiscale model for predicting the electromagnetic signature of various material systems. Geometric optics ray tracing is used to predict surface scattering behavior of realistically rough surfaces, while a coupled ray tracing-finite element approach is used to predict bulk scattering behavior of material matrices consisting of microscale and nanoscale fillers, pigments, fibers, air voids, and other inclusions. Extension of the suite to color change and appearance metamerism is addressed, as well as the differences between discrete versus statistical material modeling.

  20. TIPPtool: Compositional Specification and Analysis of Markovian Performance Models

    NARCIS (Netherlands)

    Hermanns, H.; Halbwachs, N.; Peled, D.; Mertsiotakis, V.; Siegle, M.

    1999-01-01

    In this short paper we briefly describe a tool which is based on a Markovian stochastic process algebra. The tool offers both model specification and quantitative model analysis in a compositional fashion, wrapped in a userfriendly graphical front-end.

  1. Optimized 3-D electromagnetic models of composite materials in microwave frequency range: application to EMC characterization of complex media by statistical means

    Directory of Open Access Journals (Sweden)

    S. Lalléchère

    2017-05-01

    Full Text Available The aim of this proposal is to demonstrate the ability of tridimensional (3-D electromagnetic modeling tool for the characterization of composite materials in microwave frequency band range. Indeed, an automated procedure is proposed to generate random materials, proceed to 3-D simulations, and compute shielding effectiveness (SE statistics with finite integration technique. In this context, 3-D electromagnetic models rely on random locations of conductive inclusions; results are compared with classical electromagnetic mixing theory (EMT approaches (e.g. Maxwell-Garnett formalism, and dynamic homogenization model (DHM. The article aims to demonstrate the interest of the proposed approach in various domains such as propagation and electromagnetic compatibility (EMC.

  2. Composite dark matter from a model with composite Higgs boson

    International Nuclear Information System (INIS)

    Khlopov, Maxim Yu.; Kouvaris, Chris

    2008-01-01

    In a previous paper [Phys. Rev. D77, 065002 (2008)], we showed how the minimal walking technicolor model can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a 4 He ++ . We studied the properties of these techni-O-helium tOHe''atoms,'' which behave as warmer dark matter rather than cold. In this paper, we extend our work on several different aspects. We study the possibility of a mixed scenario where both tOHe and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density. We argue that these newly proposed bound states are solely made of techniparticles, although they behave as weakly interacting massive particles, due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore, we conclude that within the minimal walking technicolor model, composite dark matter should be mostly composed of tOHe. Moreover, in this paper, we put cosmological bounds in the masses of the techniparticles, if they compose the dark matter density. Finally, we propose within this setup, a possible explanation of the discrepancy between the DAMA/NaI and DAMA/LIBRA findings and the negative results of CDMS and other direct dark matter searches that imply nuclear recoil measurement, which should accompany ionization.

  3. Component Composition Using Feature Models

    DEFF Research Database (Denmark)

    Eichberg, Michael; Klose, Karl; Mitschke, Ralf

    2010-01-01

    interface description languages. If this variability is relevant when selecting a matching component then human interaction is required to decide which components can be bound. We propose to use feature models for making this variability explicit and (re-)enabling automatic component binding. In our...... approach, feature models are one part of service specifications. This enables to declaratively specify which service variant is provided by a component. By referring to a service's variation points, a component that requires a specific service can list the requirements on the desired variant. Using...... these specifications, a component environment can then determine if a binding of the components exists that satisfies all requirements. The prototypical environment Columbus demonstrates the feasibility of the approach....

  4. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and self-consistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system...... fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall...... transverse shear stress; The results suggest that the averaging methods originally developed for statistically homogeneous aggregates may be selectively applied, with a reasonable degree of confidence, to aggregates dth composition gradients, subjected to both uniform and nonuniform overall loads. (C) 1997...

  5. Body composition, energy expenditure and food intake in brazilian fashion models

    Directory of Open Access Journals (Sweden)

    Alexandra Magna Rodrigues

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n1p1   The objective of this study was to compare body composition, resting metabolic rate (RMR and food intake between adolescent fashion models and non-models. Thirty-three models and 33 non-models ranging in age from 15 to 18 years and matched for age and BMI participated in the study. Body composition was evaluated by plethysmography. RMR was determined using an indirect calorimetry method and food intake was evaluated based on three-day food records obtained on alternate days. No significant difference in mean body fat percentage was observed between groups (p>0.05. However, when the adolescents were classified according to body fat percentage, none of the models presented a body fat percentage lower than 15%, whereas 15.2% of the non-models presented a low body fat percentage (p0.05. Mean energy intake was 1480.93 ± 582.95 kcal in models and 1973.00 ± 557.63 kcal in non-models (p=0.001. In conclusion, most models presented a body composition within the limits considered to be normal for this phase of life. RMR was similar in the two groups. However, energy intake was lower among adolescent models compared to non-models.

  6. The effects of motivational factors on car use: a multidisciplinary modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Steg, L.; Ras, M. [University of Groningen (Netherlands). Centre for Environmental and Traffic Psychology; Geurs, K. [National Institute of Public Health and Environment, Bilthoven (Netherlands)

    2001-11-01

    Current transport models usually do not take motivational factors into account, and if they do, it is only implicitly. This paper presents a modelling approach aimed at explicitly examining the effects of motivational factors on present and future car use in the Netherlands. A car-use forecasting model for the years 2010 and 2020 was constructed on the basis of (i) a multinominal regression analysis, which revealed the importance of a motivational variable (viz., problem awareness) in explaining current car-use behavior separate from socio-demographic and socio-economic variables, and (ii) a population model constructed to forecast the size and composition of the Dutch population. The results show that car use could be better explained by taking motivational factors explicitly into account, and that the level of car use forecast might change significantly if changes in motivations are assumed. The question on how motivational factors could be incorporated into current (Dutch) national transport models was also addressed. (author)

  7. An optimal approach to active damping of nonlinear vibrations in composite plates using piezoelectric patches

    International Nuclear Information System (INIS)

    Saviz, M R

    2015-01-01

    In this paper a nonlinear approach to studying the vibration characteristic of laminated composite plate with surface-bonded piezoelectric layer/patch is formulated, based on the Green Lagrange type of strain–displacements relations, by incorporating higher-order terms arising from nonlinear relations of kinematics into mathematical formulations. The equations of motion are obtained through the energy method, based on Lagrange equations and by using higher-order shear deformation theories with von Karman–type nonlinearities, so that transverse shear strains vanish at the top and bottom surfaces of the plate. An isoparametric finite element model is provided to model the nonlinear dynamics of the smart plate with piezoelectric layer/ patch. Different boundary conditions are investigated. Optimal locations of piezoelectric patches are found using a genetic algorithm to maximize spatial controllability/observability and considering the effect of residual modes to reduce spillover effect. Active attenuation of vibration of laminated composite plate is achieved through an optimal control law with inequality constraint, which is related to the maximum and minimum values of allowable voltage in the piezoelectric elements. To keep the voltages of actuator pairs in an allowable limit, the Pontryagin’s minimum principle is implemented in a system with multi-inequality constraint of control inputs. The results are compared with similar ones, proving the accuracy of the model especially for the structures undergoing large deformations. The convergence is studied and nonlinear frequencies are obtained for different thickness ratios. The structural coupling between plate and piezoelectric actuators is analyzed. Some examples with new features are presented, indicating that the piezo-patches significantly improve the damping characteristics of the plate for suppressing the geometrically nonlinear transient vibrations. (paper)

  8. A Multi-Model Approach for System Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Bækgaard, Mikkel Ask Buur

    2007-01-01

    A multi-model approach for system diagnosis is presented in this paper. The relation with fault diagnosis as well as performance validation is considered. The approach is based on testing a number of pre-described models and find which one is the best. It is based on an active approach......,i.e. an auxiliary input to the system is applied. The multi-model approach is applied on a wind turbine system....

  9. On Latent Growth Models for Composites and Their Constituents.

    Science.gov (United States)

    Hancock, Gregory R; Mao, Xiulin; Kher, Hemant

    2013-09-01

    Over the last decade and a half, latent growth modeling has become an extremely popular and versatile technique for evaluating longitudinal change and its determinants. Most common among the models applied are those for a single measured variable over time. This model has been extended in a variety of ways, most relevant for the current work being the multidomain and the second-order latent growth models. Whereas the former allows for growth function characteristics to be modeled for multiple outcomes simultaneously, with the degree of growth characteristics' relations assessed within the model (e.g., cross-domain slope factor correlations), the latter models growth in latent outcomes, each of which has effect indicators repeated over time. But what if one has an outcome that is believed to be formative relative to its indicator variables rather than latent? In this case, where the outcome is a composite of multiple constituents, modeling change over time is less straightforward. This article provides analytical and applied details for simultaneously modeling growth in composites and their constituent elements, including a real data example using a general computer self-efficacy questionnaire.

  10. A hybrid mathematical modeling approach of the metabolic fate of a fluorescent sphingolipid analogue to predict cancer chemosensitivity.

    Science.gov (United States)

    Molina-Mora, J A; Kop-Montero, M; Quirós-Fernández, I; Quiros, S; Crespo-Mariño, J L; Mora-Rodríguez, R A

    2018-04-13

    Sphingolipid (SL) metabolism is a complex biological system that produces and transforms ceramides and other molecules able to modulate other cellular processes, including survival or death pathways key to cell fate decisions. This signaling pathway integrates several types of stress signals, including chemotherapy, into changes in the activity of its metabolic enzymes, altering thereby the cellular composition of bioactive SLs. Therefore, the SL pathway is a promising sensor of chemosensitivity in cancer and a target hub to overcome resistance. However, there is still a gap in our understanding of how chemotherapeutic drugs can disturb the SL pathway in order to control cellular fate. We propose to bridge this gap by a systems biology approach to integrate i) a dynamic model of SL analogue (BODIPY-FL fluorescent-sphingomyelin analogue, SM-BOD) metabolism, ii) a Gaussian mixture model (GMM) of the fluorescence features to identify how the SL pathway senses the effect of chemotherapy and iii) a fuzzy logic model (FLM) to associate SL composition with cell viability by semi-quantitative rules. Altogether, this hybrid model approach was able to predict the cell viability of double experimental perturbations with chemotherapy, indicating that the SL pathway is a promising sensor to design strategies to overcome drug resistance in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Probabilistic Compositional Models: solution of an equivalence problem

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Václav

    2013-01-01

    Roč. 54, č. 5 (2013), s. 590-601 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Probabilistic model * Compositional model * Independence * Equivalence Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kratochvil-0391079.pdf

  12. Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites

    Science.gov (United States)

    Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun

    2018-06-01

    A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.

  13. Modeling strength loss in wood by chemical composition. Part I, An individual component model for southern pine

    Science.gov (United States)

    J. E. Winandy; P. K. Lebow

    2001-01-01

    In this study, we develop models for predicting loss in bending strength of clear, straight-grained pine from changes in chemical composition. Although significant work needs to be done before truly universal predictive models are developed, a quantitative fundamental relationship between changes in chemical composition and strength loss for pine was demonstrated. In...

  14. Mass generation in composite models

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1985-10-01

    I discuss aspects of composite models of quarks and leptons connected with the dynamics of how these fermions acquire mass. Several issues related to the protection mechanisms necessary to keep quarks and leptons light are illustrated by means of concrete examples and a critical overview of suggestions for family replications is given. Some old and new ideas of how one may actually be able to generate small quark and lepton masses are examined, along with some of the difficulties they encounter in practice. (orig.)

  15. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  16. Pulsed photothermal profiling of water-based samples using a spectrally composite reconstruction approach

    International Nuclear Information System (INIS)

    Majaron, B; Milanic, M

    2010-01-01

    Pulsed photothermal profiling involves reconstruction of temperature depth profile induced in a layered sample by single-pulse laser exposure, based on transient change in mid-infrared (IR) emission from its surface. Earlier studies have indicated that in watery tissues, featuring a pronounced spectral variation of mid-IR absorption coefficient, analysis of broadband radiometric signals within the customary monochromatic approximation adversely affects profiling accuracy. We present here an experimental comparison of pulsed photothermal profiling in layered agar gel samples utilizing a spectrally composite kernel matrix vs. the customary approach. By utilizing a custom reconstruction code, the augmented approach reduces broadening of individual temperature peaks to 14% of the absorber depth, in contrast to 21% obtained with the customary approach.

  17. Assessing historical fish community composition using surveys, historical collection data, and species distribution models.

    Science.gov (United States)

    Labay, Ben; Cohen, Adam E; Sissel, Blake; Hendrickson, Dean A; Martin, F Douglas; Sarkar, Sahotra

    2011-01-01

    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of

  18. A high-throughput FTIR spectroscopy approach to assess adaptive variation in the chemical composition of pollen.

    Science.gov (United States)

    Zimmermann, Boris; Bağcıoğlu, Murat; Tafinstseva, Valeria; Kohler, Achim; Ohlson, Mikael; Fjellheim, Siri

    2017-12-01

    The two factors defining male reproductive success in plants are pollen quantity and quality, but our knowledge about the importance of pollen quality is limited due to methodological constraints. Pollen quality in terms of chemical composition may be either genetically fixed for high performance independent of environmental conditions, or it may be plastic to maximize reproductive output under different environmental conditions. In this study, we validated a new approach for studying the role of chemical composition of pollen in adaptation to local climate. The approach is based on high-throughput Fourier infrared (FTIR) characterization and biochemical interpretation of pollen chemical composition in response to environmental conditions. The study covered three grass species, Poa alpina , Anthoxanthum odoratum , and Festuca ovina . For each species, plants were grown from seeds of three populations with wide geographic and climate variation. Each individual plant was divided into four genetically identical clones which were grown in different controlled environments (high and low levels of temperature and nutrients). In total, 389 samples were measured using a high-throughput FTIR spectrometer. The biochemical fingerprints of pollen were species and population specific, and plastic in response to different environmental conditions. The response was most pronounced for temperature, influencing the levels of proteins, lipids, and carbohydrates in pollen of all species. Furthermore, there is considerable variation in plasticity of the chemical composition of pollen among species and populations. The use of high-throughput FTIR spectroscopy provides fast, cheap, and simple assessment of the chemical composition of pollen. In combination with controlled-condition growth experiments and multivariate analyses, FTIR spectroscopy opens up for studies of the adaptive role of pollen that until now has been difficult with available methodology. The approach can easily be

  19. Petri Net-Based R&D Process Modeling and Optimization for Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2013-01-01

    Full Text Available Considering the current R&D process for new composite materials involves some complex details, such as formula design, specimen/sample production, materials/sample test, assessment, materials/sample feedback from customers, and mass production, the workflow model of Petri net-based R&D process for new composite materials’ is proposed. By analyzing the time property of the whole Petri net, the optimized model for new composite materials R&D workflow is further proposed. By analyzing the experiment data and application in some materials R&D enterprise, it is demonstrated that the workflow optimization model shortens the period of R&D on new materials for 15%, definitely improving the R&D efficiency. This indicates the feasibility and availability of the model.

  20. Polymer composite microtube array produced by meniscus-guided approach

    Directory of Open Access Journals (Sweden)

    Kyu Hwang Won

    2013-09-01

    Full Text Available Single freestanding microtubes of poly(methyl methacrylate/polypyrrole (PMMA/PPy are produced based on a meniscus-guided approach. A ring-deposit of nanoparticles is first formed in a meniscus solution of PMMA/PPy nanoparticles by outward liquid flow in fast solvent evaporation. Continuous accumulation of nanoparticles on the ring-deposit is then made by guiding the meniscus upward under the outward flow, thereby forming single composite microtube with controlled outer diameter and wall thickness. The meniscus-guiding enables us to produce an array of freestanding microtubes that are individually controlled in size at the desired positions. We demonstrate individually addressable gas sensors by integrating PMMA/PPy microtubes on electrodes.

  1. Thermomechanical properties of polypropylene-based lightweight composites modeled on the mesoscale

    Czech Academy of Sciences Publication Activity Database

    Dostálová, Darina; Kafka, Vratislav; Vokoun, David; Heller, Luděk; Matějka, L.; Kadeřávek, Lukáš; Pěnčík, J.

    2017-01-01

    Roč. 26, Oct (2017), s. 5166-5172 ISSN 1059-9495 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:68378297 Keywords : building material * composite * creep tests * mesomechanical model * thermal insulation Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.331, year: 2016

  2. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2018-06-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  3. Modeling and Simulation of Optimal Resource Management during the Diurnal Cycle in Emiliania huxleyi by Genome-Scale Reconstruction and an Extended Flux Balance Analysis Approach.

    Science.gov (United States)

    Knies, David; Wittmüß, Philipp; Appel, Sebastian; Sawodny, Oliver; Ederer, Michael; Feuer, Ronny

    2015-10-28

    The coccolithophorid unicellular alga Emiliania huxleyi is known to form large blooms, which have a strong effect on the marine carbon cycle. As a photosynthetic organism, it is subjected to a circadian rhythm due to the changing light conditions throughout the day. For a better understanding of the metabolic processes under these periodically-changing environmental conditions, a genome-scale model based on a genome reconstruction of the E. huxleyi strain CCMP 1516 was created. It comprises 410 reactions and 363 metabolites. Biomass composition is variable based on the differentiation into functional biomass components and storage metabolites. The model is analyzed with a flux balance analysis approach called diurnal flux balance analysis (diuFBA) that was designed for organisms with a circadian rhythm. It allows storage metabolites to accumulate or be consumed over the diurnal cycle, while keeping the structure of a classical FBA problem. A feature of this approach is that the production and consumption of storage metabolites is not defined externally via the biomass composition, but the result of optimal resource management adapted to the diurnally-changing environmental conditions. The model in combination with this approach is able to simulate the variable biomass composition during the diurnal cycle in proximity to literature data.

  4. Modeling and Simulation of Optimal Resource Management during the Diurnal Cycle in Emiliania huxleyi by Genome-Scale Reconstruction and an Extended Flux Balance Analysis Approach

    Directory of Open Access Journals (Sweden)

    David Knies

    2015-10-01

    Full Text Available The coccolithophorid unicellular alga Emiliania huxleyi is known to form large blooms, which have a strong effect on the marine carbon cycle. As a photosynthetic organism, it is subjected to a circadian rhythm due to the changing light conditions throughout the day. For a better understanding of the metabolic processes under these periodically-changing environmental conditions, a genome-scale model based on a genome reconstruction of the E. huxleyi strain CCMP 1516 was created. It comprises 410 reactions and 363 metabolites. Biomass composition is variable based on the differentiation into functional biomass components and storage metabolites. The model is analyzed with a flux balance analysis approach called diurnal flux balance analysis (diuFBA that was designed for organisms with a circadian rhythm. It allows storage metabolites to accumulate or be consumed over the diurnal cycle, while keeping the structure of a classical FBA problem. A feature of this approach is that the production and consumption of storage metabolites is not defined externally via the biomass composition, but the result of optimal resource management adapted to the diurnally-changing environmental conditions. The model in combination with this approach is able to simulate the variable biomass composition during the diurnal cycle in proximity to literature data.

  5. Parameter determination of hereditary models of deformation of composite materials based on identification method

    Science.gov (United States)

    Kayumov, R. A.; Muhamedova, I. Z.; Tazyukov, B. F.; Shakirzjanov, F. R.

    2018-03-01

    In this paper, based on the analysis of some experimental data, a study and selection of hereditary models of deformation of reinforced polymeric composite materials, such as organic plastic, carbon plastic and a matrix of film-fabric composite, was pursued. On the basis of an analysis of a series of experiments it has been established that organo-plastic samples behave like viscoelastic bodies. It is shown that for sufficiently large load levels, the behavior of the material in question should be described by the relations of the nonlinear theory of heredity. An attempt to describe the process of deformation by means of linear relations of the theory of heredity leads to large discrepancies between the experimental and calculated deformation values. The use of the theory of accumulation of micro-damages leads to much better description of the experimental results. With the help of the hierarchical approach, a good approximation of the experimental values was successful only in the first three sections of loading.

  6. Vector and Axial-vector resonances in composite models of the Higgs boson

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...

  7. A new percolation model for composite solid electrolytes and dispersed ionic conductors

    Science.gov (United States)

    Risyad Hasyim, Muhammad; Lanagan, Michael T.

    2018-02-01

    Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.

  8. Effective potential in ultraviolet completions for composite Higgs models

    Science.gov (United States)

    Golterman, Maarten; Shamir, Yigal

    2018-05-01

    We consider a class of composite Higgs models based on asymptotically free S O (d ) gauge theories with d odd, with fermions in two irreducible representations, and in which the Higgs field arises as a pseudo-Nambu-Goldstone boson and the top quark is partially composite. The Nambu-Goldstone coset containing the Higgs field, or Higgs coset, is either S U (4 )/S p (4 ) or S U (5 )/S O (5 ), whereas the top partners live in two-index representations of the relevant flavor group [S U (4 ) or S U (5 )]. In both cases, there is a large number of terms in the most general four-fermion Lagrangian describing the interaction of third-generation quarks with the top partners. We derive the top-induced effective potential for the Higgs coset together with the singlet pseudo-Nambu-Goldstone boson associated with the non-anomalous axial symmetry, to leading order in the couplings between the third-generation quarks and the composite sector. We obtain expressions for the low-energy constants in terms of top-partner two-point functions. We revisit the effective potential of another composite Higgs model that we have studied previously, which is based on an S U (4 ) gauge theory and provides a different realization of the S U (5 )/S O (5 ) coset. The top partners of this model live in the fundamental representation of S U (5 ), and, as a result, the effective potential of this model is qualitatively different from the S O (d ) gauge theories. We also discuss the role of the isospin-triplet fields contained in the S U (5 )/S O (5 ) coset, and show that, without further constraints on the four-fermion couplings, an expectation value for the Higgs field will trigger the subsequent condensation of an isospin-triplet field.

  9. Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

    Science.gov (United States)

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189

  10. High temperature performance of polymer composites

    CERN Document Server

    Keller, Thomas

    2014-01-01

    The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000°C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemist...

  11. Rapid Construction of Fe-Co-Ni Composition-Phase Map by Combinatorial Materials Chip Approach.

    Science.gov (United States)

    Xing, Hui; Zhao, Bingbing; Wang, Yujie; Zhang, Xiaoyi; Ren, Yang; Yan, Ningning; Gao, Tieren; Li, Jindong; Zhang, Lanting; Wang, Hong

    2018-03-12

    One hundred nanometer thick Fe-Co-Ni material chips were prepared and isothermally annealed at 500, 600, and 700 °C, respectively. Pixel-by-pixel composition and structural mapping was performed by microbeam X-ray at synchrotron light source. Diffraction images were recorded at a rate of 1 pattern/s. The XRD patterns were automatically processed, phase-identified, and categorized by hierarchical clustering algorithm to construct the composition-phase map. The resulting maps are consistent with corresponding isothermal sections reported in the ASM Alloy Phase Diagram Database, verifying the effectiveness of the present approach in phase diagram construction.

  12. A reconstruction of Maxwell model for effective thermal conductivity of composite materials

    International Nuclear Information System (INIS)

    Xu, J.Z.; Gao, B.Z.; Kang, F.Y.

    2016-01-01

    Highlights: • Deficiencies were found in classical Maxwell model for effective thermal conductivity. • Maxwell model was reconstructed based on potential mean-field theory. • Reconstructed Maxwell model was extended with particle–particle contact resistance. • Predictions by reconstructed Maxwell model agree excellently with experimental data. - Abstract: Composite materials consisting of high thermal conductive fillers and polymer matrix are often used as thermal interface materials to dissipate heat generated from mechanical and electronic devices. The prediction of effective thermal conductivity of composites remains as a critical issue due to its dependence on considerably factors. Most models for prediction are based on the analog between electric potential and temperature that satisfy the Laplace equation under steady condition. Maxwell was the first to derive the effective electric resistivity of composites by examining the far-field spherical harmonic solution of Laplace equation perturbed by a sphere of different resistivity, and his model was considered as classical. However, a close review of Maxwell’s derivation reveals that there exist several controversial issues (deficiencies) inherent in his model. In this study, we reconstruct the Maxwell model based on a potential mean-field theory to resolve these issues. For composites made of continuum matrix and particle fillers, the contact resistance among particles was introduced in the reconstruction of Maxwell model. The newly reconstructed Maxwell model with contact resistivity as a fitting parameter is shown to fit excellently to experimental data over wide ranges of particle concentration and mean particle diameter. The scope of applicability of the reconstructed Maxwell model is also discussed using the contact resistivity as a parameter.

  13. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  14. Modelling low velocity impact induced damage in composite laminates

    Science.gov (United States)

    Shi, Yu; Soutis, Constantinos

    2017-12-01

    The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.

  15. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  16. A novel and facile synthesis approach for a porous carbon/graphene composite for high-performance supercapacitors.

    Science.gov (United States)

    Liu, Ting; Zhang, Xuesha; Liu, Kang; Liu, Yanyan; Liu, Mengjie; Wu, Wenyu; Gu, Yu; Zhang, Ruijun

    2018-03-02

    We propose a novel and facile synthesis approach to a porous carbon/graphene composite. Graphene is obtained from room-temperature expanded graphite (RTEG), not involving the use of graphite oxide (GO). Porous carbon is acquired by carbonization and KOH-activation of polyvinylpyrrolidone (PVP), which is used to exfoliate RTEG into graphene and inhibit the restacking of the resultant graphene in the present work. The prepared porous carbon/graphene composite has a high specific surface area (SSA) (3008 m 2 g -1 ) and a hierarchical micro- and meso- pore structure (dominant pores in the range of 1-5 nm). Electrochemical measurement demonstrates that the as-prepared porous carbon/graphene composite can deliver an outstanding specific capacitance of up to 340 F g -1 at 5 mV s -1 in 6 M KOH electrolyte. This specific capacitance is among the highest reported so far for porous carbon/graphene materials. Moreover, the prepared composite as an electrode material also exhibits excellent cycling stability (94.4% capacitance retention over 10 000 cycles). The as-fabricated symmetrical supercapacitor exhibits a high energy density of 10.9 W h kg -1 (based on total mass of electrode materials) and an outstanding energy density retention, even at high power density. Compared with conventional preparation routes for porous carbon/graphene composites, the present approach is significantly simple, convenient and cost-effective, which will make it more competent in the development of electrode materials for high-performance supercapacitors.

  17. Aeroelastic modeling of composite rotor blades with straight and swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.

  18. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    Science.gov (United States)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  19. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    Science.gov (United States)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch-Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein-Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  20. Modeling and Predicting the Electrical Conductivity of Composite Cathode for Solid Oxide Fuel Cell by Using Support Vector Regression

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.

  1. A novel approach using powder metallurgy for strengthened RABiTS composite substrates for coated superconductors

    International Nuclear Information System (INIS)

    Suo Hongli; Zhao Yue; Liu Min; Ye Shuai; Zhu YongHua; He Dong; Ma Lingji; Ji Yuan; Zhou Meiling

    2008-01-01

    We report on the development of mechanically strengthened, highly textured Ni-5 at.%W/Ni-12 at.%W composite materials prepared by a powder metallurgical approach as promising weakly magnetic substrates for coated superconductors. The key configuration of this composite substrate consists of a thin, sharp cubic textured Ni-5 at.%W layer on a Ni-12 at.%W alloy core, thus providing a mechanical reinforcement while decreasing the saturation magnetization of the whole substrate. The composite substrates have a sharp cubic texture at the top Ni-5 at.%W outer layer and their yield strength reaches 272 MPa, exceeding that of the commercially used Ni5W substrates by a factor of 1.6. The saturation magnetization of the composite substrate Ni5W/Ni12W/Ni5W is substantially reduced when compared to that of pure Ni and Ni-5 at.%W substrates, respectively

  2. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    Science.gov (United States)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  3. Micromechanical experimental analysis and modelling of elastic and damageable behaviour of unidirectional SiC/SiC composites

    International Nuclear Information System (INIS)

    Chateau, C.

    2011-01-01

    Because of their potential use as a cladding material in future nuclear reactors, the complex mechanical behavior of SiC/SiC composites, which combines damage and anisotropy, must be understood and predictable. As part of a multi-scale approach, this work focuses on the first scale change: from the elementary constituents to the tow. Micromechanical approaches are implemented to describe the macroscopic behavior of the tow taking into account its microstructure heterogeneity and damage mechanisms occurring at the local scale. A representative virtual microstructure is generated based on a detailed microstructural investigation of the tow and its elastic response is studied by numerical homogenization. In addition to addressing the mechanical RVE issue, this study highlights the significant effects of residual porosity on the transverse behavior of the tow, due to the matrix infiltration process. The longitudinal damage is being studied through mini-composites, for which the evolution of microscopic damage mechanisms (matrix cracks and fiber breaks) is experimentally analyzed (in-situ SEM and tomography tensile tests). The identification of interfacial parameters of a 1D statistical damage model is based on the experimental characterization. Conventional assumptions of such models can adequately describe matrix cracking at macro and micro scale. However it is necessary to change them to get a proper prediction of ultimate failure. (author) [fr

  4. Visual Composition of Bodily Presence. A Phenomenological Approach to Paul Thomas Anderson’s The Master

    OpenAIRE

    Gyenge Zsolt

    2015-01-01

    The description and interpretation of the visual composition of a film is crucial in understanding the effects of moving images and their specific role in the contemporary context of intermediality. The phenomenological approach, based on the precise depiction of the lived perceptual experience and its integration in the process of interpretation, offers a powerful tool for critical analysis. Although this theoretical framework opens up many different approaches, in this paper I will focus on...

  5. Team Learning and Team Composition in Nursing

    Science.gov (United States)

    Timmermans, Olaf; Van Linge, Roland; Van Petegem, Peter; Elseviers, Monique; Denekens, Joke

    2011-01-01

    Purpose: This study aims to explore team learning activities in nursing teams and to test the effect of team composition on team learning to extend conceptually an initial model of team learning and to examine empirically a new model of ambidextrous team learning in nursing. Design/methodology/approach: Quantitative research utilising exploratory…

  6. Variations of thermospheric composition according to AE-C data and CTIP modelling

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2004-01-01

    Full Text Available Data from the Atmospheric Explorer C satellite, taken at middle and low latitudes in 1975-1978, are used to study latitudinal and month-by-month variations of thermospheric composition. The parameter used is the "compositional Ρ-parameter", related to the neutral atomic oxygen/molecular nitrogen concentration ratio. The midlatitude data show strong winter maxima of the atomic/molecular ratio, which account for the "seasonal anomaly" of the ionospheric F2-layer. When the AE-C data are compared with the empirical MSIS model and the computational CTIP ionosphere-thermosphere model, broadly similar features are found, but the AE-C data give a more molecular thermosphere than do the models, especially CTIP. In particular, CTIP badly overestimates the winter/summer change of composition, more so in the south than in the north. The semiannual variations at the equator and in southern latitudes, shown by CTIP and MSIS, appear more weakly in the AE-C data. Magnetic activity produces a more molecular thermosphere at high latitudes, and at mid-latitudes in summer. Key words. Atmospheric composition and structure (thermosphere – composition and chemistry

  7. Variations of thermospheric composition according to AE-C data and CTIP modelling

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2004-01-01

    Full Text Available Data from the Atmospheric Explorer C satellite, taken at middle and low latitudes in 1975-1978, are used to study latitudinal and month-by-month variations of thermospheric composition. The parameter used is the "compositional Ρ-parameter", related to the neutral atomic oxygen/molecular nitrogen concentration ratio. The midlatitude data show strong winter maxima of the atomic/molecular ratio, which account for the "seasonal anomaly" of the ionospheric F2-layer. When the AE-C data are compared with the empirical MSIS model and the computational CTIP ionosphere-thermosphere model, broadly similar features are found, but the AE-C data give a more molecular thermosphere than do the models, especially CTIP. In particular, CTIP badly overestimates the winter/summer change of composition, more so in the south than in the north. The semiannual variations at the equator and in southern latitudes, shown by CTIP and MSIS, appear more weakly in the AE-C data. Magnetic activity produces a more molecular thermosphere at high latitudes, and at mid-latitudes in summer.

    Key words. Atmospheric composition and structure (thermosphere – composition and chemistry

  8. Models for composing software : an analysis of software composition and objects

    NARCIS (Netherlands)

    Bergmans, Lodewijk

    1999-01-01

    In this report, we investigate component-based software construction with a focus on composition. In particular we try to analyze the requirements and issues for components and software composition. As a means to understand this research area, we introduce a canonical model for representing

  9. Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite

    Energy Technology Data Exchange (ETDEWEB)

    Sazgar, A. [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Movahhedy, M.R., E-mail: movahhed@sharif.edu [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahnama, M. [School of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sohrabpour, S. [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-01-02

    The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.

  10. Evolutionary modeling-based approach for model errors correction

    Directory of Open Access Journals (Sweden)

    S. Q. Wan

    2012-08-01

    Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."

    On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.

  11. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  12. HEDR modeling approach

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.

    1992-07-01

    This report details the conceptual approaches to be used in calculating radiation doses to individuals throughout the various periods of operations at the Hanford Site. The report considers the major environmental transport pathways--atmospheric, surface water, and ground water--and projects and appropriate modeling technique for each. The modeling sequence chosen for each pathway depends on the available data on doses, the degree of confidence justified by such existing data, and the level of sophistication deemed appropriate for the particular pathway and time period being considered

  13. Modeling the cometary environment using a fluid approach

    Science.gov (United States)

    Shou, Yinsi

    Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate

  14. Heuristic Model Of The Composite Quality Index Of Environmental Assessment

    Science.gov (United States)

    Khabarov, A. N.; Knyaginin, A. A.; Bondarenko, D. V.; Shepet, I. P.; Korolkova, L. N.

    2017-01-01

    The goal of the paper is to present the heuristic model of the composite environmental quality index based on the integrated application of the elements of utility theory, multidimensional scaling, expert evaluation and decision-making. The composite index is synthesized in linear-quadratic form, it provides higher adequacy of the results of the assessment preferences of experts and decision-makers.

  15. Computerized mathematical model for prediction of resin/fiber composite properties

    International Nuclear Information System (INIS)

    Lowe, K.A.

    1985-01-01

    A mathematical model has been developed for the design and optimization of resin formulations. The behavior of a fiber-reinforced cured resin matrix can be predicted from constituent properties of the formulation and fiber when component interaction is taken into account. A computer implementation of the mathematical model has been coded to simulate resin/fiber response and generate expected values for any definable properties of the composite. The algorithm is based on multistage regression techniques and the manipulation of n-order matrices. Excellent correlation between actual test values and predicted values has been observed for physical, mechanical, and qualitative properties of resin/fiber composites. Both experimental and commercial resin systems with various fiber reinforcements have been successfully characterized by the model. 6 references, 3 figures, 2 tables

  16. Investigation of laundering and dispersion approaches for silica and calcium phosphosilicate composite nanoparticles synthesized in reverse micelles

    Science.gov (United States)

    Tabakovic, Amra

    Nanotechnology, the science and engineering of materials at the nanoscale, is a booming research area with numerous applications in electronic, cosmetic, automotive and sporting goods industries, as well as in biomedicine. Composite nanoparticles (NPs) are of special interest since the use of two or more materials in NP design imparts multifunctionality on the final NP constructs. This is especially relevant for applications in areas of human healthcare, where the use of dye or drug doped composite NPs is expected to improve the diagnosis and treatment of cancer and other serious illnesses. Since the physicochemical properties of NP suspensions dictate the success of these systems in biomedical applications, especially drug delivery of chemotherapeutics, synthetic routes which offer precise control of NP properties, especially particle diameter and colloidal stability, are utilized to form a variety of composite NPs. Formation of NPs in reverse, or water-in-oil, micelles is one such synthetic approach. However, while the use of reverse micelles to form composite NPs offers precise control over NP size and shape, the post-synthesis laundering and dispersion of synthesized NP suspensions can still be a challenge. Reverse micelle synthetic approaches require the use of surfactants and low dielectric constant solvents, like hexane and cyclohexane, as the oil phase, which can compromise the biocompatibility and colloidal stability of the final composite NP suspensions. Therefore, appropriate dispersants and solvents must be used during laundering and dispersion to remove surfactant and ensure stability of synthesized NPs. In the work presented in this dissertation, two laundering and dispersion approaches, including packed column high performance liquid chromatography (HPLC) and centrifugation (sedimentation and redispersion), are investigated for silver core silica (Ag-SiO2) and calcium phosphosilicate (Caw(HxPO4)y(Si(OH)zOa) b · cH2O, CPS) composite NP suspensions

  17. Composite nanoparticles: A new way to siliceous materials and a model of biosilica synthesis

    International Nuclear Information System (INIS)

    Annenkov, Vadim V.; Pal'shin, Viktor A.; Verkhozina, Olga N.; Larina, Lyudmila I.; Danilovtseva, Elena N.

    2015-01-01

    A new polyampholyte based on poly (acrylic acid) which bears pendant polyamine oligomeric chains (average number of the nitrogen atoms is 11.2) is obtained. This polymer is a model of silaffins – proteins playing important role in formation of siliceous structures in diatom algae and sponges. The polymer catalyses condensation of silicic acid. The obtained solutions contain oligosilicates coordinated with the polymer chains. The action of 50,000 g gravity on this solution results in concentrating-induced condensation of the pre-condensed siliceous oligomers. The obtained solid silica contains 4% admixture of the organic polymer which is close to the silica from diatom frustules. These results confirm the hypothesis about formation of biosilica under the action of desiccation agent, e.g. aquaporins. The formation of solid substances during centrifugation of solutions containing soluble oligomers is a new promising approach to inorganic and composite materials which allows to work in aqueous medium and to reuse the organic polymer. - Highlights: • A polyampholyte with pendant polyamine chains is obtained. • The polymer catalyses condensation of silicic acid giving stable solutions. • Gravity-induced (50,000 g) formation of solid silica was observed in these solutions. • The obtained silica is close to biosilica from diatom frustules. • A new approach to inorganic and composite materials is proposed.

  18. Composite nanoparticles: A new way to siliceous materials and a model of biosilica synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Annenkov, Vadim V., E-mail: annenkov@lin.irk.ru [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Pal' shin, Viktor A.; Verkhozina, Olga N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Larina, Lyudmila I. [A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Danilovtseva, Elena N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation)

    2015-09-01

    A new polyampholyte based on poly (acrylic acid) which bears pendant polyamine oligomeric chains (average number of the nitrogen atoms is 11.2) is obtained. This polymer is a model of silaffins – proteins playing important role in formation of siliceous structures in diatom algae and sponges. The polymer catalyses condensation of silicic acid. The obtained solutions contain oligosilicates coordinated with the polymer chains. The action of 50,000 g gravity on this solution results in concentrating-induced condensation of the pre-condensed siliceous oligomers. The obtained solid silica contains 4% admixture of the organic polymer which is close to the silica from diatom frustules. These results confirm the hypothesis about formation of biosilica under the action of desiccation agent, e.g. aquaporins. The formation of solid substances during centrifugation of solutions containing soluble oligomers is a new promising approach to inorganic and composite materials which allows to work in aqueous medium and to reuse the organic polymer. - Highlights: • A polyampholyte with pendant polyamine chains is obtained. • The polymer catalyses condensation of silicic acid giving stable solutions. • Gravity-induced (50,000 g) formation of solid silica was observed in these solutions. • The obtained silica is close to biosilica from diatom frustules. • A new approach to inorganic and composite materials is proposed.

  19. An abstract approach to music.

    Energy Technology Data Exchange (ETDEWEB)

    Kaper, H. G.; Tipei, S.

    1999-04-19

    In this article we have outlined a formal framework for an abstract approach to music and music composition. The model is formulated in terms of objects that have attributes, obey relationships, and are subject to certain well-defined operations. The motivation for this approach uses traditional terms and concepts of music theory, but the approach itself is formal and uses the language of mathematics. The universal object is an audio wave; partials, sounds, and compositions are special objects, which are placed in a hierarchical order based on time scales. The objects have both static and dynamic attributes. When we realize a composition, we assign values to each of its attributes: a (scalar) value to a static attribute, an envelope and a size to a dynamic attribute. A composition is then a trajectory in the space of aural events, and the complex audio wave is its formal representation. Sounds are fibers in the space of aural events, from which the composer weaves the trajectory of a composition. Each sound object in turn is made up of partials, which are the elementary building blocks of any music composition. The partials evolve on the fastest time scale in the hierarchy of partials, sounds, and compositions. The ideas outlined in this article are being implemented in a digital instrument for additive sound synthesis and in software for music composition. A demonstration of some preliminary results has been submitted by the authors for presentation at the conference.

  20. A Statistical Approach For Modeling Tropical Cyclones. Synthetic Hurricanes Generator Model

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-11

    This manuscript brie y describes a statistical ap- proach to generate synthetic tropical cyclone tracks to be used in risk evaluations. The Synthetic Hur- ricane Generator (SynHurG) model allows model- ing hurricane risk in the United States supporting decision makers and implementations of adaptation strategies to extreme weather. In the literature there are mainly two approaches to model hurricane hazard for risk prediction: deterministic-statistical approaches, where the storm key physical parameters are calculated using physi- cal complex climate models and the tracks are usually determined statistically from historical data; and sta- tistical approaches, where both variables and tracks are estimated stochastically using historical records. SynHurG falls in the second category adopting a pure stochastic approach.

  1. Predicting performance of polymer-bonded Terfenol-D composites under different magnetic fields

    International Nuclear Information System (INIS)

    Guan Xinchun; Dong Xufeng; Ou Jinping

    2009-01-01

    Considering demagnetization effect, the model used to calculate the magnetostriction of the single particle under the applied field is first created. Based on Eshelby equivalent inclusion and Mori-Tanaka method, the approach to calculate the average magnetostriction of the composites under any applied field, as well as the saturation, is studied by treating the magnetostriction particulate as an eigenstrain. The results calculated by the approach indicate that saturation magnetostriction of magnetostrictive composites increases with an increase of particle aspect and particle volume fraction, and a decrease of Young's modulus of the matrix. The influence of an applied field on magnetostriction of the composites becomes more significant with larger particle volume fraction or particle aspect. Experiments were done to verify the effectiveness of the model, the results of which indicate that the model only can provide approximate results.

  2. The Compositional HJ-Biplot—A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes

    Directory of Open Access Journals (Sweden)

    Marcos Hernández Suárez

    2016-11-01

    Full Text Available Tomatoes have been described as a functional food because of their particular composition of different bioactive compounds. In this study, the proximate composition, minerals and trace elements, and antioxidant compounds were determined in two tomato cultivars (Mariana and Dunkan that were grown in Gran Canaria (Spain either conventionally or hydroponically. Although compositional data of this type require being subjected to the specific statistical techniques of compositional analysis, this approach has not usually been considered in this context. In the present case, a compositional Mann–Whitney U test of the data showed significant differences for each factor (cultivar and cultivation system in several of the compositional variables studied. For the differences between cultivars, these parameters were the protein, Mg, lycopene, ascorbic acid, citric acid, and fumaric acid contents. For the differences between cultivation systems, they were mainly those of the mineral and trace elements group. Although one-year data are insufficient to make clear relationship among compounds because more repetitions in several localities and years are necessary, the compositional HJ-biplot (in which the links provide estimates of the linear relationship among variables results agreed with other scientific results about linear relationship among some compounds analyzed.

  3. An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows

    Science.gov (United States)

    Sewerin, Fabian; Rigopoulos, Stelios

    2017-10-01

    Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also

  4. Verification and Validation of Residual Stresses in Bi-Material Composite Rings

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hanson, Alexander Anthony [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Werner, Brian T. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time and cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh

  5. Constraining the Composition of the Earth from Long-period Electromagnetic Sounding of the Lower Mantle

    DEFF Research Database (Denmark)

    Khan, A.; Connolly, J.; Olsen, Nils

    We reexamine the problem of inverting global transfer functions to constrain the internal structure of the Earth. We go beyond the conventional approach of inverting electromagnetic induction data by inverting directly for chemical composition and thermal state, using the model system CaO-FeO-MgO......We reexamine the problem of inverting global transfer functions to constrain the internal structure of the Earth. We go beyond the conventional approach of inverting electromagnetic induction data by inverting directly for chemical composition and thermal state, using the model system Ca...... and experimental mineral electrical conductivity data are consistent with a silicate earth, with a composition close to the pyrolite model and additionally seem to require a low temperature mantle geotherm....

  6. Vector and axial-vector resonances in composite models of the Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Franzosi, Diogo Buarque [II. Physikalisches Institut, Universität Göttingen,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Frandsen, Mads [CP-Origins & Danish Institute for Advanced Study DIAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark)

    2016-11-11

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  7. Improvement of the Correlative AFM and ToF-SIMS Approach Using an Empirical Sputter Model for 3D Chemical Characterization.

    Science.gov (United States)

    Terlier, T; Lee, J; Lee, K; Lee, Y

    2018-02-06

    Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance

  8. Application of various FLD modelling approaches

    Science.gov (United States)

    Banabic, D.; Aretz, H.; Paraianu, L.; Jurco, P.

    2005-07-01

    This paper focuses on a comparison between different modelling approaches to predict the forming limit diagram (FLD) for sheet metal forming under a linear strain path using the recently introduced orthotropic yield criterion BBC2003 (Banabic D et al 2005 Int. J. Plasticity 21 493-512). The FLD models considered here are a finite element based approach, the well known Marciniak-Kuczynski model, the modified maximum force criterion according to Hora et al (1996 Proc. Numisheet'96 Conf. (Dearborn/Michigan) pp 252-6), Swift's diffuse (Swift H W 1952 J. Mech. Phys. Solids 1 1-18) and Hill's classical localized necking approach (Hill R 1952 J. Mech. Phys. Solids 1 19-30). The FLD of an AA5182-O aluminium sheet alloy has been determined experimentally in order to quantify the predictive capabilities of the models mentioned above.

  9. Micro-mechanics based damage mechanics for 3D Orthogonal Woven Composites: Experiment and Numerical Modelling

    KAUST Repository

    Saleh, Mohamed Nasr; Lubineau, Gilles; Potluri, Prasad; Withers, Philip; Soutis, Constantinos

    2016-01-01

    Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.

  10. Micro-mechanics based damage mechanics for 3D Orthogonal Woven Composites: Experiment and Numerical Modelling

    KAUST Repository

    Saleh, Mohamed Nasr

    2016-01-08

    Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.

  11. A Unified Approach to Modeling and Programming

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    2010-01-01

    of this paper is to go back to the future and get inspiration from SIMULA and propose a unied approach. In addition to reintroducing the contributions of SIMULA and the Scandinavian approach to object-oriented programming, we do this by discussing a number of issues in modeling and programming and argue3 why we......SIMULA was a language for modeling and programming and provided a unied approach to modeling and programming in contrast to methodologies based on structured analysis and design. The current development seems to be going in the direction of separation of modeling and programming. The goal...

  12. Cell percolation model for electrical conduction of granular superconducting composites. 2

    International Nuclear Information System (INIS)

    Horvath, G.; Bankuti, J.

    1990-01-01

    The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated granular superconducting composite on the basis of the uniform cell model improved previously. The critical temperatures are determined in the macroscopic superconducting state of the two- and the three-dimensional composites. (author)

  13. Technical note: Comparison of methane ebullition modelling approaches used in terrestrial wetland models

    Science.gov (United States)

    Peltola, Olli; Raivonen, Maarit; Li, Xuefei; Vesala, Timo

    2018-02-01

    Emission via bubbling, i.e. ebullition, is one of the main methane (CH4) emission pathways from wetlands to the atmosphere. Direct measurement of gas bubble formation, growth and release in the peat-water matrix is challenging and in consequence these processes are relatively unknown and are coarsely represented in current wetland CH4 emission models. In this study we aimed to evaluate three ebullition modelling approaches and their effect on model performance. This was achieved by implementing the three approaches in one process-based CH4 emission model. All the approaches were based on some kind of threshold: either on CH4 pore water concentration (ECT), pressure (EPT) or free-phase gas volume (EBG) threshold. The model was run using 4 years of data from a boreal sedge fen and the results were compared with eddy covariance measurements of CH4 fluxes.Modelled annual CH4 emissions were largely unaffected by the different ebullition modelling approaches; however, temporal variability in CH4 emissions varied an order of magnitude between the approaches. Hence the ebullition modelling approach drives the temporal variability in modelled CH4 emissions and therefore significantly impacts, for instance, high-frequency (daily scale) model comparison and calibration against measurements. The modelling approach based on the most recent knowledge of the ebullition process (volume threshold, EBG) agreed the best with the measured fluxes (R2 = 0.63) and hence produced the most reasonable results, although there was a scale mismatch between the measurements (ecosystem scale with heterogeneous ebullition locations) and model results (single horizontally homogeneous peat column). The approach should be favoured over the two other more widely used ebullition modelling approaches and researchers are encouraged to implement it into their CH4 emission models.

  14. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  15. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri

    2016-01-01

    The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...... between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based...

  16. Simple theoretical models for composite rotor blades

    Science.gov (United States)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  17. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  18. System Behavior Models: A Survey of Approaches

    Science.gov (United States)

    2016-06-01

    OF FIGURES Spiral Model .................................................................................................3 Figure 1. Approaches in... spiral model was chosen for researching and structuring this thesis, shown in Figure 1. This approach allowed multiple iterations of source material...applications and refining through iteration. 3 Spiral Model Figure 1. D. SCOPE The research is limited to a literature review, limited

  19. Set-Theoretic Approach to Maturity Models

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan

    Despite being widely accepted and applied, maturity models in Information Systems (IS) have been criticized for the lack of theoretical grounding, methodological rigor, empirical validations, and ignorance of multiple and non-linear paths to maturity. This PhD thesis focuses on addressing...... these criticisms by incorporating recent developments in configuration theory, in particular application of set-theoretic approaches. The aim is to show the potential of employing a set-theoretic approach for maturity model research and empirically demonstrating equifinal paths to maturity. Specifically...... methodological guidelines consisting of detailed procedures to systematically apply set theoretic approaches for maturity model research and provides demonstrations of it application on three datasets. The thesis is a collection of six research papers that are written in a sequential manner. The first paper...

  20. A new modeling approach to the safety evaluation of N-modular redundant computer systems in presence of imperfect maintenance

    International Nuclear Information System (INIS)

    Flammini, Francesco; Marrone, Stefano; Mazzocca, Nicola; Vittorini, Valeria

    2009-01-01

    A large number of safety-critical control systems are based on N-modular redundant architectures, using majority voters on the outputs of independent computation units. In order to assess the compliance of these architectures with international safety standards, the frequency of hazardous failures must be analyzed by developing and solving proper formal models. Furthermore, the impact of maintenance faults has to be considered, since imperfect maintenance may degrade the safety integrity level of the system. In this paper, we present both a failure model for voting architectures based on Bayesian networks and a maintenance model based on continuous time Markov chains, and we propose to combine them according to a compositional multiformalism modeling approach in order to analyze the impact of imperfect maintenance on the system safety. We also show how the proposed approach promotes the reuse and the interchange of models as well the interchange of solving tools.

  1. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2004-01-01

    In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are d...

  2. Unified composite model of all fundamental particles and forces

    International Nuclear Information System (INIS)

    Terazawa, H.

    2000-01-01

    The unified supersymmetric composite model of all fundamental particles (and forces) including not only the fundamental fermions (quarks and leptons) but also the fundamental bosons (gauge bosons and Higgs scalars) is reviewed in detail

  3. Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling

    Directory of Open Access Journals (Sweden)

    B. Novotný

    2000-01-01

    Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.

  4. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  5. Modelling of composition and stress profiles in low temperature surface engineered stainless steel

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2015-01-01

    temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....

  6. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  7. Modeling Composite Assessment Data Using Item Response Theory

    Science.gov (United States)

    Ueckert, Sebastian

    2018-01-01

    Composite assessments aim to combine different aspects of a disease in a single score and are utilized in a variety of therapeutic areas. The data arising from these evaluations are inherently discrete with distinct statistical properties. This tutorial presents the framework of the item response theory (IRT) for the analysis of this data type in a pharmacometric context. The article considers both conceptual (terms and assumptions) and practical questions (modeling software, data requirements, and model building). PMID:29493119

  8. Impact localization on composite structures using time difference and MUSIC approach

    Science.gov (United States)

    Zhong, Yongteng; Xiang, Jiawei

    2017-05-01

    1-D uniform linear array (ULA) has the shortcoming of the half-plane mirror effect, which does not allow discriminating between a target placed above the array and a target placed below the array. This paper presents time difference (TD) and multiple signal classification (MUSIC) based omni-directional impact localization on a large stiffened composite structure using improved linear array, which is able to perform omni-directional 360° localization. This array contains 2M+3 PZT sensors, where 2M+1 PZT sensors are arranged as a uniform linear array, and the other two PZT sensors are placed above and below the array. Firstly, the arrival times of impact signals observed by the other two sensors are determined using the wavelet transform. Compared with each other, the direction range of impact source can be decided in general, 0°to 180° or 180°to 360°. And then, two dimensional multiple signal classification (2D-MUSIC) based spatial spectrum formula using the uniform linear array is applied for impact localization by the general direction range. When the arrival times of impact signals observed by upper PZT is equal to that of lower PZT, the direction can be located in x axis (0°or 180°). And time difference based MUSIC method is present to locate impact position. To verify the proposed approach, the proposed approach is applied to a composite structure. The localization results are in good agreement with the actual impact occurring positions.

  9. Microstructure-Based Computational Modeling of Mechanical Behavior of Polymer Micro/Nano Composites

    Science.gov (United States)

    2013-12-01

    automotive, defense, sport, civil, aerospace, health , etc.). Here, a combination of non-linear thermo-viscoelastic (Schapery’s non-linear...2001. Three-dimensional computational micro-mechanical model for woven fabric composites. Composite Structures 54, 489-496. Jacob, G.C., Starbuck

  10. Challenges and opportunities for integrating lake ecosystem modelling approaches

    Science.gov (United States)

    Mooij, Wolf M.; Trolle, Dennis; Jeppesen, Erik; Arhonditsis, George; Belolipetsky, Pavel V.; Chitamwebwa, Deonatus B.R.; Degermendzhy, Andrey G.; DeAngelis, Donald L.; Domis, Lisette N. De Senerpont; Downing, Andrea S.; Elliott, J. Alex; Ruberto, Carlos Ruberto; Gaedke, Ursula; Genova, Svetlana N.; Gulati, Ramesh D.; Hakanson, Lars; Hamilton, David P.; Hipsey, Matthew R.; Hoen, Jochem 't; Hulsmann, Stephan; Los, F. Hans; Makler-Pick, Vardit; Petzoldt, Thomas; Prokopkin, Igor G.; Rinke, Karsten; Schep, Sebastiaan A.; Tominaga, Koji; Van Dam, Anne A.; Van Nes, Egbert H.; Wells, Scott A.; Janse, Jan H.

    2010-01-01

    A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative

  11. Models of galaxies - The modal approach

    International Nuclear Information System (INIS)

    Lin, C.C.; Lowe, S.A.

    1990-01-01

    The general viability of the modal approach to the spiral structure in normal spirals and the barlike structure in certain barred spirals is discussed. The usefulness of the modal approach in the construction of models of such galaxies is examined, emphasizing the adoption of a model appropriate to observational data for both the spiral structure of a galaxy and its basic mass distribution. 44 refs

  12. CFD Simulation of Vortex Induced Vibration for FRP Composite Riser with Different Modeling Methods

    Directory of Open Access Journals (Sweden)

    Chunguang Wang

    2018-04-01

    Full Text Available Steel risers are widely used in offshore oil and gas industry. However, the production capacity and depths are limited due to their extreme weight and poor fatigue and corrosion resistance. Nowadays, it is confirmed that fiber reinforced polymer (FRP composite risers have apparent advantages over steel risers. However, the study of vortex induced vibration (VIV for composite risers is rarely involved. Three different risers (one steel riser and two composite risers were compared for their VIV characteristics. The effects of 2D and 3D models and fluid–structure interaction (FSI were considered. The models of composite risers are established by effective modulus method (EMM and layered-structure method (LSM. It is found that 2D model are only suitable for ideal condition, while, for real situation, 3D model with FSI has to be considered. The results show that the displacements of the FRP composite risers are significantly larger than those of the steel riser, while the stresses are reversed. In addition, the distributions of the displacements and stresses depend on the geometries, material properties, top-tension force, constraints, etc. In addition, it is obvious that EMM are suitable to study the global working condition while LSM can be utilized to obtain the results in every single composite layer.

  13. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  14. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  15. An analytical/numerical correlation study of the multiple concentric cylinder model for the thermoplastic response of metal matrix composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1993-01-01

    The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.

  16. Analysis of composition of microbiomes: a novel method for studying microbial composition

    Directory of Open Access Journals (Sweden)

    Siddhartha Mandal

    2015-05-01

    Full Text Available Background: Understanding the factors regulating our microbiota is important but requires appropriate statistical methodology. When comparing two or more populations most existing approaches either discount the underlying compositional structure in the microbiome data or use probability models such as the multinomial and Dirichlet-multinomial distributions, which may impose a correlation structure not suitable for microbiome data. Objective: To develop a methodology that accounts for compositional constraints to reduce false discoveries in detecting differentially abundant taxa at an ecosystem level, while maintaining high statistical power. Methods: We introduced a novel statistical framework called analysis of composition of microbiomes (ANCOM. ANCOM accounts for the underlying structure in the data and can be used for comparing the composition of microbiomes in two or more populations. ANCOM makes no distributional assumptions and can be implemented in a linear model framework to adjust for covariates as well as model longitudinal data. ANCOM also scales well to compare samples involving thousands of taxa. Results: We compared the performance of ANCOM to the standard t-test and a recently published methodology called Zero Inflated Gaussian (ZIG methodology (1 for drawing inferences on the mean taxa abundance in two or more populations. ANCOM controlled the false discovery rate (FDR at the desired nominal level while also improving power, whereas the t-test and ZIG had inflated FDRs, in some instances as high as 68% for the t-test and 60% for ZIG. We illustrate the performance of ANCOM using two publicly available microbial datasets in the human gut, demonstrating its general applicability to testing hypotheses about compositional differences in microbial communities. Conclusion: Accounting for compositionality using log-ratio analysis results in significantly improved inference in microbiota survey data.

  17. Evaporator modeling - A hybrid approach

    International Nuclear Information System (INIS)

    Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun

    2009-01-01

    In this paper, a hybrid modeling approach is proposed to model two-phase flow evaporators. The main procedures for hybrid modeling includes: (1) Based on the energy and material balance, and thermodynamic principles to formulate the process fundamental governing equations; (2) Select input/output (I/O) variables responsible to the system performance which can be measured and controlled; (3) Represent those variables existing in the original equations but are not measurable as simple functions of selected I/Os or constants; (4) Obtaining a single equation which can correlate system inputs and outputs; and (5) Identify unknown parameters by linear or nonlinear least-squares methods. The method takes advantages of both physical and empirical modeling approaches and can accurately predict performance in wide operating range and in real-time, which can significantly reduce the computational burden and increase the prediction accuracy. The model is verified with the experimental data taken from a testing system. The testing results show that the proposed model can predict accurately the performance of the real-time operating evaporator with the maximum error of ±8%. The developed models will have wide applications in operational optimization, performance assessment, fault detection and diagnosis

  18. A composite model of the space-time and 'colors'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-03-01

    A pregeometric and pregauge model of the space-time and ''colors'' in which the space-time metric and ''color'' gauge fields are both composite is presented. By the non-triviality of the model, the number of space-time dimensions is restricted to be not larger than the number of ''colors''. The long conjectured space-color correspondence is realized in the model action of the Nambu-Goto type which is invariant under both general-coordinate and local-gauge transformations. (author)

  19. Using UML to Model Web Services for Automatic Composition

    OpenAIRE

    Amal Elgammal; Mohamed El-Sharkawi

    2010-01-01

    There is a great interest paid to the web services paradigm nowadays. One of the most important problems related to the web service paradigm is the automatic composition of web services. Several frameworks have been proposed to achieve this novel goal. The most recent and richest framework (model) is the Colombo model. However, even for experienced developers, working with Colombo formalisms is low-level, very complex and timeconsuming. We propose to use UML (Unified Modeling Language) to mod...

  20. Compositional Abstraction of PEPA Models for Transient Analysis

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew

    2010-01-01

    - or interval - Markov chains allow us to aggregate states in such a way as to safely bound transient probabilities of the original Markov chain. Whilst we can apply this technique directly to a PEPA model, it requires us to obtain the CTMC of the model, whose state space may be too large to construct......Stochastic process algebras such as PEPA allow complex stochastic models to be described in a compositional way, but this leads to state space explosion problems. To combat this, there has been a great deal of work in developing techniques for abstracting Markov chains. In particular, abstract...

  1. Confirmatory Composite Analysis

    NARCIS (Netherlands)

    Schuberth, Florian; Henseler, Jörg; Dijkstra, Theo K.

    2018-01-01

    We introduce confirmatory composite analysis (CCA) as a structural equation modeling technique that aims at testing composite models. CCA entails the same steps as confirmatory factor analysis: model specification, model identification, model estimation, and model testing. Composite models are

  2. Multiscale Modeling of Composites: Toward Virtual Testing … and Beyond

    Science.gov (United States)

    LLorca, J.; González, C.; Molina-Aldareguía, J. M.; Lópes, C. S.

    2013-02-01

    Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separation of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical simulations of the mechanical behavior of composite coupons and small components are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.

  3. Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 1. Model description

    NARCIS (Netherlands)

    Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.

    2004-01-01

    A dynamic mechanistic model was developed for growing and fattening pigs. The aim of the model was to predict growth rate and the chemical and anatomical body compositions from the digestible nutrient intake of gilts (20-105 kg live weight). The model represents the partitioning of digestible

  4. Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling

    OpenAIRE

    Duong, Chi Nhan; Luu, Khoa; Quach, Kha Gia; Bui, Tien D.

    2016-01-01

    The "interpretation through synthesis" approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA) model. However, the accuracy and robustness of the synthesized faces of AAM are highly depended on the training sets and inherently on the genera...

  5. Stochastic failure modelling of unidirectional composite ply failure

    International Nuclear Information System (INIS)

    Whiteside, M.B.; Pinho, S.T.; Robinson, P.

    2012-01-01

    Stochastic failure envelopes are generated through parallelised Monte Carlo Simulation of a physically based failure criteria for unidirectional carbon fibre/epoxy matrix composite plies. Two examples are presented to demonstrate the consequence on failure prediction of both statistical interaction of failure modes and uncertainty in global misalignment. Global variance-based Sobol sensitivity indices are computed to decompose the observed variance within the stochastic failure envelopes into contributions from physical input parameters. The paper highlights a selection of the potential advantages stochastic methodologies offer over the traditional deterministic approach.

  6. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    Buslik, A.

    1994-01-01

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  7. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Science.gov (United States)

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  8. Developing a model for effective leadership in healthcare: a concept mapping approach

    Science.gov (United States)

    Hargett, Charles William; Doty, Joseph P; Hauck, Jennifer N; Webb, Allison MB; Cook, Steven H; Tsipis, Nicholas E; Neumann, Julie A; Andolsek, Kathryn M; Taylor, Dean C

    2017-01-01

    Purpose Despite increasing awareness of the importance of leadership in healthcare, our understanding of the competencies of effective leadership remains limited. We used a concept mapping approach (a blend of qualitative and quantitative analysis of group processes to produce a visual composite of the group’s ideas) to identify stakeholders’ mental model of effective healthcare leadership, clarifying the underlying structure and importance of leadership competencies. Methods Literature review, focus groups, and consensus meetings were used to derive a representative set of healthcare leadership competency statements. Study participants subsequently sorted and rank-ordered these statements based on their perceived importance in contributing to effective healthcare leadership in real-world settings. Hierarchical cluster analysis of individual sortings was used to develop a coherent model of effective leadership in healthcare. Results A diverse group of 92 faculty and trainees individually rank-sorted 33 leadership competency statements. The highest rated statements were “Acting with Personal Integrity”, “Communicating Effectively”, “Acting with Professional Ethical Values”, “Pursuing Excellence”, “Building and Maintaining Relationships”, and “Thinking Critically”. Combining the results from hierarchical cluster analysis with our qualitative data led to a healthcare leadership model based on the core principle of Patient Centeredness and the core competencies of Integrity, Teamwork, Critical Thinking, Emotional Intelligence, and Selfless Service. Conclusion Using a mixed qualitative-quantitative approach, we developed a graphical representation of a shared leadership model derived in the healthcare setting. This model may enhance learning, teaching, and patient care in this important area, as well as guide future research. PMID:29355249

  9. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  10. Experimental and theoretical assessment of flexural properties of hybrid natural fibre composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack; Markussen, Christen Malte

    2014-01-01

    The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both...... experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well...... predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural...

  11. High-order Composite Likelihood Inference for Max-Stable Distributions and Processes

    KAUST Repository

    Castruccio, Stefano; Huser, Raphaë l; Genton, Marc G.

    2015-01-01

    In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of locations is a very challenging problem in computational statistics, and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full likelihood inference and to efficiently evaluate high-order composite likelihoods. With extensive simulations, we assess the loss of information of composite likelihood estimators with respect to a full likelihood approach for some widely-used multivariate or spatial extreme models, we discuss how to choose composite likelihood truncation to improve the efficiency, and we also provide recommendations for practitioners. This article has supplementary material online.

  12. High-order Composite Likelihood Inference for Max-Stable Distributions and Processes

    KAUST Repository

    Castruccio, Stefano

    2015-09-29

    In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of locations is a very challenging problem in computational statistics, and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full likelihood inference and to efficiently evaluate high-order composite likelihoods. With extensive simulations, we assess the loss of information of composite likelihood estimators with respect to a full likelihood approach for some widely-used multivariate or spatial extreme models, we discuss how to choose composite likelihood truncation to improve the efficiency, and we also provide recommendations for practitioners. This article has supplementary material online.

  13. Mechanics of composite materials: Unified micromechanical approach

    International Nuclear Information System (INIS)

    Aboundi, J.

    1991-01-01

    Although many books have been written on the mechanics of composite materials, only a vew few have been devoted almost exclusively to the micromechanics aspects. The present monograph is devoted primarily to the micromechanics of fiber and particle reinforced composites with some additional treatment of laminates as well. Thus, this book would probably be more suitable as a reference book than a textbook

  14. A new enhanced index tracking model in portfolio optimization with sum weighted approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Hoe, Lam Weng

    2017-04-01

    Index tracking is a portfolio management which aims to construct the optimal portfolio to achieve similar return with the benchmark index return at minimum tracking error without purchasing all the stocks that make up the index. Enhanced index tracking is an improved portfolio management which aims to generate higher portfolio return than the benchmark index return besides minimizing the tracking error. The objective of this paper is to propose a new enhanced index tracking model with sum weighted approach to improve the existing index tracking model for tracking the benchmark Technology Index in Malaysia. The optimal portfolio composition and performance of both models are determined and compared in terms of portfolio mean return, tracking error and information ratio. The results of this study show that the optimal portfolio of the proposed model is able to generate higher mean return than the benchmark index at minimum tracking error. Besides that, the proposed model is able to outperform the existing model in tracking the benchmark index. The significance of this study is to propose a new enhanced index tracking model with sum weighted apporach which contributes 67% improvement on the portfolio mean return as compared to the existing model.

  15. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites

    International Nuclear Information System (INIS)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Rafaja, David; Koltsov, Iwona; Stöcker, Hartmut; Szalaty, Tadeusz J.; Bazhenov, Vasilii V.; Stelling, Allison L.; Beyer, Jan; Heitmann, Johannes; Jesionowski, Teofil; Petovic, Slavica; Đurović, Mirko; Ehrlich, Hermann

    2017-01-01

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O 2 composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO 2 , predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O 2 and (Ti,Zr)O 2 composites. • Chitin-(Ti,Zr)O 2 composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O 2 composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O 2 composite. • (Ti,Zr)O 2 composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O 2 .

  16. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  17. Mathematical model for choosing the nuclear safe matrix compositions for fissile material immobilization

    International Nuclear Information System (INIS)

    Gorshtein, A.I.; Matyunin, Yu.I.; Poluehktov, P.P.

    2000-01-01

    A mathematical model is proposed for preliminary choice of the nuclear safe matrix compositions for fissile material immobilization. The IBM PC computer software for nuclear safe matrix composition calculations is developed. The limiting concentration of fissile materials in the some used and perspective nuclear safe matrix compositions for radioactive waste immobilization is calculated [ru

  18. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  19. A heat mathematical model of polymer composite cylinder during microwave treatment

    Directory of Open Access Journals (Sweden)

    S. V. Reznik

    2014-01-01

    Full Text Available Traditional technologies of producing epoxy based polymer composite materials (PCM require a long-term and energy consuming thermal processing. Microwave heating could be used as an alternative technology for heating work pieces made of PCM; this would allow to reduce treatment time and energy consumption significantly. A mathematical model of temperature distribution inside a cylindrical composite system during microwave treatment was investigated in this paper. The model includes a hollow PCM cylinder made of an epoxy binder and carbon fibers and a solid cylindrical mandrel. Theoretical and experimental results on the temperature state of the system were analyzed and discussed.

  20. Infiltrated TiC/Cu composites

    International Nuclear Information System (INIS)

    Frage, N.; Froumin, N.; Rubinovich, L.; Dariel, M.P.

    2001-01-01

    One approach for the fabrication of ceramic-metal composites is based on the pressureless impregnation of a porous ceramic preform by a molten metal. Molten Cu does not react with TiC and the wetting angle is close to 90 o . Nonetheless, molten Cu readily impregnates partially sintered TiC preforms. A model that describes the dependence of the critical contact angle for spontaneous impregnation by molten metals in partially sintered preforms on the level of densification and on the morphology of the particles was developed. For high aspect ratios of the particles forming the preform, wetting angles close to 90 o still allow impregnation by the molten metal. The results of the model were confirmed by infiltration of partially sintered TiC preforms with molten Cu and by fabrication of the TiC/Cu composites with various ceramic-to metal ratios. Decreasing of the metal content in the composite from 50 vol.% to 10 vol.% leads to a hardness increase from 250 to 1800 HV, and to the decrease of the bending strength from 960 to 280 MPa. The resistivity of these TiC/Cu composites decreases from 142 ohm cm to 25 ohm cm. (author)

  1. Focused information criterion and model averaging based on weighted composite quantile regression

    KAUST Repository

    Xu, Ganggang; Wang, Suojin; Huang, Jianhua Z.

    2013-01-01

    We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non

  2. Long Fibre Composite Modelling Using Cohesive User's Element

    International Nuclear Information System (INIS)

    Kozak, Vladislav; Chlup, Zdenek

    2010-01-01

    The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.

  3. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part II-Comparison with Experimental Results.

    Science.gov (United States)

    Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge

    2017-04-28

    Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering.

  4. Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites

    OpenAIRE

    Lin, Shang-Chang; Hu, Chia-Jui; Shih, Wen-Pin; Lin, Pei-Chun

    2015-01-01

    We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic ...

  5. New composite distributions for modeling industrial income and wealth per employee

    Science.gov (United States)

    Wiegand, Martin; Nadarajah, Saralees

    2018-02-01

    Forbes Magazine offers an annual list of the 2000 largest publicly traded companies, shedding light on four different measurements: Sales, profits, market value and assets held. Soriano-Hernández et al. (2017) modeled these wealth metrics using composite distributions made up of two parts. In this note, we introduce different composite distributions to more accurately describe the spread of these wealth metrics.

  6. A new aeroelastic model for composite rotor blades with straight and swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.

  7. Modeling of carbon nanotubes, graphene and their composites

    CERN Document Server

    Silvestre, Nuno

    2014-01-01

    This book contains ten chapters, authored by world experts in the field of simulation at nano-scale and aims to demonstrate the potentialities of computational techniques to model the mechanical behavior of nano-materials, such as carbon nanotubes, graphene and their composites. A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes, graphene and their applications. In this process, computational modeling is a very attractive research tool due to the difficulties in manufacturing and testing of nano-materials. Both atomistic modeling methods, such as molecular mechanics and molecular dynamics, and continuum modeling methods are being intensively used. Continuum modeling offers significant advantages over atomistic modeling such as the reduced computational effort, the capability of modeling complex structures and bridging different analysis scales, thus enabling modeling from the nano- to the macro-scale. On the oth...

  8. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  9. Estimation of effective thermal conductivity tensor from composite microstructure images

    International Nuclear Information System (INIS)

    Thomas, M; Boyard, N; Jarny, Y; Delaunay, D

    2008-01-01

    The determination of the effective thermal properties of inhomogeneous materials is a long-standing problem of continuously interest. The impressive number of methods developed to measure or estimate the thermal properties of composite materials clearly exhibits the importance given to their knowledge. Homogenization models are a cheap way to determine or predict them. Many different approaches of homogenization were developed, but the last advances are credited to numerical methods. In this study, a new computational model is developed to estimate the 2D thermal conductivity tensor and the thermal main directions of a pure carbon/epoxy unidirectional composite. This tool is based on real composite microstructure.

  10. Ion beam modifications of near-surface compositions in ternary alloys

    International Nuclear Information System (INIS)

    Lam, N.Q.; Tang, S.; Yacout, A.M.; Rehn, L.E.; Stubbins, J.F.

    1990-11-01

    Changes in the surface and subsurface compositions of ternary alloys during elevated-temperature sputtering with inert-gas ions were investigated. Theoretically, a comprehensive kinetic model which includes all the basic processes, such as preferential sputtering, displacement mixing, Gibbsian segregation, radiation-enhanced diffusion and radiation-induced segregation, was developed. This phenomenological approach enabled to predict the effects of each individual process or of a combination of processes on the compositional modification in model alloys. Experimentally, measurements of compositional changes at the surface of a Ag-40at%Au -- 20at%Cu alloy during 3-keV Ne + bombardment at various temperatures were made, using ion scattering spectroscopy. These measurements were interpreted on the basis of the results of theoretical modeling. 8 refs., 2 figs

  11. Numerical Material Model for Composite Laminates in High-Velocity Impact Simulation

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Abstract A numerical material model for composite laminate, was developed and integrated into the nonlinear dynamic explicit finite element programs as a material user subroutine. This model coupling nonlinear state of equation (EOS, was a macro-mechanics model, which was used to simulate the major mechanical behaviors of composite laminate under high-velocity impact conditions. The basic theoretical framework of the developed material model was introduced. An inverse flyer plate simulation was conducted, which demonstrated the advantage of the developed model in characterizing the nonlinear shock response. The developed model and its implementation were validated through a classic ballistic impact issue, i.e. projectile impacting on Kevlar29/Phenolic laminate. The failure modes and ballistic limit velocity were analyzed, and a good agreement was achieved when comparing with the analytical and experimental results. The computational capacity of this model, for Kevlar/Epoxy laminates with different architectures, i.e. plain-woven and cross-plied laminates, was further evaluated and the residual velocity curves and damage cone were accurately predicted.

  12. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  13. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    Science.gov (United States)

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  14. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  15. From the standard model to composite quarks and leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1981-01-01

    An updated version of lectures delivered at the SLAC Summer Institute, 1980 is presented. Part I describes the present status of the standard model and gives a short survey of topics such as extensions of the electroweak group, grand unification, the generation puzzle and the connection between quark masses and generalized Cabibbo angles. Part II is devoted to the possibility that quarks and leptons are composite. The general theoretical difficulties are described and several published models are reviewed, including the dynamical rishon model. (H.K.)

  16. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  17. KEMAMPUAN SISWA MENCERITAKAN PENGALAMAN MELALUI MODEL COOPERATIF INTEGREAD READING AND COMPOSITION (CIRC

    Directory of Open Access Journals (Sweden)

    Rahman Rahman

    2018-03-01

    Full Text Available AbstractThis study aims to determine whether Cooperative Integread Reading and Composition (CIRC learning model can improve the students’ ability in telling impressive experiences. The esearcher used classroom action research design with data retrieval method on the test in the form of test. The learning model used is Cooperative Integread Reading and Composition (CIRC. Subjects in this study are the first semester students of class VII, MTs Negeri Sukoharjo academic year 2017/2018 which amounted to 34 students. From the result of data analysis, it is known that telling impressive experience in writing in cycle I obtained the average value of 72,74 and the complete student reaches 64,7% while in cycle II it is obtained the average 80,55 and student complete 100%. Thus the use of appropriate learning model such CIRC can improve students' learning ability in telling the written story.Key Words: Cooperative Integread Reading and Composition (CIRC, written story.

  18. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  19. Micromechanical Models of Mechanical Response of High Performance Fibre Reinforced Cement Composites

    DEFF Research Database (Denmark)

    Li, V. C.; Mihashi, H.; Alwan, J.

    1996-01-01

    generation of FRC with high performance and economical viability, is in sight. However, utilization of micromechanical models for a more comprehensive set of important HPFRCC properties awaits further investigations into fundamental mechanisms governing composite properties, as well as intergrative efforts......The state-of-the-art in micromechanical modeling of the mechanical response of HPFRCC is reviewed. Much advances in modeling has been made over the last decade to the point that certain properties of composites can be carefully designed using the models as analytic tools. As a result, a new...... across responses to different load types. Further, micromechanical models for HPFRCC behavior under complex loading histories, including those in fracture, fatigue and multuaxial loading are urgently needed in order to optimize HPFRCC microstrcuctures and enable predictions of such material in structures...

  20. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  1. Modeling the Mechanical Behavior of Aluminum Laminated Metal Composites During High Temperature Deformation

    National Research Council Canada - National Science Library

    Grishber, R

    1997-01-01

    A constitutive model for deformation of a novel laminated metal composite (LMC) which is comprised of 21 alternating layers of Al 5182 alloy and Al 6090/SiC/25p metal matrix composite (MMC) has been proposed...

  2. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  3. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  4. A linear dynamic model for rotor-spun composite yarn spinning process

    International Nuclear Information System (INIS)

    Yang, R H; Wang, S Y

    2008-01-01

    A linear dynamic model is established for the stable rotor-spun composite yarn spinning process. Approximate oscillating frequencies in the vertical and horizontal directions are obtained. By suitable choice of certain processing parameters, the mixture construction after the convergent point can be optimally matched. The presented study is expected to provide a general pathway to understand the motion of the rotor-spun composite yarn spinning process

  5. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    Science.gov (United States)

    Davis, J.A.; Meece, D.E.; Kohler, M.; Curtis, G.P.

    2004-01-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 ?? 10-8 to 1 ?? 10-5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of

  6. Structural design of a composite bicycle fork

    International Nuclear Information System (INIS)

    Baldissera, Paolo; Delprete, Cristiana

    2014-01-01

    Highlights: • Case study about composite bicycle fork design. • Special requirements for a Student Team project. • FE model to evaluate stiffness, strength and potential failure modes. • Comparison of two manufacturing approaches. • FE model stiffness validation on the manufactured fork. - Abstract: Despite the wide literature on the mechanical behaviour of carbon/epoxy composites, it is rare to find practical methodological approaches in finite element design of structural components made by laminate layup. Through the case study of a special bicycle fork needed in a Student Team prototype, this paper proposes a simplified methodology as starting point for educational and manufacturing purposes. In order to compare two manufacturing solutions in terms of stiffness, strength and failure mode, a numerical model was implemented. Since the project requirements imposed to avoid standard destructive testing, the model validation was based on a posteriori linear stiffness comparison with the manufactured component. The slight discrepancies between experimental and numerical results were discussed in order to check their origin and to assess the reliability of the model. The overall methodology, even if complain with only a part of the safety standard requirements, shows to be reliable enough and can be the basis for further extension and refinement

  7. Composite vector mesons and string models

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1985-01-01

    The author discusses the general question of gauge mesons in extended supergravities, and whether such theories can produce the gauge mesons corresponding to a group at least as large as SU(3) x SU(2) x U(1). An exciting conjecture in this direction was made a few years ago by previous authors, who suggested that there might be composite SU(8) gauge mesons in a supergravity model known as the N=8 model. Until we have a consistent, renormalizable theory of supergravity we cannot really obtain any indication of the truth or falseness of that conjecture. One form of the Neveu-Schwarz string model has been shown to be a theory of supergravity; it is finite at the one-loop level and probably in any order of perturbation theory. The discussion is within the framework of this model. The author questions whether massive vector mesons can possibly lose their mass due to interactions. Arguments have been given on both sides of this question, and the author believes that this can occur under certain circumstances. Our conclusions is that the FNNS mechanism will create a gauge symmetry in addition to the rigid symmetry

  8. Service creation: a model-based approach

    NARCIS (Netherlands)

    Quartel, Dick; van Sinderen, Marten J.; Ferreira Pires, Luis

    1999-01-01

    This paper presents a model-based approach to support service creation. In this approach, services are assumed to be created from (available) software components. The creation process may involve multiple design steps in which the requested service is repeatedly decomposed into more detailed

  9. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  10. Multiscale Modeling of Novel Carbon Nanotube/Copper-Composite Material Used in Microelectronics

    Science.gov (United States)

    Awad, Ibrahim; Ladani, Leila

    2016-06-01

    Current carrying capacity is one of the elements that hinders further miniaturization of Copper (Cu) interconnects. Therefore, there is a need to propose new materials with higher ampacity (current carrying capacity) that have the potential to replace Cu. Experimental observations have shown that Carbon Nanotube (CNT)/Cu-composite material has a hundredfold ampacity of Cu, which makes it a good candidate to replace Cu. However, sufficient information about the mechanical behavior of the novel CNT/Cu-composite is not available. In the current paper, the CNT/Cu-composite is utilized to construct Through Silicon Via (TSV). The mechanical behavior, specifically the fatigue life, of the CNT/Cu-TSV is evaluated by applying a multiscale modeling approach. Molecular Dynamics (MD) simulations are conducted to evaluate the tensile strength and the coefficient of thermal expansion of CNTs. MD simulation is also used to determine the interface behavior between CNTs and Cu. MD simulation results are integrated into Finite Element analysis at the micro-level to estimate the fatigue life of the CNT/Cu-TSV. A comparison is made with base material; Cu. CNTs addition has redistributed the plastic deformation in Cu to occur at two different locations (Si/Cu interface and Cu/CNT interface) instead of only one location (Si/Cu interface) in the case of Cu-only-TSV. Thus, the maximum equivalent plastic strain has been alleviated in the CNT/Cu-TSV. Accordingly, CNT/Cu-TSV has shown a threefold increase in the fatigue life. This is a solid indication of the improvement in the fatigue life that is attributed to the addition of CNTs.

  11. Importance of waste composition for Life Cycle Assessment of waste management solutions

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Götze, Ramona; Conradsen, Knut

    2017-01-01

    The composition of waste materials has fundamental influence on environmental emissions associated with waste treatment, recycling and disposal, and may play an important role also for the Life Cycle Assessment (LCA) of waste management solutions. However, very few assessments include effects...... of the waste composition and waste LCAs often rely on poorly justified data from secondary sources. This study systematically quantifiesy the influence and uncertainty on LCA results associated with selection of waste composition data. Three archetypal waste management scenarios were modelled with the waste...... LCA model EASETECH based on detailed waste composition data from the literature. The influence from waste composition data on the LCA results was quantified with a step-wise Global Sensitivity Analysis (GSA) approach involving contribution, sensitivity, uncertainty and discernibility analyses...

  12. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  13. Topological Approach for Predicting the Properties of Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.; Yue, Yuanzheng

    . Moreover, the modeling approach enables a detailed understanding of the microscopic mechanisms governing macroscopic properties. Finally, we also present a phenomenological model offering an improved description of the composition and temperature dependence of the shear viscosity of multicomponent liquids......, for which the existing analytical models currently do not apply....

  14. Achieving ICME with Multiscale Modeling: The Effects of Constituent Properties and Processing on the Performance of Laminated Polymer Matrix Composite Structures

    Science.gov (United States)

    Pineda, Evan Jorge; Bednarcyk, Brett A.; Arnold, Steven M.

    2014-01-01

    Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario

  15. Statistical Clustering and Compositional Modeling of Iapetus VIMS Spectral Data

    Science.gov (United States)

    Pinilla-Alonso, N.; Roush, T. L.; Marzo, G.; Dalle Ore, C. M.; Cruikshank, D. P.

    2009-12-01

    It has long been known that the surfaces of Saturn's major satellites are predominantly icy objects [e.g. 1 and references therein]. Since 2004, these bodies have been the subject of observations by the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment [2]. Iapetus has the unique property that the hemisphere centered on the apex of its locked synchronous orbital motion around Saturn has a very low geometrical albedo of 2-6%, while the opposite hemisphere is about 10 times more reflective. The nature and origin of the dark material of Iapetus has remained a question since its discovery [3 and references therein]. The nature of this material and how it is distributed on the surface of this body, can shed new light into the knowledge of the Saturnian system. We apply statistical clustering [4] and theoretical modeling [5,6] to address the surface composition of Iapetus. The VIMS data evaluated were obtained during the second flyby of Iapetus, in September 2007. This close approach allowed VIMS to obtain spectra at relatively high spatial resolution, ~1-22 km/pixel. The data we study sampled the trailing hemisphere and part of the dark leading one. The statistical clustering [4] is used to identify statistically distinct spectra on Iapetus. The composition of these distinct spectra are evaluated using theoretical models [5,6]. We thank Allan Meyer for his help. This research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. [1] A, Coradini et al., 2009, Earth, Moon & Planets, 105, 289-310. [2] Brown et al., 2004, Space Science Reviews, 115, 111-168. [3] Cruikshank, D. et al Icarus, 2008, 193, 334-343. [4] Marzo, G. et al. 2008, Journal of Geophysical Research, 113, E12, CiteID E12009. [5] Hapke, B. 1993, Theory of reflectance and emittance spectroscopy, Cambridge University Press. [6] Shkuratov, Y. et al. 1999, Icarus, 137, 235-246.

  16. Characterization and modeling of tensile behavior of ceramic woven fabric composites

    Science.gov (United States)

    Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei

    1991-01-01

    This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.

  17. Modeling of a partially debonded piezoelectric actuator in smart composite laminates

    International Nuclear Information System (INIS)

    Huang, Bin; Soo Kim, Heung; Ho Yoon, Gil

    2015-01-01

    A partially debonded piezoelectric actuator in smart composite laminates was modeled using an improved layerwise displacement field and Heaviside unit step functions. The finite element method with four node plate element and the extended Hamilton principle were used to derive the governing equation. The effects of actuator debonding on the smart composite laminate were investigated in both the frequency and time domains. The frequency and transient responses were obtained using the mode superposition method and the Newmark time integration algorithm, respectively. Two partial actuator debonding cases were studied to investigate the debonding effects on the actuation capability of the piezoelectric actuator. The effect of actuator debonding on the natural frequencies was subtler, but severe reductions of the actuation ability were observed in both the frequency and time responses, especially in the edge debonded actuator case. The results provided confirmation that the proposed modeling could be used in virtual experiments of actuator failure in smart composite laminates. (paper)

  18. Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach

    OpenAIRE

    Koudelka, V.; Raida, Zbyněk; Tobola, P.

    2009-01-01

    The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (t...

  19. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  20. Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der

    2014-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configuratio...

  1. Modelling mechanical properties of the multilayer composite materials with the polyamide core

    Directory of Open Access Journals (Sweden)

    Talaśka Krzysztof

    2018-01-01

    Full Text Available Due to the wide range of application for belt conveyors, engineers look for many different combinations of mechanical properties of conveyor and transmission belts. It can be made by creating multilayer or fibre reinforced composite materials from base thermoplastic or thermosetting polymers. In order to gain high strength with proper elasticity and friction coefficient, the core of the composite conveyor belt is made of polyamide film core, which can be combined with various types of polymer fabrics, films or even rubbers. In this paper authors show the complex model of multilayer composite belt with the polyamide core, which can be used in simulation analyses. The following model was derived based on the experimental research, which consisted of tensile, compression and shearing tests. In order to achieve the most accurate model, proper simulations in ABAQUS were made and then the results were compared with empirical mechanical characteristics of a conveyor belt. The main goal of this research is to fully describe the perforation process of conveyor and transmission belts for vacuum belt conveyors. The following model will help to develop design briefs for machines used for mechanical perforation.

  2. A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires

    Science.gov (United States)

    Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.

    2018-03-01

    In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.

  3. Model nebulae and determination of the chemical composition of the Magellanic Clouds.

    Science.gov (United States)

    Aller, L H; Keyes, C D; Czyzak, S J

    1979-04-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems.

  4. Top and Higgs masses in a composite boson model

    International Nuclear Information System (INIS)

    Kahana, D.E.

    1993-01-01

    Recently Nambu as well as Bardeen, Hill and Linden have suggested replacing the Higgs mechanism with a dynamical symmetry breaking generated by four fermion interactions of the top quark. In fact the model for replacing the scalar sector is that of Nambu and Jona-Lasinio (NJL) and one recovers the Higgs as a tt composite. Earlier authors have also treated vector mesons as composites within the NJL framework, with perhaps the earliest suggestion being that of Bjorken for a composite photon. Here we attempt to generate the entire electroweak interaction from a specific current-current, baryon number conserving form of the four fermion interaction. The W, Z and Higgs boson appear as coherent composites of all fermions, quarks and lepton, and not just of the top quark. The four fermion interaction is assumed to be valid at some high mass scale μ, perhaps the low energy limit resulting by the elimination of non-fermionic degrees of freedom from a more basic theory. The cutoff Λ, necessary in the non-renormalizable NJL may be viewed then as the proper scale for this more basic theory

  5. Thermodynamic modeling of saturated liquid compositions and densities for asymmetric binary systems composed of carbon dioxide, alkanes and alkanols

    International Nuclear Information System (INIS)

    Bayestehparvin, Bita; Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2015-01-01

    Highlights: • Phase behavior of the binary systems containing largely different components. • Equation of state modeling of binary polar and non-polar systems by utilizing different mixing rules. • Three different mixing rules (one-parameter, two-parameters and Wong–Sandler) coupled with Peng–Robinson equation of state. • Two-parameter mixing rule shows promoting results compared to one-parameter mixing rule. • Wong–Sandler mixing rule is unable to predict saturated liquid densities with sufficient accuracy. - Abstract: The present study mainly focuses on the phase behavior modeling of asymmetric binary mixtures. Capability of different mixing rules and volume shift in the prediction of solubility and saturated liquid density has been investigated. Different binary systems of (alkane + alkanol), (alkane + alkane), (carbon dioxide + alkanol), and (carbon dioxide + alkane) are considered. The composition and the density of saturated liquid phase at equilibrium condition are the properties of interest. Considering composition and saturated liquid density of different binary systems, three main objectives are investigated. First, three different mixing rules (one-parameter, two parameters and Wong–Sandler) coupled with Peng–Robinson equation of state were used to predict the equilibrium properties. The Wong–Sandler mixing rule was utilized with the non-random two-liquid (NRTL) model. Binary interaction coefficients and NRTL model parameters were optimized using the Levenberg–Marquardt algorithm. Second, to improve the density prediction, the volume translation technique was applied. Finally, Two different approaches were considered to tune the equation of state; regression of experimental equilibrium compositions and densities separately and spontaneously. The modeling results show that there is no superior mixing rule which can predict the equilibrium properties for different systems. Two-parameter and Wong–Sandler mixing rule show promoting

  6. Silkworm cocoons inspire models for random fiber and particulate composites

    Energy Technology Data Exchange (ETDEWEB)

    Fujia, Chen; Porter, David; Vollrath, Fritz [Department of Zoology, University of Oxford, Oxford OX1 3PS (United Kingdom)

    2010-10-15

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  7. Development of an Advanced Composite Material Model Suitable for Blast and Ballistic Impact Simulations

    National Research Council Canada - National Science Library

    Yen, C. F; Cheeseman, B. A

    2004-01-01

    A robust composite progressive failure model has been successfully developed to account for the strain-rate and pressure dependent behavior of composite materials subjected to high velocity ballistic impact...

  8. Experimental identification of smart material coupling effects in composite structures

    International Nuclear Information System (INIS)

    Chesne, S; Jean-Mistral, C; Gaudiller, L

    2013-01-01

    Smart composite structures have an enormous potential for industrial applications, in terms of mass reduction, high material resistance and flexibility. The correct characterization of these complex structures is essential for active vibration control or structural health monitoring applications. The identification process generally calls for the determination of a generalized electromechanical coupling coefficient. As this process can in practice be difficult to implement, an original approach, presented in this paper, has been developed for the identification of the coupling effects of a smart material used in a composite curved beam. The accuracy of the proposed identification technique is tested by applying active modal control to the beam, using a reduced model based on this identification. The studied structure was as close to reality as possible, and made use of integrated transducers, low-cost sensors, clamped boundary conditions and substantial, complex excitation sources. PVDF (polyvinylidene fluoride) and MFC (macrofiber composite) transducers were integrated into the composite structure, to ensure their protection from environmental damage. The experimental identification described here was based on a curve fitting approach combined with the reduced model. It allowed a reliable, powerful modal control system to be built, controlling two modes of the structure. A linear quadratic Gaussian algorithm was used to determine the modal controller–observer gains. The selected modes were found to have an attenuation as strong as −13 dB in experiments, revealing the effectiveness of this method. In this study a generalized approach is proposed, which can be extended to most complex or composite industrial structures when they are subjected to vibration. (paper)

  9. Addendum to: Derivation of in situ opalinus clay porewater compositions from experimental and geochemical modelling studies

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens; Pearson, F.J.; Berner, U.

    1998-01-01

    As part of the synthesis of water chemistry studies within the hydrochemical program at Mont Terri (Switzerland), a reexamination of the modelling method showed that it should lead to a range of water compositions rather than to a single composition. The single composition resulted from two compensating oversights, a theoretical one and a modelling one. These are discussed in this Addendum. (author)

  10. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties.

    Science.gov (United States)

    Dimas, Leon S; Buehler, Markus J

    2014-07-07

    Flaws, imperfections and cracks are ubiquitous in material systems and are commonly the catalysts of catastrophic material failure. As stresses and strains tend to concentrate around cracks and imperfections, structures tend to fail far before large regions of material have ever been subjected to significant loading. Therefore, a major challenge in material design is to engineer systems that perform on par with pristine structures despite the presence of imperfections. In this work we integrate knowledge of biological systems with computational modeling and state of the art additive manufacturing to synthesize advanced composites with tunable fracture mechanical properties. Supported by extensive mesoscale computer simulations, we demonstrate the design and manufacturing of composites that exhibit deformation mechanisms characteristic of pristine systems, featuring flaw-tolerant properties. We analyze the results by directly comparing strain fields for the synthesized composites, obtained through digital image correlation (DIC), and the computationally tested composites. Moreover, we plot Ashby diagrams for the range of simulated and experimental composites. Our findings show good agreement between simulation and experiment, confirming that the proposed mechanisms have a significant potential for vastly improving the fracture response of composite materials. We elucidate the role of stiffness ratio variations of composite constituents as an important feature in determining the composite properties. Moreover, our work validates the predictive ability of our models, presenting them as useful tools for guiding further material design. This work enables the tailored design and manufacturing of composites assembled from inferior building blocks, that obtain optimal combinations of stiffness and toughness.

  11. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  12. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...

  13. Modelling of composite concrete block pavement systems applying a cohesive zone model

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests....... The pavement is modelled as a simple slab on grade structure and parameters influencing the response, such as analysis technique, geometry and material parameters are studied. Moreover, the analysis is extended to a real scale example, modelling the pavement as a three-layered structure. It is found...... block pavements. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering....

  14. Flexible Multibody Systems Models Using Composite Materials Components

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambr'osio, Jorge A. C.; Leal, Rog'erio Pereira

    2004-01-01

    The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method

  15. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    Science.gov (United States)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  16. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  17. Original article Construct validity, dimensionality and factorial invariance of the Rosenberg Self-Esteem Scale: a bifactor modelling approach among children of prisoners

    Directory of Open Access Journals (Sweden)

    Kathryn Sharratt

    2014-12-01

    Full Text Available Background The Rosenberg Self-Esteem Scale (RSES has traditionally been conceptualised as a unidimensional measure of self-esteem, but empirical evidence is equivocal, with some studies supporting a one-factor solution and others favouring multidimensional models. Participants and procedure The aim of this study was to examine the factor structure, factorial invariance and composite reliability of the RSES within a European sample of children affected by parental imprisonment (N = 724. The study specified and tested six alternative factor models using conventional confirmatory factor analytic (CFA techniques and a confirmatory bifactor modelling approach. Results The RSES was most effectively represented by a bifactor model including a general self-esteem factor comprising all ten scale items and separate method effects for the positively and negatively phrased items. This model was found to be factorially invariant among boys and girls. Composite reliability indicated good internal consistency for the general self-esteem dimension but slightly less so for the positive and negative method effects. Conclusions It follows that the calculation of a total RSES score is appropriate for children of prisoners, providing that the presence of method effects is taken into consideration to avoid giving rise to false interpretations. This study demonstrated the application of a bifactorial modeling approach as a potential solution.

  18. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  19. Mathematical Modeling Approaches in Plant Metabolomics.

    Science.gov (United States)

    Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas

    2018-01-01

    The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

  20. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    Science.gov (United States)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.