WorldWideScience

Sample records for composite alloying layer

  1. Composite Layers “MgAl Intermetalic Layer / PVD Coating” Obtained On The AZ91D Magnesium Alloy By Different Hybrid Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Smolik J.

    2015-06-01

    Full Text Available Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS, arc evaporation (AE and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.

  2. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  3. Methods for Electrodepositing Composition-Modulated Alloys

    DEFF Research Database (Denmark)

    Leisner, Peter; Nielsen, Christian Bergenstof; Tang, Peter Torben

    1996-01-01

    Materials exhibiting unique mechanical, physical and chemical properties can be obtained by combining thin layers of different metals or alloys forming a multilayered structure. Two general techniques exist for electrodepositing composition-modulated alloy (CMA) materials; dual-bath and single...

  4. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene-The Influence of Spark Plasma Texturing Process.

    Science.gov (United States)

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-08-10

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2-15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime.

  5. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    Science.gov (United States)

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  6. Formation of Titanium Carbide in the Surface Layer of Cavityless-Cast Iron-Carbon Alloys

    Science.gov (United States)

    Ovcharenko, P. G.; Leshchev, A. Yu.; Makhneva, T. M.

    2018-01-01

    Special features of formation of titanium carbide in the surface layer of castings of iron-carbon alloys obtained with the use of investment patterns and "Ti - C" and "FeTi - C" alloying compositions are considered. The phase composition, the structure, and the hardness of the alloyed layers are determined.

  7. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    Science.gov (United States)

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Woo, WanChuck [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Sunhong [Research Institute of Industrial Science & Technology, Hyo-ja-dong, Po-Hang, Kyoung-buk, San 32 (Korea, Republic of)

    2015-08-01

    Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures

  9. Electroless alloy/composite coatings

    Indian Academy of Sciences (India)

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  10. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying.

    Science.gov (United States)

    Janicki, Damian

    2018-01-05

    TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent.

  11. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  12. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  13. The mechanical properties and microstructure of the bionic alloy-ceramic laminated composite

    International Nuclear Information System (INIS)

    Shi, Guodong; Wu, Zhanjun; Wang, Zhi; Liang, Jun

    2012-01-01

    Highlights: → The bionic alloy-ceramic laminated composite was fabricated by EB-PVD. → Mechanical properties and microstructure of laminated composite were investigated. → Laminated composite was heat treated in order to improve the tensile strength. -- Abstract: In the present work, the bionic alloy-ceramic laminated composite was fabricated by electron beam-physical vapor deposition method. The ingots of Ni-20Co-12Cr-4Al (wt.%) and ZrO 2 -8 mol%Y 2 O 3 were used as the sources of the alloy layer and ceramic layer, respectively. The laminated composite was generally destroyed within the ceramic layer when the interlaminar strength was determined, which revealed that the excellent interface bonding between the ceramic layer and the alloy layer. The obvious diffusion interfaces between the ceramic and alloy layers were readily detected, which was favorable to the mechanical properties of the laminated composite. In the heat treatment process, the diffusion of the flaws within the ceramic layer and/or alloy layer to the interface between the ceramic layer and alloy layer was easier compared with the occurrence of interlaminar diffusion. It was confirmed by the X-ray diffractometer that the reaction of the ceramic layer with alloy layer was simple physical diffusion. The tensile strength of the laminated composite increased first and then decreased as the heat treatment time increased, which was attributed to the mutual reaction of the increase in the relative density with the formation of the flaws located at the interface.

  14. Multifunctional layered magnetic composites

    Science.gov (United States)

    Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas

    2015-01-01

    Summary A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158

  15. Multifunctional layered magnetic composites

    Directory of Open Access Journals (Sweden)

    Maria Siglreitmeier

    2015-01-01

    Full Text Available A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material.

  16. Strain relaxation during solid-phase epitaxial crystallisation of Ge{sub x}Si{sub 1-x} alloy layers with depth dependent G{sub e} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Wahchung; Elliman, R.G.; Kringhoj, P. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    The solid-phase epitaxial crystallisation of depth dependent Ge{sub x}Si{sub lx} alloy layers produced by implanting Ge into Si substrates was studied. In-situ monitoring was done using time-resolved reflectivity (TRR) whilst post-anneal defect structures were characterised by Rutherford backscattering and channeling spectrometry (RBS-C) and transmission electron microscopy (TEM). Particular attention was directed at Ge concentrations above the critical concentration for the growth of fully strained layers. Strain relief is shown to be correlated with a sudden reduction in crystallisation velocity caused by roughening of the crystalline/amorphous interface. 11 refs., 1 tab., 2 figs.

  17. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  18. Layered Structures in Deformed Metals and Alloys

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Layered structures characterize metals and alloys deformed to high strain. The morphology is typical lamellar or fibrous and the interlamellar spacing can span several length scales down to the nanometer dimension. The layered structures can be observed in bulk or in surface regions, which is shown...... by the way of examples of different processing routes: friction, wire drawing, shot peening, high pressure torsion and rolling. The interlamellar spacing reaches from 5-10 nanometers to about one micrometer and the analysis will cover structural evolution, strengthening parameters and strength-structure...... relationships. Finally, the results will be discussed based on universal principles for the evolution of microstructure and properties during plastic deformation of metals and alloys from low to high strain....

  19. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  20. The Kinetics Of Ti-1Al-1Mn Alloy Thermal Oxidation And Charcteristic Of Oxide Layer

    Directory of Open Access Journals (Sweden)

    Klimecka-Tatar D.

    2015-06-01

    Full Text Available The main goal of the study was to carry out the treatment of cyclic oxidation of Ti alloy (Ti-1Al-1Mn in air atmosphere. Based on measurements of mass gain of titanium alloy samples (Ti-1Al-1Mn the kinetic oxidation curves during cyclic annealing were determined. The oxidized surface of the titanium alloy was carefully observed with optical microscopy equipment and the geometrical development, shape and surface morphology were defined. The phase composition of the obtained oxide layers on the Ti-alloy with qualitative analysis of the X-ray were defined. Since titanium alloys are among the most widely used metallic materials in dental prosthetics the corrosion measurements in a solution simulating the environment of the oral cavity were carried out. The results confirmed that the used titanium alloy easily covered with oxides layers, which to some extent inhibit the processes of electrochemical corrosion in artificial saliva solution.

  1. Filiform corrosion imaged beneath protection layers on Al alloys

    Science.gov (United States)

    Szymanski, R.; Jamieson, D. N.; Hughes, A. E.; Mol, A.; van der Zwaag, S.; Ryan, C. G.

    2002-05-01

    Aluminium alloys used extensively in aircraft, ships and land transport vehicles are typically protected by a thin conversion coating based on chromium compounds followed by a surface protection layer of polymer paint. Breeching of the protection layer and exposure to a salt spray induces the growth of filiforms from the breech across the aluminium surface under the protective layers. The growth of the filiform is promoted by the formation of a galvanic cell based on chlorine chemistry. In this paper we study the elemental composition of the filiforms using a nuclear microprobe with 3 MeV proton beams. The deep penetration of this beam allows the composition of the intact filiform to be probed in situ through the surface layers. We present elemental maps of the intact filiforms that clearly highlight the presence of Cl in the growing end of the filiform, where the Cl concentration exceeds 20 wt.%, and the peculiar role of potassium in the trail of oxide left behind the growing filiform head.

  2. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  3. Inventory of alloy composition, microstructures and mechanical ...

    African Journals Online (AJOL)

    Inventory of alloy composition, microstructures and mechanical properties of automobile engine parts. ... Journal of Applied Science, Engineering and Technology ... This research work investigated the chemical compositions, microstructures and mechanical properties of the ferrous and non-ferrous auto engine parts such ...

  4. Composition profile determination in isomorphous binary alloys

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1983-07-01

    The inhomogeneity along the growth axis of the pseudo-binary alloys is due to the segregation of the solute which will be mixed in the melt due to convective and diffusive flows. A process for determination of the exact composition profile by measurements of the crystal density, for alloys of the type A sub(1-x) B sub(x), is shown. (Author) [pt

  5. PASSIVATION LAYER STABILITY OF A METALLIC ALLOY WASTE FORM

    International Nuclear Information System (INIS)

    Williamson, M.; Mickalonis, J.; Fisher, D.; Sindelar, R.

    2010-01-01

    Alloy waste form development under the Waste Forms Campaign of the DOE-NE Fuel Cycle Research and Development program includes the process development and characterization of an alloy system to incorporate metal species from the waste streams generated during nuclear fuel recycling. This report describes the tests and results from the FY10 activities to further investigate an Fe-based waste form that uses 300-series stainless steel as the base alloy in an induction furnace melt process to incorporate the waste species from a closed nuclear fuel recycle separations scheme. This report is focused on the initial activities to investigate the formation of oxyhydroxide layer(s) that would be expected to develop on the Fe-based waste form as it corrodes under aqueous repository conditions. Corrosion tests were used to evaluate the stability of the layer(s) that can act as a passivation layer against further corrosion and would affect waste form durability in a disposal environment.

  6. Castings Dimensions Influence on the Alloyed Layer Thickness

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-03-01

    Full Text Available The paper presents the results of simulation of alloy layer formation process on the model casting. The first aim of this study was to determine the influence of the location of the heat center on alloy layer’s thickness with the use of computer simulation. The second aim of this study was to predict the thickness of the layer. For changes of technological parameters, the distribution of temperature in the model casting and temperature changes in the characteristic points of the casting were found for established changes of technological parameters. Numerical calculations were performed using programs NovaFlow&Solid. The process of obtaining the alloy layer with good quality and proper thickness depends on: pouring temperature, time of premould hold at the temperature above 1300°C. The obtained results of simulation were loaded to authorial program Preforma 1.1 in order to determine the predicted thickness of the alloy casting.

  7. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys.

    Science.gov (United States)

    Ostrowski, Nicole; Lee, Boeun; Enick, Nathan; Carlson, Benjamin; Kunjukunju, Sangeetha; Roy, Abhijit; Kumta, Prashant N

    2013-11-01

    Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation. Copyright © 2013. Published by Elsevier Ltd.

  8. The investigation on the stratification phenomenon of aluminum rear alloyed layer in silicon solar cells

    International Nuclear Information System (INIS)

    Xi, Xi; Chen, Xiaojing; Zhang, Song; Shi, Zhengrong; Li, Guohua

    2015-01-01

    Highlights: • A stratification phenomenon of Al rear alloyed layer in solar cells is found. • The stratification phenomenon is related to the formula of the paste. • From the analyses, the stratification phenomenon is redundant and deleterious. • The highest cell's efficiency without stratification phenomenon is close to 20%. - Abstract: A stratification phenomenon of aluminum rear alloyed layer was found in the study of aluminum rear emitter N-type solar cells. It is related to the composition of the paste. The outer aluminum alloyed layer can be called as aluminum doped emitter, and it gives the contribution to the junction formation. The inner layer is only the Al/Si mixed layer. The aluminum atoms in this layer are not bonded with silicon atoms. This inner layer will ruin the quality of the rear junction. The shunt resistance, reverse current density and the junction electric leakage value are getting worse when the thickness of the inner layer increases. The thickness of the inner Al/Si mixed layer increases with the increasing of firing temperature, while the depth of the aluminum doped emitter almost does not change. From the analyses, the inner Al/Si mixed layer is redundant and deleterious. Only a single deep aluminum doped rear emitter is needed for N-type solar cells. The highest power conversion efficiency of 19.93% for aluminum rear emitter N-type cells without the stratification phenomenon has been obtained

  9. Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes

    Science.gov (United States)

    Lugovskoy, Alex; Zinigrad, Michael; Kossenko, Aleksey; Kazanski, Barbara

    2013-01-01

    Plasma electrolytic oxidation (PEO) of aluminum alloy 5052 in alkaline-silicate electrolytes having different SiO2/Na2O ratios (silicate indexes) was studied. For all the electrolytes 20-90 μm thick technological layer was obtained; composition, structure and properties of the oxidized layer were studied. For each sample, the oxidized layer consists of a denser internal and looser external sublayer. While for “n = 1 electrolytes” the oxidized layer is mainly formed by several kinds of alumina, the principal constituent of the oxidized layer for “n = 3 electrolytes” is mullite. Measurements of microhardness evidenced that it is apparently not influenced by the kind of silicate (n = 1 or n = 3) and by its concentration in the electrolyte. Electrolytes with silicate index n = 3 ensure better corrosion protection than those with n = 1. Corrosion protection parameters are significantly better for all PEO oxidized samples than for the untreated Al5052 alloy.

  10. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  11. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  12. Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating

    NARCIS (Netherlands)

    Pei, Y.T.; Zuo, T.C.

    1998-01-01

    A gradient TiC–(Ni alloy) composite coating was produced by one step laser cladding with pre-placed mixture powder on a 1045 steel substrate. The clad layers consisted of TiC particles, γ-Ni primary dendrites and interdendritic eutectics. From the bottom to the top of the clad layer produced at 2000

  13. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation...... of the effect of vapour pressure, structure of intermetallic particles and thickness of boehmite films on the corrosion behaviour of aluminium alloys....

  14. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yeob [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of); Goodenough, Mark [Strategic Marketing, Tata Steel, Warwickshire (United Kingdom)

    2011-12-15

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications.

  15. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    International Nuclear Information System (INIS)

    Kim, Tae Yeob; Goodenough, Mark

    2011-01-01

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications

  16. Numerical predicting of recycling friendly wrought aluminium alloy compositions

    Directory of Open Access Journals (Sweden)

    Varužan Kevorkijan

    2013-09-01

    Full Text Available The model presented in this work enables the design of optimal (standard and non-standard “recycling-friendly” compositions and properties of wrought aluminium alloys with significantly increased amounts of post-consumed scrap. The following two routes were modelled in detail: (i the blending of standard and non-standard compositions of wrought aluminium alloys starting from post-consumed aluminium scrap sorted to various degrees simulated by the model; and (ii changing the initial standard composition of wrought aluminium alloys to non-standard “recycling friendly” ones - with broader concentration tolerance limits of alloying elements, without influencing the selected alloy properties, specified in advance.

  17. Properties of titanium-alloyed DLC layers for medical applications

    Science.gov (United States)

    Joska, Ludek; Fojt, Jaroslav; Cvrcek, Ladislav; Brezina, Vitezslav

    2014-01-01

    DLC-type layers offer a good potential for application in medicine, due to their excellent tribological properties, chemical resistance, and bio-inert character. The presented study has verified the possibility of alloying DLC layers with titanium, with coatings containing three levels of titanium concentration prepared. Titanium was present on the surface mainly in the form of oxides. Its increasing concentration led to increased presence of titanium carbide as well. The behavior of the studied systems was stable during exposure in a physiological saline solution. Electrochemical impedance spectra practically did not change with time. Alloying, however, changed the electrochemical behavior of coated systems in a significant way: from inert surface mediating only exchange reactions of the environment in the case of unalloyed DLC layers to a response corresponding rather to a passive surface in the case of alloyed specimens. The effect of DLC layers alloying with titanium was tested by the interaction with a simulated body fluid, during which precipitation of a compound containing calcium and phosphorus - basic components of the bone apatite - occurred on all doped specimens, in contrast to pure DLC. The results of the specimens' surface colonization with cells test proved the positive effect of titanium in the case of specimens with a medium and highest content of this element. PMID:25093457

  18. Natural melanin composites by layer-by-layer assembly

    Science.gov (United States)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  19. Study of diffusion processes in the oxide layer of zirconium alloys

    Directory of Open Access Journals (Sweden)

    Sialini P.

    2016-03-01

    Full Text Available In the active zone of a nuclear reactor where zirconium alloys are used as a coating material, this material is subject to various harmful impacts. During water decomposition reactions, hydrogen and oxygen are evolved that may diffuse through the oxidic layer either through zirconium dioxide (ZrO2 crystals or along ZrO2 grains. The diffusion mechanism can be studied using the Ion Beam Analysis (IBA method where nuclear reaction 18O(p,α15N is used. A tube made of zirconium alloy E110 (with 1 wt. % of Nb was used for making samples that were pre-exposed in UJP PRAHA a.s. and subsequently exposed to isotopically cleansed environment of H2 18O medium in an autoclave. The samples were analysed with gravimetric methods and IBA methods performed at the electrostatic particle accelerator Tandetron 4130 MC in the Nucler Physics Institute of the CAS, Řež. With IBA methods, the overall thicknesses of corrosion layers on the samples, element composition of the alloy and distribution of oxygen isotope 18O in the corrosion layer and its penetration in the alloy were identified. The retrieved data shows at the oxygen diffusion along ZrO2 grains because there are two peaks of 18O isotope concentrations in the corrosion layer. These peaks occur at the environment-oxide and oxide-metal interface. The element analysis identified the presence of undesirable hafnium.

  20. Effects of chemical composition on the corrosion of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  1. Deposition of Chitosan Layers on NiTi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kowalski P.

    2015-04-01

    Full Text Available The NiTi shape memory alloys have been known from their application in medicine for implants as well as parts of medical devices. However, nickel belongs to the family of elements, which are toxic. Apart from the fact that nickel ions are bonded with titanium into intermetallic phase, their presence may cause allergy. In order to protect human body against release of nickel ions a surface of NiTi alloy can be modified with use of titanium nitrides, oxides or diamond-like layers. On the one hand the layers can play protective role but on the other hand they may influence shape memory behavior. Too stiff or too brittle layer can lead to limiting or completely blocking of the shape recovery. It was the reason to find more elastic covers for NiTi surface protection. This feature is characteristic for polymers, especially, biocompatible ones, which originate in nature. In the reported paper, the chitosan was applied as a deposited layer on surface of the NiTi shape memory alloy. Due to the fact that nature of shape memory effect is sensitive to thermo and/or mechanical treatments, the chitosan layer was deposited with use of electrophoresis carried out at room temperature. Various deposition parameters were checked and optimized. In result of that thin chitosan layer (0.45µm was received on the NiTi alloy surface. The obtained layers were characterized by means of chemical and phase composition, as well as surface quality. It was found that smooth, elastic surface without cracks and/or inclusions can be produced applying 10V and relatively short deposition time - 30 seconds.

  2. Development of Novel Two-dimensional Layers, Alloys and Heterostructures

    Science.gov (United States)

    Liu, Zheng

    2015-03-01

    The one-atom-think graphene has fantastic properties and attracted tremendous interests in these years, which opens a window towards various two-dimensional (2D) atomic layers. However, making large-size and high-quality 2D layers is still a great challenge. Using chemical vapor deposition (CVD) method, we have successfully synthesized a wide varieties of highly crystalline and large scale 2D atomic layers, including h-BN, metal dichalcogenides e.g. MoS2, WS2, CdS, GaSe and MoSe2 which belong to the family of binary 2D materials. Ternary 2D alloys including BCN and MoS2xSe2 (1 - x) are also prepared and characterized. In addition, synthesis of 2D heterostructures such as vertical and lateral graphene/h-BN, vertical and lateral TMDs are also demonstrated. Complementary to CVD grown 2D layers, 2D single-crystal (bulk) such as Phosphorene (P), WTe2, SnSe2, PtS2, PtSe2, PdSe2, WSe2xTe2 (1 - x), Ta2NiS5andTa2NiSe5 are also prepared by solid reactions. There work provide a better understanding of the atomic layered materials in terms of the synthesis, atomic structure, alloying and their physical properties. Potential applications of these 2D layers e.g. optoelectronic devices, energy device and smart coating have been explored.

  3. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  4. Impact and modal analysis for different alloy wheel compositions

    Science.gov (United States)

    Suman, Shwetabh; Abhimanyu Abrol, J.; Ravi, K.

    2017-11-01

    Wheels are an important component in the vehicle. The strength of the Alloy wheel rim is an important property of the Alloy wheel, which plays an important part in determining the overall performance of the vehicle, the structural integrity of the rim and the life of the Alloy wheel rim. With the advent of new Alloy wheel materials, new options are available to replace the conventional Aluminium Alloy wheels with new ones. The new Alloy wheel rim material and design need to be tested virtually for optimizing the appropriate design and material and the optimised wheel in virtual mode can be tested experimentally for the performance in real-time conditions before they can be used in the vehicles. The work in this project includes doing the impact and modal analysis for different alloy wheel compositions. From the results obtained, the optimum alloy wheel is suggested, which can be considered with further experimental validation.

  5. Producing of multicomponent and composite surface layers

    International Nuclear Information System (INIS)

    Wierzchon, T.; Bielinski, P.; Michalski, A.

    1995-01-01

    The paper presents a new method of producing multicomponent and composite layers on steel substrate. The combination of nickel plating with glow-discharge bordering or impulse-plasma deposition method gives an opportunity to obtain good properties of surface layers. The results of examinations of carbon 45 (0.45%C) steel, nickel plated and then borided under glow discharge conditions or covered with TiN layers are presented. The corrosion and friction wear resistance of such layers are markedly higher than for layer produced on non nickel plated substrates. (author). 19 refs, 5 figs

  6. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)

    2017-11-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  7. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    International Nuclear Information System (INIS)

    Arguelles O, J. L.; Corona R, M. A.; Marquez H, A.; Saldana R, A. L.; Saldana R, A.; Moreno P, J.

    2017-01-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co 2 B, Cr B and Mo 2 B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  8. Long-term thermal degradation and alloying constituent effects on five boron/aluminum composites

    Science.gov (United States)

    Olsen, G. C.

    1982-01-01

    Thermal exposure effects on the properties of five boron/aluminum composite systems were experimentally investigated. The composite systems were 49 volume percent boron fibers (203 micron diameter) in aluminum-alloy matrices 1100 Al, 2024 Al, 3003 Al, 5052 Al, and 6061 Al. Specimens were thermally exposed up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 2000 thermal cycles between 200 K and 590 K. Composite longitudinal and transverse tensile strengths, longitudinal compression strength, and in-plane shear strength were determined. None of the systems was severely degraded by exposure at 590 K. The best performing system was B-2024 Al. Effects of matrix alloys on degradation mechanisms were experimentally investigated. Composite specimens and individual fibers were metallurgically analyzed with a scanning electron microscope and an electron microprobe to determine failure characteristics, chemical element distribution, and reaction layer morphology. Alloying constituents were found to be affect the composite degradation mechanisms as follows: alloys containing iron, but without manganese as a stabilizer, caused increased low-temperature degradation; alloys containing magnesium, iron, or manganese caused increased degradation; and alloys containing copper caused increased fiber strength.

  9. Surface Modification of the Ti6Al4V Alloy with Silicon Carbonitride Layer Deposited by PACVD Method

    Science.gov (United States)

    Jonas, Stanisława; Konefał-Góral, Jadwiga; Małek, Anna; Kluska, Stanisława; Grzesik, Zbigniew

    2014-09-01

    Four different layers of various silicon, carbon and nitrogen contents on the Ti6Al4V alloy and (001)Si wafers have been deposited by means of Plasma Assisted Chemical Vapor Deposition (PACVD) method. The layers were obtained from reactive gas mixture containing SiH4, CH4, NH3 and Ar. After deposition the structure and chemical composition of modified surfaces have been analyzed with use of SEM/EDS technique. Based on these results and thermodynamic calculations, the diffusion coefficients, D, for nitrogen and carbon in alloy were discussed. Scratch test shown that silicon carbonitride layers have good adhesion to metal surface. In order to determine atomic structure of obtained layers, FTIR spectra for layer-(001)Si and layer-Ti6Al4V were registered.

  10. Alloys and composites of polybenzoxazines properties and applications

    CERN Document Server

    Rimdusit, Sarawut; Tiptipakorn, Sunan

    2013-01-01

    This book provides an introduction to the unique and fascinating properties of alloys and composites from novel commercialized thermosetting resins based on polybenzoxazines. Their outstanding properties such as processability, thermal, mechanical, electrical properties as well as ballistic impact properties of polybenzoxazine alloys and composites make them attractive for various applications in electronic packaging encapsulation, light weight ballistic armour composites and bipolar plate in fuel cells.

  11. Al-TiH2 Composite Foams Magnesium Alloy

    Science.gov (United States)

    Prasada Rao, A. K.; Oh, Y. S.; Ain, W. Q.; A, Azhari; Basri, S. N.; Kim, N. J.

    2016-02-01

    The work presented here in describes the synthesis of aluminum based titanium-hydride particulate composite by casting method and its foaming behavior of magnesium alloy. Results obtained indicate that the Al-10TiH2 composite can be synthesized successfully by casting method. Further, results also reveal that closed-cell magnesium alloy foam can be synthesized by using Al-10TiH2 composite as a foaming agent.

  12. Superplasticity in powder metallurgy aluminum alloys and composites

    International Nuclear Information System (INIS)

    Mishra, R.S.; Bieler, T.R.; Mukherjee, A.K.

    1995-01-01

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  13. A study of the formation of Cr-surface alloyed layer on structural alloy steel by Co2 laser

    International Nuclear Information System (INIS)

    Kim, T.H.; Han, W.S.

    1986-01-01

    In order to improve wear and erosion-resistances of a structural alloy steel (SNCM 8) during heat-cycling, chromium-alloyed layers were produced on the surface by irradiating Co 2 laser. Specimens were prepared either by electroplating of hard-chromium or coating of chromium powders on the steel followed by the laser treatment. Index values, which related the depth and the width of the alloyed layers to the scanning speed of laser, for both samples are experimentally measured. At a fixed scanning speed, while both samples resulted in a similar depth of the alloyed layers, the chromium powder coated specimen showed larger width of the alloyed layer than the chromium electroplated one. The hardness values of the alloyed layers in both samples were slightly lower than that of the martensitic region beneath the alloyed layers. But they are considerably higher than those of steel matrices. Regardless of the prior treatments before laser irradiation, distributions of chromium were fairly uniform throughout the alloyed layers. (Author)

  14. Study on thermo-oxide layers of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Luo Lizhu; Yang Jiangrong; Zhou Ping

    2010-01-01

    Surface oxides structure of uranium-niobium alloys which were annealed under different temperatures (room temperature, 100, 200, 300 degree C, respectively)in air were studied by X-ray photoelectron spectroscopy (XPS) analysis and depth profile. Thickness of thermo-oxide layers enhance with the increasing oxide temperature, and obvious changes to oxides structure are observed. Under different delt temperatures, Nb 2 O 5 are detected on the initial surface of U-Nb alloys, and a layer of NbO mixed with some NbO x (0 2 O 5 and Nb metal. Dealing samples in air from room temperature to 200 degree C, non-stoichiometric UO 2+x (UO 2 + interstitial oxygen, P-type semiconductor) are found on initial surface of U-Nb alloys, which has 0.7 eV shift to lower binding energy of U 4f 7/2 characteristics comparing to that of UO 2 . Under room temperature, UO 2 are commonly detected in the oxides layer, while under temperature of 100 and 200 degree C, some P-type UO 2+x are found in the oxide layers,which has a satellite at binding energy of 396.6 eV. When annealing at 300 degree C, higher valence oxides, such as U 3 O 8 or UO x (2 5/2 and U 4f 7/2 peaks are 392.2 and 381.8 eV, respectively. UO 2 mixed uranium metal are the main compositions in the oxide layers. From the results, influence of temperature to oxidation of uranium is more visible than to niobium in uranium-niobium alloys. (authors)

  15. Surface alloys as interfacial layers between quasicrystalline and periodic materials

    Science.gov (United States)

    Duguet, T.; Ledieu, J.; Dubois, J. M.; Fournée, V.

    2008-08-01

    Low adhesion with normal metals is an intrinsic property of many quasicrystalline surfaces. Although this property could be useful to develop low friction or non-stick coatings, it is also responsible for the poor adhesion of quasicrystalline coatings on metal substrates. Here we investigate the possibility of using complex metallic surface alloys as interface layers to enhance the adhesion between quasicrystals and simple metal substrates. We first review some examples where such complex phases are formed as an overlayer. Then we study the formation of such surface alloys in a controlled way by annealing a thin film deposited on a quasicrystalline substrate. We demonstrate that a coherent buffer layer consisting of the γ-Al4Cu9 approximant can be grown between pure Al and the i-Al-Cu-Fe quasicrystal. The interfacial relationships between the different layers are defined by [111]_{\\mathrm {Al}}\\parallel [110]_{\\mathrm {Al_4Cu_9}}\\parallel [5\\mathrm {f}]_{i\\mbox {-}\\mathrm {Al\\mbox {--}Cu \\mbox {--}Fe}} .

  16. Surface alloys as interfacial layers between quasicrystalline and periodic materials

    Energy Technology Data Exchange (ETDEWEB)

    Duguet, T; Ledieu, J; Dubois, J M; Fournee, V [Laboratoire de Science et Genie des Materiaux et de Metallurgie, UMR 7584 CNRS-Nancy Universite, Ecole des Mines de Nancy, Parc de Saurupt, F-54042 Nancy (France)], E-mail: fournee@lsg2m.org

    2008-08-06

    Low adhesion with normal metals is an intrinsic property of many quasicrystalline surfaces. Although this property could be useful to develop low friction or non-stick coatings, it is also responsible for the poor adhesion of quasicrystalline coatings on metal substrates. Here we investigate the possibility of using complex metallic surface alloys as interface layers to enhance the adhesion between quasicrystals and simple metal substrates. We first review some examples where such complex phases are formed as an overlayer. Then we study the formation of such surface alloys in a controlled way by annealing a thin film deposited on a quasicrystalline substrate. We demonstrate that a coherent buffer layer consisting of the {gamma}-Al{sub 4}Cu{sub 9} approximant can be grown between pure Al and the i-Al-Cu-Fe quasicrystal. The interfacial relationships between the different layers are defined by [111]{sub Al} parallel [110]{sub Al4Cu9} parallel [5f]{sub i-Al-}C{sub u-Fe}.

  17. Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Park, Y.S.; Butt, D.P.

    1999-01-01

    The oxidation behavior of titanium-tantalum alloys was investigated with respective concentrations of each element ranging from 0 to 100 wt.%. Alloys were exposed to argon-20% oxygen at 800 to 1400 C. The slowest oxidation rates were observed in alloys with 5--20% Ta. The oxidation kinetics of alloys containing less than approximately 40% Ta were approximately parabolic. Pure Ta exhibited nearly linear kinetics. Alloys containing 50% or more Ta exhibited paralinear kinetics. The activation energies for oxidation ranged between 232 kJ/mole for pure Ti and 119 kJ/mole for pure Ta, with the activation energies of the alloys falling between these values and generally decreasing with increasing Ta content. The activation energies for oxidation of the end members, Ti and Ta, agree well with published values for the activation energies for diffusion of oxygen in α-Ti and Ta. Scale formation in the alloys was found to be complex exhibiting various layers of Ti-, Ta-, and TiTa-oxides. The outermost layer of the oxidized alloys was predominantly rutile (TiO 2 ). Beneath the TiO 2 grew a variety of other oxides with the Ta content generally increasing with proximity to the metal-oxide interface. It was found that the most oxidation-resistant alloys had compositions falling between Ti-5Ta and Ti-15Ta. Although Ta stabilizes the β-phase of Ti, the kinetics of oxidation appeared to be rate limited by oxygen transport through the oxygen-stabilized α-phase. However, the kinetics are complicated by the formation of a complex oxide, which cracks periodically. Tantalum appears to increase the compositional range of oxygen-stabilized α-phase and reduces both the solubility of oxygen and diffusivity of Ti in the α- and β-phases

  18. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy

    Science.gov (United States)

    Zhao, Yan-Bin; Liu, Han-Peng; Li, Chang-Yang; Chen, Yong; Li, Shuo-Qi; Zeng, Rong-Chang; Wang, Zhen-Lin

    2018-03-01

    A polyvinylpyrrolidone (PVP)/polyacrylic acid (PAA) layer-by-layer (LbL) assembled composite coating with a multilayer structure for the corrosion protection of AZ31 magnesium alloy was prepared by a novel spin-casting method. The microstructure and composition of this coating were investigated by means of SEM, XRD and FT-IR measurements. Moreover, electrochemical, immersion and scratch tests in vitro were performed to measure the corrosion performance and the adhesion strength. These results indicated that the (PVP/PAA)10 composite coating with defect-free, dense and uniform morphologies could be successfully deposited on the surface of magnesium alloy. The coating had excellent corrosion resistance and adhesion strength.

  19. Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components

    National Research Council Canada - National Science Library

    Crone, Wendy C; Ellis, Arthur B; Perepezko, John H

    2007-01-01

    .... Both SMA-polymer and SMA-metal composites were created, as well as new fabrication strategies for producing NiTi and CuAlNi shape memory alloy particles with refined size which still display shape...

  20. Fatigue behaviour of 6061 aluminium alloy and its composite

    OpenAIRE

    Hwa, Ping

    2001-01-01

    Fatigue behaviour of an artificial aged powder metallurgy 6061 aluminium alloy, and a composite made of this alloy with 15% volume fraction of SiCp was investigated. The alloy was subjected to T6 heat treatment, as was the composite material chosen (which incorporated SiC particles of average size 30pm). An extensive experimental programme was carried out in which fatigue lives were determined using load-controlled axial loading of unnotched cylindrical samples, at stress ratios of-1 and 0.1....

  1. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy

    Science.gov (United States)

    Zhang, Renhui; Liang, Jun; Wang, Qing

    2012-03-01

    In this work, an electrically conductive, corrosion resistant graphite-dispersed styrene-acrylic emulsion composite coating on AZ91D magnesium alloy was successfully produced by the method of anodic deposition. The microstructure, composition and conductivity of the composite coating were characterized using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and four electrode volume resistivity instrument, respectively. The corrosion resistance of the coating was evaluated using potentiodynamic polarization measurements and salt spray tests. It is found that the graphite-dispersed styrene-acrylic emulsion composite coating was layered structure and displayed good electrical conductivity. The potentiodynamic polarization tests and salt spray tests reveal that the composite coating was successful in providing superior corrosion resistance to AZ91D magnesium alloy.

  2. Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys

    Science.gov (United States)

    Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan

    2017-12-01

    Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.

  3. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  4. PERSPECTIVES OF NANOPOWDERS APPLICATION FOR MANUFACTURING OF MODIFYING ALLOYING COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. Kalinichenko

    2015-01-01

    Full Text Available Application of nanomaterials for grain refining of metals and its allac is of great interest as it aimis achieveto higher physicalmechanical properties in finished parts. Analysis shows that to gain high effectiveness of nanoparticles it is important to provide proper input of these particles into alloying alloy. The aim of present research is study of initial nanoparticles structure on the base of titanium, boron, yttrium and carbon nanotubes as well as development of method to manufacture alloying alloys containing nanoparticles.Investigations of nanopowders phase compositions on the base of titanium, boron and yttrium have shown that active elements such as boron carbide, titanium carbide and nitride, yttrium oxide are base compounds of these nanopowders. Powder particles are formed by primary structural elements having mainly plate state (titanium and boron carbides and containing equiaxial inclusions with sizes of 5–200 nm. Chemical composition of specimens synthesized is uniform and contains 98.0 – 99.5% of main compound.Results of metal-protector and nanoparticles mixing have revealed that the increase of mixing duration from 2 to 6 hours assist to more uniform elements distribution through the pellet volume. Applying extrusion method specimens of alloying alloys have been produced and elements distribution in cross-section and longitudinal directions were determined.Analysis of research implemented has shown that distribution of active nanopowders in matrix is more uniform in extruded alloying alloys specimens compared to ones produced by methods of sintering or pressing of powder mixtures.

  5. Phase and structural states in the NiTi-based alloy surface layer formed by electron-ion-plasma methods using tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Neiman, Aleksei A., E-mail: nasa@ispms.tsc.ru; Lotkov, Aleksandr I.; Gudimova, Ekaterina Y. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, Ludmila L., E-mail: meisner2l@yahoo.com; Semin, Viktor O. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.

  6. Optical Properties of Epitaxial Al{sub x}In{sub 1-x}Sb Alloy Layers

    Energy Technology Data Exchange (ETDEWEB)

    Komkov, O. S., E-mail: okomkov@yahoo.com [St. Petersburg State Electrotechnical University LETI (Russian Federation); Semenov, A. N. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Firsov, D. D. [St. Petersburg State Electrotechnical University LETI (Russian Federation); Meltser, B. Ya.; Solov' ev, V. A.; Popova, T. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Pikhtin, A. N. [St. Petersburg State Electrotechnical University LETI (Russian Federation); Ivanov, S. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

    2011-11-15

    Optical studies of unstrained narrow-gap Al{sub x}In{sub 1-x}Sb semiconductor alloy layers are carried out. The layers are grown by molecular-beam epitaxy on semi-insulating GaAs substrates with an AlSb buffer. The composition of the alloys is varied within the range of x = 0-0.52 and monitored by electron probe microanalysis. The band gap E{sub g} is determined from the fundamental absorption edge with consideration for the nonparabolicity of the conduction band. The refined bowing parameter in the experimental dependence E{sub g}(x) for the Al{sub x}In{sub 1-x}Sb alloys is 0.32 eV. This value is by 0.11 eV smaller than the commonly referred one.

  7. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  8. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  9. The Role of the Interface in Refractory Metal Alloy Composites

    Science.gov (United States)

    Grobstein, Toni; Yun, Hee M.

    1991-01-01

    Creep-rupture and tensile tests have been used to evaluate thoriated W-wire reinforced Nb-1 percent Zr alloy matrix composites fabricated via arc-spray monotape technique. A significant creep strength enhancement was observed over the unreinforced matrix alloy while matrix integrity was maintained; the fiber/matrix interface phase is noted to be a strong and ductile W/Nb alloy, which is formed due to the mutual solubility of the constituent metals. High strength, toughness, and thermal stability are demonstrated by this material system, which is also resistant to liquid alkali metal corrosion.

  10. Influence of Chemical Composition on Porosity in Aluminium Alloys

    OpenAIRE

    Kucharčík L.; Brůna M.; Sládek A.

    2014-01-01

    Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si alu...

  11. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    DEFF Research Database (Denmark)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.

    2016-01-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids,...

  12. The gradient structure of the NiTi surface layers subjected to tantalum ion beam alloying

    Science.gov (United States)

    Girsova, S. L.; Poletika, T. M.; Meisner, L. L.; Schmidt, E. Yu

    2017-05-01

    The NiTi shape memory alloy has been modified by ion implantation with Ta to improve the surface and biological properties. The elemental and phase composition and structure of the surface and near-surface layers of NiTi specimens after the Ta ion implantation with the fluency D = 3 × 1017 cm-2 and D = 6 × 1017 cm-2 are examined. The methods of Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and electron dispersion analysis (EDS) are used. It is found that a nonuniform distribution of elements along the depth of the surface layer after the ion implantation of NiTi specimens, regardless of the regime, is accompanied by the formation of a number of sublayer structures.

  13. Microwave assessment of two layer composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdelazeez, M.K.; Ahmad, M.S.; Musameh, S.M.; Zihlif, A.M. (Univ. of Jordan, Amman (Jordan)); Martuscelli, E.; Ragosta, G.; Scafora, E. (Instituto di Ricerche su Technologia dei Polimero, Arco Felice (Italy))

    This paper reports results of further measurements performed on nickel coated carbon fiber-polypropylene composites at microwave frequencies. These measurements are performed on one and two specimens covering different fiber concentrations with different separating distances in the two specimens case. The measurements cover both of the insertion loss (IL) and the return loss (RL), and the results indicate strong dependence on the frequency and separating distance. The shielding effectiveness (SE) is determined from the measured values of IL and RL with its value exceeding 62 dB at 9 GHz and exceeding 55 dB at 10 GHz for the two specimens case. The two layers case seems to offer an interesting behavior over the frequency band as the separating distance start to exceed 10 mm. This specimen arrangement enhances the SE of this composite material compared with one layer case and offer a promising behavior for different applications.

  14. Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Joon Hyun

    2001-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature

  15. Influence of Chemical Composition on Porosity in Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Kucharčík L.

    2014-06-01

    Full Text Available Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.

  16. The kinetics of composite particle formation during mechanical alloying

    Science.gov (United States)

    Aikin, B. J. M.; Courtney, T. H.

    1993-01-01

    The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.

  17. Corrosion protection of iron using composite coatings based on zinc and zinc alloys

    International Nuclear Information System (INIS)

    Raichevski, G.; Boshkov, N.; Koleva, D.; Tsvetanov, Ch.

    2003-01-01

    The electrodeposition conditions of mono- and bi-layer protective systems consisting of galvanic zinc and Zn-Co alloy additionally treated with chromating solutions are described and discussed. Some of the separate layers contain electrophoretically included nanoparticles (size 300 - 700 nm) of copolymers. The latter are prepared using special modeling process and consist of polypropylene oxide - PPO - and polyethylene oxide - PEO. These composite layers and their peculiarities are investigated using SEM studies before and after corrosion treatment in 5% NaCl. An important effect was established - some nanoparticles hold back metal ions during the electro crystallization and after the chemical passivation take part in the microstructure of the chromating film forming a net of micropores on the whole surface. The latter leads to the conclusion about increased protective ability of the multi-layer coating containing zinc as a final layer. (Original)

  18. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  19. Plasma-nitride α-βTi alloy: layer characterization and mechanical properties modification

    International Nuclear Information System (INIS)

    Raveh, A.; Bussiba, A.; Bettelheim, A.; Katz, Y.

    1993-01-01

    Beyond continuous efforts to develop advanced processing methods or new directions in surface modification, the foundations for assessment of appropriate surface layers still remain very challenging. In this context, Ti-6Al-4V α-β alloy was investigated mainly after plasma nitriding by nitrogen or by a nitrogen mixture with hydrogen and/or argon. The current study objectives consist in gradually developing some aspects of the microstructure and property relationship. As such, the study centred on the characterization of refined layers as well as confronting critical questions of how layers and interfacial microstructure might affect the near-surface mechanical properties (i.e. microhardness, fatigue resistance and erosion). In particular, the effects on fatigue behaviour are emphasized by utilizing single edge notched specimens and fatigue stepdown techniques. It is found that two distinct sublayers, comprising δ-TiN and δ-TiN + ε-Ti 2 N phases, were formed with alloying elements in a segregated zone, followed by a solid solution of N in the Ti. Here, the far field affected zone extended up to about 20 μm. It was observed that the formation of the uppermost sublayer (δ-TiN phase) with a composition including H, NH, and N, as well as Ti depleted of Al and V, has a strong effect on the layer properties. A microhardness value as high as 29.4 GPa (3000 kgf mm -2 ) was obtained with significant improvements in the erosion resistance and fatigue life. It was found that in some controlled plasma nitriding conditions the fatigue life for crack initiation increased by more than a factor of 3. Accordingly, the cyclic crack initiation behaviour is described, revealing substantial influences due to crack tip field perturbations, or fracture resistance modifications. Finally, the role of extrinsic crack tip shielding effects as related to closure or to the local effective driving force for microcracking onset is elaborated. (orig.)

  20. Impact of temperature and nitrogen composition on the growth of GaAsPN alloys

    Science.gov (United States)

    Yamane, Keisuke; Mugikura, Shun; Tanaka, Shunsuke; Goto, Masaya; Sekiguchi, Hiroto; Okada, Hiroshi; Wakahara, Akihiro

    2018-03-01

    This paper presents the impact of temperature and nitrogen-composition on the growth mode and crystallinity of GaAsPN alloys. Reflection high-energy electron diffraction results combined with transmission electron microscopy analysis revealed that maintaining two-dimensional (2-D) growth required higher temperatures when nitrogen composition increased. Outside the 2-D growth windows, stacking faults and micro-twins were preferentially formed at {1 1 1} B planes rather than at the {1 1 1} A planes and anomalous growth was observed. The photoluminescence spectra of GaAsPN layers implies that the higher temperature growth is effective for reducing the nitrogen-related point defects.

  1. Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants

    International Nuclear Information System (INIS)

    Samuel, Sonia; Nag, Soumya; Scharf, Thomas W.; Banerjee, Rajarshi

    2008-01-01

    The inherently poor wear resistance of titanium alloys limits their application as femoral heads in femoral (hip) implants. Reinforcing the soft matrix of titanium alloys (including new generation β-Ti alloys) with hard ceramic precipitates such as borides offers the possibility of substantially enhancing the wear resistance of these composites. The present study discusses the microstructure and wear resistance of laser-deposited boride reinforced composites based on Ti-Nb-Zr-Ta alloys. These composites have been deposited using the LENS TM process from a blend of elemental Ti, Nb, Zr, Ta, and boron powders and consist of complex borides dispersed in a matrix of β-Ti. The wear resistance of these composites has been compared with that of Ti-6Al-4V ELI, the current material of choice for orthopedic femoral implants, against two types of counterfaces, hard Si 3 N 4 and softer SS440C stainless steel. Results suggest a substantial improvement in the wear resistance of the boride reinforced Ti-Nb-Zr-Ta alloys as compared with Ti-6Al-4V ELI against the softer counterface of SS440. The presence of an oxide layer on the surface of these alloys and composites also appears to have a substantial effect in terms of enhanced wear resistance

  2. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel

    Indian Academy of Sciences (India)

    Unknown

    films and were further etched by the electrolysis spray method. Afterwards, the phase ... the surface layer was lower (HV 130 ~ 250), the micro- hardness of the sub-surface layer was higher (HV. 490 ~ 860), and then it reduced gradually. There was micro roughness phenomenon on the sur- face of the Fe–Al alloy layer of the ...

  3. Formation of titanium carbide layer by laser alloying with a light-transmitting resin

    Science.gov (United States)

    Yamaguchi, Takuto; Hagino, Hideki

    2017-01-01

    The weight reduction of mechanical components is becoming increasingly important, especially in the transportation industry, as fuel efficiency continues to improve. Titanium and titanium alloys are recognized for their outstanding potential as lightweight materials with high specific strength. Yet they also have poor tribological properties that preclude their use for sliding parts. Improved tribological properties of titanium would expand the application of titanium into different fields. Laser alloying is an effective process for improving surface properties such as wear resistance. The process has numerous advantages over conventional surface modification techniques. Many researchers have reported the usefulness of laser alloying as a technique to improve the wear resistance of titanium. The process has an important flaw, however, as defects such as cracks or voids tend to appear in the laser-alloyed zone. Our group performed a novel laser-alloying process using a light-transmitting resin as a source for the carbon element. We laser alloyed a surface layer of pure titanium pre-coated with polymethyl methacrylate (PMMA) and investigated the microstructure and wear properties. A laser-alloyed zone was formed by a reaction between the molten titanium and thermal decomposition products of PMMA at the interface between the substrate and PMMA. The cracks could be eliminated from the laser-alloyed zone by optimizing the laser alloying conditions. The surface of the laser-alloyed zone was covered with a titanium carbide layer and exhibited a superior sliding property and wear resistance against WC-Co.

  4. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  5. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys

    Directory of Open Access Journals (Sweden)

    Palomino Luis Enrique M.

    2003-01-01

    Full Text Available Cerium conversion layers (CeCL have been investigated as a replacement for chromium conversion layers to protect Al alloys against corrosion. In this work the microstructure and the electrochemical behaviour of aluminium alloy 2024 with and without CeCL were investigated using, respectively, SEM-EDX and EIS. EDX results have shown that the presence of dispersed plated Cu particles on the alloy surface enhances the formation of the CeCL increasing the intensity of Ce peaks in the EDX spectra. EIS measurements on conversion-coated samples have shown that the presence of the layer increases the impedance, and that its presence is detected by the presence of a high frequency time constant. Results of potentiodynamic experiments have shown that the corrosion protection afforded by the conversion layer is due to the hindrance of the oxygen reduction reaction and that the pitting potential of the alloy is not changed.

  6. Suppression of tin precipitation in SiSn alloy layers by implanted carbon

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed the accumul......By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed...

  7. Composition pathway in Fe–Cu–Ni alloy during coarsening

    International Nuclear Information System (INIS)

    Mukherjee, Rajdip; Nestler, Britta; Choudhury, Abhik

    2013-01-01

    In this work the microstructure evolution for a two phase Fe–Cu–Ni ternary alloy is studied in order to understand the kinetic composition paths during coarsening of precipitates. We have employed a quantitative phase-field model utilizing the CALPHAD database to simulate the temporal evolution of a multi-particle system in a two-dimensional domain. The paths for the far-field matrix and for precipitate average compositions obtained from simulation are found to be rectilinear. The trends are compared with the corresponding sharp interface theory, in the context of an additional degree of freedom for determining the interface compositions due to the Gibbs–Thomson effect in a ternary alloy. (paper)

  8. Composition pathway in Fe-Cu-Ni alloy during coarsening

    Science.gov (United States)

    Mukherjee, Rajdip; Choudhury, Abhik; Nestler, Britta

    2013-10-01

    In this work the microstructure evolution for a two phase Fe-Cu-Ni ternary alloy is studied in order to understand the kinetic composition paths during coarsening of precipitates. We have employed a quantitative phase-field model utilizing the CALPHAD database to simulate the temporal evolution of a multi-particle system in a two-dimensional domain. The paths for the far-field matrix and for precipitate average compositions obtained from simulation are found to be rectilinear. The trends are compared with the corresponding sharp interface theory, in the context of an additional degree of freedom for determining the interface compositions due to the Gibbs-Thomson effect in a ternary alloy.

  9. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Wang, Congjie; Jiang, Bailing; Liu, Ming; Ge, Yanfeng

    2015-01-01

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed

  10. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  11. Refractory metal alloys and composites for space power systems

    Science.gov (United States)

    Stephens, R.; Petrasek, D. W.; Titran, R. H.

    1990-01-01

    Results are presented on recent studies of refractory-metal-alloy and refractory-metal-composite technologies for space power systems, with emphasis on work performed at the Lewis Research Center in support of the Ground Engineering System (GES) for the SP-100 reactor. Special attention is given to the mechanical properties of alloys with compositions Nb-1Zr and Nb-0.1Zr-0.1C (the PWC-11 alloy) and to advanced fiber-reinforced composites. The results to date indicate that, for the GES at a power level of about 100 kWe, the PWC-11 has attractive creep properties that will extend the capabilities of the SP-100 reactor compared to a similar system fabricated from Nb-1Zr. On the other hand, tungsten-reinforced Nb-1Zr composites were found to provide a ten-fold and four-fold creep strength over Nb-1Zr and PWC-11, respectively, at 1400 to 1500 K.

  12. Phase analysis of high-temperature alloys for nuclear application by interference layer metallography

    International Nuclear Information System (INIS)

    Hoven, H.; Koizlik, K.; Nickel, H.

    1984-01-01

    Heat-resistant metallic materials for use in high-temperature gas-cooled reactors are nickel- or ironbase, solid-solution-strengthened, or age-hardened alloys. To control the material behavior and to adapt it to realistic load conditions, they have to be tested and characterized. During recent years, interference layer metallography has become an independent characterization procedure as well as an outstanding method for sample preparation for the application of quantitative image analysis to these refractory alloys. The special problems of characterization of nickel- and iron-base alloys that can now be solved by interference layer metallography and its physical background are reported. Chromatic contrasting and the subsequent phase analysis by way of the example of three common alloys are discussed. Finally, the optimization of interference layer metallography for application in quantitative image analysis is described

  13. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  14. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions

    Science.gov (United States)

    Ning, Cun-Zheng; Dou, Letian; Yang, Peidong

    2017-12-01

    Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.

  15. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  16. Properties and structure of oxide layers on thin coating of titanium alloy

    Directory of Open Access Journals (Sweden)

    Jan Krčil

    2015-12-01

    Full Text Available Present work discusses issues of growth and characterization of a thin oxide layer formed on the surface of a titanium-niobium alloy. An oxide layer on the surface of titanium alloys introduces a corrosion resistance and also a bio-compatibility, which is required for a medical application. Although this oxide layer is a result of a spontaneous passivation, for the practical applications it is necessary to control the growth of oxides. In this work the oxide layer was formed on the PVD coating from Ti39Nb alloy which was sputtered on three different base materials: CP Ti grade 2, stainless steel AISI 316LVM and titanium alloy Ti–6Al–4V ELI. The oxide layer was created by a thermal oxidation at 600 °C for three different oxidation periods: 1, 4 and 8 hours. After the oxidation process the influence of oxidation characteristics and base materials on the thickness and properties of oxide layer was studied. There was observed a change of color and surface roughness. The oxide layer surface as well as the layer thickness was observed by SEM. The influence of the substrate material under the coating on the oxide layer should be more investigated in the future.

  17. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  18. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way

    2004-08-31

    This report summarizes progress made during the first year of research funding from DOE Grant No. DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2004. Composite membranes, consisting of a thin Pd alloy film supported on a porous substrate have been investigated as a means of reducing the membrane cost and improving H{sub 2} flux. An electroless plating technique was utilized to deposit subsequent layers of palladium and copper over zirconia and alumina-based microfilters. The composite membranes thus made were annealed and tested at temperatures ranging from 250 to 500 C, under very high feed pressures (up to 450 psig) using pure gases and gaseous mixtures containing H{sub 2}, CO, CO{sub 2}, H{sub 2}O and H{sub 2}S, with the purpose of determining the effects these variables had on the H{sub 2} permeation rate, selectivity and percent recovery. The inhibition caused by CO/CO{sub 2} gases on a 7 {micro}m thick Pd-Cu composite membrane was less than 17% over a wide range of compositions at 350 C. H{sub 2}S caused a strong inhibition of the H{sub 2} flux of the same Pd-Cu composite membrane, which is accentuated at levels of 100 ppm or higher. The membrane was exposed to 50 ppm three times without permanent damage. At higher H{sub 2}S levels, above 100 ppm the membrane suffered some physical degradation and its performances was severely affected. The use of sweep gases improved the hydrogen flux and recovery of a Pd-Cu composite membrane. Recently, we have been able to dramatically reduce the thickness of these Pd alloy membranes to approximately one micron. This is significant because at this thickness, it is the cost of the porous support that controls the materials cost of a composite Pd alloy membrane, not the palladium inventory. Very recent results show that the productivity of our membranes is very high, essentially meeting the DOE pure hydrogen flux target value set by the DOE Hydrogen

  19. Insight of magnesium alloys and composites for orthopedic implant applications – a review

    Directory of Open Access Journals (Sweden)

    R Radha

    2017-09-01

    Full Text Available Magnesium (Mg and its alloys have been widely researched for orthopedic applications recently. Mg alloys have stupendous advantages over the commercially available stainless steel, Co-Cr-Ni alloy and titanium implants. Till date, extensive mechanical, in-vitro and in-vivo studies have been done to improve the biomedical performance of Mg alloys through alloying, processing conditions, surface modification etc. This review comprehensively describes the strategies for improving the mechanical and degradation performance of Mg alloys through properly tailoring the composition of alloying elements, reinforcements and processing techniques. It also highlights the status and progress of research in to (i the selection of nutrient elements for alloying, reinforcement and its effects (ii type of Mg alloy system (binary, ternary and quaternary and composites (iii grain refinement for strengthening through severe plastic deformation techniques. Furthermore it also emphasizes on the importance of Mg composites with regard to hard tissue applications.

  20. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders

    International Nuclear Information System (INIS)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.

    1996-01-01

    Microstructure of the bonding zones (BZs) between laser-clad Ni-alloy-based composite coatings and steel substrates was studied by means of scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. Observations indicate that for pure Ni-alloy coating the laser parameters selected for good interface fusion have no effect on the microstructure of the BZ except for its thickness. However, the addition of ceramic particles (TiN, SiC, or ZrO 2 ) to the Ni alloy varies the compositional or constitutional undercooling of the melt near the solid/liquid interface and consequently leads to the observed changes of microstructure of the BZs. For TiN/Ni-alloy coating the morphology of γ-Ni solid solution in the BZ changes from dendritic to planar form with increasing scanning speed. A colony structure of eutectic is found in the BZ of SiC/Ni-alloy coating in which complete dissolution of SiC particles takes place during laser cladding. The immiscible melting of ZrO 2 and Ni-alloy powders induces the stratification of ZrO 2 /Ni-alloy coating which consists of a pure ZrO 2 layer fin the upper region and a BZ composed mainly of γ-Ni dendrites adjacent to the substrate. All the BZs studied in this investigation have good metallurgical characteristics between the coatings and the substrates

  1. Electroless alloy/composite coatings: A review

    Indian Academy of Sciences (India)

    The co-deposition of particulate matter or substance within the growing film has led to a new generation of electroless composite coatings, many of which possess excellent wear and corrosion resistance. This valuable process can coat not only electrically conductive materials including graphite but also fabrics, insulators ...

  2. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  3. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P., E-mail: liuxiaoping@tyut.edu.cn

    2016-12-01

    Highlights: • A Zr/ZrC modified layer was formed on AISI 440B stainless steel using plasma surface Zr-alloying. • The thickness of the modified layer increases with alloying temperature and time. • Formation mechanism of the modified layer is dependent on the mutual diffusion of Zr and substrate elements. • The modified surface shows an improved wear resistance. - Abstract: The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  4. Electron work function and composition of gallium-indium alloy surface

    International Nuclear Information System (INIS)

    Egorova, E.M.

    1979-01-01

    The dependences of electron work functions on the composition for gallium-indium alloy obtained under different conditions are compared. An attempt is made to estimate a change in the alloy surface composition caused by a change in temperature and in the boundary phase nature. For the case under consideration it has been shown to be reasonable to compare the dependences of the electron work functions not on the alloy volumetric composition but on the composition of its surface

  5. Refractory metal alloys and composites for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  6. The mechanism of the surface alloy layer creation for cast steel

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2012-01-01

    Full Text Available The paper presents a detailed description of the process of creation of a surface alloy layer (using high-carbon ferrochromium on the cast steel casting. The mechanism of the surface alloy layer is based on the known theories [5,6]. The proposed course of formation of the layers has been extended to decarburization stage of steel. The research included proving the presence of carbon-lean zone. The experiment included the analysis of the distribution of elements and microhardness measurement.

  7. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  8. High performance wood composites based on benzoxazine-epoxy alloys.

    Science.gov (United States)

    Jubsilp, Chanchira; Takeichi, Tsutomu; Hiziroglu, Salim; Rimdusit, Sarawut

    2008-12-01

    Wood-substituted composites from matrices based on ternary mixtures of benzoxazine, epoxy, and phenolic novolac resins (BEP resins) using woodflour (Hevea brasiliensis) as filler are developed. The results reveal that the addition of epoxy resin into benzoxazine resin can lower the liquefying temperature of the ternary systems whereas rheological characterization of the gel points indicates an evident delay of the vitrification time as epoxy content increased. The gelation of the ternary mixtures shows an Arrhenius-typed behavior and the gel time can be well predicted by an Arrhenius equation with activation energy of 35-40kJ/mol. For wood-substituted composites from highly filled BEP alloys i.e. at 70% by weight of woodflour, the reinforcing effect of the woodflour shows a substantial enhancement in the composite stiffness i.e. 8.3GPa of the filled BEP811 vs 5.9GPa of the unfilled BEP811. The relatively high flexural strength of the BEP wood composites up to 70MPa can also be obtained. The outstanding compatibility between the woodflour and the ternary matrices attributed to the modulus and thermal stability enhancement of the wood composites particularly with an increase of the polybenzoxazine fraction in the BEP alloys.

  9. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    International Nuclear Information System (INIS)

    Dziadoń, Andrzej; Mola, Renata; Błaż, Ludwik

    2016-01-01

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al 3 Mg 2 , Mg 17 Al 12 and Mg 2 Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO 2 laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  10. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  11. Cu-Pb rheocast alloy as joining material for CFC composites

    International Nuclear Information System (INIS)

    Salvo, M.

    1995-01-01

    High heat flux components for future use in thermonuclear fusion reactors are designed as layered structures. The assembling of the different parts (armour, heat sink and external structure) requires a joint which could withstand large heat loads and thermal stresses. In this paper we examined a 50 wt% Pb-Cu rheocast alloy (RCA) as joining material for the armour/heat sink joint. The alloy was prepared in vacuum in a rotational furnace and was characterized by SEM-EDS analysis and heating microscopy. The obtained microstructure was globular as foreseen and it remained after prolonged heating at 650 C. The alloy showed very good ductility: sheets of about 200 μm were rolled starting from about 1x1x1 cm 3 cubes. The alloy was successful in joining both the armour and the heat sink materials, respectively, carbon fibre reinforced composites and copper. Initial mechanical testing shows that the technique is viable for the foreseen applications in the field of thermonuclear fusion reactors. (orig.)

  12. 3D Layer Coating Technology on Zirconium Alloy Cladding Tube Applied to Accident Tolerant Fuel

    International Nuclear Information System (INIS)

    Kim, Hyungil; Kim, Ilhyun; Jung, Yangil; Park, Dongjun; Park, Junghwan; Park, Jeongyong; Koo, Yanghyun

    2014-01-01

    The current method used to decrease the corrosion rate of zirconium alloy for a nuclear application adjusts the alloying elements such as Nb, Sn, Fe, or Cr, and their ratios. However, the oxidation resistance of zirconium-based alloys at a high-temperature is not considerably improved by the addition of alloying elements. Research on new materials and concepts has been suggested to overcome the acceleration of high-temperature oxidation rate of zirconium-based alloys. A 3D laser coating of in-corrodible materials on a zirconium alloy surface can be considered in this study. The coating technology is widely applied in other industrial materials to reduce the corrosion and wear damages, as the corrosion and wear resistances can be easily obtained by a coating technology without a change in the base material. This work is focused on the 3D laser coating techniques for both coating methods and coating materials to apply to accident tolerant fuel. From the Fukushima accident, it is now recognized that a hydrogen-related explosion, which is caused by the severe oxidation of zirconium alloy, is one of the major concerns of reactor safety. A coating technology for the zirconium alloy surface was considered to decrease the high-temperature oxidation rate of zirconium-based alloy. The 3D laser coating technology using Cr powders to reduce the high-temperature oxidation rate in a steam environment was developed. The Cr-coated layer by this technology was successfully produced on the Zircaloy-4 cladding tube, and it was identified that the Cr-coated layer showed a good oxidation resistance without severe damage from the results of the high-temperature oxidation test and the microstructure analysis. From this study, the hydrogen generation of zirconium alloy caused by an excess oxidation reaction in a high-temperature steam environment can be considerably reduced by the application of the Cr coating technology using the 3D laser coating supplied with Cr powders

  13. Role of grain boundary diffusion on ion-induced composition change in alloys at elevated temperatures. [A/sup +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Hayashibara, M.; Ohno, H.; Itoh, N. (Nagoya Univ. (Japan). Dept. of Crystalline Materials Science)

    1984-05-01

    We prepared nickel specimens which contain gold impurity only near the grain boundaries and measured thermal segregation of gold onto the surface and the change in the composition induced by bombardment with Ar/sup +/ ions. It is found that irradiation causes composition change over a depth much larger than the thickness of the altered layer for Ni-Au alloys. It is also found that when a two-layered Ni-Au film is bombarded with gold atoms from the nickel side at elevated temperatures, the nickel is protected by a thin gold film segregated on the nickel surface.

  14. Fabrication and AE characteristics of TiNi/A16061 shape memory alloy composite

    International Nuclear Information System (INIS)

    Park, Young Chul; Lee, Jin Kyung

    2004-01-01

    TiNi/A16061 Shape Memory Alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which underwent pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/A16061 SMA composite

  15. A novel composite alignment layer for transflective liquid crystal display

    International Nuclear Information System (INIS)

    Li Shuangyao; Li Xuan; Tao Du; Chigrinov, Vladimir; Kwok, Hoi Sing

    2010-01-01

    A novel composite photoalignment layer for transflective liquid crystal displays is explored. The key technique is to introduce a functional photo-crosslinkage into a rewritable azodye material with proper mixing. Bearing good alignment quality derived from the azodye material, the composite layer provides strong azimuthal and polar anchoring energy comparable to that of rubbed polyimide layers. The capability of dual modes fabrication in one cell exhibited by azodyes could be well retained and the new alignment film exhibits a display resolution of up to 2 μm. Furthermore, after exposure to strong LED unpolarized light the composite layer shows much better stability than that with a pure azodye material.

  16. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    Science.gov (United States)

    Spahn, O.B.; Lear, K.L.

    1998-03-10

    The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

  17. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  18. Confirmation of theoretical colour predictions for layering dental composite materials.

    Science.gov (United States)

    Mikhail, Sarah S; Johnston, William M

    2014-04-01

    The aim of this study is to confirm the theoretical colour predictions for single and double layers of dental composite materials on an opaque backing. Single and double layers of composite resins were fabricated, placed in optical contact with a grey backing and measured for spectral radiance. The spectral reflectance and colour were directly determined. Absorption and scattering coefficients as previously reported, the measured thickness of the single layers and the effective reflectance of the grey backing were utilized to theoretically predict the reflectance of the single layer using corrected Kubelka-Munk reflectance theory. For double layers the predicted effective reflectance of the single layer was used as the reflectance of the backing of the second layer and the thickness of the second layer was used to predict the reflectance of the double layer. Colour differences, using both the CIELAB and CIEDE2000 formulae, measured the discrepancy between each directly determined colour and its corresponding theoretical colour. The colour difference discrepancies generally ranged around the perceptibility threshold but were consistently below the respective acceptability threshold. This theory can predict the colour of layers of composite resin within acceptability limits and generally also within perceptibility limits. This theory could therefore be incorporated into computer-based optical measuring instruments that can automate the shade selections for layers of a more opaque first layer under a more translucent second layer for those clinical situations where an underlying background colour and a desirable final colour can be measured. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Pérez-Bustamante, R.; Bolaños-Morales, D.; Bonilla-Martínez, J.; Estrada-Guel, I.; Martínez-Sánchez, R.

    2014-01-01

    Highlights: • Pure aluminum was reinforced with graphene-platelets by using mechanical milling. • The composites were studied after sintering condition. • Milling time and graphene-platelet enhance the mechanical behavior of the composites. - Abstract: Graphene can be considered as an ideal reinforcement for the production of composites due to its outstanding mechanical properties. These characteristics offer an increased opportunity for their study in the production of metal matrix composites (MMCs). In this research, the studied composites were produced by mechanical alloying (MA). The employed milling times were of 1, 3 and 5 h. GNPs were added in 0.25, 0.50 and 1.0 wt% into an aluminum powder matrix. Milled powders were cold consolidated and subsequently sintered. Composites were microstructurally characterized with Raman spectroscopy and electron microscopy and X-ray diffraction. The hardness behavior in composites was evaluated with a Vickers micro-hardness test. A homogeneous dispersion of graphene during MA and the proper selection of sintering conditions were considered to produce optimized composites. The obtained results with electron microscopy indicate a homogeneous dispersion of GNPs into the aluminum matrix. Analyses showed GNPs edges where the structure of the graphene layers conserved after MA is observed

  20. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Bustamante, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Bolaños-Morales, D.; Bonilla-Martínez, J. [Universidad Autónoma de Chihuahua (UACH), Facultad de Ingeniería, Circuito No. 1 Nuevo Campus Universitario, C.P. 31125 Chihuahua, Chih. (Mexico); Estrada-Guel, I. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico)

    2014-12-05

    Highlights: • Pure aluminum was reinforced with graphene-platelets by using mechanical milling. • The composites were studied after sintering condition. • Milling time and graphene-platelet enhance the mechanical behavior of the composites. - Abstract: Graphene can be considered as an ideal reinforcement for the production of composites due to its outstanding mechanical properties. These characteristics offer an increased opportunity for their study in the production of metal matrix composites (MMCs). In this research, the studied composites were produced by mechanical alloying (MA). The employed milling times were of 1, 3 and 5 h. GNPs were added in 0.25, 0.50 and 1.0 wt% into an aluminum powder matrix. Milled powders were cold consolidated and subsequently sintered. Composites were microstructurally characterized with Raman spectroscopy and electron microscopy and X-ray diffraction. The hardness behavior in composites was evaluated with a Vickers micro-hardness test. A homogeneous dispersion of graphene during MA and the proper selection of sintering conditions were considered to produce optimized composites. The obtained results with electron microscopy indicate a homogeneous dispersion of GNPs into the aluminum matrix. Analyses showed GNPs edges where the structure of the graphene layers conserved after MA is observed.

  1. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    Science.gov (United States)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  2. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Tang, Guangze; Luo, Dian; Fan, Guohua; Ma, Xinxin; Wang, Liqin

    2017-01-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  3. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  4. Growth and characterization of oxide layers on zirconium alloys

    International Nuclear Information System (INIS)

    Maroto, A.J.G.; Bordoni, R.; Villegas, M.; Blesa, M.A.; Olmedo, A.M.; Iglesias, A.; Rigotti, G.

    1997-01-01

    Corrosion behaviour in aqueous media at high temperature of zirconium alloys has been extensively studied in order to elucidate the corrosion mechanism and kinetics. The characterization of the morphology and microstructure of these oxides through the different stages of oxide growth may contribute to understand their corrosion mechanism. Argentina has initiated a research program to correlate long term in and out-reactor corrosion of these alloys. This paper reports a comparative study of out of pile oxidation of Zr-2.5Nb and Zry-4, which are structural materials of in-core components of nuclear power plants. Kinetic data at different temperatures and microstructural characterization of the oxide films are presented. (author). 25 refs, 18 figs, 1 tab

  5. The Importance Of Surface Topography For The Biological Properties Of Nitrided Diffusion Layers Produced On Ti6Al4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Wierzchoń T.

    2015-09-01

    Full Text Available Diffusion nitrided layers produced on titanium and its alloys are widely studied in terms of their application for cardiac and bone implants. The influence of the structure, the phase composition, topography and surface morphology on their biological properties is being investigated. The article presents the results of a study of the topography (nanotopography of the surface of TiN+Ti2N+αTi(N nitrided layers produced in low-temperature plasma on Ti6Al4V titanium alloy and their influence on the adhesion of blood platelets and their aggregates. The TEM microstructure of the produced layers have been examined and it was demonstrated that the interaction between platelets and the surface of the titanium implants subjected to glow-discharge nitriding can be shaped via modification of the roughness parameters of the external layer of the TiN titanium nitride nanocrystalline zone.

  6. Electrochemical Corrosion Behavior of Oxidation Layer on Fe30Mn5Al Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Xue-mei

    2017-08-01

    Full Text Available The Fe30Mn5Al alloy was oxidized at 800℃ in air for 160h, the oxidation-induced layer about 15μm thick near the scale-metal interface was induced to transform to ferrite and become enriched in Fe and depletion in Mn. The effect of the oxidation-induced Mn depletion layer on the electrochemical corrosion behavior of Fe30Mn5Al alloy was evaluated. The results show that in 1mol·L-1 Na2SO4 solution, the anodic polarization curve of the Mn depletion layer exhibits self-passivation, compared with Fe30Mn5Al austenitic alloy, and the corrosion potential Evs SCE is increased to -130mV from -750mV and the passive current density ip is decreased to 29μA/cm2 from 310μA/cm2. The electrochemical impedance spectroscopy(EIS of the Mn depletion layer has the larger diameter of capacitive arc, the higher impedance modulus|Z|, and the wider phase degree range, and the fitted polarization resistant Rt is increased to 9.9kΩ·cm2 from 2.7kΩ·cm2 by using an equivalent electric circuit of Rs-(Rt//CPE. The high insulation of the Mn depletion layer leads to an improved corrosion resistance of Fe30Mn5Al austenitic alloy.

  7. Fabrication And Mechanical Properties Of A Nanostructured Complex Aluminum Alloy By Three-Layer Stack Accumulative Roll-Bonding

    OpenAIRE

    Lee S.-H.; Lee S.R.

    2015-01-01

    A multi-layered complex aluminum alloy was successfully fabricated by three-layer stack accumulative roll bonding(ARB) process. The ARB using AA1050 and AA5052 alloy sheets was performed up to 7 cycles at ambient temperature without lubrication. The specimen processed by the ARB showed a multi-layer aluminum alloy sheet in which two aluminum alloys are alternately stacked. The grain size of the specimen decreased with the number of ARB cycles, became about 350nm in diameter after 7cycles. The...

  8. The influence of varying layer thicknesses on the color predictability of two different composite layering concepts

    NARCIS (Netherlands)

    Khashayar, G.; Dozic, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2014-01-01

    Objective Optical properties of teeth are mimicked by composite layering techniques by combining a relatively opaque layer (dentin) with more translucent layers (enamel). However, the replacing material cannot always optically imitate the tooth when applied in the same thickness as that of the

  9. Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink

    International Nuclear Information System (INIS)

    Kim, Donghyun; Lee, Junghoon; Kim, Junho; Choi, Chang-Hwan; Chung, Wonsub

    2015-01-01

    Highlights: • We fabricate the CuO/resin composite coating layer on aluminum alloy heat sink. • CuO/resin coating considerably improved the surface emissivity. • The LED junction temperature was reduced by CuO/resin coated heat sink. • The thermal resistance of heat sink was decreased by CuO/resin composite coating at 200 μm thickness. - Abstract: A composite coating composed of cupric oxide (CuO) and silicon-based resin was applied to an aluminum-alloy heat sink for a light emitting diode (LED) module. The purpose of the composite coating is to improve the heat dissipation performance of heat sink by enhancing thermal radiation emission. The heat dissipation performance was investigated in terms of LED junction temperature and thermal resistance using a thermal transient method. The CuO and silicon-based resin composite coating showed higher emissivity, and the lower junction temperature and thermal resistance of the heat sink was achieved. In addition, a continuous operation test of the LED chip with the heat sink revealed that the surface treated with the CuO composite coating stably dissipated heat without degradation. In conclusion, the composite coating proposed here showed a significant improvement of the heat dissipation performance of the aluminum-alloy heat sink due to the enhanced thermal radiation property.

  10. Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes.

    Science.gov (United States)

    Jeon, Soon-Hyeok; Son, Yeong-Ho; Choi, Won-Ik; Song, Geun Dong; Hur, Do Haeng

    2018-01-02

    In nuclear power plants, the main corrosion product that is deposited on the outside of steam generator tubes is porous magnetite. The objective of this study was to simulate porous magnetite that is deposited on thermally treated (TT) Alloy 690 steam generator tubes. A magnetite layer was electrodeposited on an Alloy 690TT substrate in an Fe(III)-triethanolamine solution. After electrodeposition, the dense magnetite layer was immersed to simulate porous magnetite deposits in alkaline solution for 50 days at room temperature. The dense morphology of the magnetite layer was changed to a porous structure by reductive dissolution reaction. The simulated porous magnetite layer was compared with flakes of steam generator tubes, which were collected from the secondary water system of a real nuclear power plant during sludge lancing. Possible nuclear research applications using simulated porous magnetite specimens are also proposed.

  11. Cr Layer Coating on Zirconium Alloy Cladding Tube Applied to Accident Tolerant Fuel

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Kim, Il Hyun; Jung, Yang Il; Park, Dong Jun; Park, Jeong Yong; Koo, Yang Hyun

    2013-01-01

    A decrease in the high-temperature oxidation rate of zirconium alloys is a key factor in decreasing the hydrogen generation during a nuclear power plant accident. The current method used to increase the corrosion resistance of zirconium alloy for a nuclear application basically adjusts the alloying elements such as Nb, Sn, Fe, or Cr, and their ratios. However, the oxidation rate of zirconium alloys at a high-temperature of 1200 .deg. C is not considerably changed with the alloy composition. Thus, it is a problem that the decrease in the oxidation rate of zirconium-based alloys at high-temperature is difficult to achieve using commercial alloying elements. New materials and concepts have been suggested to overcome the acceleration of high-temperature oxidation of zirconium alloys. The coating technology is widely applied in other industrial materials to reduce the corrosion and wear damages, as the corrosion and wear resistances can be easily obtained by a coating technology without a change in the base material. Thus, surface coating technology on zirconium alloy was selected in this work after technical deliberation for a decrease in the high-temperature oxidation rate, near term application, easy fabrication, economic benefit, and easy verification, although the high-temperature strength was reduced more than for other suggested technologies of hybrid and full ceramic materials. However, an optimized technology for the coating materials and coating methods for the zirconium alloy cladding must be developed for nuclear application. Thus, this work is focused on the coating techniques for both coating methods and coating materials to apply to accident tolerant fuel

  12. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  13. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhu

    2017-01-01

    Full Text Available The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C.

  14. Influence of hydratation on the characteristics of zirconium alloys oxide layers

    Czech Academy of Sciences Publication Activity Database

    Gosmanová, G.; Kraus, I.; Kolega, M.; Vrtílková, V.; Weishauptová, Zuzana

    2008-01-01

    Roč. 54, č. 1 (2008), s. 1576-1580 ISSN 1210-0471 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : zirconium alloys * corrosion layer * hydrated ZrO2 Subject RIV: JF - Nuclear Energetics

  15. Conduction band fluctuation scattering due to alloy clustering in barrier layers in InAlN/GaN heterostructures

    Science.gov (United States)

    Li, Qun; Chen, Qian; Chong, Jing

    2017-12-01

    In InAlN/GaN heterostructures, alloy clustering-induced InAlN conduction band fluctuations interact with electrons penetrating into the barrier layers and thus affect the electron transport. Based on the statistical description of InAlN compositional distribution, a theoretical model of the conduction band fluctuation scattering (CBFS) is presented. The model calculations show that the CBFS-limited mobility decreases with increasing two-dimensional electron gas sheet density and is inversely proportional to the squared standard deviation of In distribution. The AlN interfacial layer can effectively suppress the CBFS via decreasing the penetration probability. This model is directed towards understanding the transport properties in heterostructure materials with columnar clusters.

  16. Exploring Cd-Zn-O-S alloys for improved buffer layers in thin-film photovoltaics

    Science.gov (United States)

    Varley, J. B.; Lordi, V.; He, X.; Rockett, A.

    2017-07-01

    To compete with existing and more mature solar cell technologies such as crystalline Si, thin-film photovoltaics require optimization of every aspect in the device heterostructure to reach maximum efficiencies and cost effectiveness. For absorbers like CdTe, Cu(In ,Ga )Se 2 (CIGSe), and Cu2ZnSn(S ,Se ) 4 (CZTSSe), improving the n -type buffer layer partner beyond conventional CdS is one avenue that can reduce photocurrent losses and improve overall performance. Here, we use first-principles calculations based on hybrid functionals to explore alloys spanning the Cd-, Zn-, O-, and S-containing phase space to identify compositions that may be superior to common buffers like pure CdS or Zn(O,S). We address issues highly correlated with device performance such as lattice-matching for improved buffer-absorber epitaxy and interface quality, dopability, the band gap for reduced absorption losses in the buffer, and the conduction-band offsets shown to facilitate improved charge separation from photoexcited carriers. We supplement our analysis with device-level simulations as parameterized from our calculations and real devices to assess our conclusions of low-Zn and O content buffers showing improved performance with respect to CdS buffers.

  17. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon

    International Nuclear Information System (INIS)

    Lenivtseva, O.G.; Bataev, I.A.; Golkovskii, M.G.; Bataev, A.A.; Samoilenko, V.V.; Plotnikova, N.V.

    2015-01-01

    Highlights: • Wear resistant coatings up to 2 mm thick were clad on titanium by an electron beam in air. • The microhardness of the alloys was increased from 2 to 8 GPa due to the formation of TiC particles. • Alloying of titanium increased the abrasive wear resistance of the alloy by a factor of 9.3. - Abstract: The structure and tribological properties of commercially pure titanium (cp-Ti) samples after non-vacuum electron beam surface alloying with carbon were studied. Two types of powders were used to introduce carbon in surface layer of cp-Ti: titanium carbide (TiC) and mixture of pure titanium and graphite (“Ti + C”). Single layer and multilayer coatings were studied. Application of electron beam for alloying provided cladding rate of 4.5 m 2 /h. The thickness of the clad coatings was 1.6–2.0 mm. The main phases received after “Ti + C” powder cladding were α-titanium, TiC, and retained graphite. In the samples obtained by cladding of TiC, graphite was not observed. A factor determining the microhardness and tribological properties of the cladded layer was the volume fraction of TiC. Maximum coating microhardness of 8 GPa was obtained by cladding of single layer of TiC powder or two layers of the “Ti + C” mixture. Two types of tests were carried out to evaluate the wear resistance of the samples. In friction tests against loose abrasive particles, the wear rate of the best samples was 9.3 times lower than that of cp-Ti. In wear tests using fixed abrasive particles, the relative wear resistance of the best samples was 2.3 times higher than that of cp-Ti.

  18. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating.

    Science.gov (United States)

    Tian, Peng; Liu, Xuanyong; Ding, Chuanxian

    2015-04-01

    Biodegradable magnesium-based implants have attracted much attention recently in orthopedic applications because of their good mechanical properties and biocompatibility. However, their rapid degradation in vivo will not only reduce their mechanical strength, but also induce some side effects, such as local alkalization and gas cavity, which may lead to a failure of the implant. In this work, a hydroxyapatite (HA) layer was prepared on plasma electrolytic oxidization (PEO) coating by hydrothermal treatment (HT) to fabricate a PEO/HT composite coating on biodegradable AZ31 alloy. The in vitro degradation behaviors of all samples were evaluated in simulated body fluid (SBF) and their surface cytocompatibility was also investigated by evaluating the adhesion and proliferation of osteoblast cells (MC3T3-E1). The results showed that the HA layer consisted of a dense inner layer and a needle-like outer layer, which successfully sealed the PEO coating. The in vitro degradation tests showed that the PEO/HT composite coating improved the corrosion resistance of AZ31 alloy in SBF, presenting nearly no severe local alkalization and hydrogen evolution. The lasting corrosion resistance of the PEO/HT composite coating may attribute to the new hydroxyapatite formation during the degradation process. Moreover, compared with AZ31 alloy and PEO coating, PEO/HT composite coating was more suitable for cells adhesion and proliferation, indicating improved surface cytocompatibility. The results show that the PEO/HT composite coating is promising as protective coating on biodegradable magnesium-based implants to enhance their corrosion resistance as well as improve their surface cytocompatibility for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Investigation of Tank 241-AW-104 Composite Floating Layer

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, H. K. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Bolling, S. D. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2018-02-27

    Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lower than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.

  20. Electromechanical response of (2–2) layered piezoelectric composites

    International Nuclear Information System (INIS)

    Kar-Gupta, Ronit; Venkatesh, T A

    2013-01-01

    Analytical and finite element models are developed to systematically characterize the effects of phase volume fraction and the relative orientations of the poling directions in two phases on the effective elastic, dielectric and piezoelectric properties of layered piezoelectric composites. Four classes of layered piezoelectric composites are identified based on the relative orientation of the poling directions in the two piezoelectric phases. Upon verifying that the results of the finite model compare well with that of analytical models for select layered composite systems, the finite element model is extended to characterize the electromechanical response of all four classes of piezoelectric composites. It is generally observed that the electromechanical properties of the layered composite along a direction perpendicular to the layer interface is largely influenced by the properties of the ‘softer’ phase whereas the in-plane response is modulated more by the ‘rule-of-mixtures’ theory. It is also observed that variations in the poling directions of the constituents can significantly influence the symmetry of the composite with composites that belong to Classes II and III (where the poling directions of the two phases are orthogonal to each other) exhibiting a relatively lower degree of material symmetry while the composites that belong to Classes I and IV (where the poling directions of the two phases are parallel to each other) exhibit a higher order symmetry. Furthermore, the best combination of figures of merit, i.e., enhanced coupling constant and reduced acoustic impedance, in a direction parallel to the layer interface is exhibited by Class I and Class II types of composite (where the piezoelectrically stiffer phase is poled along the layer interface). (paper)

  1. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  2. Development of Barrier Layers for the Protection of Candidate Alloys in the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Carlos G. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Jones, J. Wayne [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Pollock, Tresa M. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Was, Gary S. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project was to develop concepts for barrier layers that enable leading candi- date Ni alloys to meet the longer term operating temperature and durability requirements of the VHTR. The concepts were based on alpha alumina as a primary surface barrier, underlay by one or more chemically distinct alloy layers that would promote and sustain the formation of the pro- tective scale. The surface layers must possess stable microstructures that provide resistance to oxidation, de-carburization and/or carburization, as well as durability against relevant forms of thermo-mechanical cycling. The system must also have a self-healing ability to allow endurance for long exposure times at temperatures up to 1000°C.

  3. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  4. Study the formation of porous surface layer for a new biomedical titanium alloy

    Science.gov (United States)

    Talib Mohammed, Mohsin; Diwan, Abass Ali; Ali, Osamah Ihsan

    2018-03-01

    In the present work, chemical treatment using hydrogen peroxide (H2O2) oxidation and subsequent thermal treatment was applied to create a uniform porous layer over the surface of a new metastable β-Ti alloy. The results revealed that this oxidation treatment can create a stable ultrafine porous film over the oxidized surface. This promoted the electrochemical characteristics of H2O2-treated Ti-Zr-Nb (TZN) alloy system, presenting nobler corrosion behavior in simulated body fluid (SBF) comparing with untreated sample.

  5. Study of the structure and development of the set of reference materials of composition and structure of heat resisting nickel and intermetallic alloys

    Directory of Open Access Journals (Sweden)

    E. B. Chabina

    2016-01-01

    Full Text Available Relevance of research: There are two sizes (several microns and nanodimensional of strengthening j'-phase in single-crystal heat resisting nickel and intermetallic alloys, used for making blades of modern gas turbine engines (GTD. For in-depth study of structural and phase condition of such alloys not only qualitative description of created structure is necessary, but quantitative analysis of alloy components geometrical characteristics. Purpose of the work: Development of reference material sets of heat resisting nickel and intermetallic alloy composition and structure. Research methods: To address the measurement problem of control of structural and geometrical characteristics of single-crystal heat resisting and intermetallic alloys by analytical microscopy and X-ray diffraction analysis the research was carried out using certified measurement techniques on facilities, entered in the Register of Measurement Means of the Russian Federation. The research was carried out on microsections, foils and plates, cut in the plane {100}. Results: It is established that key parameters, defining the properties of these alloys are particle size of strengthening j' -phase, the layer thickness of j-phase between them and parameters of phases lattice. Metrological requirements for reference materials of composition and structure of heat resisting nickel and intermetallic alloys are formulated. The necessary and sufficient reference material set providing the possibility to determine the composition and structure parameters of single-crystal heat resisting nickel and intermetallic alloys is defined. The developed RM sets are certified as in-plant reference materials. Conclusion: The reference materials can be used for graduation of spectral equipment when conducting element analysis of specified class alloys; for calibration of means of measuring alloy structure parameters; for measurement of alloys phases lattice parameters; for structure reference pictures

  6. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–magnesium titanate dielectrics/nickel–zinc–copper ferrite layer composites were prepared by tape- casting technique combined with a uniaxial pressure shaping technique. The sintering and camber development of the composites were investigated. The results show that the difference of shrinkage in the ...

  7. The Osprey preform process and its application to light alloys and composites

    Science.gov (United States)

    Leatham, A. G.; Ogilvy, A. J. W.; Elias, L. G.

    The Osprey process eliminates the problem of oxide film formation by means of an integrated inert-gas atomization and deposition operation in which the alloy being processed exists in a particulate form for only a few millisecs. It is presently reported that this process is ready for commercial-scale application to Al alloys and composites; in addition to markedly reducing the number of processing operations, safety problems associated with conventional P/M are avoided. Results are presented from tests conducted on novel, high-strength/high-temperature Al alloys, hypereutectic Al-Si and Al-Li alloys, and metal-matrix composites produced by means of the Osprey process.

  8. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz; Filip, Vladimir; Joska, Ludek

    2015-11-15

    Graphical abstract: - Highlights: • The nanostructured surface on Ti–36Nb–6Ta alloy was prepared by anodic oxidation. • The nanotubes properties were modified by electrochemical process parameters. • The composition and mechanical properties of the anodized surface were investigated. • The adhesive strength of the nanostructures was over 30 MPa. - Abstract: The nanostructuring of titanium and its alloys surfaces is used inter alia for increasing the medical implants osseointegration. Many papers about this topic were published. However, in most cases there were no informations about nanostructures adhesion to the surface, which is crucial from the application point of view. The aim of this study was to prepare nanostructures on titanium beta alloy and optimized its adhesion to the alloy surface. Nanotubes were formed by anodic polarization in electrolyte containing fluoride ions. The composition of the nanotubes was described by X-ray photoelectron spectroscopy. Nanostructures adhesion was tested by pull-of method. The nanotubes on the Ti–36Nb–6Ta beta alloy surface were prepared by anodization. The nanostructures properties were modified by electrochemical process parameters. The adhesion of the nanotubes prepared in this work was satisfactory for implantological applications.

  9. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  10. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  11. [Texture variation of CC 5052 aluminum alloy slab from surface to center layer by XRD].

    Science.gov (United States)

    Chen, Ming-Biao; Liu, Wen-Chang; Ma, Xiao-Yi; Li, Jian; Yang, Qing-Xiang; Wang, Shan; Ma, Min; Liu, Chang; Zhao, Y M

    2013-05-01

    For improvement of the processing and gaining uniformity texture structure and performance of direct chill cast CCAA 5052 aluminum alloy band after first hot rolling with different reduction, the material was annealed at 454 degrees C and then cold rolling with different reduction was conducted, the texture at surface, quarter and center layer of the sample was tested and examined by X-ray diffraction method, the data calculated using special software and the difference of texture at surface, quarter and center layer was analyzed. There existed an elevated gradient of intensity from surface layer to center layer after cold rolled with less than or equal to 40% reduction, The main texture of beta is stronger mainly due to transformation from remainder exposure, while the goss and remainder is infirm, the state of texture at each layer is close to each other after cold rolling with reduction high than 56.1%.

  12. Quality management of dispersion-strengthened beryllium-based composite alloy

    Directory of Open Access Journals (Sweden)

    Дмитро Миколайович Макаренко

    2016-05-01

    Full Text Available The article is devoted to investigation of the composition and properties of dispersion-strengthened beryllium-based composite alloy, used in various industries, including the aircraft manufacture aircraft. Analyzed the properties of these materials are analyzed to ensure their quality management. The mathematical relationship of dispersion strengthened beryllium-based composite alloy parameters from content of beryllium oxide and temperature are built

  13. Comparison of Microleakage of Composite Resin Veneering Systems at the Alloy Interface

    Science.gov (United States)

    1988-09-01

    technique that there is leakage around resin veneers in gold crowns. Microleakage studies have been used primarily for the evaluation of direct...investigation is to evaluate the bond between veneering composite resin and metal substructure. Measurement of microleakage at the composite resin-alloy...34OVERPRINT" COMPARISON OF MICROLEAKAGE OF COMPOSITE RESIN VENEERING SYSTEMS AT THE ALLOY INTERFACE A THESIS Presented to the Faculty of The University

  14. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy.

  15. Reaction layer between U-7WT%Mo and Al alloys in chemical diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.; Granovsky, M.; Ortiz, M.; Balart, S.; Arico, S.; Gribaudo, L.

    2005-01-01

    Several failures in U-Mo dispersion fuel plates like pillowing and large porosities have been reported during irradiation experiments. These failures have been assigned to the formation of a large (U-Mo)/Al interaction product under high operating conditions. The modification of the matrix by alloying Al to change the interaction layer and improve its irradiation behavior, has been proposed. This paper reports diffusion experiments performed between U-7wt%Mo and various Al alloys containing Mg and / or Si. By the use of Optical Microscopy, SEM and X-Ray diffraction, it was found that with a concentration of 5.2wt% or 7.1 wt%Si the interaction layer is constituted mainly by (U,Mo)(Si,Al) 3 and no (U,Mo)Al 4 is detected. As part of the studies of properties of the U-Mo alloys the time for isothermal transformation start at different temperatures of the γ phase is being evaluated for the present U-7wt%Mo alloy. These results are used to plan the future diffusion program that will include diffusion under irradiation at CNEA RA3 reactor. (author)

  16. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  17. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  18. Forming a single layer of a composite powder based on the Ti-Nb system via selective laser melting (SLM)

    Science.gov (United States)

    Saprykin, A. A.; Sharkeev, Yu P.; Ibragimov, E. A.; Babakova, E. V.; Dudikhin, D. V.

    2016-07-01

    Alloys based on the titanium-niobium system are widely used in implant production. It is conditional, first of all, on the low modulus of elasticity and bio-inert properties of an alloy. These alloys are especially important for tooth replacement and orthopedic surgery. At present alloys based on the titanium-niobium system are produced mainly using conventional metallurgical methods. The further subtractive manufacturing an end product results in a lot of wastes, increasing, therefore, its cost. The alternative of these processes is additive manufacturing. Selective laser melting is a technology, which makes it possible to synthesize products of metal powders and their blends. The point of this technology is laser melting a layer of a powdered material; then a sintered layer is coated with the next layer of powder etc. Complex products and working prototypes are made on the base of this technology. The authors of this paper address to the issue of applying selective laser melting in order to synthesize a binary alloy of a composite powder based on the titanium-niobium system. A set of 10x10 mm samples is made in various process conditions. The samples are made by an experimental selective laser synthesis machine «VARISKAF-100MB». The machine provides adjustment of the following process variables: laser emission power, scanning rate and pitch, temperature of powder pre-heating, thickness of the layer to be sprinkled, and diameter of laser spot focusing. All samples are made in the preliminary vacuumized shielding atmosphere of argon. The porosity and thickness of the sintered layer related to the laser emission power are shown at various scanning rates. It is revealed that scanning rate and laser emission power are adjustable process variables, having the greatest effect on forming the sintered layer.

  19. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: geometry and body location dependency.

    Science.gov (United States)

    Toker, S M; Canadinc, D; Maier, H J; Birer, O

    2014-03-01

    A systematic set of ex-situ experiments were carried out on Nickel-Titanium (NiTi) shape memory alloy (SMA) in order to identify the dependence of its biocompatibility on sample geometry and body location. NiTi samples with three different geometries were immersed into three different fluids simulating different body parts. The changes observed in alloy surface and chemical content of fluids upon immersion experiments designed for four different time periods were analyzed in terms of ion release, oxide layer formation, and chemical composition of the surface layer. The results indicate that both sample geometry and immersion fluid significantly affect the alloy biocompatibility, as evidenced by the passive oxide layer formation on the alloy surface and ion release from the samples. Upon a 30 day immersion period, all three types of NiTi samples exhibited lower ion release than the critical value for clinic applications. However; a significant amount of ion release was detected in the case of gastric fluid, warranting a thorough investigation prior to utility of NiTi in gastrointestinal treatments involving long-time contact with tissue. Furthermore, certain geometries appear to be safer than the others for each fluid, providing a new set of guidelines to follow while designing implants making use of NiTi SMAs to be employed in treatments targeting specific body parts. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effect of Co - based Alloy on Properties of Laser Cladding Layer

    Science.gov (United States)

    Yang, Y.; Jiang, Z. P.; Li, H. Z.

    2017-11-01

    A large number of laser cladding experiments have been carried out using 20CrMnTi steel as substrate and Co-based alloy as cladding material. The influence of Co-based alloy on the laser cladding properties of 20CrMnTi steel was studied by analyzing the macroscopic and microscopic characteristics of cladding crack susceptibility, dilution rate, microstructure and friction and wear properties. The results show that the high-power laser cladding of Co-based material can obtain a flat defect-free cladding layer with compact structure and low crack susceptibility. A multi-layer cladding strategy with variable power can be used to fabricate thin wall structures without collapse Parts, the surface smooth without pores.

  1. Low energy milling method, low crystallinity alloy, and negative electrode composition

    Science.gov (United States)

    Le, Dihn B; Obrovac, Mark N; Kube, Robert Y; Landucci, James R

    2012-10-16

    A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.

  2. Processing and properties of Titanium alloy based materials with tailored porosity and composition

    Science.gov (United States)

    Cabezas-Villa, Jose Luis; Olmos, Luis; Lemus-Ruiz, Jose; Bouvard, Didier; Chavez, Jorge; Jimenez, Omar; Manuel Solorio, Victor

    2017-06-01

    This paper deals with powder processing of Ti6Al4V titanium alloy based materials with tailored porosity and composition. Ti6Al4V powder was mixed either with salt particles acting as space holder, so as to provide two-scale porosity, or with hard TiN particles that significantly modified the microstructure of the material and increased its hardness. Finally an original three-layer component was produced. Sample microstructure was observed by SEM and micro-tomography with special interest in pore size and shape, inclusion distribution and connectivity. Compression tests provided elastic modulus and yield stress as functions of density. These materials are representative of bone implants subjected to complex biological and mechanical conditions. These results thus open avenues for processing personalized implants by powder metallurgy.

  3. Experimental Studies on SiC and Rice Husk Ash Reinforced Al Alloy Composite

    Directory of Open Access Journals (Sweden)

    Shivaprakash Y. M.

    2018-01-01

    Full Text Available In this research work Aluminium alloy with Cu (4.5% as the major alloying element is used as the matrix in which SiC and Rice Husk Ash (RHA are dispersed to develop a hybrid composite. The dispersion is done by the motorized stir casting arrangement. The composite is fabricated by varying the proportions of the reinforcements in the base alloy. The composite specimens were tested for density changes, hardness and the wear. The microstructure images showed a uniform dispersion of the reinforcements in the matrix and this resulted in higher strength to weight ratio. The increase in strength of the composite is probably attributed to the increase in the dislocation density. Also, the abrasive wear resistance of the produced composite is found to be superior as compared to the matrix alloy because of the hard-ceramic particles in the reinforcements.

  4. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    Science.gov (United States)

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  5. Abrasion of Polymeric Composites on Basis of Machining Splinters from Hardfacing Alloys – Usable in Agrocomplex

    Directory of Open Access Journals (Sweden)

    Petr Valášek

    2014-01-01

    Full Text Available A paper focuses on a description of two-body and three-body abrasion wear of polymeric particle composites with fillers on a basis of machining splinters from hardfacing alloys. The abrasive wear is typical for functional surfaces of agricultural machines processing the soil. One of possibilities of the functional surface renovation is an application of resistant layers in a form of composite systems. Just the inclusion of hard inorganic particles into a polymeric matrix significantly increases its wear resistance. So long as the primary filler is replaced by the waste – by particles from the material machining – the matrix in which the filler is dispersed is a bearer of a material recyclation. This way of the recyclation is inexpensive, economic and sensitive to environment. The paper focuses on the experimental description of the two-body and three-body abrasion and the composites hardness, it describes a production of a prototype for field tests with the functional surface on the basis of the investigated composite system at the same time.

  6. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  7. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  8. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  9. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Patricia Gómez

    2016-05-01

    Full Text Available The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe, Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe, Al Si9Cu3(Fe(Zn and Al Si9 has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe(Zn, with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  10. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    Science.gov (United States)

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  11. Wave propagation in layered anisotropic media with application to composites

    CERN Document Server

    Nayfeh, AH

    1995-01-01

    Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.

  12. Pulsed laser deposition of polytetrafluoroethylene-gold composite layers

    Science.gov (United States)

    Kecskeméti, Gabriella; Smausz, Tomi; Berta, Zsófia; Hopp, Béla; Szabó, Gábor

    2014-11-01

    PTFE-metal composites are promising candidates for use as sensor materials. In present study PTFE-Au composite layers were deposited by alternated ablation of pressed Teflon pellets and gold plates with focused beam of an ArF excimer laser at 6 J/cm2 fluence, while keeping the substrate at 150 °C temperature. The morphology and chemical composition of the ~3-4 μm average thickness layers was studied by electron microscopy and energy dispersive X-ray spectroscopy. The layers were mainly formed of PTFE gains and clusters which are covered by a conductive Au film. For testing the applicability of such layers as sensing electrodes, composite layers were prepared on one of the two neighbouring electrode of a printed circuit board. Cholesterol and glucose solutions were prepared using 0.1M NaOH solvent containing 10% Triton X-100 surfactant. The electrodes were immersed in the solutions and voltage between the electrodes was measured while a constant current was drawn through the sample. The influence of the analyte concentration on the power spectral density of the voltage fluctuation was studied.

  13. Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties.

    Science.gov (United States)

    Li, Honglai; Duan, Xidong; Wu, Xueping; Zhuang, Xiujuan; Zhou, Hong; Zhang, Qinglin; Zhu, Xiaoli; Hu, Wei; Ren, Pinyun; Guo, Pengfei; Ma, Liang; Fan, Xiaopeng; Wang, Xiaoxia; Xu, Jinyou; Pan, Anlian; Duan, Xiangfeng

    2014-03-12

    Band gap engineering of atomically thin two-dimensional layered materials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, a simple one-step chemical vapor deposition approach for the simultaneous growth of alloy MoS2xSe2(1-x) triangular nanosheets with complete composition tunability. Both the Raman and the photoluminescence studies show tunable optical properties consistent with composition of the alloy nanosheets. Importantly, all samples show a single bandedge emission peak, with the spectral peak position shifting from 668 nm (for pure MoS2) to 795 nm (for pure MoSe2), indicating the high quality for these complete composition alloy nanosheets. These band gap engineered 2D structures could open up an exciting opportunity for probing their fundamental physical properties in 2D and may find diverse applications in functional electronic/optoelectronic devices.

  14. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinming, E-mail: xmzhang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yuan, Xubo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI){sub 5}). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI){sub 5} sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI){sub 5} to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI){sub 5} was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  15. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  16. High temperature mechanical properties of AL-AL4C3 composite produced by mechanical alloying

    Czech Academy of Sciences Publication Activity Database

    Besterci, M.; Dobeš, Ferdinand; Kvačkaj, T.; Sülleiová, K.; Ballóková, B.; Velgosová, O.

    2014-01-01

    Roč. 20, č. 3 (2014), s. 326-340 ISSN 1335-1532 Institutional support: RVO:68081723 Keywords : Aluminium-graphite powder system * mechanical alloying * compacting * microstructure parameters * mechanical properties * creep characteristics Subject RIV: JI - Composite Materials

  17. Optical characterization of composite layers prepared by plasma polymerization

    International Nuclear Information System (INIS)

    Radeva, E; Hikov, T; Mitev, D; Pramatarova, L; Stroescu, H; Nicolescu, M; Gartner, M; Presker, R

    2016-01-01

    Thin composite layers from polymer/nanoparticles (Ag-nanoparticles and detonation nanodiamonds) were prepared by plasma polymerization process on the base of hexamethyldisiloxane. The variation of the layer composition was achieved by changing the type of nanoparticles. The optical measurement techniques used were UV-VIS-NIR ellipsometry (SE), Fourier-transformed infrared spectroscopy (FTIR) and Raman spectroscopy. The values of the refractive index determined are in the range 1.30 to 1.42. All samples are transparent with transmission between 85-95% and very smooth. The change in Raman and FTIR spectra of the composites verify the expected bonding between polymer and diamond nanoparticles due to the penetration of the fillers in the polymer matrix. The comparison of the spectra of the corresponding NH3 plasma treated composites revealed that the composite surface becomes more hydrophilic. The obtained results indicate that preparation of layers with desired compositions is possible at a precise control of the detonation nanodiamond materials. (paper)

  18. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Apps, P.J.; Karimzadeh, H.; King, J.F.; Lorimer, G.W

    2003-03-03

    Phase compositions have been investigated, using thin foil energy dispersive X-ray spectroscopy, in three magnesium-rare earth alloys, containing yttrium, gadolinium or dysprosium. Compositions are suggested for the as-cast eutectic and {beta} precipitate phases and possible compositions for the {beta}{sub 1} precipitate phases are discussed.

  19. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg alloys

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2007-04-01

    Full Text Available The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening heat treatment. The age hardened specimens were evaluated using tensile test, hardness measurements and impact test. Moreover, the structure investigation were carried out using either conventional light Metallography and scanning (SEM and transmission (TEM electron microscopy. The two last methods were used for fractography observations and precipitation process observations respectively. It was concluded that the changes in chemical composition which can reach even 2,5wt.% cause essential differences of the structure and mechanical properties of the alloys. As followed from quantitative evaluation and as could be predicted theoretically, copper and silicon mostly influenced the mechanical properties of AlSi5Cu3(Mg type cast alloys. Moreover it was showed that the total concentration of alloying elements accelerated and intensifies the process of decomposition of supersaturated solid solution. The increase of Cu and Mg concentration increased the density of precipitates. It increases of strength properties of the alloys which are accompanied with decreasing in ductility.

  20. Trace Element Geochemistry of Compositionally Layered Impact Spherules

    Science.gov (United States)

    Hibbard, Shannon M.

    Impact spherules are sand-sized spherical particles that have been interpreted to have formed by the cooling, crystallization, and quenching of melt droplets condensed from vapor plumes that are created during large meteor impacts. Spherules may be deposited globally as unique marker beds, such as at the K-Pg boundary. A minimum of 11 spherule beds have been identified in the Archean and Paleoproterozoic, and provide a record of impact events that predate any known craters. This study of 3.24 Ga impact spherules from the S3 spherule layer in the Barberton Greenstone Belt (BGB) in the Kaapvaal Craton of South Africa focuses on the heterogeneity of textures and geochemistry produced during the cooling and crystallization of spherules within a vapor plume. Type 4b spherules are layered phyllosilicate spherules with discrete differences in texture and composition between the inner and outer layer, even after alteration. Compositionally layered phyllosilicate spherules were analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) to measure major, trace, and rare earth element (REE) concentrations. Backscatter Electron (BSE) images and elemental X-ray maps indicate a range of compositional differences between the inner and outer layers of type 4b spherules. The majority of REE plots have nearly flat patterns, with little to no light to heavy REE fractionation; however, the outer layers consistently have higher concentrations, averaging about 10x chondritic, whereas the interiors are at or below chondritic levels with a mid-REE enrichment. The trace and REE patterns of the type 4b spherules are consistent with a more mafic inner layer and a more intermediate outer layer. Mechanisms to produce this layered texture may include: (1) accretion of less mafic material from the plume onto existing melt droplets as the plume continues to fractionate, (2) collision of melt droplets of different

  1. Natural composite in austenitic alloys with a structure of the complete discontinuous decomposition

    International Nuclear Information System (INIS)

    Zemtsova, N.D.; Anufrieva, E.I.; Uvarov, A.I.; Vasechkina, T.P.; Sandovskij, V.A.

    2002-01-01

    The papers are reviewed on heat treatment conditions resulting in a 100% degree of discontinuous precipitation in austenite on ageing metastable Fe-Ni-Ti alloys (N2KhT2, N26T3, N25T5, N24Kh2T3, N29T3, N29KhT3, N26Kh5T3). Mechanical properties and structure of the alloys are investigated after various heat and thermomechanical treatments. It is revealed that discontinuous precipitation is accomplished by way of migration of low-angle boundaries as the matrix is supersaturated essentially with alloying elements. The alloys with the structure of 100% discontinuous precipitation can be treated as natural composites consisting of alternating plates of intermetallic compound and austenite. Temperature dependences of strength and plastic properties of a composite material and a hardened alloy are compared [ru

  2. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    NiZnCu hexagonal ferrite (abbreviated as ZT/NZC) composite samples were prepared successfully by using restricted shrinkage sintering process (RSS) (Liu et al 2009a, b). But the electromagnetic performance degra- dation of co-sintered layer ...

  3. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  4. Abrasive wear response of aluminium alloy-sillimanite particle reinforced composite under low stress condition

    International Nuclear Information System (INIS)

    Singh, M.; Mondal, D.P.; Das, S.

    2006-01-01

    The abrasive wear behaviour of aluminium alloy-sillimanite particle reinforced composite under low stress condition has been reported and the results have been compared with the corresponding matrix alloy which was produced and cast under similar conditions. The study showed that wear resistance (inverse of wear rate) of the composite was higher than the matrix alloy. The wear rate decreased with sliding distance and increased with applied load irrespective of materials. The worn surfaces and subsurfaces of the tested samples were examined in the scanning electron microscope in order to understand the material removal mechanism during low stress abrasive wear process

  5. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  6. Incorporating Cyber Layer Failures in Composite Power System Reliability Evaluations

    Directory of Open Access Journals (Sweden)

    Yuqi Han

    2015-08-01

    Full Text Available This paper proposes a novel approach to analyze the impacts of cyber layer failures (i.e., protection failures and monitoring failures on the reliability evaluation of composite power systems. The reliability and availability of the cyber layer and its protection and monitoring functions with various topologies are derived based on a reliability block diagram method. The availability of the physical layer components are modified via a multi-state Markov chain model, in which the component protection and monitoring strategies, as well as the cyber layer topology, are simultaneously considered. Reliability indices of composite power systems are calculated through non-sequential Monte-Carlo simulation. Case studies demonstrate that operational reliability downgrades in cyber layer function failure situations. Moreover, protection function failures have more significant impact on the downgraded reliability than monitoring function failures do, and the reliability indices are especially sensitive to the change of the cyber layer function availability in the range from 0.95 to 1.

  7. In As{sub 1–x}Sb{sub x} heteroepitaxial structures on compositionally graded GaInSb and AlGaInSb buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Guseynov, R. R.; Tanriverdiyev, V. A. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Kipshidze, G., E-mail: gela.kishidze@stonybrook.ede [Stony Brook, Stony Brook University (United States); Aliyeva, Ye. N.; Aliguliyeva, Kh. V.; Abdullayev, N. A., E-mail: abnadir@mail.ru; Mamedov, N. T. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

    2017-04-15

    Unrelaxed InAs{sub 1–x}Sb{sub x} (x = 0.43 and 0.38) alloy layers are produced by molecular-beam epitaxy on compositionally graded GaInSb and AlGaInSb buffer layers. The high quality of the thin films produced is confirmed by the results of high-resolution X-ray diffraction analysis and micro-Raman studies. The twomode type of transformation of the phonon spectra of InAs{sub 1–x}Sb{sub x} alloys is established.

  8. Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-06-01

    Full Text Available A simple linear equation was developed and applied to a hypothetical binary equilibrium diagram to evaluate the eutectic composition of the binary alloy system. Solution of the equations revealed that the eutectic composition of the case study Pb – Sn, Bi – Cd and Al – Si alloys are 39.89% Pb, 60.11% Sn, 58.01% Bi, 41.99% Cd and 90.94% Al, 9.06% Si respectively. These values are very close to experimental values. The percent deviation of analytical values from experimental values ranged between 2.87 and 5% for the three binary systems considered, except for Si – Al alloy in which the percent deviation for the silicon element was 22%.It is concluded that equation of straight line could be used to predict the eutectic composition of simple binary alloys within tolerable experimental deviation range of 2.5%.

  9. Determination of composition and fluidity of an alloy for impregnating hard alloys on the basis of titanium carbide

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2016-07-01

    Full Text Available In this paper optimum compositions of a metal bond of Cr – Ni - Co system are determined by mathematical planning methods. As a response function, value of bending strength at a temperature of 800 °C was used. On the basis of the developed planning matrix samples of required composition were made, bending strength and long-term strength are measured. A certain composition of alloy-bond and its quantity is found. Spiral tests were conducted to determine fluidity.

  10. Layered Composite of TiC-TiB2 to Ti-6Al-4V in Graded Composition by Combustion Synthesis in High-gravity Field

    International Nuclear Information System (INIS)

    Huang Xuegang; Zhao Zhongmin; Zhang Long

    2013-01-01

    By taking combustion synthesis to prepare solidified TiB 2 matrix ceramic in high-gravity field, the layered composite of TiC-TiB 2 ceramic to Ti-6Al-4V substrate in graded composition was achieved. XRD, FESEM and EDS results showed that the bulk full-density solidified TiC-TiB 2 composite was composed of fine TiB 2 platelets, TiC irregular grains, a few of α-Al 2 O 3 inclusions and Cr alloy phases, and α'-Ti phases alternating with Ti-enriched carbides constituted the matrix of the joint in which fine TiB platelets were embedded, whereas some C, B atoms were also detected at the heat-affected zone of Ti-6A1-4V substrate. The layered composite of the solidified ceramic to Ti-6Al-4V substrate in graded composition with continuous microstructure was considered a result of fused joint and inter-diffusion between liquid ceramic and surface-molten Ti alloy, followed by TiB 2 -Ti peritectic reaction and subsequent eutectic reaction in TiC-TiB-Ti ternary system.

  11. Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility.

    Science.gov (United States)

    Yang, Qiuyue; Yuan, Wei; Liu, Xiangmei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Pan, Haobo; Wu, Shuilin

    2017-08-01

    The biodegradability and good mechanical property of magnesium alloys make them potential biomedical materials. However, their rapid corrosion rate in the human body's environment impairs these advantages and limits their clinical use. In this work, a compact zirconia (ZrO 2 ) nanofilm was fabricated on the surface of a magnesium-strontium (Mg-Sr) alloy by the atomic layer deposition (ALD) method, which can regulate the thickness of the film precisely and thus also control the corrosion rate. Corrosion tests reveal that the ZrO 2 film can effectively reduce the corrosion rate of Mg-Sr alloys that is closely related to the thickness of the film. The cell culture test shows that this kind of ZrO 2 film can also enhance the activity and adhesion of osteoblasts on the surfaces of Mg-Sr alloys. The significance of the current work is to develop a zirconia nanofilm on biomedical MgSr alloy with controllable thickness precisely through atomic layer deposition technique. By adjusting the thickness of nanofilm, the corrosion rate of Mg-Sr alloy can be modulated, thereafter, the degradation rate of Mg-based alloys can be controlled precisely according to actual clinical requirement. In addition, this zirconia nanofilm modified Mg-Sr alloys show excellent biocompatibility than the bare samples. Hence, this work provides a new surface strategy to control the degradation rate while improving the biocompatibility of substrates. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Studies on Mechanical Alloying of Copper-Tungsten Carbide Composite for Spot Welding Electrode

    Science.gov (United States)

    Zuhailawati, H.; Jamaludin, S. B.

    2009-12-01

    This article presents a study on the properties and performance of copper-based composite reinforced with recycled tungsten carbide powder as spot welding electrode. The copper-tungsten carbide composite electrode was prepared by mechanical alloying and powder forging before being machined into truncated cone-face geometry. The welding operation was conducted on galvanized steel using a pedestal-type spot welding machine. Composites with higher density and electrical conductivity were obtained after mechanical alloying for shorter time. In contrast, a higher hardness is shown in the composite, which was mechanically alloyed to longer time. The strength of the welded steel coupon was found to increase with decreasing milling time due to an increase in density and electrical conductivity. The wear behavior of the composite revealed that the deformation of the spot weld electrode increased with increasing milling time.

  13. Combinatorial Strategies for Synthesis and Characterization of Alloy Microstructures over Large Compositional Ranges.

    Science.gov (United States)

    Li, Yanglin; Jensen, Katharine E; Liu, Yanhui; Liu, Jingbei; Gong, Pan; Scanley, B Ellen; Broadbridge, Christine C; Schroers, Jan

    2016-10-10

    The exploration of new alloys with desirable properties has been a long-standing challenge in materials science because of the complex relationship between composition and microstructure. In this Research Article, we demonstrate a combinatorial strategy for the exploration of composition dependence of microstructure. This strategy is comprised of alloy library synthesis followed by high-throughput microstructure characterization. As an example, we synthesized a ternary Au-Cu-Si composition library containing over 1000 individual alloys using combinatorial sputtering. We subsequently melted and resolidified the entire library at controlled cooling rates. We used scanning optical microscopy and X-ray diffraction mapping to explore trends in phase formation and microstructural length scale with composition across the library. The integration of combinatorial synthesis with parallelizable analysis methods provides a efficient method for examining vast compositional ranges. The availability of microstructures from this vast composition space not only facilitates design of new alloys by controlling effects of composition on phase selection, phase sequence, length scale, and overall morphology, but also will be instrumental in understanding the complex process of microstructure formation in alloys.

  14. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...

  15. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  16. Martensitic transformation and shape memory effect in NiTi alloy covered by chitosan/silver layer

    Directory of Open Access Journals (Sweden)

    Goryczka Tomasz

    2015-01-01

    Full Text Available The NiTi shape memory alloy was covered with chitosan/silver layer. Coatings were deposited at room temperature using combination of processing parameters such as deposition voltage and amount of silver in colloidal suspension. Structure of layers was studied by means of X-ray diffraction. Quality of the coatings was evaluated basing on observations done in scanning electron microscopy. Transformation behaviour of coated samples was studied with use of differential scanning calorimeter. The covered sample revealed presence of the reversible martensitic transformation and ability to deformation (in bending mode up to 8%. Forward martensitic transformation, in as-received NiTi alloy and in alloy after layer deposition occurred in two steps B2-R-B19’. After deformation quality of the chitosan/silver layer remained unchanged.

  17. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  18. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  19. Biochemical composition of the superficial layer of articular cartilage.

    Science.gov (United States)

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection. Copyright 2007 Wiley Periodicals, Inc.

  20. In-Situ X-Ray Microscopy of Phase and Composition Distributions in Metal Alloys During Solidification

    Science.gov (United States)

    Kaukler, William F.; Curreri, Peter A.

    1999-01-01

    This research applies a state of the art X-ray Transmission Microscope, to image the solidification of metallic or semiconductor alloys in real-time. By employing a hard x-ray source with sub-micron dimensions, resolutions of up to 3 gm can be obtained with magnifications of over 800 X. Specimen growth conditions were optimized and the best imaging technologies applied to maintain x-ray image resolution, contrast and sensitivity. In addition, a special furnace design is required to permit controlled growth conditions and still offer maximum resolution and image contrast. We have successfully imaged in real-time: interfacial morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid inter-face. We have also measured true local growth rates and can evaluate segregation structures in the solid; a form of in-situ metallography. Composition gradients within the specimen cause vafiations in absorption of the flux such that the final image represents a spatial integral of composition (or thickness). During this study, the growth of secondary phase fibers and lameilae from eutectic and monotectic alloys have been imaged during solidification, in real-time, for the first time in bulk metal alloys. Keywords: x-ray, microscope, solidification, microfocus, real-time, microstructure

  1. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    Science.gov (United States)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  2. Layer-by-Layer technique employed to construct multitask interfaces in polymer composites

    Directory of Open Access Journals (Sweden)

    Luísa Sá Vitorino

    Full Text Available Abstract The properties of glass fiber-reinforced polymer composites are closely related to the fiber-matrix interface. Interfacial treatments to improve mechanical properties are usually limited to enhance interfacial adhesion. In this work, Layer-by-Layer (LbL technique was introduced to build a novel interface in polymer composites. Different numbers of bilayers of poly(diallyldimethylammonium chloride and poly(sodium 4-styrenesulfonate with carbon nanotubes were deposited through LbL on the surface of woven glass fibers (GFs. Polypropylene composites containing the modified GFs were prepared by compression molding. Thermogravimetric analysis, scanning electron microscopy and Raman spectroscopy proved that multilayers of polymers with carbon nanotubes could be deposited on GFs surface. Mechanical tests on composites with modified GFs revealed an increase in Flexural Modulus and toughness. The overall results attested that the LbL technique can be used to design interfaces with different compositions to perform diverse tasks, such as to improve the stiffness of composites and to encapsulate active nanocomponents.

  3. Handbook of International Alloy Compositions and Designations. Volume 1. Titanium

    Science.gov (United States)

    1976-11-01

    Institute Nacional de Tecnica Aeroespacial , Madrid, Spain, plus the proposed Spanish designations for titanium alloys. Swedish References 31. Titanium...JISC, JIS: Japanese Industria Standards Committee, Agency of Industiial Science and Technology, Ministry of international Trade and Industry, 3

  4. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  5. Preparation and characterization of composite membrane via layer by layer assembly for desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, Maria, E-mail: maria-be24@hotmail.co.uk; Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jamil, Tahir

    2017-02-28

    Highlights: • Cellulose acetate based polymer composite membranes were formed via layer by layer assembly for nanofiltration. • Modified membranes shown improved MgSO{sub 4} salt rejection property up to 98.9%. • Surface roughness and antibacterial property of fabricated membrane were successfully studied. - Abstract: Cellulose acetate (CA) incorporated with sepiolite and Polyvinylpyrrolidone (PVP) multilayer composite on Polysulfone (PSf) substrate have been prepared by layer by layer (LbL) assembly method. Fourier TransformInfrared Spectroscopy (FTIR) results verified the hydrogen bonding among the components of composite membrane. Atomic force microscopy (AFM), scanning electron microscope (SEM) was carried out for the determination and elucidation of roughness and morphology of the fabricated membranes on PSf substrate. The AFM and SEM results showed the increased surface roughness with the porous and spongy structure. The performance results verified that the successful incorporation of sepiolite in membranes showed maximum MgSO{sub 4} rejection (98.9%) and flux of 38.7 L/m{sup 2} h. Whereas, in case of NaCl the rejection is 98.3% and flux is 34.9L/m{sup 2} h. The modification was evidenced to be effective in increasing the surface hydrophilicity that led to increase in surface roughness. The chlorine resistivity is improved by dropping the active sites for chlorine attack and protecting the underlying PSf substrate.

  6. Mechanisms of oxide layer formation and destruction on a chromia former nickel base alloy in HTR environment; Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR

    Energy Technology Data Exchange (ETDEWEB)

    Rouillard, F

    2007-10-15

    Haynes 230 alloy which contains 22 wt.% chromium could be a promising candidate material for structures and heat exchangers (maximum operating temperature: 850-950 C) in Very High Temperature Reactors (VHTR). The feasibility demonstration involves to valid its corrosion resistance in the reactor specific environment namely impure helium. The alloys surface reactivity was investigated at temperatures between 850 and 1000 C. We especially focused on the influence of different parameters such as concentrations of impurities in the gas phase (carbon monoxide and methane, water vapour/hydrogen ratio), alloy composition (activities of Cr and C, alloying element contents) and temperature. Two main behaviours have been revealed: the formation of a Cr/Mn rich oxide layer at 900 C and its following reduction at higher temperatures. At 900 C, the water vapour is the main oxidizing gas. However in the initial times, the carbon monoxide reacts at the metal/oxide interface which involves a gaseous transport through the scale; CO mainly oxidizes the minor alloying elements aluminium and silicon. Above a critical temperature TA, the carbon in solution in the alloy reduces chromia. To ascribe the scale destruction, a model is proposed based on thermodynamic interfacial data for the alloy, oxide layer morphology and carbon monoxide partial pressure in helium; the model is then validated regarding experimental results and observations. (author)

  7. Investigation of vanadium and nitride alloys thin layers deposited by PVD

    Directory of Open Access Journals (Sweden)

    Nouveau C.

    2012-06-01

    Full Text Available In this work we present the technique of magnetron vapor deposition and the effect of several deposition parameters on the structural and morphological properties of prepared thin films. It was noted that the deposition time has an effect on the crystallinity, mechanical properties such as residual stress, roughness surface and the layer composition from target products. Studies were carried out on layers of vanadium (V and the nitride vanadium (VN.

  8. Bombardment-induced compositional change with alloys, oxides, and oxysalts. 1

    International Nuclear Information System (INIS)

    Kelly, R.

    1989-01-01

    A review of the role of surface binding energies in bombardment-induced compositional change with alloys, oxides and oxysalts is presented. The concepts of preferential sputtering and compositional change may or may not coincide; their differences are clarified. 77 refs.; 12 figs.; 4 tabs

  9. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  10. Effect of abrasive water jet on the structure of the surface layer of Al-Mg alloy

    Science.gov (United States)

    Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Gudnev, N. Z.

    2017-09-01

    Optical, scanning, and transmission electron microscopy methods, and X-ray diffraction analysis have been used to study the changes in the structure and the microhardness in the surface layer of the Al-Mg (5.8-6.8 wt %) alloy after water jet cutting. The dislocation density, the sizes of coherent scattering regions, and microdistortions have been determined. The transformation of the fine structure has been revealed in the displacement from the alloy volume to the abrasive-waterjet cutting surface.

  11. A process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten, or of their alloys

    International Nuclear Information System (INIS)

    Diepers, H.; Schmidt, O.

    1976-01-01

    An improvement is proposed for the process for electrodeposition of layers of niobium, vanadium, molybdenum or tungsten or of their alloys from molten-salt electrolytes (fluorid melts) which is to increase the quality of layers in order to obtain regular thickness and smooth surfaces. According to the invention, a pre-separation is executed on an auxiliary cathode before the (preheated) cathode is immersed. The cathode is only charged for separation after the adjustment of a constant anode potential. It is an advantage that the auxiliary cathode is mechanically and electrically connected with the cathode. As an electrolyte, a mixture of niobium fluorides and a eustetic mixture of potassium fluorides, sodium fluorides and lithium fluorides are particularly suitable for the electrodeposition of niobium. (UWI) [de

  12. Formation of an A1N continuous layer by nitrogen ion implantation in aluminium alloys

    International Nuclear Information System (INIS)

    Denanot, M.F.; Delafond, J.; Grilhe, J.

    1986-01-01

    Nitrogen ion implantations at doses from 10 17 ions cm -2 up to 6 x 10 17 ions cm -2 in pure A1 and an Au 4 G industrial alloy are studied by electron microscopy investigations. In these two materials, we observe the formation of AlN precipitates with an orientation relationship between the two lattices. The highest dose leads to the formation of a continuous layer of AlN with a very good crystallographic quality, but there are blisters due to gas bubbles. It seems that the dose of 3 x 10 17 ions cm -2 is optimum to have a good AlN continuous layer and thus to improve the surface qualities of the materials. (author)

  13. Amorphization threshold in Si-implanted strained SiGe alloy layers

    International Nuclear Information System (INIS)

    Simpson, T.W.; Love, D.; Endisch, E.; Goldberg, R.D.; Mitchell, I.V.; Haynes, T.E.; Baribeau, J.M.

    1994-12-01

    The authors have examined the damage produced by Si-ion implantation into strained Si 1-x Ge x epilayers. Damage accumulation in the implanted layers was monitored in situ by time-resolved reflectivity and measured by ion channeling techniques to determine the amorphization threshold in strained Si 1-x Ge x (x = 0.16 and 0.29) over the temperature range 30--110 C. The results are compared with previously reported measurements on unstrained Si 1-x Ge x , and with the simple model used to describe those results. They report here data which lend support to this model and which indicate that pre-existing strain does not enhance damage accumulation in the alloy layer

  14. Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects

    Science.gov (United States)

    Zhao, Yipeng; Zhang, Zhe; Ouyang, Gang

    2018-04-01

    Band engineering of 2D transition-metal dichalcogenides (2D-TMDs) is a vital task for their applications in electronic and optoelectronic nanodevices. In this study, we investigate the joint effect from size and composition contributions on the band shift of 2D-TMD alloys in terms of atomic bond relaxation consideration. A theoretical model is proposed to pursue the underlying mechanism, which can connect the band offset with the atomic bonding identities in the 2D-TMD alloys. We reveal that the bandgap of 2D-TMD alloys presents a bowing shape owing to the size-dependent interaction among atoms and shows blue shift or red shift due to different intermixing of components. It is demonstrated that both size and composition can be performed as the useful methods to modulate the band shift, which suggests an effective way to realize the desirable properties of 2D-TMD alloys.

  15. Surface Layers of Zr-18%Nb Alloy Modified by Ultrasonic Impact Treatment: Microstructure, Hardness and Corrosion

    Science.gov (United States)

    Khripta, N. I.; Karasevska, O. P.; Mordyuk, B. N.

    2017-11-01

    Near-surface layers in Zr-18%Nb alloy were modified using ultrasonic impact treatment (UIT). The effects of the UIT processing time on a microstructural formation, omega/alpha precipitations, microhardness and corrosion are analyzed. XRD analysis, TEM and SEM observations and EDX characterization allow establishing the links between the microstructure, microhardness and corrosion behavior of the surface layers formed. At the strain extent up to e ≈ 0.3, structural formation occurs under influence of deformation induced heating, which facilitates omega precipitation in beta phase and mechanically induced oxygen transport and oxide formation. XRD analysis reveals moderate compressive residual stresses (- 160 MPa) and pronounced {110} texture after the UIT process. Generation of dislocations and hindering of their movement by nanoscale omega precipitates manifest themselves as the broadening of diffraction peaks occurred mainly owing to the lattice microstrains, and they provide marked strain hardening. The enhanced anticorrosion properties of Zr-18%Nb alloy in saline solution were concluded to be a result of the formation of a protective oxide film, {110} texture and compressive stresses.

  16. Nonlinear acoustic properties of the B95 aluminum alloy and the B95/nanodiamond composite

    Science.gov (United States)

    Korobov, A. I.; Prokhorov, V. M.

    2016-11-01

    Research results for the nonlinear acoustic properties of the B95 polycrystalline aluminum alloy and the B95/nanodiamond composite have been described. The nonlinear properties of the alloys have been studied by the spectral method that measures the efficiency of generation of the second harmonic of a bulk acoustic wave at a frequency of 2 f = 10 MHz in the field of a finite-amplitude longitudinal acoustic wave at a frequency of f = 5 MHz. The results derived by this method have been compared with the results of studies of the nonlinear acoustic properties of the test alloys using the Thurston-Brugger quasi-static method.

  17. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  18. A study of composite beam with shape memory alloy arbitrarily embedded under thermal and mechanical loadings

    International Nuclear Information System (INIS)

    Zhang Yin; Zhao Yapu

    2007-01-01

    The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint

  19. Predicting Magnetoelectric Coupling in Layered and Graded Composites

    Directory of Open Access Journals (Sweden)

    Mirza Bichurin

    2017-07-01

    Full Text Available Magnetoelectric (ME interaction in magnetostrictive-piezoelectric multiferroic structures consists in inducing the electric field across the structure in an applied magnetic field and is a product property of magnetostriction and piezoelectricity in components. ME voltage coefficient that is the ratio of induced electric field to applied magnetic field is the key parameter of ME coupling strength. It has been known that the ME coupling strength is dictated by the product of the piezoelectric and piezomagnetic coefficients of initial phases. As a result, using the laminates with graded piezoelectric and piezomagnetic parameters are a new pathway to the increase in the ME coupling strength. Recently developed models predict stronger ME interactions in composites based on graded components compared to homogeneous ones. We discuss predicting the ME coupling strength for layered structures of homogeneous and compositionally graded magnetostrictive and piezoelectric components based on the graphs of ME voltage coefficients against composite parameters. For obtaining the graphs, we developed equations for ME output in applied magnetic field for possible modes of operation and layered structure configurations. In particular, our studies have been performed on low-frequency ME coupling, enhanced ME effect in electromechanical resonance (EMR region for longitudinal and bending modes. Additionally, ME coupling at magnetic resonance in magnetostrictive component and at overlapping the EMR and magnetic resonance is investigated. We considered symmetric trilayers and asymmetric bilayers of magnetostrictive and piezoelectric components and multilayered structures based on compositionally stepped initial components.

  20. Longevity of Compositionally Stratified Layers in Ice Giants

    Science.gov (United States)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  1. Effect of High-Speed Milling Parameters on Surface Metamorphic Layer of TC17 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    TAN Liang

    2017-12-01

    Full Text Available In order to provide the relatively accurate experimental basis for optimizing parameters and controlling surface metamorphic layer, ball end high-speed milling experiments of TC17 titanium alloy were carried out utilizing one of experimental design techniques based on the response surface methodology. The surface roughness prediction model was built, variance analyses were applied to check the significances of surface roughness model and input parameters, the effect of parameters on surface roughness was analyzed. Meanwhile, the residual stress, microhardness and microstructure under the condition of high, medium and low level of parameters were investigated. Results indicate that the model can predict the surface roughness effectively and feed per tooth and radial depth of cut have an obvious effect on surface roughness. Compressive residual stresses are detected on all milled surfaces and surface residual stresses are increased with the increase of the level of the milling parameters. The compressive residual stress layer is approximately 20 μm regardless of milling parameters level used. The process of thermal softening, then work hardening, and finally tending to stabilize are observed in the microhardness profiles. Grains of the surface layer are broken and bent, the thickness of plastic deformation layer is approximately 10 μm.

  2. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei, E-mail: kwgao@yahoo.com

    2017-05-15

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO{sub 3} LDHs, Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  3. Titanium aluminide intermetallic alloys with improved wear resistance

    Science.gov (United States)

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  4. Diode Laser Surface Alloying of Armor Steel with Tungsten Carbide

    OpenAIRE

    Janicki D.; Górka J.; Kwaśny W.; Gołombek K.; Kondracki M.; Żuk M.

    2017-01-01

    Metal matrix composite (MMC) surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction.

  5. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  6. Structure and Properties of VT6 Alloy Obtained by Layered Selective Sintering of a Powder

    Science.gov (United States)

    Teresov, A. D.; Ivanov, Yu. F.; Petrikova, E. A.; Koval, N. N.

    2017-12-01

    This paper is focused on a clarification and analysis of the regularities of formation of the structure and properties of samples of the titanium-based alloy VT6, obtained by methods of conventional metallurgy and formed by layered selective electron-beam sintering in vacuum (using the Arcam A2X (3D printer) system (Arcam, Sweden)) of VT6 titanium powder with particle size 40-100 μm. Additional modification of the samples was realized by irradiating the surface with an intense pulsed electron beam (15 keV, 45 J/cm2, 200 μs, 10 pulses, 0.3 s-1, 3.5·10-2 Pa). It is shown that the action of a pulsed electron beam on the surface of samples formed by layered selective electron-beam sintering leads to a significant reduction in the porosity of the surface layer of the material and formation in the surface layer of a polycrystalline structure (grain size 15-60 μm) with a substructure in the form of crystallization cells (cell size 0.5-1.2 μm). Electron-beam processing of samples prepared by methods of conventional metallurgy for the indicated electron-beam parameters leads to the formation in the surface layer of a polycrystalline structure (grain size 50-800 μm) with a laminar intragrain substructure. Mechanical tests, performed by stretching flat samples, showed that the highest combination of mechanical strength and plasticity is possessed by samples obtained by layered selective electron-beam sintering with subsequent irradiation by an intense pulsed electron beam.

  7. Tribological properties of Al 7075 alloy based composites strengthened with Al2O3 fibres

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2011-04-01

    Full Text Available Wear resistance of 7075 aluminium alloy based composite materials reinforced with Al2O3 Saffil fibres was investigated. The measurementsof wear were performed applying the pin-on-disc method at dry friction conditions with the gray iron counterpart. The effects ofpressure of composite samples on the counterpart made of gray iron and the orientation of fibers in relation to the friction surface on wear rate were determined. The materials were produced by squeeze casting method where 80-90% porous ceramic preform were infiltrated.After T6 heat treatment hardness increased about 50-60% both for unreinforced alloy and composites containing strengthening Saffilfibres. Wear resistance of composite materials in relation to the unreinforced 7075 alloy was slightly worse at lower pressure of 0.8 MPa. Under higher pressure of 1.2 MPa wear resistance of unreinforced 7075 alloy was even better whereas no effect of orientation of fibers on wear in composite materials was observed. Additionally, significant wear of counterface in the presence of debris with fragmented Al2O3 fibres as abrasives was observed. Wear resistance improvement of composite materials was obtained when with alumina Saffil fibres Carbon C fibres in the preforms were applied.

  8. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  9. Microstructure and phase composition of Fe-B-Al coatings on low carbon steel prepared by using mechanical alloying technique

    Science.gov (United States)

    Sundawa, R. Y.; Aryanto, D.; Wismogroho, A. S.; Sudiro, T.

    2017-04-01

    In the present study, varying composition of FeB-Al was coated on low carbon steel by using mechanical alloying technique for 4 hours and followed by heat treatment in vacuum atmosphere of 5.9 Pa at 700 °C. The microstructure and formed phases of FeB-50 at.%Al, FeB-25 at.%Al, FeB-12.5 at.%Al and FeB coatings were intensively discussed. The cross sectional observation indicates that the coating thickness tends to increase with increasing Al content. Before heat treatment, the coatings are composed of FeB and Al phases, depending on coating composition.. After heat treatment, the intermetallic phases were identified. Interdifussion layer was also formed in the FeB-50 at.%Al coating after heat treatment.

  10. Low void content autoclave molded titanium alloy and polyimide graphite composite structures.

    Science.gov (United States)

    Vaughan, R. W.; Jones, R. J.; Creedon, J. F.

    1972-01-01

    This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.

  11. Microstructural design in alumina-alumina/zirconia layered composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Moya, J.S. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Tomsia, A.P. [Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1997-12-18

    Very recently several authors have pointed out the extremely important role of microstructural design in developing structural ceramic materials for long term high temperature applications. In this sense Raj has identified several boundary conditions: (1) Resistance to oxidation, (ii) Resistance to grain boundary sliding and cavitation, (iii) Good strength and toughness at room temperature. The aspiration is to eliminate grain boundaries which can act as cavitation sites, without using single crystals which typically exhibit low toughness. In this regard ceramics with single crystal-like morphologies, e.g., large elongated grains, with good fracture toughness and high bending strength have been proposed. One route to find these apparently contradictory characteristic is by building up layered microarchitectures where layers with high toughness and high bending strength coexist with layers with high creep resistance. These conditions can be met in the case of Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-ZrO{sub 2} laminates. The present work was directed to the study of the microstructural features and properties of Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3} + unstabilized ZrO{sub 2} and Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3} + t-ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}) layered composites.

  12. Moessbauer and x-ray study of mechanically alloyed Fe-Ni alloys around the Invar composition

    Energy Technology Data Exchange (ETDEWEB)

    Valderruten, J F; Perez Alcazar, G A [Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia); Greneche, J M [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, Avenue Olivier Messiaen, F-72085 Le Mans cedex (France)

    2008-12-03

    Fe{sub 100-x}Ni{sub x} powders (22.5{<=}x{<=}40 at.%) mechanically alloyed (MA) for 10 h were characterized by x-ray diffraction (XRD) and transmission {sup 57}Fe Moessbauer spectrometry (TMS). In all of this composition range, the nanostructured alloys consist of two crystalline phases, body-centred cubic (BCC) and face-centred cubic (FCC). The Moessbauer spectra were fitted by means of a new fitting model involving two hyperfine magnetic field distributions (HMFDs), and a narrow singlet. One HMFD corresponds to the ferromagnetic BCC grains (tetrataenite), and the other to the ferromagnetic FCC grains (taenite), and the narrow singlet to paramagnetic FCC grains (antitaenite or superparamagnetic FCC grains). The Ni content dependence of the hyperfine field at {sup 57}Fe nuclei of the FCC phase gives evidence for some jump at about 32.5 at.% Ni, attributed to Invar anomaly.

  13. Mössbauer and x-ray study of mechanically alloyed Fe Ni alloys around the Invar composition

    Science.gov (United States)

    Valderruten, J. F.; Pérez Alcázar, G. A.; Grenèche, J. M.

    2008-12-01

    Fe100-xNix powders (22.5alloyed (MA) for 10 h were characterized by x-ray diffraction (XRD) and transmission 57Fe Mössbauer spectrometry (TMS). In all of this composition range, the nanostructured alloys consist of two crystalline phases, body-centred cubic (BCC) and face-centred cubic (FCC). The Mössbauer spectra were fitted by means of a new fitting model involving two hyperfine magnetic field distributions (HMFDs), and a narrow singlet. One HMFD corresponds to the ferromagnetic BCC grains (tetrataenite), and the other to the ferromagnetic FCC grains (taenite), and the narrow singlet to paramagnetic FCC grains (antitaenite or superparamagnetic FCC grains). The Ni content dependence of the hyperfine field at 57Fe nuclei of the FCC phase gives evidence for some jump at about 32.5 at.% Ni, attributed to Invar anomaly.

  14. Production process of composite can in zirconium or zirconium alloy

    International Nuclear Information System (INIS)

    Donaghy, R.E.; Sherman, A.H.

    1979-01-01

    Treatment of zirconium or zirconium alloy nuclear fuel claddings in order to render them resistant to embrittlement and cracking through corrosion under stress when utilized in a reactor. This process consists in oxidizing the inside surface and activating the oxidized surface of this vessel for the non-electrolytic deposition of a metal coat of copper, nickel or iron [fr

  15. Compositional disorder, magnetism, and their interplay in metallic alloys

    International Nuclear Information System (INIS)

    Johnson, D.D.; Staunton, J.B.; Pinski, F.J.; Gyorffy, B.L.; Stocks, G.M.

    1992-01-01

    Chemical disorder leads to a variety of intriguing phenomena in alloys which have yet to be fully understood, particularly those phenomena occurring when chemical and magnetic effects interplay with one another. For example, magnetic order gives rise to chemical ordering in alloys, as in Ni-rich NiFe alloys. Two examples of the interplay of chemical disorder and magnetism will be discussed. Our recently developed ab-initio Landau (mean-field) theory for calculating the chemical-chemical, magneto-chemical, and magnetic-magnetic correlation functions in substitutional random alloys is used to describe electronic/magnetic mechanisms (e.g. in FeV) which give rise to the chemical short-range order as determined by neutron, X-ray, or electron diffuse scattering intensities. New developments within this approach that account for charge rearrangement effect will be mentioned. These calculations are performed within the multiple-scattering framework, developed by Korringa, Kohn, and Rostoker (KKR), combined with the coherent potential approximation (CPA) to describe the disorder. This approach allows a first-principles description of the electronic structure of the high-temperature, chemically disordered state and its instability to ordering a low temperatures. This paper reports that this method provides not only a direct comparison of diffuse scattering data with theory but a means to understand more fully the underlying mechanisms which drive chemical and/or magnetic ordering

  16. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  17. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  18. Weathering of PGE sulfides and Pt-Fe alloys in the Freetown Layered Complex, Sierra Leone

    Science.gov (United States)

    Bowles, John F. W.; Suárez, Saioa; Prichard, Hazel M.; Fisher, Peter C.

    2017-12-01

    Fresh and weathered rocks and saprolite from Horizon B of the Freetown Layered Complex contain platinum-group minerals (PGM). The PGM in the fresh rocks are 1-7 μm across, including cooperite (PtS), isoferroplatinum (Pt3Fe), minor tetraferroplatinum (PtFe), tulameenite (Pt2FeCu), Os-bearing laurite (RuS2), and other base metal-sulfide (BMS)-bearing PGM. The weathered rocks contain fewer of those PGM but a high proportion of disordered Cu-(±Pd)-bearing Pt-Fe alloys. The saprolite hosts scarce, smaller (1-3 μm) ordered PtFe and disordered PtFe3. The Pt-Fe alloys became increasingly Fe rich as weathering proceeded. Pt-Fe oxides appeared during weathering. Copper sulfides associated with the primary PGM and cooperite (with <3% Pd) were destroyed to provide the minor Cu and Pd found in some of the disordered Pt-Fe alloys. Platinum- and Pd-bearing saprolites have retained the original rock fabric and, to a depth of about 2 m, surround residual rocks that show progressive weathering (corestones). Ground water passing through the saprolite has transported Pt and Pd (and probably Au) in solution down slope into saprolite over unmineralized rocks. Transport is marked by changes in the Pt/Pd ratio indicating that the metals have moved independently. Palladium is present in marginally higher concentrations in the deeper saprolite than in the corestones suggesting some retention of Pd in the deeper saprolite. Platinum and Pd are less concentrated in the upper saprolite than the deeper saprolite indicating surface leaching. Alteration occurred over a long period in an organic and microbial rich environment that may have contributed to the leaching and transport of PGE.

  19. The structure of the NiTi surface layers after the ion-plasma alloying of Ta

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: girs@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: lm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Schmidt, E. Yu., E-mail: shmidt.rin@yandex.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The effect of the Ta-ion beam implantation on the micro- and nanostructures of the surface layers of NiTi alloy was investigated using transmission electron microscopy and Auger spectroscopy. It is found that the elements are distributed non-uniformly with depth, so that the sublayers differ significantly in structure. The modified surface layer was found to consist of two sublayers, i.e. the upper oxide layer and the lower-lying amorphous layer that contains a maximum of Ta atoms.

  20. Determining the applicability of liquid alloy nitriding in fabrication of Al-AlN particle composites

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2008-08-01

    Full Text Available One of the possible techniques of the fabrication of dispersion-hardened composites is by in situ reaction between the liquid alloy and gas. The study presents the results of the research on nitriding of liquid aluminium alloy containing Mg and Ti as alloying elements under the conditions of high pressure comprised in the range of 150-1000hPa at the temperature of up to 1100oC. It has been stated that under the applied conditions of the synthesis it is possible to obtain the AlN nitride, but it is formed on the liquid alloy surface and as a deposit on the surface of the crucible. Some results of the analysis of the phase constitution obtained in the fabricated products were presented along with the structure of these products.

  1. Oxidation of the AlSi6Cu4 alloy and AlSi6Cu4-graphite particles composite at the elevated temperatures

    Directory of Open Access Journals (Sweden)

    J. Pozar

    2009-04-01

    Full Text Available Oxidation process of AlSi6Cu4 alloy as a composite matrix and of AlSi6Cu4 / 8 vol.% graphite particles composite was investigated.Composites were prepared by stirring method for suspension obtaining and by squeeze casting of the suspension. This process wasexamined by testing specimens annealed during up to 1000 hours at 573 K and 673 K in air atmosphere. The average oxidation state, oxidelayer thickness and hardness of examined materials were measured during the annealing time. Obtained results imply the followingconclusions: composite oxidizes faster than matrix alloy at both temperatures what is confirmed by higher weight gains and thicker oxide layer. The rate of oxidation of both materials gradually slows down at both temperatures. At initial stages of annealing at 673 K the rate of oxidation of both materials is much higher than that at 573 K. With increasing time of annealing the ratio of oxidation rate at 673 K to the one at 573 K comes down. Hardness of the composite is lower than that of matrix alloy before and during annealing at both temperatures. Drop in hardness at both 573 K and 673 K is the same for matrix and composite, and after about 100 hours the hardness no longer descents.

  2. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    Science.gov (United States)

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  3. Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Bichurin, M.I., E-mail: mirza.bichurin@novsu.ru; Petrov, V.M.; Leontiev, V.S.; Ivanov, S.N.; Sokolov, O.V.

    2017-02-15

    A paper devotes to theoretical and experimental studying the magnetoelectric interaction in layered structures of amorphous ferromagnetic alloy and single- crystal gallium arsenide. The authors investigated the magnetoelectric effect in the (100) plane of gallium arsenide in the electromechanical resonance range of 200–240 kHz and obtained maximal ME voltage coefficient of 120 V/A at bias field equaled 3.6 kA/m for the direction parallel to the [011] axis. Also the magnetoelectric effect in the (110) and (111) planes is discussed. The results can be used for design of new electronic devices based on the magnetostrictive-semiconductor materials. - Highlights: • Theoretical modeling of ME interaction was conducted. • Experimental dependencies in the resonance range were done. • Maximal ME effect of gallium arsenide was observed.

  4. Tensile behaviour at room and high temperatures of novel metal matrix composites based on hyper eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Valer, J.; Rodriguez, J.M.; Urcola, J.J.

    1997-01-01

    This work shows the improvement obtained on tensile stress at room and high temperatures of hyper eutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusion and thixoforming process, in comparison with conventional casting alloys.Al-25% Si-5%Cu. Al-25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si. Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy-was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes. (Author) 20 refs

  5. Compositional change induced by ion bombardement on binary alloys. [5 KeV Ar+

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Nakamura, H.; Hayashibara, M.; Itoh, N. (Nagoya Univ. (Japan). Dept. of Crystalline Materials Science)

    1982-03-01

    The compositional change, induced by 5 keV Ar/sup +/ ion bombardment, of self-supporting films of Ni-Si (10%) alloy has been studied at elevated temperatures. The results are compared with those of similar studies for Ni-Au alloy and are explained using the previously suggested two-stepped segregation mechanism: the segregation from grain boundaries to the surface and that from the grains to the grain boundaries. The theoretical calculation for the two-stepped mechanism has been made for a thin film and for a thicker material. It is pointed out that the compositional change induced by sputtering of alloys at high temperatures may cause important effects on physical properties of materials.

  6. Novel technique for determination of alloy composition with the help of chronopotentiometry

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.

    2006-01-01

    Single phase gamma (Ni/sub 5/Zn/sub 21/) nanocrystalline zinc-nickel alloy coatings were prepared by electrodeposition in chloride bath. Cyclic voltammetry as well as reverse Chronopotentiometry was performed on platinum substrate. Both of these techniques are well known for determination of phases present in alloy in electrochemistry. A new model is introduced for determining composition of the electrodeposited alloy (Zn-Ni) with the help of Chronopotentiometry. EDX of deposits was also performed. Relative percentages of zinc and nickel determined from Chronopotentiometry were almost same to the results obtained from EDX. So by use of this model, Chronopotentiometry can be used as useful characterization technique for in-situ determination of composition during electrodeposition. X -ray diffraction was performed and it confirms the presence of single phase deposits. Current efficiency of the deposits remain above 90%. Surface compactness of deposits is verified with the help of SEM. (author)

  7. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  8. Mechanical Properties of Al-Al4C3 Composite Produced by Mechanical Alloying

    Czech Academy of Sciences Publication Activity Database

    Besterci, M.; Dobeš, Ferdinand; Sülleiová, K.; Velgosová, O.

    2013-01-01

    Roč. 1, č. 2 (2013), s. 31-38 ISSN 2331-6691 Grant - others:Slovak Grant Agency for Science VEGA(SK) 2/0025/11 Institutional support: RVO:68081723 Keywords : Aluminium-Graphite Powder System * Mechanical Properties * Creep Characteristics * Mechanical Alloying * Microstructure Parameters Subject RIV: JI - Composite Materials

  9. Influence of pH and bath composition on properties of Ni–Fe alloy ...

    Indian Academy of Sciences (India)

    Influence of pH and bath composition on properties of Ni–Fe alloy films synthesized by electrodeposition. XINGHUA SU1 and CHENGWEN QIANG2,∗. 1School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China. 2China and Institute of Modern Physics, Chinese Academy of Science, Lanzhou ...

  10. Near surface composition of some alloys by X-ray photoelectron ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 57, No. 4. — journal of. October 2001 physics pp. 809–820. Near surface composition of some alloys by .... pass energy was maintained at 20 eV for all the narrow scans. Prior to XPS measurements, specimens were cleaned by Ar· sputtering to remove the hydrocarbon contamination. Ion.

  11. Flow mechanisms in creep of a short-fibre AZ91 alloy-based composite

    Czech Academy of Sciences Publication Activity Database

    Pahutová, Marie; Sklenička, Václav; Kuchařová, Květa; Svoboda, Milan; Langdon, T. G.

    43 2005, č. 1 (2005), s. 34-44 ISSN 0023-432X R&D Projects: GA ČR(CZ) GA106/03/0901 Institutional research plan: CEZ:AV0Z20410507 Keywords : AZ91 magnesium alloy * metal matrix composite * short fibre reinforcement Subject RIV: JG - Metallurgy Impact factor: 0.973, year: 2005

  12. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  13. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  14. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  15. Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni-TiO{sub 2} composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shiyan [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingswu@yeah.net [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing, 400715 (China); Zhong Xiankang; Dai Yan; Luo Fei [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-03-15

    In this paper, a protective multilayer coating, with electroless Ni coating as bottom layer and electrodeposited Ni-TiO{sub 2} composite coating as top layer, was successfully prepared on AZ91D magnesium alloy by a combination of electroless and electrodeposition techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface, cross-section morphologies and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, open circuit potential and potentiodynamic polarization techniques. The results showed that the corrosion process of Ni-TiO{sub 2} composite coating was mainly composed of three stages in the long-term immersion test in the aggressive media, and could afford better corrosion and mechanical protection for the AZ91D magnesium alloy compared with single electroless Ni coating. The micro-hardness of the Ni-TiO{sub 2} composite coating improved more than 5 times than that of the AZ91D magnesium alloy.

  16. Effect of Dynamic Composite Refinement and Modification on Microstructure of A356 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WANG Zheng-jun

    2017-01-01

    Full Text Available To make up for the inadequacy of Sr modification,Al-5Ti-1B-1RE master alloy refiner was prepared,then were used together with Al-10Sr master alloy for dynamic composite refinement and modification of A356 alloy.The A356 alloy microstructure of modification was studied and compared with the theoretical calculating results.The results show that the melt is fiercely stirred and vibrated by the JJ-1 laboratory electric stirrer;the refining effect of α-Al phase is excellent;the coarse and needle-like eutectic Si phase transforms into tiny,widely dispersed spherical particles and well-distributed at the grain boundaries.And mechanical property of the A356 alloy increases obviously.The grain size control study results are consistent with Johnson-Mehl equation theory.At the same time,the contents of gases of the A356 alloy are significantly reduced,which can not be achieved by Sr alone.Quantitative calculating results of degassing mechanism are consistent with the approximate calculating equations of thermodynamics and Stokes Law.

  17. Effect of electrolysis conditions on the composition of electrolytic tungsten-rhenium alloys

    International Nuclear Information System (INIS)

    Yur'ev, B.P.; Terent'eva, N.I.

    1976-01-01

    For investigation of deposition of tungsten-rhenium electrolytic alloys and elucidation of the dependence on the electrolysis conditions, an ammonium sulfate-citric acid electrolyte was used, containing definite amounts of sodium tungstate, potassium perrhenate, ammonium sulfate, and citric acid. The alloys were deposited on flat platinum or tantalum cathodes, with platinum gauze as the anode. The influence of the cathodic current density, tmeperature, solution pH, ammonium sulfate, and citric acid cotents, and the ratio of the tungsten and rhenium concentrations (at a constant total content of the two metals) on current efficiency and on the composition of the electrolytic alloy were studied. The total and partial polarization curves were also investigated in relation to the electrolysis conditions. The alloys were investigated by chemical analysis and by the x-ray structure and metallographic methods. The results showed the existence of a linear dependence of log ([W])/[Re]) all on the potential and log Dsub(c), (Dsub(c)=current density) and of an analogous relation between the ratios of the component concentrations in the alloy and solution, with different values of the proportionality factor at ([W]/[Re]) all bigger than 0.035 and smaller than 0.035. The optimal electrolysis conditions corresponding to formation of the best-quality W-Re alloy coatings were determined

  18. Effects of composition on the order-disorder transformation in Ni-Cr based alloys

    International Nuclear Information System (INIS)

    Marucco, A.

    1991-01-01

    The Ni-Cr based alloys undergo an ordering transformation, due to the formation of an ordered Ni 2 Cr phase, which causes a lattice contraction and it is responsisble for ''negative creep'' or excessive stresses in constrained components. A short-range ordered (SRO) structure develops in the matrix phase after solution treatment and at early stages of ageing, which can transform to a long-range ordered (LRO) structure, depending on the alloy composition and on time and temperature of ageing, upon prolonged annealing below the critical temperature. In stoichiometric Ni 2 Cr alloy LRO forms in a few hours, but in off-stoichiometric alloys the transformation kinetics are very sluggish and LRO takes several tens of thousands of hours to form, when it forms. The ordering behaviours of stoichiometric Ni 2 Cr and Ni 3 Cr were studied by means of isothermal treatments in the temperature range 450-600degC for different ageing times up to 30 000 h, followed by lattice parameter measurements by X-ray diffraction and electrical resistivity measurements. Similar studies performed on a series of ternary Ni-Cr-Fe alloys revealed the dependence of the degree of order on Cr concentration and a markedly delaying influence of Fe on the ordering kinetics. Finally, long-term microstructural stability of some commercial Ni-Cr based alloys, widely used for high temperature applications, have been studied: the ordering behaviour and associated microstructural changes are discussed in this paper

  19. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    Science.gov (United States)

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  20. Composition analysis of Ta-W alloy using NAA and EDXRF techniques

    International Nuclear Information System (INIS)

    Swain, K.K.; Remya Devi, P.S.; Chavan, Trupti A.; Verma, R.; Reddy, A.V.R.

    2015-01-01

    Tantalum-Tungsten (Ta-W) alloy is a high strength alloy and is used in corrosion resistant chemical process equipment's including heat exchangers, condensers, heating and cooling coils and reaction vessels. Ta-W alloy is also used as ion extraction plate during laser Isotope separation of uranium and hence the composition is critical for its optimal application. The composition of the alloy was determined by neutron activation analysis (NAA) and energy dispersive X-ray fluorescence spectrometry (EDXRF) techniques. Ta-W alloy sample was received from Nuclear Fuel Complex (NFC), Hyderabad. For NAA, samples (50 - 500 mg) were sealed in polyethylene. High purity Ta foil (30 - 40 mg) and W foil (10 - 20 mg) were packed and used as comparators. Samples and standards were irradiated in the graphite reflector position of Advanced Heavy Water Reactor Critical Facility (AHWR CF) reactor, BARC, Mumbai for 4 hours. After suitable decay period, radioactivity assay was carried out using a 45% relative efficiency high purity germanium (HPGe) detector coupled to MCA with 8 k conversion gain

  1. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  2. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique

    KAUST Repository

    Woo, Yun Chul

    2018-01-17

    In this study, composite membranes were fabricated via layer-by-layer (LBL) assembly of negatively-charged silica aerogel (SiA) and 1H, 1H, 2H, 2H – Perfluorodecyltriethoxysilane (FTCS) on a polyvinylidene fluoride phase inversion membrane, and interconnecting them with positively-charged poly(diallyldimethylammonium chloride) (PDDA) via electrostatic interaction. The results showed that the PDDA-SiA-FTCS coated membrane had significantly enhanced the membrane structure and properties. New trifluoromethyl and tetrafluoroethylene bonds appeared at the surface of the coated membrane, which led to lower surface free energy of the composite membrane. Additionally, the LBL membrane showed increased surface roughness. The improved structure and property gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m2h with very high salt rejection using reverse osmosis brine from coal seam gas produced water as feed with the addition of up to 0.5 mM SDS solution. This performance was much better compared to those of the neat membrane. The present study suggests that the enhanced membrane properties with good omniphobicity via LBL assembly make the porous membranes suitable for long-term AGMD operation with stable permeation flux when treating challenging saline wastewater containing low surface tension organic contaminants.

  3. Handbook of International alloy Compositions and Designations. Volume II. Superalloys

    Science.gov (United States)

    1978-12-01

    Metallurgie, Paris, France (June 1977) 17 pp. 24. Conditions Generales de Recette et d’emploi des Aciers et Alliages Corroyes Resistant a Chaud Utilises...Dans les Constructions Aeronautiques, Norme AIR 9165, (General Specifica- tions and Utilisation Conditions of Steels and Heat Resistant Welded Alloys...8217,:. z z’ 5 > < - oc 1 (3 < (D >■ ^ s < co- le ^ ^ X fSigis Q. ^ Q 1 ?s 1 .§ O S PI r- y O S < 5 2 10 c S X CC | it i 1 | £ ill 8 e

  4. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  5. Enhancing the Hardness and Compressive Response of Magnesium Using Complex Composition Alloy Reinforcement

    Directory of Open Access Journals (Sweden)

    Khin Sandar Tun

    2018-04-01

    Full Text Available The present study reports the development of new magnesium composites containing complex composition alloy (CCA particles. Materials were synthesized using a powder metallurgy route incorporating hybrid microwave sintering and hot extrusion. The presence and variation in the amount of ball-milled CCA particles (2.5 wt %, 5 wt %, and 7.5 wt % in a magnesium matrix and their effect on the microstructure and mechanical properties of Mg-CCA composites were investigated. The use of CCA particle reinforcement effectively led to a significant matrix grain refinement. Uniformly distributed CCA particles were observed in the microstructure of the composites. The refined microstructure coupled with the intrinsically high hardness of CCA particles (406 HV contributed to the superior mechanical properties of the Mg-CCA composites. A microhardness of 80 HV was achieved in a Mg-7.5HEA (high entropy alloy composite, which is 1.7 times higher than that of pure Mg. A significant improvement in compressive yield strength (63% and ultimate compressive strength (79% in the Mg-7.5CCA composite was achieved when compared to that of pure Mg while maintaining the same ductility level. When compared to ball-milled amorphous particle-reinforced and ceramic-particle-reinforced Mg composites, higher yield and compressive strengths in Mg-CCA composites were achieved at a similar ductility level.

  6. A possibility of using mechanical alloying for developing metal matrix composites with light-weight reinforcements

    International Nuclear Information System (INIS)

    Popov, Vladimir A.; Zhizhin, Konstantin Yu.; Malinina, Elena A.; Ketsko, Valery A.; Kuznetsov, Nikolay T.

    2007-01-01

    A new type of metal matrix composite (MMC) with light-weight reinforcements from 10 types of boron-hydrogen compounds was prepared using the method of mechanical alloying. The boron-hydrogen compounds had a decomposition temperature higher than 500 o C and a density of 1.3-2.5 g/cm 3 . The initial size of particles was 50-500 μm. Aluminum and copper were used as the matrix materials. The reinforcements were 20-40 vol. % of the MMC. Mechanical alloying followed by compaction can yield a good-quality bulk material of reduced density

  7. Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Compagnini, Giuseppe [Dipartimento di Scienze Chimiche, Universita di Catania, Laboratorio Film Sottili e Nanostrutture, Viale A.Doria 6, Catania 95125 (Italy)], E-mail: gcompagnini@unict.it; Messina, Elena; Puglisi, Orazio [Dipartimento di Scienze Chimiche, Universita di Catania, Laboratorio Film Sottili e Nanostrutture, Viale A.Doria 6, Catania 95125 (Italy); Nicolosi, Valeria [Department of Physics, University of Dublin, Trinity College, Dublin 2 (Ireland)

    2007-12-15

    We have successfully synthesized Au/Ag colloidal nano-alloys with a wide range of compositions by laser ablation of single metal targets in water and a re-irradiation of mixed colloidal suspensions. The optical extinction spectra have been obtained in the plasmon resonance region and their analysis by using the Mie-Gans approach has lead to a quantitative estimation of a number of different structural features for the sols. Some of the obtained results are supported by X-ray photoelectron data and transmission electron microscopy, while others are used to investigate the kinetics of formation of the nano-alloys under laser irradiation.

  8. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    Science.gov (United States)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  9. Origin and effect of nonlocality in a layered composite.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew

    2014-01-01

    A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.

  10. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process

    Directory of Open Access Journals (Sweden)

    Quoc Manh Nguyen

    2015-12-01

    Full Text Available Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation.

  11. Study of molybdenum/lanthanum-based composite conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Yang Lihui; Li Junqing; Lin Cunguo; Zhang Milin; Wu Jianhua

    2011-01-01

    The molybdenum/lanthanum-based (Mo/La) composite conversion coating on AZ31 magnesium alloy was investigated and the corrosion resistance was evaluated as well. The morphology, composition and corrosion resistance of the coating were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and potentiodynamic polarization analysis, respectively. The results revealed that the conversion coating consisted of spherical nodular particles, which was mainly composed of Mo, La, O and Mg. After conversion treatment the corrosion potential shifts about 500 mV positively, and the corrosion current density decreases two orders of magnitude. The corrosion resistance of AZ31 alloy is remarkably improved by Mo/La composite conversion coating.

  12. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  13. Titan atmospheric composition by hypervelocity shock layer analysis

    International Nuclear Information System (INIS)

    Nelson, H.F.; Park, C.; Whiting, E.E.

    1989-01-01

    The Cassini Mission, a NASA/ESA cooperative project which includes a deployment of probe into the atmosphere of Titan, is described, with particular attention given to the shock radiometer experiment planned for the Titan probe for the analysis of Titan's atmosphere. Results from a shock layer analysis are presented, demonstrating that the mole fractions of the major species (N2, CH4, and, possibly Ar) in the Titan atmosphere can be successfully determined by the Titan-probe radiometer, by measuring the intensity of the CN(violet) radiation emitted in the shock layer during the high velocity portion of the probe entry between 200 and 400 km altitude. It is shown that the sensitivity of the CN(violet) radiation makes it possible to determine the mole fractions of N2, CH4, and Ar to about 0.015, 0.003, and 0.01, respectively, i.e., much better than the present uncertainties in the composition of Titan atmosphere. 29 refs

  14. Structure and phase composition of the superalloy on the basis of Ni-Al-Cr alloyed by Re and La

    Science.gov (United States)

    Nikonenko, E. L.; Popova, N. A.; Koneva, N. A.; Kozlov, E. V.

    2016-01-01

    Qualitative and quantitative studies of the structure, phase composition, morphology of phase of the high-rhenium alloys additionally doped with La were carried out by TEM and SEM methods. The alloy was obtained by directional solidification method. It was shown that introduction of Re and La to an alloy leads to formation of new phases: β and χ , which bring serious irregularities in the structure of quasicuboids of γ'-phase.

  15. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    P, may form if Ni-Cr-Mo alloys are exposed for tens of hours in the range of 600 C degrees to 1100 C degrees. These phases could have a detrimental effect upon corrosion resistance and cause a loss of mechanical ductility. The precipitation of TCP phases starts at grain boundaries and for long aging times it progresses to twins boundaries and then the grain bodies. TCP phases are rich in Mo and Cr. Zones in the matrix adjacent to the TCP precipitates may be depleted of Cr and Mo, and the alloy becomes sensitized.The aim of the present work was to compare the general corrosion rate and the crevice corrosion susceptibility of alloys C-22, C-22HS and HYBRID-BC1 in different metallurgical conditions when exposed to hot chloride solutions. The effects of the alloy composition and different heat treatments were assessed. (author)

  16. Assessment Of Usability Of Molten Salt Mixtures In Metallurgy Of Aluminum Alloys And Recycling Of Composite Materials Based On The Matrix Of Al Alloys

    Directory of Open Access Journals (Sweden)

    Jackowski J.

    2015-09-01

    Full Text Available Effectiveness of the slags used in metallurgy of aluminum alloys and in recycling of composite materials containing these alloys depends on their surface properties at the phase boundaries they are in contact with. An index of surface properties of molten mixtures of slag-forming salts has been formulated. Its calculated values are compared with measured results of surface tension (liquid – atmosphere and interfacial tension (liquid – liquid in the considered systems. It was found that the index can be helpful for purposes of proper choice of the mixtures of slag-forming salts used both in Al alloys metallurgy and in recycling of composite materials based on the matrix of Al alloys.

  17. High mobility two-dimensional electron gases in nitride heterostructures with high Al composition AlGaN alloy barriers

    International Nuclear Information System (INIS)

    Li Guowang; Cao Yu; Xing Huili Grace; Jena, Debdeep

    2010-01-01

    We report high-electron mobility nitride heterostructures with >70% Al composition AlGaN alloy barriers grown by molecular beam epitaxy. Direct growth of such AlGaN layers on GaN resulted in hexagonal trenches and a low mobility polarization-induced charge. By applying growth interruption at the heterojunction, the surface morphology improved dramatically and the room temperature two-dimensional electron gas (2DEG) mobility increased by an order of magnitude, exceeding 1300 cm 2 /V s. The 2DEG density was tunable at 0.4-3.7x10 13 /cm 2 by varying the total barrier thickness (t). Surface barrier heights of the heterostructures were extracted and exhibited dependence on t.

  18. Investigation of the effect of aluminum on the phase composition of Ti-Al-Nb-Mo gamma alloys

    Science.gov (United States)

    Terlikbaeva, A. Zh.; Alimzhanova, A. M.; Shayakhmetova, R. A.; Smagulov, D. U.; Osipov, P. A.

    2017-11-01

    A quantitative analysis of the influence of aluminum concentration on the phase composition of TNM-type Ti-Al-Nb-Mo γ-alloys has been carried out using the Thermo-Calc software and experimental methods. Isothermal and polythermal sections of the corresponding phase diagram have been calculated; the critical temperatures of phase transformations in the alloys of the system, and the chemical compositions of phases formed in them (β, α, α2, γ) have been determined. The influence of the annealing temperature on the microstructure and phase composition of the alloys containing 43 and 40% Al has been studied.

  19. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    International Nuclear Information System (INIS)

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  20. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zomorodian, A; Garcia, M P; Moura e Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2013-11-01

    The high corrosion rate of magnesium alloys is the main drawback to their widespread use, especially in biomedical applications. There is a need for developing new coatings that provide simultaneously corrosion resistance and enhanced biocompatibility. In this work, a composite coating containing polyether imide, with several diethylene triamine and hydroxyapatite contents, was applied on AZ31 magnesium alloys pre-treated with hydrofluoric acid by dip coating. The coated samples were immersed in Hank's solution and the coating performance was studied by electrochemical impedance spectroscopy and scanning electron microscopy. In addition, the behavior of MG63 osteoblastic cells on coated samples was investigated. The results confirmed that the new coatings not only slow down the corrosion rate of AZ31 magnesium alloys in Hank's solution, but also enhance the adhesion and proliferation of MG63 osteoblastic cells, especially when hydroxyapatite nanoparticles were introduced in the coating formulation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  2. Nonequilibrium self-organization in alloys under irradiation leading to the formation of nano composites

    CERN Document Server

    Enrique, R A; Averback, R S; Bellon, P

    2003-01-01

    Alloys under irradiation are continuously driven away from equilibrium: Every time an external particle interacts with the atoms in the solid, a perturbation very localized in space and time is produced. Under this external forcing, phase and microstructural evolution depends ultimately on the dynamical interaction between the external perturbation and the internal recovery kinetics of the alloy. We consider the nonequilibrium steady state of an immiscible binary alloy subject to mixing by heavy-ion irradiation. It has been found that the range of the forced atomic relocations taking place during collision cascades plays an important role on the final microstructure: when this range is large enough, it can lead to the spontaneous formation of compositional patterns at the nanometer scale. These results were rationalized in the framework of a continuum model solved by deriving a nonequilibrium thermodynamic potential. Here we derive the nonequilibrium structure factor by including the role of fluctuations. In ...

  3. Application of Finite Element Method (FEM for definition of the relationship between properties of laser alloyed steel surface layer

    Directory of Open Access Journals (Sweden)

    A. Śliwa

    2017-01-01

    Full Text Available Investigations include FEM simulation model of alloying the PMHSS6-5-3 steel surface layer with the carbides and ceramic powders, especially WC, VC, TiC, SiC, Si3N4 and Al2O3 particles using the high power diode laser (HPDL. The FEM computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding laser beam power and method of powder deposition, as pre coated past or surface with machined grooves. The FEM simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser alloying process.

  4. Lost foam casting of aluminum alloy-SiC{sub p} composite material

    Energy Technology Data Exchange (ETDEWEB)

    Baalasuburamaniam, R.; Cvetnic, C.; Ravindran, C. [Ryerson Univ., Dept. of Mechanical, Aerospace and Industrial Engineering, Centre for the Near-Net-Shape Processing of Materials, Toronto, Ontario (Canada)]. E-mail: rbalasub@ryerson.ca; ccvetnic@ryerson.ca; rravindr@ryerson.ca

    2002-07-01

    Metal matrix composites are a viable alternative to cast irons in automotive components with possible increase in strength-to-weight ratio. Lost foam casting of aluminum alloy matrix composite containing 20 volume percent SiC was carried out at 690, 730, and 770{sup o}C with a view to determining the effects of cooling rate on microstructure, particle distribution, microporosity and mechanical properties. These results were compared with those for the matrix material cast under similar conditions. The results and the correlations are of particular interest as there is no published literature on lost foam casting of composite materials. (author)

  5. Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components

    Science.gov (United States)

    2007-12-01

    fracture behavior. Similar loading conditions for multilayer material have been reported in the literature for both composite materials and geologic...8 5. Bordeaux F., Yavari, R. Multiple Necking and Deformation Behavior of Multilayer Composites Prepared by Cold Rolling. Zeitschrift f’r Metallkunde...Stiffness Greater Than Diamond. Science 315: 620-622, 2007 13. ASTM D 1238-01, Standard Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer

  6. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.

    Science.gov (United States)

    Wang, Xiaopeng; Chen, Yuyong; Xu, LiJuan; Xiao, Shulong; Kong, Fantao; Woo, Kee Do

    2011-11-01

    A β-type Ti-based composite, Ti-35Nb-2.5Sn-15-hydroxyapatite (HA), has been synthesized by mechanical alloying and powder metallurgy. The effects of milling time on microstructure, mechanical properties and biocompatibility of the sintered composites were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), microhardness tests, compression tests and cells culture. The results revealed when milling time increased, the homogeneity and relative density of the sintered composite increased, but the finished sintering temperature decreased. The compression Young's modulus of sintered composite from 12 h milled powders was about 22 GPa and its compression strength was 877 MPa. The cell culture results indicated cell viability for these sintered composites was very good. These results revealed the Ti-35Nb-2.5Sn-15HA composite could be useful for medical implants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Layer-by-layer assembly of nanostructured composites: Mechanics and applications

    Science.gov (United States)

    Podsiadlo, Paul

    The development of efficient methods for preparation of nanometer-sized materials and our evolving ability to manipulate the nanoscale objects have brought about a scientific and technological revolution called: nanotechnology. This revolution has been especially driven by discovery of unique nanoscale properties of the nanomaterials which are governed by their inherent size. Today, the total societal impact of nanotechnology is expected to be greater than the combined influences that the silicon integrated circuit, medical imaging, computer-aided engineering, and man-made polymers have had in the last century. Many nanomaterials were also found to possess exceptional mechanical properties. This led to tremendous interest into developing composite materials by exploiting the mechanical properties of these building blocks. In spite of a tremendous volume of work done in the field, preparation of such nanocomposites (NCs) has proven to be elusive due to inability of traditional "top-down" fabrication approaches to effectively harness properties of the nano-scale building blocks. This thesis focuses on preparation of organic/inorganic and solely organic NCs via a bottom-up nano-manufacturing approach called the layer-by-layer (LBL) assembly. Two natural and inexpensive nanoscale building blocks are explored: nanosheets of Na+-montmorillonite clay (MTM) and rod-shaped nanocrystals of cellulose (CNRs). In the first part of the thesis, we present results from systematic study of mechanics of MTM-based NCs. Different compositions are explored with a goal of understanding the nanoscale mechanics. Ultimately, development of a transparent composite with record-high strength and stiffness is presented. In the second part, we present results from LBL assembly of the CNRs. We demonstrate feasibility of assembly and mechanical properties of the resulting films. We also demonstrate preparation of LBL films with anti- reflective properties from tunicate (a sea animal) CNRs. In the

  8. The potential of the scanning low energy electron microscopy for the examination of aluminum based alloys and composites

    Czech Academy of Sciences Publication Activity Database

    Matsuda, K.; Ikeno, S.; Müllerová, Ilona; Frank, Luděk

    2005-01-01

    Roč. 54, č. 2 (2005), s. 109-117 ISSN 0022-0744 R&D Projects: GA AV ČR(CZ) IAA1065304 Keywords : scanning low energy electron microscopy * precipitates in Al-Mg-Si alloys * Al-alloy-base/ceramic composite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.720, year: 2005

  9. Radiation therapy: dosimetry study of the effect of the composition of Pb alloys by PENELOPE

    Directory of Open Access Journals (Sweden)

    Jose McDonnell

    2011-02-01

    Full Text Available Radiotherapy is a widely used treatment for cancer. Currently applying the technique of Intensity Modulated Radiation Therapy, in which an important aspect is the modulation of the radiation beam to generate a non-uniform dose distribution in the tumor. One way to achieve the above non-uniform dose distribution is using solid compensators. In the market there are a number of materials used to manufacture compensators. Pb alloys on the market are: Cerromatrix, Rose, Wood, Newton, Darcet, whose compositions vary with respect to the composition of the lipowitz metal. This paper quantifies the dosimetric effects of the composition of commercial alloys, routinely used in radiotherapy. This quantification is important because of its impact on the total uncertainty of treatment accepted in the dosimetric calculations. To investigate the dosimetric effect of the composition of commercial alloys in the market we used the PENELOPE code, code that allows the simulation of radiation transport in different media by Monte Carlo method.The results show that there is a difference dosimetric respect lipowitz material, ranging from 7 % to 9 % for the materials investigated. These values indicate the importance of knowing exactly the dosimetric characteristics of the material used as compensator for their implications in the dose calculation.

  10. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Science.gov (United States)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-04-01

    NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  11. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available consisted of the hard particles uniformly distributed in the host metal matrix. A strong bond between the particles and matrix was formed in the modified layer. A Rofin Nd: YAG laser was used for injecting the ceramic powder into the substrate...

  12. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  13. Optimation of Sputtering Process Parameters on the Deposition of Nitride Titanium Thin Layer on Aluminum Alloys

    International Nuclear Information System (INIS)

    Tjipto Sujitno; Agus Santoso; Wiryoadi; Sayono; Bambang Siswanto; Lely Susita RM

    2002-01-01

    Research on the optimization of sputtering process parameters on the deposition of nitride titanium thin layer on aluminum alloys has been carried out. The aim of this research is to get the optimum conditions of the process parameters. The parameters of the process are ratio of sputter gas (Ar) and dopant (Nitrogen) gas, time of the process (t), temperature (T), electrode distance, electrode voltage and vacuum conditions of the process. In this experiment the electrode distance and electrode voltage are constants i.e.: 4 cm, 1.5 kV and 2.0 x 10 -1 torr, respectively. To examine the results, it was characterized its hardness, wear and corrosion resistance. It's found that optimum conditions was achieved at the ratio of Ar:N 2 = 5:7, t = 3 hours, T= 100 o C and vacuum conditions 2 x 10 -2 torr. At the optimum conditions, the hardness increases from 120.33 KHN to 149.59 KHN or there is an increasing in hardness in order of 24.32 %, the wear resistance increases from 1 x 10 -4 g/minutes to 6 x 10 -5 g/minutes or there is an increasing in wear resistance in order of 40.00 %, and the corrosion resistance in diluted sea water 1000 times media increases from 6.22 mpy to 0.68 mpy or there is an increasing in corrosion resistance in order of 811.76 %. (author)

  14. The Stability of New Single-Layer Combined Lattice Shell Based on Aluminum Alloy Honeycomb Panels

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    2017-11-01

    Full Text Available This article proposes a new type of single-layer combined lattice shell (NSCLS; which is based on aluminum alloy honeycomb panels. Six models with initial geometric defect were designed and precision made using numerical control equipment. The stability of these models was tested. The results showed that the stable bearing capacity of NSCLS was approximately 16% higher than that of a lattice shell with the same span without a reinforcing plate. At the same time; the properties of the NSCLS were sensitive to defects. When defects were present; its stable bearing capacity was decreased by 12.3% when compared with the defect-free model. The model with random defects following a truncated Gaussian distribution could be used to simulate the distribution of defects in the NSCLS. The average difference between the results of the nonlinear analysis and the experimental results was 5.7%. By calculating and analyzing nearly 20,000 NSCLS; the suggested values of initial geometric defect were presented. The results of this paper could provide a theoretical basis for making and revising the design codes for this new combined lattice shell structure.

  15. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure

    Directory of Open Access Journals (Sweden)

    T.S. Yang

    2018-01-01

    Full Text Available Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  16. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure.

    Science.gov (United States)

    Yang, T S; Yao, S H; Chang, Y Y; Deng, J H

    2018-01-08

    Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  17. Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion

    International Nuclear Information System (INIS)

    Deaquino-Lara, R.; Soltani, N.; Bahrami, A.; Gutiérrez-Castañeda, E.; García-Sánchez, E.; Hernandez-Rodríguez, M.A.L.

    2015-01-01

    Highlights: • Al7075–graphite composites were synthesized by mechanical alloying and hot extrusion. • Effects of graphite content and milling time on the mechanical and wear properties of fabricated composites were analyzed. • Microstructure and worn surfaces of samples were studied by transmission and scanning electron microscope. • The friction coefficient, wear rate and debris thickness of fabricated composite were investigated. - Abstract: Aluminum matrix composites (AMCs) are candidate materials for aerospace and automotive industry owing to their large elastic modulus, improved strength and low wear rate. A simple method for fabrication of Al7075–graphite composites produced by mechanical alloying (MI) and hot extrusion is described in this paper. Effects of milling time (0–10 h) and graphite concentration (0–1.5 wt.%) on friction, hardness and wear resistance of the AMC were investigated. Wear resistance was determined by the pin-on-disk wear method using 20 and 40 N normal loads at a 0.367 m/s sliding velocity. The worn surfaces were examined by scanning electron microscopy (SEM) to identify distinct topographical features for elucidation of the prevailing wear mechanisms. Experimental results indicated considerable improvement in AMC hardness and wear resistance by adding 1.5% G (wt.) and 10 h of milling, showing homogenous distribution of the reinforcement particles in the Al-base metal-matrix composite. It was found that abrasion is the dominant wear mechanism in all extruded composites, whilst a combination of adhesion and delamination seems to be the governing mechanism for the 7075 aluminum alloy

  18. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  19. Electrochemical deposition of Mg(OH2/GO composite films for corrosion protection of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Fengxia Wu

    2015-09-01

    Full Text Available Mg(OH2/graphene oxide (GO composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH2/GO composite film were investigated by scanning electron microscope (SEM, energy-dispersive X-ray spectrometry (EDS, X-ray diffractometer (XRD and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH2 film, the Mg(OH2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH2/GO composite film could significantly improve the corrosion resistance of Mg(OH2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.

  20. Characteristics of W-20Cu nano-crystallite composites fabricated by mechanical alloying.

    Science.gov (United States)

    Wang, Fengtao; Wu, Yucheng; Wang, Tugen; Ren, Rong

    2010-08-01

    In the present study, the microstructure and properties characteristics of W-20Cu nano-crystallite composites were investigated. Characterization techniques like XRD and SEM have been used to study the crystallite size of W-Cu powder obtained by mechanical alloying. As well as, the effect of milling time on the microstructure and properties of W-20Cu composites was discussed. The results show that with increasing milling time, the crystallite size of W-Cu composite powder decreased and kept steady at last, and the crystallite size of W(Cu) solid solution was 6.6 nm for milling 20 h. The microstructure of W-20Cu composites became homogeneous and tungsten crystallite size became fine. The relative density and bending strength of W-20Cu composites increased. The value of thermal conductivity peaked when milling time was 20 h.

  1. Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design

    Science.gov (United States)

    Girish, B. M.; Satish, B. M.; Sarapure, Sadanand; Basawaraj

    2016-06-01

    In the present paper, the statistical investigation on wear behavior of magnesium alloy (AZ91) hybrid metal matrix composites using Taguchi technique has been reported. The composites were reinforced with SiC and graphite particles of average size 37 μm. The specimens were processed by stir casting route. Dry sliding wear of the hybrid composites were tested on a pin-on-disk tribometer under dry conditions at different normal loads (20, 40, and 60 N), sliding speeds (1.047, 1.57, and 2.09 m/s), and composition (1, 2, and 3 wt pct of each of SiC and graphite). The design of experiments approach using Taguchi technique was employed to statistically analyze the wear behavior of hybrid composites. Signal-to-noise ratio and analysis of variance were used to investigate the influence of the parameters on the wear rate.

  2. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  3. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  4. Virtual Testing of Composite Structures Made of High Entropy Alloys and Steel

    Directory of Open Access Journals (Sweden)

    Victor Geantă

    2017-11-01

    Full Text Available High entropy alloys (HEA are metallic materials obtained from a mixture of at least five atomic-scale chemical elements. They are characterized by high mechanical strength, good thermal stability and hardenability. AlCrFeCoNi alloys have high compression strength and tensile strength values of 2004 MPa, respectively 1250 MPa and elongation of about 32.7%. These materials can be used to create HEA-steel type composite structures which resist to dynamic deformation during high speed impacts. The paper presents four different composite structures made from a combination of HEA and carbon steel plates, using different joining processes. The numerical simulation of the impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. For analyzing each constructive variant, three virtual shootings were designed, using a 7.62 × 39 mm cal. incendiary armor-piercing bullet and different impact velocities. The best ballistic behavior was provided by the composite structures obtained by welding and brazing that have good continuity and rigidity. The other composite structures, which do not have good surface adhesion, show high fragmentation risk, because the rear plate can fragment on the axis of shooting due to the combination between the shock waves and the reflected ones. The order of materials in the composite structure has a very important role in decreasing the impact energy.

  5. The correlation of layer waviness defect on compression strength of carbon fiber composite material

    International Nuclear Information System (INIS)

    Khan, Z.M.

    2005-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production process is eagerly being sought. One of the most common defects in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings. Submersibles and space platforms. Layer waviness undulates the entire layer of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0 degree layer were fabricated in IM/855 1- 7 carbon- epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using short block compression fixture on an universal testing machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wavy 0 degree layers. The reduction in compression strength of composite laminate was constant after fraction of wavy 0 degree layers exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  6. Synthesis and Enhanced Corrosion Protection Performance of Reduced Graphene Oxide Nanosheet/ZnAl Layered Double Hydroxide Composite Films by Hydrothermal Continuous Flow Method.

    Science.gov (United States)

    Luo, Xiaohu; Yuan, Song; Pan, Xinyu; Zhang, Caixia; Du, Shuo; Liu, Yali

    2017-05-31

    Prevention of water, oxygen, and chloride ions contained in hydrotalcite interlayers from diffusing through the layered double hydroxides (LDH) is of crucial importance in corrosion protection. In this work, a hybrid composed of reduced graphene oxide (RGO) nanosheets/Zn 2+ /Al 3+ layered double hydroxide (RGO/ZnAl-LDH) composite films on the surface of 6N01 aluminum (Al) alloy was successfully synthesized by a novel and facile hydrothermal continuous flow method, which enabled direct growth of the composite on the surface of the Al alloy substrate. The structure and morphology of the RGO/ZnAl-LDH composite films were fully characterized. Based on electrochemical measurements in a NaCl solution, the RGO/ZnAl-LDH composite film significantly enhanced the corrosion protection, as compared with the ZnAl-LDH film. The RGO/ZnAl-LDH composite film could maintain an outstanding corrosion resistance after 7 days immersion in a high concentration of NaCl solution (i.e., 5.0 wt %). The enhanced corrosion resistance was attributed to the barrier effect on diffusion of water, oxygen, and chloride ions by the RGO contained in the RGO/ZnAl-LDH composite films.

  7. Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Farkas, Gergely; Máthis, K.; Pilch, Jan; Minárik, P.; Lukáš, Petr; Vinogradov, A.

    2017-01-01

    Roč. 685, FEB (2017), s. 284-293 ISSN 0921-5093 R&D Projects: GA ČR GB14-36566G; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : magnesium alloy matrix composites * neutron diffraction * deformation * twinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.094, year: 2016

  8. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    Science.gov (United States)

    2014-08-15

    their wear and fatigue resistance, hard coatings for dental implants and dental surgery tools, tribological orthopedic devices, gears, valves, pumps...SPS) of blended titanium and vanadium elemen- tal powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting micro ...for structural [15] aerospace [2–5], marine [16], automotive, biomedical (such as in dental and orthopedic as bone implants) [1–6,8–12,15–20], and

  9. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Shvab, Ruslan [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Bram, Martin; Bitzer, Martin [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), D-52425 Jülich (Germany); Nyborg, Lars [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden)

    2016-12-01

    Highlights: • Powder particles of Ti, NiTi and Ti6Al4V are covered by homogeneous Ti-oxide layer. • Thickness of the Ti-oxide layer is in the range of 2.9 to 4.2 nm in as-atomized state. • Exposure to the air results in immediate oxide thickness increase of up to 30%. • Oxide thickness increase of only 15% during storage for 8 years. • High passivation of the Ti, NiTi and Ti6Al4V powder surface by Ti-oxide layer. - Abstract: High affinity of titanium to oxygen in combination with the high surface area of the powder results in tremendous powder reactivity and almost inevitable presence of passivation oxide film on the powder surface. Oxide film is formed during the short exposure of the powder to the environment at even a trace amount of oxygen. Hence, surface state of the powder determines its usefulness for powder metallurgy processing. Present study is focused on the evaluation of the surface oxide state of the Ti, NiTi and Ti6Al4V powders in as-atomized state and after storage under air or Ar for up to eight years. Powder surface oxide state was studied by X-ray photoelectron spectroscopy (XPS) and high resolution scanning electron microscopy (HR SEM). Results indicate that powder in as-atomized state is covered by homogeneous Ti-oxide layer with the thickness of ∼2.9 nm for Ti, ∼3.2 nm and ∼4.2 nm in case of Ti6Al4V and NiTi powders, respectively. Exposure to the air results in oxide growth of about 30% in case of Ti and only about 10% in case of NiTi and Ti6Al4V. After the storage under the dry air for two years oxide growth of only about 3-4% was detected in case of both, Ti and NiTi powders. NiTi powder, stored under the dry air for eight years, indicates oxide thickness of about 5.3 nm, which is about 30% thicker in comparison with the as-atomized powder. Oxide thickness increase of only ∼15% during the storage for eight years in comparison with the powder, shortly exposed to the air after manufacturing, was detected. Results indicate a

  10. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  11. Development of Compositionally Graded Metallic Glass Alloys with Desirable Properties

    Science.gov (United States)

    2016-06-01

    required dynamic material properties were available in the literature (Mashimo et al 2006). The material was assumed to be elastically isotropic with a...properties were calibrated to samples taken from the Koyna dam and serve as an archetype material for simulation of concrete structures under...reported in literature , Cu64.5Zr35.5.16,18 We further deduce that the maximum laser line ener- gy for this optimal composition, above which a glass is not

  12. Characterization of rust layer formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich environment by Cl and Fe K-edge XANES measurements

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    Chloride in atmosphere considerably reduces the corrosion resistance of conventional weathering steel containing a small amount of Cr. Ni is an effective anticorrosive element for improving the corrosion resistance of steel in a Cl-rich environment. In order to clarify the structure of the protective rust layer of weathering steel, Cl and Fe K-edge X-ray absorption near edge structure (XANES) spectra of atmospheric corrosion products (rust) formed on Fe, Fe-Ni and Fe-Cr alloys exposed to Cl-rich atmosphere were measured. The Fe K-XANES measurements enable the characterization of mixture of iron oxides such as rust. The chemical composition of the rust was determined by performing pattern fitting of the measured spectra. All the rust is composed mainly of goethite, akaganeite, lepidocrocite and magnetite. Among these iron oxides, akaganeite in particular is the major component in the rust. Additionally, the amount of akaganeite in the rust of Fe-Ni alloy is much greater than that in rust of Fe-Cr alloy. Akaganeite is generally considered to facilitate the corrosion of steel, but our results indicate that akaganeite in the rust of Fe-Ni alloy is quantitatively different from that in rust of Fe-Cr alloy and does not facilitate the corrosion of steel. The shoulder peak observed in Cl K-XANES spectra reveals that the rust contains a chloride other than akaganeite. The energy of the shoulder peak does not correspond to that of any well-known chlorides. In the measured spectra, there is no proof that Cl, by combining with the alloying element, inhibits the alloying element from acting in corrosion resistance. The shoulder peak appears only when the content of the alloying element is lower than a certain value. This suggests that the generation of the unidentified chloride is related to the corrosion rate of steel. (author)

  13. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Javier [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Bolat, Georgiana [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Cimpoesu, Nicanor [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science, 61-63 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Trinca, Lucia Carmen [Science Department, University of Agricultural Sciences and Veterinary Medicine, M. Sadoveanu Alley 3, 700490 Iasi (Romania); Mareci, Daniel, E-mail: danmareci@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Souto, Ricardo Manuel, E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna, Tenerife (Spain)

    2016-11-01

    Highlights: • New quarternary Ti-based alloy for biomaterial application. • Combined hydroxyapatite-zirconia coating produced by pulsed laser deposition. • Porous layer formed on the coated alloy blocks electron transfer reactions. • Electrochemical behaviour consistent with passive film with duplex structure. • HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr exhibits high potential for osseointegration. - Abstract: A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA–ZrO{sub 2}) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer’s solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA–ZrO{sub 2} coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  14. Synthesis and characterization of ZA-27 alloy matrix composites reinforced with zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    B.O. Fatile

    2017-06-01

    Full Text Available An investigation has been carried out on the synthesis and characterization of ZA-27 alloy composites reinforced with zinc oxide nanoparticles. This was aimed at developing high performance ZA-27 matrix nanocomposite with low density. The particle size and morphology of the zinc oxide (ZnO nanoparticles were investigated by Transmission Electron Microscope (TEM and the elemental composition was obtained from Energy Dispersive Spectroscopy (EDS attached to TEM and X-ray fluorescence spectroscopy (XRF. ZA-27 nanocomposite samples were developed using 0, 1, 2, 3, 4 and 5 wt% of ZnO nanoparticles by double steps stir casting technique. Mechanical properties and Microstructural examination were used to characterize the composite samples produced. The results show that hardness and ultimate tensile strength of the composite samples increased progressively with increase in weight percentage of ZnO nanoparticles. Increase in Ultimate tensile strength (UTS of 10.2%, 21.1%, 22.3%, 35.5%, 33.4% and increase in hardness value of 8.2%, 14.8%, 21.7%, 27.9%, 27.1% were observed for nanocomposites reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt% ZnO nanoparticles respectively in comparison with unreinforced alloy. It was generally observed that composite sample containing 4 wt% of reinforcement has the highest tensile strength and hardness values. However, the fracture toughness and percent elongation of the composites samples slightly decreased with increase in ZnO nanoparticles content. Results obtained from the Microstructural examination using optical microscope and Scanning Electron Microscope (SEM show that the nanoparticles were well dispersed in the ZA-27 alloy matrix.

  15. In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions

    Energy Technology Data Exchange (ETDEWEB)

    Neacsu, Patricia [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Gordin, Doina-Margareta [INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex (France); Mitran, Valentina [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex (France); Costache, Marieta [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania)

    2015-02-01

    New β-titanium based alloys with low Young's modulus are currently required for the next generation of metallic implant materials to ensure good mechanical compatibility with bone. Several of these are representatives of the ternary Ti–Mo–Nb system. The aim of this paper is to assess the in vitro biological performance of five new low modulus alloy compositions, namely Ti12Mo, Ti4Mo32Nb, Ti6Mo24Nb, Ti8Mo16Nb and Ti10Mo8Nb. Commercially pure titanium (cpTi) was used as a reference material. Comparative studies of cell activity exhibited by MC3T3-E1 pre-osteoblasts over short- and long-term culture periods demonstrated that these newly-developed metallic substrates exhibited an increased biocompatibility in terms of osteoblast proliferation, collagen production and extracellular matrix mineralization. Furthermore, all analyzed biomaterials elicited an almost identical cell response. Considering that macrophages play a pivotal role in bone remodeling, the behavior of a monocyte-macrophage cell line, RAW 264.7, was also investigated showing a slightly lower inflammatory response to Ti–Mo–Nb biomaterials as compared with cpTi. Thus, the biological performances together with the superior mechanical properties recommend these alloys for bone implant applications. - Highlights: • Ti–Mo–Nb compositions show a fully β-microstructural state by XRD analysis. • Similar osteoblast growth and differentiation is displayed by β-Ti alloys and cpTi. • Ti–Mo–Nb alloys elicit a slightly lower inflammatory response than cpTi.

  16. Novel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matrices

    Science.gov (United States)

    Pavel, Alexandru Cezar

    The initial goal of the research presented herein was to develop the very first synthetic metal---high-temperature superconductor ceramic composite material, in the specific form of a polypyrrole---Bi2Sr2CaCu 2O8+delta nanocomposite. In the course of scientific investigation, this scope was broadened to encompass structurally and compositionally similar layered bismuthates and simpler layered oxides. The latter substrates were prepared through novel experimental procedures that enhanced the chance of yielding nanostructured morphologies. The designed novel synthesis approaches yielded a harvest of interesting results that may be further developed upon their dissemination in the scientific community. High-temperature interaction of pyrrole with molybdenum trioxide substrates with different crystalline phases and morphologies led to the formation of the first members of a new class of heterogeneous microcomposites characterized by incomplete occupancy by the metal oxide core of the volume encapsulated by the rigid, amorphous permeable polymeric membrane that reproduces the volume of the initial grain of precursor substrate. The method may be applied for various heterogeneous catalyst substrates for the precise determination of the catalytically active crystallographic planes. In a different project, room-temperature, templateless impregnation of molybdenum trioxide substrates with different crystalline phases and morphologies by a large excess of silver (I) cations led to the formation of 1-D nanostructured novel Ag-Mo-O ternary phase in what may be the simplest experimental procedure available to date that has yielded a 1-D nanostructure, regardless the nature of the constituent material. Interaction of this novel ternary phase with pyrrole vapors at high reaction temperatures led to heterogeneous nanostructured composites that exhibited a silver nanorod core. Nanoscrolls of vanadium pentoxide xerogel were synthesized through a novel, facile reflux-based method that

  17. Using the PSCPCSP computer software for optimization of the composition of industrial alloys and development of new high-temperature nickel-base alloys

    Science.gov (United States)

    Rtishchev, V. V.

    1995-11-01

    Using computer programs some foreign firms have developed new deformable and castable high-temperature nickel-base alloys such as IN, Rene, Mar-M, Udimet, TRW, TM, TMS, TUT, with equiaxial, columnar, and single-crystal structures for manufacturing functional and nozzle blades and other parts of the hot duct of transport and stationary gas-turbine installations (GTI). Similar investigations have been carried out in Russia. This paper presents examples of the use of the PSCPCSP computer software for a quantitative analysis of structural und phase characteristics and properties of industrial alloys with change (within the grade range) in the concentrations of the alloying elements for optimizing the composition of the alloys and regimes of their heat treatment.

  18. Magnetic Properties of Composites of Fe/Co Alloy and Cobalt Doped Magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Dormann, J.L. [LMOV, CNRS-Universite de Versailles (France); Greneche, J.L. [EPEC, URA 807, Universite du Maine (France); Pourroy, G.; Laekamp, S. [GMI-IPCMS (France)

    1998-12-15

    Composites consisting of mixture of a Fe-Co alloy and a mixed Fe-Co ferrite have been studied together with the pure spinel phase extracted from the composite. They are prepared by a new chemical route. Detailed Moessbauer studies allow the determination of the chemical formulas including the Fe and Co populations in the two spinel sites. Moessbauer study under applied field reveals the presence of a randomly canted spin structure in the spinel. The results are in agreement with the magnetization measurements.

  19. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  20. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  1. Microstructure and Mechanical Behavior of Magnesium Alloy AZ91 Hybrid Composites

    Science.gov (United States)

    Sarapure, Sadanand; Satish, B. M.; Girish, B. M.; Basawaraj

    2018-02-01

    AZ91 magnesium alloy hybrid composites reinforced with various ratios of SiC and graphite particles were synthesized by stir casting. The composites were prepared by varying the weight percentage of SiC and graphite particles each from 0 to 3 in steps of 1 weight percent. The average particle size of both the reinforcement particles was 27μm. The effect of reinforcement is discussed for both heat treated and non-heat treated composites and compared with unreinforced base alloy. The microstructure reveals that there is a nearly uniform dispersion of particles is the matrix. The density, hardness and ultimate tensile strength of the composite specimen increased as the percentage of reinforcement was increased both in heat treated and non-heat treated conditions. The percentage of elongation decreases as the reinforcement in the composites increased. SEM micrographs of the tensile fracture surfaces showed broken reinforcement particles on the fracture surface and evidence of ‘pull outs’, where graphite/SiC particles were previously embedded in the matrix.

  2. Lateral Growth of Composition Graded Atomic Layer MoS(2(1-x))Se(2x) Nanosheets.

    Science.gov (United States)

    Li, Honglai; Zhang, Qinglin; Duan, Xidong; Wu, Xueping; Fan, Xiaopeng; Zhu, Xiaoli; Zhuang, Xiujuan; Hu, Wei; Zhou, Hong; Pan, Anlian; Duan, Xiangfeng

    2015-04-29

    Band gap engineering of transition-metal dichalcogenides is an important task for their applications in photonics, optoelectronics, and nanoelectronics. We report for the first time the continuous lateral growth of composition graded bilayer MoS(2(1-x))Se(2x) alloys along single triangular nanosheets by an improved chemical vapor deposition approach. From the center to the edge of the nanosheet, the composition can be gradually tuned from x = 0 (pure MoS2) to x = 0.68, leading to the corresponding bandgap being continuously modulated from 1.82 eV (680 nm) to 1.64 eV (755 nm). Local photoluminescence scanning from the center to the edge gives single band edge emission peaks, indicating high crystalline quality for the achieved alloy nanosheets, which was further demonstrated by the microstructure characterizations. These novel 2D structures offer an interesting system for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.

  3. The effect of surface oxide layer on the rate of hydrogen emission from aluminum and its alloys in a high vacuum

    Science.gov (United States)

    Makarova, V. I.; Zyabrev, A. A.

    1979-01-01

    The influence of surface oxide layers on the kinetics of hydrogen emission at the high vacuum of 10 to the minus 8th power torr was investigated at temperatures from 20 to 450 C using samples of pure AB00 aluminum and the cast alloy AMg. Cast and deformed samples of AMts alloy were used to study the effect of oxide film thickness on the rate of hydrogen emission. Thermodynamic calculations of the reactions of the generation and dissociation of aluminum oxide show that degasification at elevated temperatures (up to 600 C) and high vacuum will not reduce the thickness of artificially-generated surface oxide layers on aluminum and its alloys.

  4. Time-resolved ultraviolet photoluminescence of ZnO/ZnGa2O4 composite layer

    Science.gov (United States)

    Yang, Qing; Zhou, Xiaohong; Nukui, Takao; Saeki, Yu; Izumi, Sotaro; Tackeuchi, Atsushi; Tatsuoka, Hirokazu; Liang, Shuhua

    2014-02-01

    The ultraviolet photoluminescence of ZnO/ZnGa2O4 composite layer grown by the thermal oxidation of ZnS with gallium was investigated by the time-resolved photoluminescence as a function of measuring temperature and excitation power. With increase of excitation power, the D0X emission is easily saturated than the DAP emission from ZnO/ZnGa2O4 composite layer, and which is dramatically enhanced as compared with that from pure ZnO layer grown without gallium. The radiative recombination process with ultra-long lifetime controlled the carrier recombination of ZnO/ZnGa2O4 composite layer.

  5. Retention strength between veneering resin composites and laser-sintered cobalt-chromium alloy.

    Science.gov (United States)

    Kamada, Kohji; Taira, Yohsuke; Sumi, Tadateru; Sawase, Takashi

    2017-01-01

    The purpose of the present study was to evaluate the retention strength between a resin composite veneering material and three types of cobalt-chromium (Co-Cr) alloy substrates. Co-Cr alloy specimens with 81 retention devices (LSR), with 144 retention devices (LDR), and without retention device (LN) were fabricated using a laser-sintering system. The specimens were air-abraded with alumina, conditioned with a primer [Alloy primer (AP) or M.L. primer (ML)], and veneered with a light-polymerized resin composite (Gradia). Three control groups (LSR-N, LDR-N, and LN-N) without primer were also prepared. After 20,000 thermocycles in 4 and 60 °C water, tensile retention strengths were determined using a universal testing machine. Data were analyzed by analysis of variance and a post hoc Tukey-Kramer HSD test (α = 0.05, n = 8). The highest retention strengths were obtained in LSR-AP (28.3 MPa), LSR-ML (23.3 MPa), LDR-AP (26.9 MPa), and LDR-ML (27.8 MPa), and these values were not significantly different. In the absence of a retention device, the retention strengths were significantly different in the following order: LN-N (0.1 MPa) LDR-N (17.1 MPa). No significant difference was found between the numbers of retention devices, which were 81 and 144. In conclusion, the combined use of the primers and the retention devices is recommended when the laser-sintered Co-Cr alloy is veneered with the resin composite materials to maximize the retention strength.

  6. Phase composition of Al-Ti-Nb-Mo γ alloys in the heat-treatment temperature range: Calculation and experiment

    Science.gov (United States)

    Belov, N. A.; Dashkevich, N. I.; Bel'tyukova, S. O.

    2015-07-01

    The phase composition of TNM-type Al-Ti-Nb-Mo γ alloys at heat-treatment temperatures is quantitatively studied using the Thermo-Calc program package and experimental methods. Isothermal cross sections are calculated and the joint influence of two alloying elements on the phase composition of the alloy is determined at the mean concentration of a third component. Based on the calculations of vertical cross sections, the boundaries of the four-phase eutectoid reaction α → α2 + β + γ are found. The temperature is shown to significantly influence the phase compositions of the γ alloys, among them the mass fractions of various phases (α, β, γ,α2) and the element concentration in them.

  7. Metal separators coated with carbon/resin composite layers for PEFCs

    Energy Technology Data Exchange (ETDEWEB)

    Kitta, Shigehiro [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan); Asktechnica Corp., 1488 Ichikawadaimon, Nishi-yatsushiro 409-3601 (Japan); Uchida, Hiroyuki [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan); Watanabe, Masahiro [Clean Energy Research Center, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan)

    2007-12-31

    A new type of metal separator coated with corrosion-resistant and electronically conductive carbon/resin composite layers has been developed. A flat, stainless steel plate was coated with a thin composite layer, and then ribs were formed of a similar composite over the thin layer as gas flow channels. The composite consisted of graphite, epoxy resin and a phenol hardener. By optimizing the combination and composition of materials, target values for the bulk electric conductivity and the chemical stability in hot water were cleared. The separator pieces exhibited a good corrosion resistance during soaking tests in 0.1 M H{sub 2}SO{sub 4} at 90 C over 2000 h or even at 120 C over 1200 h. The area-specific resistance of the separator coated with the thin protecting layer and the rib layer was less than 13.8 m{omega} cm{sup 2}. (author)

  8. Room-Temperature Optical Tunability and Inhomogeneous Broadening in 2D-Layered Organic-Inorganic Perovskite Pseudobinary Alloys.

    Science.gov (United States)

    Lanty, Gaëtan; Jemli, Khaoula; Wei, Yi; Leymarie, Joël; Even, Jacky; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2014-11-20

    We focus here our attention on a particular family of 2D-layered and 3D hybrid perovskite molecular crystals, the mixed perovskites (C6H5-C2H4-NH3)2PbZ4(1-x)Y4x and (CH3-NH3)PbZ3(1-x)Y3x, where Z and Y are halogen ions such as I, Br, and Cl. Studying experimentally the disorder-induced effects on the optical properties of the 2D mixed layered materials, we demonstrate that they can be considered as pseudobinary alloys, exactly like Ga1-xAlxAs, Cd1-xHgxTe inorganic semiconductors, or previously reported 3D mixed hybrid perovskite compounds. 2D-layered and 3D hybrid perovskites afford similar continuous optical tunability at room temperature. Our theoretical analysis allows one to describe the influence of alloying on the excitonic properties of 2D-layered perovskite molecular crystals. This model is further refined by considering different Bohr radii for pure compounds. This study confirms that despite a large binding energy of several 100 meV, the 2D excitons present a Wannier character rather than a Frenkel character. The small inhomogeneous broadening previously reported in 3D hybrid compounds at low temperature is similarly consistent with the Wannier character of free excitons.

  9. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions.

    Science.gov (United States)

    Karimi, Shima; Alfantazi, Akram M

    2014-07-01

    The long-term weight loss, ion release, and surface composition of 316L, Co-28Cr-6Mo and Ti-6Al-4V alloys were investigated in a simulated body environment. The samples were immersed in phosphate-buffered saline (PBS) solutions with various human serum albumin (HSA) concentrations for 8, 14, and 22 weeks. The specimens initially lost weight up to 14 weeks and then slightly gained weight. The analysis of the released ions was performed by induced coupled plasma-optical emission spectrometer (ICP-OES). The results revealed that the precipitation of the dissolved Fe and Co could cause the weight gain of the 316L and Co-28Cr-6Mo alloys. The surface chemistry of the specimens was determined by X-ray photoelectron spectroscopy (XPS). The XPS analysis of Co-28Cr-6Mo alloy showed that the interaction of Mo with HSA is different from Mo with bovine serum albumin (BSA). This was also observed for Na adsorption into the oxide layer of Ti-6Al-4V alloy in the presence of HSA and BSA. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  10. CdS/CdTe Solar Cells Containing Directly Deposited CdSxTe1-x Alloy Layers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

    2011-07-01

    A CdSxTe1-x layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdSxTe1-x layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdSxTe1-x region. Further understanding, however, is essential to predict the role of this CdSxTe1-x layer in the operation of CdS/CdTe devices. In this study, CdSxTe1-x alloy films were deposited by radio-frequency (RF) magnetron sputtering and co-evaporation from CdTe and CdS sources. Both RF-magnetron-sputtered and co-evaporated CdSxTe1-x films of lower S content (x<0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl2 heat treatment (HT) at ~400 degrees C for 5 min. Films sputtered in a 1% O2/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl2 HT. Films sputtered in O2 partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films. Initial PV device results show that the introduction of a directly-deposited CdSxTe1-x alloy layer into the device structure produces devices of comparable performance to those without the alloy layer when a CdCl2 HT is performed. Further investigation is required to determine whether the CdCl2 heat treatment step can be altered or eliminated through direct deposition of the alloy layer.

  11. CdS/CdTe Solar Cells Containing Directly-Deposited CdSxTe1-x Alloy Layers

    Energy Technology Data Exchange (ETDEWEB)

    Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

    2011-01-01

    A CdS{sub x}Te{sub 1-x} layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdS{sub x}Te{sub 1-x} layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdS{sub x}Te{sub 1-x} region. Further understanding, however, is essential to predict the role of this CdS{sub x}Te{sub 1-x} layer in the operation of CdS/CdTe devices. In this study, CdS{sub x}Te{sub 1-x} alloy films were deposited by radio-frequency (RF) magnetron sputtering and co-evaporation from CdTe and CdS sources. Both RF-magnetron-sputtered and co-evaporated CdS{sub x}Te{sub 1-x} films of lower S content (x<;0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl{sub 2} heat treatment (HT) at {approx}400 C for 5 min. Films sputtered in a 1% O{sub 2}/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl{sub 2} HT. Films sputtered in O{sub 2} partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films. Initial PV device results show that the introduction of a directly-deposited CdS{sub x}Te{sub 1-x} alloy layer into the device structure produces devices of comparable performance to those without the alloy layer when a CdCl{sub 2} HT is performed. Further investigation is required to determine whether the CdCl{sub 2} heat treatment step can be altered or eliminated through direct deposition of the alloy layer.

  12. Wear Behaviour of Al-Si-Fe Alloy/Coconut Shell Ash Particulate Composites

    Directory of Open Access Journals (Sweden)

    A. Apasi

    2012-03-01

    Full Text Available Wear behaviour of aluminium alloy (Al-Si-Fe reinforced with coconut shell ash particles (CSAp fabricated by stir casting process was investigated. The wear and frictional properties of the metal matrix composites was studied by performing dry sliding wear test using a pin-on-disc wear tester by varying the applied load from 10-50 N, speed 2.0 m/s and sliding distance 4000 m. The morphology of the worn out surface was determined by scanning electron microscope (SEM. The results show that the coefficient of friction increases with increasing load for the Al-Si-Fe alloy and the composites containing CSAp. It is observed that, as the applied load increases, the wear rate also increases but decreased with CSAp addition. This is because, whenever applied load increases, the friction at the contact surface of the material and rotating disc obviously increases. Hence, incorporation of the coconut shell particles in the Al-Si-Fe alloy matrix as reinforcement increases the wear resistance of the material

  13. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  14. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  15. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-09-01

    Full Text Available To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  16. Direct composite resin layering techniques for creating lifelike CAD/CAM-fabricated composite resin veneers and crowns.

    Science.gov (United States)

    LeSage, Brian

    2014-07-01

    Direct composite resin layering techniques preserve sound tooth structure and improve function and esthetics. However, intraoral placement techniques present challenges involving isolation, contamination, individual patient characteristics, and the predictability of restorative outcomes. Computer-aided design and computer-aided manufacturing (CAD/CAM) restorations enable dentists to better handle these variables and provide durable restorations in an efficient and timely manner; however, milled restorations may appear monochromatic and lack proper esthetic characteristics. For these reasons, an uncomplicated composite resin layering restoration technique can be used to combine the benefits of minimally invasive direct restorations and the ease and precision of indirect CAD/CAM restorations. Because most dentists are familiar with and skilled at composite resin layering, the use of such a technique can provide predictable and highly esthetic results. This article describes the layered composite resin restoration technique. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.

    Science.gov (United States)

    Nelson, G M; Nychka, J A; McDonald, A G

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  18. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    Science.gov (United States)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel

  19. Strong composition-dependent disorder in InAs1-xNx alloys

    International Nuclear Information System (INIS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2009-01-01

    We investigate the main causes of disorder in the InAs 1-x N x alloys (x = 0, 0.03125, 0.0625, 0.09375, 0.125, 0.25, 0.5, 0.75, 0.875, 0.90625, 0.9375, 0.96875 and 1). The calculation is based on the density-functional theory in the local-density approximation. We use a plane wave-expansion non-norm conserving ab initio Vanderbilt pseudopotentials. To avoid the difficulty of considering the huge number of atomic configurations, we use an appropriate strategy in which we consider four configurations for a given composition where the N atoms are not randomly distributed. We mainly show that the band gap decreases (increases) rapidly with increasing (decreasing) compositions of N. As a consequence the optical band gap bowing is found to be strong and composition dependent. The obtained compounds, from these alloys, may change from semi-conducting to metal (passing to a negative bowing) and could be useful for device applications, especially at certain composition.

  20. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10 -4 , and 19.3% to 77.7% at 0.1 mm, P < 10 -8 . Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  1. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  2. Difference between Cr and Ni K-edge XANES spectra of rust layers formed on Fe-based binary alloys exposed to Cl-rich environment

    International Nuclear Information System (INIS)

    Konishi, Hiroyuki; Mizuki, Jun'ichiro; Yamashita, Masato; Uchida, Hitoshi

    2005-01-01

    The rust layer formed on weathering steel possesses a strong protective ability against corrosives in an atmospheres. This ability is related to the structure of the rust layer. The difference in the protective ability of a rust layer. The difference in the protective ability of a rust layer in a Cl-rich environment between conventional weathering steel containing Cr and advanced weathering steel containing Ni is believed to be caused by the differences in local structural and chemical properties between alloying elements. Cr and Ni, in the rust layer. In order to examine the effect of these alloying elements on the structure of the rust layer formed on steel in a Cl-rich environment, we have performed Cr and Ni K-edge X-ray absorption near-edge structure (XANES) measurements for the rust layer of Fe-Cr and Fe-Ni binary alloys exposed to a Cl-rich atmosphere using synchrotron radiation. The results of the Cr K-edge XANES measurements for the rust layer of Fe-Cr binary alloys show that the atomic geometry around Cr depends on the concentration of Cr. Therefore, it is expected that the local structure around Cr in the rust layer is unstable. On the other hand, from the results of the Ni K-edge XANES measurements for the rust layer of Fe-Ni binary alloys. Ni is considered to be positioned at a specific site in the crystal structure of a constituent of the rust layer, such as akaganeite or magnetite. As a consequence, Ni negligibly interacts with Cl - ions in the rust layer. (author)

  3. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Moura, L.B.; Guimaraes, R.F.

    2010-01-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  4. A novel Fe–Cr–Nb matrix composite containing the TiB2 neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing

    International Nuclear Information System (INIS)

    Litwa, Przemysław; Perkowski, Krzysztof; Zasada, Dariusz; Kobus, Izabela; Konopka, Gustaw; Czujko, Tomasz; Varin, Robert A.

    2016-01-01

    The Fe–Cr–Ti-Nb elemental powders were mechanically alloyed/ball milled with TiB 2 and a small quantity of Y 2 O 3 ceramic to synthesize a novel Fe-based alloy-ceramic powder composite that could be processed by hot isostatic pressing (HIP) for a perceived potential application as a neutron absorber in nuclear reactors. After ball milling for the 30–80 h duration relatively uniform powders with micrometric sizes were produced. With increasing milling time a fraction of TiB 2 particles became covered with the much softer Fe-based alloy which resulted in the formation of a characteristic “core-mantel” structure. For the final HIP-ing process the mechanically alloyed powders were initially uniaxially pressed into rod-shaped compacts and then cold isostatically pressed (CIP-ed). Subsequently, the rod-shaped compacts were placed in the Ti-tubing and subjected to hot isostatic pressing (HIP) at 1150 °C/200 MPa pressure. The HIP-ing process resulted in the formation of the near-Ti and intermediate diffusional layers in the microstructure of HIP-ed samples which formed in accord with the Fe-Ti binary phase diagram. Those layers contain the phases such as α-Ti (HCP), the FeTi intermetallic and their hypo-eutectoid mixtures. In addition, needle-like particles were formed in both layers in accord with the Ti-B binary phase diagram. Nanohardness testing, using a Berkovich type diamond tip, shows that the nanohardness in the intermediate layer areas, corresponding to the composition of the hypo-eutectoid mixture of Ti-FeTi, equals 980.0 (±27.1) HV and correspondingly 1176.9 (±47.6) HV for the FeTi phase. The nanohardness in the sample's center in the areas with the fine mixture of Fe-based alloy and small TiB 2 particles equals 1048.3 (±201.8) HV. The average microhardness of samples HIP-ed from powders milled for 30 and 80 h is 588 HV and 733 HV, respectively. - Highlights: • A Fe–Cr–Nb-based composite with TiB 2 neutron absorbing ceramic was

  5. Development of symmetric composition-gradient materials including hard particles in its surface layer; Hyosobu ni koshitsu ryushi wo fukumu taishogata sosei keisha zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of new materials with both thermal resistance and thermal shock resistance was studied on the basis of symmetric ceramics/metal/ceramics gradient composition. Al2O3/TiC/Ni/TiC/Al2O3 was used as material model of basic composition, and the system was selected where WC-Co system alloy hard particles were dispersed into the Al2O3 ceramic surface layer. The layered material was sintered in N2 gas atmosphere by SHS/HIP method using exothermic caused by nitriding reaction. Since cracks were generated in some specimens of 5-layer structure, improved specimens of 7-layer structure were prepared. To examine the effect of a particle size on toughness, WC-Co system alloy specimens with different particle sizes were also prepared. As a result, no cracks were found, and residual stress and fracture toughness were affected by particle size. In addition, the following were studied: technique of mass production, observation of fine structures, analysis of thermal stress, thermal shock resistance, and friction and abrasion characteristics. 13 refs., 65 figs., 15 tabs.

  6. Ion release and surface oxide composition of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys immersed in human serum albumin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Shima, E-mail: shimak80@gmail.com; Alfantazi, Akram M.

    2014-07-01

    The long-term weight loss, ion release, and surface composition of 316L, Co–28Cr–6Mo and Ti–6Al–4V alloys were investigated in a simulated body environment. The samples were immersed in phosphate-buffered saline (PBS) solutions with various human serum albumin (HSA) concentrations for 8, 14, and 22 weeks. The specimens initially lost weight up to 14 weeks and then slightly gained weight. The analysis of the released ions was performed by induced coupled plasma-optical emission spectrometer (ICP-OES). The results revealed that the precipitation of the dissolved Fe and Co could cause the weight gain of the 316L and Co–28Cr–6Mo alloys. The surface chemistry of the specimens was determined by X-ray photoelectron spectroscopy (XPS). The XPS analysis of Co–28Cr–6Mo alloy showed that the interaction of Mo with HSA is different from Mo with bovine serum albumin (BSA). This was also observed for Na adsorption into the oxide layer of Ti–6Al–4V alloy in the presence of HSA and BSA. - Highlights: • Long-term study of weight loss, ion release, and surface composition in HSA solution • Comparison between HSA and BSA as protein simulators in PBS solutions • The most ions released from 316L and Co–28Cr–6Mo were Fe and Co. • The oxide composition of 316L contained Fe{sub 2}O{sub 3}, MoO{sub 2}, and MoO{sub 3} in only HSA solutions.

  7. Microstructural and compositional Evolution of Compound Layers during Gaseous Nitrocarburizing

    DEFF Research Database (Denmark)

    Du, Hong; Somers, Marcel A.J.; Ågren, John

    2000-01-01

    Compound layers developed at 848 K during gaseous nitrocarburizing of iron and iron-carbon specimens were investigated for several combinations of N and C activities imposed at the specimen surface by gas mixtures of NH3, N2, CO2 and CO. The microstructural evolution of the compound layer was stu...

  8. Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks

    Science.gov (United States)

    Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr

    2018-02-01

    In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.

  9. The effect of Co alloying content on the kinetics of reaction zone growth in tungsten fiber reinforced superalloy composites

    Science.gov (United States)

    Rodriguez, A.; Tien, J. K.; Caulfield, T.; Petrasek, D. W.

    1988-01-01

    A Co-free modified superalloy similar in composition to Waspaloy is investigated in an effort to understand the effect of Co on reaction zone growth kinetics and verify the chemistry dependence of reaction zone growth in the matrix of tungsten fiber reinforced superalloy composites. The values of the parabolic rate constant, characterizing the kinetics of reaction zone growth, for the Waspaloy matrix and the C-free alloy as well as five other alloys from a previous study confirm the dependence of reaction zone growth kinetics on cobalt content of the matrix. The Co-free alloy composite exhibits the slowest reaction zone growth among all tungsten fiber reinforced composites studied to date.

  10. Influences of composition on Raman scattering from GeSi alloy core-shell nanowire heterostructures

    Science.gov (United States)

    Han, Delong; Ye, Han; Yu, Zhongyuan; Zhang, Yunzhen; Liu, Yumin; Li, Yinfeng

    2017-10-01

    In this paper, the influences of composition on Raman scattering from Ge/Si-GeSi core-shell nanowire heterostructures standing along [011] and [111] crystal directions are numerically investigated. Uniform, linear and spontaneous nonlinear composition profiles (CPs) in GeSi alloy shell are taken into consideration. In uniform CP case, clear double peaks in Raman spectra contributed by core and shell are observed. The strain-induced shift follows linear relation with Ge concentration and nonlinear relation with shell thickness. Larger strain-induced shifts are obtained in nanowires along [111] direction. In linear CP case, the peaks contributed by shell cannot be distinguished in the total spectra and plateaus are formed on the low frequency side. Moreover, the nonlinear CP accounts for the spontaneous composition transition near heterointerface during lateral epitaxy of GeSi shell. Due to the rapid Ge concentration transition, Raman spectra are shown nearly identical to uniform CP cases.

  11. Preliminary investigation of fabrication composite structures by using shape memory alloys

    Science.gov (United States)

    Klein, W.; Dudek, O.

    2017-09-01

    The paper shows method of smart forming composite structures and fundamentals of propose fabrication technology. The presented method is based on innovative 3D printing technics with SMA (Shape Memory Alloy) fibres application. The SMA fibres layout cause an eccentric axial load after thermal activation. The result of this process is composite structures deflection in a predictable direction. The technology demonstrator sample was fabricated as well as numerical simulations were performed in aim of proof of concept. The identification process was developed to determine the layout of SMA fibres. The simulations were performed in MATLAB and ANSYS environment, where the genetic algorithm was used to identify geometrical parameters. The MAC (Modal Assurance Criterion) criterion was used to compare nodal solution with the predefined shape pattern. The simulation results shows possibilities of forming composite structures on the example of deflected beam.

  12. Laser Clad ZrO2-Y2O3 Ceramic/Ni-base Alloy Composite Coatings

    NARCIS (Netherlands)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.; Zhou, Y.

    1995-01-01

    A laser cladding technique was used to produce ZrO2-Y2O3 ceramic/Ni-base alloy composite coatings on stainless steel 4Cr13. The microstructure and hardness of the composite coatings are analyzed by XRD, SEM, EPMA, TEM and microhardness testing techniques. A stratification is observed in the laser

  13. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zomorodian, A., E-mail: amir.zomorodian@ist.utl.pt [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Garcia, M.P. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Moura e Silva, T. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ISEL, Department of Mechanical Engineering, 1959-007 Lisboa (Portugal); Fernandes, J.C.S. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Fernandes, M.H. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Montemor, M.F. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation.

  14. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    Science.gov (United States)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  15. Hard-yet-tough high-vanadium high-speed steel composite coating in-situ alloyed on ductile iron by atmospheric plasma arc

    NARCIS (Netherlands)

    Cao, Huatang; Dong, Xuanpu; Pei, Yutao T.

    2018-01-01

    A graded high-vanadium alloy composite coating was synthesized from premixed powders (V, Cr, Ti, Mo, Nb) on ductile iron (DI) substrate via atmospheric plasma arc surface alloying process. The resulted cross-section microstructure is divided into three distinct zones: upper alloyed zone (AZ) rich

  16. Microstructure and Mechanical Properties of C/C Composite/TC17 Joints with Ag-Cu-Ti Brazing Alloy

    Science.gov (United States)

    Cao, Xiujie; Zhu, Ying; Guo, Wei; Peng, Peng; Ma, Kaituo

    2017-12-01

    Carbon/Carbon composite(C/C) was vacuum brazed to titanium alloy (TC17) using Ag-Cu-Ti brazing alloy. The effects of brazing temperature on the interfacial microstructure and joint properties were investigated by energy dispersive spectrometer (EDS), a scanning electron microscope (SEM), X-ray diffraction (XRD) and Gleeble1500D testing machine. Results show that C/C composite and TC17 were successfully brazed using AgCuTi brazing alloy. Various phases including TiC, Ag(s, s), Cu(s, s), Ti3Cu4, TiCu, and Ti2Cu were formed in the brazed joint. The maximum shear strength of the brazed joints with AgCuTi brazing alloy was 24±1 MPa when brazed at 860°C for 15 min.

  17. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  18. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon [KAERI, Daejeon (Korea, Republic of)

    2016-09-15

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr{sub 2}O{sub 3}, and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged.

  19. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    International Nuclear Information System (INIS)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon

    2016-01-01

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr 2 O 3 , and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged

  20. Underwater Superoleophobicity Induced by the Thickness of the Thermally Grown Porous Oxide Layer on C84400 Copper Alloy

    Directory of Open Access Journals (Sweden)

    Aniedi Nyong

    2014-02-01

    Full Text Available The underwater contact angle behavior on oxide layers of varying thicknesses was studied. These oxide layers were grown by thermally oxidizing C84400 copper alloys in N2-0.75 wt.% O2 and N2-5 wt.% O2 gas mixtures at 650 °C. Characterization of the oxidized specimens was effected using X-ray diffraction, scanning electron microscope (SEM and contact angle goniometer. The results from the X-ray diffraction analyses confirmed the formation of CuO, ZnO and PbO. The average sizes of the oxide granules were in the range of 70 nm to 750 nm, with the average thickness of the oxide layer increasing with the increase in the weight percent of oxygen in the N2-O2 gas mixtures. The results showed that the oxide layer growth followed the parabolic law. The underwater oil contact angles increased, due to the change in the surface morphology and porosity of the oxide layer. The small sizes and irregular packing of the oxide granules cause hierarchical rough surface layers with pores. The estimated pore sizes, in the range of 88 ± 40 to 280 ± 76, were predominant on the oxide layers of the samples processed in the N2-5 wt.% O2 gas mixture. The presence of these pores caused an increase in the porosities as the thickness of the oxide layers increased. At oxide layer thickness above 25 microns, the measured contact angle exceeded 150° as underwater superoleophobicity was recorded.

  1. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy.

    Science.gov (United States)

    Chen, Jun; Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-03-08

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO₄·3H₂O, MnHPO₄·2.25H₂O, BaHPO₄·3H₂O, BaMg₂(PO₄)₂, Mg₃(PO₄)₂·22H₂O, Ca₃(PO₄)₂·xH₂O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl.

  2. Working principle of bio-inspired shape memory alloy composite actuators

    International Nuclear Information System (INIS)

    Smith, Colin; Villanueva, Alex; Joshi, Keyur; Tadesse, Yonas; Priya, Shashank

    2011-01-01

    Recently, bio-inspired shape memory alloy composite (BISMAC) actuators have been shown to mimic the deformation characteristics of natural jellyfish medusa. In this study, a constant cross-section BISMAC actuator was characterized in terms of bending deflection and force in conjunction with microscopy to understand its deformation mechanism. The actuator showed bending deflection of 111% with respect to the active length along with a blocking force of 0.061 N. The resulting energy density of the composite actuator was 4929 J m −3 at an input voltage and current level of 12 V and 0.7 A, respectively. For a dry-state actuator, this performance is extremely high and represents an optimum combination of force and deflection. Experiments reveal that BISMAC's performance is related to the moment induced from tip attachment of the shape memory alloy (SMA) rather than to friction within the composite structure. A physics-based model of BISMAC structure is presented which shows that the actuator is highly sensitive to the distance between the SMA wire and the incompressible component. While SMA has both stress and strain limitations, the limiting factor in BISMAC actuators is dependent on separation distance. The limiting factor in BISMAC's suitability for mimicking the performance of medusa was experimentally found to be related to the maximum 4% strain of the SMA and not its force generation. (fast track communication)

  3. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    Science.gov (United States)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  4. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way; Paul M. Thoen

    2006-08-31

    This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the support cost that will dominate the cost of a large scale module. In a direct comparison of FCC phase PdCu and PdAu alloys on identical supports, we showed that a Pd{sub 85}Au{sub 15} (mass %) alloy membrane is not inhibited by CO, CO{sub 2}, or steam present in a water-gas shift feed mixture at 400 C, has better resistance to sulfur than a Pd{sub 94}Cu{sub 6} membrane, and has over twice the hydrogen permeance.

  5. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    London, A.J., E-mail: andrew.london@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lozano-Perez, S.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Amirthapandian, S.; Panigrahi, B.K.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Grovenor, C.R.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471–503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174–1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe–0.3Y{sub 2}O{sub 3}, Fe–0.2Ti–0.3Y{sub 2}O{sub 3} and Fe–14Cr–0.2Ti–0.3Y{sub 2}O{sub 3}. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors.

  6. Microstructure and composition of rare earth-transition metal-aluminium-magnesium alloys

    Directory of Open Access Journals (Sweden)

    Lia Maria Carlotti Zarpelon

    2008-03-01

    Full Text Available The determination of the microstructure and chemical composition of La0.7-xPr xMg0.3Al 0.3Mn0.4Co0.5 Ni3.8 (0 < x < 0.7 metal hydride alloys has been carried out using scanning electron microscopy (SEM, energy dispersive X ray analysis (EDX and X ray diffraction analysis (XRD. The substitution of La with Pr changed the grain structure from equiaxial to columnar. The relative atomic ratio of rare earth to (Al, Mn, Co, Ni in the matrix phase was 1:5 (LaNi5-type structure. Magnesium was detected only in two other phases present. A grey phase revealed 11 at.% Mg and the concentration ratios of other elements indicated the composition to be close to PrMgNi4. A dark phase was very heterogeneous in composition, attributed to the as-cast state of these alloys. The phases identified by XRD analysis in the La0.7Mg0.3Al0.3Mn0.4Co 0.5Ni3.8 alloy were: La(Ni,Co5, LaAl(Ni,Co4, La2(Ni,Co7 and AlMn(Ni,Co2. Praseodymium favors the formation of a phase with a PuNi3-type structure. Cobalt substituted Ni in the structures and yielded phases of the type: Pr(Ni,Co5 and Pr(Ni,Co3.

  7. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites

    International Nuclear Information System (INIS)

    Farid, Akhtar; Guo Shiju

    2007-01-01

    This study deals with layer composites of carbide reinforcements and stainless steel prepared successfully by powder technology. The layer material consisted of two layers. The top layer consisted of reinforcements (TiC and NbC) and 465 stainless steel as the binder material for the carbides. The bottom layer was entirely of binder material (465 stainless steel). The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the top layer (TiC-NbC/465 stainless steel) showed the typical core-rim microstructure of conventional steel bonded cermets and the bottom layer showed the structure of sintered steel. An intermediate layer was found with a gradient microstructure, having a higher carbide content towards the cermet layer and lower carbide content towards the stainless steel layer. The bending strength of the layered material measured in the direction perpendicular to the layer alignment was remarkably high. The variation of strength as a function of the thickness of the bottom layer revealed that the character of the material changed from the cermet, to a layer composite and then towards metallic materials. The wear resistance of the top layer was studied against high speed steel. The wear mechanisms were discussed by means of microscopical observations on the worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microploughing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microploughing and rapid removal of material from the wear surface was observed at high wear load. The fracture morphologies of the top, bottom and intermediate layers are reported

  8. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2016-09-01

    Full Text Available Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  9. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography.

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-09-06

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  10. SOLIDIFICATION CHARACTERISTIC OF TITANIUM CARBIDE PARTICULATE REINFORCED ALUMINIUM ALLOY MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    N. FATCHURROHMAN

    2012-04-01

    Full Text Available In this research solidification characteristic of metal matrix composites consisted of titanium carbide particulate reinforced aluminium-11.8% silicon alloy matrix is performed. Vortex mixing and permanent casting method are used as the manufacturing method to produce the specimens. Temperature measurements during the casting process are captured and solidification graphs are plotted to represent the solidification characteristic. The results show, as volume fraction of particulate reinforcement is increased, solidification time is faster. Particulate reinforcement promotes rapid solidification which will support finer grain size of the casting specimen. Hardness test is performed and confirmed that hardness number increased as more particulate are added to the system.

  11. Composition of the spheroidal objects in KhN77TYuR-VD alloy

    International Nuclear Information System (INIS)

    Kotkis, M.A.; Nabutovskii, L.S.; Ostrov, A.E.; Zil'berman, A.G.

    1986-01-01

    The authors make an element analysis of the spheroidal objects in KhN77TYuR-VD alloy with the use of the energy dispersion microanalyzer with which the Stereoscan S-180 scanning electron microscope is equipped. Examples of the qualitative element analysis are shown. The results of the investigations show that the composition of the spheroidal inclusions includes nickel, chromium, titanium, iron, and also silicon and sulfur. The information obtained makes it possible to make an assumption on the mechanism of origin of these objects

  12. In situ observation of partial melting in superplastic aluminum alloy composites at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Koike, J. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering); Mabuchi, M. (Government Industrial Research Inst., Nagoya (Japan)); Higashi, K. (Univ. of Osaka Prefecture (Japan). Dept. of Mechanical Systems Engineering)

    1995-01-01

    The possibility of partial melting and its relations to the superplasticity at high strain rates were studied with transmission electron microscopy and differential scanning calorimetry in Al-Cu-Mg(2124), Al-Mg (5052), and Al-Mg-Si (6061) alloys reinforced with Si[sub 3]N[sub 4] particles. Calorimetry measurements of all three composites showed a sharp endothermic peak at an optimum superplastic temperature. At the same temperature, transmission electron microscopy showed the melting of grain boundaries and interfaces, suggesting direct correlations between partial melting and the superplasticity. Solute segregation was also observed at boundaries and interfaces, and was discussed as causes for partial melting.

  13. Nanosized-Particle Dispersion-Strengthened Al Matrix Composites Fabricated by the Double Mechanical Alloying Process.

    Science.gov (United States)

    Kim, Chungseok

    2018-03-01

    The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.

  14. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    Science.gov (United States)

    Jolodosky, Alejandra

    any quantity of interest. This allows multiple responses to be calculated by perturbing the input parameter without having to directly perform separate calculations. The approach is strictly created for critical systems, but was utilized as the basis of a new methodology implemented for fixed source problems, known as Exact Perturbation Theory (EPT). EPT can calculate the tritium breeding ratio response, caused by a perturbation in the composition of the ternary alloy. The downfall of EPT methodology is that it cannot account for the collision history at large perturbations and thus, produces results with high uncertainties. Preliminary analysis for EPT with Serpent for a LiPbBa alloy demonstrated that 25 simulations per ternary must be completed so that most uncertainties calculated at large perturbations do not exceed 0.05. To reduce the uncertainties of the results, generalized least squares (GSL) method was implemented, to replace imprecise TBR results with more accurate ones. It was demonstrated that a combination of EPT Serpent calculations with the application of GLS for results with high uncertainties is the most effective and produces values with the highest fidelity. The scheme finds an alloy composition that has a TBR within a range of interest, while imposing constraint on the EMF, and a requirement to minimize lithium concentration. It involved a three-level iteration process with each level zooming in closer on the area of interest to fine tune the correct composition. Both alloys studied, LiPbBa and LiSnZn, had optimized compositions close to the leftmost edge of the ternary, increasing the complexity of optimization due to the highly uncertain results found in these regions. Additional GPT methodologies were considered for optimization studies, specifically with the use of deterministic codes. Currently, an optimization deterministic code, SMORES, is available in the SCALE code package, but only for critical systems. Subsequently, it was desired to

  15. Effect of thione primers on adhesive bonding between an indirect composite material and Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Imai, Hideyuki; Koizumi, Hiroyasu; Shimoe, Saiji; Hirata, Isao; Matsumura, Hideo; Nikawa, Hiroki

    2014-01-01

    The current study evaluated the effect of primers on the shear bond strength of an indirect composite material joined to a silverpalladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell). Disk specimens were cast from the alloy and were air-abraded with alumina. Eight metal primers were applied to the alloy surface. A light-polymerized indirect composite material (Solidex) was bonded to the alloy. Shear bond strength was determined both before and after the application of thermocycling. Two groups primed with Metaltite (thione) and M. L. Primer (sulfide) showed the greatest post-thermocycling bond strength (8.8 and 6.5 MPa). The results of the X-ray photoelectron spectroscopic (XPS) analysis suggested that the thione monomer (MTU-6) in the Metaltite primer was strongly adsorbed onto the Ag-Pd-Cu-Au alloy surface even after repeated cleaning with acetone. The application of either the thione (MTU-6) or sulfide primer is effective for enhancing the bonding between a composite material and Ag-Pd-Cu-Au alloy.

  16. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer

    International Nuclear Information System (INIS)

    Huo Hongwei; Li Ying; Wang Fuhui

    2004-01-01

    A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO 3 · H 2 O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution

  17. A study on the Effects of Geometrical Parameters of Overlay Coated Layer on the Thermal Stress-strain Distributions of Co-based Super-alloy Deposited Layer on Hot-working Tool Steel

    Directory of Open Access Journals (Sweden)

    Guk Dae-Seon

    2016-01-01

    Full Text Available Interests in an overlay coating technology, so called hardfacing technology, have steadily increased to improve the service life of hot-working tools through the reduction of the wear of tool surfaces. Characteristics of the overlay coated layer are dependent on geometrical parameters and material properties of sub-layers. The aims of the paper is to examine the effects of geometrical parameters of the overlay coated layer on thermal stress-strain distributions of Co-based super-alloy deposited layer on hot-working tool steel using finite element analysis (FEA. The overlay coated layer is designed as two sub-layers including the wear resistance layer with Co-based super-alloy and the thermal stress control layer (TSCL. The material of the TSCL is composed of 50 % of Co-based super-alloy and 50 % of hot-working tool steel. The protruded height and the inclined angle are chosen as geometrical parameters. The influence of the protruded height and the inclined angle on thermal stress-strain distributions in the vicinity of the overlay coated layer and the strain deviation in joined regions is quantitatively investigated. From the results of the investigation, an appropriate design methodology of the overlay coated layer is discussed.

  18. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Yang, Y.W.; Hung, T.F.; Yang, F.L. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023 (China); Huang, J. [Yeu Ming Tai Chemical Industrial Co., Ltd, Taichung 40768 (China)

    2007-11-08

    A series of poly(tetrafluoroethylene)/carbon black composite-based single-layer gas diffusion layers (PTFE/CB-GDLs) for proton exchange membrane fuel cell (PEMFC) was successfully prepared from carbon black and un-sintered PTFE, which included powder resin and colloidal dispersion, by a simple inexpensive method. The scanning electron micrographs of PTFE/CB-GDLs indicated that the PTFE resins were homogeneously dispersed in the carbon black matrix and showed a microporous layer (MPL)-like structure. The as-prepared PTFE/CB-GDLs exhibited good mechanical property, high gas permeability, and sufficient water repellency. The best current density obtained from the PEMFC with the single-layer PTFE/CB-GDL was 1.27 and 0.42 A cm{sup -2} for H{sub 2}/O{sub 2} and H{sub 2}/air system, respectively. (author)

  19. SeZnSb alloy and its nano tubes, graphene composites properties

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh

    2013-04-01

    Full Text Available Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectroscopy, Furrier transmission infrared spectra, photoluminescence, UV/visible absorption spectroscopic measurements. The diffused prime Raman bands (G and D have been appeared for the multi walled carbon nano tubes and graphene composites, while the X-ray photoluminescence core energy levels peak shifts have been observed for the composite materials. Subsequently the photoluminescence property at room temperature and a drastic enhancement (upto 80% in infrared transmission percentage has been obtained for the bilayer graphene composite, along with optical energy band gaps for these materials have been evaluated 1.37, 1.39 and 1.41 eV.

  20. Absorbing properties of α-manganese dioxide/carbon black double-layer composites

    International Nuclear Information System (INIS)

    Duan Yuping; Yang Yang; He Ma; Liu Shunhua; Cui Xiaodong; Chen Huifeng

    2008-01-01

    In order to improve the absorbing properties of the electromagnetic wave absorbing plate, double-layer wave absorbing materials, which are composed of a matching layer and an absorbing layer, were devised. The matching layer is a surface layer of the wave absorbing sample, from which most of the incident waves easily enter the sample, and the absorbing layer is a second layer under the matching layer, which plays an important role in incident wave attenuation. The total thickness of the double-layer composites is the sum of the thicknesses of the matching layer and the absorbing layer. In this paper, α-manganese dioxide and carbon black (CB) were used as absorbents in the matching layer and the absorbing layer respectively. Meanwhile, the structure of the α-manganese dioxide and the CB particles were analysed by x-ray diffraction and transmission electron microscopy, and the dielectric property and absorbing mechanics were also studied. The results showed that, in the case of the mass fraction of CB in the absorbing layer being 30% and the thickness of the absorbing layer being 3 mm, the effectual absorption band (below -10 dB) of the double-layer wave absorbing materials reaches 8.6 GHz and 7.6 GHz in the testing frequency range between 8 GHz and 18 GHz, respectively, when the mass fraction of α-MnO 2 in the matching layer was 10% and the thicknesses of the matching layer were 2 mm and 1 mm, respectively, and the effectual absorption band (below -10 dB) reaches 8.7 GHz in 8-18 GHz when the mass fraction of α-MnO 2 in the matching layer was 20% and the thickness of the matching layer was 2 mm

  1. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  2. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way; Paul M. Thoen

    2005-08-31

    This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi.

  3. Influence of the chemical composition and the fabrication process on the behaviour of high temperature oxidation of Fe-Cr-Al alloys

    International Nuclear Information System (INIS)

    Clemendot, F.; Arnoldi, F.; Cerede, J.B.; Dionnet, B.; Nardou, F.; Duysen, J.C. van

    1993-01-01

    The oxidation behaviour of four industrial Fe-Cr-Al alloys was studied. Two of them were Fe-Cr-Al alloys fabricated either by melting or by powder metallurgy. The two other ones were Fe-Cr-Al-Y alloys either produced by melting or by mechanical alloying. On these alloys, we determined oxidation kinetics and observed the morphology of the oxide layer after isothermal and cyclic exposures from 1000 C up to 1300 C. The beneficial effect of yttrium on the adherence of oxide layers was confirmed. The powder metallurgy fabrication route does not improve the oxidation resistance of yttrium-free alloys. On the other hand, the association of the powder metallurgy and the addition of yttrium allow the manufacturing of alloys which present an excellent behaviour to high temperature oxidation. (orig.)

  4. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer.

    Science.gov (United States)

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-04-16

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010.

  5. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    Science.gov (United States)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  6. Layering, interface and edge effects in multi-layered composite medium

    Science.gov (United States)

    Datta, S. K.; Shah, A. H.; Karunesena, W.

    1990-01-01

    Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.

  7. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior.

    Science.gov (United States)

    Cardoso, Flavia F; Ferrandini, Peterson L; Lopes, Eder S N; Cremasco, Alessandra; Caram, Rubens

    2014-04-01

    The correlation between the composition, aging heat treatments, microstructural features and mechanical properties of β Ti alloys is of primary significance because it is the foundation for developing and improving new Ti alloys for orthopedic biomaterials. However, in the case of Ti-Mo alloys, this correlation is not fully described in the literature. Therefore, the purpose of this study was to experimentally investigate the effect of composition and aging heat treatments on the microstructure, Vickers hardness and elastic modulus of Ti-Mo alloys. These alloys were solution heat-treated and water-quenched, after which their response to aging heat treatments was investigated. Their microstructure, Vickers hardness and elastic modulus were evaluated, and the results allow us to conclude that stabilization of the β phase is achieved with nearly 10% Mo when a very high cooling rate is applied. Young's modulus was found to be more sensitive to phase variations than hardness. In all of the compositions, the highest hardness values were achieved by aging at 723K, which was attributed to the precipitation of α and ω phases. All of the compositions aged at 573K, 623K and 723K showed overaging within 80h. © 2013 Published by Elsevier Ltd.

  8. EMF measurements across the front of combustion wave during layer by layer surface laser sintering of exothermal powder compositions

    Science.gov (United States)

    Shishkovskiy, I.; Sherbakov, V.; Morozov, Yu.

    2007-06-01

    Rapid prototyping (RP) and manufacturing (M) is a novel layer-by-layer fabrication technique which has become increasingly popular due to its inherent flexibility for the manufacture of simple and complex 3D parts. Early we had been shown opportunity of selective laser sintering (SLS) of different type powder systems (intermetallics, ceramics, ferrites, high-temperature superconductors), traditional use for self-propagated high-temperature synthesis (SHS). The non-thermal heating affect of an external electromagnetic field during SHS is related to the specific system under study due to differences in movement of defects and ions at the 'plasma-like' molten combustion wave front. We have developed and refined the testing scheme for electro-thermal phenomena studies which can directly influence on the SHS combustion wave front. This work studies electromotive force (EMF) measurements across the front of combustion wave during layer by layer surface laser sintering of exothermal powder compositions (Ni-Ti, Ni-Al). Analysis using an analog-digital-analog computer converter allowed some control of the laser movement and hence some control of the exothermal reaction - in so doing it provided near optimum conditions for forming layered 3D articles. Comparative results of structural-phase transformation during laser control SHS in reaction-capable compositions are presented.

  9. Corrosion resistance of ZrTi alloys with hydroxyapatite-zirconia-silver layer in simulated physiological solution containing proteins for biomaterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Trincă, L.C. [“Ion Ionescu de la Brad” University of Agricultural Science and Veterinary Medicine, Faculty of Horticulture, Science Department, 3, Mihail Sadoveanu Alley, Iaşi, 700490 (Romania); Căilean, D. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain)

    2016-12-15

    Highlights: • Hydroxyapatite-zirconia coated ZrTi alloys were characterized for biocompatibility. • Silver nanoparticles added for antimicrobial activity. • Electrochemical behaviour consistent with surface layer of duplex structure. • Porous coating forms on passivating oxide layer. • HA-ZrO{sub 2}-Ag coated Zr45Ti exhibits high potential for implant application. - Abstract: The degradation characteristics of hydroxyapatite-zirconia-silver films (HA-ZrO{sub 2}-Ag) coatings on three ZrTi alloys were investigated in Ringer’s solution containing 10% human albumin protein at 37 °C. Samples were immersed for 7 days while monitored by electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP). The electrochemical analysis in combination with surface analytical characterization by scanning electron microscopy (SEM/EDX) reveals the stability and corrosion resistance of the HA-ZrO{sub 2}-Ag coated ZrTi alloys. The characteristic feature that describes the electrochemical behaviour of the coated alloys is the coexistence of large areas of the coating presenting pores in which the ZrTi alloy substrate is exposed to the simulated physiological environment. The EIS interpretation of results was thus performed using a two-layer model of the surface film. The blocking effect in the presence the human albumin protein produces an enhancement of the corrosion resistance. The results disclose that the Zr45Ti alloy is a promising material for biomedical devices, since electrochemical stability is directly associated to biocompatibility.

  10. [The effect of C-SiO2composite films on corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Huang, Yi; Hu, Jing-Yu; Liu, Yu-Pu; Zhao, Dong-Yuan; Yu, You-Cheng; Bi, Wei

    2016-10-01

    To study the effect of carbon-silica composite films on corrosion resistance of Co-Cr alloy in simulated oral environment and provide evidences for clinical application of this new material. Co-Cr alloy specimens were cut into appropriate size of 20 mm × 20 mm × 0.5 mm. Then, the carbon-silica composite films were spin-coated onto the specimens. Subsequently, ICP-AES was used to observe the Co, Cr, Mo ion concentrations. Finally, Tafel polarization curves of the specimens were used to measure the electrochemical corrosion resistance by electrochemical workstation. SAS8.0 software package was used for statistical analysis. The results of ICP-AES showed that the ion concentrations of Co, Cr, Mo of specimens coated with composite films in the testing liquid were significantly smaller than that of Co-Cr alloy specimens. Tafel polarization curves showed that in the specimens coated with composite films, the corrosion potential moved in the positive direction and increased from -0.261 V to -0.13 V. At the same time, the corrosion current density decreased from -5.0017μA/cm 2 to -5.3006 μA/cm 2 . Carbon-silica composite films (silica=61.71wt %) can reduce the release of metal ions significantly and improve the corrosion resistance of Co-Cr alloys effectively. Carbon-silica composite films may be a promising dental material.

  11. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-02

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.

  12. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  13. Effect of composition on corrosion resistance of high-alloy austenitic stainless steel weld metals

    International Nuclear Information System (INIS)

    Marshall, P.I.; Gooch, T.G.

    1993-01-01

    The corrosion resistance of stainless steel weld metal in the ranges of 17 to 28% chromium (Cr), 6 to 60% nickel (Ni), 0 to 9% molybdenum (Mo), and 0.0 to 0.37% nitrogen (N) was examined. Critical pitting temperatures were determined in ferric chloride (FeCl 3 ). Passive film breakdown potentials were assessed from potentiodynamic scans in 3% sodium chloride (NaCl) at 50 C. Potentiodynamic and potentiostatic tests were carried out in 30% sulfuric acid (H 2 SO 4 ) ar 25 C, which was representative of chloride-free acid media of low redox potential. Metallographic examination and microanalysis were conducted on the test welds. Because of segregation of alloying elements, weld metal pitting resistance always was lower than that of matching composition base steel. The difference increased with higher Cr, Mo, and N contents. Segregation also reduced resistance to general corrosion in H 2 SO 4 , but the effect relative to the base steel was less marked than with chloride pitting. Segregation of Cr, Mo, and N in fully austenitic deposits decreased as the Ni' eq- Cr' eq ratio increased. Over the compositional range studied, weld metal pitting resistance was dependent mainly on Mo content and segregation. N had less effect than in wrought alloys. Both Mo and N enhanced weld metal corrosion resistance in H 2 SO 4

  14. An model for the analysis of shape memory alloy fiber-composites

    Science.gov (United States)

    Kohlhaas, Benedikt; Klinkel, Sven

    2015-02-01

    This contribution deals with a computational model for a shape memory alloy fiber composite. Three main topics have been considered within the presented model. First, a 1D fiber model is derived which accounts for all relevant nonlinear material phenomena of shape memory alloys. These are pseudoelasticity in the high temperature range and pseudoplasticity in the low temperature range. The latter is closely connected to the shape memory effect. The constrained and two-way shape memory effect are captured as well. Second, the shape memory fiber model is implemented into the finite element method. Two different structural elements are derived which lead to two different discretization schemes. A non-conform meshing concept and a conform meshing concept are presented. Randomly oriented and distributed fibers are considered. Both schemes are compared within the paper. Third, an ansatz is presented. The computational homogenization process makes the detailed description of the complicated fiber-structure on macro-level dispensable. The micro-structure is considered in a representative volume element. It captures the main characteristics of the multi-functional composite. Finally, numerical examples present the capability of the formulation.

  15. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  16. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  17. Mechanical properties of plasma-sprayed layers of aluminium and aluminium alloy on AZ 91

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Ctibor, Pavel; Mušálek, Radek; Janata, Marek

    2017-01-01

    Roč. 51, č. 2 (2017), s. 323-327 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : plasma spraying of aluminium * adhesion of coating * wear * magnesium alloy AZ91 Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.436, year: 2016

  18. Evaluation of wear properties of TiC particulates reinforced Al2219 alloy composites

    Science.gov (United States)

    Harti, Jayasheel I.; Prasad, T. B.; Nagaral, Madeva; Jadhav, Pankaj; Anjan Babu V., A.; Sahadev G., N.

    2017-07-01

    In the present study, Al2219 - 2, 4 and 6 wt. % of TiC metal matrix composites were synthesized by Stir casting method. Microstructural analysis of Al2219-TiC composites was performed by using scanning electron microscopy. Microstructural characterization of the developed TiC particulates reinforced composites revealed uniform distribution of micro size TiC particulates in the base matrix. The wear resistance of metal matrix composites was studied by performing dry sliding wear test using a pin on disc apparatus. The experiments were conducted at a constant sliding speed of 600rpm and sliding distance of 2000m over a varying load of 0.5kg, 1kg, 1.5kg and 2kg. Similarly experiments were conducted at a constant load of 1kg and sliding distance of 2000m over a varying sliding speed of 600, 700, 800 and 900rpm. The results showed that the wear resistance of Al2219 - TiC composites was better than the unreinforced alloy. The wear rate was found to increase with the load and sliding speed. To study the dominant sliding wear mechanism for various test conditions, the worn surfaces were analyzed using optical microscopy.

  19. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  20. Wear Behavior of Mechanically Alloyed Ti-Based Bulk Metallic Glass Composites Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    2016-11-01

    Full Text Available The present paper reports the preparation and wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotube (CNT particles. The differential scanning calorimeter results show that the thermal stability of the amorphous matrix is affected by the presence of CNT particles. Changes in glass transition temperature (Tg and crystallization temperature (Tx suggest that deviations in the chemical composition of the amorphous matrix occurred because of a partial dissolution of the CNT species into the amorphous phase. Although the hardness of CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composites is increased with the addition of CNT particles, the wear resistance of such composites is not directly proportional to their hardness, and does not follow the standard wear law. A worn surface under a high applied load shows that the 12 vol. % CNT/Ti50Cu28Ni15Sn7 bulk metallic glass composite suffers severe wear compared with monolithic Ti50Cu28Ni15Sn7 bulk metallic glass.

  1. Freeze-Spray Processing of Layered Ceramic Composites (Preprint)

    Science.gov (United States)

    2006-04-01

    used to spray thin layers of slurries on a cryogenically cooled metallic plate . The slurries freeze almost instantly, forming solid structures. The...34Optimization of FGM TBC and Their Thermal Cycling Stability," Mater. Sci Forum, 492,9-14 (2005). K . An, K. Ravichandran, R. Dutton, and S. Semiatin

  2. Hybrid a-CNH+TiO2+TiN-type surface layers produced on NiTi shape memory alloy for cardiovascular applications.

    Science.gov (United States)

    Witkowska, Justyna; Sowińska, Agnieszka; Czarnowska, Elżbieta; Płociński, Tomasz; Kamiński, Janusz; Wierzchoń, Tadeusz

    2017-09-01

    The goal was to improve the properties of NiTi shape memory alloy to make it suitable for cardiac applications. For this purpose, a hybrid a-CNH+TiO 2 +TiN-type surface layer was produced on NiTi alloy and characterized. The NiTi alloy subjected to hybrid process combining low-temperature oxynitriding under glow discharge conditions and radio frequency chemical vapor deposition process was examined for microstructure, surface topography, corrosion resistance, wettability and surface-free energy, Ni ion release and platelets adhesion, aggregation and activation. The hybrid surface layers showed slightly increased surface roughness, better corrosion resistance, a more hydrophobic nature, decreased surface free energy, smaller release of nickel ions and reduced platelets activation. The produced layers could expand the range of NiTi medical applications.

  3. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    Science.gov (United States)

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  4. Micro-structures and mechanical properties of Nb/Re layered composite produced by CVD

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming, Yunnan 650106 (China); Faculty of Materials and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Kunming Institute of Precious Metals, Kunming, Yunnan 650106 (China); Wei Yan; Zhu Shaowu; Cai Hongzhong; Mao Chuanjun [Faculty of Materials and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Hu Changyi, E-mail: hcy@ipm.com.cn [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming, Yunnan 650106 (China); Faculty of Materials and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Kunming Institute of Precious Metals, Kunming, Yunnan 650106 (China)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer It was the first time to research the Nb/Re layered composites produced by CVD. Black-Right-Pointing-Pointer The thickness of the phase {chi} has a profound effect on mechanical properties of Nb/Re composites. Black-Right-Pointing-Pointer The mechanical properties of Nb/20 vol.%Re composites with phase {chi} of 1.4 {mu}m thickness are optimum. - Abstract: In this work, the relatively light niobium/rhenium (Nb/Re) layered composites were produced by chemical vapor deposition (CVD). The micro- structures including the thickness of diffusion layer, phase compositions and interphase thickness in niobium/rhenium composites were studied by SEM and XRD. The phases were consisted of Nb solid solution, {chi} and Re solid solution. It was observed that increasing of annealing temperature would result in more thick diffusion layer and {chi} zone. Prolonging annealing time at the same temperature has no profound effect on the formation of interphase {chi}. Tensile tests indicated that the strength of the as-deposited followed the rule of mixture. For Nb/20 vol.%Re layered composites in which the thickness of phase {chi} was 1.4 {mu}m, the tensile strength and elongations were about 516 MPa and 8%.

  5. Fabrication of chitosan/hydroxylapatite composite rods with a layer-by-layer structure for fracture fixation.

    Science.gov (United States)

    Pu, Xi-Ming; Sun, Zhen-Zhen; Hou, Zhen-Qing; Yang, Yun; Yao, Qing-Qing; Zhang, Qi-Qing

    2012-07-01

    A composite rod for fracture fixation using chitosan (CHI)/hydroxylapatite (HA) was prepared by means of in situ precipitation, which had a layer-by-layer structure, good mechanical properties, and cell compatibilities. The CHI/HA composite rods were precipitated from the chitosan solution with calcium and phosphorus precursors, followed by treatment with a tripolyphosphate-trisodium phosphate solution (pH >13) to crosslink the CHI and to hydrolyze the calcium phosphates to nanocrystalline HA. The results of FTIR, XRD, and TEM measurements confirmed that HA had been formed within the CHI matrix. The effects of the CHI/HA ratios (20/0, 20/1, 20/2, 20/4, and 20/5, w/w) on the mechanical properties were investigated. At the CHI/HA ratio of 20/4 (w/w), the bending strength and modulus of the rods were 133 MPa and 6.8 GPa, respectively. Pre-osteoblast MC3T3-E1 cells were cultured in an extract of the CHI/HA rods (20/4, w/w) to study the cell compatibilities of the composite. The observations indicated that the CHI/HA composite could promote the growth of MC3T3-E1 cells better than the composite without HA (p composite showed that cells fully spread on the surface of the composite with an obvious cytoskeleton organization, which also revealed that the CHI/HA composite had a good biocompatibility. Copyright © 2012 Wiley Periodicals, Inc.

  6. Microstructure and Texture in Surface Deformation Layer of Al-Zn-Mg-Cu Alloy Processed by Milling

    Directory of Open Access Journals (Sweden)

    CHEN Yanxia

    2017-12-01

    Full Text Available The microstructural and crystallographic features of the surface deformation layer in Al-Zn-Mg-Cu alloy induced by milling were investigated by means of transmission electron microscopy (TEM and precession electron diffraction (PED assisted nanoscale orientation mapping. The result shows that the surface deformation layer is composed by the top surface of equiaxed nanograins/ultrafine grains and the subsurface of lamellar nanograins/ultrafine grains surrounded by coarse grain boundary precipitates (GBPs. The recrystallized nanograins/ultrafine grains in the deformation layer show direct evidence that dynamic recrystallization plays an important role in grain refining process. The GBPs and grain interior precipitates (GIPs show a great difference in size and density with the matrix due to the thermally and mechanically induced precipitate redistribution. The crystallographic texture of the surface deformation layer is proved to be a mixture of approximate copper{112}, rotated cube{001} and F {111}. The severe shear deformation of the surface induced by milling is responsible for the texture evolution.

  7. Enhancement of spin orbit torques in a Tb-Co alloy magnetic wire by controlling its Tb composition

    Directory of Open Access Journals (Sweden)

    Yuichiro Kurokawa

    2017-05-01

    Full Text Available We investigated the current-induced domain wall motion (CIDWM in Pt(3 nm/TbxCo1-x(6 nm alloy wires with various Tb composition (x. We found that the threshold current density (Jth for the CIDWM in the TbxCo1-x alloy wires decreases with increasing x. In particular, the Jth with x = 0.37 is almost 3 times smaller than that with x = 0.23. We estimated Dzyaloshinskii-Moriya interaction (DMI effective field (HDMI by measuring CIDWM in a longitudinal magnetic field. We found that DMI constant (D estimated by the HDMI also strongly depends on x. The size of the DMI may be modified by changing electronegativity or local atomic arrangement in Tb-Co alloy. These results suggest that Tb can induce strong HDMI and effectively affect CIDWM in TbxCo1-x alloy wires.

  8. Evaluation of shear bond strength of composite resin to nonprecious metal alloys with different surface treatments

    Directory of Open Access Journals (Sweden)

    Yassini E.

    2007-07-01

    Full Text Available Background and Aim: Replacing fractured ceramometal restorations may be the best treatment option, but it is costly. Many different bonding systems are currently available to repair the fractured ceramometal restorations. This study compared the shear bond strength of composite to a base metal alloy using 4 bonding systems.Materials and Methods: In this experimental in vitro study, fifty discs, casted in a Ni-Cr-Be base metal alloy (Silvercast, Fulldent,were ground with 120, 400 and 600 grit sandpaper and divided equally into 5 groups receiving 5 treatments for veneering. Conventional feldspathic porcelain (Ceramco2, Dentsply Ceramco was applied on control group (PFM or group1 and the remaining metal discs were air- abraded for 15 seconds with 50 mm aluminum oxide at 45 psi and washed for 5 seconds under tap water.Then the specimens were dried by compressed air and the  groups were treated with one of the bonding systems as follows: All-Bond 2 (AB, Ceramic Primer (CP, Metal Primer II (MP and Panavia F2 (PF. An opaque composite (Foundation opaque followed by a hybrid composite (Gradia Direct was placed on the treated metal surface and light cured separately. Specimens were stored in distilled water at 370C and thermocycled prior to shear strength testing. Fractured specimens were evaluated under a stereomicroscope. Statistical analysis was performed with one way ANOVA and Tukey HSD tests. P<0.05 was considered as the level of significance.Results: Mean shear bond strengths of the groups in MPa were as follows: PFM group 38.6±2, All-Bond 2 17.06±2.85, Ceramic Primer 14.72±1.2, Metal Primer II 19.04±2.2 and Panavia F2 21.37±2.1. PFM group exhibited the highest mean shear bond strength and Ceramic Primer showed the lowest. Tukey's HSD test revealed the mean bond strength of the PFM group to be significantly higher than the other groups (P<0.001. The data for the PF group was significantly higher than AB and CP groups (P<0.05 and the shear

  9. Three dimensional finite element analysis of layered fiber-reinforced composite materials

    Science.gov (United States)

    Lee, J. D.

    1980-01-01

    A three-dimensional finite element analysis was performed for a biaxially loaded composite laminate (with a centered hole) consisting of several fiber-reinforced composite layers each with a specified fiber orientation. The detailed stress distribution around the hole was determined. Also, the locations of initial damage zones due to different failure mechanisms were indicated.

  10. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer

    Science.gov (United States)

    Laurent M. Matuana; Shan Jin; Nicole M. Stark

    2011-01-01

    This study examined the effect coextruding a clear HDPE cap layer onto HDPE/wood-flour composites has on the discoloration of coextruded composites exposed to accelerated UV tests. Chroma meter, FTIRATR, XPS, SEM, and UV vis measurements accounted for the analysis of discoloration, functional groups, and degree of oxidation of both uncapped (control) and coextruded...

  11. Investigation of mechanical characteristics of composite surface layers using materials with thermoelastic properties

    Science.gov (United States)

    Rusinov, P. O.; Blednova, Zh. M.; Borovets, O. I.

    2017-12-01

    We developed the formation technology of the steel-layer with elastic phase transformations-ceramic wear-resistant layer composition by means of high-velocity oxygen fuel spraying (HVOF) in the protective medium of mechanically activated powders TiNiCu and cBN-Co-Mo. We also determined optimal processing parameters. We revealed regularities in the formation of the nanoscale state of the composition on the basis of complex X-ray diffraction and electron-microscopic studies. We carried out tests of steel 1045 with surface-modified layers TiNiCu + cBN-Co-Mo on friction wear, which showed an increase in wear resistance.

  12. Physical characteristics and magnetic properties of BaFe12O19/SrTiO3 based composites derived from mechanical alloying

    International Nuclear Information System (INIS)

    Widodo, Rahmat Doni; Manaf, Azwar

    2016-01-01

    A composite system BaFe 12 O 19 /SrTiO 3 with ferrimagnetic BaFe 12 O 19 phase (BHF) and ferroelectric SrTiO 3 phase (STO) have been prepared by mechanical alloying and subsequent heat treatment. The composite powders were studied by Particle Size Analyze, X-ray diffraction and magnetic measurement. It was found that the particle size of composite powders initially increased due to laminated layers formation of a composite and then decreased to an asymptotic value of ∼8 µm as the milling time extended even to a relatively longer time. However, based on results of line broadening analysis the mean grain size of the particles was found in the nanometer scale. We thus believed that mechanical blending and milling of mixture components for the composite materials has promoted heterogeneous nucleation and only after successive sintering at 1100°C the milled powder transformed into particles of nanograin. In this report, microstructure as well as magnetic properties for the composite is also briefly discussed.

  13. Improved Electromagnetic Interference Shielding Properties of MWCNT–PMMA Composites Using Layered Structures

    Directory of Open Access Journals (Sweden)

    Saini P

    2009-01-01

    Full Text Available Abstract Electromagnetic interference (EMI shielding effectiveness (SE of multi-walled carbon nanotubes–polymethyl methacrylate (MWCNT–PMMA composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band was achieved by stacking seven layers of 0.3-mm thick MWCNT–PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT–PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material.

  14. Influence of the AC field intensity and frequency on composition and growth mechanism of Au-Pd alloy nanowires.

    Science.gov (United States)

    Zhang, Gaixiu; Yu, Gang; Chang, Fangfang; Tang, Lili; Hu, Bonian

    2013-10-01

    Au-Pd alloy nanowires with controllable morphology and composition are useful sensing materials for chemical and biological sensors. This report describes the preparation of such Au-Pd alloy nanowires from an aqueous solution by alternating current (AC) varied-frequency method, focusing on determining the dependence of the composition and morphology of the alloy nanowires on the electric field intensity and frequency. An electric field varied from 0.1 V x m(-1) to 0.4 x 10(6)V x m(-1) at 300 Hz frequency was used for the nucleation, followed by variation of the frequency between 1 and 20 MHz for the growth of the nanowires. The results showed that the Pd content in the alloy nanowires increased with the field intensity and frequency. The nanowire morphology with a less branching and better alignment was obtained at the increased frequency. XRD results showed that the phase structure of the alloy nanowires was face-centered cubic lattice. The nanowire compositions were shown controllable by changing the AC field intensity, frequency, as well as the metal ion ratio in the solution. The growth of the nanowires was shown to obey the Maxwell-Wanger (M-W) law.

  15. Rheological Behavior and Microstructure of Ceramic Particulate/Aluminum Alloy Composites. Ph.D. Thesis Final Technical Report

    Science.gov (United States)

    Moon, Hee-Kyung

    1990-01-01

    The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.

  16. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  17. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth ...

    Indian Academy of Sciences (India)

    Micro/nanostructured multilayer coatings of Zn–Co alloy were developed periodically on mild steel from acid chloride bath. Composition modulated multilayer alloy (CMMA) coatings, having gradual change in composition (in each layer) were developed galvanostatically using saw-tooth pulses through single bath ...

  18. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure.

    Science.gov (United States)

    He, Fupo; Ye, Jiandong

    2013-08-01

    In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid) and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair.

  19. Hydrogen storage and electrochemical characteristics of Ti 0.32Cr 0.43 - XV 0.25Fe x (x = 0-0.08) alloys and its composites with LmNi 4.1Al 0.25Mn 0.3Co 0.65 alloy

    DEFF Research Database (Denmark)

    Park, Han Sol; Chourashiya, Muralidhar; Yang, Dong Cheol

    2012-01-01

    °C, attributed to the increased plateau pressure. On the other hand, at low temperatures, the discharge capacity of the Fe-doped composite alloys was higher than that of the un-doped alloy due to the catalytic effect of Fe. In addition, with increasing discharge rate, the Fe-doped composite alloys...... decreased and the plateau pressure increased due to the decreased lattice volume. In addition, the plateau pressure of the bcc alloys decreased with decrease in its temperature. The discharge capacity of the composite alloys of bcc and AB 5 alloy decreased with increasing Fe content in the bcc alloy at 25...

  20. Time-resolved ultraviolet photoluminescence of ZnO/ZnGa2O4 composite layer

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2014-02-01

    Full Text Available The ultraviolet photoluminescence of ZnO/ZnGa2O4 composite layer grown by the thermal oxidation of ZnS with gallium was investigated by the time-resolved photoluminescence as a function of measuring temperature and excitation power. With increase of excitation power, the D0X emission is easily saturated than the DAP emission from ZnO/ZnGa2O4 composite layer, and which is dramatically enhanced as compared with that from pure ZnO layer grown without gallium. The radiative recombination process with ultra-long lifetime controlled the carrier recombination of ZnO/ZnGa2O4 composite layer.

  1. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    Science.gov (United States)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  2. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  3. INFLUENCE OF PHOSPHATIZED SURFACE LAYER ON CORROSION RESISTANCE OF Mg-Al-RE ALLOY

    Directory of Open Access Journals (Sweden)

    Katarína Miková

    2015-09-01

    Full Text Available This contribution deals with evaluation of the corrosion resistance of extruded Mg-2Al-1RE (AE21 magnesium alloy in the state before and after treatment of ground surface by selected phosphatizing procedure. Specimens were exposed to 0.1M NaCl solution for several time periods starting from 5 minutes up-to 168 hours at room temperature of 22 ± 1 °C. Afterwards electrochemical impedance spectroscopy was carried out on the exposed specimens. Based on the results obtained from the electrochemical tests and visual observation of corrosion attack progress, positive or negative impact of selected phosphating process on the corrosion resistance of Mg-2Al-1RE magnesium alloy under given conditions was assessed.

  4. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines...... the prominent role of surface cathodic intermetallic particles in pit initiation and coating break down in enhanced corrosion conditions and suggest that, beside the EB barrier properties, the enhanced corrosion resistance observed on the EB coated samples could partly arise from two other mains factors......: • a weak redox activity of the polymer which passivate the metal, • a proton involving self-healing process taking place at the polymer–metal interface, which contributes to delay local acidiWcation in Wrst steps of corrosion on EB coated aluminium surfaces....

  5. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cecchetto, L. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France); Ambat, R. [School of Engineering Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Davenport, A.J. [School of Engineering Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Delabouglise, D. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France)]. E-mail: Didier.Delabouglise@lepmi.inpg.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France); Neel, O. [Centre de Recherche de Voreppe, Pechiney, Parc economique Centr' Alp, 38340 Voreppe (France)

    2007-02-15

    AA5182 aluminium alloy cold rolled samples were coated by thin films of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very effective for corrosion protection of aluminium alloys in neutral environment. This study underlines the prominent role of surface cathodic intermetallic particles in pit initiation and coating break down in enhanced corrosion conditions and suggest that, beside the EB barrier properties, the enhanced corrosion resistance observed on the EB coated samples could partly arise from two other mains factors:- a weak redox activity of the polymer which passivate the metal, - a proton involving self-healing process taking place at the polymer-metal interface, which contributes to delay local acidification in first steps of corrosion on EB coated aluminium surfaces.

  6. Preliminary Tests of Cellular SiC/Iron Alloy Composite Produced by a Pressureless Infiltration Technique

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2017-03-01

    Full Text Available Preliminary tests aimed at obtaining a cellular SiC/iron alloy composite with a spatial structure of mutually intersecting skeletons, using a porous ceramic preform have been conducted. The possibility of obtaining such a composite joint using a SiC material with an oxynitride bonding and grey cast iron with flake graphite has been confirmed. Porous ceramic preforms were made by pouring the gelling ceramic suspension over a foamed polymer base which was next fired. The obtained samples of materials were subjected to macroscopic and microscopic observations as well as investigations into the chemical composition in microareas. It was found that the minimum width of a channel in the preform, which in the case of pressureless infiltration enables molten cast iron penetration, ranges from 0.10 to 0.17 mm. It was also found that the ceramic material applied was characterized by good metal wettability. The ceramics/metal contact area always has a transition zone (when the channel width is big enough, where mixing of the components of both composite elements takes place.

  7. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2008-01-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  8. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  9. Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash particulate composites

    Directory of Open Access Journals (Sweden)

    V.S. Aigbodion

    2014-07-01

    Full Text Available Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash(BAp particulate composites was investigated. The composites were produced by a double stir-casting method by varying bagasse ash from 2 to 10 wt.%. After casting the samples were solution heat-treated at a temperature of 500 °C in an electrically heated furnace, soaked for 3 h at this temperature and then rapidly quenched in water and thermal aged at temperatures of 100, 200 and 300 °C. The ageing characteristics of these grades of composites were evaluated using scanning electron microscopy (SEM, hardness and tensile test samples obtained from solution heat-treated composites samples subjected to the temperature conditions mentioned above. The results show that the uniform distribution of the bagasse ash particles in the microstructure of both the as-cast and age-hardened Al–Cu–Mg/BAp composites is the major factor responsible for the improvement in mechanical properties. The presence of the bagasse ash particles in the matrix alloy results in a much smaller grain size in the cast composites compared to the matrix alloy. The addition of bagasse ash particles to Al–Cu–Mg (A2009 does not alter the thermal ageing sequence, but it alters certain aspects of the precipitation reaction. Although thermal ageing is accelerated in the composites the presence of bagasse ash particles in A2009 reduces the peak temperatures.

  10. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  11. Effect of milling time and CNT concentration on hardness of CNT/Al{sub 2024} composites produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bustamante, R. [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No.120, C.P. 31109, Chihuahua, Chih. (Mexico); Perez-Bustamante, F. [Universidad Autonoma de Chihuahua (UACH), Facultad de Ingenieria, Circuito No. 1 Nuevo Campus Universitario, C.P. 31125, Chihuahua, Chih. (Mexico); Estrada-Guel, I. [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No.120, C.P. 31109, Chihuahua, Chih. (Mexico); Licea-Jimenez, L. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Unidad Mty, Autopista Monterrey-Aeropuerto Km 10, A. P. 43, C.P. 66600, Apodaca, N.L. (Mexico); Miki-Yoshida, M. [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No.120, C.P. 31109, Chihuahua, Chih. (Mexico); Martinez-Sanchez, R., E-mail: roberto.martiez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No.120, C.P. 31109, Chihuahua, Chih. (Mexico)

    2013-01-15

    Carbon nanotube/2024 aluminum alloy (CNT/Al{sub 2024}) composites were fabricated with a combination of mechanical alloying (MA) and powder metallurgy routes. Composites were microstructurally and mechanically evaluated at sintering condition. A homogeneous dispersion of CNTs in the Al matrix was observed by a field emission scanning electron microscopy. High-resolution transmission electron microscopy confirmed not only the presence of well dispersed CNTs but also needle-like shape aluminum carbide (Al{sub 4}C{sub 3}) crystals in the Al matrix. The formation of Al{sub 4}C{sub 3} was suggested as the interaction between the outer shells of CNTs and the Al matrix during MA process in which crystallization took place after the sintering process. The mechanical behavior of composites was evaluated by Vickers microhardness measurements indicating a significant improvement in hardness as function of the CNT content. This improvement was associated to a homogeneous dispersion of CNTs and the presence of Al{sub 4}C{sub 3} in the aluminum alloy matrix. - Highlights: Black-Right-Pointing-Pointer The 2024 aluminum alloy was reinforced by CNTs by mechanical alloying process. Black-Right-Pointing-Pointer Composites were microstructural and mechanically evaluated after sintering condition. Black-Right-Pointing-Pointer The greater the CNT concentration, the greater the hardness of the composites. Black-Right-Pointing-Pointer Higher hardness in composites is achieved at 20 h of milling. Black-Right-Pointing-Pointer The formation of Al{sub 4}C{sub 3} does not present a direct relationship with the milling time.

  12. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  13. Modeling the stress-strain state of the V95/SiC aluminum alloy matrix composite under uniaxial loading

    Science.gov (United States)

    Smirnov, S. V.; Konovalov, A. V.; Myasnikova, M. V.; Khalevitsky, Yu. V.; Smirnov, A. S.; Igumnov, A. S.

    2017-12-01

    In the paper we develop a computational model of plastic deformation of an aluminum matrix composite. The composite is produced by sintering, and it has a cellular microstructure. SiC reinforcement particles form a stratum along the pellet boundaries of the V95 (analogous to 7075) aluminum alloy. The effective properties of the plastic flow of the stratum material are obtained by the rule of mixtures, depending on the volume fractions of the aluminum alloy and the reinforcement particles in the composite material. The feasibility of the model is demonstrated on the example of numerical simulation of the micro- and macroscopic stress-strain state of the composite under uniaxial tensile and compressive loading conditions.

  14. Electronic configuration of the c(2 x 2)MnCu two-dimensional alloy in layered structures supported on Cu(100)

    International Nuclear Information System (INIS)

    Gallego, S; Munoz, M C; Huttel, Y; Avila, J; Asensio, M C

    2003-01-01

    The c(2 x 2)MnCu surface alloy on Cu(100) can be considered as a purely two-dimensional magnetic system where the Mn atoms exhibit a large corrugation closely related to their high spin moment. In this paper we investigate the influence of the atomic environment on the electronic and magnetic properties of the two-dimensional alloyed layer, extending our study to the less known multilayered system made of MnCu two-dimensional alloy layers embedded in a Cu crystal. The analysis is based on angle-resolved photoelectron spectroscopy measurements and calculations using the Green function matching method, which allows us to treat exactly the projection of the three-dimensional lattice on the c(2 x 2) plane. A complete study of the valence band is performed along the two-dimensional Brillouin zone in a wide energy range. We show that the presence of Mn results in an important redistribution of the spin-polarized electronic states of the neighbouring Cu atoms. This redistribution is not accompanied by a net charge transfer between different atoms, and also the spin moment of Cu remains small. Most of the new features induced by Mn in the surface alloy are also present in the multilayered system, evidencing that they are specific to the two-dimensional alloyed layer and not surface effects

  15. A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy

    Science.gov (United States)

    Liu, Xiangmei; Yang, Qiuyue; Li, Zhaoyang; Yuan, Wei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W. K.; Wu, Shuilin

    2018-03-01

    Rapid corrosion restricts the wide application of Mg and Mg-based alloys. In this work, a combined surface strategy was employed to modify the surface of AZ31 Mg Alloy. An atomic layer deposition (ALD) technique was utilized to prepare ZrO2 nanofilm on Mg substrate. During this course, the film thickness could be precisely controlled by adjusting the ALD cycles with a deposition rate of 0.117 nm/cycle. The subsequent PLGA grafting on ZrO2 nanofilm was carried out by a spin-coating process to further enhance the corrosion resistance. The nanoscratch tests showed that this hybrid coating had good bonding strength with substrate and similar Young's modulus to natural bone. In vitro corrosion tests demonstrated that a thicker ZrO2 nanofilm on the surface could reduce the corrosion rate of Mg substrate when compared to a thinner coating. When increasing ZrO2 deposition cycles from 25 to 100, the corrosion resistance could be significantly increased by two or three orders of magnitude. Hydrogen evolution tests revealed the synergetic effects of both galvanic corrosion and local acidic action could accelerate the corrosion of the AZ31 modified with the PLGA/ZrO2 coating once the ZrO2 nanofilm was damaged. Therefore, by changing the ALD cycles, the corrosion resistance of both ZrO2 thin film and ZrO2/PLGA hybrid coatings can be adjusted. This work provides an effective combined surface strategy that can be employed to adjust the corrosion resistance of Mg-based alloys for biomedical applications.

  16. Effect of the space charge layer on pre-transition corrosion rate of Zr alloys

    International Nuclear Information System (INIS)

    Nanikawa, S.; Etoh, Y.

    1998-01-01

    The pre- and post-transition oxide films formed in steam at 673 K were investigated by an AC impedance method. The results showed that the space charge layer was present in the pre-transition oxide film and it was absent in the post-transition oxide film. The oxidation kinetics was simulated by oxygen diffusion in the space charge layer. Cubic or one-fourth power law was explained by the effect of the space charge layer. Supposing that the space charge layer formed the potential difference through the oxide film by 0.7 V, calculated oxidation kinetics agreed with the experimental one before transition. This potential difference corresponded to the measured value by AC impedance method within the experimental error. Shadow effect could be explained by this simulation supposing the disappearance of the space charge layer due to the formation of a negative electric field by β-rays. (author)

  17. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  18. AN INVESTIGATION OF THE IMPACT OF ALLOY COMPOSITION AND PH ON THE CORROSION OF BRASS IN DRINKING WATER

    Science.gov (United States)

    A better understanding of brass corrosion may provide information and guidance on the use of the safest materials for the production of plumbing fixtures, and optimization of corrosion control treatments. The effect of alloy composition and pH on the metal leached from six differ...

  19. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    NARCIS (Netherlands)

    van Schooneveld, Matti M.; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; van Rijssel, Jos; Meijerink, Andries; Erne, Ben H.; de Groot, Frank M. F.

    A general organometallic route has been developed to synthesize CoxNi1-x and CoxFe1-x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co2(CO)8), here the cobalt–cobalt bond

  20. Dual-bath Plating of Composition Modulated Alloys (CMA) based on a newly developed Computer Controlled Plating System

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Leisner, Peter; Møller, Per

    1994-01-01

    Composition Modulated Alloys (CMA) are attracting ever increasing interests, as new and fascinating appli-cations are reported. Until recently, producing these multilayered coatings have been difficult, particularly for larger samples. This presentation will explain the design, use and purpose of...

  1. Morphology and Hardness Improvement of Lead Bearing Alloy through Composite Production: 75Pb-15Sb-10Sn/ 15% V/V SiO2 Particulate Composite

    Directory of Open Access Journals (Sweden)

    Linus Okon ASUQUO

    2013-06-01

    Full Text Available The morphology and hardness improvement of lead bearing alloy through composite production: 75Pb-15Sb-10Sn/ 15%v/v SiO2 particulate composite, was studied. 75Pb-15Sb-10Sn white bearing alloy produced at the foundry shop of National Metallurgical Development Centre Jos was used for the production of the composite using stir-cast method. The reinforcing agent was 63 microns passing particles of silica. This was produced from pulverizing quartz using laboratory ball mill. The specimens of the composite produced were then subjected to metallographic to study the morphology of the structures produced both in the as cast and aged conditions of the composite. The samples were also tested for hardness and the result showed that the as cast composite had a hardness value of 33 HRB which is an improvement over the hardness value of 27.7 HRB for the 75Pb-15Sb-10Sn alloy which was used for the production of the composite. The effect of age hardening on the produced composite was also investigated; the result showed that the maximum hardness of 34 HRB was obtained after ageing for 3 hours. The micrographs revealed inter-metallic compound SbSn, eutectic of two solid solutions-one tin-rich and the other lead-rich, reinforcing particles, and solid solution of β. The results revealed that particle hardening can be used to improve the hardness of 75Pb-15Sb-10Sn white bearing alloy for use as heavy duty bearing material.

  2. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  3. Role of compositional fluctuations and their suppression on the strain and luminescence of InGaN alloys

    International Nuclear Information System (INIS)

    Pantzas, Konstantinos; Patriarche, Gilles; Troadec, David; Kociak, Mathieu; Cherkashin, Nikolay; Hÿtch, Martin; Barjon, Julien; Tanguy, Christian; Rivera, Thomas; Suresh, Sundaram; Ougazzaden, Abdallah

    2015-01-01

    Advanced electron microscopy techniques are combined for the first time to measure the composition, strain, and optical luminescence, of InGaN/GaN multi-layered structures down to the nanometer scale. Compositional fluctuations observed in InGaN epilayers are suppressed in these multi-layered structures up to a thickness of 100 nm and for an indium composition of 16%. The multi-layered structures remain pseudomorphically accommodated on the GaN substrate and exhibit single-peak, homogeneous luminescence so long as the composition is homogeneous

  4. Role of compositional fluctuations and their suppression on the strain and luminescence of InGaN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pantzas, Konstantinos, E-mail: konstantinos.pantzas@gatech.edu [Georgia Institute of Technology, GT-Lorraine, 2 Rue Marconi, 57070 Metz (France); UMI 2958, Georgia Tech-CNRS, 2 Rue Marconi, 57070 Metz (France); CNRS-LPN, Route de Nozay, F-91460 Marcoussis (France); Patriarche, Gilles [CNRS-LPN, Route de Nozay, F-91460 Marcoussis (France); Troadec, David [CNRS, Institut d' Électronique, de Microélectronique and de Nanotechnologie, UMR 8520, F-59652 Villeneuve D' Ascq (France); Kociak, Mathieu [Laboratoire de Physique des Solides, Bâtiment 510, CNRS UMR 8502, Université Paris-Sud XI, F-91405 Orsay (France); Cherkashin, Nikolay; Hÿtch, Martin [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse (France); Barjon, Julien [Groupe d' Étude de la Matière Condensée, Université de Versailles Saint-Quentin–CNRS, 45 Avenue des États-Unis, Versailles 78035 (France); Tanguy, Christian; Rivera, Thomas [Orange Labs, 40 rue du Général Leclerc, 92794 Issy-les-Moulineaux Cedex 9 (France); Suresh, Sundaram [UMI 2958, Georgia Tech-CNRS, 2 Rue Marconi, 57070 Metz (France); Ougazzaden, Abdallah [Georgia Institute of Technology, GT-Lorraine, 2 Rue Marconi, 57070 Metz (France); UMI 2958, Georgia Tech-CNRS, 2 Rue Marconi, 57070 Metz (France)

    2015-02-07

    Advanced electron microscopy techniques are combined for the first time to measure the composition, strain, and optical luminescence, of InGaN/GaN multi-layered structures down to the nanometer scale. Compositional fluctuations observed in InGaN epilayers are suppressed in these multi-layered structures up to a thickness of 100 nm and for an indium composition of 16%. The multi-layered structures remain pseudomorphically accommodated on the GaN substrate and exhibit single-peak, homogeneous luminescence so long as the composition is homogeneous.

  5. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.

    Science.gov (United States)

    Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang

    2014-03-01

    An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (μ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.

  6. Optical analysis of ZnS:SiO{sub 2} used as a Capping layer for phase change alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grothe, Stephanie; Jost, Peter; Woda, Michael; Karvonen, Jenni; Wuttig, Matthias [RWTH Aachen University, I. Physikalisches Institut (IA), Aachen (Germany)

    2010-07-01

    Phase change materials which can be switched rapidly between the amorphous and the crystalline phase are a promising candidate for new memory devices. These materials can be identified by a strong contrast in the optical dielectric constant between both phases which is due to resonant bonding. As the optical dielectric constant can be evaluated from the dielectric function it is of great importance to measure the dielectric function with high accuracy. However, an exact investigation of the dielectric constant is impeded by ageing effects which occur in the alloys after sputtering. First, we explored the dielectric function of Ge{sub 1}Sb{sub 2}Te{sub 4} by infrared spectroscopy and spectroscopic ellipsometry and analysed the effect of ageing on the optical spectra. Then, we investigate how these ageing effects can be prevented by the use of a suitable capping layer. We found out that a thin layer of ZnS:SiO{sub 2} sputtered on top of the phase change material prevents ageing to a large extend. Additionally, after taking the ZnS:SiO{sub 2} surface layer into account we can still investigate the optical properties of phase change materials which are capped by ZnS:SiO{sub 2}.

  7. Influence of stress developed due to oxide layer formation on the oxidation kinetics of Zr-2.5%Nb alloy

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Szpunar, J.A.

    1999-01-01

    Knowledge of oxidation kinetics of Zr alloys is extremely important because it helps to evaluate the lifetime of pressure tubes, which constitute an integral part of the heat transfer system of many nuclear power stations. The presented diffusion model describes oxidation kinetics of zirconium alloy (Zr-2.5%Nb) under stress at the oxide/metal interface. A major assumption of this model is that the gas/oxide interface moves inwards into the oxide scale by creating a continuous network of internal defects (cracks, voids, etc.). A linear relation coupling the equations describing the evolution in the movement of the gas/oxide and oxide/metal interfaces was used as a first approach. After a certain period of time, the diffusion process obeys a pseudo-steady-state solution. A distance between gas/oxide and oxide/metal represents a thickness of the non-porous layer that remains constant during the pseudo-steady-state growth. An explanation of a possible transition between the parabolic and the cubic character of the oxidation kinetics is presented. (orig.)

  8. Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Mannarino, Matthew M; Liu, David S; Hammond, Paula T; Rutledge, Gregory C

    2013-08-28

    Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity. The bare mats were annealed to improve their mechanical properties, which improvements are shown to be retained in the composite membranes. Spray LbL assembly was used as a means for the rapid formation of proton-conducting films that fill the void space throughout the porous electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were fabricated, and viable composite membranes with methanol permeabilities 20 times lower than Nafion and through-plane proton selectivity five and a half times greater than Nafion are demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange membranes fabricated here were tested in an operational direct methanol fuel cell. The results show the potential for higher open circuit voltages (OCV) and comparable cell resistances when compared to fuel cells based on Nafion.

  9. In situ voltammetric de-alloying of fuel cell catalyst electrode layer: A combined scanning electron microscope/electron probe micro-analysis study

    Science.gov (United States)

    Srivastava, Ratndeep; Mani, Prasanna; Strasser, Peter

    In situ voltammetric de-alloying, i.e. partial selective dissolution of less noble alloy components, is a recently proposed, effective strategy to prepare active electrocatalysts for the oxygen reduction reaction (ORR) [S. Koh, P. Strasser, J. Am. Chem. Soc. 129 (2007) 12624-12625; R. Srivastava, P. Mani, N. Hahn, P. Strasser, Angew. Chem. Int. Ed. 46 (2007) 8988-8991]. However, in situ de-alloying of bimetallics inside electrode layers of membrane-electrode-assemblies (MEAs) seems to defy the requirement of keeping the membrane free of cationic contaminants; yet, when followed by ion exchange, de-alloyed cathodes result in previously unachieved single cell activities of polymer electrolyte membrane fuel cell cathode layers of up to 0.4 A mg Pt -1 at 900 mV cell voltage. The effects of voltammetric Cu de-alloying on the MEA have never been studied before. In the present study, we therefore address this issue and report detailed scanning electron microscope (SEM) imaging of the morphology and electron probe micro-analysis (EPMA) mapping of a MEA at various stages of the de-alloying and ion-exchange process. We investigate the significant loss of Cu from the cathode particle catalyst after de-alloying, demonstrate how the membrane can be cleaned from Cu-ion contamination using ion exchange with protons from liquid inorganic acids, and show that Cu ion exchange does ultimately not affect the activated catalyst particles inside the cathode layer. We correlate the microscopic study of the MEA with its cyclic voltammetric response curves as well as the single cell polarization data.

  10. Enhanced photomechanical response of a Ni-Ti shape memory alloy coated with polymer-based photothermal composites

    Science.gov (United States)

    Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.

    2017-10-01

    A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.

  11. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Littrell, Kenneth C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scattering (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation

  12. Effect of the thickness of flowable composite as intermediate layer to reduce microleakage on gingival wall

    Science.gov (United States)

    Natasha, V.; Suprastiwi, E.

    2017-08-01

    Microleakage of composite restoration in proximal composite restoration often occurs on the gingival wall. The purpose of this study is to evaluate the influence of flowable composite as an intermediate layer to reduce microleakage on the gingival wall. Thirty whole,extracted, upper premolars were divided into three groups. Within box-like cavities, the first group was restored with packable composite only. Group 2 was restored with flowable composite of a1mm thickness and then was restored with incrementally packable composite. Group 3 was restored similarly to group 2, however with a flowable composite thickness of 2mm. After thermocycling, the penetration of 1% methylene blue was investigated along the gingival wall. There were significant differences between group 1 and groups 2 and 3. No significant differences were found between groups 2 and 3. Flowable composite, as an intermediate layer, reduces microleakage of the gingival wall of proximal composite restorations. Nonetheless, the thickness of the flowable composite has no influence on the amount of microleakage observed.

  13. The Effect Of Two-Stage Age Hardening Treatment Combined With Shot Peening On Stress Distribution In The Surface Layer Of 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Kaczmarek Ł.

    2015-09-01

    Full Text Available The article present the results of the study on the improvement of mechanical properties of the surface layer of 7075 aluminum alloy via two-stage aging combined with shot peening. The experiments proved that thermo-mechanical treatment may significantly improve hardness and stress distribution in the surface layer. Compressive stresses of 226 MPa±5.5 MPa and hardness of 210±2 HV were obtained for selected samples.

  14. Performance analysis of STT-RAM with cross shaped free layer using Heusler alloys

    Science.gov (United States)

    Bharat Kumary, Tangudu; Ghosh, Bahniman; Awadhiya, Bhaskar; Verma, Ankit Kumar

    2016-01-01

    We have investigated the performance of a spin transfer torque random access memory (STT-RAM) cell with a cross shaped Heusler compound based free layer using micromagnetic simulations. We have designed a free layer using a Cobalt based Heusler compound. Simulation results clearly show that the switching time from one state to the other state has been reduced, also it has been found that the critical switching current density (to switch the magnetization of the free layer of the STT RAM cell) is reduced.

  15. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites

    International Nuclear Information System (INIS)

    Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S.

    2015-01-01

    Highlights: • The mechanical properties of woven kenaf/Kevlar hybrid composites were analysed. • The layering sequences affect the mechanical properties of hybrid composites. • Treated kenaf improves the mechanical properties of hybrid composites. - Abstract: This work aims to evaluate the effect of layering sequence and chemical treatment on mechanical properties of woven kenaf–Kevlar composites. Woven kenaf–aramid hybrid laminated composites fabricated through hand lay-up techniques by arranging woven kenaf and Kevlar fabrics in different layering sequences and by using treated kenaf mat. To evaluate the effect of chemical treatment on hybrid composites, the woven kenaf mat was treated with 6% sodium hydroxide (NaOH) diluted solution and compared mechanical properties with untreated kenaf hybrid composites. Results shows that the tensile properties of hybrid composites improved in 3-layer composites compared to 4-layer composites. Hybrid composite with Kevlar as outer layers display a better mechanical properties as compared to other hybrid composites. Tensile and flexural properties of treated hybrid composites are better than non-treated hybrid composites. The fractured surface of hybrid composites was investigated by scanning electron microscopy. This study is a part of exploration of potential application of the hybrid composite in high velocity impact application

  16. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  17. Cube Texture Formation of Cu-33at.%Ni Alloy Substrates and CeO2 Buffer Layer for YBCO Coated Conductors

    DEFF Research Database (Denmark)

    Tian, Hui; Li, Suo Hong; Ru, Liang Ya

    2014-01-01

    .%Ni alloy substrate with the cube texture fraction of 99.8 % (omega-scan in this substrate were 7.31° and 5.51°, respectively. Furthermore, the cube texture fraction...... of epitaxially grown CeO2 buffer layer was 95 % (omega-scan being 6.98° and 5.92°, respectively....

  18. Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenguo; Xia, Guanguang; Maupin, Gary D.; Stevenson, Jeffry W.

    2006-12-20

    Conductive oxide coatings are used as protection layers on metallic interconnects in SOFCs to improve their surface stability and electrical performance, as well as to mitigate or prevent chromium poisoning to cells. This paper discusses materials requirements for this particular application and summarizes our systematic study on varied conductive oxides as potential candidate materials for protection layers on stainless steel substrates. Overall, it appeared that chromites such as (La,Sr)CrO3 improved surface stability, but might not be good candidates for the protection layer applications due to chromium vaporization, albeit at a lower rate than Cr2O3, from these oxides at high temperatures in air or moist air. The application of non-chromite perovskite (La,Sr)FeO3 protection layers resulted in improved oxidation resistance and electrical performance. It is doubtful, however, that LSF can be an effective barrier to prevent chromium release during long term SOFC stack operation due to chromium diffusion through the LSF coatings. With a high oxygen ion conductivity, the coatings of Sn-doped In2O3 failed to provide protection to the metal substrate and are thus not suitable for the protection layer applications. The best performance was achieved using thermally-grown (Mn,Co)3O4 spinel protection layers that substantially improved the surface stability of the metal substrates, and prevented chromium outward migration.

  19. Stress Analysis of a Three-Layer Metal Composite System of Bearing Assemblies During Grinding

    Science.gov (United States)

    Pashnyov, V. A.; Pimenov, D. Yu.

    2015-03-01

    A mathematical model of the stress state of a three-layer metal composite system caused by cutting forces during grinding the working layer of the system is elaborated. The implementation of the model by using the finite-element method made it possible to assess the effect of structure of the system, the deformation properties of layer materials, and grinding conditions on the distribution and level of normal and tangential stresses in layers, which determine the load-carrying capacity of the system. The results of an analysis of stress fields can serve as a basis for determining the grinding conditions ensuring retention of the load-carrying capacity of the metal composite system.

  20. Effect of the electrode position conditions on the morphology and corrosion behavior of Ni-Co alloys part 2: Phase composition and corrosion behavior of Ni-Co alloys, electrodeposited from citrate electrolyte

    International Nuclear Information System (INIS)

    Ignatova, Katya; Avdeev, Georgi

    2016-01-01

    The changes in the phase composition (through X-Ray analysis) and the corrosion behaviors (through potentiodynamic polarization studies in 4 % NaCl) of Ni-Co alloys, electrodeposited from a citrate electrolyte by changing the Ni/Co ratio, content of organic additive (saccharine) and the content of sodium citrate in the solution, are studied. It is found that the increase of Ni/Co ratio from 1 to 5 increases the content of Ni in the Ni-Co alloy to 48 mass %. The proportion between the phases of Co and Ni with cubic face-centered crystal lattice is in approximate compliance with the proportion of the two metals in the alloy. The peaks in the difractograms are weak and stretched, which corresponds to the nano-sized structure of the alloy. The Ni-Co alloys with highest content of Ni have a higher corrosion resistance compared to those containing a higher percentage of Co. It is also shown that the Ni-Co coatings obtained in the presence of addition of saccharine show a much higher corrosion resistance than the coatings obtained in absence of additive. Ni-Co alloys, deposited from electrolyte with more sodium citrate show only a slight growth of Ni content and the effect of sodium citrate on corrosion behaviors of the alloy is insignificant. Keywords: phase composition, corrosion behavior, Ni-Co alloys, nanostructured alloys.

  1. Formation of Porous Apatite Layer during In Vitro Study of Hydroxyapatite-AW Based Glass Composites

    Directory of Open Access Journals (Sweden)

    Pat Sooksaen

    2015-01-01

    Full Text Available This research discussed the fabrication, characterization, and in vitro study of composites based on the mixture of hydroxyapatite powder and apatite-wollastonite (AW based glass. AW based glass was prepared from the SiO2-CaO-MgO-P2O5-CaF2 glass system. This study focuses on the effect of composition and sintering temperature that influences the properties of these composites. Microstructural study revealed the formation of apatite layer on the composite surfaces when immersed in simulated body fluid (SBF solution at 37°C. Composites containing ≥50 wt% AW based glass showed good bioactivity after 7 days of immersion in the SBF. A porous calcium phosphate (potentially hydroxycarbonate apatite, HCA layer formed at the SBF-composite interface and the layer became denser at longer soaking period, for periods ranging from 7 to 28 days. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES analysis showed that early stage of soaking occurred with the release of Ca and Si ions from the composites and the decrease of P ions with slow exchange rate.

  2. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  3. Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2012-01-01

    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings as a ...

  4. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  5. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  6. Effect of substrate composition on atomic layer deposition using self-assembled monolayers as blocking layers

    International Nuclear Information System (INIS)

    Zhang, Wenyu; Engstrom, James R.

    2016-01-01

    The authors have examined the effect of two molecules that form self-assembled monolayers (SAMs) on the subsequent growth of TaN x by atomic layer deposition (ALD) on two substrate surfaces, SiO 2 and Cu. The SAMs that the authors have investigated include two vapor phase deposited, fluorinated alkyl silanes: Cl 3 Si(CH 2 ) 2 (CF 2 ) 5 CF 3 (FOTS) and (C 2 H 5 O) 3 Si(CH 2 ) 2 (CF 2 ) 7 CF 3 (HDFTEOS). Both the SAMs themselves and the TaN x thin films, grown using Ta[N(CH 3 ) 2 ] 5 and NH 3 , were analyzed ex situ using contact angle, spectroscopic ellipsometry, x-ray photoelectron spectroscopy (XPS), and low energy ion-scattering spectroscopy (LEISS). First, the authors find that both SAMs on SiO 2 are nominally stable at T s  ∼ 300 °C, the substrate temperature used for ALD, while on Cu, the authors find that HDFTEOS thermally desorbs, while FOTS is retained on the surface. The latter result reflects the difference in the head groups of these two molecules. The authors find that both SAMs strongly attenuate the ALD growth of TaN x on SiO 2 , by about a factor of 10, while on Cu, the SAMs have no effect on ALD growth. Results from LEISS and XPS are decisive in determining the nature of the mechanism of growth of TaN x on all surfaces. Growth on SiO 2 is 2D and approximately layer-by-layer, while on the surfaces terminated by the SAMs, it nucleates at defect sites, is islanded, and is 3D. In the latter case, our results support growth of the TaN x thin film over the SAM, with a considerable delay in formation of a continuous thin film. Growth on Cu, with or without the SAMs, is also 3D and islanded, and there is also a delay in the formation of a continuous thin film as compared to growth on SiO 2 . These results highlight the power of coupling measurements from both LEISS and XPS in examinations of ultrathin films formed by ALD

  7. Characterization and diffusion model for the titanium boride layers formed on the Ti6Al4V alloy by plasma paste boriding

    Energy Technology Data Exchange (ETDEWEB)

    Keddam, Mourad, E-mail: keddam@yahoo.fr [Laboratoire de Technologie des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, USTHB, B.P. No. 32, 16111 El-Alia, Bab-Ezzouar, Algiers (Algeria); Taktak, Sukru [Metallurgical and Materials Engineering, Faculty of Technology, Afyon Kocatepe University, ANS Campus, 03200, Afyonkarahisar (Turkey)

    2017-03-31

    Highlights: • Titanium boride layers were produced by plasma paste boriding on Ti6Al4V at 973–1073 K. • Formation rates of the Ti boride layers have parabolic character at all temperatures. • Boron diffusivities were estimated using a diffusion model including incubation times. • Activation energies of boron in TiB{sub 2} and TiB were 136 and 63 kJ/mol respectively. - Abstract: The present study is focused on the estimation of activation energy of boron in the plasma paste borided Ti6Al4V alloy, which is extensively used in technological applications, using an analytical diffusion model. Titanium boride layers were successfully produced by plasma paste boriding method on the Ti6Al4V alloy in the temperature range of 973–1073 K for a treatment time ranging from 3 to 7 h. The presence of both TiB{sub 2} top-layer and TiB whiskers sub-layer was confirmed by the XRD analysis and SEM observations. The surface hardness of the borided alloy was evaluated using Micro-Knoop indenter. The formation rates of the TiB{sub 2} and TiB layers were found to have a parabolic character at all applied process temperatures. A diffusion model was suggested to estimate the boron diffusivities in TiB{sub 2} and TiB layers under certain assumptions, by considering the effect of boride incubation times. Basing on own experimental data on boriding kinetics, the activation energies of boron in TiB{sub 2} and TiB phases were estimated as 136.24 ± 0.5 and 63.76 ± 0.5 kJ mol{sup −1}, respectively. Finally, the obtained values of boron activation energies for Ti6Al4V alloy were compared with the data available in the literature.

  8. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures

    Science.gov (United States)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2009-01-01

    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  9. Positron annihilation characterization of Fe-Y2O3 composite powder after mechanical alloying and heat treatment.

    Science.gov (United States)

    Lee, Jae Hoon

    2012-02-01

    Fe-1 wt% Y2O3 composite powders were mechanically alloyed for 12 hr and then heat-treated at 1050 degrees C for 1 hr. Positron annihilation lifetime and coincidence Doppler broadening measurements are in qualitative agreement with X-ray diffraction studies, indicating that in the as-mixed Fe-1Y2O3 composite, up to approximately equal to 70% of the annihilations occur at vacancy clusters; a small fraction annihilates in its matrix. In the case of mechanically alloyed composite, up to approximately equal to 60% of the positrons annihilate at vacancy clusters. Some annihilations also occur in dislocations. In the heat-treated Fe-1Y2O3, positrons primarily annihilate at yttria precipitates, while a small fraction annihilates in the matrix.

  10. Properties of AlSi9Mg Alloy Matrix Composite Reinforced with Short Carbon Fibre after Remelting

    Directory of Open Access Journals (Sweden)

    Łągiewka M.

    2015-09-01

    Full Text Available The presented work describes the results of examination of the mechanical properties of castings made either of AlSi9Mg alloy matrix composite reinforced with short carbon fibre or of the pure AlSi9Mg alloy. The tensile strength, the yield strength, Young’s modulus, and the unit elongation were examined both for initial castings and for castings made of the remelted composite or AlSi9Mg alloy. After preparing metallographic specimens, the structure of the remelted materials was assessed. A few non-metallic inclusions were observed in the structure of the remelted composite, not occurring in the initial castings. Mechanical testing revealed that all the examined properties of the initial composite material exceed those of the non-reinforced matrix. A decrease in mechanical properties was stated both for the metal matrix and for the composite after the remelting process, but this decrease was so slight that it either does not preclude them from further use or does not restrict the range of their application.

  11. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  12. The evaluation of color and color difference according to the layering placement of Incisal shade composites on the body composites of the indirect resin restoration

    Directory of Open Access Journals (Sweden)

    Su-Jung Park

    2011-01-01

    Full Text Available Objectives The aim of this study was to evaluate the surface color of indirect resin restoration according to the layering placement of different shade of incisal composite. Materials and Methods In this study, CIE L*a*b* value of 16 Body composite of Tescera ATL (Bisco, Schaumburg IL,USA was measured by spectrophotometer (NF999, Nippon Denshuku, Japan, and compared to CIE L*a*b* value of Vitapan shade guide. Nine shade Incisal composite of Tescera ATL were build-up to 1 mm thickness on Body composites inlay block, and CIE L*a*b* value was measured. Incisal composite was ground to 0.5 mm thickness and CIE L*a*b* value was re-measured. Color difference between Body composite and Incisal composites layered on Body composite was calculated as a function of thickness. Results Color difference between corresponding shade of Tescera Body composite and Vitapan shade guide was from 6.88 to 12.80. L* and b*value was decreased as layering thickness of Incisal composite on Body composite was increased. But, a* value did not show specific change tendency. Conclusions Surface color difference between Body composites and Incisal composites layered on Body composite was increased as the layering thickness of Incisal composite increased (p < 0.05.

  13. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    Science.gov (United States)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-04-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  14. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    International Nuclear Information System (INIS)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-01

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H 2 plasma, while Al was deposited using trimethylaluminum as the precursor and H 2 plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO 2 dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects

  15. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin [Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, So-Ra; Park, Jong-Wan, E-mail: jwpark@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  16. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    Science.gov (United States)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  17. Novel Bioactive Titanate Layers Formed on Ti Metal and Its Alloys by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Tadashi Kokubo

    2009-12-01

    Full Text Available Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.

  18. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    Science.gov (United States)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  19. Numerical studies of shear damped composite beams using a constrained damping layer

    DEFF Research Database (Denmark)

    Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard

    2008-01-01

    Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....

  20. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  1. Enhancement of P3HT organic photodiodes by the addition of a GaSe9 alloy thin layer

    Science.gov (United States)

    Siqueira, M. C.; Hoff, A.; de, C., Col; Machado, K. D.; Hümmelgen, I. A.; Serbena, J. P. M.

    2017-08-01

    We report on gallium-selenium alloy (GaSe9) thin films simultaneously functioning as both blocking layer and active layer on poly(3-hexylthiophene-2, 5-diyl) (P3HT)-based organic photodiodes in order to enhance device performance. In addition to improved transport of the photogenerated charge carriers, GaSe9 films also contribute to light absorption on a different wavelength interval than that of P3HT. Three different devices are compared: ITO/GaSe9/Al, ITO/P3HT/Al and ITO/P3HT/GaSe9/Al, with the last one presenting a lower dark current density (0.90 μA cm-2), higher ON/OFF current ratio (61) and fastest response under AM 1.5 light irradiance. The observed responsivity is 7.3 mA W-1 and is almost linearly dependent on irradiance in the range 0.6-60 W m-2. A maximum external quantum efficiency of 135% and specific detectivity of 16.7 × 1011 Jones at 390 nm incident light wavelength are obtained.

  2. Effect of the addition of Sm2O3 on the microstructure of laser cladding alloy coating layers

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Fang, Wei; Joo, Yun Kon; Kang, Jin Ho; Lee, Chan Gyu

    2008-06-01

    The effects on the microstructures and phases of coating layers by the addition of micron-sized (m) and nano-sized (n) (m&n) Sm2O3 powders were investigated. The coating materials, which were prepared by means of 2.0 kW CO2 laser cladding, consist of a powder mixture of m Ni-based alloy (NBA) powders comprising 1.5 wt.% m Sm2O3 and 3.0% n Sm2O3 powders. The results indicate that γ-Ni, Cr23C6 and Ni3B are the primary phases of the NBA coatings. The Fe7Sm and Ni3Si phases are highlighted by the addition of m&n Sm2O3 powders. From the substrate, planar crystal layers are first grown in all NBA and m&n Sm2O3/NBA coatings. The dendrite growth then occurs as a result of the addition of the m Sm2O3 powder, and the equiaxed dendrite growth occurs as a result of the addition of the n Sm2O3. With the addition of a rare earth oxide such as Sm2O3 powder, the width of the planar crystal becomes smaller than that of the NBA coating.

  3. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    Science.gov (United States)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  4. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite.......The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  5. Nonlinear thermal stability of geometrically imperfect shape memory alloy hybrid laminated composite plates

    Science.gov (United States)

    Asadi, Hamed; Eynbeygi, Mehdi; Wang, Quan

    2014-07-01

    The instability of geometrically imperfect shape memory alloy (SMA) fibers reinforced with hybrid laminated composite (SMAHC) plates and subjected to a uniform thermal loading is analytically investigated. The material properties of the SMAHC plates are assumed to be functions of temperature. Nonlinear equations of the plates’ thermal stability are derived based on a higher order shear deformation theory incorporating von Karman geometrical nonlinearity via stationary potential energy. The structural recovery stress, which is generated by martensitic phase transformation of the prestrained SMA fibers, is calculated based on the one-dimensional thermodynamic constitutive model by Brinson. Adopting the Galerkin procedure, the governing nonlinear partial differential equations are converted into a set of nonlinear algebraic equations, in which systems of equations are solved by introducing an analytical approach. Closed-form formulations are presented to determine the load-deflection path and critical buckling temperature of the plate. Based on the developed closed-form solutions, ample numerical results are presented to provide an insight into the effects of the volume fraction, prestrain, location and orientation of the SMA fibers, composite plate geometry, geometrical imperfection and temperature dependence on the stability of the SMAHC plates. It is shown that a proper application of SMA fibers results in a considerable delay of the thermal bifurcation and controllable thermal post-buckling deflection of the SMAHC plate.

  6. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite

    Science.gov (United States)

    Kumbhar, Samir B.; Chavan, S. P.; Gawade, S. S.

    2018-02-01

    Shape memory alloy (SMA) is an attractive smart material which could be used as stiffness tuning element in adaptive tuned vibration absorber (ATVA). The sharp modulus change in SMA material during phase transformation creates difficulties for smooth tuning to track forcing frequency to minimize vibrations of primary system. However, high hysteresis damping at low temperature martensitic phase degrades performance of vibration absorber. This paper deals with the study of dynamic response of system in which SMA and magnetorheological elastomer (MRE) are combined together to act as a smart spring- mass-damper system in a tuned vibration absorber. This composite is used as two way stiffness tuning element in ATVA for smooth and continuous tuning and to minimize the adverse effect at low temperature by increasing equivalent stiffness. The stiffnesses of SMA element and MRE are varied respectively by changing temperature and strength of external magnetic field. The two way stiffness tuning ability and adaptivity have been demonstrated analytically and experimentally. The experimental results show good agreement with analytical results. The proposed composite is able to shift the stiffness consequently the natural frequency of primary system as well as reduce the vibration level of primary system by substantial mount.

  7. Chemically milled alpha-case layer from Ti-6Al-4V alloy investment cast

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-06-01

    Full Text Available The as cast Ti6Al4V, obtained after investment casting with yttria stabilized zirconia face-coat, was chemically milled using a mixture of hydrofluoric acid and nitric acid. This process removed completely the alpha-case layer. Lower hardness...

  8. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: girs@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Shulepov, I. A., E-mail: iashulepov@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  9. Influence of the composition on the radiation embrittlement alloys; Einfluss der Zusammensetzung auf die Strahlenversproedungslegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Boehmert, J.; Kryukov, A.; Nikolaev, Yu.A.; Korolev, Yu.N.; Erak, D.Yu.; Gerashenko, S.S.

    1999-02-01

    The radiation embrittlement of the reactor pressure vessel is highly safety-relevant for VVER-type pressure vessels. The sensitivity against radiation embrittlement depends on the chemical composition of the pressure vessel steel. Using an irradiation experiment at surveillance positions in two Russian VVER 440-type reactors the effects of copper, phosphorus and nickel on the radiation embrittlement should be investigated. For that, eight mock-up alloys were selected. Their chemical composition varied between 0.015 and 0.42% Cu, 0.002 and 0.039% P, 0.01 and 1.98% Ni, 0.09 and 0.37% Si, and 0.35 and 0.49% Mn. Charpy-V impact tests and tensile tests were performed with specimens machined from these alloys. The specimens were tested in the as-received state, in the irradiated state (fluence: 1x10{sup 19} and 8x10{sup 19}/cm{sup 2} [E>0.5 MeV]) and in the post-irradiation annealed state. In the as-received state, the alloys have a ferritic microstructure. Apart from Cu, the alloyed elements are solved in the matrix. Irradiation produces strong hardening and embrittlement. The effect increases with the Cu and P content. Ni causes an additional embrittlement. It is independent on the Ni concentration within the range of 1.1 to 2% Ni and results in a shift of the ductile-brittle transition temperature of about 120 C after a fluence of 1x10{sup 19}/cm{sup 2} by a flux of 4x10{sup 11}/cm{sup 2} s. The shift does not depend on the Cu or P content. Furthermore, the upper shelf energy is especially reduced by the Mi-rich alloys. For very low content of Cu and P these relations are not valid. The irradiation effect can be eliminated by annealing at 475 C/100 h. For high content of Cu or P the recovery is incomplete, it remains a residue of 20 to 25% of the irradiation effect. Ni has no influence on the recovery. Comparing the results of this study with the ones of the surveillance programmes of the VVER 440-type reactors, the alloys with low Ni content show the same irradiation

  10. MAPLE deposition of polypyrrole-based composite layers for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Irina Alexandra, E-mail: irina.paun@physics.pub.ro [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Acasandrei, Adriana Maria [Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele, Bucharest RO-077125 (Romania); Luculescu, Catalin Romeo, E-mail: catalin.luculescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Mustaciosu, Cosmin Catalin [Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, Magurele, Bucharest RO-077125 (Romania); Ion, Valentin [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania); Mihailescu, Mona; Vasile, Eugenia [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 (Romania); Dinescu, Maria, E-mail: dinescum@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest RO-077125 (Romania)

    2015-12-01

    Highlights: • PPy-based composite layers for bone regeneration were produced by MAPLE. • Conductive PPy nanograins were embedded in insulating PLGA and PU matrices. • PLGA was chosen for providing biodegradability and PU for toughness and elasticity. • The layers conductivities reached 10{sup −2} S/cm for PPy loadings of 1:10 weight ratios. • The layers promoted osteoblast viability, proliferation and mineralization. - Abstract: We report on biocompatible, electrically conductive layers of polypyrrole (PPy)-based composites obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) for envisioned bone regeneration. In order to preserve the conductivity of the PPy while overcoming its lack of biodegradability and low mechanical resilience, conductive PPy nanograins were embedded in two biocompatible, insulating polymeric matrices, i.e. poly(lactic-co-glycolic)acid (PLGA) and polyurethane (PU). PLGA offers the advantage of full biodegradability into non-toxic products, while PU provides toughness and elasticity. The PPy nanograins formed micro-domains and networks within the PLGA and PU matrices, in a compact spatial arrangement favorable for electrical percolation. The proposed approach allowed us to obtain PPy-based composite layers with biologically meaningful conductivities up to 10{sup −2} S/cm for PPy loadings as low as 1:10 weight ratios. Fluorescent staining and viability assays showed that the MG63 osteoblast-like cells cultured on the PPy-based layers deposited by MAPLE were viable and retained their capacity to proliferate. The performance of the proposed method was demonstrated by quantitative evaluation of the calcium phosphate deposits from the cultured cells, as indicative for cell mineralization. Electrical stimulation using 200 μA currents passing through the PPy-based layers, during a time interval of 4 h, enhanced the osteogenesis in the cultured cells. Despite their lowest conductivity, the PPy/PU layers showed the best

  11. Laser surface alloying on aluminum and its alloys: A review

    Science.gov (United States)

    Chi, Yiming; Gu, Guochao; Yu, Huijun; Chen, Chuanzhong

    2018-01-01

    Aluminum and its alloys have been widely used in aerospace, automotive and transportation industries owing to their excellent properties such as high specific strength, good ductility and light weight. Surface modification is of crucial importance to the surface properties of aluminum and its alloys since high coefficient of friction, wear characteristics and low hardness have limited their long term performance. Laser surface alloying is one of the most effective methods of producing proper microstructure by means of non-equilibrium solidification which results from rapid heating and cooling. In this paper, the influence of different processing parameters, such as laser power and scanning velocity is discussed. The developments of various material systems including ceramics, metals or alloys, and metal matrix composites (MMCs) are reviewed. The microstructure, hardness, wear properties and other behaviors of laser treated layer are analyzed. Besides, the existing problems during laser surface treatment and the corresponding solutions are elucidated and the future developments are predicted.

  12. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  13. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xuezheng Zhang

    2016-05-01

    Full Text Available Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF was investigated in comparison with the PTF and permanent mold cast (PMC 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  14. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications.

    Science.gov (United States)

    Karre, Rajamallu; Niranjan, Manish K; Dey, Suhash R

    2015-05-01

    High alloyed β-phase stabilized titanium alloys are known to provide comparable Young's modulus as that to the human bones (~30 GPa) but is marred by its high density. In the present study the low titanium alloyed compositions of binary Ti-Nb and ternary Ti-Nb-Zr alloy systems, having stable β-phase with low Young's modulus are identified using first principles density functional framework. The theoretical results suggest that the addition of Nb in Ti and Zr in Ti-Nb increases the stability of the β-phase. The β-phase in binary Ti-Nb alloys is found to be fully stabilized from 22 at.% of Nb onwards. The calculated Young's moduli of binary β-Ti-Nb alloy system are found to be lower than that of pure titanium (116 GPa). For Ti-25(at.%)Nb composition the calculated Young's modulus comes out to be ~80 GPa. In ternary Ti-Nb-Zr alloy system, the Young's modulus of Ti-25(at.%)Nb-6.25(at.%)Zr composition is calculated to be ~50 GPa. Furthermore, the directional Young's moduli of these two selected binary (Ti-25(at.%)Nb) and ternary alloy (Ti-25(at.%)Nb-6.25(at.%)Zr) compositions are found to be nearly isotropic in all crystallographic directions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of chemical composition of copper alloys on their hot-brittleness and weldability

    International Nuclear Information System (INIS)

    Zakharov, M.V.

    1985-01-01

    Effect of different alloying elements on the hot crack formation in argon-arc welding of M1 copper has been studied. It is shown that the effective crystallization interval has a determining influence on hot-brittleness of low-alloyed high-thermal- and electric conducting welded copper alloys. The narrow is this interval the lower is linear schrinkage and the alloys inclined to the formation of crystallization cracks in welding to a lesser degree. Alloying elements with low solubility in copper in solid state broadening the crystallization interval affect negatively the alloy hot-brittleness. Such additives as zirconium are useful at 0.02-0.O5% content and at > 0.1% content are intolerable. As to cadmium, tin, magnesium, cerium and antimony additives they don't practically strengthen copper and its alloys at 700-800 deg C and they should not be introduced

  16. A structural investigation of compositionally graded InAs/sub 1-x/Sb/sub x/ buffer layers

    International Nuclear Information System (INIS)

    Biefeld, R.M.

    1988-01-01

    The structures prepared in this work consisted of the InSb substrate, an initial InSb epitaxial layer, a buffer layer and an uppermost superlattice. The buffer layers were of four types: 1) a constant composition layer; 2) a step-graded layer consisting of three or five equal thickness, constant composition layers; 3) a continuously graded layer where x increased exponentially with layer thickness and 4) a continuously graded layer in which x increased linearly with layer thickness. The compositions were determined from double-crystal x-ay rocking curves using the (004) and (115) reflections. The strain distribution and layer thickness of both the buffer layers and the SLS's were obtained using a kinematical model as previously described. The surface morphologies were examined by Nomarski interference contrast microscopy. The distribution of dislocations in the buffer layers was investigated by transmission electron microscopy. The surface morphologies of the samples grown on thick, continuously graded buffer layers showed the presence of the normal cross hatching which is typical of mismatched layers which contain dislocations. However, the surfaces which contained thin buffers or buffers with abrupt compositional steps indicated the presence of microcracks. When a critical layer thickness was exceeded for a particular mismatch, microcracks formed in the samples. The thicker, continuously graded buffer layers apparently allow enough dislocations to form during the layer growth so that the critical layer thickness for crack formation is never exceeded. In contrast, not enough dislocations are formed in the thinner layers to prevent the critical layer thickness for crack formation from being exceeded

  17. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys.

    Science.gov (United States)

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2014-07-01

    An antibacterial and bioactive titanium (Ti)-based material was developed for use as a bone substitute under load-bearing conditions. As previously reported, Ti metal was successively subjected to NaOH, CaCl2, heat, and water treatments to form a calcium-deficient calcium titanate layer on its surface. When placed in a simulated body fluid (SBF), this bioactive Ti formed an apatite layer on its surface and tightly bonded to bones in the body. To address concerns regarding deep infection during orthopedic surgery, Ag(+) ions were incorporated on the surface of this bioactive Ti metal to impart antibacterial properties. Ti metal was first soaked in a 5 M NaOH solution to form a 1 μm-thick sodium hydrogen titanate layer on the surface and then in a 100 mM CaCl2 solution to form a calcium hydrogen titanate layer via replacement of the Na(+) ions with Ca(2+) ions. The Ti material was subsequently heated at 600 °C for 1 h to transform the calcium hydrogen titanate into calcium titanate. This heat-treated titanium metal was then soaked in 0.01-10 mM AgNO3 solutions at 80 °C for 24 h. As a result, 0.1-0.82 at.% Ag(+) ions and a small amount of H3O(+) ions were incorporated into the surface calcium titanate layers. The resultant products formed apatite on their surface in an SBF, released 0.35-3.24 ppm Ag(+) ion into the fetal bovine serum within 24 h, and exhibited a strong antibacterial effect against Staphylococcus aureus. These results suggest that the present Ti metals should exhibit strong antibacterial properties in the living body in addition to tightly bonding to the surrounding bone through the apatite layer that forms on their surfaces in the body.

  18. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    Science.gov (United States)

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  19. Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications

    Science.gov (United States)

    Gogoi, Jyoti Prasad; Bhattacharyya, Nidhi Saxena

    2014-11-01

    In this investigation, double layer microwave absorbers are designed and developed with paired combination of 5 wt. %, 7 wt. %, 8 wt. %, and 10 wt. % expanded graphite-novolac phenolic resin (EG-NPR) composites, in the frequency range of 8.2-12.4 GHz. The thickness and compositional combination of the two layers constituting the absorber are optimized to achieve minimum value of reflection loss (dB) and a broad microwave absorption bandwidth. Double layer combinations showing -25 dB absorption bandwidth >2 GHz and -30 dB absorption bandwidth >1 GHz are chosen for fabrication. The total thickness of the fabricated double layer microwave absorber is varied from 3 mm to 3.4 mm. Absorption bandwidths at -10 dB, -20 dB, -25 dB and -30 dB are determined for the fabricated structure. The maximum -25 dB and -30 dB absorption bandwidth of 2.47 GHz and 1.77 GHz, respectively, are observed for the double layer structure with (5 wt. %-8 wt. %) EG-NPR composites with total thickness of 3.2 mm, while -10 dB bandwidth covers the entire X-band range.

  20. Laser bendability of SUS430/C11000/SUS430 laminated composite and its constituent layers

    Science.gov (United States)

    Hossein Seyedkashi, S. M.; Gollo, Mohammad Hoseinpour; Biao, Jin; Moon, Young Hoon

    2016-05-01

    Laminated composites are of great interest in different industries while having the advantages of all base metals. In this research, the laser bending of a three-layered SUS430/C11000/SUS430 laminated composite is characterized both experimentally and numerically. This composite can be used in the microelectronics industry since it has the anti-corrosion and strength capability of stainless steel, and the electrical superiority of copper. The specimens are bent using a Ytterbium fiber laser irradiated on a straight path along the sheet width. The effects of bending parameters including the number of passes, scanning velocity, beam diameter, laser power and delay time between passes are examined for a three-layered laminated sheet, and compared with its constituent steel and copper layers. It is found that the thin copper mid-layer strongly affects the rate of bending per pass. Heat distribution and plastic strain along the thickness during the process are characterized by using the finite element method. The Cu mid-layer decreases the bending angle, but also postpones the onset of melting, and thus can be compensated by the application of higher laser powers. It is shown that the bending angle increases with an increase in laser power and delay time, and a decrease in laser velocity and beam diameter.