WorldWideScience

Sample records for complex translocation involving

  1. High-Risk Microgranular Acute Promyelocytic Leukemia with a Five-Way Complex Translocation Involving PML-RARA

    Directory of Open Access Journals (Sweden)

    Benjamin Powers

    2015-01-01

    Full Text Available Acute promyelocytic leukemia (APL is classically characterized by chromosomal translocation (15;17, resulting in the PML-RARA fusion protein leading to disease. Here, we present a case of a 50-year-old man who presented with signs and symptoms of acute leukemia with concern for APL. Therapy was immediately initiated with all-trans retinoic acid. The morphology of his leukemic blasts was consistent with the hypogranular variant of APL. Subsequent FISH and cytogenetic analysis revealed a unique translocation involving five chromosomal regions: 9q34, 17q21, 15q24, 12q13, and 15q26.1. Molecular testing demonstrated PML/RARA fusion transcripts. Treatment with conventional chemotherapy was added and he went into a complete remission. Given his elevated white blood cell count at presentation, intrathecal chemotherapy for central nervous system prophylaxis was also given. The patient remains on maintenance therapy and remains in remission. This is the first such report of a 5-way chromosomal translocation leading to APL. Similar to APL with chromosomal translocations other than classical t(15;17 which result in the typical PML-RARA fusion, our patient responded promptly to an ATRA-containing regimen and remains in complete remission.

  2. The complex translocation (9;14;14) involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia.

    Science.gov (United States)

    Zerrouki, Rachid; Benhassine, Traki; Bensaada, Mustapha; Lauzon, Patricia; Trabzi, Anissa

    2016-03-01

    Many subtypes of acute lymphoblastic leukemia (ALL) are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14), a variant of the translocation (14;14)(q11;q32), is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH) and CCAAT enhancer-binding protein (CEBPE) genes in B-lineage ALL (B-ALL) and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH) with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9)(p21),t(14;14)(q11;q32). FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC) probes showed a complex t(9;14;14) associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) and paired box gene 5 (PAX5) at 9p21-13 and duplication of the fusion gene IGH-CEBPE.

  3. The complex translocation (9;14;14 involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Rachid Zerrouki

    2016-03-01

    Full Text Available Abstract Many subtypes of acute lymphoblastic leukemia (ALL are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14, a variant of the translocation (14;14(q11;q32, is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH and CCAAT enhancer-binding protein (CEBPE genes in B-lineage ALL (B-ALL and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9(p21,t(14;14(q11;q32. FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC probes showed a complex t(9;14;14 associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A and paired box gene 5 (PAX5 at 9p21-13 and duplication of the fusion gene IGH-CEBPE.

  4. A paternally transmitted complex chromosomal rearrangement (CCR) involving chromosomes 2, 6, and 18 includes eight breakpoints and five insertional translocations (ITs) through three generations.

    Science.gov (United States)

    Gruchy, Nicolas; Barreau, Morgane; Kessler, Ketty; Gourdier, Dominique; Leporrier, Nathalie

    2010-01-01

    Complex chromosomal rearrangements (CCRs) are uncommon and mainly occur de novo. We report here on a familial CCR involving chromosomes 2, 6, and 18. The propositus is a boy first referred because of growth delays, hypotonia, and facial anomalies, suggestive of deletion 18q syndrome. However, a cytogenetic family study disclosed a balanced CCR in three generations, which was detailed by FISH using BAC clones, and consisted of eight breakpoints with five insertional translocations (ITs). The propositus had a cryptic 18q deletion and a 6p duplication. Paternal transmission of this CCR was observed through three generations without meiotic recombination. Our investigation allowed us to provide porosities counseling and management of prenatal diagnosis for propositus cousin who carries this particular CCR.

  5. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  6. A leukemic double-hit follicular lymphoma associated with a complex variant translocation, t(8;14;18)(q24;q32;q21), involving BCL2, MYC, and IGH.

    Science.gov (United States)

    Minakata, Daisuke; Sato, Kazuya; Ikeda, Takashi; Toda, Yumiko; Ito, Shoko; Mashima, Kiyomi; Umino, Kento; Nakano, Hirofumi; Yamasaki, Ryoko; Morita, Kaoru; Kawasaki, Yasufumi; Sugimoto, Miyuki; Yamamoto, Chihiro; Ashizawa, Masahiro; Hatano, Kaoru; Oh, Iekuni; Fujiwara, Shin-Ichiro; Ohmine, Ken; Kawata, Hirotoshi; Muroi, Kazuo; Miura, Ikuo; Kanda, Yoshinobu

    2018-01-01

    Double-hit lymphoma (DHL) is defined as lymphoma with concurrent BCL2 and MYC translocations. While the most common histological subtype of DHL is diffuse large B-cell lymphoma, the present patient had leukemic follicular lymphoma (FL). A 52-year-old man was admitted to our hospital due to general fatigue and cervical and inguinal lymph node swelling. The patient was leukemic and the pathological diagnosis of the inguinal lymph node was FL grade 1. Chromosomal analysis revealed a complex karyotype including a rare three-way translocation t(8;14;18)(q24;q32;q21) involving the BCL2, MYC, and IGH genes. Based on a combination of fluorescence in situ hybridization (FISH), using BCL2, MYC and IGH, and spectral karyotyping (SKY), the karyotype was interpreted as being the result of a multistep mechanism in which the precursor B-cell gained t(14;18) in the bone marrow and acquired a translocation between der(14)t(14;18) and chromosome 8 in the germinal center, resulting in t(8;14;18). The pathological diagnosis was consistently FL, not only at presentation but even after a second relapse. The patient responded well to standard chemotherapies but relapsed after a short remission. This patient is a unique case of leukemic DH-FL with t(8;14;18) that remained in FL even at a second relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Complex three-way translocation involving MLL, ELL, RREB1, and CMAHP genes in an infant with acute myeloid leukemia and t(6;19;11)(p22.2;p13.1;q23.3)

    DEFF Research Database (Denmark)

    Tuborgh, A; Meyer, C; Marschalek, R

    2013-01-01

    until progression to acute myeloid leukemia, AML-M5. The leukemic cells harbored a novel apparent 3-way translocation t(6;19;11)(p22.2;p13.1;q23.3). We utilized advanced molecular cytogenetic methods including 24-color karyotyping, high-resolution array comparative genomic hybridization (aCGH) and DNA...... in the initial stages of disease before clear morphological signs of bone marrow involvement. The patient responded well to therapy and remains in remission>6 years from diagnosis. This apparent 3-way translocation is remarkable because of its rarity and presentation with myeloid sarcoma, and may, as more cases...

  8. Complex Variant t(9;22 Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ana Valencia

    2009-01-01

    Full Text Available The Philadelphia (Ph1 chromosome arising from the reciprocal t(9;22 translocation is found in more than 90% of chronic myeloid leukemia (CML patients and results in the formation of the chimeric fusion gene BCR-ABL. However, a small proportion of patients with CML have simple or complex variants of this translocation, involving various breakpoints in addition to 9q34 and 22q11. We report five CML cases carrying variant Ph translocations involving both chromosomes 9 and 22 as well as chromosomes 3, 5, 7, 8, or 10. G-banding showed a reciprocal three-way translocation involving 3q21, 5q31, 7q32, 8q24, and 10q22 bands. BCR-ABL fusion signal on der(22 was found in all of the cases by FISH.

  9. CONSIDERATIONS ON THE INFLUENCE OF COMPLEXATION IN THE COPPER UPTAKE AND TRANSLOCATION

    Directory of Open Access Journals (Sweden)

    SEMAGHIUL BIRGHILA

    2014-07-01

    Full Text Available The actual knowledge about food and the environment underlines the fact that agricultural and environmental sciences must solve various problems regarding copper uptake from soil to plants and its bioaccumulation, being important issues for copper concentration in crops and also for phytoremediation of polluted soils. We studied the relation between the form in which copper is applied to soil and the consequential copper bioavailability, uptake and translocation, using as examples simple and complex copper compounds. The copper concentration in basil plants harvested from soils treated with copper compounds and the calculated values of transfer coefficient, translocation factor, bioaccumulation factor, and uptake coefficient demonstrated that the ionic copper (from simple salts is not necessarily easier to uptake than complex ions, but is easier translocated in plants, while the copper given as complex ions is most likely to be retained by roots. The results indicated that the involvement of copper complexes in agricultural treatments is a solution for soils phytoremediation, concerning the phytostabilization technology.

  10. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.

    Science.gov (United States)

    Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2015-03-13

    Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  12. Synaptonemal complex analysis of X-7 translocations in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, T. (Univ. of Tennessee, Knoxville); Russell, L.B.; Cacheiro, N.L.A.

    1982-01-01

    The synaptonemal complexes of surface-spread spermatocytes of mice heterozygous for one of two reciprocal translations (R3 and R5) between the X and chromosome 7 have been examined by light and electron microscopy (EM). The break points of R3 were determined to be at 70% of chromosome 7, as measured from the centromere, and at 22% of the X. Translocation quadrivalents were formed almost exclusively. The break points of R5 were at 21% of chromosome 7 as measured from the centromere, and at 83% of the X. There was little indication that the break in the X interfered with sex-chromosome synapis between the 7X and Y. Univalent Y's were not observed in R3, and only seldom observed (8-14%) in R5. However, in contrast to R3, R5 formed quadrivalents relatively rarely (20% in the EM study of 100 nuclei), and hetermorphic bivalents of 7X-Y and X7-7 quite frequently (72%). Possible causes of this high bivalent frequency are discussed. Light-microsope (LM) analysis alone was found to be inadequate for interpreting synaptic configurations (quadrivalents vs. bivalents) in R5. The LM analysis was further complicated by the occurrence of nonhomologous synapsis in the heteromorphic bivalents of R5, a phenomonon easily recognized and interpreted in the EM portion of the study.

  13. Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria.

    Science.gov (United States)

    Popov-Celeketić, Dusan; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2008-05-21

    The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.

  14. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    International Nuclear Information System (INIS)

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  15. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity

    NARCIS (Netherlands)

    Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Tromp, P.; Helsper, J.P.F.G.; Zande, M. van der; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    Intestinal translocation is a key factor for determining bioavailability of nanoparticles (NPs) after oral uptake. Therefore, we evaluated three in vitro intestinal cell models of increasing complexity which might affect the translocation of NPs: a mono-culture (Caco-2 cells), a co-culture with

  16. XY pair associates with the synaptonemal complex of autosomal male-sterile translocations in pachytene spermatocytes of the mouse (Mus musculus).

    Science.gov (United States)

    Forejt, J; Gregorová, S; Goetz, P

    1981-01-01

    Analysis of the chromosome behaviour at pachytene has been performed by means of the silver staining technique visualizing the synaptonemal complexes (SCs) in male mice heterozygous for the male-sterile translocations T(5;12)31Hm T(16;17)43H and T(7;19)145H, respectively. the T(9;17)138Ca male heterozygotes and T43H/T43H homozygous males were used as fertile controls. The sterile mice displayed a high frequency (about 60%) of pachytene spermatocytes with autosomal translocation configuration located in close vicinity of the XY pair. The dense round body (XAB), normally located near the X-chromosome axis in fertile males, exhibited abnormal affinity to translocation configuration in the sterile translocation heterozygotes. The incomplete synapsis of autosomes involved in translocation configuration was observed in more than 70% of the pachytene spermatocytes with the male-sterile translocations but less than 20% of the cells from T138Ca fertile male.s. A hypothesis relating the spermatogenic arrest of carriers of male-sterile rearrangements to the presumed interference with X chromosome inactivation in male meiosis is discussed.

  17. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene.

    Science.gov (United States)

    Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P

    2017-01-10

    Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.

    Science.gov (United States)

    Dahl, Joseph M; Wang, Hongyun; Lázaro, José M; Salas, Margarita; Lieberman, Kate R

    2014-03-07

    The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.

  19. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A

    2008-01-01

    at the standardization of FISH procedures in lymphoma diagnosis, we found that five cases out of 35 classic endemic BLs were negative for MYC translocations by using a split-signal as well as a dual-fusion probe. Here we investigated the expression pattern of miRNAs predicted to target c-Myc, in BL cases, to clarify...... whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...

  20. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    International Nuclear Information System (INIS)

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang

    2007-01-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 μM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca 2+ from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death

  1. Chromosome segregation analysis in human embryos obtained from couples involving male carriers of reciprocal or Robertsonian translocation.

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    Full Text Available The objective of this study was to investigate the frequency and type of chromosome segregation patterns in cleavage stage embryos obtained from male carriers of Robertsonian (ROB and reciprocal (REC translocations undergoing preimplantation genetic diagnosis (PGD at our reproductive center. We used FISH to analyze chromosome segregation in 308 day 3 cleavage stage embryos obtained from 26 patients. The percentage of embryos consistent with normal or balanced segregation (55.1% vs. 27.1% and clinical pregnancy (62.5% vs. 19.2% rates were higher in ROB than the REC translocation carriers. Involvement of non-acrocentric chromosome(s or terminal breakpoint(s in reciprocal translocations was associated with an increase in the percent of embryos consistent with adjacent 1 but with a decrease in 3∶1 segregation. Similar results were obtained in the analysis of nontransferred embryos donated for research. 3∶1 segregation was the most frequent segregation type in both day 3 (31% and spare (35% embryos obtained from carriers of t(11;22(q23;q11, the only non-random REC with the same breakpoint reported in a large number of unrelated families mainly identified by the birth of a child with derivative chromosome 22. These results suggest that chromosome segregation patterns in day 3 and nontransferred embryos obtained from male translocation carriers vary with the type of translocation and involvement of acrocentric chromosome(s or terminal breakpoint(s. These results should be helpful in estimating reproductive success in translocation carriers undergoing PGD.

  2. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  3. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene

    Directory of Open Access Journals (Sweden)

    Shusaku Uchida

    2017-01-01

    Full Text Available Summary: Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. : Uchida et al. link CRTC1 synapse-to-nucleus shuttling in memory. Weak and strong training induce CRTC1 nuclear transport and transient Fgf1b transcription by a complex including CRTC1, CREB, and histone acetyltransferase CBP, whereas strong training alone maintains Fgf1b transcription through CRTC1-dependent substitution of KAT5 for CBP, leading to memory enhancement. Keywords: memory enhancement, long-term potentiation, hippocampus, nuclear transport, epigenetics, FGF1, CRTC1, KAT5/Tip60, HDAC3, CREB

  4. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination.

    Directory of Open Access Journals (Sweden)

    Sheng Sun

    2017-08-01

    Full Text Available Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal

  5. A Proteome Translocation Response to Complex Desert Stress Environments in Perennial Phragmites Sympatric Ecotypes with Contrasting Water Availability.

    Science.gov (United States)

    Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia

    2017-01-01

    After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites . The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.

  6. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes.

    Science.gov (United States)

    Vasiljev, Andreja; Ahting, Uwe; Nargang, Frank E; Go, Nancy E; Habib, Shukry J; Kozany, Christian; Panneels, Valérie; Sinning, Irmgard; Prokisch, Holger; Neupert, Walter; Nussberger, Stephan; Rapaport, Doron

    2004-03-01

    Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.

  7. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  8. New Complex Chromosomal Translocation in Chronic Myeloid Leukaemia: t(9;18;22(q34;p11;q11

    Directory of Open Access Journals (Sweden)

    Abdeljabar El Andaloussi

    2007-01-01

    Full Text Available A Chronic myeloid leukaemia (CML case with a new complex t(9;18;22(q34;p11;q11 of a 29-year-old man is being reported. For the first time, this translocation has been characterized by karyotype complemented with fluorescence in situ hybridization (FISH. In CML, the complex and standard translocations have the same prognosis. The patient was treated with standard initial therapy based on hydroxyurea before he died due to heart failure four months later. Our finding indicates the importance of combined cytogenetic analysis for diagnosis and guidance of treatment in clinical diagnosis of CML.

  9. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  10. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  11. Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis.

    Science.gov (United States)

    Calton, Christine M; Bronnimann, Matthew P; Manson, Ariana R; Li, Shuaizhi; Chapman, Janice A; Suarez-Berumen, Marcela; Williamson, Tatum R; Molugu, Sudheer K; Bernal, Ricardo A; Campos, Samuel K

    2017-05-01

    The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.

  12. Constraining the Lateral Helix of Respiratory Complex I by Cross-linking Does Not Impair Enzyme Activity or Proton Translocation.

    Science.gov (United States)

    Zhu, Shaotong; Vik, Steven B

    2015-08-21

    Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441-445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu(2+) ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50-90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10-20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.).

    Science.gov (United States)

    Mirza, Neelofar; Taj, Gohar; Arora, Sandeep; Kumar, Anil

    2014-10-25

    Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca(2+)/H(+) antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca(2+) ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca(2+) ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  15. Importin α-importin β complex mediated nuclear translocation of insulin-like growth factor binding protein-5.

    Science.gov (United States)

    Sun, Min; Long, Juan; Yi, Yuxin; Xia, Wei

    2017-10-28

    Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: K D =2.44e-7, IGFBP-5/importin-α5: K D =3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5 ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5 ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.

  16. Genome-Wide Identification and Characterization of Four Gene Families Putatively Involved in Cadmium Uptake, Translocation and Sequestration in Mulberry

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2018-06-01

    Full Text Available The zinc-regulated transporters, iron-regulated transporter-like proteins (ZIPs, the natural resistance and macrophage proteins (NRAMP, the heavy metal ATPases (HMAs and the metal tolerance or transporter proteins (MTPs families are involved in cadmium (Cd uptake, translocation and sequestration in plants. Mulberry (Morus L., one of the most ecologically and economically important (as a food plant for silkworm production genera of perennial trees, exhibits excellent potential for remediating Cd-contaminated soils. However, there is no detailed information about the genes involved in Cd2+ transport in mulberry. In this study, we identified 31 genes based on a genome-wide analysis of the Morus notabilis genome database. According to bioinformatics analysis, the four transporter gene families in Morus were distributed in each group of the phylogenetic tree, and the gene exon/intron structure and protein motif structure were similar among members of the same group. Subcellular localization software predicted that these transporters were mainly distributed in the plasma membrane and the vacuolar membrane, with members of the same group exhibiting similar subcellular locations. Most of the gene promoters contained abiotic stress-related cis-elements. The expression patterns of these genes in different organs were determined, and the patterns identified, allowing the categorization of these genes into four groups. Under low or high-Cd2+ concentrations (30 μM or 100 μM, respectively, the transcriptional regulation of the 31 genes in root, stem and leaf tissues of M. alba seedlings differed with regard to tissue and time of peak expression. Heterologous expression of MaNRAMP1, MaHMA3, MaZIP4, and MaIRT1 in Saccharomyces cerevisiae increased the sensitivity of yeast to Cd, suggested that these transporters had Cd transport activity. Subcellular localization experiment showed that the four transporters were localized to the plasma membrane of yeast and

  17. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts.

    Science.gov (United States)

    Nakai, Masato

    2015-09-01

    Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A rare balanced nonrobertsonian translocation involving acrocentric chromosomes: Chromosome abnormality of t(13;15(p11.2;q22.1

    Directory of Open Access Journals (Sweden)

    Dalvi Rupa

    2016-01-01

    Full Text Available BACKGROUND: Balanced non-robertsonian translocation (RT, involving acrocentric chromosomes, is a rare event and only a few cases are reported. Most of the RTs are balanced involving acrocentric chromosomes with the breakpoints (q10;q10. MATERIALS AND METHODS: Chromosome analysis was performed as per standard procedure – Giemsa-trypsin banding with 500 band resolution was analyzed for chromosome identification. RESULTS: In the present study, we report a rare balanced non-RTs involving chromosomes 13 and 15 with cytogenetic finding of 46, XX, t(13;15(p11.2;q22.1. CONCLUSION: To the best of our knowledge, this is the first such report of an unusual non-RT of t(13:15 with (p11.2;q22.1 break points.

  19. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenic forms of Burkitt lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Neri, A.; Barriga, F.; Knowles, D.M.; Magrath, I.T.; Dalla-Favera, R.

    1988-04-01

    The authors show that endemic (eBL), sporadic (sBL), and acquired immunodeficiency syndrome-associated (AIDS-BL) forms of Burkitt lymphoma (BL) carrying t(8; 14) chromosomal translocations display different breakpoints within the immunoglobulin heavy-chain locus (IGH) on chromosome 14. In sBL (7 out of 11) and AIDS-BL (5 out of 6), the breakpoints occurred within or near the IGH ..mu.. switch (S/sub mu/) region on chromosome 14 and within the c-myc locus (MYC) on chromosome 8. In most eBL (13 out of 16) the breakpoints were mapped within or 5' to the IGH joining J/sub H/ region on chromosome 14 and outside the MYC locus on chromosome 8. Cloning and sequencing of the (8; 14) chromosomal junctions from two eBL cell lines and one eBL biopsy sample show that the recombination do not involve IGH-specific recombination signals on chromosome 14 or homologous sequences on chromosome 8, suggesting that these events are not likely to be mediated by the same mechanisms or enzymes as in IGH rearrangements. In general, these data have implications for the timing of occurrence of chromosomal translocations during B-cell differentiation in different BL types.

  20. New Metacentric Populations and Phylogenetic Hypotheses Involving Whole-Arm Reciprocal Translocation in Mus musculus domesticus from Sicily, Southern Italy.

    Science.gov (United States)

    Castiglia, Riccardo; Capanna, Ernesto; Bezerra, Alexandra M R; Bizzoco, Domenico; Zambigli, Emanuela; Solano, Emanuela

    2015-01-01

    The house mouse Mus musculus domesticus is characterized by more than 100 metacentric populations, due to the occurrence of Robertsonian (Rb) fusions, together with the standard all-telocentric karyotype (2n = 40). We examined G-banded karyotypes of 18 mice from 10 localities in Sicily and describe 3 new metacentric populations: 'Ragusa Ibla' (IRAG), 2n = 33-36, Rb(2.4), Rb(5.6), Rb(9.16), Rb(13.17); 'Piana degli Albanesi' (IPIA), 2n = 23, Rb(1.18), Rb(2.15), Rb(3.5), Rb(4.12), Rb(6.11), Rb(7.8), Rb(9.16), Rb(10.14), Rb(13.17); 'Trapani' (ITRA), 2n = 22, Rb(1.18), Rb(2.15), Rb(3.7), Rb(4.12), Rb(5.9), Rb(6.11), Rb(8.16), Rb(10.14), Rb(13.17). Three mice belonged to the previously reported 'Castelbuono' race (ICAS), 2n = 24, which is very similar to the nearby 'Palermo' (IPAL) race, 2n = 26. Three Rb fusions not yet observed in wild mouse populations were identified: Rb(3.5), Rb(3.7) and Rb(5.9). Rb fusions shared among 4 races (IPIA, IRAG, ICAS, and IPAL) allowed us to describe their potential phylogenetic relationships. We obtained 2 alternative phylogenetic trees. The differences between them are mainly due to various modes of formation of IPIA and ITRA. In the first hypothesis, the specific Rb fusions occurred independently. In the second, those of IRAG originated from those of IPIA via whole-arm reciprocal translocations. © 2015 S. Karger AG, Basel.

  1. A case of reversible posterior leukoencephalopathy syndrome which developed during chemoradiotherapy for head and neck cancer. The involvement of bacterial translocation was considered

    International Nuclear Information System (INIS)

    Tachibana, Shinya; Terao, Hajime; Sanbe, Takeyuki; Katsuno, Masahiro; Takemura, Hideki

    2007-01-01

    Combination therapy such as chemotherapy and radiotherapy is often chosen, depending on the case, for head and neck cancer in view of the preservation of potency. However, on the other hand, it is necessary to note the onset of therapeutic side effects. The patient was a 35-year-old woman. During chemoradiotherapy for mesopharyngeal carcinoma, she suddenly developed shock and multiple organ failure, requiring intensive treatment. She also developed reversible central nerve symptoms during the course. The involvement of bacterial translocation was thought to be the cause of shock, and the reversible central nerve symptoms were considered to be a pathological condition, known as reversible posterior leukoencephalopathy syndrome. We discuss these conditions on the basis of the clinical features, and the process that led to diagnosis in this case. (author)

  2. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex.

    Science.gov (United States)

    Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel

    2003-08-01

    Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.

  3. Importance of No. 21 chromosome in translocation t(8:21) in acute myelocytic leukemia (AML) to the genesis of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T; Minamihisamatsu, M

    1986-05-01

    The results are reported of the chromosome analysis of 17 cases of acute myelocytic leukemia (AML), mostly belonging to M2 of the FAB classification, especially on the translocation t(8:21) and its variant translocations. The presence of two cases with simple variant translocation not involving No. 8 chromosome seems to suggest that No. 21 chromosome is more important to the genesis of AML than the No. 8 chromosome. This assumption appears to be supported by findings on cases with complex translocation: In two cases with complex translocation, the portion translocated from No. 21 chromosome onto No. 8 was firmly maintained in the specific site (q21) on No. 8 whereas the portion translocated from No. 8 chromosome onto No. 21 was involved in further translocation with another chromosome, onto which it was re-translocated. The results of the present cytogenetic study indicate that the analysis of variant translocations in various specific chromosome translocations in leukemia and other malignant disorders is very useful to elucidate the problem as to whether the genesis of such disorders lies in either one or both of the pair of chromosomes involved in the specific translocations of the respective diseases.

  4. Water-Soluble Coenzyme Q10 Inhibits Nuclear Translocation of Apoptosis Inducing Factor and Cell Death Caused by Mitochondrial Complex I Inhibition

    Directory of Open Access Journals (Sweden)

    Haining Li

    2014-07-01

    Full Text Available The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10 on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS production by dihydroethidine (DHE and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM. Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.

  5. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes.

    Science.gov (United States)

    Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao

    2018-06-08

    Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Reversible blockade of complex I or inhibition of PKCβ reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia.

    Directory of Open Access Journals (Sweden)

    Meiying Yang

    Full Text Available Excess mitochondrial reactive oxygen species (mROS play a vital role in cardiac ischemia reperfusion (IR injury. P66Shc, a splice variant of the ShcA adaptor protein family, enhances mROS production by oxidizing reduced cytochrome c to yield H2O2. Ablation of p66Shc protects against IR injury, but it is unknown if and when p66Shc is activated during cardiac ischemia and/or reperfusion and if attenuating complex I electron transfer or deactivating PKCβ alters p66Shc activation during IR is associated with cardioprotection.Isolated guinea pig hearts were perfused and subjected to increasing periods of ischemia and reperfusion with or without amobarbital, a complex I blocker, or hispidin, a PKCβ inhibitor. Phosphorylation of p66Shc at serine 36 and levels of p66Shc in mitochondria and cytosol were measured. Cardiac functional variables and redox states were monitored online before, during and after ischemia. Infarct size was assessed in some hearts after 120 min reperfusion.Phosphorylation of p66Shc and its translocation into mitochondria increased during reperfusion after 20 and 30 min ischemia, but not during ischemia only, or during 5 or 10 min ischemia followed by 20 min reperfusion. Correspondingly, cytosolic p66Shc levels decreased during these ischemia and reperfusion periods. Amobarbital or hispidin reduced phosphorylation of p66Shc and its mitochondrial translocation induced by 30 min ischemia and 20 min reperfusion. Decreased phosphorylation of p66Shc by amobarbital or hispidin led to better functional recovery and less infarction during reperfusion.Our results show that IR activates p66Shc and that reversible blockade of electron transfer from complex I, or inhibition of PKCβ activation, decreases p66Shc activation and translocation and reduces IR damage. These observations support a novel potential therapeutic intervention against cardiac IR injury.

  7. Informational analysis involving application of complex information system

    Science.gov (United States)

    Ciupak, Clébia; Vanti, Adolfo Alberto; Balloni, Antonio José; Espin, Rafael

    The aim of the present research is performing an informal analysis for internal audit involving the application of complex information system based on fuzzy logic. The same has been applied in internal audit involving the integration of the accounting field into the information systems field. The technological advancements can provide improvements to the work performed by the internal audit. Thus we aim to find, in the complex information systems, priorities for the work of internal audit of a high importance Private Institution of Higher Education. The applied method is quali-quantitative, as from the definition of strategic linguistic variables it was possible to transform them into quantitative with the matrix intersection. By means of a case study, where data were collected via interview with the Administrative Pro-Rector, who takes part at the elaboration of the strategic planning of the institution, it was possible to infer analysis concerning points which must be prioritized at the internal audit work. We emphasize that the priorities were identified when processed in a system (of academic use). From the study we can conclude that, starting from these information systems, audit can identify priorities on its work program. Along with plans and strategic objectives of the enterprise, the internal auditor can define operational procedures to work in favor of the attainment of the objectives of the organization.

  8. MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes

    Directory of Open Access Journals (Sweden)

    Bartov Guy

    2009-02-01

    Full Text Available Abstract Background Characterization of disease-associated balanced translocations has led to the discovery of genes responsible for many disorders, including syndromes that include various forms of diabetes mellitus. We studied a man with unexplained maturity onset diabetes of the young (MODY-like diabetes and an apparently balanced translocation [46,XY,t(7;10(q22;p12] and sought to identify a novel diabetes locus by characterizing the translocation breakpoints. Results Mutations in coding exons and splice sites of known MODY genes were first ruled out by PCR amplification and DNA sequencing. Fluorescent in situ hybridization (FISH studies demonstrated that the translocation did not disrupt two known diabetes-related genes on 10p12. The translocation breakpoints were further mapped to high resolution using FISH and somatic cell hybrids and the junctions PCR-amplified and sequenced. The translocation did not disrupt any annotated transcription unit. However, the chromosome 10 breakpoint was 220 kilobases 5' to the Membrane Protein, Palmitoylated 7 (MPP7 gene, which encodes a protein required for proper cell polarity. This biological function is shared by HNF4A, a known MODY gene. Databases show MPP7 is highly expressed in mouse pancreas and is expressed in human islets. The translocation did not appear to alter lymphoblastoid expression of MPP7 or other genes near the breakpoints. Conclusion The balanced translocation and MODY-like diabetes in the proband could be coincidental. Alternatively, the translocation may cause islet cell dysfunction by altering MPP7 expression in a subtle or tissue-specific fashion. The potential roles of MPP7 mutations in diabetes and perturbed islet cell polarity in insulin secretion warrant further study.

  9. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus complex.

    Directory of Open Access Journals (Sweden)

    Xiuguang Mao

    Full Text Available The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2 and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.

  10. Childhood pre-B cell acute lymphoblastic leukemia with translocation t(1;19)(q21.1;p13.3) and two additional chromosomal aberrations involving chromosomes 1, 6, and 13: a case report.

    Science.gov (United States)

    Wafa, Abdulsamad; As'sad, Manar; Liehr, Thomas; Aljapawe, Abdulmunim; Al Achkar, Walid

    2017-04-07

    The translocation t(1;19)(q23;p13), which results in the TCF3-PBX1 chimeric gene, is one of the most frequent rearrangements observed in B cell acute lymphoblastic leukemia. It appears in both adult and pediatric patients with B cell acute lymphoblastic leukemia at an overall frequency of 3 to 5%. Most cases of pre-B cell acute lymphoblastic leukemia carrying the translocation t(1;19) have a typical immunophenotype with homogeneous expression of CD19, CD10, CD9, complete absence of CD34, and at least diminished CD20. Moreover, the translocation t(1;19) correlates with known clinical high risk factors, such as elevated white blood cell count, high serum lactate dehydrogenase levels, and central nervous system involvement; early reports indicated that patients with translocation t(1;19) had a poor outcome under standard treatment. We report the case of a 15-year-old Syrian boy with pre-B cell acute lymphoblastic leukemia with abnormal karyotype with a der(19)t(1;19)(q21.1;p13.3) and two yet unreported chromosomal aberrations: an interstitial deletion 6q12 to 6q26 and a der(13)t(1;13)(q21.1;p13). According to the literature, cases who are translocation t(1;19)-positive have a significantly higher incidence of central nervous system relapse than patients with acute lymphoblastic leukemia without the translocation. Of interest, central nervous system involvement was also seen in our patient. To the best of our knowledge, this is the first case of childhood pre-B cell acute lymphoblastic leukemia with an unbalanced translocation t(1;19) with two additional chromosomal aberrations, del(6)(q12q26) and t(1;13)(q21.3;p13), which seem to be recurrent and could influence clinical outcome. Also the present case confirms the impact of the translocation t(1;19) on central nervous system relapse, which should be studied for underlying mechanisms in future.

  11. Defective pairing and synaptonemal complex formation in a Sordaria mutant (spo44) with a translocated segment of the nucleolar organizer.

    Science.gov (United States)

    Zickler, D; de Lares, L; Moreau, P J; Leblon, G

    1985-01-01

    The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. - The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.

  12. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome

    International Nuclear Information System (INIS)

    Kitagawa, Yukiko; Kameoka, Masanori; Shoji-Kawata, Sanae; Iwabu, Yukie; Mizuta, Hiroyuki; Tokunaga, Kenzo; Fujino, Masato; Natori, Yukikazu; Yura, Yoshiaki; Ikuta, Kazuyoshi

    2008-01-01

    The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2α) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2α. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2α. Confocal fluorescence microscopy revealed that a subpopulation of AP2α was not only localized in the cytoplasm but was also partly co-localized with lamin B, importin β and Nup153, implying that AP2α negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2α may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle

  13. A voltage-gated pore for translocation of tRNA

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com

    2013-09-13

    Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.

  14. Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions.

    Science.gov (United States)

    Leblon, G; Zickler, D; Lebilcot, S

    1986-02-01

    In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.

  15. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    Science.gov (United States)

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  16. Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity

    NARCIS (Netherlands)

    Bazuine, Merlijn; Ouwens, D. Margriet; Gomes de Mesquita, Daan S.; Maassen, J. Antonie

    2003-01-01

    The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4

  17. Gang Membership and Drug Involvement: Untangling the Complex Relationship

    Science.gov (United States)

    Bjerregaard, Beth

    2010-01-01

    Previous research has consistently demonstrated a relationship between gang membership and involvement in illegal substances. In addition, researchers have noted that gang members are frequently more heavily involved in drug sales, which often lead to increases in violent behaviors. Most of this research, however, is either cross-sectional or…

  18. Systematic re-examination of carriers of balanced reciprocal translocations: a strategy to search for candidate regions for common and complex diseases

    DEFF Research Database (Denmark)

    Bache, Iben; Hjorth, Mads; Bugge, Merete

    2006-01-01

    linkage data and/or the translocation co-segregated with the reported phenotype, for example, we found a significant linkage (lod score=2.1) of dyslexia and a co-segregating translocation with a breakpoint in a previously confirmed locus for dyslexia. Furthermore, we identified 441 instances of at least...

  19. Interaction of Tim23 with Tim50 Is essential for protein translocation by the mitochondrial TIM23 complex.

    Science.gov (United States)

    Gevorkyan-Airapetov, Lada; Zohary, Keren; Popov-Celeketic, Dusan; Mapa, Koyeli; Hell, Kai; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2009-02-20

    The TIM23 complex is the major translocase of the mitochondrial inner membrane responsible for the import of essentially all matrix proteins and a number of inner membrane proteins. Tim23 and Tim50, two essential proteins of the complex, expose conserved domains into the intermembrane space that interact with each other. Here, we describe in vitro reconstitution of this interaction using recombinantly expressed and purified intermembrane space domains of Tim50 and Tim23. We established two independent methods, chemical cross-linking and surface plasmon resonance, to track their interaction. In addition, we identified mutations in Tim23 that abolish its interaction with Tim50 in vitro. These mutations also destabilized the interaction between the two proteins in vivo, leading to defective import of preproteins via the TIM23 complex and to cell death at higher temperatures. This is the first study to describe the reconstitution of the Tim50-Tim23 interaction in vitro and to identify specific residues of Tim23 that are vital for the interaction with Tim50.

  20. Efficacy of Two Different Instructional Methods Involving Complex Ecological Content

    Science.gov (United States)

    Randler, Christoph; Bogner, Franz X.

    2009-01-01

    Teaching and learning approaches in ecology very often follow linear conceptions of ecosystems. Empirical studies with an ecological focus consistent with existing syllabi and focusing on cognitive achievement are scarce. Consequently, we concentrated on a classroom unit that offers learning materials and highlights the existing complexity rather…

  1. The first record of translocated white-clawed crayfish from the Austropotamobius pallipes complex in Sardinia (Italy

    Directory of Open Access Journals (Sweden)

    Julien Amouret

    2015-03-01

    Full Text Available The white-clawed crayfish Austropotamobius pallipes complex is native to Europe, being present in 18 European countries, Italy included. However, the number and abundance of its populations are today restricted and it has been recently classified as “endangered” by IUCN (International Union for Conservation of Nature. Here, we report the first record of this freshwater crayfish in Sardinia Island (Italy. Using a fragment of the mitochondrial DNA 16S rRNA gene, we identified three haplotypes that correspond to the A. italicus meridionalis subclade. We provide information about the sampling area, population density and finally discuss hypotheses about the occurrence of this population in Sardinia, comparing it with other Mediterranean populations. Our results improve the existing knowledge about the phylogeography of the taxon across Italy, confirming its complex pattern of distribution. In addition to the non-native status of the Sardinian A. i. meridionalis crayfish, we showed that the most proximal Mediterranean population of white-clawed crayfish existing in Corsica belongs to A. pallipes from Southern France.

  2. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    International Nuclear Information System (INIS)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-01-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor α locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor α locus to a germ-line MYC oncogene results in MYC deregulation

  3. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  4. Translocations affecting human immunoglobulin heavy chain locus

    Directory of Open Access Journals (Sweden)

    Sklyar I. V.

    2014-03-01

    Full Text Available Translocations involving human immunoglobulin heavy chain (IGH locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation.

  5. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  6. FISH studies in a girl with sporadic aniridia and an apparently balanced de novo t(11;13)(p13;q33) translocation detect a microdeletion involving the WAGR region

    OpenAIRE

    J.C. Llerena Jr.; J.C. Cabral de Almeida; E. Bastos; J.A. Crolla

    2000-01-01

    Conventional cytogenetic studies on a female infant with sporadic aniridia revealed what appeared to be a balanced de novo t(11;13) (p13;q33) translocation. Fluorescence in situ hybridization (FISH) investigations, however, detected the presence of a cryptic 11p13p14 deletion which included the WAGR region and involved approximately 7.5 Mb of DNA, including the PAX6 and WT1 genes. These results account for the patient's aniridia, and place her at high risk for developing Wilms' tumour. The ab...

  7. Variant Philadelphia translocations with different breakpoints in six chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Dilhan Kuru

    2011-09-01

    Full Text Available Objective: The Philadelphia (Ph chromosome, consisting of the t(9;22(q34;q11 translocation, is observed in ~90% of patients with chronic myeloid leukemia (CML. Variant Ph translocations are observed in 5%-10% of CML patients. In variant translocations 3 and possibly more chromosomes are involved. Herein we report 6 CML patients with variant Ph translocations.Materials and Methods: Bone marrow samples were examined using conventional cytogenetic meth ods. Fluorescence in situ hybridization (FISH with whole-chromosome paints and BCR-ABL 1D probes were used to confirm and/or complement the findings, and identify rearrangements beyond the resolution of conventional cytogenetic methods. Results: Variant Ph translocations in the 6 patients were as follows: t(7;22(p22;q11, t(9;22;15(q34;q11;q22, t(15;22(p11;q11, t(1;9;22;3(q24;q34;q11;q21, t(12;22(p13;q11, and t(4;8;9;22(q11;q13;q34;q11.Conclusion: Among the patients, 3 had simple and 3 had complex variant Ph translocations. Two of the presented cases had variant Ph chromosomes not previously described, 1 of which had a new complex Ph translocation involving chromosomes 1, 3, 9, 22, and t(1;9;22;3(q24;q34;q11;q21 apart from a clone with a classical Ph, and the other case had variant Ph translocation with chromosomes 4, 8, 9, and 22, and t(4;8;9;22(q11;q13;q34;q11 full complex translocation. Number of studies reported that some patients with variant Ph translocation were poor responders to imatinib. All of our patients with variant Ph translocations had suboptimal responses to imatinib, denoting a poor prognosis also. Variant Ph translocations may be important as they are associated with prognosis and therapy for CML patients.

  8. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53

    International Nuclear Information System (INIS)

    Banu, Sakhila K.; Stanley, Jone A.; Lee, JeHoon; Stephen, Sam D.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.

    2011-01-01

    Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.

  9. Variants forms of Philadelphia translocation in two patients with chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Valent, A.; Zamecnikova, A.; Krizan, P.; Karlic, H.; Nowotny, H.

    1996-01-01

    During a 4-year period (December 1990-December 1994), among other diagnoses hundred cases of chronic myeloid leukemia (CML) were analyzed in our departments. We focused our attention on two cases with a variant form of Philadelphia translocation. Cytogenetic and molecular genetic studies were performed to resolve the status of BCR and ABL in the bone marrow or peripheral blood cells of the two CML patients with complex translocations involving chromosomes, 3, 9, 22 and 9, 12, 22 respectively. In the first case the presence of Ph chromosome was detected cytogenetically, BCR-ABL translocation was detected by Southern hybridization. In the second phase, only the PCR method showed BCR-ABL rearrangement. The second case, with a random variant form of Ph translocation, could be detected using different methods of clinical molecular genetics. (author)

  10. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node.

    Directory of Open Access Journals (Sweden)

    José Manuel Inácio

    Full Text Available The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM. Our results indicate that Cerl2 initially localizes and prevents the activation of Nodal genetic circuitry on the right side of the embryo, and later its right-to-left translocation shutdowns Nodal activity in the node. The consequent prolonged Nodal activity in the node by the absence of Cerl2 affects local Nodal expression and prolongs its expression in the LPM. Simultaneous genetic removal of both Nodal node inhibitors, Cerl2 and Lefty1, sustains even longer and bilateral this LPM expression.

  11. Translocation heterozygosity in southern African species of Viscum

    Directory of Open Access Journals (Sweden)

    D. Wiens

    1980-11-01

    Full Text Available Sex-associated and floating translocation complexes are characteristic of dioecious species of  Viscum,  but are virtually absent in monoecious species. The majority of dioecious species has fixed sex-associated translocation complexes with the male being the heterozygous sex. The sex-associated multivalent is usually O4 (ring-of-four or O6 , rarely O8 . Dioecious species without sex-associated translocations are much less common. Most of the dioecious species are also polymorphic for floating translocations, producing one or more additional multivalents ranging from O4 to O12. Floating translocations may be more frequent in species that do not have sex-associated translocations. Supernumerary chromosomes are also present in several species. Sex ratios are at unity in most dioecious species, but female-biased ratios may occur in some species. The high correlation between dioecy and translocation heterozygosity suggests that translocations are primarily associated with the origin and establishment of dioecy. Any róle in the maintenance of biased sex ratios through meiotic drive is probably secondary. Sex-associated translocations may serve to stabilize dioecy by bringing the sex factors into close linkage. Subsequent structural rearrangements within a sex-associated translocation complex may bring the sex factors together in one chromosome pair, releasing floating translocations. The high frequencies of floating translocation heterozygosity in some species indicate that such heterozygosity also has adaptive value.

  12. Public involvement in environmental, safety and health issues at the DOE Nuclear Weapons Complex

    International Nuclear Information System (INIS)

    Taylor, Laura L.; Morgan, Robert P.

    1992-01-01

    The state of public involvement in environmental, safety, and health issues at the DOE Nuclear Weapons Complex is assessed through identification of existing opportunities for public involvement and through interviews with representatives of ten local citizen groups active in these issues at weapons facilities in their communities. A framework for analyzing existing means of public involvement is developed. On the whole, opportunities for public involvement are inadequate. Provisions for public involvement are lacking in several key stages of the decision-making process. Consequently, adversarial means of public involvement have generally been more effective than cooperative means in motivating change in the Weapons Complex. Citizen advisory boards, both on the local and national level, may provide a means of improving public involvement in Weapons Complex issues. (author)

  13. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation

    Directory of Open Access Journals (Sweden)

    Giuliana Cassinelli

    2009-01-01

    Full Text Available Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC. We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs.

  14. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation1

    Science.gov (United States)

    Cassinelli, Giuliana; Favini, Enrica; Degl'Innocenti, Debora; Salvi, Alessandro; De Petro, Giuseppina; Pierotti, Marco A; Zunino, Franco; Borrello, Maria Grazia; Lanzi, Cinzia

    2009-01-01

    Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC). We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F) devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs. PMID:19107227

  15. Organic complexation and translocation of ferric iron in podzols of the Negro River watershed. Separation of secondary Fe species from Al species

    Science.gov (United States)

    Fritsch, E.; Allard, Th.; Benedetti, M. F.; Bardy, M.; do Nascimento, N. R.; Li, Y.; Calas, G.

    2009-04-01

    The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of Fe III in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of Fe III stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses. Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe 2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted Fe III bound to organic ligands (Fe IIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of Fe IIIOM to the rivers. The concentration of Fe IIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The

  16. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  17. A Pilot Study Involving the Effect of Two Different Complex Training Protocols on Lower Body Power

    OpenAIRE

    Smith Chad E.; Lyons Brian; Hannon James C.

    2014-01-01

    Purpose. Complex training (CT) involves the coupling of two exercises ostensibly to enhance the effect of the second exercise. Typically, the first exercise is a strength exercise and the second exercise is a power exercise involving similar muscles. In most cases, CT is designed to enhance power. The purpose of this study was twofold. First, this study was designed to determine if lower body power could be enhanced using complex training protocols. Second, this study investigated whether the...

  18. Monitoring translocations by M-FISH and three-color FISH painting techniques. A study of two radiotherapy patients

    International Nuclear Information System (INIS)

    Pouzoulet, F.; Roch-Lefevre, S.; Giraudet, AL.

    2007-01-01

    To compare translocation rate using either M-FISH or FISH-3 in two patients treated for head and neck cancer, with a view to retrospective dosimetry. Translocation analysis was performed on peripheral blood lymphocyte cultures from blood samples taken at different times during the radiotherapy (0 Gy, 12 Gy and 50 Gy) and a few months after the end of the treatment (follow-up). Estimated translocation yield varied according to the FISH technique used. At 50 Gy and follow-up points, the translocation yields were higher with FISH-3 than with M-FISH. This difference can be attributed to three events. First, an increase in complex aberrations was observed for 50 Gy and follow-up points compared with 0 Gy and 12 Gy points. Second, at the end of treatment for patient A, involvement of chromosomes 2, 4, 12 in translocations was less than expected according to the Lucas formula. Third, a clone bearing a translocation involving a FISH-3 painted chromosome was detected. More translocations were detected with M-FISH than with FISH-3, and so M-FISH is expected to improve the accuracy of chromosome aberration analyses in some situations. (author)

  19. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers.

    Science.gov (United States)

    Veith, Paul D; Glew, Michelle D; Gorasia, Dhana G; Reynolds, Eric C

    2017-10-01

    The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum. Proteins secreted by the T9SS have an N-terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C-terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C-terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components. © 2017 John Wiley & Sons Ltd.

  20. The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation.

    Science.gov (United States)

    Rönnau, Cindy; Liebermann, Herbert E H; Helbig, Franz; Staudt, Alexander; Felix, Stephan B; Ewert, Ralf; Landsberger, Martin

    2009-02-28

    The bio-complex "reaction pattern in vertebrate cells" (RiV) is mainly represented by characteristic exosome-like particles--probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5+/-10.3%) and VCAM-1 (71.1+/-12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0+/-5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7+/-4.1%) and p65 (85.0+/-1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

  1. Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation

    Directory of Open Access Journals (Sweden)

    Jeremy M. Henley

    2012-05-01

    Full Text Available Post-translational modifications of proteins are essential for cell function. Covalent modification by SUMO (small ubiquitin-like modifier plays a role in multiple cell processes, including transcriptional regulation, DNA damage repair, protein localization and trafficking. Factors affecting protein localization and trafficking are particularly crucial in neurons because of their polarization, morphological complexity and functional specialization. SUMOylation has emerged as a major mediator of intranuclear and nucleo-cytoplasmic translocations of proteins involved in critical pathways such as circadian rhythm, apoptosis and protein degradation. In addition, SUMO-regulated re-localization of extranuclear proteins is required to sustain neuronal excitability and synaptic transmission. Thus, SUMOylation is a key arbiter of neuronal viability and function. Here, we provide an overview of recent advances in our understanding of regulation of neuronal protein localization and translocation by SUMO and highlight exciting areas of ongoing research.

  2. Radiation induced reciprocal translocations and inversions in anopheles albimanus

    International Nuclear Information System (INIS)

    Kaiser, P.E.; Seawright, J.A.; Benedict, M.Q.; Narang, S.

    1982-01-01

    Reciprocal translocations and inversions were induced in Anopheles albimanus Wiedemann by irradiation of males with X rays. A total of 1669 sperm were assayed, and 175 new aberrations were identified as follows: 102 reciprocal translocations (67 autosomal and 35 sex-linked), 45 pericentric inversions, and 28 paracentric inversions. Eleven of the translocations were nearly whole-arm interchanges, and these were selected for the construction of 'capture systems' for compound chromosomes. Two double-heterozygous translocation strains and four homozygous translocation strains were established. Anopheles albimanus females were irradiated, and a pseudolinkage scheme involving mutant markers was employed to identify reciprocal translocations. The irradiation of females was very inefficient; only one translocation was recovered from 1080 ova tested

  3. Spin-dependent recombination involving oxygen-vacancy complexes in silicon

    OpenAIRE

    Franke, David P.; Hoehne, Felix; Vlasenko, Leonid S.; Itoh, Kohei M.; Brandt, Martin S.

    2014-01-01

    Spin-dependent relaxation and recombination processes in $\\gamma$-irradiated $n$-type Czochralski-grown silicon are studied using continuous wave (cw) and pulsed electrically detected magnetic resonance (EDMR). Two processes involving the SL1 center, the neutral excited triplet state of the oxygen-vacancy complex, are observed which can be separated by their different dynamics. One of the processes is the relaxation of the excited SL1 state to the ground state of the oxygen-vacancy complex, t...

  4. Anticancer ruthenium(III) complex KP1019 interferes with ATP-dependent Ca2+ translocation by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA).

    Science.gov (United States)

    Sadafi, Fabrizio-Zagros; Massai, Lara; Bartolommei, Gianluca; Moncelli, Maria Rosa; Messori, Luigi; Tadini-Buoninsegni, Francesco

    2014-08-01

    Sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), a P-type ATPase that sustains Ca2+ transport and plays a major role in intracellular Ca2+ homeostasis, represents a therapeutic target for cancer therapy. Here, we investigated whether ruthenium-based anticancer drugs, namely KP1019 (indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)]), NAMI-A (imidazolium [trans-tetrachloro(1H-imidazole)(S-dimethylsulfoxide)ruthenate(III)]) and RAPTA-C ([Ru(η6-p-cymene)dichloro(1,3,5-triaza-7-phosphaadamantane)]), and cisplatin (cis-diammineplatinum(II) dichloride) might act as inhibitors of SERCA. Charge displacement by SERCA adsorbed on a solid-supported membrane was measured after ATP or Ca2+ concentration jumps. Our results show that KP1019, in contrast to the other metal compounds, is able to interfere with ATP-dependent translocation of Ca2+ ions. An IC50 value of 1 μM was determined for inhibition of calcium translocation by KP1019. Conversely, it appears that KP1019 does not significantly affect Ca2+ binding to the ATPase from the cytoplasmic side. Inhibition of SERCA at pharmacologically relevant concentrations may represent a crucial aspect in the overall pharmacological and toxicological profile of KP1019. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation

    Science.gov (United States)

    Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.

    2016-01-01

    Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435

  6. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.

    Science.gov (United States)

    Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C

    2016-04-01

    Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.

  7. Problem-elephant translocation: translocating the problem and the elephant?

    Directory of Open Access Journals (Sweden)

    Prithiviraj Fernando

    Full Text Available Human-elephant conflict (HEC threatens the survival of endangered Asian elephants (Elephas maximus. Translocating "problem-elephants" is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: "homers" returned to the capture site, "wanderers" ranged widely, and "settlers" established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals.

  8. Facilitating Learning and Physical Change in Complex Systems through Employee Involvement

    DEFF Research Database (Denmark)

    Bjerrum, Eva; Dahl, Susanne

    In a Danish workplace an experiment with mobile seating was carried out. Instead of implementing a certain concept designed by the management team the process was facilitated as a user involvement process based on Stacey´s theory of complex responsive processes. Here providing alternative picture...... of the organisation challenged the discursive practice of the organisation and engaged employees in a process where they challenged each other’s accepted understandings of the organisation and of their work....

  9. Simulations of polymer translocation

    NARCIS (Netherlands)

    Vocks, H.

    2008-01-01

    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze --- i.e., translocate ---

  10. FISH studies in a girl with sporadic aniridia and an apparently balanced de novo t(11;13(p13;q33 translocation detect a microdeletion involving the WAGR region

    Directory of Open Access Journals (Sweden)

    J.C. Llerena Jr.

    2000-09-01

    Full Text Available Conventional cytogenetic studies on a female infant with sporadic aniridia revealed what appeared to be a balanced de novo t(11;13 (p13;q33 translocation. Fluorescence in situ hybridization (FISH investigations, however, detected the presence of a cryptic 11p13p14 deletion which included the WAGR region and involved approximately 7.5 Mb of DNA, including the PAX6 and WT1 genes. These results account for the patient's aniridia, and place her at high risk for developing Wilms' tumour. The absence of mental retardation in the patient suggests that the position of the distal breakpoint may also help to refine the mental retardation locus in the WAGR contiguous gene syndrome (Wilms', aniridia, genital anomalies and mental retardation.O estudo citogenético convencional em uma menina com aniridia esporádica resultou em uma aparente translocação balanceada t(11;13(p13;q33 de novo. Entretanto, o estudo citogenético pela hibridação in situ fluorescente (FISH detectou a presença de uma deleção críptica 11p13p14, incluindo a região WAGR e envolvendo aproximadamente 7.5 Mb de DNA, deletando os genes PAX6 e WT1. Estes resultados correlacionam-se com o quadro clínico da paciente e a coloca em alto risco de desenvolver tumor de Wilms. A ausência de retardo mental na paciente indica que a posição distal do ponto de quebra poderá refinar o mapeamento do locus retardo mental na síndrome de genes contíguos WAGR (Wilms, aniridia, anomalias genitais e retardo mental.

  11. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  12. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  13. Spin-dependent recombination involving oxygen-vacancy complexes in silicon

    Science.gov (United States)

    Franke, David P.; Hoehne, Felix; Vlasenko, Leonid S.; Itoh, Kohei M.; Brandt, Martin S.

    2014-05-01

    Spin-dependent relaxation and recombination processes in γ-irradiated n-type Czochralski-grown silicon are studied using continuous wave (cw) and pulsed electrically detected magnetic resonance (EDMR). Two processes involving the SL1 center, the neutral excited triplet state of the oxygen-vacancy complex, are observed which can be separated by their different dynamics. One of the processes is the relaxation of the excited SL1 state to the ground state of the oxygen-vacancy complex, the other a charge transfer between 31P donors and SL1 centers forming close pairs, as indicated by electrically detected electron double resonance. For both processes, the recombination dynamics is studied with pulsed EDMR techniques. We demonstrate the feasibility of true zero-field cw and pulsed EDMR for spin-1 systems and use this to measure the lifetimes of the different spin states of SL1 also at vanishing external magnetic field.

  14. Experimental evidence for the involvement of dinuclear alkynylcopper(I) complexes in alkyne-azide chemistry.

    Science.gov (United States)

    Buckley, Benjamin R; Dann, Sandra E; Heaney, Harry

    2010-06-01

    Dinuclear alkynylcopper(I) ladderane complexes are prepared by a robust and simple protocol involving the reduction of Cu(2)(OH)(3)OAc or Cu(OAc)(2) by easily oxidised alcohols in the presence of terminal alkynes; they function as efficient catalysts in copper-catalysed alkyne-azide cycloaddition reactions as predicted by the Ahlquist-Fokin calculations. The same copper(I) catalysts are formed during reactions by using the Sharpless-Fokin protocol. The experimental results also provide evidence that sodium ascorbate functions as a base to deprotonate terminal alkynes and additionally give a convincing alternative explanation for the fact that the Cu(I)-catalysed reactions of certain 1,3-diazides with phenylacetylene give bis(triazoles) as the major products. The same dinuclear alkynylcopper(I) complexes also function as catalysts in cycloaddition reactions of azides with 1-iodoalkynes.

  15. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases

    DEFF Research Database (Denmark)

    Bergholdt, R.; Størling, Zenia, Marian; Hansen, Kasper Lage

    2007-01-01

    We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We...... identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases....

  16. Cochlear Implant: the complexity involved in the decision making process by the family

    Directory of Open Access Journals (Sweden)

    Sheila de Souza Vieira

    2014-06-01

    Full Text Available OBJECTIVE: to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child.METHOD: qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants.RESULTS: knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant.CONCLUSION: deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention.

  17. Cochlear Implant: the complexity involved in the decision making process by the family.

    Science.gov (United States)

    Vieira, Sheila de Souza; Bevilacqua, Maria Cecília; Ferreira, Noeli Marchioro Liston Andrade; Dupas, Giselle

    2014-01-01

    to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child. qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants). knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant. deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention.

  18. Cochlear Implant: the complexity involved in the decision making process by the family1

    Science.gov (United States)

    Vieira, Sheila de Souza; Bevilacqua, Maria Cecília; Ferreira, Noeli Marchioro Liston Andrade; Dupas, Giselle

    2014-01-01

    Objective to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child. Method qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants). Results knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant. Conclusion deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention. PMID:25029052

  19. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  20. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    NARCIS (Netherlands)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. It is generally accepted that, when no chromosomal rearrangements are involved, man

  1. Dek-can rearrangement in translocation (6;9)(p23;q34)

    NARCIS (Netherlands)

    Soekarman, D.; von Lindern, M.; van der Plas, D. C.; Selleri, L.; Bartram, C. R.; Martiat, P.; Culligan, D.; Padua, R. A.; Hasper-Voogt, K. P.; Hagemeijer, A.

    1992-01-01

    The translocation (6;9)(p23;q34) is mainly found in specific subtypes of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The diagnosis of this translocation is not easy since the cytogenetic change is quite subtle. The two genes involved in this translocation were recently isolated

  2. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    Science.gov (United States)

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.

  3. Familial cryptic translocation in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M. [ECU School of Medicine, Greenville, NC (United States)] [and others

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  4. The GARP Complex Is Involved in Intracellular Cholesterol Transport via Targeting NPC2 to Lysosomes.

    Science.gov (United States)

    Wei, Jian; Zhang, Ying-Yu; Luo, Jie; Wang, Ju-Qiong; Zhou, Yu-Xia; Miao, Hong-Hua; Shi, Xiong-Jie; Qu, Yu-Xiu; Xu, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-06-27

    Proper intracellular cholesterol trafficking is critical for cellular function. Two lysosome-resident proteins, NPC1 and NPC2, mediate the egress of low-density lipoprotein-derived cholesterol from lysosomes. However, other proteins involved in this process remain largely unknown. Through amphotericin B-based selection, we isolated two cholesterol transport-defective cell lines. Subsequent whole-transcriptome-sequencing analysis revealed two cell lines bearing the same mutation in the vacuolar protein sorting 53 (Vps53) gene. Depletion of VPS53 or other subunits of the Golgi-associated retrograde protein (GARP) complex impaired NPC2 sorting to lysosomes and caused cholesterol accumulation. GARP deficiency blocked the retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR) to the trans-Golgi network. Further, Vps54 mutant mice displayed reduced cellular NPC2 protein levels and increased cholesterol accumulation, underscoring the physiological role of the GARP complex in cholesterol transport. We conclude that the GARP complex contributes to intracellular cholesterol transport by targeting NPC2 to lysosomes in a CI-MPR-dependent manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves A; Cheng, Zhenyu; Bush, Jenifer; Ausubel, Frederick M

    Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.

  6. A Pilot Study Involving the Effect of Two Different Complex Training Protocols on Lower Body Power

    Directory of Open Access Journals (Sweden)

    Smith Chad E.

    2014-09-01

    Full Text Available Purpose. Complex training (CT involves the coupling of two exercises ostensibly to enhance the effect of the second exercise. Typically, the first exercise is a strength exercise and the second exercise is a power exercise involving similar muscles. In most cases, CT is designed to enhance power. The purpose of this study was twofold. First, this study was designed to determine if lower body power could be enhanced using complex training protocols. Second, this study investigated whether the inclusion of a power exercise instead of a strength exercise as the first exercise in CT would produce differences in lower body power. Methods. Thirty-six recreationally-trained men and women aged 20 to 29 years attending a college physical education course were randomly assigned to one of three groups: squat and countermovement squat jumps (SSJ, kettlebell swings and countermovement squat jumps (KSJ, and a control (CON. Training involving CT lasted 6 weeks. All participants were pre- and posttested for vertical jump performance in order to assess lower body power. Results. Vertical jump scores improved for all groups (p < 0.01. The results also indicated that there were no statistically significant differences between group scores across time (p = 0.215. The statistical power for this analysis was low (0.312, most likely due to the small sample size. However, the results did reveal a trend suggesting that the training improvements were greater for both the SSJ and KSJ groups compared with the CON (by 171% and 107%, respectively although significance was not reached. Conclusions. Due to the observed trend, a replication of this study with a greater number of participants over a longer period of time is warranted.

  7. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    Science.gov (United States)

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  8. Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense

    Directory of Open Access Journals (Sweden)

    S. M. Sohel Rana

    2015-09-01

    Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.

  9. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.

    Science.gov (United States)

    Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J

    2011-01-21

    In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  11. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity.

    Science.gov (United States)

    Pérez de Diego, Rebeca; Sánchez-Ramón, Silvia; López-Collazo, Eduardo; Martínez-Barricarte, Rubén; Cubillos-Zapata, Carolina; Ferreira Cerdán, Antonio; Casanova, Jean-Laurent; Puel, Anne

    2015-11-01

    Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  13. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  14. Characterization of a t(5;8)(q31;q21) translocation in a patient with mental retardation and congenital heart disease: implications for involvement of RUNX1T1 in human brain and heart development

    DEFF Research Database (Denmark)

    Zhang, Litu; Tümer, Zeynep; Møllgård, Kjeld

    2009-01-01

    The chromosome break points of the t(8;21)(q21.3;q22.12) translocation associated with acute myeloid leukemia disrupt the RUNX1 gene (also known as AML1) and the RUNX1T1 gene (also known as CBFA2T3, MTG8 and ETO) and generate a RUNX1-RUNX1T1 fusion protein. Molecular characterization of the trans...... development and support the notion that disruption of the RUNX1T1 gene is associated with the patient's phenotype.European Journal of Human Genetics advance online publication, 28 January 2009; doi:10.1038/ejhg.2008.269....

  15. Facilitating Site Specific and Citizens Advisory Boards: Running Effective Meetings that Involve Complex Technical Issues

    International Nuclear Information System (INIS)

    Freeman, J.

    2009-01-01

    Environmental cleanup issues at federal sites are more often than not on the agendas of meetings of the Site Specific Advisory Boards (SSABs), also called Citizens Advisory Boards (CABs), that exist at most U.S. Department of Energy (DOE) sites with an Environmental Management (EM) mission. In 1994, when Congress established these committees comprised of local citizens, it enabled community stakeholders to become more directly involved in DOE EM cleanup decisions. This involvement is to help the agency make cost-effective and environmentally sound decisions which lead to faster, safer cleanups. Eight local Boards that fall under the Federal Advisory Committee Act-chartered EM SSAB charter are found in Hanford, Washington; Idaho; Northern New Mexico; Nevada; Oak Ridge, Tennessee; Paducah, Kentucky; Portsmouth, Ohio; and at the Savannah River Site in South Carolina. These boards provide advice and recommendations about EM site-specific issues such as cleanup standards (how clean is clean?), environmental restoration, waste management, the stabilization and disposal of non-stockpile nuclear materials, future land use and long-term stewardship, risk assessment and management, and cleanup science and technology activities. These issues are, by their very nature, loaded with complicated technical terms and strategies, scientific data and interpretations, and long histories of studies and reports. The members of SSABs and CABs rotate on and off the Boards according to defined terms of office, thereby routinely opening the Boards' ranks to new members, many of whom are new to the issues. In addition, members of the public who have access to public comment periods at each Board meeting run up against the same daunting menu of obscure acronyms, scientific terms and notations, and an historical trail which is not always evident except to those involved with the issues over many years. How does a facilitator effectively guide such a group of citizens, each of whom arrives to

  16. Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Miguel A., E-mail: miguel.gomez@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garcia-Guinea, Javier, E-mail: guinea@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Garrido, Fernando, E-mail: fernando.garrido@mncn.csic.es [Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, Madrid E-28006 (Spain); Townsend, Peter D., E-mail: pdtownsend@gmail.com [School of Science and Technology, University of Sussex, Brighton BN1 9QH (United Kingdom); Marco, Jose-Francisco, E-mail: jfmarco@iqfr.csic.es [Instituto de Química-Física Rocasolano, CSIC, Calle Serrano 119, Madrid E-28006 (Spain)

    2015-03-15

    coordinated Mn{sup 2+}. Moscovite samples display spectral CL bands at 285 and 560 nm but only when the electron-beam is directed along the (0 1 0) orientation and not along the (0 0 1) orientation. The Tl{sup +} versus K{sup +} cation isomorphism anchors the luminogenous hydrous thallium–manganese complexes to the potassium-bearing aluminosilicate surfaces under analyses. The CL emission bands at 285 and 560 nm of these complexes together with the EDS detection of thallium are a fast analytical measurement detecting the presence of thallium in further studies involving this toxic element. - Highlights: • Different K-aluminosilicates with thallium and manganese display similar CL spectra. • Cathodoluminescence bands at 285 and 560 nm are associated with Tl{sup 1+} and Mn{sup 2+}. • K-feldspar, quartz and moscovite with CL 285 nm peak have accesorial Tl{sup 1+} by EDS. • Moscovites exhibit 285 nm CL bands along (0 1 0) orientation but not along (0 0 1). • Surficial Tl{sup +} in K{sup +} sites are anchors for hydrous Tl{sup 1+}/Mn{sup 2+} complexes and clusters.

  17. [Clinical characteristics and preimplantation genetic diagnosis for male Robertsonian translocations].

    Science.gov (United States)

    Huang, Jin; Lian, Ying; Qiao, Jie; Liu, Ping

    2012-08-18

    To explore the clinical characteristics and the preimplantation genetic diagnosis (PGD) for male Robertsonian translocations. From Jan 2005 to Oct 2011, 96 PGD cycles of 80 male Robertsonian translocations were performed at the Center of Reproductive Medicine of Peking University Third Hospital, Beijing. All the couples were involved in assisted reproductive therapy because of oligozoospermia or repeated abortions. Pregnancy results and clinical characteristics were analyzed in this study. Of all the 80 Robertsonian translocation couples, 62 (77.50%, 62/80) couples suffered from primary infertility due to severe oligoospermia and 8 (10%, 8/80) couples suffered from secondary infertility due to oligoospermia. Moreover, 10 (12.50%, 10/80) couples had recurrent spontaneous abortion. Of all the 80 male Robertsonian translocations, 50 were (13; 14) translocations and 15 (14; 21) translocations. The study showed that 79 PGD cycles had the balanced embryos to transfer and 25 cycles resulted in clinical pregnancies. The clinical pregnancy rate per transfer cycle was 31.65% (25 of 79). Now, 18 couples had 21 viable infants and 3 were ongoing pregnant. Oligozoospermia is the main factor for the infertility of the male Robertsonian translocations. Artificial reproductive techniques can solve their reproductive problems. Moreover, PGD will decrease the risk of recurrent spontaneous abortion and the malformations.

  18. System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Megha Rajaram

    Full Text Available Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8 or minimally (STC1 significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti

  19. Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex.

    Science.gov (United States)

    Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2011-06-01

    The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.

  20. Translocation of threatened plants as a conservation measure in China.

    Science.gov (United States)

    Liu, Hong; Ren, Hai; Liu, Qiang; Wen, XiangYing; Maunder, Michael; Gao, JiangYun

    2015-12-01

    We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large-scale habitat destruction caused by the Three-Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific-based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation-wide conservation program on species with extremely

  1. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  2. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  3. Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence

    Directory of Open Access Journals (Sweden)

    Esperanza Fernández

    2017-10-01

    Full Text Available Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function.

  4. Chemiosmotic Energy Conservation in Dinoroseobacter shibae: Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction

    Directory of Open Access Journals (Sweden)

    Christian Kirchhoff

    2018-05-01

    Full Text Available Dinoroseobacter shibae is an aerobic anoxygenic phototroph and able to utilize light energy to support its aerobic energy metabolism. Since the cells can also grow anaerobically with nitrate and nitrite as terminal electron acceptor, we were interested in how the cells profit from photosynthesis during denitrification and what the steps of chemiosmotic energy conservation are. Therefore, we conducted proton translocation experiments and compared O2-, NO3-, and NO2- respiration during different light regimes and in the dark. We used wild type cells and transposon mutants with knocked-out nitrate- and nitrite- reductase genes (napA and nirS, as well as a mutant (ppsR impaired in bacteriochlorophyll a synthesis. Light had a positive impact on proton translocation, independent of the type of terminal electron acceptor present. In the absence of an electron acceptor, however, light did not stimulate proton translocation. The light-driven add-on to proton translocation was about 1.4 H+/e- for O2 respiration and about 1.1 H+/e- for NO3- and NO2-. We could see that the chemiosmotic energy conservation during aerobic respiration involved proton translocation, mediated by the NADH dehydrogenase, the cytochrome bc1 complex, and the cytochrome c oxidase. During denitrification the last proton translocation step of the electron transport was missing, resulting in a lower H+/e- ratio during anoxia. Furthermore, we studied the type of light-harvesting and found that the cells were able to channel light from the green–blue spectrum most efficiently, while red light has only minor impact. This fits well with the depth profiles for D. shibae abundance in the ocean and the penetration depth of light with different wavelengths into the water column.

  5. Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level.

    Science.gov (United States)

    Mahendran, Kozhinjampara R; Lamichhane, Usha; Romero-Ruiz, Mercedes; Nussberger, Stephan; Winterhalter, Mathias

    2013-01-03

    The TOM protein complex facilitates the transfer of nearly all mitochondrial preproteins across outer mitochondrial membranes. Here we characterized the effect of temperature on facilitated translocation of a mitochondrial presequence peptide pF1β. Ion current fluctuations analysis through single TOM channels revealed thermodynamic and kinetic parameters of substrate binding and allowed determining the energy profile of peptide translocation. The activation energy for the on-rate and off-rate of the presequence peptide into the TOM complex was symmetric with respect to the electric field and estimated to be about 15 and 22 kT per peptide. These values are above that expected for free diffusion of ions in water (6 kT) and reflect the stronger interaction in the channel. Both values are in the range for typical enzyme kinetics and suggest one process without involving large conformational changes within the channel protein.

  6. Microwave synthesis, spectral, thermal, and antimicrobial activities of some transition metal complexes involving 5-bromosalicylaldehyde moiety

    Directory of Open Access Journals (Sweden)

    Rajendra K. Jain

    2012-07-01

    Full Text Available The coordination complexes of Co(II, Ni(II and Cu(II derived from 5-bromosalicylidene-3,4-dimethylaniline (BSMA and 5-bromosalicylidene-3,4-dichloroaniline (BSCA have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, molar conductance, electronic spectra, 1H-NMR, FAB-mass, ESR, magnetic susceptibility, electrical conductivity and thermal analysis. The complexes are coloured and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal: ligand ratio with coordination number 4 or 6. IR data shows that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. Solid state electrical conductivity studies reflect semiconducting nature of the complexes. The Schiff base and metal complexes show a good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans.

  7. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    Science.gov (United States)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  8. Systematic patient involvement for homebased outpatient administration of complex chemotherapy in acute leukemia and lymphoma

    DEFF Research Database (Denmark)

    Fridthjof, Katrine S; Kampmann, Peter; Dünweber, Anne

    2018-01-01

    Based on experience with comprehensive patient involvement, we present data from implementation of portable, programmable infusion pumps (PPP) for home-based chemotherapy administration in patients with acute leukaemia and in lymphoma patients receiving (carmustine, etoposide, cytarabine, melphalan...

  9. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1995-01-01

    A number of transmembrane digestive enzymes of the porcine small intestinal brush border membrane were found to be partially Triton X-100-insoluble at 0 degree C and colocalized in gradient centrifugation experiments with the GPI-anchored alkaline phosphatase in low-density, detergent-insoluble c...... intracellularly. I therefore propose that, in the enterocyte, the brush border enzymes are targeted directly from the trans-Golgi network toward the apical cell surface......., and their insolubility increased to that of the steady-state level soon after they achieved their mature, complex glycosylation, i.e., after passage through the Golgi complex. Detergent-insoluble complexes isolated by density gradient centrifugation were highly enriched in brush border enzymes, and the enrichment...

  10. Isolation and characterization of antigen-Ia complexes involved in T cell recognition

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1986-01-01

    Using equilibrium dialysis, it has been previously demonstrated that immunogenic peptides bind specifically to the Ia molecules serving as restriction elements in the immune response to these antigens. Using gel filtration to study the formation of ovalbumin (OVA) peptide-I-Ad complexes, it is he......Using equilibrium dialysis, it has been previously demonstrated that immunogenic peptides bind specifically to the Ia molecules serving as restriction elements in the immune response to these antigens. Using gel filtration to study the formation of ovalbumin (OVA) peptide-I-Ad complexes...... with glutaraldehyde revealed that the ovalbumin peptide was cross-linked solely to the alpha chain of I-Ad. Planar membranes containing I-Ad-OVA complexes stimulated a T cell response with 2 X 10(4) less antigen than required when uncomplexed antigen was used, thus demonstrating the biologic importance...

  11. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation.

    Science.gov (United States)

    Shinsky, Stephen A; Monteith, Kelsey E; Viggiano, Susan; Cosgrove, Michael S

    2015-03-06

    Mixed lineage leukemia protein-1 (MLL1) is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases that are required for metazoan development. MLL1 is the best characterized human SET1 family member, which includes MLL1-4 and SETd1A/B. MLL1 assembles with WDR5, RBBP5, ASH2L, DPY-30 (WRAD) to form the MLL1 core complex, which is required for H3K4 dimethylation and transcriptional activation. Because all SET1 family proteins interact with WRAD in vivo, it is hypothesized they are regulated by similar mechanisms. However, recent evidence suggests differences among family members that may reflect unique regulatory inputs in the cell. Missing is an understanding of the intrinsic enzymatic activities of different SET1 family complexes under standard conditions. In this investigation, we reconstituted each human SET1 family core complex and compared subunit assembly and enzymatic activities. We found that in the absence of WRAD, all but one SET domain catalyzes at least weak H3K4 monomethylation. In the presence of WRAD, all SET1 family members showed stimulated monomethyltransferase activity but differed in their di- and trimethylation activities. We found that these differences are correlated with evolutionary lineage, suggesting these enzyme complexes have evolved to accomplish unique tasks within metazoan genomes. To understand the structural basis for these differences, we employed a "phylogenetic scanning mutagenesis" assay and identified a cluster of amino acid substitutions that confer a WRAD-dependent gain-of-function dimethylation activity on complexes assembled with the MLL3 or Drosophila trithorax proteins. These results form the basis for understanding how WRAD differentially regulates SET1 family complexes in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Formation of mixed ligand complexes of UO22+ involving some nitrogen and oxygen donor ligands

    International Nuclear Information System (INIS)

    Singh, Mamta; Ram Nayan

    1996-01-01

    The complexation reactions of UO 2 2+ ion with nitrogen and oxygen donor ligands, 1-amino-2-naphthol-4-sulphonic acid, o-aminophenol (ap), 2-hydroxybenzoic acid (sa), 3-carboxy-4-hydroxybenzenesulphonic acid (ss) and 1,2-dihydroxybenzene (ca) have been investigated in aqueous solution employing the pH-titration technique. Analysis of the experimental data recorded at 25 degC and at an ionic strength of 0.10 M KNO 3 indicates formation of binary, hydroxo and ternary complexes of uranium. Formation constant values of the existing species have been evaluated and the results have been discussed. (author). 21 refs., 2 figs., 2 tabs

  13. Crystallographic snapshot of cellulose synthesis and membrane translocation.

    Science.gov (United States)

    Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen

    2013-01-10

    Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.

  14. The SMC5/6 complex is involved in crucial processes during human spermatogenesis

    NARCIS (Netherlands)

    Verver, Dideke E.; Langedijk, Nathalia S. M.; Jordan, Philip W.; Repping, Sjoerd; Hamer, Geert

    2014-01-01

    Genome integrity is crucial for safe reproduction. Therefore, chromatin structure and dynamics should be tightly regulated during germ cell development. Chromatin structure and function are in large part determined by the structural maintenance of chromosomes (SMC) protein complexes, of which SMC5/6

  15. The synthesis of N-Zn, N-Cu complexes involving 2-amino pyridine ...

    Indian Academy of Sciences (India)

    amino pyridine and ethylenediamine ligands (1a-b and 2a-b) have been described. They were synthesized with a simple, one-pot method, and the crystal structures of 1a, 1b, 2a and 2b were determined by X-ray crystallography. The complexes ...

  16. Involvement of Spearman's g in conceptualisation versus execution of complex tasks.

    Science.gov (United States)

    Carroll, Ellen L; Bright, Peter

    2016-10-01

    Strong correlations between measures of fluid intelligence (or Spearman's g) and working memory are widely reported in the literature, but there is considerable controversy concerning the nature of underlying mechanisms driving this relationship. In the four experiments presented here we consider the role of response conflict and task complexity in the context of real-time task execution demands (Experiments 1-3) and also address recent evidence that g confers an advantage at the level of task conceptualisation rather than (or in addition to) task execution (Experiment 4). We observed increased sensitivity of measured fluid intelligence to task performance in the presence (vs. the absence) of response conflict, and this relationship remained when task complexity was reduced. Performance-g correlations were also observed in the absence of response conflict, but only in the context of high task complexity. Further, we present evidence that differences in conceptualisation or 'modelling' of task instructions prior to execution had an important mediating effect on observed correlations, but only when the task encompassed a strong element of response inhibition. Our results suggest that individual differences in ability reflect, in large part, variability in the efficiency with which the relational complexity of task constraints are held in mind. It follows that fluid intelligence may support successful task execution through the construction of effective action plans via optimal allocation of limited resources. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The synthesis of N–Zn, N–Cu complexes involving 2-amino pyridine ...

    Indian Academy of Sciences (India)

    Administrator

    alcohol, and the reaction mixture was refluxed for. 14 h. The mixture was filtered to furnish white cry- .... benzaldehyde to 2-nitro-1-phenylethanol was esta- blished according to the content ratio of the remin- ... Zn(OAc)2 ·2 H2O in ethanol, THF or acetonitrile, the corresponding complexes were obtained after reflux- ing for 14 ...

  18. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    Science.gov (United States)

    Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam

    2015-01-01

    The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.

  19. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    Directory of Open Access Journals (Sweden)

    Mukesh

    Full Text Available The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.

  20. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  1. An Involvement of PI3-K/Akt Activation and Inhibition of AIF Translocation in Neuroprotective Effects of Undecylenic Acid (UDA) Against Pro-Apoptotic Factors-Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Jantas, Danuta; Piotrowski, Marek; Lason, Wladyslaw

    2015-12-01

    Undecylenic acid (UDA), a naturally occurring 11-carbon unsaturated fatty acid, has been used for several years as an economical antifungal agent and a nutritional supplement. Recently, the potential usefulness of UDA as a neuroprotective drug has been suggested based on the ability of this agent to inhibit μ-calpain activity. In order to verify neuroprotective potential of UDA, we tested protective efficacy of this compound against cell damage evoked by pro-apoptotic factors (staurosporine and doxorubicin) and oxidative stress (hydrogen peroxide) in human neuroblastoma SH-SY5Y cells. We showed that UDA partially protected SH-SY5Y cells against the staurosporine- and doxorubicin-evoked cell death; however, this effect was not connected with its influence on caspase-3 activity. UDA decreased the St-induced changes in mitochondrial and cytosolic AIF level, whereas in Dox-model it affected only the cytosolic AIF content. Moreover, UDA (1-40 μM) decreased the hydrogen peroxide-induced cell damage which was connected with attenuation of hydrogen peroxide-mediated necrotic (PI staining, ADP/ATP ratio) and apoptotic (mitochondrial membrane potential, caspase-3 activation, AIF translocation) changes. Finally, we demonstrated that an inhibitor of PI3-K/Akt (LY294002) but not MAPK/ERK1/2 (U0126) pathway blocked the protection mediated by UDA in all tested models of SH-SY5Y cell injury. These in vitro data point to UDA as potentially effective neuroprotectant the utility of which should be further validated in animal studies. © 2015 Wiley Periodicals, Inc.

  2. Translocation of {sup 3}H-DNA, {sup 131}I-ribonuclease and {sup 3}H-DNA {sup 131}I-ribonuclease complexes in germinated barley grains; Translocation des ADN{sup 3}H, RNase{sup 131}I et complexes ADN{sup 3}H - RNase {sup 131}I dans les orges en germination

    Energy Technology Data Exchange (ETDEWEB)

    Tshitenge, G. [Centre nucléaire TRICO, Kinshasa (Congo, The Democratic Republic of the); Ledoux, L. [Centre d’étude de l' énergie nucléaire Mol (Belgium)

    1970-01-15

    Barley grains, after germinating for 11 hours in the presence of water, were cut into sections at the end opposite the embryo. They were incubated in solutions of {sup 3}H-DNA, {sup 13I}I-ribonuclease, and {sup 3}H-DNA {sup 131}I-ribonuclease complex for three hours. They were then placed in a water-saturated atmosphere for 24 hours. At this stage the different organs of the seedlings were separated and homogenized in a solution containing 0.15M sodium chloride and 0.1 M sodium ethylenediaminetetraacetate at pH 7. By measuring the radioactivity found in the homogenates one can estimate the penetration of the macromolecules under study. The results show that the quantity found varies from one case to the other and depends both on the nature of the macromolecule and of the organ studied. (author) [French] Des orges qui ont germé pendant 11 h en présence d’eau sont sectionnées au bout opposé à l’embryon. Elles sont incubées avec des solutions d’ADN{sup 3}H, de RNase{sup 131}1 et de complexe ADN{sup 3}H - RNase {sup 131}I, pendant 3 h. Elles sont ensuite placées dans une atmosphère saturée d'eau pendant 24 h. A ce moment, les différents organes des plantules sont séparés et homogénéisés en présence d'une solution 0,15M en NaCl et 0,1M en éthylènediamine-tétracétate de Na à pH 7. La mesure de la radioactivité retrouvée dans les homogénats permet d'évaluer la pénétration des macromolécules considérées. Les résultats montrent que la quantité retrouvée varie d'un cas â l'autre et dépend à la fois de la nature de la macromolécule et de l'organe considéré. (author)

  3. Forced migrants involved in setting the agenda and designing research to reduce impacts of complex emergencies: combining Swarm with patient and public involvement.

    Science.gov (United States)

    Brainard, Julii Suzanne; Al Assaf, Enana; Omasete, Judith; Leach, Steve; Hammer, Charlotte C; Hunter, Paul R

    2017-01-01

    The UK's National Institute for Health Research (NIHR) Health Protection Research Unit in Emergency Preparedness and Response was asked to undertake research on how to reduce the impact of complex national/international emergencies on public health. How to focus the research and decide on priority topics was challenging, given the nature of complex events. Using a type of structured brain-storming, the researchers identified the ongoing UK, European and international migration crisis as both complex and worthy of deeper research. To further focus the research, two representatives of forced migrant communities were invited to join the project team as patient and public (PPI) representatives. They attended regular project meetings, insightfully contributed to and advised on practical aspects of potential research areas. The representatives identified cultural obstacles and community needs and helped choose the final research study design, which was to interview forced migrants about their strategies to build emotional resilience and prevent mental illness. The representatives also helped design recruitment documents, and undertake recruitment and interviewer training. Many events with wide-ranging negative health impacts are notable for complexity: lack of predictability, non-linear feedback mechanisms and unexpected consequences. A multi-disciplinary research team was tasked with reducing the public health impacts from complex events, but without a pre-specified topic area or research design. This report describes using patient and public involvement within an adaptable but structured development process to set research objectives and aspects of implementation. An agile adaptive development approach, sometimes described as swarm , was used to identify possible research areas. Swarm is meant to quickly identify strengths and weaknesses of any candidate project, to accelerate early failure before resources are invested. When aspects of the European migration crisis

  4. High-speed detection of DNA translocation in nanopipettes

    Science.gov (United States)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  5. Computation of resonances by two methods involving the use of complex coordinates

    International Nuclear Information System (INIS)

    Bylicki, M.; Nicolaides, C.A.

    1993-01-01

    We have studied two different systems producing resonances, a highly excited multielectron Coulombic negative ion (the He - 2s2p 2 4 P state) and a hydrogen atom in a magnetic field, via the complex-coordinate rotation (CCR) and the state-specific complex-eigenvalue Schroedinger equation (CESE) approaches. For the He - 2s2p 2 4 P resonance, a series of large CCR calculations, up to 353 basis functions with explicit r ij dependence, were carried out to serve as benchmarks. For the magnetic-field problem, the CCR results were taken from the literature. Comparison shows that the state-specific CESE theory allows the physics of the problem to be incorporated systematically while keeping the overall size of the computation tractable regardless of the number of electrons

  6. Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deyun; Guo, Haifu; Qin, Liang [Zhaoqing Univ., Zhaoqing (China); Xu, Jun [Jinan Univ., Guangzhou (China)

    2013-09-15

    Two new isostructural dinuclear complexes, Ln{sub 2}(4-cpa){sub 6}(bpy){sub 2} (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenyl-acetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with Ln···Ln separations of 3.967(2) and 3.956(3) A, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

  7. A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the Fusarium graminearum Species Complex

    Directory of Open Access Journals (Sweden)

    Haruhisha Suga

    2016-12-01

    Full Text Available Members of the Fusarium graminearum species complex (Fg complex or FGSC are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022 was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.

  8. Supramolecular architecture of metal-organic frameworks involving dinuclear copper paddle-wheel complexes.

    Science.gov (United States)

    Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas

    2013-12-15

    The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.

  9. Selectivity in inter polymer complexation involving phenolic copolymer, poly electrolytes, non-ionic polymers and transition metal ions

    International Nuclear Information System (INIS)

    Vasheghani Farahani, B.; Hosseinpour Rajabi, F.

    2006-01-01

    Selectivity in inter polymer complex formation involving a typical four-component phenolic copolymer (ρ-chloro phenol-ρ-aminophenol-ρ-toluidine-ρ-cresol- HCHO copolymer), poly electrolytes such as polyethylene imine and polyacrylic acid, a non-ionic homopolymer polyvinyl pyrrolidone, and some transition metal ions (e.g., Cu (II), Ni (11)) have been studied in dimethylformamide-methanol solvents mixture. The coordinating groups of phenolic copolymer form complexes through hydrogen bonding and ion-dipole interactions. The different stages of interactions have been studied by several experimental techniques, e.g., viscometry, potentiometry and conductometry. Some schemes have been suggested to explain the mode of interaction between these components

  10. A somatic origin of homologous Robertsonian translocations and isochromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A. (Univ. of Zurich (Switzerland)); Basaran, S.; Yueksel-Apak, M. (Univ. of Istanbul (Turkey)); Neri, G. (Universita Cattolica, Rome (Italy)); Serville, F. (Hopital d' Enfants Pellegrin, Bordeaux (France)); Balicek, P.; Haluza, R. (Univ. Hospital of Hradeck Kralove, Hradec Kralove (Czech Republic)); Farah, L.M.S. (Escuola Paulista de Medicina, Sao Paulo (Brazil)) (and others)

    1994-02-01

    One t(14q 14q), three t(15q 15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange. 75 refs., 1 fig., 4 tabs.

  11. Involvement of hydrogen-vacancy complexes in the baking effect of niobium cavities

    Directory of Open Access Journals (Sweden)

    B. Visentin

    2010-05-01

    Full Text Available Baking is necessary to improve high accelerating gradient performances of superconducting niobium cavities. Ten years after this discovery in 1998, the understanding of this effect still resists a lot of theoretical explanations. For the first time, positron annihilation spectroscopy performed on niobium samples reveals the increase after baking of positrons trapped under the Nb surface. Presence of hydrogen-vacancy complexes and their dissociation by baking could both explain rf losses observed at high fields (Q drop and its cure (baking effect.

  12. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants

    International Nuclear Information System (INIS)

    Reinbothe, C.; Lebedev, N.; Reinbothe, S.

    1999-01-01

    When etiolated angiosperm seedlings break through the soil after germination, they are immediately exposed to sunlight, but at this stage they are unable to perform photosynthesis1. In the absence of chlorophyll a and chlorophyll b, two other porphyrin species cooperate as the basic light-harvesting structure of etiolated plants. Protochlorophyllide a and protochlorophyllide b (ref. 2) form supramolecular complexes with NADPH and two closely related NADPH:protochlorophyllide oxidoreductase (POR) proteins—PORA and PORB (ref. 3)—in the prolamellar body of etioplasts. Here we report that these light-harvesting POR–protochlorophyllide complexes, named LHPP, are essential for the establishment of the photosynthetic apparatus and also confer photoprotection on the plant. They collect sunlight for rapid chlorophyll a biosynthesis and, simultaneously, dissipate excess light energy in the bulk of non-photoreducible protochlorophyllide b. Based on this dual function, it seems that LHPP provides the link between skotomorphogenesis and photosynthesis that is required for efficient de-etiolation

  13. Membrane complexes of Syntrophomonas wolfei involved in syntrophic butyrate degradation and hydrogen formation

    Directory of Open Access Journals (Sweden)

    Bryan Regis Crable

    2016-11-01

    Full Text Available Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in coculture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and cocultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic

  14. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren

    2003-01-01

    development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which...

  15. CHROMOSOMAL SUBLOCALIZATION OF THE 2 13 TRANSLOCATION BREAKPOINT IN ALVEOLAR RHABDOMYOSARCOMA

    NARCIS (Netherlands)

    SHAPIRO, DN; VALENTINE, MB; SUBLETT, JE; SINCLAIR, AE; TEREBA, AM; SCHEFFER, H; BUYS, CHCM; LOOK, AT

    A characteristic balanced reciprocal chromosomal translocation [t(2;13)(q35;q14)] has been identified in more than 50% of alveolar rhabdomyosarcomas. As the first step in characterization of the genes involved in this translocation, we constructed somatic cell hybrids that retained either the

  16. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes

    NARCIS (Netherlands)

    van Roy, N.; Laureys, G.; van Gele, M.; Opdenakker, G.; Miura, R.; van der Drift, P.; Chan, A.; Versteeg, R.; Speleman, F.

    1997-01-01

    Deletions and translocations resulting in loss of distal 1p-material are known to occur frequently in advanced neuroblastomas. Fluorescence in situ hybridisation (FISH) showed that 17q was most frequently involved in chromosome 1p translocations. A review of the literature shows that 10 of 27 cell

  17. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  18. Strategic planning model for achieving stakeholder involvement in environmental at DOE weapons complex sites

    International Nuclear Information System (INIS)

    Weber, G.

    1994-01-01

    Within today's reality a public manager often needs to develop cooperative relationships among a number of individual, program, and organizational stakeholders to accomplish particular projects, programs, or policies. A DOE site manager charged with accomplishing environmental restoration and conversion at former weapons production sites is no exception. Important reasons for this include the technical and political complexity of the clean-up problem; limits on the funding, authority, and other resources available to DOE; authority, responsibilities, and interests of other stakeholders; and the ever present potential for conflict among stakeholders, and power of any one to hinder, if not halt, the clean-up process if conflicts aren't managed and cooperative relationships established and maintained

  19. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  20. A third component of the human cytomegalovirus terminase complex is involved in letermovir resistance.

    Science.gov (United States)

    Chou, Sunwen

    2017-12-01

    Letermovir is a human cytomegalovirus (CMV) terminase inhibitor that was clinically effective in a Phase III prevention trial. In vitro studies have shown that viral mutations conferring letermovir resistance map primarily to the UL56 component of the terminase complex and uncommonly to UL89. After serial culture of a baseline CMV laboratory strain under letermovir, mutation was observed in a third terminase component in 2 experiments, both resulting in amino acid substitution P91S in gene UL51 and adding to a pre-existing UL56 mutation. Recombinant phenotyping indicated that P91S alone conferred 2.1-fold increased letermovir resistance (EC50) over baseline, and when combined with UL56 mutation S229F or R369M, multiplied the level of resistance conferred by those mutations by 3.5-7.7-fold. Similarly a combination of UL56 mutations S229F, L254F and L257I selected in the same experiment conferred 54-fold increased letermovir EC50 over baseline, but 290-fold when combined with UL51 P91S. The P91S mutant was not perceptibly growth impaired. Although pUL51 is essential for normal function of the terminase complex, its biological significance is not well understood. Letermovir resistance mutations mapping to 3 separate genes, and their multiplier effect on the level of resistance, suggest that the terminase components interactively contribute to the structure of a letermovir antiviral target. The diagnostic importance of the UL51 P91S mutation arises from its potential to augment the letermovir resistance of some UL56 mutations at low fitness cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  2. A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    2011-12-01

    Full Text Available Dermal hyperpigmentation or Fibromelanosis (FM is one of the few examples of skin pigmentation phenotypes in the chicken, where most other pigmentation variants influence feather color and patterning. The Silkie chicken is the most widespread and well-studied breed displaying this phenotype. The presence of the dominant FM allele results in extensive pigmentation of the dermal layer of skin and the majority of internal connective tissue. Here we identify the causal mutation of FM as an inverted duplication and junction of two genomic regions separated by more than 400 kb in wild-type individuals. One of these duplicated regions contains endothelin 3 (EDN3, a gene with a known role in promoting melanoblast proliferation. We show that EDN3 expression is increased in the developing Silkie embryo during the time in which melanoblasts are migrating, and elevated levels of expression are maintained in the adult skin tissue. We have examined four different chicken breeds from both Asia and Europe displaying dermal hyperpigmentation and conclude that the same structural variant underlies this phenotype in all chicken breeds. This complex genomic rearrangement causing a specific monogenic trait in the chicken illustrates how novel mutations with major phenotypic effects have been reused during breed formation in domestic animals.

  3. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    Science.gov (United States)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    Science.gov (United States)

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  5. Involvement of complexin 2 in docking, locking and unlocking of different SNARE complexes during sperm capacitation and induced acrosomal exocytosis.

    Directory of Open Access Journals (Sweden)

    Pei-Shiue J Tsai

    Full Text Available Acrosomal exocytosis (AE is an intracellular multipoint fusion reaction of the sperm plasma membrane (PM with the outer acrosomal membrane (OAM. This unique exocytotic event enables the penetration of the sperm through the zona pellucida of the oocyte. We previously observed a stable docking of OAM to the PM brought about by the formation of the trans-SNARE complex (syntaxin 1B, SNAP 23 and VAMP 3. By using electron microscopy, immunochemistry and immunofluorescence techniques in combination with functional studies and proteomic approaches, we here demonstrate that calcium ionophore-induced AE results in the formation of unilamellar hybrid membrane vesicles containing a mixture of components originating from the two fused membranes. These mixed vesicles (MV do not contain the earlier reported trimeric SNARE complex but instead possess a novel trimeric SNARE complex that contained syntaxin 3, SNAP 23 and VAMP 2, with an additional SNARE interacting protein, complexin 2. Our data indicate that the earlier reported raft and capacitation-dependent docking phenomenon between the PM and OAM allows a specific rearrangement of molecules between the two docked membranes and is involved in (1 recruiting SNAREs and complexin 2 in the newly formed lipid-ordered microdomains, (2 the assembly of a fusion-driving SNARE complex which executes Ca(2+-dependent AE, (3 the disassembly of the earlier reported docking SNARE complex, (4 the recruitment of secondary zona binding proteins at the zona interacting sperm surface. The possibility to study separate and dynamic interactions between SNARE proteins, complexin and Ca(2+ which are all involved in AE make sperm an ideal model for studying exocytosis.

  6. Mechanism for translocation of fluoroquinolones across lipid membranes

    DEFF Research Database (Denmark)

    Cramariuc, O.; Rog, T.; Javanainen, M.

    2012-01-01

    Classical atom-scale molecular dynamics simulations, constrained free energy calculations, and quantum mechanical (QM) calculations are employed to study the diffusive translocation of ciprofloxacin (CPFX) across lipid membranes. CPFX is considered here as a representative of the fluoroquinolone...... antibiotics class. Neutral and zwitterionic CPFX coexist at physiological pH, with the latter being predominant. Simulations reveal that only the neutral form permeates the bilayer, and it does so through a novel mechanism that involves dissolution of concerted stacks of zwitterionic ciprofloxacins....... Subsequent QM analysis of the observed molecular stacking shows the important role of partial charge neutralization in the stacks, highlighting how the zwitterionic form of the drug is neutralized for translocation. The findings propose a translocation mechanism in which zwitterionic CPFX molecules approach...

  7. Biological mechanisms and translocation kinetics of particulate plutonium

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Stevens, W.; Atherton, D.R.; Roswell, R.L.; Smith, J.M.

    1981-01-01

    The dissolution and elimination of particulate 239 Pu from its initial sites of deposition in phagocytic organs (the liver, spleen, and lung), as well as its translocation and redeposition in soft tissue organs and skeleton have been investigated. Beagles were injected intravenously with particulate Pu and sacrificed sequentially at times ranging from 33 to 830 days after injection. Equations that describe the overall retention of Pu in liver, spleen, lung, and bone were calculated. Plutonium mobilized from these organs either re-entered the blood stream and redeposited in the skeleton and liver parenchyma or was excreted. The protracted translocation of Pu to bone surfaces potentially exposes all cells involved in osteogenesis to continuous α-radiation, a situation that could enhance the hazard of developing osteosarcoma. A kinetic model that describes the translocation of Pu from the phagocytic compartments to blood and its subsequent redistribution to bone, liver, and other organs was formulated

  8. Use of wild–caught individuals as a key factor for success in vertebrate translocations

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, L.; MartInez-AbraIn, A.; Mayol, J.; Ruiz-Olmo, J.; Mañas, F.; Jimenez, J.; Gomez, J.A.; Oro, D.

    2016-07-01

    Success of vertebrate translocations is crucial to improve efficacy and efficiency of conservation actions but it is often difficult to assess because negative results (failed translocations) are seldom published. We developed surveys and sent them to heads of conservation services in three major Spanish Mediterranean regions. The purpose of our surveys was to determine which methodological factor, that could easily be implemented in practice, was more influential for translocation success. These factors included the origin of translocated individuals (captive or wild) and translocation effort (propagule size and program duration). After analyzing 83 programs, corresponding to 34 different vertebrate species, by means of generalized linear mixed modelling, we found that ‘origin’ was more relevant for translocation success than ‘effort’, although we could not rule out some role of translocation effort. Variance in success of translocation programs involving individuals from wild sources was smaller and consequently results more predictable. Origin interacted with taxa so that success was higher when using wild birds and especially wild fish and mammals, but not when releasing reptiles. Hence, we suggest that, for any given effort, translocation results will be better for most vertebrate taxa if individuals from wild sources are used. When this is not feasible, managers should release captive–reared individuals for a long number of years rather than a short number of years. (Author)

  9. Use of wild–caught individuals as a key factor for success in vertebrate translocations

    Directory of Open Access Journals (Sweden)

    Rummel, L.

    2016-06-01

    Full Text Available Success of vertebrate translocations is crucial to improve efficacy and efficiency of conservation actions but it is often difficult to assess because negative results (failed translocations are seldom published. We developed surveys and sent them to heads of conservation services in three major Spanish Mediterranean regions. The purpose of our surveys was to determine which methodological factor, that could easily be implemented in practice, was more influential for translocation success. These factors included the origin of translocated individuals (captive or wild and translocation effort (propagule size and program duration. After analyzing 83 programs, corresponding to 34 different vertebrate species, by means of generalized linear mixed modelling, we found that ‘origin’ was more relevant for translocation success than ‘effort’, although we could not rule out some role of translocation effort. Variance in success of translocation programs involving individuals from wild sources was smaller and consequently results more predictable. Origin interacted with taxa so that success was higher when using wild birds and especially wild fish and mammals, but not when releasing reptiles. Hence, we suggest that, for any given effort, translocation results will be better for most vertebrate taxa if individuals from wild sources are used. When this is not feasible, managers should release captive–reared individuals for a long number of years rather than a short number of years.

  10. Expanding the Reach of Physics-Engaging Students in Interdisciplinary Research Involving complex, real-world situation

    Science.gov (United States)

    Bililign, Solomon

    2014-03-01

    Physics plays a very important role in most interdisciplinary efforts and can provide a solid foundation for students. Retention of students in STEM areas can be facilitated by enhanced interdisciplinary education and research since students are strongly attracted to research with societal relevance and show increasing enthusiasm about problems that have practical consequences. One such area of research is a collaborative Earth System Science. The Earth System is dynamic and complex. It is comprised of diverse components that interact. By providing students the opportunities to work in interdisciplinary groups on a problem that reflects a complex, real-world situation they can see the linkages between components of the Earth system that encompass climate and all its components (weather precipitation, temperature, etc.) and technology development and deployment of sensors and sensor networks and social impacts. By involving students in the creation of their own personalized professional development plan, students are more focused and engaged and are more likely to remain in the program.

  11. Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization.

    Directory of Open Access Journals (Sweden)

    Kélen Fabíola Arroteia

    Full Text Available The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.

  12. Suitability of amphibians and reptiles for translocation.

    Science.gov (United States)

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.

  13. Markovian description of unbiased polymer translocation

    International Nuclear Information System (INIS)

    Mondaini, Felipe; Moriconi, L.

    2012-01-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  14. Markovian description of unbiased polymer translocation

    Energy Technology Data Exchange (ETDEWEB)

    Mondaini, Felipe [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, UnED Angra dos Reis, Angra dos Reis, 23953-030, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil)

    2012-10-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  15. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man.

    Science.gov (United States)

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms.

  16. An Updated View of Translocator Protein (TSPO

    Directory of Open Access Journals (Sweden)

    Nunzio Denora

    2017-12-01

    Full Text Available Decades of study on the role of mitochondria in living cells have evidenced the importance of the 18 kDa mitochondrial translocator protein (TSPO, first discovered in the 1977 as an alternative binding site for the benzodiazepine diazepam in the kidneys. This protein participates in a variety of cellular functions, including cholesterol transport, steroid hormone synthesis, mitochondrial respiration, permeability transition pore opening, apoptosis, and cell proliferation. Thus, TSPO has become an extremely attractive subcellular target for the early detection of disease states that involve the overexpression of this protein and the selective mitochondrial drug delivery. This special issue was programmed with the aim of summarizing the latest findings about the role of TSPO in eukaryotic cells and as a potential subcellular target of diagnostics or therapeutics. A total of 9 papers have been accepted for publication in this issue, in particular, 2 reviews and 7 primary data manuscripts, overall describing the main advances in this field.

  17. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    Science.gov (United States)

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  18. MiT family translocation renal cell carcinoma.

    Science.gov (United States)

    Argani, Pedram

    2015-03-01

    The MiT subfamily of transcription factors includes TFE3, TFEB, TFC, and MiTF. Gene fusions involving two of these transcription factors have been identified in renal cell carcinoma (RCC). The Xp11 translocation RCCs were first officially recognized in the 2004 WHO renal tumor classification, and harbor gene fusions involving TFE3. The t(6;11) RCCs harbor a specific Alpha-TFEB gene fusion and were first officially recognized in the 2013 International Society of Urologic Pathology (ISUP) Vancouver classification of renal neoplasia. These two subtypes of translocation RCC have many similarities. Both were initially described in and disproportionately involve young patients, though adult translocation RCC may overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the Xp11 translocation RCCs frequently have clear cells with papillary architecture and abundant psammomatous bodies, while the t(6;11) RCCs frequently have a biphasic appearance with both large and small epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other. Both of these RCCs underexpress epithelial immunohistochemical markers like cytokeratin and epithelial membrane antigen (EMA) relative to most other RCCs. Unlike other RCCs, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, on the basis of clinical, morphologic, immunohistochemical, and genetic similarities, the 2013 ISUP Vancouver classification of renal neoplasia grouped these two neoplasms together under the heading of "MiT family translocation RCC." This review summarizes our current knowledge of these recently described RCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. TA3 - Dosimetry and instrumentation supply of the M-Fish technique to the Fish-3 painting technique for analysing translocations: A radiotherapy-treated patient study

    International Nuclear Information System (INIS)

    Pouzoulet, F.; Roch-Lefevre, S.; Giraudet, A.L.; Vaurijoux, A.; Voisin, P.A.; Buard, V.; Delbos, M.; Voisin, Ph.; Roy, L.; Bourhis, J.

    2006-01-01

    Purpose: Currently, the chromosome translocation study is the best method to estimate the dose of an old radiation exposure. Fluorescent In Situ Hybridization (F.I.S.H.) technique allows an easy detection of this kind of aberrations. However, as only a few number of chromosomes is usually painted, some bias could skew the result. To evaluate the advantage of using full genome staining (M-F.I.S.H. technique) compared with three chromosomes labelling (F.I.S.H.-3 painting), we compared translocation yields in radiotherapy treated patients. Methods: Chromosome aberration analyses were performed on peripheral blood lymphocyte cultures of two patients treated for a throat cancer by radiotherapy. Blood samples were obtained, before, along the treatment and six or four months later. For each sample, a dicentrics analysis was performed together with translocation analysis either with F.I.S.H.-3 painting or M-F.I.S.H.. Results: By confronting results from the F.I.S.H.-3 painting technique and the M-F.I.S.H. technique, significant differences were revealed. The translocations yield seemed to be stable with the F.I.S.H.-3 painting technique whereas it is not the case with the M-F.I.S.H. technique. This difference in results was explained by the bias induced by F.I.S.H.-3 Painting technique in the visualisation of complex aberrations. Furthermore, we found the presence of a clone bearing a translocation involving a painted chromosome. Conclusions: According to the potential bias of F.I.S.H.-3 painting on translocations study, the M-F.I.S.H. technique should provide more precise and reproducible results. Because of its more difficult implement, it seems hardly applicable to retrospective dosimetry instead of F.I.S.H.-3 painting technique. (authors)

  20. TA3 - Dosimetry and instrumentation supply of the M-Fish technique to the Fish-3 painting technique for analysing translocations: A radiotherapy-treated patient study

    Energy Technology Data Exchange (ETDEWEB)

    Pouzoulet, F.; Roch-Lefevre, S.; Giraudet, A.L.; Vaurijoux, A.; Voisin, P.A.; Buard, V.; Delbos, M.; Voisin, Ph.; Roy, L. [Institut de Radioprotection et de Surete Nucleaire, Lab. de Dosimetrie Biologique, 92 - Fontenay aux Roses (France); Bourhis, J. [Laboratoire UPRES EA 27-10, Radiosensibilite des Tumeurs et Tissus sains, PR1, 94 - Villejuif (France)

    2006-07-01

    Purpose: Currently, the chromosome translocation study is the best method to estimate the dose of an old radiation exposure. Fluorescent In Situ Hybridization (F.I.S.H.) technique allows an easy detection of this kind of aberrations. However, as only a few number of chromosomes is usually painted, some bias could skew the result. To evaluate the advantage of using full genome staining (M-F.I.S.H. technique) compared with three chromosomes labelling (F.I.S.H.-3 painting), we compared translocation yields in radiotherapy treated patients. Methods: Chromosome aberration analyses were performed on peripheral blood lymphocyte cultures of two patients treated for a throat cancer by radiotherapy. Blood samples were obtained, before, along the treatment and six or four months later. For each sample, a dicentrics analysis was performed together with translocation analysis either with F.I.S.H.-3 painting or M-F.I.S.H.. Results: By confronting results from the F.I.S.H.-3 painting technique and the M-F.I.S.H. technique, significant differences were revealed. The translocations yield seemed to be stable with the F.I.S.H.-3 painting technique whereas it is not the case with the M-F.I.S.H. technique. This difference in results was explained by the bias induced by F.I.S.H.-3 Painting technique in the visualisation of complex aberrations. Furthermore, we found the presence of a clone bearing a translocation involving a painted chromosome. Conclusions: According to the potential bias of F.I.S.H.-3 painting on translocations study, the M-F.I.S.H. technique should provide more precise and reproducible results. Because of its more difficult implement, it seems hardly applicable to retrospective dosimetry instead of F.I.S.H.-3 painting technique. (authors)

  1. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release.

  2. Experience with FISH-detected translocations as an indicator in retrospective dose reconstructions

    International Nuclear Information System (INIS)

    Pressl, S.; Romm, H.; Ganguly, B.B.; Stephan, G.

    2000-01-01

    The prerequisite for the use of translocations as an indicator in retrospective dose reconstructions, is knowledge of the background level, persistence, and the availability of dose response curves for the conversion of translocation frequencies into doses. The results obtained in these areas are summarised. Cells with complete painted chromosome material are evaluated. Those showing any aberrations which involve painted material are stored in a computerised system, and described in detail. The simultaneous painting of whole chromosomes and centromeres has proved to provide a better level of discrimination between translocations and dicentrics. Following irradiation, direct proportionality was observed between DNA content covered by the painted chromosomes (11-19%) and the translocation frequency. The background level of translocations was determined in 42 healthy subjects, aged between 21 and 73 years of age. The statistical analyses of the data revealed no influence from sex and smoking habits on the translocation frequency. A clear increase in translocation yield was, however, observed for age. For the whole genome the frequency is at a level of 3 to 11 per 1000 cells, for all types of translocations. In a radiation accident victim (Estonia) the frequency of translocations was determined over a post-exposure time of four years. For two-way translocations, the half-time was calculated to be 7.0 years, and that for one-way translocations 5.2 years. On the basis of our control data and our dose response curve, the lowest detectable radiation dose is about 0.3 Gy in subjects under 40 years of age, and about 0.5 Gy for those older than 40 years of age. (author)

  3. Follow-up of translocations and dicentrics by chromosome painting (Fish) after accidental exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Lindhom, C.; Salomaa, S.; Tekkel, M.; Veidebaum, T.

    1997-01-01

    Chromosome painting was applied to follow the frequencies of translocations and dicentrics in blood lymphocytes from eight persons involved in a radiation accident in Estonia, 1994. Complete translocation frequencies remained relatively constant during the first year of study, whereas the rate of complete dicentrics declined rapidly in patients exposed to 1 Gy or more. The high proportion of incomplete translocations observed right after the accident declined during the first year after the exposure, approaching the level of incomplete dicentrics. (authors)

  4. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents.

    Science.gov (United States)

    Christmann, M; Kaina, B

    2000-11-17

    Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.

  5. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    Science.gov (United States)

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  6. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations.

    Science.gov (United States)

    Moysés-Oliveira, Mariana; Guilherme, Roberta Dos Santos; Dantas, Anelisa Gollo; Ueta, Renata; Perez, Ana Beatriz; Haidar, Mauro; Canonaco, Rosane; Meloni, Vera Ayres; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-05-01

    To map the X-chromosome and autosome breakpoints in women with balanced X-autosome translocations and primary amenorrhea, searching candidate genomic loci for female infertility. Retrospective and case-control study. University-based research laboratory. Three women with balanced X-autosome translocation and primary amenorrhea. Conventional cytogenetic methods, genomic array, array painting, fluorescence in situ hybridization, and quantitative reverse transcription-polymerase chain reaction. Karyotype, copy number variation, breakpoint mapping, and gene expression levels. All patients presented with breakpoints in the Xq13q21 region. In two patients, the X-chromosome breakpoint disrupted coding sequences (KIAA2022 and ZDHHC15 genes). Although both gene disruptions caused absence of transcription in peripheral blood, there is no evidence that supports the involvement of these genes with ovarian function. The ZDHHC15 gene belongs to a conserved syntenic region that encompasses the FGF16 gene, which plays a role in female germ line development. The break in the FGF16 syntenic block may have disrupted the interaction between the FGF16 promoter and its cis-regulatory element. In the third patient, although both breakpoints are intergenic, a gene that plays a role in the DAX1 pathway (FHL2 gene) flanks distally the autosome breakpoint. The FHL2 gene may be subject to position effect due to the attachment of an autosome segment in Xq21 region. The etiology of primary amenorrhea in balanced X-autosome translocation patients may underlie more complex mechanisms than interruption of specific X-linked candidate genes, such as position effect. The fine mapping of the rearrangement breakpoints may be a tool for identifying genetic pathogenic mechanisms for primary amenorrhea. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Valentina Tosato

    2017-09-01

    Full Text Available In mammalian organisms liquid tumors such as acute myeloid leukemia (AML are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in

  8. Translocality in Global Software Development

    DEFF Research Database (Denmark)

    Bjørn, Pernille; Søderberg, Anne-Marie; Krishna, S.

    2017-01-01

    . We explored how agile processes in global outsourcing impacts work conditions of the Indian IT developers, and were surprised to find that agile methodologies, even after 3 years of implementation, created a stressful and inflexible work environment negatively impacting their personal lives. Many......What happens when agile methods are introduced in global outsourcing set-ups? Agile methods are designed to empower IT developers in decision-making through self-managing collocated teams. We studied how agile methods were introduced into global outsourcing from the Indian IT vendor’s perspective...... of the negative aspects of work, which agile methodologies were developed to reduce, were evident in the global agile outsourcing set-up. We propose translocality to repudiate the dichotomy of global/local reminding us that methodologies and technologies must be understood as immediately localized and situated...

  9. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Morgane eBatzenschlager

    2013-11-01

    Full Text Available During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs are nucleated from γ-Tubulin Complexes (γ-TuCs located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope are currently unknown. The γ-TuC Protein 3 (GCP3-Interacting Protein 1 (GIP1 is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects.In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fibre robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the nuclear envelope.These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and nuclear envelope organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum.

  10. Cold-inhibited phloem translocation in sugar beet

    International Nuclear Information System (INIS)

    Grusak, M.A.

    1985-01-01

    Experimental studies were undertaken on a simplified single source leaf-single sink leaf, or single source leaf-double sink leaf sugar beet system to investigate the responsive nature of the long-distance phloem translocation system to localized cooling perturbations on the source leaf petiole. Experiments were performed by using a steady state [ 14 C]-labelling system for the source leaf, and translocation into the sink leaf (leaves) was monitored with a Geiger-Mueller system. A specially designed Peltier apparatus enabled cooling of the source petiole to 1 0 C (or other desired temperatures) at various positions on the petiole, over different lengths, and at different rates of cooling. Initial experiment were designed to test the predictions of a mathematical recovery model of translocation inhibited by cold. The results did not support the mathematical model, but did suggest that vascular anastomoses may be involved in the recovery response. Selective petiolar incision/excision experiments showed that anastomoses were capable of re-establishing translocation following a disruption of flow. Studies with two monitored sink levels suggested that the inhibition to slow-coolings was not due to reduced translocation through the cooled source petiole region, but rather, was due to a repartitioning of flow among the terminal sinks (sink leaves and hypocotyl/crown region above the heat-girdled root). This repartitioning occurred via a redirection of flow through the vascular connections in the crown region of the plant, and appeared to be promoted by rapid, physical signals originating from the cooled region of the petiole

  11. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase

    DEFF Research Database (Denmark)

    Hernández-Muñoz, Inmaculada; Lund, Anders H; van der Stoop, Petra

    2005-01-01

    X inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins...

  12. High-Order Finite-Difference Solution of the Poisson Equation Involving Complex Geometries in Embedded Meshes

    Science.gov (United States)

    Marques, Alexandre; Nave, Jean-Christophe; Rosales, Ruben

    2011-11-01

    The Poisson equation is of central importance in the description of fluid flows and other physical phenomena. In prior work, Marques, Nave, and Rosales introduced the Correction Function Method (CFM) to obtain fourth-order accurate solutions for the constant coefficient Poisson problem with prescribed jump conditions for the solution and its normal derivative across arbitrary interfaces. Here we combine this method with the ideas introduced by Mayo to solve other Poisson problems involving complex geometries. In summary, we are able to rewrite the problem as a boundary integral equation in terms of a potential distribution over the boundary or interface. The solution of this integral equation is discontinuous across the boundary or interface. Hence, after this integral equation is solved using standard techniques, the potential distribution can be used to determine the jump discontinuities. We are then able to use the CFM to solve the resulting Poisson equation with jump discontinuities. The outcome is a fourth-order accurate scheme to solve general Poisson problems which, over arbitrary geometries, has a cost that is approximately twice that of a fast Poisson solver using FFT on a rectangular geometry of the same size. Details of the method and applications will be presented.

  13. Broncho-pleural fistula with hydropneumothorax at CT: Diagnostic implications in mycobacterium avium complex lung disease with pleural involvement

    International Nuclear Information System (INIS)

    Yoon, Hyun Jung; Chung, Myung Jin; Lee, Kyung Soo; Park, Hye Yun; Koh, Won Jung; Kim, Jung Soo

    2016-01-01

    To determine the patho-mechanism of pleural effusion or hydropneumothorax in Mycobacterium avium complex (MAC) lung disease through the computed tomographic (CT) findings. We retrospectively collected data from 5 patients who had pleural fluid samples that were culture-positive for MAC between January 2001 and December 2013. The clinical findings were investigated and the radiological findings on chest CT were reviewed by 2 radiologists. The 5 patients were all male with a median age of 77 and all had underlying comorbid conditions. Pleural fluid analysis revealed a wide range of white blood cell counts (410-100690/µL). The causative microorganisms were determined as Mycobacterium avium and Mycobacterium intracellulare in 1 and 4 patients, respectively. Radiologically, the peripheral portion of the involved lung demonstrated fibro-bullous changes or cavitary lesions causing lung destruction, reflecting the chronic, insidious nature of MAC lung disease. All patients had broncho-pleural fistulas (BPFs) and pneumothorax was accompanied with pleural effusion. In patients with underlying MAC lung disease who present with pleural effusion, the presence of BPFs and pleural air on CT imaging are indicative that spread of MAC infection is the cause of the effusion

  14. Broncho-pleural fistula with hydropneumothorax at CT: Diagnostic implications in mycobacterium avium complex lung disease with pleural involvement

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Chung, Myung Jin; Lee, Kyung Soo; Park, Hye Yun; Koh, Won Jung [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jung Soo [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2016-04-15

    To determine the patho-mechanism of pleural effusion or hydropneumothorax in Mycobacterium avium complex (MAC) lung disease through the computed tomographic (CT) findings. We retrospectively collected data from 5 patients who had pleural fluid samples that were culture-positive for MAC between January 2001 and December 2013. The clinical findings were investigated and the radiological findings on chest CT were reviewed by 2 radiologists. The 5 patients were all male with a median age of 77 and all had underlying comorbid conditions. Pleural fluid analysis revealed a wide range of white blood cell counts (410-100690/µL). The causative microorganisms were determined as Mycobacterium avium and Mycobacterium intracellulare in 1 and 4 patients, respectively. Radiologically, the peripheral portion of the involved lung demonstrated fibro-bullous changes or cavitary lesions causing lung destruction, reflecting the chronic, insidious nature of MAC lung disease. All patients had broncho-pleural fistulas (BPFs) and pneumothorax was accompanied with pleural effusion. In patients with underlying MAC lung disease who present with pleural effusion, the presence of BPFs and pleural air on CT imaging are indicative that spread of MAC infection is the cause of the effusion.

  15. Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Hoon, Kim; Hardzman, Christina; Davis, John k.; Hutcheson, Rachel; Broderick, Joan B.; Marsh, Terence L.; Tiedje, James M.

    2012-09-27

    Desulfitobacteria are of interest to DOE mission because of their ability to reduce many electron acceptors including Fe(III), U(VI), Cr(VI), As(V), Mn(IV), Se(VI), NO3- and well as CO2, sulfite, fumarate and humates, their ability to colonize more stressful environments because they form spores, fix nitrogen and they have the more protective Gram positive cell walls. Furthermore at least some of them reductively dechlorinate aromatic and aliphatic pollutants. Importantly, most of the metals and the organochlorine reductions are coupled to ATP production and support growth providing for the organism's natural selection at DOE's contaminant sites. This work was undertaken to gain insight into the genetic and metabolic pathways involved in dissimilatory metal reduction and reductive dechlorination, (ii) to discern the commonalities among these electron-accepting processes, (iii) to identify multi-protein complexes catalyzing these functions and (iv) to elucidate the coordination in expression of these pathways and processes.

  16. Chronic myeloid leukemia with variation of translocation at (Ph) [ins (22;9) (q11;q21q34)]: a case report.

    Science.gov (United States)

    Wang, Zhiqiong; Zen, Wen; Meng, Fankai; Xin, Xing; Luo, Li; Sun, Hanying; Zhou, Jianfeng; Huang, Lifang

    2015-01-01

    Chronic myeloid leukemia (CML) is most frequently observed in middle-aged individuals. In most patients, normal marrow cells are replaced by cells with an abnormal G-group chromosome, the Philadelphia (Ph) chromosome. The Ph chromosome that is characterized by the translocation (9;22) (q34;q11) is noted in 90-95% of patients diagnosed with CML. Studies have also shown that CML can be associated with various other cytogenetic abnormalities, with 5-10% of these cases showing complex translocation involving another chromosome in addition to the Ph chromosome. Here, we report the case of a Ph(+) CML patient with an inserted karyotype who presented clinically in the chronic phase but with atypical features. This case highlights the significance of cytogenetic abnormalities on the prognosis in CML.

  17. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    Science.gov (United States)

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.

  18. Leading tip drives soma translocation via forward F-actin flow during neuronal migration.

    Science.gov (United States)

    He, Min; Zhang, Zheng-hong; Guan, Chen-bing; Xia, Di; Yuan, Xiao-bing

    2010-08-11

    Neuronal migration involves coordinated extension of the leading process and translocation of the soma, but the relative contribution of different subcellular regions, including the leading process and cell rear, in driving soma translocation remains unclear. By local manipulation of cytoskeletal components in restricted regions of cultured neurons, we examined the molecular machinery underlying the generation of traction force for soma translocation during neuronal migration. In actively migrating cerebellar granule cells in culture, a growth cone (GC)-like structure at the leading tip exhibits high dynamics, and severing the tip or disrupting its dynamics suppressed soma translocation within minutes. Soma translocation was also suppressed by local disruption of F-actin along the leading process but not at the soma, whereas disrupting microtubules along the leading process or at the soma accelerated soma translocation. Fluorescent speckle microscopy using GFP-alpha-actinin showed that a forward F-actin flow along the leading process correlated with and was required for soma translocation, and such F-actin flow depended on myosin II activity. In migrating neurons, myosin II activity was high at the leading tip but low at the soma, and increasing or decreasing this front-to-rear difference accelerated or impeded soma advance. Thus, the tip of the leading process actively pulls the soma forward during neuronal migration through a myosin II-dependent forward F-actin flow along the leading process.

  19. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    Science.gov (United States)

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  20. A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations.

    Directory of Open Access Journals (Sweden)

    Marcia Manterola

    2009-08-01

    Full Text Available Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC. Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., gammaH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR. These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading

  1. Carbon and nitrogen translocation between seagrass ramets

    NARCIS (Netherlands)

    Marbà, N.; Hemminga, M.A.; Mateo, M.A.; Duarte, C.M.; Maas, Y.E.M.; Terrados, J.; Gacia, E.

    2002-01-01

    The spatial scale and the magnitude of carbon and nitrogen translocation was examined in 5 tropical (Cymodocea serrulata, Halophila stipulacea, Halodule uninervis, Thalassodendron ciliatum, Thalassia hemprichii) and 3 temperate (Cymodocea nodosa, Posidonia oceanica, Zostera noltii) seagrass species

  2. Dudleya Variegata Translocation - San Diego [ds654

    Data.gov (United States)

    California Department of Resources — At Mission Trails Regional Park, a translocation project of Dudleya variegata was conducted in efforts to save the population from a private property undergoing...

  3. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway.

    Science.gov (United States)

    Reed, Shawna C O; Serio, Alisa W; Welch, Matthew D

    2012-04-01

    Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion. © 2011 Blackwell Publishing Ltd.

  4. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    International Nuclear Information System (INIS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Jernigan, Robert L; Sen, Taner Z; Kloczkowski, Andrzej

    2008-01-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine–Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit

  5. Phase-based treatment of a complex severely mentally ill case involving complex posttraumatic stress disorder and psychosis related to Dandy Walker syndrome

    NARCIS (Netherlands)

    Mauritz, M.W.; van de Sande, R.; Goossens, P.J.J.; van Achterberg, T.; Draijer, N.

    2014-01-01

    For patients with comorbid complex posttraumatic stress disorder (PTSD) and psychotic disorder, trauma-focused therapy may be difficult to endure. Phase-based treatment including (a) stabilization, (b) trauma-focused therapy, and (c) integration of personality with recovery of connection appears to

  6. Tourette Syndrome: Overview and Classroom Interventions. A Complex Neurobehavioral Disorder Which May Involve Learning Problems, Attention Deficit Hyperactivity Disorder, Obsessive Compulsive Symptoms, and Stereotypical Behaviors.

    Science.gov (United States)

    Fisher, Ramona A.; Collins, Edward C.

    Tourette Syndrome is conceptualized as a neurobehavioral disorder, with behavioral aspects that are sometimes difficult for teachers to understand and deal with. The disorder has five layers of complexity: (1) observable multiple motor, vocal, and cognitive tics and sensory involvement; (2) Attention Deficit Hyperactivity Disorder; (3)…

  7. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.

    Science.gov (United States)

    Alejo, Jose L; Blanchard, Scott C

    2017-10-10

    Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.

  8. A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1

    DEFF Research Database (Denmark)

    Buonincontri, Roberta; Bache, Iben; Silahtaroglu, Asli

    2011-01-01

    Dyslexia is one of the most common neurodevelopmental disorders where likely many genes are involved in the pathogenesis. So far six candidate dyslexia genes have been proposed, and two of these were identified by rare chromosomal translocations in affected individuals. By systematic re......-examination of all translocation carriers in Denmark, we have identified 16 different translocations associated with dyslexia. In four families, where the translocation co-segregated with the phenotype, one of the breakpoints concurred (at the cytogenetic level) with either a known dyslexia linkage region--at 15q21...... (DYX1), 2p13 (DYX3) and 1p36 (DYX8)--or an unpublished linkage region at 19q13. As a first exploitation of this unique cohort, we identify three novel candidate dyslexia genes, ZNF280D and TCF12 at 15q21, and PDE7B at 6q23.3, by molecular mapping of the familial translocation with the 15q21 breakpoint....

  9. Experimental and computational studies on the DNA translocation mechanism of the T4 viral packaging motor

    Science.gov (United States)

    Migliori, Amy; Arya, Gaurav; Smith, Douglas E.

    2012-10-01

    Bacteriophage T4 is a double stranded DNA virus that infects E.coli by injecting the viral genome through the cellular wall of a host cell. The T4 genome must be ejected from the viral capsid with sufficient force to ensure infection. To generate high ejection forces, the genome is packaged to high density within the viral capsid. A DNA translocation motor, in which the protein gp17 hydrolyzes ATP and binds to the DNA, is responsible for translocating the genome into the capsid during viral maturation of T4. This motor generates forces in excess of 60 pN and packages DNA at rates exceeding 2000 base pairs/second (bp/s)1. Understanding these small yet powerful motors is important, as they have many potential applications. Though much is known about the activity of these motors from bulk and single molecule biophysical techniques, little is known about their detailed molecular mechanism. Recently, two structures of gp17 have been obtained: a high-resolution X-ray crystallographic structure showing a monomeric compacted form of the enzyme, and a cryo-electron microscopic structure of the extended form of gp17 in complex with actively packaging prohead complexes. Comparison of these two structures indicates several key differences, and a model has been proposed to explain the translocation action of the motor2. Key to this model are a set of residues forming ion pairs across two domains of the gp17 molecule that are proposed to be involved in force generation by causing the collapse of the extended form of gp17. Using a dual optical trap to measure the rates of DNA packaging and the generated forces, we present preliminary mutational data showing that these several of these ion pairs are important to motor function. We have also performed preliminary free energy calculations on the extended and collapsed state of gp17, to confirm that these interdomain ion pairs have large contributions to the change in free energy that occurs upon the collapse of gp17 during the

  10. Phosphorescent heterobimetallic complexes involving platinum(iv) and rhenium(vii) centers connected by an unsupported μ-oxido bridge.

    Science.gov (United States)

    Molaee, Hajar; Nabavizadeh, S Masoud; Jamshidi, Mahboubeh; Vilsmeier, Max; Pfitzner, Arno; Samandar Sangari, Mozhgan

    2017-11-28

    Heterobimetallic compounds [(C^N)LMe 2 Pt(μ-O)ReO 3 ] (C^N = ppy, L = PPh 3 , 2a; C^N = ppy, L = PMePh 2 , 2b; C^N = bhq, L = PPh 3 , 2c; C^N = bhq, L = PMePh 2 , 2d) containing a discrete unsupported Pt(iv)-O-Re(vii) bridge have been synthesized through a targeted synthesis route. The compounds have been prepared by a single-pot synthesis in which the Pt(iv) precursor [PtMe 2 I(C^N)L] complexes are allowed to react easily with AgReO 4 in which the iodide ligand of the starting Pt(iv) complex is replaced by an ReO 4 - anion. In these Pt-O-Re complexes, the Pt(iv) centers have an octahedral geometry, completed by a cyclometalated bidentate ligand (C^N), two methyl groups and a phosphine ligand, while the Re(vii) centers have a tetrahedral geometry. Elemental analysis, single crystal X-ray diffraction analysis and multinuclear NMR spectroscopy are used to establish their identities. The new complexes exhibit phosphorescence emission in the solid and solution states at 298 and 77 K, which is an uncommon property of platinum complexes with an oxidation state of +4. According to DFT calculations, we found that this emission behavior in the new complexes originates from ligand centered 3 LC (C^N) character with a slight amount of metal to ligand charge transfer ( 3 MLCT). The solid-state emission data of the corresponding cycloplatinated(iv) precursor complexes [PtMe 2 I(C^N)L], 1a-1d, pointed out that the replacement of I - by an ReO 4 - anion helps enhancing the emission efficiency besides shifting the emission wavelengths.

  11. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    Lopez Hidalgo, Juana Ines

    2000-01-01

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G 0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  12. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

    Science.gov (United States)

    Marculescu, Rodrig; Vanura, Katrina; Montpellier, Bertrand; Roulland, Sandrine; Le, Trang; Navarro, Jean-Marc; Jäger, Ulrich; McBlane, Fraser; Nadel, Bertrand

    2006-09-08

    A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.

  13. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    Science.gov (United States)

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Hemolymph Melanization in the Silkmoth Bombyx mori Involves Formation of a High Molecular Mass Complex That Metabolizes Tyrosine*

    Science.gov (United States)

    Clark, Kevin D.; Strand, Michael R.

    2013-01-01

    The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628

  15. Preimplantation genetic diagnosis by fluorescence in situ hybridization of reciprocal and Robertsonian translocations.

    Science.gov (United States)

    Chen, Chun-Kai; Wu, Dennis; Yu, Hsing-Tse; Lin, Chieh-Yu; Wang, Mei-Li; Yeh, Hsin-Yi; Huang, Hong-Yuan; Wang, Hsin-Shin; Soong, Yung-Kuei; Lee, Chyi-Long

    2014-03-01

    The presence of reciprocal and Robertsonian chromosomal rearrangement is often related to recurrent miscarriage. Using preimplantation genetic diagnosis, the abortion rate can be decreased. Cases treated at our center were reviewed. A retrospective analysis for either Robertsonian or reciprocal translocations was performed on all completed cycles of preimplantation genetic diagnosis at our center since the first reported case in 2004 until the end of 2010. Day 3 embryo biopsies were carried out, and the biopsied cell was checked by fluorescent in situ hybridization using relevant informative probes. Embryos with a normal or balanced translocation karyotype were transferred on Day 4. Thirty-eight preimplantation genetic diagnosis cycles involving 17 couples were completed. A total of 450 (82.6%) of the total oocytes were MII oocytes, and 158 (60.0%) of the two-pronuclei embryos were biopsied. In 41.4% of the fluorescent in situ hybridization analyses, the results were either normal or balanced. Embryos were transferred back after 21 cycles. Three babies were born from Robertsonian translocation carriers and another two from reciprocal translocation carriers. The miscarriage rate was 0%. Among the reciprocal translocation group, the live delivery rate was 8.3% per ovum pick-up cycle and 18.2% per embryo transfer cycle. Among the Robertsonian translocation group, the live delivery rate was 14.3% per ovum pick-up cycle and 20.0% per embryo transfer cycle. There is a trend whereby the outcome for Robertsonian translocation group carriers is better than that for reciprocal translocation group carriers. Aneuploidy screening may possibly be added in order to improve the outcome, especially for individuals with an advanced maternal age. The emergence of an array-based technology should help improve this type of analysis. Copyright © 2014. Published by Elsevier B.V.

  16. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  17. Tourette syndrome in a pedigree with a 7;18 translocation: Identification of a YAC spanning the translocation breakpoint at 18q22.3

    Energy Technology Data Exchange (ETDEWEB)

    Boghosian-Sell, L.; Overhauser, J. [Thomas Jefferson Univ., Philadelphia, PA (United States); Comings, D.E. [City of Hope Medical Center, Duarte, CA (United States)

    1996-11-01

    Tourette syndrome is a neuropsychiatric disorder characterized by the presence of multiple, involuntary motor and vocal tics. Associated pathologies include attention deficit disorder and obsessive-compulsive disorder (OCD). Extensive linkage analysis based on an autosomal dominant mode of transmission with reduced penetrance has failed to show linkage with polymorphic markers, suggesting either locus heterogeneity or a polygenic origin for Tourette syndrome. An individual diagnosed with Tourette syndrome has been described carrying a constitutional chromosome translocation. Other family members carrying the translocation exhibit features seen in Tourette syndrome including motor tics, vocal tics, and OCD. Since the disruption of specific genes by a chromosomal rearrangement can elicit a particular phenotype, we have undertaken the physical mapping of the 7;18 translocation such that genes mapping at the site of the breakpoint can be identified and evaluated for a possible involvement in Tourette syndrome. Using somatic cell hybrids retaining either the der(7) or the der(18), a more precise localization of the breakpoints on chromosomes 7 and 18 have been determined. Furthermore, physical mapping has identified two YAC clones that span the translocation breakpoint on chromosome 18 as determined by FISH. These YAC clones will be useful for the eventual identification of genes that map to chromosomes 7 and 18 at the site of the translocation. 41 refs., 3 figs., 1 tab.

  18. High-performance analysis of single interphase cells with custom DNA probes spanning translocation break points

    Science.gov (United States)

    Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly

    1999-06-01

    The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in

  19. Partial 2p deletion in a girl with a complex chromosome rearrangement involving chromosomes 2, 6, 11, and 21.

    OpenAIRE

    Young, R S; Medrano, M A; Hansen, K L

    1985-01-01

    We describe the clinical and cytogenetic findings of a 9 1/2 month old girl with a complex chromosome rearrangement resulting in a probable deletion of band 2p14. She does not resemble other reported cases of del(2p).

  20. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  1. Nuclear translocation and retention of growth hormone

    DEFF Research Database (Denmark)

    Mertani, Hichem C; Raccurt, Mireille; Abbate, Aude

    2003-01-01

    We have previously demonstrated that GH is subject to rapid receptor-dependent nuclear translocation. Here, we examine the importance of ligand activation of the GH-receptor (GHR)-associated Janus kinase (JAK) 2 and receptor dimerization for hormone internalization and nuclear translocation by use...... of cells stably transfected with cDNA for the GHR. Staurosporine and herbimycin A treatment of cells did not affect the ability of GH to internalize but resulted in increased nuclear accumulation of hormone. Similarly, receptor mutations, which prevent the association and activation of JAK2, did not affect...... the ability of the hormone to internalize or translocate to the nucleus but resulted in increased nuclear accumulation of GH. These results were observed both by nuclear isolation and confocal laser scanning microscopy. Staurosporine treatment of cells in which human GH (hGH) was targeted to the cytoplasm...

  2. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    Science.gov (United States)

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  3. Molecular structure of tetraaqua adenosine 5'-triphosphate aluminium(III) complex: A study involving Raman spectroscopy, theoretical DFT and potentiometry

    Science.gov (United States)

    Tenório, Thaís; Silva, Andréa M.; Ramos, Joanna Maria; Buarque, Camilla D.; Felcman, Judith

    2013-03-01

    The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques. Studies reveal that AlATP complex promotes the formation of reactive fibrils of β-amyloid protein and independent amyloidogenic peptides, suggesting the action of the complex as a chaperone in the role pathogenic process. In this research, one of complexes formed by Al(III) and adenosine 5'-triphosphate in aqueous solution is analyzed by potentiometry, Raman spectroscopy and ab initio calculations. The value of the log KAlATP found was 9.21 ± 0.01 and adenosine 5'-triphosphate should act as a bidentate ligand in the complex. Raman spectroscopy and potentiometry indicate that donor atoms are the oxygen of the phosphate β and the oxygen of the phosphate γ, the terminal phosphates. Computational calculations using Density Functional Theory, with hybrid functions B3LYP and 6-311++G(d,p) basis set regarding water solvent effects, have confirmed the results. Frontier molecular orbitals, electrostatic potential contour surface, electrostatic potential mapped and Mulliken charges of the title molecule were also investigated.

  4. Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-07-01

    Full Text Available The platinum(II oxalato complexes [Pt(ox(naza2] (1–3 were synthesized and characterized by elemental analysis (C, H, N, multinuclear NMR spectroscopy (1H, 13C, 15N, 195Pt and electrospray ionization mass spectrometry (ESI-MS; naza = 4-chloro-7-azaindole (4Claza; 1, 3-bromo-7-azaindole (3Braza; 2 or 4-bromo-7-azaindole (4Braza; 3. The prepared substances were screened for their in vitro antitumor activity on the osteosarcoma (HOS and breast adenocarcinoma (MCF7 human cancer cell lines, where 2 showed moderate antitumor effect (IC50 = 27.5 μM, and 18.3 μM, respectively. The complex 2 was further tested on a panel of six others human cancer cell lines, including the malignant melanoma (G361, cervix carcinoma (HeLa, ovarian carcinoma (A2780, cisplatin-resistant ovarian carcinoma (A2780R, lung carcinoma (A549 and prostate adenocarcinoma (LNCaP. This substance was found to be moderate antitumor effective against G361 (IC50 = 17.3 μM, HeLa (IC50 = 31.8 μM and A2780 (IC50 = 19.2 μM cell lines. The complex 2 was also studied by NMR for its solution stability and by ESI-MS experiments for its ability to interact with biomolecules, such as cysteine, glutathione or guanosine 5'-monophosphate.

  5. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele

    2015-08-06

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  6. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele; Bonome, Emma Letizia; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  7. Melanotic MiT family translocation neoplasms: Expanding the clinical and molecular spectrum of this unique entity of tumors.

    Science.gov (United States)

    Saleeb, Rola M; Srigley, John R; Sweet, Joan; Doucet, Cedric; Royal, Virginie; Chen, Ying-Bei; Brimo, Fadi; Evans, Andrew

    2017-11-01

    MiT family translocation tumors are a group of neoplasms characterized by translocations involving MiT family transcription factors. The translocation renal cell carcinomas, TFE3 (Xp11.2) and TFEB (t6;11) are known members of this family. Melanotic Xp11 translocation renal cancer is a more recently described entity. To date only 14 cases have been described. It is characterized by a distinct set of features including a nested epithelioid morphology, melanin pigmentation, labeling for markers of melanocytic differentiation, lack of labeling for markers of renal tubular differentiation, predominance in a younger age population and association with aggressive clinical behavior. There are noted similarities between that entity and TFE3 associated PEComas. There are no cases reported of equivalent melanotic TFEB translocation renal cancer. We report 2 rare cases of melanotic translocation renal neoplasms. The first is a melanotic TFE3 translocation renal cancer with an indolent clinical course, occurring in a patient more than 3-decades older than the usual average age in which such tumors have been described. The other case is, to our knowledge, the first reported melanotic TFEB translocation cancer of the kidney. Both cases exhibit the same H&E morphology as previously reported in melanotic translocation renal cancers and label accordingly with HMB45 and Melan-A. While the TFE3 melanotic tumor lacked any evidence of renal tubular differentiation, the TFEB melanotic cancer exhibited some staining for renal tubular markers. Based on the unique features noted above, these two cases expand the clinical and molecular spectrum of the melanotic translocation renal cancers. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited

    International Nuclear Information System (INIS)

    Gué, Michaël; Sun, Jian-Sheng; Boudier, Thomas

    2006-01-01

    Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static 'contact first' model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic 'breakage first' model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static 'contact first' model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static 'contact first' model of translocation. The recently proposed dynamic 'breakage first' model offers an attractive alternative explanation

  9. The α2δ-1-NMDA Receptor Complex Is Critically Involved in Neuropathic Pain Development and Gabapentin Therapeutic Actions

    Directory of Open Access Journals (Sweden)

    Jinjun Chen

    2018-02-01

    Full Text Available α2δ-1, commonly known as a voltage-activated Ca2+ channel subunit, is a binding site of gabapentinoids used to treat neuropathic pain and epilepsy. However, it is unclear how α2δ-1 contributes to neuropathic pain and gabapentinoid actions. Here, we show that Cacna2d1 overexpression potentiates presynaptic and postsynaptic NMDAR activity of spinal dorsal horn neurons to cause pain hypersensitivity. Conversely, Cacna2d1 knockdown or ablation normalizes synaptic NMDAR activity increased by nerve injury. α2δ-1 forms a heteromeric complex with NMDARs in rodent and human spinal cords. The α2δ-1-NMDAR interaction predominantly occurs through the C terminus of α2δ-1 and promotes surface trafficking and synaptic targeting of NMDARs. Gabapentin or an α2δ-1 C terminus-interfering peptide normalizes NMDAR synaptic targeting and activity increased by nerve injury. Thus, α2δ-1 is an NMDAR-interacting protein that increases NMDAR synaptic delivery in neuropathic pain. Gabapentinoids reduce neuropathic pain by inhibiting forward trafficking of α2δ-1-NMDAR complexes.

  10. Translocations used to generate chromosome segment duplications ...

    Indian Academy of Sciences (India)

    a duplication (Dp) of the translocated segment and four inviable (white, W) ascospores with .... of this work, namely, the definition of breakpoint junction sequences of 12 ..... then our results would place supercontig 10.9 in distal. LG VIR. A third ...

  11. Nitrogen uptake and translocation by Chara

    NARCIS (Netherlands)

    Vermeer, C.P.; Escher, M.; Portielje, R.; Klein, de J.J.M.

    2003-01-01

    The potential for above-ground and below-ground uptake and subsequent internal translocation of ammonium (NH4+) and nitrate (NO3-) by the macroalga Chara spp. was investigated. In a two compartment experimental set-up separating above-ground and below-ground algal parts, the charophytes were exposed

  12. 11C-methionine translocation in barley

    International Nuclear Information System (INIS)

    Nakanishi, Hiromi; Bughio, Naimatullah; Shigeta Ishioka, Noriko

    2000-01-01

    11 C-methionine was supplied to barley plants through a single leaf or via the roots and real time 11 C movement was monitored using a PETIS (positron emitting tracer imaging system). In Fe-deficient plants, 11 C-methionine was translocated from the tip of the absorbing leaf to the discrimination center' at the basal part of the shoot and then retranslocated to all the chlorotic leaves, while a negligible amount was retranslocated to the roots. In Fe-sufficient plants, methionine was translocated from the absorbing leaf to the discrimination center and then only to the newest leaf on the main shoot. A negligible amount was also retranslocated to the roots. Although, in Fe-sufficient plants, methionine translocation was observed from absorbing roots to shoots, in Fe-deficient plants, only a little amount was translocated from roots to shoots. In conclusion, methionine from the upper portion of a plant is not used as a precursor of mugineic acid under Fe-deficiency conditions. (author)

  13. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Science.gov (United States)

    Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M

    2016-01-01

    SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  14. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Directory of Open Access Journals (Sweden)

    Baundauna Bose

    Full Text Available SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  15. Extracting the Beat: An Experience-dependent Complex Integration of Multisensory Information Involving Multiple Levels of the Nervous System

    Directory of Open Access Journals (Sweden)

    Laurel J. Trainor

    2009-04-01

    Full Text Available In a series of studies we have shown that movement (or vestibular stimulation that is synchronized to every second or every third beat of a metrically ambiguous rhythm pattern biases people to perceive the meter as a march or as a waltz, respectively. Riggle (this volume claims that we postulate an "innate", "specialized brain unit" for beat perception that is "directly" influenced by vestibular input. In fact, to the contrary, we argue that experience likely plays a large role in the development of rhythmic auditory-movement interactions, and that rhythmic processing in the brain is widely distributed and includes subcortical and cortical areas involved in sound processing and movement. Further, we argue that vestibular and auditory information are integrated at various subcortical and cortical levels along with input from other sensory modalities, and it is not clear which levels are most important for rhythm processing or, indeed, what a "direct" influence of vestibular input would mean. Finally, we argue that vestibular input to sound location mechanisms may be involved, but likely cannot explain the influence of vestibular input on the perception of auditory rhythm. This remains an empirical question for future research.

  16. De novo unbalanced translocations in Prader-Willi and Angelman syndrome might be the reciprocal product of inv dup(15s.

    Directory of Open Access Journals (Sweden)

    Elena Rossi

    Full Text Available The 15q11-q13 region is characterized by high instability, caused by the presence of several paralogous segmental duplications. Although most mechanisms dealing with cryptic deletions and amplifications have been at least partly characterized, little is known about the rare translocations involving this region. We characterized at the molecular level five unbalanced translocations, including a jumping one, having most of 15q transposed to the end of another chromosome, whereas the der(15(pter->q11-q13 was missing. Imbalances were associated either with Prader-Willi or Angelman syndrome. Array-CGH demonstrated the absence of any copy number changes in the recipient chromosome in three cases, while one carried a cryptic terminal deletion and another a large terminal deletion, already diagnosed by classical cytogenetics. We cloned the breakpoint junctions in two cases, whereas cloning was impaired by complex regional genomic architecture and mosaicism in the others. Our results strongly indicate that some of our translocations originated through a prezygotic/postzygotic two-hit mechanism starting with the formation of an acentric 15qter->q1::q1->qter representing the reciprocal product of the inv dup(15 supernumerary marker chromosome. An embryo with such an acentric chromosome plus a normal chromosome 15 inherited from the other parent could survive only if partial trisomy 15 rescue would occur through elimination of part of the acentric chromosome, stabilization of the remaining portion with telomere capture, and formation of a derivative chromosome. All these events likely do not happen concurrently in a single cell but are rather the result of successive stabilization attempts occurring in different cells of which only the fittest will finally survive. Accordingly, jumping translocations might represent successful rescue attempts in different cells rather than transfer of the same 15q portion to different chromosomes. We also hypothesize that

  17. The translocation (6;9) (p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features

    NARCIS (Netherlands)

    Soekarman, D.; von Lindern, M.; Daenen, S.; de Jong, B.; Fonatsch, C.; Heinze, B.; Bartram, C.; Hagemeijer, A.; Grosveld, G.

    1992-01-01

    Translocation (6;9)(p23;q34) is a cytogenetic aberration that can be found in specific subtypes of both acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). This translocation is associated with an unfavourable prognosis. Recently, the genes involved in the t(6;9) were isolated and

  18. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.

    Science.gov (United States)

    Agius, L

    1994-02-15

    In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase

  19. Studies of transfer reactions of photosensitized electrons involving complexes of transition metals in view of solar energy storage

    International Nuclear Information System (INIS)

    Takakubo, Masaaki

    1984-01-01

    This research thesis addresses electron transfer reactions occurring during photosynthesis, for example, photosensitized reaction in which chlorophyll is the sensitizer. More specifically, the author studied experimentally electron photo-transfers with type D sensitizers (riboflavin, phenoxazine and porphyrin), and various complexes of transition metals. After a presentation of these experiments, the author describes the photosensitisation process (photo-physics of riboflavin, oxygen deactivation, sensitized photo-oxidation and photo-reduction). The theoretical aspect of electron transfer is then addressed: generalities, deactivation of the riboflavin triplet, initial efficiency of electron transfer. Experimental results on three basic processes (non-radiative deactivation, energy transfer, electron transfer) are interpreted in a unified way by using the non-radiative transfer theory. Some applications are described: photo-electrochemical batteries, photo-oxidation and photo-reduction of the cobalt ion

  20. A comparative study on the uptake and translocation of organochlorines by Phragmites australis

    Energy Technology Data Exchange (ETDEWEB)

    San Miguel, Angélique; Ravanel, Patrick [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France); Raveton, Muriel, E-mail: muriel.raveton@ujf-grenoble.fr [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France)

    2013-01-15

    Highlights: ► This study compares uptake/translocation of organochlorine congeners in macrophytes. ► First, root OC uptake was strongly linked with the partitioning/diffusion process. ► With time exposure, bioconcentration increased with OC solubility and volatility. ► Translocation was linked to the combination of water flow and vapor flux transfers. ► The most volatile OCs might be phytovolatilized from foliar surfaces. -- Abstract: Organochlorines (OCs) are persistent chemicals found in various environmental compartments. The differences in the uptake of {sup 14}C-labeled 1,4-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and γ-hexachlorocyclohexane (γHCH) by Phragmites australis were investigated under hydroponic conditions. The first step in sorption appears to be correlated with the hydrophobic nature of the compounds, since log-linear correlations were obtained between root concentration factor and partition coefficient (LogK{sub ow}). After 7 days of exposure, plant uptake of DCB, TCB, γHCH was significant with bioconcentration factors reaching 14, 19 and 15, respectively. Afterwards, uptake and translocation were seen to be more complex, with a loss of the simple relationship between uptake and LogK{sub ow}. Linear correlations between the bioconcentration/translocation factors and the physico-chemical properties of OCs were shown, demonstrating that translocation from roots to shoots increases with solubility and volatility of the OCs. This suggests that OC-translocation inside plants might result from the combination of two processes, xylem sap flow and vapor fluxes. {sup 14}C-phytovolatilization was measured and was correlated with the volatility of the compounds; the more volatile OCs being most the likely to be phytovolatilized from foliar surfaces (p = 0.0008). Thus, OC-uptake/translocation appears to proceed at a rate that depends mostly on the OCs hydrophobicity, solubility and volatility.

  1. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    Science.gov (United States)

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  2. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    Science.gov (United States)

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  3. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    Science.gov (United States)

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  4. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  5. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  6. Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events

    Science.gov (United States)

    Potrykus, Joanna; Stead, David; MacCallum, Donna M.; Urgast, Dagmar S.; Raab, Andrea; van Rooijen, Nico; Feldmann, Jörg; Brown, Alistair J. P.

    2013-01-01

    Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. PMID:24146619

  7. How computational methods and relativistic effects influence the study of chemical reactions involving Ru-NO complexes?

    Science.gov (United States)

    Orenha, Renato Pereira; Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade; Galembeck, Sérgio Emanuel

    2017-05-05

    Two treatments of relativistic effects, namely effective core potentials (ECP) and all-electron scalar relativistic effects (DKH2), are used to obtain geometries and chemical reaction energies for a series of ruthenium complexes in B3LYP/def2-TZVP calculations. Specifically, the reaction energies of reduction (A-F), isomerization (G-I), and Cl - negative trans influence in relation to NH 3 (J-L) are considered. The ECP and DKH2 approaches provided geometric parameters close to experimental data and the same ordering for energy changes of reactions A-L. From geometries optimized with ECP, the electronic energies are also determined by means of the same ECP and basis set combined with the computational methods: MP2, M06, BP86, and its derivatives, so as B2PLYP, LC-wPBE, and CCSD(T) (reference method). For reactions A-I, B2PLYP provides the best agreement with CCSD(T) results. Additionally, B3LYP gave the smallest error for the energies of reactions J-L. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence.

    Science.gov (United States)

    Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R

    2018-04-01

    Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Autism Spectrum Disorder in a Girl with a De Novo X;19 Balanced Translocation

    Science.gov (United States)

    Baruffi, Marcelo Razera; de Souza, Deise Helena; Bicudo da Silva, Rosana Aparecida; Ramos, Ester Silveira; Moretti-Ferreira, Danilo

    2012-01-01

    Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process. PMID:23074688

  10. Autism Spectrum Disorder in a Girl with a De Novo X;19 Balanced Translocation

    Directory of Open Access Journals (Sweden)

    Marcelo Razera Baruffi

    2012-01-01

    Full Text Available Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19(p21.2;q13.4. Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY. Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.

  11. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  12. Novel C-2 epimerization of aldoses promoted by nickel(II) diamine complexes, involving a stereospecific pinacol-type 1,2-carbon shift

    International Nuclear Information System (INIS)

    Tanase, Tomoaki; Shimizu, Fumihiko; Kuse, Manabu; Yano, Shigenobu; Hidai, Masanobu; Yoshikawa, Sadao

    1988-01-01

    The newly discovered C-2 epimerization of aldoses promoted by nickel(II) diamine complexes has been investigated in detail by using 13 C-enriched D-glucose, 13 C NMR spectroscopy, and EXAFS (extended x-ray absorption fine structure) analysis. Aldoses treated with nickel(II) diamine complexes (diamine = N,N,N'-trimethylethylenediamine (N,N,N'-Me 3 en), N,N,N',N'-tetramethylethylenediamine (N,N,N',N'-Me 4 en), etc.) in methanolic solutions were rapidly (60 degree C, 3-5 min) epimerized at C-2 to give equilibrium mixtures where the ratio of C-2 epimers shifts to the side of the naturally rare mannose-type aldoses (having the cis arrangement of C-2 and C-3 hydroxyl groups) compared with those in the thermodynamic equilibrium states. The epimerization product of D-[1- 13 C]glucose was exclusively D-[2- 13 C]mannose, demonstrating that the reaction involves a stereospecific 1,2-shift of the carbon skeleton resulting in inversion of configuration at C-2. Furthermore, the absorption and circular dichroism spectra of the reaction solutions indicated the presence of an intermediate nickel(II) complex containing both diamine and sugar components, which was directly revealed by EXAFS analysis to be a mononuclear nickel(II) complex having octahedral coordination geometry. All these observations strongly suggest that the C-2 epimerization proceeds through an intermediate mononuclear nickel(II) complex, where the carbinolamine-like adduct of aldose with diamine in an open-chain form is epimerized at C-2 by a stereospecific rearrangement of the carbon skeleton or a pinacol-type rearrangement involving a cyclic transition state. 44 refs., 5 figs., 4 tabs

  13. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    Science.gov (United States)

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  14. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  15. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    International Nuclear Information System (INIS)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-01-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  16. Prior stress promotes the generalization of contextual fear memories: Involvement of the gabaergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Bender, C L; Otamendi, A; Calfa, G D; Molina, V A

    2018-04-20

    Fear generalization occurs when a response, previously acquired with a threatening stimulus, is transferred to a similar one. However, it could be maladaptive when stimuli that do not represent a real threat are appraised as dangerous, which is a hallmark of several anxiety disorders. Stress exposure is a major risk factor for the occurrence of anxiety disorders and it is well established that it influences different phases of fear memory; nevertheless, its impact on the generalization of contextual fear memories has been less studied. In the present work, we have characterized the impact of acute restraint stress prior to contextual fear conditioning on the generalization of this fear memory, and the role of the GABAergic signaling within the basolateral amygdala complex (BLA) on the stress modulatory effects. We have found that a single stress exposure promoted the generalization of this memory trace to a different context that was well discriminated in unstressed conditioned animals. Moreover, this effect was dependent on the formation of a contextual associative memory and on the testing order (i.e., conditioning context first vs generalization context first). Furthermore, we observed that increasing GABA-A signaling by intra-BLA midazolam administration prior to the stressful session exposure prevented the generalization of fear memory, whereas intra-BLA administration of the GABA-A antagonist (Bicuculline), prior to fear conditioning, induced the generalization of fear memory in unstressed rats. We concluded that stress exposure, prior to contextual fear conditioning, promotes the generalization of fear memory and that the GABAergic transmission within the BLA has a critical role in this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler

    Science.gov (United States)

    Fairfield, Eleanor A.; Hutchings, Kimberly; Gilroy, Danielle L.; Kingma, Sjouke A.; Burke, Terry; Komdeur, Jan; Richardson, David S.

    2016-01-01

    Introduced populations often lose the parasites they carried in their native range, but little is known about which processes may cause parasite loss during host movement. Conservation-driven translocations could provide an opportunity to identify the mechanisms involved. Using 3,888 blood samples collected over 22 years, we investigated parasite prevalence in populations of Seychelles warblers (Acrocephalus sechellensis) after individuals were translocated from Cousin Island to four new islands (Aride, Cousine, Denis and Frégate). Only a single parasite (Haemoproteus nucleocondensus) was detected on Cousin (prevalence = 52%). This parasite persisted on Cousine (prevalence = 41%), but no infection was found in individuals hatched on Aride, Denis or Frégate. It is not known whether the parasite ever arrived on Aride, but it has not been detected there despite 20 years of post-translocation sampling. We confirmed that individuals translocated to Denis and Frégate were infected, with initial prevalence similar to Cousin. Over time, prevalence decreased on Denis and Frégate until the parasite was not found on Denis two years after translocation, and was approaching zero prevalence on Frégate. The loss (Denis) or decline (Frégate) of H. nucleocondensus, despite successful establishment of infected hosts, must be due to factors affecting parasite transmission on these islands. PMID:27405249

  18. Translocality, Network Structure, and Music Worlds: Underground Metal in the United Kingdom.

    Science.gov (United States)

    Emms, Rachel; Crossley, Nick

    2018-02-01

    Translocal music worlds are often defined as networks of local music worlds. However, their networked character and more especially their network structure is generally assumed rather than concretely mapped and explored. Formal social network analysis (SNA) is beginning to attract interest in music sociology but it has not previously been used to explore a translocal music world. In this paper, drawing upon a survey of the participation of 474 enthusiasts in 148 live music events, spread across 6 localities, we use SNA to explore a significant "slice" of the network structure of the U.K.'s translocal underground heavy metal world. Translocality is generated in a number of ways, we suggest, but one way, the way we focus upon, involves audiences traveling between localities to attend gigs and festivals. Our analysis of this network uncovers a core-periphery structure which, we further find, maps onto locality. Not all live events enjoy equal standing in our music world and some localities are better placed to capture more prestigious events, encouraging inward travel. The identification of such structures, and the inequality they point to, is, we believe, one of several benefits of using SNA to analyze translocal music worlds. © 2018 Canadian Sociological Association/La Société canadienne de sociologie.

  19. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    International Nuclear Information System (INIS)

    Dupre de Boulois, Herve; Delvaux, Bruno; Declerck, Stephane

    2005-01-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus

  20. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, Herve [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Delvaux, Bruno [Universite catholique de Louvain, Unite des Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)]. E-mail: declerck@mbla.ucl.ac.be

    2005-04-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus.

  1. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Tahiliani, Mamta; Rao, Anjana; Aravind, L

    2009-06-01

    Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a

  2. Influence of cycloheximide on translocation of 32P in Laminaria digitata (Linne) Lamouroux

    International Nuclear Information System (INIS)

    Floc'h, J.Y.; Penot, M.

    1978-01-01

    Cycloheximide strongly reduced translocation of 32 P when applied to various regions of Laminaria digitata thallus. In addition, the part of the different organs is demonstrated. The results show that CHM action was restricted to the treated zone since 32 P migrations were not reduced in surrounding regions. At the same time, CHM influence on other metabolic processes possibly involved in translocation, was studied. Thus, as concerns 32 P uptake by thallus pieces, CHM inhibition took effect but after a 4 hour action period. Moreover, no effect on O 2 uptake was observed. These results are believed to favour an inhibitory action on protein synthesis more than to affect oxidative phosphorylations. The present data are considered to support the view that in algae as well as in higher plants, the mechanisms of the translocation of inorganic substances depend on the protein metabolism. (orig.) [de

  3. Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex.

    Science.gov (United States)

    Espejo, Pablo Javier; Ortiz, Vanesa; Martijena, Irene Delia; Molina, Victor Alejandro

    2016-10-01

    Consolidated memories can enter into a labile state after reactivation followed by a restabilization process defined as reconsolidation. This process can be interfered with Midazolam (MDZ), a positive allosteric modulator of the GABA-A receptor. The present study has evaluated the influence of prior stress on MDZ's interfering effect. We also assessed the influence of both systemic and intra-basolateral amygdala (BLA) infusion of d-cycloserine (DCS), a partial agonist of the NMDA receptors, on the MDZ effect in previously stressed rats. Furthermore, we analyzed the effect of stress on the expression of Zif-268 and the GluN2B sites, two molecular markers of the labilization/reconsolidation process, following reactivation. The results revealed that prior stress resulted into a memory trace that was insensitive to the MDZ impairing effect. Both systemic and intra-BLA DCS administration previous to reactivation restored MDZ's disruptive effect on memory reconsolidation in stressed animals. Further, reactivation enhanced Zif-268 expression in the BLA in control unstressed rats, whereas no elevation was observed in stressed animals. In agreement with the behavioral findings, DCS restored the increased level of Zif-268 expression in the BLA in stressed animals. Moreover, memory reactivation in unstressed animals elevated GluN2B expression in the BLA, thus suggesting that this effect is involved in memory destabilization, whereas stressed animals did not reveal any changes. These findings are consistent with resistance to the MDZ effect in these rats, indicating that stress exposure prevents the onset of destabilization following reactivation. In summary, prior stress limited both the occurrence of the reactivation-induced destabilization and restabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Involving older people in a multi-centre randomised trial of a complex intervention in pre-hospital emergency care: implementation of a collaborative model.

    Science.gov (United States)

    Koniotou, Marina; Evans, Bridie Angela; Chatters, Robin; Fothergill, Rachael; Garnsworthy, Christopher; Gaze, Sarah; Halter, Mary; Mason, Suzanne; Peconi, Julie; Porter, Alison; Siriwardena, A Niroshan; Toghill, Alun; Snooks, Helen

    2015-07-10

    Health services research is expected to involve service users as active partners in the research process, but few examples report how this has been achieved in practice in trials. We implemented a model to involve service users in a multi-centre randomised controlled trial in pre-hospital emergency care. We used the generic Standard Operating Procedure (SOP) from our Clinical Trials Unit (CTU) as the basis for creating a model to fit the context and population of the SAFER 2 trial. In our model, we planned to involve service users at all stages in the trial through decision-making forums at 3 levels: 1) strategic; 2) site (e.g. Wales; London; East Midlands); 3) local. We linked with charities and community groups to recruit people with experience of our study population. We collected notes of meetings alongside other documentary evidence such as attendance records and study documentation to track how we implemented our model. We involved service users at strategic, site and local level. We also added additional strategic level forums (Task and Finish Groups and Writing Days) where we included service users. Service user involvement varied in frequency and type across meetings, research stages and locations but stabilised and increased as the trial progressed. Involving service users in the SAFER 2 trial showed how it is feasible and achievable for patients, carers and potential patients sharing the demographic characteristics of our study population to collaborate in a multi-centre trial at the level which suited their health, location, skills and expertise. A standard model of involvement can be tailored by adopting a flexible approach to take account of the context and complexities of a multi-site trial. Current Controlled Trials ISRCTN60481756. Registered: 13 March 2009.

  5. Novel Class of Potential Therapeutics that Target Ricin Retrograde Translocation

    Directory of Open Access Journals (Sweden)

    Veronika Redmann

    2013-12-01

    Full Text Available Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTAE177Qegfp to identify compounds that target RTA retrograde translocation. Stabilizing RTAE177Qegfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  6. Molecular determinants of nucleolar translocation of RNA helicase A

    International Nuclear Information System (INIS)

    Liu Zhe; Kenworthy, Rachael; Green, Christopher; Tang, Hengli

    2007-01-01

    RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role

  7. Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing

    DEFF Research Database (Denmark)

    Aristidou, Constantia; Koufaris, Costas; Theodosiou, Athina

    2017-01-01

    Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged...... and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any...... can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been...

  8. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling

    Science.gov (United States)

    Honda, Kenya; Yanai, Hideyuki; Mizutani, Tatsuaki; Negishi, Hideo; Shimada, Naoya; Suzuki, Nobutaka; Ohba, Yusuke; Takaoka, Akinori; Yeh, Wen-Chen; Taniguchi, Tadatsugu

    2004-01-01

    Toll-like receptor (TLR) activation is central to immunity, wherein the activation of the TLR9 subfamily members TLR9 and TLR7 results in the robust induction of type I IFNs (IFN-α/β) by means of the MyD88 adaptor protein. However, it remains unknown how the TLR signal “input” can be processed through MyD88 to “output” the induction of the IFN genes. Here, we demonstrate that the transcription factor IRF-7 interacts with MyD88 to form a complex in the cytoplasm. We provide evidence that this complex also involves IRAK4 and TRAF6 and provides the foundation for the TLR9-dependent activation of the IFN genes. The complex defined in this study represents an example of how the coupling of the signaling adaptor and effector kinase molecules together with the transcription factor regulate the processing of an extracellular signal to evoke its versatile downstream transcriptional events in a cell. Thus, we propose that this molecular complex may function as a cytoplasmic transductional-transcriptional processor. PMID:15492225

  9. Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited

    Directory of Open Access Journals (Sweden)

    Sun Jian-Sheng

    2006-01-01

    Full Text Available Abstract Background Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL, considers the spatial proximity of loci in interphase nuclei (static "contact first" model. The second model is based on the dynamics of double strand break ends during repair processes (dynamic "breakage first" model. Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4 and a less frequent partner gene (ENL, should elucidate the MLL translocation mechanism. Methods Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. Results In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value loci would indicate a greater probability of the occurrence of t(11;19(q23;p13.3 compared to t(4;11(q21;q23. However this is in contradiction to the epidemiology of 11q23 translocation. Conclusion The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static "contact first" model of translocation. The recently proposed dynamic "breakage first" model offers an attractive alternative explanation.

  10. Obstructive jaundice promotes bacterial translocation in humans.

    Science.gov (United States)

    Kuzu, M A; Kale, I T; Cöl, C; Tekeli, A; Tanik, A; Köksoy, C

    1999-01-01

    Significant bacterial translocation was demonstrated following experimental biliary obstruction, however very little is known about the importance and the prevalence of gut-origin sepsis in obstructive jaundice patients. Therefore, the aim of this study was to investigate the concept of gut-origin sepsis in obstructive jaundiced patients and its clinical importance. Twenty-one patients requiring laparotomy for obstructive jaundice (group I) and thirty patients operated on electively mainly for chronic cholecystitis (group II) were studied. Peritoneal swab, mesenteric lymph node, portal venous blood, liver wedge biopsy and bile were sampled for culture immediately after opening the peritoneum. Additionally, peripheral blood samples were taken pre- and post-operatively from all patients. Post-operatively, patients were monitored for infectious complications. The mean serum bilirubin concentration, gamma glutamyl transferase and alkaline phosphatase levels in jaundiced patients before therapeutic intervention were significantly higher than in control patients. Five patients demonstrated bacterial translocation in group I (24%), whereas only one did so in group II (3.5%, p jaundice significantly promotes bacterial translocation in humans, however, its clinical importance has yet to be defined.

  11. A multiple translocation event in a patient with hexadactyly, facial dysmorphism, mental retardation and behaviour disorder characterised comprehensively by molecular cytogenetics. Case report and review of the literature.

    Science.gov (United States)

    Seidel, Jörg; Heller, Anita; Senger, Gabriele; Starke, Heike; Chudoba, Ilse; Kelbova, Christina; Tönnies, Holger; Neitzel, Heidemarie; Haase, Claudia; Beensen, Volkmar; Zintl, Felix; Claussen, Uwe; Liehr, Thomas

    2003-09-01

    We report a 13-year-old female patient with multiple congenital abnormalities (microcephaly, facial dysmorphism, anteverted dysplastic ears and postaxial hexadactyly), mental retardation, and adipose-gigantism. Ultrasonography revealed no signs of a heart defect or renal abnormalities. She showed no speech development and suffered from a behavioural disorder. CNS abnormalities were excluded by cerebral MRI. Initial cytogenetic studies by Giemsa banding revealed an aberrant karyotype involving three chromosomes, t(2;4;11). By high resolution banding and multicolour fluoresence in-situ hybridisation (M-FISH, MCB), chromosome 1 was also found to be involved in the complex chromosomal aberrations, confirming the karyotype 46,XX,t(2;11;4).ish t(1;4;2;11)(q43;q21.1;p12-p13.1;p14.1). To the best of our knowledge no patient has been previously described with such a complex translocation involving 4 chromosomes. This case demonstrates that conventional chromosome banding techniques such as Giemsa banding are not always sufficient to characterise complex chromosomal abnormalities. Only by the additional utilisation of molecular cytogenetic techniques could the complexity of the present chromosomal rearrangements and the origin of the involved chromosomal material be detected. Further molecular genetic studies will be performed to clarify the chromosomal breakpoints potentially responsible for the observed clinical symptoms. This report demonstrates that multicolour-fluorescence in-situ hybridisation studies should be performed in patients with congenital abnormalities and suspected aberrant karyotypes in addition to conventional Giemsa banding.

  12. Financial costs of large carnivore translocations--accounting for conservation.

    Directory of Open Access Journals (Sweden)

    Florian J Weise

    Full Text Available Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars. Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23, and $2,108 per leopard (n = 6. One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%, followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4% of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown with a strong species bias. Four leopards (66.7% were successfully translocated but only eight of the 20 cheetahs (40.0% with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  13. Financial costs of large carnivore translocations--accounting for conservation.

    Science.gov (United States)

    Weise, Florian J; Stratford, Ken J; van Vuuren, Rudolf J

    2014-01-01

    Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars). Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23), and $2,108 per leopard (n = 6). One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%), followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4%) of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown) with a strong species bias. Four leopards (66.7%) were successfully translocated but only eight of the 20 cheetahs (40.0%) with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC) and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  14. Physical insights into the blood-brain barrier translocation mechanisms

    Science.gov (United States)

    Theodorakis, Panagiotis E.; Müller, Erich A.; Craster, Richard V.; Matar, Omar K.

    2017-08-01

    The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.

  15. Chromosomal Translocations in Black Flies (Diptera: Simuliidae-Facilitators of Adaptive Radiation?

    Directory of Open Access Journals (Sweden)

    Peter H Adler

    Full Text Available A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential

  16. Mitochondrial tRNA gene translocations in highly eusocial bees

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2006-01-01

    Full Text Available Mitochondrial gene rearrangement events, especially involving tRNA genes, have been described more frequently as more complete mitochondrial genome sequences are becoming available. In the present work, we analyzed mitochondrial tRNA gene rearrangements between two bee species belonging to the tribes Apini and Meliponini within the "corbiculate Apidae". Eleven tRNA genes are in different genome positions or strands. The molecular events responsible for each translocation are explained. Considering the high number of rearrangements observed, the data presented here contradict the general rule of high gene order conservation among closely related organisms, and also represent a powerful molecular tool to help solve questions about phylogeny and evolution in bees.

  17. Real-time analysis of nitrogen translocation in plants

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki

    2000-01-01

    Nitrogen absorbed by roots is transported to the leaves through xylem vessels and then retranslocated to the new leaves, such as root and storage organs through sieve tubes. It is very important to know how this nitrogen movement occurs in the plants and what mechanisms are involved in controlling this movement in order to increase the efficiency of fertilizer. In this experiments, 13 N and 15 N was used to detect the nitrogen circulation in plants, in combination with the technique for positron detection in real time and for collection of sap in sieve tubes and analysis of 15 N in it. By using 13 N, nitrogen movement from root to shoot was analyzed within 10 min after 13 N was applied to the roots. On the other hand, nitrogen retranslocation through sieve tubes was detected by the analysis of 15 N in the phloem sap over 6 hrs. All data suggest the dynamic translocation of nitrogen in rice plants. (author)

  18. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    International Nuclear Information System (INIS)

    Hong, Wei; Li, Jinru; Wang, Bo; Chen, Linfeng; Niu, Wenyan; Yao, Zhi; Baniahmad, Aria

    2011-01-01

    Highlights: ► Corepressor Alien interacts with histone methyltransferase ESET in vivo. ► Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TRβ1. ► ESET-mediated H3K9 methylation is required for liganded TRβ1-repressed transcription. ► ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TRβ1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TRβ1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TRβ1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TRβ1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  19. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    Science.gov (United States)

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  20. WARBURG EFFECT AND TRANSLOCATION-INDUCED GENOMIC INSTABILITY: TWO YEAST MODELS FOR CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Valentina eTosato

    2013-01-01

    Full Text Available Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression i the activity of pyruvate kinase (PK, which recapitulates metabolic features of cancer cells, including the Warburg effect, and ii Bridge-Induced chromosome Translocation (BIT mimicking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect, and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, pyruvate kinase, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and posttranslational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (translocants, between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the Bridge-Induced Translocation system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  1. Severe hemophilia A in a female by cryptic translocation: Order and orientation of factor VIII within Xq28

    Energy Technology Data Exchange (ETDEWEB)

    Migeon, B.R.; McGinniss, M.J.; Antonarakis, S.E.; Axelman, J.; Stasiowski, B.A.; Youssoufian, H.; Kearns, W.G.; Chung, A.; Pearson, P.L.; Kazazian, H.H. Jr. (Johns Hopkins Univ., Baltimore, MD (United States)); Muneer, R.S. (Univ. of Oklahoma, Norman (United States))

    1993-04-01

    The authors report studies of a female with severe hemophilia A resulting from a complex de novo translocation of chromosomes X and 17 (46,X,t(X; 17)). Somatic cell hybrids containing the normal X, the der(X), or the der(17) were analyzed for coagulation factor VIII (F8C) sequences using Southern blots and polymerase chain reaction. The normal X, always late replicating, contains a normal F8C gene, whereas the der(X) has no F8C sequences. The der(17) chromosome containing Xq24-Xq28 carries a functional G6PD locus and a deleted F8C allele that lacks exons 1--15. Also, it lacks the DXYS64-X locus, situated between the F8C locus and the Xq telomere. These results indicate that a cryptic breakpoint within Xq28 deleted the 5[prime] end of F8C, but left the more proximal G6PD locus intact on the der(17)chromosome. As the deleted segment includes the 5[prime] half of F8C as well as the subtelomeric DXYS64 locus, F8C must be oriented on the chromosome with its 5[prime] region closest to the telomere. Therefore, the order of these loci is Xcen-G6PD-3[prime]F8C-5[prime]F8C-DXYS64-Xqtel. The analysis of somatic cell hybrids has elucidated the true nature of the F8C mutation in the pro-band, revealing a more complex rearrangement (three chromosomes involved) than that expected from cytogenetic analysis, chromosome painting, and Southern blots. A 900-kb segment within Xq28 has been translocated to another autosome. Hemophilia A in this heterozygous female is due to the decapitation of the F8C gene on the der(17) and inactivation of the intact allele on the normal X. 27 refs., 5 figs., 1 tab.

  2. Measurement of background translocation frequencies in individuals with clones

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Marcelle J. [California State Univ. (CalState), Hayward, CA (United States)

    1996-08-01

    In the leukemia case the unseparated B and T lymphocytes had a high translocation frequency even after 0.0014, respectively. After purging all clones from the data, the translocation frequencies for Bio 8 and Bio 23 were 0.00750.0014 and 0.0073 metaphases were scored for chromosomal aberrations,, specifically reciprocal translocations, using fluorescence in situ hybridization (FISH). Metaphase spreads were used from two healthy, unexposed individuals (not exposed to radiation, chemotherapy or radiotherapy) and one early B- precursor acute lymphocytic leukemia (ALL) patient (metaphase spreads from both separated T lymphocytes and unseparated B and T lymphocytes were scored). All three individuals had an abnormally high translocation frequency. The high translocation frequencies resulted from clonal expansion of specific translocated chromosomes. I show in this thesis that by purging (discounting or removing) clones from the data of unexposed individuals, one can obtain true background translocation frequencies. In two cases, Bio 8 and Bio 23, the measured translocation frequency for chromosomes 1, 2 and 4 was 0.0124 purging all of the clones from the data. This high translocation frequency may be due to a low frequency of some clones and may not be recognized. The separated T lymphocytes had a higher translocation frequency than expected.

  3. Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1: diagnostic value and involvement of the central sympathetic system

    Directory of Open Access Journals (Sweden)

    Westra Mirjam

    2006-05-01

    Full Text Available Abstract Background Complex Regional Pain Syndrome type 1 (CRPS1 is a clinical diagnosis based on criteria describing symptoms of the disease. The main aim of the present study was to compare the sensitivity and specificity of calculation methods used to assess thermographic images (infrared imaging obtained during temperature provocation. The secondary objective was to obtain information about the involvement of the sympathetic system in CRPS1. Methods We studied 12 patients in whom CRPS1 was diagnosed according to the criteria of Bruehl. High and low whole body cooling and warming induced and reduced sympathetic vasoconstrictor activity. The degree of vasoconstrictor activity in both hands was monitored using a videothermograph. The sensitivity and specificity of the calculation methods used to assess the thermographic images were calculated. Results The temperature difference between the hands in the CRPS patients increases significantly when the sympathetic system is provoked. At both the maximum and minimum vasoconstriction no significant differences were found in fingertip temperatures between both hands. Conclusion The majority of CRPS1 patients do not show maximal obtainable temperature differences between the involved and contralateral extremity at room temperature (static measurement. During cold and warm temperature challenges this temperature difference increases significantly. As a result a higher sensitivity and specificity could be achieved in the diagnosis of CRPS1. These findings suggest that the sympathetic efferent system is involved in CRPS1.

  4. Chondromyxoid fibroma of rib with a novel chromosomal translocation: a report of four additional cases at unusual sites

    Directory of Open Access Journals (Sweden)

    Parwani Anil V

    2007-11-01

    Full Text Available Abstract Background Chondromyxoid fibromas (CMFs are rare benign chondroid/myxoid matrix-producing tumors that occur in metaphyses of long tubular bones, and very rarely in small bones of hands and feet. Flat bone involvement is even more uncommon. Prior cytogenetic analyses have identified complex abnormalities involving chromosome 6 in the majority of cases. Methods A search for CMF over an 8-year period (1999–2006 from the surgical pathology files of our institution yielded 16 cases. Four cases occurred in relatively unusual regions, three from the small bones of distal extremities and one from the rib. The rib lesion wassubmitted forroutinecytogenetic analysis. Results Radiographic studies revealed that all four lesions were well-defined expansile radiolucent lesions which expanded the bony cortices with lobulated margins, sclerotic rim, septation, and no calcification. Morphologically, all four lesions showed typical features of CMF and had low proliferative index with Ki-67. Cytogenetic analysis on the rib lesion revealed a novel chromosomal translocation, t(1;5(p13;p13. None of the four patients had a recurrence after a mean duration of follow-up of 24 months. Conclusion CMF originating in unusual locations should be distinguished from chondrosarcomas, especially on small biopsies, and should be included in the differential diagnosis. As previously noted in the literature, the cells can be positive for actin but unlike conventional chondroid neoplasms can be negative for S-100. To our knowledge, this is the first report describing a novel chromosomal translocation, t(1;5(p13;p13 in CMF.

  5. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler.

    Science.gov (United States)

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-05-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. Investigation of scattering processes in quantum few-body systems involving long-range interaction by the complex-rotation method

    International Nuclear Information System (INIS)

    Volkov, M. V.; Elander, N.; Yakovlev, S. L.; Yarevsky, E. A.

    2013-01-01

    The complex-rotation method adapted to solving the multichannel scattering problem in the two-body system where the interaction potential contains the long-range Coulomb components is described. The scattering problem is reformulated as the problem of solving a nonhomogeneous Schrödinger equation in which the nonhomogeneous term involves a Coulomb potential cut off at large distances. The incident wave appearing in the nonhomogeneous term is a solution of the Schrödinger equation with longrange Coulomb interaction. This formulation is free from approximations associated with a direct cutoff of Coulomb interaction at large distances. The efficiency of this formalism is demonstrated by considering the example of solving scattering problems in the α-α and p-p systems.

  7. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Miho [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan)

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  8. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  9. Further studies on the possible relationship between radiation-induced reciprocal translocations and intrinsic radiosensitivity of human tumor cells

    International Nuclear Information System (INIS)

    Virsik-Peuckert, P.; Rave-Fraenk, M.; Schmidberger, H.

    1996-01-01

    Background and purpose. The aim of the present study was to estimate yields of radiation-induced translocations in surviving cells of several human tumor cell lines and in normal diploid human fibroblasts, and to compare these yields with corresponding intrinsic radiosensitivities determined by standard colony-formation assay. Material and methods. The yields of radiation-induced reciprocal translocations were investigated by fluorescence in situ hybridization. Chromosomes no. 1 and no. 4 were 'painted' with fluorescent hybridization probes for whole chromosomes. Translocation yields and cell survival were determined for different doses up to 6 Gy of 200 kV X-rays. Results. We observed a higher frequency of reciprocal translocations in the radiosensitive cells MCF-7 and MDA-MB-436 than in the radioresistant cells CaSki, WiDr, A549 and normal skin fibroblasts. For primary squamous cell carcinoma cells, ZMK-1, an intermediate radiosensitivity and an intermediate translocation yield were observed. The dose-dependence of translocation yields involving chromosomes no. 1 or no. 4 varied in different cell lines: it was linear or linear with a plateau at higher doses. Conclusions. A comparison of the data obtained with chromosomes no. 1 and no. 4 in the investigated cell types, indicates that intrinsic radiosensitivity of different tumor cells observed at the survival level, is correlated with different translocation yields, respectively. This correlation was observed for all cell types investigated, independent of the number of copies of the painted chromosome per cell or the radiation dose. However, for low doses (under 1 Gy), the yields of translocations determined for the individual chromosomes seem to be too low for a discrimination between radioresistant or radiosensitive cells

  10. The soluble mannose receptor is released from the liver in cirrhotic patients, but is not associated with bacterial translocation

    DEFF Research Database (Denmark)

    Laursen, Tea L; Rødgaard-Hansen, Sidsel; Møller, Holger J

    2017-01-01

    BACKGROUND & AIMS: Intestinal bacterial translocation is involved in activation of liver macrophages in cirrhotic patients. Macrophages play a key role in liver inflammation and are involved in the pathogenesis of cirrhosis and complications. Bacterial translocation may be determined by presence...... receptor level was elevated in the hepatic vein compared with the portal vein (0.57(interquartile range 0.31) vs 0.55(0.40) mg/L, P=.005). The soluble mannose receptor levels were similar in bacterial DNA-positive and -negative patients. The soluble mannose receptor level in the portal and hepatic veins...

  11. Longing Itineraries: Building the Translocal Community

    Directory of Open Access Journals (Sweden)

    Gustavo López Angel

    2017-06-01

    Full Text Available Migration has reshaped social practices, the sense of belonging has been rethought, and the membership is renegotiated and contended; this is why strategies for their sustainability have been generated. The translocal community operates through multilocated relationships that reveal the ways in which migrants are adapting to the new demands of the community. We emphasize the emotional impulse of nostalgia as one of the vehicles of sustainability for the community. The community is redefined and understood in a set of socio-cultural relationships its members generate, and where the locality is not central, but the connection. A new dimension of the social community space is not just the community gathered in a specific place, but also that agreements, commitments, and acknowledgments are exhibited and settled in the cyberspace; this cyberspace gives cohesion and brings a dynamic element to preserve the community, despite the fact that it is even less concrete than the spatial notion of territory. Facebook, YouTube and a blog are the web platforms of the virtual space where "neighbors, compatriots and citizens" (categories of ascription from the migration get together, where there is a reproduction of social practices (even the most ancient and fundamental ones, to give a new dimension to a translocal, multilocated and ciberlocated community.

  12. Another reptile translocation to a national park

    Directory of Open Access Journals (Sweden)

    W.R. Branch

    1990-10-01

    Full Text Available On 4 May 1988 a sub-adult (50 mm snout-vent length, 42 mm tail Jones' girdled lizard Cordylus tropidosternum jonesi was collected in a pile of wood being off-loaded at the new restcamp in the Karoo National Park, Beaufort West. The wood had been transported by lorry from the Kruger National Park. The specimen is deposited in the herpetological collection of the Port Elizabeth Museum (PEM R 4584. Jones' girdled lizard is a small, arboreal cordylid that shelters under tree bark and in hollow logs. It is common and widely-distributed in the Kruger National Park (Pienaar, Haacke & Jacobsen 1983, The Reptiles of the Kruger National Park, 3rd edition. Pretoria: National Parks Board and adjacent lowveld, being replaced in northern Zimbabwe and East Africa by the nominate race. Hewitt & Power (1913, Transactions of the Royal Society of South Africa 3: 147-176, 1913 reported a similar translocation of the species to Kimberley in association with timber brought to the diamond mining camps. One of us noted recently the ease and danger of the unwitting spread of commensal reptile species into conservation areas (Branch 1978, Koedoe 30: 165, and this is confirmed by this additional example. We recommend that should similar shipments of wood be considered essential, then they be fumigated to prevent the translocation of other alien organisms that may potentially have more dangerous consequences.

  13. Arsenic Uptake and Translocation in Plants.

    Science.gov (United States)

    Li, Nannan; Wang, Jingchao; Song, Won-Yong

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Factors affecting translocation and sclerotial formation in Morchella esculenta

    International Nuclear Information System (INIS)

    Amir, R.; Levanon, D.; Hadar, Y.; Chet, I.

    1995-01-01

    Amir, R., Levanon, D., Hadar, Y., and Chet, I. 1995. Factors affecting translocation and sclerotial formation in Morchella esculenta. Experimental Mycology 19, 61-70. Morchella esculenta was grown on square split plates, forming sclerotia on one side and mycelium on the other. After the fungus ceased to colonize and before sclerotial initials appeared, [ 14 C]3-O-methyl glucose was added to the edge of the plate on the mycelial side. The effect of various activities in the mycelium (source) and sclerotia (sink) on sclerotial formation and translocation were examined using inhibitors and water potential changes of the media. Sodium azide or cycloheximide applied separately to both sides inhibited both sclerotial formation and translocation, showing that processes in the source and sink depend on metabolic activities as well as protein synthesis. The use of nikkomycin inhibited sclerotial formation, without affecting translocation to the sclerotia. Since the hyphal tips swelled and burst, the translocated compounds were lost to the media. In a strain defective in sclerotial formation, used as a control, no translocation took place, showing that there is a connection between sclerotial formation and translocation. Reversal of the water potential gradient between the two media (lower on the mycelial side), reduced the formation of sclerotia and translocation to them. Translocation to Morchella sclerotia takes place via turgor driven mass flow, but is nevertheless affected by activities in both the source and the sink. (author)

  15. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore......HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method...

  16. PMS2 inactivation by a complex rearrangement involving an HERV retroelement and the inverted 100-kb duplicon on 7p22.1.

    Science.gov (United States)

    Vogt, Julia; Wernstedt, Annekatrin; Ripperger, Tim; Pabst, Brigitte; Zschocke, Johannes; Kratz, Christian; Wimmer, Katharina

    2016-11-01

    Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5'-part from the 3'-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms.

  17. The use of genome-wide eQTL associations in lymphoblastoid cell lines to identify novel genetic pathways involved in complex traits.

    Directory of Open Access Journals (Sweden)

    Josine L Min

    Full Text Available The integrated analysis of genotypic and expression data for association with complex traits could identify novel genetic pathways involved in complex traits. We profiled 19,573 expression probes in Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs from 299 twins and correlated these with 44 quantitative traits (QTs. For 939 expressed probes correlating with more than one QT, we investigated the presence of eQTL associations in three datasets of 57 CEU HapMap founders and 86 unrelated twins. Genome-wide association analysis of these probes with 2.2 m SNPs revealed 131 potential eQTLs (1,989 eQTL SNPs overlapping between the HapMap datasets, five of which were in cis (58 eQTL SNPs. We then tested 535 SNPs tagging the eQTL SNPs, for association with the relevant QT in 2,905 twins. We identified nine potential SNP-QT associations (P<0.01 but none significantly replicated in five large consortia of 1,097-16,129 subjects. We also failed to replicate previous reported eQTL associations with body mass index, plasma low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides levels derived from lymphocytes, adipose and liver tissue. Our results and additional power calculations suggest that proponents may have been overoptimistic in the power of LCLs in eQTL approaches to elucidate regulatory genetic effects on complex traits using the small datasets generated to date. Nevertheless, larger tissue-specific expression data sets relevant to specific traits are becoming available, and should enable the adoption of similar integrated analyses in the near future.

  18. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1.

    Science.gov (United States)

    Esser, Karlheinz; Tursun, Baris; Ingenhoven, Martin; Michaelis, Georg; Pratje, Elke

    2002-11-08

    The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families.

  19. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    Science.gov (United States)

    Weng, Yuejin; Lu, Wuxun; Harmon, Aaron; Xiang, Xiaoxiao; Deng, Qiji; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-05-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.

  20. Muscle contraction increases carnitine uptake via translocation of OCTN2

    International Nuclear Information System (INIS)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio; Takakura, Hisashi; Hanai, Yoshiteru; Hashimoto, Takeshi; Masuda, Kazumi

    2012-01-01

    Highlights: ► Muscle contraction augmented carnitine uptake into rat hindlimb muscles. ► An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. ► Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. ► OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL uptake ) of L-[ 3 H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL uptake of [ 14 C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL uptake of L-[ 3 H]carnitine in the contracting muscles increased 1.4–1.7-fold as compared to that in the contralateral resting muscles (p uptake of [ 14 C]IAP was much higher than that of L-[ 3 H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.

  1. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Li, Jinru; Wang, Bo [College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Niu, Wenyan; Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Baniahmad, Aria, E-mail: aban@mti.uni-jena.de [Institute for Human Genetics, Jena University Hospital, 07740 Jena (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  2. Mapping Breakpoints of Complex Chromosome Rearrangements Involving a Partial Trisomy 15q23.1-q26.2 Revealed by Next Generation Sequencing and Conventional Techniques.

    Directory of Open Access Journals (Sweden)

    Qiong Pan

    Full Text Available Complex chromosome rearrangements (CCRs, which are rather rare in the whole population, may be associated with aberrant phenotypes. Next-generation sequencing (NGS and conventional techniques, could be used to reveal specific CCRs for better genetic counseling. We report the CCRs of a girl and her mother, which were identified using a combination of NGS and conventional techniques including G-banding, fluorescence in situ hybridization (FISH and PCR. The girl demonstrated CCRs involving chromosomes 3 and 8, while the CCRs of her mother involved chromosomes 3, 5, 8, 11 and 15. HumanCytoSNP-12 Chip analysis identified a 35.4 Mb duplication on chromosome 15q21.3-q26.2 in the proband and a 1.6 Mb microdeletion at chromosome 15q21.3 in her mother. The proband inherited the rearranged chromosomes 3 and 8 from her mother, and the duplicated region on chromosome 15 of the proband was inherited from the mother. Approximately one hundred genes were identified in the 15q21.3-q26.2 duplicated region of the proband. In particular, TPM1, SMAD6, SMAD3, and HCN4 may be associated with her heart defects, and HEXA, KIF7, and IDH2 are responsible for her developmental and mental retardation. In addition, we suggest that a microdeletion on the 15q21.3 region of the mother, which involved TCF2, TCF12, ADMA10 and AQP9, might be associated with mental retardation. We delineate the precise structures of the derivative chromosomes, chromosome duplication origin and possible molecular mechanisms for aberrant phenotypes by combining NGS data with conventional techniques.

  3. Differential effects of the new glucocorticoid receptor antagonist ORG 34517 and RU486 (mifepristone) on glucocorticoid receptor nuclear translocation in the AtT20 cell line.

    Science.gov (United States)

    Peeters, B W M M; Ruigt, G S F; Craighead, M; Kitchener, P

    2008-12-01

    Glucocorticoid agonists bind to cytoplasmic glucocorticoid receptors (GRs) and subsequently translocate as an agonist-GR complex into the nucleus. In the nucleus the complex regulates the transcription of target genes. A number of GR antagonists (RU486, progesterone, RU40555) have also been shown to induce receptor translocation. These compounds should be regarded as partial agonists. For the nonselective progesterone receptor antagonists, RTI3021-012 and RTI3021-022, it was shown that GR antagonism is possible without the induction of GR translocation. In the present studies, the new GR antagonist, ORG 34517, was investigated for its potential to induce GR translocation and to antagonize corticosterone-induced GR translocation in the AtT20 (mouse pituitary) cell line. ORG 34517 was compared to RU486. In contrast to RU486, ORG 34517 (at doses up to 3 x 10(-7) M) did not induce GR translocation, but was able to block corticosterone (3 x 10(-8) M) induced GR translocation. ORG 34517 can be regarded as a true competitive GR antagonist without partial agonistic activities.

  4. A Novel Three-Colour Fluorescence in Situ Hybridization Approach for the Detection of t(7;12)(q36;p13) in Acute Myeloid Leukaemia Reveals New Cryptic Three Way Translocation t(7;12;16)

    Energy Technology Data Exchange (ETDEWEB)

    Naiel, Abdulbasit [Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University, London, Middlesex UB8 3PH (United Kingdom); Vetter, Michael [MetaSystems, Altlussheim 68804 (Germany); Plekhanova, Olga [Regional Children’s Hospital N 1, Ekaterinburg 620149 (Russian Federation); Fleischman, Elena; Sokova, Olga [N.N. Blokhin Russian Cancer Research Center Russian Academy of Medical Science, Moscow 115478 (Russian Federation); Tsaur, Grigory [Regional Children’s Hospital N 1, Ekaterinburg 620149 (Russian Federation); Research Institute of Medical Cell Technologies, Ekaterinburg 620149 (Russian Federation); Harbott, Jochen [Oncogenetic Laboratory, Department of Paediatric Haematology and Oncology, Justus Liebig University, Giessen 35392 (Germany); Tosi, Sabrina, E-mail: sabrina.tosi@brunel.ac.uk [Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University, London, Middlesex UB8 3PH (United Kingdom)

    2013-03-11

    The t(7;12)(q36;p13) translocation is a recurrent chromosome abnormality that involves the ETV6 gene on chromosome 12 and has been identified in 20–30% of infant patients with acute myeloid leukaemia (AML). The detection of t(7;12) rearrangements relies on the use of fluorescence in situ hybridization (FISH) because this translocation is hardly visible by chromosome banding methods. Furthermore, a fusion transcript HLXB9-ETV6 is found in approximately 50% of t(7;12) cases, making the reverse transcription PCR approach not an ideal screening method. Considering the report of few cases of variant translocations harbouring a cryptic t(7;12) rearrangement, we believe that the actual incidence of this abnormality is higher than reported to date. The clinical outcome of t(7;12) patients is believed to be poor, therefore an early and accurate diagnosis is important in the clinical management and treatment. In this study, we have designed and tested a novel three-colour FISH approach that enabled us not only to confirm the presence of the t(7;12) in a number of patients studied previously, but also to identify a cryptic t(7;12) as part of a complex rearrangement. This new approach has proven to be an efficient and reliable method to be used in the diagnostic setting.

  5. Reciprocal products of chromosomal translocations in human cancer pathogenesis: key players or innocent bystanders?

    Science.gov (United States)

    Rego, Eduardo M; Pandolfi, Pier Paolo

    2002-08-01

    Chromosomal translocations are frequently involved in the pathogenesis of leukemias, lymphomas and sarcomas. They can lead to aberrant expression of oncogenes or the generation of chimeric proteins. Classically, one of the products is thought to be oncogenic. For example, in acute promyelocytic leukaemia (APL), reciprocal chromosomal translocations involving the retinoic acid receptor alpha (RARalpha) gene lead to the formation of two fusion genes: X-RARalpha and RARalpha-X (where X is the alternative RARalpha fusion partner: PML, PLZF, NPM, NuMA and STAT 5b). The X-RARalpha fusion protein is indeed oncogenic. However, recent data indicate that the RARalpha-X product is also critical in determining the biological features of this leukemia. Here, we review the current knowledge on the role of reciprocal products in cancer pathogenesis, and highlight how their expression might impact on the biology of their respective tumour types.

  6. A Balanced Chromosomal Translocation Disrupting ARHGEF9 Is Associated With Epilepsy, Anxiety, Aggression, and Mental Retardation

    OpenAIRE

    Kalscheuer, Vera M.; Musante, Luciana; Fang, Cheng; Hoffmann, Kirsten; Fuchs, Celine; Carta, Eloisa; Deas, Emma; Venkateswarlu, Kanamarlapudi; Menzel, Corinna; Ullmann, Reinhard; Tommerup, Niels; Dalprà, Leda; Tzschach, Andreas; Selicorni, Angelo; Lüscher, Bernhard

    2009-01-01

    Clustering of inhibitory γ-aminobutyric acidA (GABAA) and glycine receptors at synapses is thought to involve key interactions between the receptors, a “scaffolding” protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the brea...

  7. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Delayed reproduction of translocated red-cockaded woodpeckers

    Science.gov (United States)

    James R. McCormick; Richard N. Conner; Daniel Saenz; Brent Burt

    2001-01-01

    Twelve pairs of Red-cockaded Woodpeckers were translocated to the Angelina National Forest from 21 October 1998 to 17 December 1998. Five breeding pairs (consisting of at least one trnnslocated bird) produced eggs/nestlings within the first breeding season after translocation. Clutch initiation dates for all five pairs were later than those of resident breeders. The...

  9. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Science.gov (United States)

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is

  10. Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex.

    Science.gov (United States)

    López-Rubalcava, C; Piña-Medina, B; Estrada-Reyes, R; Heinze, G; Martínez-Vázquez, M

    2006-01-11

    A hexane extract of leaves of Annona cherimolia produced anxiolytic-like actions when administered to mice and tested in two animal models of anxiety: the mouse avoidance exploratory behavior and the burying behavior tests. In order to discard unspecific drug-actions on general activity, all treatments studied in the anxiety paradigms were also analyzed in the open field test. Results showed that A. cherimolia induced anxiolytic-like actions at the doses of 6.25, 12.5, 25.0 and 50.0 mg/kg. Picrotoxin (0.25 mg/kg), a GABA-gated chloride ion channel blocker, antagonized the anxiolytic-like actions of A. cherimolia, while a sub-effective dose of muscimol (0.5 mg/kg), a selective GABA(A) receptor agonist, facilitated the effects of a sub-optimal dose of A. cherimolia (3.12 mg/kg). Thus, the involvement of the GABA(A) receptor complex in the anxiolytic-like actions of A. cherimolia hexane extract is suggested. In addition the extract was also able to enhance the duration of sodium pentobarbital induced sleeping time. Taken together, results indicate that the hexane extract of A. cherimolia has depressant activity on the Central Nervous System and could interact with the GABA(A) receptor complex. On the other hand, the chromatographic separation of this extract led to the isolation of palmitone, and beta-sitosterol as major constituents. In addition a GC-MS study of some fractions revealed the presence of several compounds such beta-cariophyllene, beta-selinene, alpha-cubebene, and linalool that have been reported to show effects on behavior that could explain some of the extract effects.

  11. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  12. Characterization of the Unusual Product from the Reaction between Cobalt(II) Chloride, Ethane-1,2-diamine, and Hydrochloric Acid: An Undergraduate Project Involving an Unknown Metal Complex.

    Science.gov (United States)

    Curtis, Neil F.; And Others

    1986-01-01

    Discusses the need for student research-type chemistry projects based upon "unknown" metal complexes. Describes an experiment involving the product from the reaction between cobalt(II) chloride, ethane-1,2-diamine (en) and concentrated hydrochloric acid. Outlines the preparation of the cobalt complex, along with procedure, results and…

  13. Inactivation of protein translocation by cold-sensitive mutations in the yajC-secDF operon

    NARCIS (Netherlands)

    Nouwen, N; Driessen, AJM

    2005-01-01

    Most mutations in the yajC-secDF operon identified via genetic screens confer a cold-sensitive growth phenotype. Here we report that two of these mutations confer this cold-sensitive phenotype by inactivating the SecDF-YajC complex in protein translocation.

  14. Involvement of the major histocompatibility complex region in the genetic regulation of circulating CD8 T-cell numbers in humans.

    Science.gov (United States)

    Cruz, E; Vieira, J; Gonçalves, R; Alves, H; Almeida, S; Rodrigues, P; Lacerda, R; Porto, G

    2004-07-01

    Variability in T-lymphocyte numbers is partially explained by a genetic regulation. From studies in animal models, it is known that the Major Histocompatibility Complex (MHC) is involved in this regulation. In humans, this has not been shown yet. The objective of the present study was to test the hypothesis that genes in the MHC region influence the regulation of T-lymphocyte numbers. Two approaches were used. Association studies between T-cell counts (CD4(+) and CD8(+)) or total lymphocyte counts and HLA class I alleles (A and B) or mutations in the HFE (C282Y and H63D), the hemochromatosis gene, in an unrelated population (n = 264). A second approach was a sibpair correlation analysis of the same T-cell counts in relation to HLA-HFE haplotypes in subjects belonging to 48 hemochromatosis families (n = 456 sibpairs). In the normal population, results showed a strong statistically significant association of the HLA-A*01 with high numbers of CD8(+) T cells and a less powerful association with the HLA-A*24 with low numbers of CD8(+) T cells. Sibpair correlations revealed the most significant correlation for CD8(+) T-cell numbers for sibpairs with HLA-HFE-identical haplotypes. This was not observed for CD4(+) T cells. These results show that the MHC region is involved in the genetic regulation of CD8(+) T-cell numbers in humans. Identification of genes responsible for this control may have important biological and clinical implications.

  15. HELICOBACTER PYLORI AND t(11;18(q21;q21 TRANSLOCATION IN GASTRIC MALT LYMPHOMA

    Directory of Open Access Journals (Sweden)

    Karine Sampaio LIMA

    2014-04-01

    Full Text Available Context Gastric mucosa-associated lymphoid tissue (MALT lymphoma is clearly associated with Helicobacter pylori gastritis and can be cured with anti- H pylori therapy alone. The presence of t(11;18(q21;q21 translocation is thought to predict a lower response rate to anti- H pylori treatment. Objectives To study the presence of t(11;18(q21;q21 genetic translocation and its clinical impact in low-grade gastric MALT lymphoma Brazilian patients. Methods A consecutive series of eight patients with gastric MALT lymphoma were submitted to gastroscopy, endoscopic ultrasound, histopathological examination, H pylori search and RT-PCR-based methodology. All patients received anti-H pylori treatment. Eradicated patients were followed-up every 3-6 months for 2 years. Results Eight patients were studied. All patients had tumor involvement restricted to the mucosa or submucosa and seven patients had low-grade gastric MALT lymphoma. All infected patients achieved H pylori eradication. Histological tumor regression was observed in 5/7 (71% of the low-grade gastric MALT lymphoma patients. The presence of t(11;18(q21;q21 translocation was found in 4 (57% of these patients; among them only two had histological tumor regression following H pylori eradication. Conclusions RT-PCR is a feasible and efficient method to detect t(11;18(q21;q21 translocation, being carried out in routine molecular biology laboratories. The early detection of such translocation can be very helpful for better targeting the therapy to be applied to gastric MALT lymphoma patients.

  16. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia

    2015-05-07

    © 2015 American Chemical Society. In nanopore sensing experiments, the properties of molecules are probed by the variation of ionic currents flowing through the nanopore. In this context, the electronic properties and the single-layer thickness of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics methods with a bioinformatic structural analysis. To obtain a qualitative picture of the translocation process and to identify salient features we performed unsupervised structural clustering on translocation conformations. This allowed us to identify some specific and robust translocation intermediates, characterized by significantly different ionic current flows. We found that the ion current strictly anticorrelates with the amount of pore occupancy by thioredoxin residues, providing a putative explanation of the multilevel current scenario observed in recently published translocation experiments.

  17. Understanding the complex relationships among actors involved in the implementation of public-private mix (PPM) for TB control in India, using social theory.

    Science.gov (United States)

    Salve, Solomon; Harris, Kristine; Sheikh, Kabir; Porter, John D H

    2018-06-07

    Public Private Partnerships (PPP) are increasingly utilized as a public health strategy for strengthening health systems and have become a core component for the delivery of TB control services in India, as promoted through national policy. However, partnerships are complex systems that rely on relationships between a myriad of different actors with divergent agendas and backgrounds. Relationship is a crucial element of governance, and relationship building an important aspect of partnerships. To understand PPPs a multi-disciplinary perspective that draws on insights from social theory is needed. This paper demonstrates how social theory can aid the understanding of the complex relationships of actors involved in implementation of Public-Private Mix (PPM)-TB policy in India. Ethnographic research was conducted within a district in a Southern state of India over a 14 month period, combining participant observations, informal interactions and in-depth interviews with a wide range of respondents across public, private and non-government organisation (NGO) sectors. Drawing on the theoretical insights from Bourdieu's "theory of practice" this study explores the relationships between the different actors. The study found that programme managers, frontline TB workers, NGOs, and private practitioners all had a crucial role to play in TB partnerships. They were widely regarded as valued contributors with distinct social skills and capabilities within their organizations and professions. However, their potential contributions towards programme implementation tended to be unrecognized both at the top and bottom of the policy implementation chain. These actors constantly struggled for recognition and used different mechanisms to position themselves alongside other actors within the programme that further complicated the relationships between different actors. This paper demonstrates that applying social theory can enable a better understanding of the complex relationship

  18. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  19. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type.

    Science.gov (United States)

    Duro, D; Bernard, O; Della Valle, V; Leblanc, T; Berger, R; Larsen, C J

    1996-02-15

    We have reported previously a preliminary study of a t(9;14)(p21-22; q11) in B-cell acute lymphoblastic leukemia. This translocation had rearranged the TCRA/D locus on chromosome band 14q11 and the locus encoding the tumor suppressor gene P16INK4/MTS1 (P16) on band 9p21 (D. Duro et al., Oncogene, 11: 21-29, 1995). In the present report, the breakpoints were precisely localized on each chromosome partner. On the 14q- derivative, the sequence derived from chromosome 9 was interrupted at 1.0 kb upstream of the first exon of P16, close to a consensus recombination heptamer, CACTGTG. In addition, the chromosome 14 breakpoint was localized at the end of the TCRD2 (delta 2) segment, and 22 residues with unknown origin were present at the translocation junction. On the 9p+ derivative, chromosome 9 sequences were in continuity with those displaced onto chromosome 14, and the 14q11 breakpoint was located within TCRJA29 segment. These features are consistent with aberrant activity of the TCR gene recombinase complex. Although all three coding exons of P16 were displaced onto the chromosome 14q-derivative, no P16 transcript was detected in the leukemic cells. Because the region spanning the P16 exon 1 was not inactivated by methylation and because the other P16 allele was deleted, the implication is that the chromosome breakpoint was likely to disrupt regulatory elements involved in the normal expression of the gene. As a whole, then, our results show that translocations affecting band 9p21 can participate to the inactivation of P16, thus justifying a systematic survey of translocations of the 9p21 band in acute lymphoblastic leukemia.

  20. Involvement of F-Actin in Chaperonin-Containing t-Complex 1 Beta Regulating Mouse Mesangial Cell Functions in a Glucose-Induction Cell Model

    Directory of Open Access Journals (Sweden)

    Jin-Shuen Chen

    2011-01-01

    Full Text Available The aim of this study is to investigate the role of chaperonin-containing t-complex polypeptide 1 beta (CCT2 in the regulation of mouse mesangial cell (mMC contraction, proliferation, and migration with filamentous/globular-(F/G- actin ratio under high glucose induction. A low CCT2 mMC model induced by treatment of small interference RNA was established. Groups with and without low CCT2 induction examined in normal and high (H glucose conditions revealed the following major results: (1 low CCT2 or H glucose showed the ability to attenuate F/G-actin ratio; (2 groups with low F/G-actin ratio all showed less cell contraction; (3 suppression of CCT2 may reduce the proliferation and migration which were originally induced by H glucose. In conclusion, CCT2 can be used as a specific regulator for mMC contraction, proliferation, and migration affected by glucose, which mechanism may involve the alteration of F-actin, particularly for cell contraction.

  1. Instability of isochromosome 4p in a child with pure trisomy 4p syndrome features and entire 4q-arm translocation.

    Science.gov (United States)

    Pota, Pruthvi; Grammatopoulou, Vasiliki; Torti, Erin; Braddock, Stephen; Batanian, Jacqueline R

    2014-01-01

    Constitutional chromosome instability so far has mainly been associated with ring formation. In addition, isochromosome formation involving the short arm with translocation of the entire long arm is rarely observed. This type of rearrangement has been reported for chromosomes 4, 5, 7, 9, 10, 12, and 20. Here, we present the third patient having an isochromosome 4p with 4q translocation, but showing for the first time chromosome instability detected by FISH following chromosome microarray analysis.

  2. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes.

    Science.gov (United States)

    Papa, Sergio; Capitanio, Giuseppe; Papa, Francesco

    2018-02-01

    The respiratory chain of mitochondria and bacteria is made up of a set of membrane-associated enzyme complexes which catalyse sequential, stepwise transfer of reducing equivalents from substrates to oxygen and convert redox energy into a transmembrane protonmotive force (PMF) by proton translocation from a negative (N) to a positive (P) aqueous phase separated by the coupling membrane. There are three basic mechanisms by which a membrane-associated redox enzyme can generate a PMF. These are membrane anisotropic arrangement of the primary redox catalysis with: (i) vectorial electron transfer by redox metal centres from the P to the N side of the membrane; (ii) hydrogen transfer by movement of quinones across the membrane, from a reduction site at the N side to an oxidation site at the P side; (iii) a different type of mechanism based on co-operative allosteric linkage between electron transfer at the metal redox centres and transmembrane electrogenic proton translocation by apoproteins. The results of advanced experimental and theoretical analyses and in particular X-ray crystallography show that these three mechanisms contribute differently to the protonmotive activity of cytochrome c oxidase, ubiquinone-cytochrome c oxidoreductase and NADH-ubiquinone oxidoreductase of the respiratory chain. This review considers the main features, recent experimental advances and still unresolved problems in the molecular/atomic mechanism of coupling between the transfer of reducing equivalents and proton translocation in these three protonmotive redox complexes. © 2017 Cambridge Philosophical Society.

  3. MMB-GUI: a fast morphing method demonstrates a possible ribosomal tRNA translocation trajectory.

    Science.gov (United States)

    Tek, Alex; Korostelev, Andrei A; Flores, Samuel Coulbourn

    2016-01-08

    Easy-to-use macromolecular viewers, such as UCSF Chimera, are a standard tool in structural biology. They allow rendering and performing geometric operations on large complexes, such as viruses and ribosomes. Dynamical simulation codes enable modeling of conformational changes, but may require considerable time and many CPUs. There is an unmet demand from structural and molecular biologists for software in the middle ground, which would allow visualization combined with quick and interactive modeling of conformational changes, even of large complexes. This motivates MMB-GUI. MMB uses an internal-coordinate, multiscale approach, yielding as much as a 2000-fold speedup over conventional simulation methods. We use Chimera as an interactive graphical interface to control MMB. We show how this can be used for morphing of macromolecules that can be heterogeneous in biopolymer type, sequence, and chain count, accurately recapitulating structural intermediates. We use MMB-GUI to create a possible trajectory of EF-G mediated gate-passing translocation in the ribosome, with all-atom structures. This shows that the GUI makes modeling of large macromolecules accessible to a wide audience. The morph highlights similarities in tRNA conformational changes as tRNA translocates from A to P and from P to E sites and suggests that tRNA flexibility is critical for translocation completion. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    Science.gov (United States)

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  5. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    Science.gov (United States)

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  6. Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael

    2012-02-01

    We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations

  7. Genetic outcomes from the translocations of the critically endangered woylie

    Directory of Open Access Journals (Sweden)

    Carlo PACIONI, Adrian F.WAYNE, Peter B.S.SPENCER

    2013-06-01

    Full Text Available Translocations are an important conservation strategy for many species. However simply observing demographic growth of a translocated population is not sufficient to infer species recovery. Adequate genetic representation of the source population(s and their long-term viability should also be considered. The woylie Bettongia penicillata ogilbyi has been subject to more formal translocations for conservation than any other marsupial that, up until recently, has resulted in one of the most successful species recoveries in Australia. We used mitochondrial and nuclear DNA markers to assess the genetic outcomes of translocated woylie populations. These populations have lost genetic variability, differentiated from their source population and the supplementation program on two island populations appears to have failed. We discuss the conservation implications that our results have for managing threatened species, outline some general recommendations for the management of present and future translocations and discuss the appropriate sampling design for the establishment of new populations or captive breeding programs that may mitigate the genetic ‘erosion’ seen in our study species. This research provides some practical outcomes and a pragmatic understanding of translocation biology. The findings are directly applicable to other translocation programs [Current Zoology 59 (3: 294-310, 2013].

  8. Mode of ATM-dependent suppression of chromosome translocation

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Motohiro, E-mail: motoyama@nagasaki-u.ac.jp [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  9. Micro-Evolution in Grasshoppers Mediated by Polymorphic Robertsonian Translocations

    Science.gov (United States)

    Colombo, Pablo C.

    2013-01-01

    This review focuses on grasshoppers that are polymorphic for Robertsonian translocations because in these organisms the clarity of meiotic figures allows the study of both chiasma distribution and the orientation of trivalents and multivalents in metaphase I. Only five species of such grasshoppers were found in the literature, and all of them were from the New World: Oedaleonotus enigma (Scudder) (Orthoptera: Acrididae), Leptysma argentina Bruner, Dichroplus pratensis Bruner, Sinipta dalmani Stål, and Cornops aquaticum Bruner. A general feature of these species (except O. enigma) is that fusion carriers suffer a marked reduction of proximal and interstitial (with respect to the centromere) chiasma frequency; this fact, along with the reduction in the number of linkage groups with the consequent loss of independent segregation, produces a marked decrease of recombination in fusion carriers. This reduction in recombination has led to the conclusion that Robertsonian polymorphic grasshopper species share some properties with inversion polymorphic species of Drosophila, such as the central-marginal pattern (marginal populations are monomorphic, central populations are highly polymorphic). This pattern might be present in D. pratensis, which is certainly the most complex Robertsonian polymorphism system in the present study. However, L. argentina and C. aquaticum do not display this pattern. This issue is open to further research. Since C. aquaticum is soon to be released in South Africa as a biological control, the latitudinal pattern found in South America may repeat there. This experiment's outcome is open and deserves to be followed. PMID:23909914

  10. Ready Experimental Translocation of Mycobacterium canettii Yields Pulmonary Tuberculosis.

    Science.gov (United States)

    Bouzid, Fériel; Brégeon, Fabienne; Lepidi, Hubert; Donoghue, Helen D; Minnikin, David E; Drancourt, Michel

    2017-12-01

    Mycobacterium canettii , which has a smooth colony morphology, is the tuberculous organism retaining the most genetic traits from the putative last common ancestor of the rough-morphology Mycobacterium tuberculosis complex. To explore whether M. canettii can infect individuals by the oral route, mice were fed phosphate-buffered saline or 10 6 M. canettii mycobacteria and sacrificed over a 28-day experiment. While no M. canettii was detected in negative controls, M. canettii -infected mice yielded granuloma-like lesions for 4/4 lungs at days 14 and 28 postinoculation (p.i.) and positive PCR detection of M. canettii for 5/8 mesenteric lymph nodes at days 1 and 3 p.i. and 5/6 pooled stools collected from day 1 to day 28 p.i. Smooth M. canettii colonies grew from 68% of lungs and 36% of spleens and cervical lymph nodes but fewer than 20% of axillary lymph nodes, livers, brown fat samples, kidneys, or blood samples throughout the 28-day experiment. Ready translocation in mice after digestive tract challenge demonstrates the potential of ingested M. canettii organisms to relocate to distant organs and lungs. The demonstration of this relocation supports the possibility that populations may be infected by environmental M. canettii . Copyright © 2017 American Society for Microbiology.

  11. Mechanical design of translocating motor proteins.

    Science.gov (United States)

    Hwang, Wonmuk; Lang, Matthew J

    2009-01-01

    Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature's design strategy for these molecular engines.

  12. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  13. Absorption and translocation of phosphorus-32 in guava leaves

    International Nuclear Information System (INIS)

    Natale, William

    1997-01-01

    Phosphorus is easily absorbed by the leaves and translocated. The objective of this work was to evaluate the absorption and translocation of P by guava leaves, with time. When a solution containing 2% MAP and specific activity 0.15 μCi/ml was applied. MAP labelled with 32 P was applied in the 3 rd pair of leaves. These and other leaves, roots and stem were collected separately and analyzed accordingly. The results showed that 20 days after application 12% of the applied P was absorbed by the guava leaves. The translocation of P started immediately after its absorption reaching 20% 2fter 20 days. (author). 19 refs., 4 tabs

  14. [Molecular genetics in chronic myeloid leukemia with variant Ph translocation].

    Science.gov (United States)

    Wu, Wei; Li, Jian-yong; Zhu, Yu; Qiu, Hai-rong; Pan, Jin-lan; Xu, Wei; Chen, Li-juan; Shen, Yun-feng; Xue, Yong-quan

    2007-08-01

    To explore the value of fluorescence in situ hybridization (FISH) and multiplex fluorescence in situ hybridization (M-FISH) techniques in the detection of genetic changes in chronic myeloid leukemia (CML) with variant Philadelphia translocation (vPh). Cytogenetic preparations from 10 CML patients with vPh confirmed by R banding were assayed with dual color dual fusion FISH technique. If only one fusion signal was detected in interphase cells, metaphase cells were observed to determine if there were derivative chromosome 9[der (9)] deletions. Meanwhile, the same cytogenetic preparations were assayed with M-FISH technique. Of the 10 CML patients with vPh, 5 were detected with der (9) deletions by FISH technique. M-FISH technique revealed that besides the chromosome 22, chromosomes 1, 3, 5, 6, 8, 10, 11 and 17 were also involved in the vPh. M-FISH technique also detected the abnormalities which were not found with conventional cytogenetics (CC), including two never reported abnormalities. The combination of CC, FISH and M-FISH technique could refine the genetic diagnosis of CML with vPh.

  15. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    Science.gov (United States)

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  16. The transcriptional co-repressor myeloid translocation gene 16 inhibits glycolysis and stimulates mitochondrial respiration.

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    Full Text Available The myeloid translocation gene 16 product MTG16 is found in multiple transcription factor-containing complexes as a regulator of gene expression implicated in development and tumorigenesis. A stable Tet-On system for doxycycline-dependent expression of MTG16 was established in B-lymphoblastoid Raji cells to unravel its molecular functions in transformed cells. A noticeable finding was that expression of certain genes involved in tumor cell metabolism including 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4 (PFKFB3 and PFKFB4, and pyruvate dehydrogenase kinase isoenzyme 1 (PDK1 was rapidly diminished when MTG16 was expressed. Furthermore, hypoxia-stimulated production of PFKFB3, PFKFB4 and PDK1 was inhibited by MTG16 expression. The genes in question encode key regulators of glycolysis and its coupling to mitochondrial metabolism and are commonly found to be overexpressed in transformed cells. The MTG16 Nervy Homology Region 2 (NHR2 oligomerization domain and the NHR3 protein-protein interaction domain were required intact for inhibition of PFKFB3, PFKFB4 and PDK1 expression to occur. Expression of MTG16 reduced glycolytic metabolism while mitochondrial respiration and formation of reactive oxygen species increased. The metabolic changes were paralleled by increased phosphorylation of mitogen-activated protein kinases, reduced levels of amino acids and inhibition of proliferation with a decreased fraction of cells in S-phase. Overall, our findings show that MTG16 can serve as a brake on glycolysis, a stimulator of mitochondrial respiration and an inhibitor of cell proliferation. Hence, elevation of MTG16 might have anti-tumor effect.

  17. Muscle contraction increases carnitine uptake via translocation of OCTN2

    Energy Technology Data Exchange (ETDEWEB)

    Furuichi, Yasuro [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa (Japan); Sugiura, Tomoko; Kato, Yukio [Faculty of Pharmacy, Kanazawa University, Kanazawa (Japan); Takakura, Hisashi [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan); Hanai, Yoshiteru [Nagoya Institute of Technology, Nagoya (Japan); Hashimoto, Takeshi [Ritsumeikan University, Kusatsu (Japan); Masuda, Kazumi, E-mail: masuda@ed.kanazawa-u.ac.jp [Faculty of Human Sciences, Kanazawa University, Kanazawa (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly

  18. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  19. A case of posttraumatic splenic translocation into the thorax

    International Nuclear Information System (INIS)

    Sosnowski, P.; Sikorski, L.; Ziemianski, A.

    1993-01-01

    A case of the left diaphragmatic hernia due to blunt thoracic and abdominal trauma is presented. Characteristic radiological signs of splenic translocation into the thorax contributed to quick diagnosis and immediate surgical intervention. (author)

  20. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia; Lepore, Rosalba; Raimondo, Domenico; Cecconi, Fabio; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics

  1. Microbial translocation and cardiometabolic risk factors in HIV infection

    DEFF Research Database (Denmark)

    Trøseid, Marius; Manner, Ingjerd W; Pedersen, Karin K

    2014-01-01

    of microbial translocation are closely associated with several cardiovascular risk factors such as dyslipidemia, insulin resistance, hypertension, coagulation abnormalities, endothelial dysfunction, and carotid atherosclerosis. Future studies should investigate whether associations between microbial...

  2. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement

    DEFF Research Database (Denmark)

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie

    2016-01-01

    electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250–270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster...... of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi....

  3. Carbon translocation in zooanthaellae-coelenterate symbioses

    International Nuclear Information System (INIS)

    Battey, J.F.

    1985-01-01

    When host and algal triglycerides synthesized in the symbiotic sea anemone Condylactis gigantea during light and dark incubations in 14 C-bicarbonate and 14 C-acetate were deacylated, more then 80% of the radioactivity was found in the fatty acid moiety. In contrast, triglycerides isolated from zooxanthellae and host incubated in 14 C-glycerol in the dark were found to have more then 95% of their radioactivity in the glycerol moiety. During 14 C-glycerol incubations in the light, radioactivity in the fatty acid moiety of zooxanthellae triglyceride fatty acid moiety stayed below 5% during 14 C-glycerol incubations in the light. These results show neither the zooxanthellae nor host can rapidly convert glycerol to fatty acid. Radioactivity from 14 C-glycerol that does eventually appear in host lipid may have been respired to 14 CO 2 then photosynthetically fixed by the zooxanthellae and synthesized into lipid fatty acid. The isolated zooxanthellae of C. gigantea contained 3.62 +/- 0.33 mM glycerol, which was 26x the 0.141 +/- 0.02 mM found in the coelenterate tissue. Aposymbiotic coelenterate tissue contained 0.169 +/- 0.05 mM glycerol. The metabolic inhibitors, sodium cyanide, aminooxyacetic acid and cerulenin were used to try and uncouple the production of glycerol by the zooxanthellae from its utilization by the coelenterate host. 10 -5 M NaCN increased the ratio of cross photosynthesis to respiration in both intact tentacles and isolated zooxanthellae, increased translocation from 17.7 +/- 3.5% of total fixed carbon in controls to 43.5 +/- 5.79%, and doubled the amount of photosynthetically fixed carbon accumulating in the coelenterate host over that in controls

  4. Bacterial translocation in clinical intestinal transplantation.

    Science.gov (United States)

    Cicalese, L; Sileri, P; Green, M; Abu-Elmagd, K; Kocoshis, S; Reyes, J

    2001-05-27

    Bacterial translocation (BT) has been suggested to be responsible for the high incidence of infections occurring after small bowel transplantation (SBTx). Bacterial overgrowth, alteration of the mucosal barrier function as a consequence of preservation injury or acute rejection (AR), and potent immunosuppression are all associated with BT. The aim of this study was to evaluate and quantify the correlation of BT with these events. Fifty pediatric SBTx recipients on tacrolimus and prednisone immunosuppression were analyzed. Blood, stool, and liver biopsies and peritoneal fluid were cultured (circa 4000 total specimens) when infection was clinically suspected or as part of follow-up. BT episodes were considered when microorganisms were found simultaneously in blood or liver biopsy and stool. BT (average of 2.0 episodes/patient) was evident in 44% of patients and was most frequently caused by Enterococcus, Staphylococcus, Enterobacter, and Klebsiella. The presence of a colon allograft was associated with a higher rate of BT (75% vs. 33.3%). Furthermore, the transplantation procedure (colon vs. no colon) affected the rate of BT: SBTx=40% vs. 25%, combined liver and SBTx=100% vs. 30%, multivisceral transplantation=25% vs. 50%. AR was associated with 39% of BT episodes. BT followed AR in 9.6% of the cases. In 5.2% of the cases, positive blood cultures without stool confirmation of the bacteria were seen. Prolonged cold ischemia time (CIT) affected BT rate significantly (CIT>9 hr 76% vs. CIT<9 hr 20.8%). This study shows that 1) a substantial percentage of, but not all, BT is associated with AR, 2) the presence of a colon allograft increases the risk for BT, and 3) a long CIT is associated with a high incidence of BT after SBTx.

  5. Meiotic delay of translocation carrying spermatocytes responsible for reduced transmission

    International Nuclear Information System (INIS)

    Buul, P.P.W. van

    1991-01-01

    Using in vivo pulse labelling of spermatocytes from mice irradiated with different doses of X-rays (6 and 7 Gy). The authors demonstrated that cells having translocations derived from irradiated stem cells tend to spend longer time at the meiotic prophase than normal cells. At the 2 Gy level this effect is much less pronounced. The recorded delay forms a good explanation for the reduced transmission of translocations to the next generation observed by others. (author)

  6. Translocations as experiments in the ecological resilience of an asocial mega-herbivore.

    Science.gov (United States)

    Linklater, Wayne L; Gedir, Jay V; Law, Peter R; Swaisgood, Ron R; Adcock, Keryn; du Preez, Pierre; Knight, Michael H; Kerley, Graham I H

    2012-01-01

    Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981-2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world.

  7. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize

    Institute of Scientific and Technical Information of China (English)

    Moming Zhao; Shuzhen Zhang; Sen Wang; Honglin Huang

    2012-01-01

    Uptake,translocation and debromination of three polybrominated diphenyl ethers(PBDEs),BDE-28,-47 and-99,in maize were studied in a hydroponic experiment.Roots took up most of the PBDEs in the culture solutions and more highly brominated PBDEs had a stronger uptake capability.PBDEs were detected in the stems and leaves of maize after exposure but rarely detected in the blank control plants.Furthermore,PBDE concentrations decreased from roots to stems and then to leaves,and a very clear decreasing gradient was found in segments upwards along the stem.These altogether provide substantiating evidence for the acropetal translocation of PBDEs in maize.More highly brominated PBDEs were translocated with more difficulty.Radial translocation of PBDEs from nodes to sheath inside maize was also observed.Both acropetal and radial translocations were enhanced at higher transpiration rates,suggesting that PBDE transport was probably driven by the transpiration stream.Debromination of PBDEs occurred in all parts of the maize,and debromination patterns of different parent PBDEs and in different parts of a plant were similar but with some differences.This study for the first time provides direct evidence for the acropetal translocation of PBDEs within plants,elucidates the process of PBDE transport and clarifies the debromination products of PBDEs in maize.

  8. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.

    Science.gov (United States)

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-08-29

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.

  9. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2018-04-01

    Full Text Available Summary: Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation. : Using a chronic in vivo imaging approach, Eyo et al. show that the physical positions of brain microglia change daily and that these changes increase following certain experimental manipulations. The mechanism underlying these changes involves cell translocation controlled by microglial-specific P2Y12 receptors. Keywords: microglia, P2Y12, seizures, epilepsy, whisker trimming, microglial landscape, two photon chronic imaging

  10. Nitric oxide induces thioredoxin-1 nuclear translocation: Possible association with the p21Ras survival pathway

    International Nuclear Information System (INIS)

    Arai, Roberto J.; Masutani, H.; Yodoi, J.; Debbas, V.; Laurindo, Francisco R.; Stern, A.; Monteiro, Hugo P.

    2006-01-01

    One of the major redox-regulating molecules with thiol reducing activity is thioredoxin-1 (TRX-1). TRX-1 is a multifunctional protein that exists in the extracellular millieu, cytoplasm, and nucleus, and has a distinct role in each environment. It is well known that TRX-1 promptly migrates to the nuclear compartment in cells exposed to oxidants. However, the intracellular location of TRX-1 in cells exposed to nitrosothiols has not been investigated. Here, we demonstrated that the exposure of HeLa cells to increasing concentrations of the nitrosothiol S-nitroso-N-acetylpenicillamine (SNAP) promoted TRX-1 nuclear accumulation. The SNAP-induced TRX-1 translocation to the nucleus was inhibited by FPTIII, a selective inhibitor of p21Ras. Furthermore, TRX-1 migration was attenuated in cells stably transfected with NO insensitive p21Ras (p21 RasC118S ). Downstream to p21Ras, the MAP Kinases ERK1/2 were activated by SNAP under conditions that promote TRX-1 nuclear translocation. Inhibition of MEK prevented SNAP-stimulated ERK1/2 activation and TRX-1 nuclear migration. In addition, cells treated with p21Ras or MEK inhibitor showed increased susceptibility to cell death induced by SNAP. In conclusion, our observations suggest that the nuclear translocation of TRX-1 is induced by SNAP involving p21Ras survival pathway

  11. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins

    Science.gov (United States)

    Zhang, Kewei; Novak, Ondrej; Wei, Zhaoyang; Gou, Mingyue; Zhang, Xuebin; Yu, Yong; Yang, Huijun; Cai, Yuanheng; Strnad, Miroslav; Liu, Chang-Jun

    2014-02-01

    Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant’s growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C14 or C13-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta.

  12. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    International Nuclear Information System (INIS)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-01-01

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H 2 O 2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H 2 O 2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process

  13. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    International Nuclear Information System (INIS)

    Tosato, Valentina; Grüning, Nana-Maria; Breitenbach, Michael; Arnak, Remigiusz; Ralser, Markus; Bruschi, Carlo V.

    2013-01-01

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  14. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aibin; Liu, Jingyi [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing (China); Liu, Peilin; Jia, Min; Wang, Han [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Tao, Ling, E-mail: lingtao2006@gmail.com [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China)

    2014-04-18

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the

  15. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tosato, Valentina [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Grüning, Nana-Maria [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Breitenbach, Michael [Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg (Austria); Arnak, Remigiusz [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Ralser, Markus [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Bruschi, Carlo V., E-mail: bruschi@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2013-01-18

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  16. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  17. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-04-01

    The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Together, these bc(1) subunits build up the core structure of the cytochrome bc(1) complex, which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc(1) core structure may represent a true assembly intermediate during the maturation of the bc(1) complex; first, because of its wide distribution in distinct yeast deletion strains and, second, for its characteristics of stability, which resemble those of the intact homodimeric bc(1) complex. By contrast, the bc(1) core structure is unable to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc(1) complex provides a number of new elements clarifying the molecular events leading to the maturation of the yeast cytochrome bc(1) complex in the inner mitochondrial membrane.

  18. Evidence that assembly of the yeast cytochrome bc1 complex involves formation of a large core structure in the inner mitochondrial membrane

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.

    2009-01-01

    The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481

  19. The effect of O-GlcNAcylation on hnRNP A1 translocation and interaction with transportin1

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Shira; Khalaila, Isam, E-mail: isam@bgu.ac.il

    2017-01-01

    The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a major pre-mRNA binding protein involved in transcription and translation. Although predominantly nuclear, hnRNP A1 shuttles rapidly between the nucleus and the cytosol, delivering its anchored pre-mRNA for further processing. Translocation is important for hnRNP A1 to accomplish its transcriptional and translational roles. Transportin1 (Trn1), a translocation protein, facilitates the translocation of hnRNP A1 back to the nucleus. Moreover, phosphorylation of serine residues at hnRNP A1 C-terminal domain affects its translocation. In this study, we found that phosphorylation is not the only modification that hnRNP A1 undergoes, but also O-linked N-acetylglucosaminylation (O-GlcNAcylation) could occur. Several putative novel O-GlcNAcylation and phosphorylation sites in hnRNP A1 were mapped. Whereas enhanced O-GlcNAcylation increased hnRNP A1 interaction with Trn1, enhanced phosphorylation reduced the interaction between the proteins. In addition, elevated O-GlcNAcylation resulted in hnRNP A1 seclusion in the nucleus, whereas elevated phosphorylation resulted in its accumulation in the cytosol. These findings suggest that a new player, i.e., O-GlcNAcylation, regulates hnRNP A1 translocation and interaction with Trn1, possibly affecting its function. There is a need for further study, to elucidate the role of O-GlcNAcylation in the regulation of the specific activities of hnRNP A1 in transcription and translation. - Highlights: • O-GlcNAcylation regulates hnRNP A1 translocation and interaction with Trn1. • Reciprocity between phosphorylation and O-GlcNAcylation in hnRNP A1 is proposed. • Novel O-GlcNAcylation and phosphorylation sites on hnRNPA1 were identified.

  20. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations

    International Nuclear Information System (INIS)

    Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E.

    1991-01-01

    A new Hessian fly (Mayetiola destructor) resistance gene derived from 'Balbo' rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant 'Balbo' rye and susceptible 'Suwon 92' wheat and between the F1 amphidiploids and susceptible 'TAM 106' and 'Amigo' wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats 'TAM 106,' 'TAM 101,' and 'Vona.' After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 μm) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs

  1. Jumping translocations in hematological malignancies: a cytogenetic study of five cases.

    Science.gov (United States)

    Manola, Kalliopi N; Georgakakos, Vasileios N; Stavropoulou, Chryssa; Spyridonidis, Alexandros; Angelopoulou, Maria K; Vlachadami, Ioanna; Katsigiannis, Andreas; Roussou, Paraskevi; Pantelias, Gabriel E; Sambani, Constantina

    2008-12-01

    Jumping translocations (JT) are rare cytogenetic aberrations in hematological malignancies that include unbalanced translocations involving a donor chromosome arm or chromosome segment that has fused to two or more different recipient chromosomes in different cell lines. We report five cases associated with different hematologic disorders and JT to contribute to the investigation of the origin, pathogenesis, and clinical significance of JT. These cases involve JT of 1q in a case of acute myeloblastic leukemia (AML)-M1, a case of Burkitt lymphoma, and a case of BCR/ABL-positive acute lymphoblastic leukemia, as well as a JT of 13q in a case of AML-M5, and a JT of 11q segment in a case of undifferentiated leukemia. To our knowledge, with regard to hematologic malignancies, this study presents the first case of JT associated with AML-M1, the first case of JT involving 13q as a donor chromosome, and the first report of JT involving a segment of 11q containing two copies of the MLL gene, jumping on to two recipient chromosomes in each cell line and resulting in six copies of the MLL gene. Our investigation suggests that JT may not contribute to the pathogenesis but rather to the progression of the disease, and it demonstrates that chromosome band 1q10 as a breakpoint of the donor chromosome 1q is also implicated in AML, not only in multiple myeloma as it has been known until now.

  2. Free-Energy Landscape of Reverse tRNA Translocation through the Ribosome Analyzed by Electron Microscopy Density Maps and Molecular Dynamics Simulations

    Science.gov (United States)

    Ishida, Hisashi; Matsumoto, Atsushi

    2014-01-01

    To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999

  3. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Hisashi Ishida

    Full Text Available To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.

  4. Transcuticular translocation of radionuclides on plant leaf surfaces

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Watanabe, Tadakazu; Ambe, Shizuko; Yamaguchi, Isamu

    1996-01-01

    The cuticle covering all the outermost surfaces of the aerial parts of plants could play a selective role in uptake and translocation of radionuclides from air into plants. In this study, we investigated the transcuticular uptake and translocation behavior via water droplets of various radionuclides in red clover, orchard grass, Japanese radish and mung bean. Ten μl of an aqueous solution of the multitracer generated from Au was applied to the upper surface of the 2nd leaf of the plants at the 5th leaf stage. The plants were then grown for 14 days at 25degC and 70% RH under illumination of artificial solar lights. The transcuticular uptake and translocation throughout the plant were periodically assayed by determining the radioactivity in the surface residue, the cuticle layer beneath the applied site, the leaf area outside the applied site, the other aerial parts and the root of the plant, using an HPGe detector. The applied radionuclides were absorbed into, in turn, the cuticle layer beneath the applied site and then translocated through the cuticle to the inner tissue and eventually to the other aerial parts and finally to the roots, of the plant. The distribution and accumulation in the plant seems to depend upon the characteristics of each radionuclide and plant species. Ca * and Te * tended to remain on leaf surfaces without being absorbed into the cuticle. On the other hand, Sc * , Co * , Zn * , Se * , Rb * , and Eu * were easily absorbed and translocated to every part of the plant including the root. The other radionuclides such as Be * , Mn * , Sr * , Y * , Ba * , Ce * , Pm * , Gd * , Hf * , Yb * , Lu * , Os * , Ir * , and Pt * remained in the region close to the site of their application. The above results possibly indicate the existence of mechanisms common to these plants for selective transcuticular uptake and translocation of radionuclides within plant tissues, though their translocation was considerably influenced by the plant species. (author)

  5. Role of non-equilibrium conformations on driven polymer translocation.

    Science.gov (United States)

    Katkar, H H; Muthukumar, M

    2018-01-14

    One of the major theoretical methods in understanding polymer translocation through a nanopore is the Fokker-Planck formalism based on the assumption of quasi-equilibrium of polymer conformations. The criterion for applicability of the quasi-equilibrium approximation for polymer translocation is that the average translocation time per Kuhn segment, ⟨τ⟩/N K , is longer than the relaxation time τ 0 of the polymer. Toward an understanding of conditions that would satisfy this criterion, we have performed coarse-grained three dimensional Langevin dynamics and multi-particle collision dynamics simulations. We have studied the role of initial conformations of a polyelectrolyte chain (which were artificially generated with a flow field) on the kinetics of its translocation across a nanopore under the action of an externally applied transmembrane voltage V (in the absence of the initial flow field). Stretched (out-of-equilibrium) polyelectrolyte chain conformations are deliberately and systematically generated and used as initial conformations in translocation simulations. Independent simulations are performed to study the relaxation behavior of these stretched chains, and a comparison is made between the relaxation time scale and the mean translocation time (⟨τ⟩). For such artificially stretched initial states, ⟨τ⟩/N K polymers including single stranded DNA (ssDNA), double stranded DNA (dsDNA), and synthetic polymers. Even when these data are rescaled assuming a constant effective velocity of translocation, it is found that for flexible (ssDNA and synthetic) polymers with N K Kuhn segments, the condition ⟨τ⟩/N K polymers such as ssDNA, a crossover from quasi-equilibrium to non-equilibrium behavior would occur at N K ∼ O(1000).

  6. Decision-support model to explore the feasibility of using translocation to restore a woodland caribou population in Pukaskwa National Park, Canada

    Directory of Open Access Journals (Sweden)

    Emily K. Gonzales

    2015-12-01

    Full Text Available The distribution and abundance of woodland caribou (Rangifer tarandus caribou have declined dramatically in the past century. Without intervention the most southern population of caribou in eastern North America is expected to disappear within 20 years. Although translocations have reintroduced and reinforced some populations, approximately half of caribou translocation efforts fail. Translocations are resource intensive and risky, and multiple interrelated factors must be considered to assess their potential for success. Structured decision-making tools, such as Bayesian belief networks, provide objective methods to assess different wildlife management scenarios by identifying the key components and relationships in an ecosystem. They can also catalyze dialogue with stakeholders and provide a record of the complex thought processes used in reaching a decision. We developed a Bayesian belief network for a proposed translocation of woodland caribou into a national park on the northeastern coast of Lake Superior, Ontario, Canada. We tested scenarios with favourable (e.g., good physical condition of adult caribou and unfavourable (e.g., high predator densities conditions with low, medium, and high numbers of translocated caribou. Under the current conditions at Pukaskwa National Park, augmenting the caribou population is unlikely to recover the species unless wolf densities remain low (<5.5/1000 km2 or if more than 300 animals could be translocated.

  7. Studies on the mixed ligand complexes of copper(II involving a sulfa drug and some potentially bi or tridentate ligands under physiological conditions

    Directory of Open Access Journals (Sweden)

    S. Regupathy

    2014-12-01

    Full Text Available The stability constants of mixed ligand complexes formed in the Cu(II-sulfathiazole(stz(A-glycine(gly, dl-2-aminobutanoic acid(2aba, dl-3-aminobutanoic acid(3aba, 1,2-diaminopropane(dp, 1,3-diaminopropane(tp, dl-2,3-diaminopropanoic acid(dapa, dl-2,4-diaminobutanoic acid(daba, dl-2,5-diaminopentanoic acid(ornithine, orn(B systems have been determined pH-metrically at 37 °C and I = 0.15 mol dm−3 (NaClO4 using SCOGS program. Analysis of experimental data indicates the presence of CuABH, CuAB, CuAB2H2 or CuAB2 species. The Δlog K values demonstrate higher stabilities for the mixed ligand complexes compared to the binary analogues. The CuAB complexes with B = gly, 2aba, dapa & orn systems were isolated and characterized using micro analytical, magnetic moment, ESR, electrochemical studies, TG/DTA, power XRD and SEM analysis. Magnetic susceptibility and electronic spectral studies suggest square planar geometry for the CuAB complexes. The g values indicate that the unpaired electron lies in thedx2-y2 orbital. The TG/DTA studies reveal that the complexes are non hydrated and possesses high thermal stability. The powder XRD data suggest that the complex is microcrystalline. The antimicrobial activity and CT DNA cleavage studies of the complexes are also reported.

  8. Oxidoreduction reactions involving the electrostatic and the covalent complex of cytochrome c and plastocyanin: Importance of the protein rearrangement for the intracomplex electron-transfer reaction

    International Nuclear Information System (INIS)

    Peerey, L.M.; Kostic, N.M.

    1989-01-01

    Horse heart cytochrome c and French bean plastocyanin are cross-linked one-to-one by a carbodiimide in the same general orientation in which they associate electrostatically. The reduction potentials of the Fe and Cu atoms in the covalent diprotein complex are respectively 245 and 385 mV vs NHE; the EPR spectra of the two metals are not perturbed by cross-linking. For isomers of the covalent diprotein complex, which probably differ slightly from one another in the manner of cross-linking, are separated efficiently by cation-exchange chromatography. Stopped-flow spectrophotometric experiments with the covalent diprotein complex show that the presence of plastocyanin somewhat inhibits oxidation of ferrocytochrome c by [Fe(CN) 6 ] 3- and somewhat promotes oxidation of this protein by [Fe(C 5 H 5 ) 2 ] + . These changes in reactivity are explained in terms of electrostatic and steric effects. Pulse-radiolysis experiments with the electrostatic diprotein complex yield association constants of ≥5 x 10 6 and 1 x 10 5 M -1 at ionic strengths of 1 and 40 mM, respectively, and the rate constant of 1.05 x 10 3 s -1 , regardless of the ionic strength, for the intracomplex electron-transfer reaction. Analogous pulse-radiolysis experiments with each of the four isomers of the covalent diprotein complex, at ionic strengths of both 2 and 200 mM, show an absence of the intracomplex electron-transfer reaction. A rearrangement of the proteins for this reaction seems to be possible (or unnecessary) in the electrostatic complex but impossible in the covalent complex

  9. Coffin-Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing.

    Science.gov (United States)

    Kosho, Tomoki; Miyake, Noriko; Carey, John C

    2014-09-01

    This issue of Seminars in Medical Genetics, American Journal of Medical Genetics Part C investigates the human diseases caused by mutations in the BAF complex (also known as the mammalian SWI/SNF complex) genes, particularly focusing on Coffin-Siris syndrome (CSS). CSS is a rare congenital malformation syndrome characterized by developmental delay or intellectual disability (ID), coarse facial appearance, feeding difficulties, frequent infections, and hypoplasia/aplasia of the fifth fingernails and fifth distal phalanges. In 2012, 42 years after the first description of CSS in 1970, five causative genes (SMARCB1, SMARCE1, SMARCA4, ARID1A, ARID1B), all encoding components of the BAF complex, were identified as being responsible for CSS through whole exome sequencing and pathway-based genetic screening. The identification of two additional causative genes (PHF6, SOX11) followed. Mutations in another BAF complex gene (SMARCA2) and (TBC1D24) were found to cause clinically similar conditions with ID, Nicolaides-Baraitser syndrome and DOORS syndrome, respectively. Also, ADNP was found to be mutated in an autism/ID syndrome. Furthermore, there is growing evidences for germline or somatic mutations in the BAF complex genes to be causal for cancer/cancer predisposition syndromes. These discoveries have highlighted the role of the BAF complex in the human development and cancer formation. The biology of BAF is very complicated and much remains unknown. Ongoing research is required to reveal the whole picture of the BAF complex in human development, and will lead to the development of new targeted therapies for related disorders in the future. © 2014 Wiley Periodicals, Inc.

  10. Characterization of Elements Regulating the Nuclear-to-Cytoplasmic Translocation of ICP0 in Late Herpes Simplex Virus 1 Infection.

    Science.gov (United States)

    Samrat, Subodh Kumar; Ha, Binh L; Zheng, Yi; Gu, Haidong

    2018-01-15

    HSV-1 infection, we investigated the potential players involved in this nuclear-to-cytoplasmic translocation. We found that there is a nuclear retention force in an ICP0 E3 ubiquitin ligase-dependent manner. In addition, we identified the C terminus of ICP0 as a cis element cooperating with late viral proteins to overcome the nuclear retention and stimulate the nuclear-to-cytoplasmic translocation of ICP0. Copyright © 2018 American Society for Microbiology.

  11. Cloning of the anhidrotic ectodermal dysplasia gene: Identification of cDNAs associated with CpG islands mapped near translocation breakpoint in two female patients

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); Kere, J. [Univ. of Helsinki (Finland)] [and others

    1994-09-01

    The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosome from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.

  12. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation

    Directory of Open Access Journals (Sweden)

    Giri Lopamudra

    2004-08-01

    Full Text Available Abstract Background The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well. Methods In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant. Results We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions. Conclusion A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.

  13. X-ray studies on crystalline complexes involving amino acids and peptides. XXXII. Effect of chirality on ionisation state, stoichiometry and aggregation in the complexes of oxalic acid with DL- and L-lysine.

    Science.gov (United States)

    Venkatraman, J; Prabu, M M; Vijayan, M

    1997-08-01

    Crystals of the oxalic acid complex of DL-lysine (triclinic P1; a = 5.540(1), b = 10.764(2), c = 12.056(2) A, alpha = 77.8(1), beta = 80.6(1), gamma = 75.6(1).; R = 4.7% for 2023 observed reflections) contain lysine and semioxalate ions in the 1:1 ratio, whereas the ratio of lysine and semioxalate/oxalate ions is 2:3 in the crystals of the L-lysine complex (monoclinic P2(1); alpha = 4.906(1), b = 20.145(4), c = 12.455(1) A, beta = 92.5(1).; R = 4.4% for 1494 observed reflections). The amino acid molecule in the L-lysine complex has an unusual ionisation state with positively charged alpha- and side-chain amino groups and a neutral carboxyl group. The unlike molecules aggregate into separate alternating layers in the DL-lysine complex in a manner similar to that observed in several of the amino acid complexes. The L-lysine complex exhibits a new aggregation pattern which cannot be easily explained in terms of planar features, thus emphasizing the fundamental dependence of aggregation on molecular characteristics. Despite the differences in stoichiometry, ionisation state and long-range aggregation patterns, the basic element of aggregation in the two complexes exhibits considerable similarity.

  14. Cellular Entry of the Diphtheria Toxin Does Not Require the Formation of the Open-Channel State by Its Translocation Domain

    Directory of Open Access Journals (Sweden)

    Alexey S. Ladokhin

    2017-09-01

    Full Text Available Cellular entry of diphtheria toxin is a multistage process involving receptor targeting, endocytosis, and translocation of the catalytic domain across the endosomal membrane into the cytosol. The latter is ensured by the translocation (T domain of the toxin, capable of undergoing conformational refolding and membrane insertion in response to the acidification of the endosomal environment. While numerous now classical studies have demonstrated the formation of an ion-conducting conformation—the Open-Channel State (OCS—as the final step of the refolding pathway, it remains unclear whether this channel constitutes an in vivo translocation pathway or is a byproduct of the translocation. To address this question, we measure functional activity of known OCS-blocking mutants with H-to-Q replacements of C-terminal histidines of the T-domain. We also test the ability of these mutants to translocate their own N-terminus across lipid bilayers of model vesicles. The results of both experiments indicate that translocation activity does not correlate with previously published OCS activity. Finally, we determined the topology of TH5 helix in membrane-inserted T-domain using W281 fluorescence and its depth-dependent quenching by brominated lipids. Our results indicate that while TH5 becomes a transbilayer helix in a wild-type protein, it fails to insert in the case of the OCS-blocking mutant H322Q. We conclude that the formation of the OCS is not necessary for the functional translocation by the T-domain, at least in the histidine-replacement mutants, suggesting that the OCS is unlikely to constitute a translocation pathway for the cellular entry of diphtheria toxin in vivo.

  15. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  16. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  17. Nonabsorbable Antibiotics Reduce Bacterial and Endotoxin Translocation in Hepatectomised Rats

    Directory of Open Access Journals (Sweden)

    S. K. Kakkos

    1997-01-01

    Full Text Available There is increasing evidence that septic complications, occurring after major hepatectomies, may be caused by gram negative bacteria, translocating from the gut. We investigated in rats, the effect of extended hepatectomy on the structure and morphology of the intestinal mucosa as well as on the translocation of intestinal bacteria and endotoxins. We also examined the effect of nonabsorbable antibiotics on reducing the intestinal flora and consequently the phenomenon of translocation by administering neomycin sulphate and cefazoline. Hepatectomy was found to increase translocation, while administration of nonabsorbable antibiotics decreased it significantly. In addition, hepatectomy increased the aerobic cecal bacterial population, which normalised in the group receiving antibiotics. Among the histological parameters evaluated, villus height demonstrated a significant reduction after hepatectomy, while the number of villi per cm and the number of mitoses per crypt, remained unchanged. Our results indicate that administration of nonabsorbable antibiotics presents a positive effect on bacterial and endotoxin translocation after extended hepatectomy, and this may be related to reduction of colonic bacterial load as an intraluminal effect of antibiotics.

  18. PS1/γ-Secretase-Mediated Cadherin Cleavage Induces β-Catenin Nuclear Translocation and Osteogenic Differentiation of Human Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Danielle C. Bonfim

    2016-01-01

    Full Text Available Bone marrow stromal cells (BMSCs are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of β-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce β-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced β-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling β-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair.

  19. Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Liao, P.N.; Pascal, A.A.; van Grondelle, R.; Walla, P.J.; Ruban, A.V.; Robert, B.

    2011-01-01

    Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem

  20. Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen: Involvement of marginal metallophilic macrophages in the uptake of immune-stimulating complexes

    NARCIS (Netherlands)

    Claassen, I.J.T.M.; Osterhaus, A.D.M.E.; Claassen, E.

    1995-01-01

    Several mechanisms have been postulated to explain the relatively high immunogenicity of antigens presented in immune-stimulating complexes (iscom). Their potency can in part be explained by the specific targeting of these structures to cells presenting antigens to the immune system. However, until

  1. Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen: involvement of marginal metallophilic macrophages in the uptake of immune-stimulating complexes.

    NARCIS (Netherlands)

    I.J.Th.M. Claassen (Ivo); A.D.M.E. Osterhaus (Albert); H.J.H.M. Claassen (Eric)

    1995-01-01

    textabstractSeveral mechanisms have been postulated to explain the relatively high immunogenicity of antigens presented in immune-stimulating complexes (iscom). Their potency can in part be explained by the specific targeting of these structures to cells presenting antigens to the immune system.

  2. Csbnd H⋯Ni and Csbnd H⋯π(chelate) interactions in nickel(II) complexes involving functionalized dithiocarbamates and triphenylphosphine

    Science.gov (United States)

    Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, Samuele

    2018-05-01

    New bis(N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)nickel(II) (1-3) and (N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)(isothiocyanato-N)- (triphenylphosphane)nickel(II) (4-6) [where substituted benzyl = 2-HOsbnd C6H4sbnd CH2sbnd (1,4), 3-HOsbnd C6H4sbnd CH2sbnd (2,5), 4-Fsbnd C6H4sbnd CH2sbnd (3,6)] were synthesized and characterized using IR, electronic, and NMR (1H and 13C) spectra. X-ray structural analysis of homoleptic complex (1) and heteroleptic complexes (5 and 6) confirmed the presence of four coordinated nickel in a distorted square planar arrangement with NiS4 and NiS2PN chromophores, respectively. The νC-S stretching vibrations are observed around 990 cm-1 without any splitting supporting the bidentate coordination of the dithiocarbamate ligand. Electronic spectral studies of all the complexes (1-6) indicate that the geometry of the nickel atom is probably square planar. NMR spectra of all homoleptic and heteroleptic complexes (1-6) reveal a weak signal associated with the backbone carbon (N13CS2) in the region 204.0-210.0 ppm with a weak intensity characteristic of the quaternary carbon signals. The greater trans influence of triphenylphosphine in complexes 5 and 6 is supported by the long Nisbnd S distance compared to other Nisbnd S distance which is opposite to the NCS- ligand. In the structure of complex 5, C-H⋯π(chelate) interactions results in polymeric chain. Both structures show intramolecular Ni⋯H interactions but that on 6 is the strongest. C-H⋯π interactions are also found in 1, 5 and 6. Hirshfeld surface analysis and the associated 2D fingerprint plots of 1, 5 and 6 have been studied to evaluate intermolecular interactions. The molecular geometries of complexes 1, 5 and 6 have been optimized by abinitio HF method using LANL2DZ program.

  3. Evaluating descriptors for the lateral translocation of membrane proteins.

    Science.gov (United States)

    Domanova, Olga; Borbe, Stefan; Mühlfeld, Stefanie; Becker, Martin; Kubitz, Ralf; Häussinger, Dieter; Berlage, Thomas

    2011-01-01

    Microscopic images of tissue sections are used for diagnosis and monitoring of therapy, by analysis of protein patterns correlating to disease states. Spatial protein distribution is influenced by protein translocation between different membrane compartments and quantified by comparison of microscopic images of biological samples. Cholestatic liver diseases are characterized by translocation of transport proteins, and quantification of their dislocation offers new diagnostic options. However, reliable and unbiased tools are lacking. The nowadays used manual method is slow, subjective and error-prone. We have developed a new workflow based on automated image analysis and improved it by the introduction of scale-free descriptors for the translocation quantification. This fast and unbiased method can substitute the manual analysis, and the suggested descriptors perform better than the earlier used statistical variance.

  4. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sarah Röhrig

    2016-10-01

    Full Text Available The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR, we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold. Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline.

  5. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana.

    Science.gov (United States)

    Röhrig, Sarah; Schröpfer, Susan; Knoll, Alexander; Puchta, Holger

    2016-10-01

    The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR), we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold). Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline.

  6. Development and identification of a wheat-Roegneria kamoji translocation line T7A/1Rk no.1

    International Nuclear Information System (INIS)

    Bie Tongde; Feng Yigao; Chen Peidu; Xu Chuanmei

    2009-01-01

    Pollen of Triticum aestivum-Roegneria kamoji del1Rk No.1L disomic addition line, treated with 10 Gy 6 0C o γ-rays, was pollinated to T · aestivum cv. Chinese Spring. A reciprocal chromosomal translocation line involving wheat 7A and R.kamoji 1Rk No.1 was identified in M 2 generation using the techniques including C-banding, GISH, sequential C-banding/45S rDNA-FISH, and sequential GISH/45S rDNA-FISH. A 45S rDNA locus and its corresponding red band in GISH pattern were observed specific to the short arm of 1Rk No.1 and could be used as a marker of 1Rk No.1 chromosome. Analyses of chromosome constitution of M 2 population and test-crosses showed that the reciprocal translocation chromosomes were co-segregated in offspring, and the transmitting ratios were both higher through female gametes than through male ones. The results of scab resistance identification in 2004, 2005 and 2006 showed that the translocation line conveyed scab resistance that varied in different years in different district. The experiment also showed that pollen irradiation was an effective method to induce wheat-alien chromosome translocations. (authors)

  7. Scintigraphic visualization of bacterial translocation in experimental strangulated intestinal obstruction

    International Nuclear Information System (INIS)

    Galeev, Yu.M.; Popov, M.V.; Salato, O.V.; Lishmanov, Yu.B.; Grigorev, E.G.; Aparcin, K.A.

    2009-01-01

    The purpose of this study was to obtain scintigraphic images depicting translocation of 99m Tc-labelled Escherichia coli bacteria through the intestinal barrier and to quantify this process using methods of nuclear medicine. Thirty male Wistar rats (including 20 rats with modelled strangulated intestinal obstruction and 10 healthy rats) were used for bacterial scintigraphy. 99m Tc-labelled E. coli bacteria ( 99m Ts-E. coli) with an activity of 7.4-11.1 MBq were administered into a section of the small intestine. Scintigraphic visualization of bacterial translocation into organs and tissues of laboratory animals was recorded in dynamic (240 min) and static (15 min) modes. The number of labelled bacteria, which migrated through the intestinal barrier, was quantified by calculating the translocation index (TI). Control indicated no translocation of 99m Ts-E. coli administered into the intestine through the parietes of the small intestine's distal part in healthy animals. Animals with strangulated obstruction demonstrated different migration strength and routes of labelled bacteria from strangulated and superior to strangulation sections of the small intestine. 99m Ts-E. coli migrated from the strangulated loop into the peritoneal cavity later causing systemic bacteraemia through peritoneal resorption. The section of the small intestine, which was superior to the strangulation, demonstrated migration of labelled bacteria first into the portal and then into the systemic circulation. The strangulated section of the small intestine was the main source of bacteria dissemination since the number of labelled bacteria, which migrated from this section significantly, exceeded that of the area superior to the strangulation section of the small intestine (p = 0.0003). Bacterial scintigraphy demonstrated the possibility of visualizing migration routes of labelled bacteria and quantifying their translocation through the intestinal barrier. This approach to study bacterial

  8. The Genetics of a Probable Insertional Translocation in SORDARIA BREVICOLLIS.

    Science.gov (United States)

    Bond, D J

    1979-05-01

    A chromosome rearrangement has been isolated and characterized in Sordaria brevicollis. Crosses to spore color mutants on each of the seven linkage groups have enabled the breakpoints to be mapped. The simplest hypothesis to account for the results is that a piece of linkage group VI has been translocated to linkage group V and inserted 2.7 map units from its centromere. Previous reports of markers on this linkage group with centromere distances greater than 2.7 units make it unlikely that the translocation is quasiterminal.

  9. Free energy evaluation in polymer translocation via Jarzynski equality

    Energy Technology Data Exchange (ETDEWEB)

    Mondaini, Felipe, E-mail: fmondaini@if.ufrj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Petrópolis, 25.620-003, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970, Rio de Janeiro, RJ (Brazil)

    2014-05-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations, which provide free energy estimates for unbiased three-dimensional polymer translocation. We employ the Jarzynski equality in its rigorous setting, to compute the variation of the free energy in single monomer translocation events. In our three-dimensional Langevin simulations, the excluded-volume and van der Waals interactions between beads (monomers and membrane atoms) are modeled through a repulsive Lennard-Jones (LJ) potential and consecutive monomers are subject to the Finite-Extension Nonlinear Elastic (FENE) potential. Analysing data for polymers with different lengths, the free energy profile is noted to have interesting finite-size scaling properties.

  10. Free energy evaluation in polymer translocation via Jarzynski equality

    International Nuclear Information System (INIS)

    Mondaini, Felipe; Moriconi, L.

    2014-01-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations, which provide free energy estimates for unbiased three-dimensional polymer translocation. We employ the Jarzynski equality in its rigorous setting, to compute the variation of the free energy in single monomer translocation events. In our three-dimensional Langevin simulations, the excluded-volume and van der Waals interactions between beads (monomers and membrane atoms) are modeled through a repulsive Lennard-Jones (LJ) potential and consecutive monomers are subject to the Finite-Extension Nonlinear Elastic (FENE) potential. Analysing data for polymers with different lengths, the free energy profile is noted to have interesting finite-size scaling properties.

  11. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-01-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  12. MicroRNA-125b-1 and BLID upregulation resulting from a novel IGH translocation in childhood B-Cell precursor acute lymphoblastic leukemia.

    Science.gov (United States)

    Tassano, Elisa; Acquila, Maura; Tavella, Elisa; Micalizzi, Concetta; Panarello, Claudio; Morerio, Cristina

    2010-08-01

    Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus are common abnormalities in mature B-cell neoplasms. Recent findings have also revealed their significant role in B-cell precursor acute lymphoblastic leukemia. As a rule, IGH translocations generate transcriptional activation of the oncogene localized in the proximity of the breakpoint. In this study, we describe a pediatric case of B-cell precursor acute lymphoblastic leukemia showing microRNA-125b-1 (MIR125B1) and BLID gene overexpression, resulting from a novel t(11;14)(q24.1;q32) translocation involving IGH. This is the first report describing the upregulation of a microRNA due to its juxtaposition to protein-coding gene regulatory elements and the overexpression of two neighboring genes as a consequence of transcriptional enhancers localized in the vicinity of the IGH gene.

  13. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

    International Nuclear Information System (INIS)

    Kubas, G.J.; Eckert, J.; Luo, X.L.

    1997-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H 2 ) binding to metals. Studies of these unique sigma complexes (M hor-ellipsis H-Y; Y double-bond H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H 2 , silanes, and halocarbons. The first metal-SiH 4 complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found

  14. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.

    Science.gov (United States)

    Maddur, Ashoka A; Swanson, Richard; Izaguirre, Gonzalo; Gettins, Peter G W; Olson, Steven T

    2013-11-01

    Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism.

  15. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    Science.gov (United States)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  16. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells.

    Science.gov (United States)

    Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M

    2017-12-15

    Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Prader-Willi syndrome due to an unbalanced de novo translocation [t(15;19)(q12;p13.3)

    Science.gov (United States)

    Dang, Vy; Surampalli, Abhilasha; Manzardo, Ann M; Youn, Stephanie; Butler, Merlin G; Gold, June-Anne; Kimonis, Virginia

    2018-01-01

    Background and Aims Prader-Willi syndrome (PWS) is a complex, multisystem genetic disorder characterized by endocrine, neurologic and behavioral abnormalities. We report the first case of an unbalanced de-novo reciprocal translocation of chromosome 15 and 19: 45,XY,-15, der (19)t(15;19)(q12;p13.3) resulting in monosomy for the PWS chromosome critical region. We performed high resolution SNP microarray to characterize the breakpoints. Case report Our patient had several typical features for PWS including infantile hypotonia, a poor suck and feeding difficulties, tantrums, skin picking, compulsions, small hands and feet and food seeking but not hypopigmentation, a micropenis, cryptorchidism or obesity as common findings seen in PWS at the time of examination at 6 years of age. He had seizures noted from 1 to 3 years of age and marked cognitive delay. Results High resolution SNP microarray analysis identified an atypical PWS Type I deletion of chromosome 15 involving proximal breakpoint BP1. The deletion extended beyond the GABRB3 gene but was proximal to the usual distal breakpoint (BP3) within the 15q11-q13 region and GABRA5, GABRG3 and OCA2 genes were intact. Conclusion We report a case with atypical features for PWS associated with an unbalanced de-novo reciprocal translocation resulting in monosomy for the 15q11.1–15q12 with intact GABRA5, GABRG3 and OCA2 genes. No deletion of 19p13.3 band was detected therefore the patient was not at an increased risk of tumors from Peutz-Jeghers syndrome associated with a deletion of the STK11 gene. PMID:27894106

  18. Genome Wide Identification of Orthologous ZIP Genes Associated with Zinc and Iron Translocation in Setaria italica.

    Science.gov (United States)

    Alagarasan, Ganesh; Dubey, Mahima; Aswathy, Kumar S; Chandel, Girish

    2017-01-01

    Genes in the ZIP family encode transcripts to store and transport bivalent metal micronutrient, particularly iron (Fe) and or zinc (Zn). These transcripts are important for a variety of functions involved in the developmental and physiological processes in many plant species, including most, if not all, Poaceae plant species and the model species Arabidopsis. Here, we present the report of a genome wide investigation of orthologous ZIP genes in Setaria italica and the identification of 7 single copy genes. RT-PCR shows 4 of them could be used to increase the bio-availability of zinc and iron content in grains. Of 36 ZIP members, 25 genes have traces of signal peptide based sub-cellular localization, as compared to those of plant species studied previously, yet translocation of ions remains unclear. In silico analysis of gene structure and protein nature suggests that these two were preeminent in shaping the functional diversity of the ZIP gene family in S. italica . NAC, bZIP and bHLH are the predominant Fe and Zn responsive transcription factors present in SiZIP genes. Together, our results provide new insights into the signal peptide based/independent iron and zinc translocation in the plant system and allowed identification of ZIP genes that may be involved in the zinc and iron absorption from the soil, and thus transporting it to the cereal grain underlying high micronutrient accumulation.

  19. Genome Wide Identification of Orthologous ZIP Genes Associated with Zinc and Iron Translocation in Setaria italica

    Directory of Open Access Journals (Sweden)

    Ganesh Alagarasan

    2017-05-01

    Full Text Available Genes in the ZIP family encode transcripts to store and transport bivalent metal micronutrient, particularly iron (Fe and or zinc (Zn. These transcripts are important for a variety of functions involved in the developmental and physiological processes in many plant species, including most, if not all, Poaceae plant species and the model species Arabidopsis. Here, we present the report of a genome wide investigation of orthologous ZIP genes in Setaria italica and the identification of 7 single copy genes. RT-PCR shows 4 of them could be used to increase the bio-availability of zinc and iron content in grains. Of 36 ZIP members, 25 genes have traces of signal peptide based sub-cellular localization, as compared to those of plant species studied previously, yet translocation of ions remains unclear. In silico analysis of gene structure and protein nature suggests that these two were preeminent in shaping the functional diversity of the ZIP gene family in S. italica. NAC, bZIP and bHLH are the predominant Fe and Zn responsive transcription factors present in SiZIP genes. Together, our results provide new insights into the signal peptide based/independent iron and zinc translocation in the plant system and allowed identification of ZIP genes that may be involved in the zinc and iron absorption from the soil, and thus transporting it to the cereal grain underlying high micronutrient accumulation.

  20. 4-Aminobenzoic Acid-Coated Maghemite Nanoparticles as Potential Anticancer Drug Magnetic Carriers: A Case Study on Highly Cytotoxic Cisplatin-Like Complexes Involving 7-Azaindoles

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-01-01

    Full Text Available This study describes a one-pot synthesis of superparamagnetic maghemite-based 4-aminobenzoic acid-coated spherical core-shell nanoparticles (PABA@FeNPs as suitable nanocomposites potentially usable as magnetic carriers for drug delivery. The PABA@FeNPs system was subsequently functionalized by the activated species (1* and 2* of highly in vitro cytotoxic cis-[PtCl2(3Claza2] (1; 3Claza stands for 3-chloro-7-azaindole or cis-[PtCl2(5Braza2] (2; 5Braza stands for 5-bromo-7-azaindole, which were prepared by a silver(I ion assisted dechlorination of the parent dichlorido complexes. The products 1*@PABA@FeNPs and 2*@PABA@FeNPs, as well as an intermediate PABA@FeNPs, were characterized by a combination of various techniques, such as Mössbauer, FTIR and EDS spectroscopy, thermal analysis, SEM and TEM. The results showed that the products consist of well-dispersed maghemite-based nanoparticles of 13 nm average size that represent an easily obtainable system for delivery of highly cytotoxic cisplatin-like complexes in oncological practice.

  1. Identification of a disease complex involving a novel monopartite begomovirus with beta- and alphasatellites associated with okra leaf curl disease in Oman.

    Science.gov (United States)

    Akhtar, Sohail; Khan, Akhtar J; Singh, Achuit S; Briddon, Rob W

    2014-05-01

    Okra leaf curl disease (OLCD) is an important viral disease of okra in tropical and subtropical areas. The disease is caused by begomovirus-satellite complexes. A begomovirus and associated betasatellite and alphasatellite were identified in symptomatic okra plants from Barka, in the Al-Batinah region of Oman. Analysis of the begomovirus sequences showed them to represent a new begomovirus most closely related to cotton leaf curl Gezira virus (CLCuGeV), a begomovirus of African origin. The sequences showed less than 85 % nucleotide sequence identity to CLCuGeV isolates. The name okra leaf curl Oman virus (OLCOMV) is proposed for the new virus. Further analysis revealed that the OLCOMV is a recombinant begomovirus that evolved by the recombination of CLCuGeV isolates with tomato yellow leaf curl virus-Oman (TYLCV-OM). An alpha- and a betasatellite were also identified from the same plant sample, which were also unique when compared to sequences available in the databases. However, although the betasatellite appeared to be of African origin, the alphasatellite was most closely related to alphasatellites originating from South Asia. This is the first report of a begomovirus-satellite complex infecting okra in Oman.

  2. The complex clinical issues involved in an athlete's decision to retire from collision sport due to multiple concussions: a case study of a professional athlete

    Directory of Open Access Journals (Sweden)

    Andrew eGardner

    2013-09-01

    Full Text Available The issue of retirement from athletic participation due to repetitive concussive injuries remains controversial. The complexity of providing recommendations to elite athletes is highlighted by the prospect that offering inappropriate advice may foreseeably lead to engagement in a medico-legal challenge. Currently no evidenced-based, scientifically validated guidelines for forming the basis of such a decision exist. The current paper discusses the complexities of this challenge in addition to presenting a case study of a professional athlete. A number of central issues to consider when discussing athlete retirement revolve around the player’s medical and concussion histories, the current clinical profile, the athlete’s long-term life goals and understanding of the potential long-terms risks. Ensuring that thorough investigations of all possible differential diagnosis, that may explain the presenting symptoms, are conducted is also essential. Discussion pertaining to recommendations for guiding the clinical approach to the retirement issue for athletes with a history of multiple concussions is presented.

  3. De novo unbalanced translocation (4p duplication/8p deletion) in a patient with autism, OCD, and overgrowth syndrome.

    Science.gov (United States)

    Sagar, Angela; Pinto, Dalila; Najjar, Fedra; Guter, Stephen J; Macmillan, Carol; Cook, Edwin H

    2017-06-01

    Chromosomal abnormalities, such as unbalanced translocations and copy number variants (CNVs), are found in autism spectrum disorders (ASDs) [Sanders et al. (2011) Neuron 70: 863-885]. Many chromosomal abnormalities, including sub microscopic genomic deletions and duplications, are missed by G-banded karyotyping or Fragile X screening alone and are picked up by chromosomal microarrays [Shen et al. (2010) Pediatrics 125: e727-735]. Translocations involving chromosomes 4 and 8 are possibly the second most frequent translocation in humans and are often undetected in routine cytogenetics [Giglio et al. (2002) Circulation 102: 432-437]. Deletions of 4p16 have been associated with Wolf-Hirschhorn syndrome while 4p16 duplications have been associated with an overgrowth syndrome and mild to moderate mental retardation [Partington et al. (1997) Journal of Medical Genetics 34: 719-728]. The 8p23.3 region contains the autism candidate gene DLGAP2, which can contribute to autism when disrupted [Marshall et al. (2008) The American Journal of Human Genetics 82: 477-488] . There has been a case report of a family with autism spectrum disorder (ASD), prominent obsessional behavior, and overgrowth in patients with der (8) t (4;8) p (16;23) [Partington et al. (1997)]. This is an independent report of a male patient with autism, obsessive compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), and an overgrowth syndrome, whose de novo unbalanced translocation der (8) t (4;8) p (16.1→ter; 23.1→ter) was initially missed by routine cytogenetics but detected with SNP microarray, allowing higher resolution of translocation breakpoints. © 2017 Wiley Periodicals, Inc.

  4. Pros and cons of characterising an optical translocation setup

    CSIR Research Space (South Africa)

    Maphanga, Charles

    2017-02-01

    Full Text Available an optical translocation setup Charles Maphanga 1, 2 , Rudzani Malabi 1, 2 , Saturnin Ombinda-Lemboumba 1 , Malik Maaza 2 , Patience Mthunzi-Kufa 1, 2* 1 Council for Scientific and Industrial Research, National Laser Centre, P O BOX 395, Pretoria...

  5. Centrifugally driven microfluidic disc for detection of chromosomal translocations

    DEFF Research Database (Denmark)

    Brøgger, Anna Line; Kwasny, Dorota; Bosco, Filippo G.

    2012-01-01

    and prognosis of patients. In this work we demonstrate a novel, centrifugally-driven microfluidic system for controlled manipulation of oligonucleotides and subsequent detection of chromosomal translocations. The device is fabricated in the form of a disc with capillary burst microvalves employed to control...

  6. 40 CFR 798.5460 - Rodent heritable translocation assays.

    Science.gov (United States)

    2010-07-01

    ... fertile animals for cytological confirmation as translocation heterozygotes. (3) Animal selection—(i... administration include oral, inhalation, admixture with food or water, and IP or IV injection. (e) Test.... Criteria for determining normal and semisterile males are usually established for each new strain because...

  7. Polymer translocation through a nanopore: a showcase of anomalous diffusion.

    Science.gov (United States)

    Milchev, A; Dubbeldam, Johan L A; Rostiashvili, Vakhtang G; Vilgis, Thomas A

    2009-04-01

    We investigate the translocation dynamics of a polymer chain threaded through a membrane nanopore by a chemical potential gradient that acts on the chain segments inside the pore. By means of diverse methods (scaling theory, fractional calculus, and Monte Carlo and molecular dynamics simulations), we demonstrate that the relevant dynamic variable, the transported number of polymer segments, s(t), displays an anomalous diffusive behavior, both with and without an external driving force being present. We show that in the absence of drag force the time tau, needed for a macromolecule of length N to thread from the cis into the trans side of a cell membrane, scales as tauN(2/alpha) with the chain length. The anomalous dynamics of the translocation process is governed by a universal exponent alpha= 2/(2nu + 2 - gamma(1)), which contains the basic universal exponents of polymer physics, nu (the Flory exponent) and gamma(1) (the surface entropic exponent). A closed analytic expression for the probability to find s translocated segments at time t in terms of chain length N and applied drag force f is derived from the fractional Fokker-Planck equation, and shown to provide analytic results for the time variation of the statistical moments and . It turns out that the average translocation time scales as tau proportional, f(-1)N(2/alpha-1). These results are tested and found to be in perfect agreement with extensive Monte Carlo and molecular dynamics computer simulations.

  8. Selective bowel decontamination results in gram-positive translocation.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Rowe, M I

    1990-05-01

    Colonization by enteric gram-negative bacteria with subsequent translocation is believed to be a major mechanism for infection in the critically ill patient. Selective bowel decontamination (SBD) has been used to control gram-negative infections by eliminating these potentially pathogenic bacteria while preserving anaerobic and other less pathogenic organisms. Infection with gram-positive organisms and anaerobes in two multivisceral transplant patients during SBD led us to investigate the effect of SBD on gut colonization and translocation. Twenty-four rats received enteral polymixin E, tobramycin, amphotericin B, and parenteral cefotaxime for 7 days (PTA + CEF); 23 received parenteral cefotaxime alone (CEF), 19 received the enteral antibiotics alone (PTA), 21 controls received no antibiotics. Cecal homogenates, mesenteric lymph node (MLN), liver, and spleen were cultured. Only 8% of the PTA + CEF group had gram-negative bacteria in cecal culture vs 52% CEF, 84% PTA, and 100% in controls. Log Enterococcal colony counts were higher in the PTA + CEF group (8.0 + 0.9) vs controls (5.4 + 0.4) P less than 0.01. Translocation of Enterococcus to the MLN was significantly increased in the PTA + CEF group (67%) vs controls (0%) P less than 0.01. SBD effectively eliminates gram-negative organisms from the gut in the rat model. Overgrowth and translocation of Enterococcus suggests that infection with gram-positive organisms may be a limitation of SBD.

  9. Toponomics method for the automated quantification of membrane protein translocation.

    Science.gov (United States)

    Domanova, Olga; Borbe, Stefan; Mühlfeld, Stefanie; Becker, Martin; Kubitz, Ralf; Häussinger, Dieter; Berlage, Thomas

    2011-09-19

    Intra-cellular and inter-cellular protein translocation can be observed by microscopic imaging of tissue sections prepared immunohistochemically. A manual densitometric analysis is time-consuming, subjective and error-prone. An automated quantification is faster, more reproducible, and should yield results comparable to manual evaluation. The automated method presented here was developed on rat liver tissue sections to study the translocation of bile salt transport proteins in hepatocytes. For validation, the cholestatic liver state was compared to the normal biological state. An automated quantification method was developed to analyze the translocation of membrane proteins and evaluated in comparison to an established manual method. Firstly, regions of interest (membrane fragments) are identified in confocal microscopy images. Further, densitometric intensity profiles are extracted orthogonally to membrane fragments, following the direction from the plasma membrane to cytoplasm. Finally, several different quantitative descriptors were derived from the densitometric profiles and were compared regarding their statistical significance with respect to the transport protein distribution. Stable performance, robustness and reproducibility were tested using several independent experimental datasets. A fully automated workflow for the information extraction and statistical evaluation has been developed and produces robust results. New descriptors for the intensity distribution profiles were found to be more discriminative, i.e. more significant, than those used in previous research publications for the translocation quantification. The slow manual calculation can be substituted by the fast and unbiased automated method.

  10. Bladder calculus resulting from an intravesical translocation of ...

    African Journals Online (AJOL)

    Although perforation of the uterus by an intrauterine contraceptive device (IUCD) is commonly encountered, intravesical translocation and secondary calculus formation is a very rare complication.We report a case of a 60-year old multiparous woman in whom an intrauterine contraceptive Copper-T device inserted 12 years ...

  11. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  12. Resource Control: A Translocation Of The Scramble For Africa ...

    African Journals Online (AJOL)

    Adopting a theoretical framework successfully adapted from the biological and medical sciences, namely; translocation analysis, the paper traces the ancestry of the present resource control problem to the scramble, first, and then, the use of fiscal and revenue allocation commissions during the colonial era, and the ...

  13. Single-Molecule Studies of Bacterial Protein Translocation

    NARCIS (Netherlands)

    Kedrov, Alexej; Kusters, Ilja; Driessen, Arnold J. M.

    2013-01-01

    In prokaryotes, a large share of the proteins are secreted from the cell through a process that requires their translocation across the cytoplasmic membrane. This process is mediated by the universally conserved Sec system with homologues in the endoplasmic reticulum and thylakoid membranes of

  14. Introduction: translocal development, development corridors and development chains.

    NARCIS (Netherlands)

    Zoomers, E.B.; Westen, A.C.M. van

    2011-01-01

    This paper offers an introduction to this Special Issue of International Development Planning Review. It uses the concepts of translocal development, development corridors and development chains to secure a better grasp of what development means in the context of globalisation and how ‘local

  15. Concentration Polarization in Translocation of DNA through Nanopores and Nanochannels

    NARCIS (Netherlands)

    Das, S.; Dubsky, P.; van den Berg, Albert; Eijkel, Jan C.T.

    2012-01-01

    In this Letter we provide a theory to show that high-field electrokinetic translocation of DNA through nanopores or nanochannels causes large transient variations of the ionic concentrations in front and at the back of the DNA due to concentration polarization (CP). The CP causes strong local

  16. Identification of copy number variations and translocations in cancer cells from Hi-C data.

    Science.gov (United States)

    Chakraborty, Abhijit; Ay, Ferhat

    2017-10-18

    Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes

  17. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes.

    Science.gov (United States)

    Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M

    1996-01-01

    The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the

  18. Occupational exposure to pesticides and occurrence of the chromosomal translocation t(14;18 among farmers in Jordan

    Directory of Open Access Journals (Sweden)

    Bara’a M. Qaqish

    Full Text Available Background: An increased incidence of non-Hodgkin’s lymphoma (NHL has been reported in farmers and other occupational groups working with pesticides. In these individuals, an increased prevalence of the chromosomal translocation t(14;18(q32;q21, one of the most common chromosomal abnormalities in NHL, has been detected in peripheral blood lymphocytes. This translocation juxtaposes the antiapoptotic BCL2 protein to the immunoglobulin heavy chain gene locus (IGH leading to overexpression of BCL2. This causes an increase in cell survival, paving the way for malignant transformation. Aim of the study: The present study aimed to evaluate the association between the occurrence of the chromosomal translocation t(14;18 and occupational exposure to pesticides among a group of Jordanian farmers. Methods: A total of 192 male subjects including 96 agricultural workers and 96 control subjects participated in this study. BCL2-IGH t(14;18 fusions were detected by a nested polymerase chain reaction (PCR assay targeting the major breakpoint region (MBR. Results: We found that occupational exposure to pesticides in open-field farming and insecticide used on animals increased the frequency of the chromosomal translocation t(14;18. Farmers occupationally exposed to pesticides and insecticide were 13.5 times more likely to harbor t(14;18. 63.5% (61 of 96 of farmers compared to 11.5% (11 of 96 of controls carried the translocation (odds ratio: 13.5; 95% confidence interval (CI = 6.3–28.6. We ruled out the influence of possible confounding factors such as age, duration of sun exposure, alcohol intake, smoking, and use of personal protective equipment. Conclusion: Our results indicate that pesticides increased the frequency of chromosomal translocation in the 14q32 region. Accordingly, the presented data agrees with previous suggestions from the literature that pesticides might be involved in the development of NHL through the t(14;18 pathway. Keywords

  19. EVI1 activation in blast crisis CML due to juxtaposition to the rare 17q22 partner region as part of a 4-way variant translocation t(9;22

    Directory of Open Access Journals (Sweden)

    Verhasselt Bruno

    2008-07-01

    Full Text Available Abstract Background Variant translocations t(9;22 occur in 5 to 10% of newly diagnosed CMLs and additional genetic changes are present in 60–80% of patients in blast crisis (BC. Here, we report on a CML patient in blast crisis presenting with a four-way variant t(9;22 rearrangement involving the EVI1 locus. Methods Dual-colour Fluorescence In Situ Hybridisation was performed to unravel the different cytogenetic aberrations. Expression levels of EVI1 and BCR/ABL1 were investigated using real-time quantitative RT-PCR. Results In this paper we identified a patient with a complex 4-way t(3;9;17;22 which, in addition to BCR/ABL1 gene fusion, also resulted in EVI1 rearrangement and overexpression. Conclusion This report illustrates how a variant t(9;22 translocation can specifically target a second oncogene most likely contributing to the more aggressive phenotype of the disease. Molecular analysis of such variants is thus warranted to understand the phenotypic consequences and to open the way for combined molecular therapies in order to tackle the secondary oncogenic effect which is unresponsive to imatinib treatment.

  20. Translocations (5;17) and (7;17) in patients with de novo or therapy-related myelodysplastic syndromes or acute nonlymphocytic leukemia. A possible association with acquired pseudo-Pelger-Hut anomaly and small vacuolated granulocytes

    International Nuclear Information System (INIS)

    La, J.L.Z.; Zandecki, M.; Fenaux, P.; Le Baron, F.; Bauters, F.; Cosson, A.; Deminatti, M.

    1990-01-01

    Twelve patients [two with de novo myelodysplastic syndrome (MDS), four with secondary MDS, five with de novo acute nonlymphocytic leukemia (ANLL), one with secondary ANLL] showed a 17p deletion resulting from translocations involving 17p: t(5;17)(p11;p11) in four cases, t(7;17)(p11;p11) in six cases, complex (5;17)(q23;p12) translocation with dicentric chromosome in one case, and t(17;?)(p11-12;?) in the remaining patient. All these structural anomalies were observed in hypodiploid clones associated with total or partial monosomy of chromosomes 5 and 7 (12 cases), monosomy 12 (five cases), monosomy 3 (four cases), and monosomy 4 (three cases). Median survival was only 3.3 months (range 3 days to 8 months). Striking features were observed in bone marrow mature granulocytes: all but one case had a pseudo-Pelger-Hut anomaly in a significant number of granulocytes, and eight patients had granulocytes with reduced size and clear cytoplasmic vacuoles. Careful cytological review of 51 patients with MDS or ANLL and various cytogenetic anomalies was performed for comparison: vacuolated granulocytes were a very uncommon finding. On the other hand, eight patients had a pseudo-Pelger-Hut anomaly, which correlated significantly with total monosomy 17 in these patients. A possible correlation between cytological anomalies and cytogenetic data is discussed, and the role of 17p in the nuclear segmentation of granulocytes is stressed

  1. Transcuticular translocation of radionuclides on plant leaf surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Ken-ichi; Watanabe, Tadakazu; Ambe, Shizuko; Yamaguchi, Isamu [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1996-12-31

    The cuticle covering all the outermost surfaces of the aerial parts of plants could play a selective role in uptake and translocation of radionuclides from air into plants. In this study, we investigated the transcuticular uptake and translocation behavior via water droplets of various radionuclides in red clover, orchard grass, Japanese radish and mung bean. Ten {mu}l of an aqueous solution of the multitracer generated from Au was applied to the upper surface of the 2nd leaf of the plants at the 5th leaf stage. The plants were then grown for 14 days at 25degC and 70% RH under illumination of artificial solar lights. The transcuticular uptake and translocation throughout the plant were periodically assayed by determining the radioactivity in the surface residue, the cuticle layer beneath the applied site, the leaf area outside the applied site, the other aerial parts and the root of the plant, using an HPGe detector. The applied radionuclides were absorbed into, in turn, the cuticle layer beneath the applied site and then translocated through the cuticle to the inner tissue and eventually to the other aerial parts and finally to the roots, of the plant. The distribution and accumulation in the plant seems to depend upon the characteristics of each radionuclide and plant species. Ca{sup *} and Te{sup *} tended to remain on leaf surfaces without being absorbed into the cuticle. On the other hand, Sc{sup *}, Co{sup *}, Zn{sup *}, Se{sup *}, Rb{sup *}, and Eu{sup *} were easily absorbed and translocated to every part of the plant including the root. The other radionuclides such as Be{sup *}, Mn{sup *}, Sr{sup *}, Y{sup *}, Ba{sup *}, Ce{sup *}, Pm{sup *}, Gd{sup *}, Hf{sup *}, Yb{sup *}, Lu{sup *}, Os{sup *}, Ir{sup *}, and Pt{sup *} remained in the region close to the site of their application. The above results possibly indicate the existence of mechanisms common to these plants for selective transcuticular uptake and translocation of radionuclides within plant

  2. Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells

    DEFF Research Database (Denmark)

    Skov, S; Nielsen, M; Bregenholt, S

    1998-01-01

    Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3......-probe derived from the interferon-gamma activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin......-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest...

  3. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  4. Phorbol-ester-induced activation of the NF-κB transcription factor involves dissociation of an apparently cytoplasmic NF-κB/inhibitor complex

    International Nuclear Information System (INIS)

    Baeuerle, P.A.; Lenardo, M.; Pierce, J.W.; Baltimore, D.

    1988-01-01

    There is increasing evidence that inducible transcription of genes is mediated through the induction of the activity of trans-acting protein factors. The NF-κB transcription factor provides a model system to study the posttranslational activation of a phorbol-ester-inducible transcription factor. The finding that NF-κB activity is undectable in subcellular fractions from unstimulated cells suggests that NF-κB exists as an inactive precursor. The authors showed that NF-κB is detectable in two different forms. After selective removal of endogenous NF-κB, they demonstrate the existence of a protein inhibitor in cytosolic fractions of unstimulated cells that is able in vitro to convert NF-κB into an inactive desoxycholate-dependent form. The data are consistent with a molecular mechanism of inducible gene expression by which an apparently cytoplasmic transcription factor-inhibitor complex is dissociated by the action of TPA-activated protein kinase C

  5. Role of uranium speciation in the uptake and translocation of uranium by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ebbs, S. D.; Brady, D. J.; Kochian, L. V. [US Plant, Soil, and Nutrition Laboratory, USDA-ARS, Cornell University, Ithaca, NY 14853 (United States)

    1998-07-01

    Uranium (U) uptake and translocation by plants was characterized using a computer speciation model to develop a nutrient culture system that provided U as a single predominant species in solution. A hydroponic uptake study determined that at pH 5.0, the uranyl (UO2{sup 2+}) cation was more readily taken up and translocated by peas (Pisum sativum) than the hydroxyl and carbonate U complexes present in the solution at pH 6.0 and 8.0, respectively. A subsequent experiment tested the extent to which various monocot and dicot species take up and translocate the uranyl cation. Of the species screened, tepary bean (Phaseolus acutifolius) and red beet (Beta vulgaris) were the species showing the greatest accumulation of U. In addition to providing fundamental information regarding U uptake by plants, the results obtained also have implications for the phytoremediation of U-contaminated soils. The initial characterization of U uptake by peas suggested that in the field, a soil pH of <5.5 would be required in order to provide U in the most plant-available form. A pot study using U-contaminated soil was therefore conducted to assess the extent to which two soil amendments, HEDTA and citric acid, were capable of acidifying the soil, increasing U solubility, and enhancing U uptake by red beet. Of these two amendments, only citric acid proved effective, decreasing the soil pH to 5.0 and increasing U accumulation by a factor of 14. The results of this pot study provide a basis for the development of an effective phytoremediation strategy for U-contaminated soils. (author)

  6. Role of uranium speciation in the uptake and translocation of uranium by plants

    International Nuclear Information System (INIS)

    Ebbs, S.D.; Brady, D.J.; Kochian, L.V.

    1998-01-01

    Uranium (U) uptake and translocation by plants was characterized using a computer speciation model to develop a nutrient culture system that provided U as a single predominant species in solution. A hydroponic uptake study determined that at pH 5.0, the uranyl (UO2 2+ ) cation was more readily taken up and translocated by peas (Pisum sativum) than the hydroxyl and carbonate U complexes present in the solution at pH 6.0 and 8.0, respectively. A subsequent experiment tested the extent to which various monocot and dicot species take up and translocate the uranyl cation. Of the species screened, tepary bean (Phaseolus acutifolius) and red beet (Beta vulgaris) were the species showing the greatest accumulation of U. In addition to providing fundamental information regarding U uptake by plants, the results obtained also have implications for the phytoremediation of U-contaminated soils. The initial characterization of U uptake by peas suggested that in the field, a soil pH of <5.5 would be required in order to provide U in the most plant-available form. A pot study using U-contaminated soil was therefore conducted to assess the extent to which two soil amendments, HEDTA and citric acid, were capable of acidifying the soil, increasing U solubility, and enhancing U uptake by red beet. Of these two amendments, only citric acid proved effective, decreasing the soil pH to 5.0 and increasing U accumulation by a factor of 14. The results of this pot study provide a basis for the development of an effective phytoremediation strategy for U-contaminated soils. (author)

  7. Zipper-interacting protein kinase is involved in regulation of ubiquitination of the androgen receptor, thereby contributing to dynamic transcription complex assembly.

    Science.gov (United States)

    Felten, A; Brinckmann, D; Landsberg, G; Scheidtmann, K H

    2013-10-10

    We have recently identified apoptosis-antagonizing transcription factor (AATF), tumor-susceptibility gene 101 (TSG101) and zipper-interacting protein kinase (ZIPK) as novel coactivators of the androgen receptor (AR). The mechanisms of coactivation remained obscure, however. Here we investigated the interplay and interdependence between these coactivators and the AR using the endogenous prostate specific antigen (PSA) gene as model for AR-target genes. Chromatin immunoprecipitation in combination with siRNA-mediated knockdown revealed that recruitment of AATF and ZIPK to the PSA enhancer was dependent on AR, whereas recruitment of TSG101 was dependent on AATF. Association of AR and its coactivators with the PSA enhancer or promoter occurred in cycles. Dissociation of AR-transcription complexes was due to degradation because inhibition of the proteasome system by MG132 caused accumulation of AR at enhancer/promoter elements. Moreover, inhibition of degradation strongly reduced transcription, indicating that continued and efficient transcription is based on initiation, degradation and reinitiation cycles. Interestingly, knockdown of ZIPK by siRNA had a similar effect as MG132, leading to reduced transcription but enhanced accumulation of AR at androgen-response elements. In addition, knockdown of ZIPK, as well as overexpression of a dominant-negative ZIPK mutant, diminished polyubiquitination of AR. Furthermore, ZIPK cooperated with the E3 ligase Mdm2 in AR-dependent transactivation, assembled into a single complex on chromatin and phosphorylated Mdm2 in vitro. These results suggest that ZIPK has a crucial role in regulation of ubiquitination and degradation of the AR, and hence promoter clearance and efficient transcription.

  8. Atlas of alien and translocated indigenous aquatic animals in southern Africa

    CSIR Research Space (South Africa)

    De Moor, IJ

    1988-01-01

    Full Text Available This report serves as an introduction to the problem of alien and translocated aquatic animals in southern Africa is given followed by checklists of the different species which have been introduced into or translocated within the subcontinent...

  9. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Ran

    Full Text Available Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1 All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2 the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.

  10. PTFE Graft as a "Bridge" to Communicating Veins Maturation in the Treatment of an Intrahepatic Cholangiocarcinoma Involving the 3 Hepatic Veins. The Minor-but-Complex Liver Resection.

    Science.gov (United States)

    Urbani, Lucio; Balestri, Riccardo; Sidoti, Francesco; Bernardini, Juri Riccardo; Arces, Francesco; Licitra, Gabriella; Leoni, Chiara; Forfori, Francesco; Colombatto, Piero; Boraschi, Piero; Castagna, Maura; Buccianti, Piero

    2016-12-01

    Parenchyma-sparing liver surgery allows resecting hepatic veins (HV) at the hepatocaval confluence with minor (PTFE graft can be used as a bridge to communicating-veins maturation to ensure the correct outflow of the spared liver. We present a video of an intrahepatic cholangiocarcinoma (IC) involving the three HV at the hepatocaval confluence treated with this approach. In a 50-year old obese (BMI 44.8) male a 6-cm IC involving the hepatocaval confluence was identified during the follow-up for a kidney malignancy. At the preoperative CT scan the left HV was not detectable, the middle HV was incorporated within the tumor, and right HV had a 3-cm contact with the tumor. No communicating veins were evident at preoperative imaging. After a J-shape thoracophrenolaparotomy, the resection of segments II-III-IVa was partially extended to segment VIII-VII and I. The right HV was detached from the tumor, and the middle HV was reconstructed with a 7-mm ringed-armed PTFE graft anastomosed to V8. Surgery lasted 20 h and 55 min with an estimated blood loss of 3500 ml, but the postoperative course was uneventful and the patient was discharged on the 14th postoperative day. One month later the CT scan showed a patent PTFE graft with the maturation of communicating-veins. One year later a complete thrombosis of the PTFE graft was observed with normal liver perfusion and function, and the patient was disease-free. PTFE-based parenchyma-sparing liver resection is a new tool to treat tumors located at the hepatocaval confluence exploiting the maturation of intrahepatic communicating-veins between main HV.

  11. Variants of SCARB1 and VDR Involved in Complex Genetic Interactions May Be Implicated in the Genetic Susceptibility to Clear Cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ewelina Pośpiech

    2015-01-01

    Full Text Available The current data are still inconclusive in terms of a genetic component involved in the susceptibility to renal cell carcinoma. Our aim was to evaluate 40 selected candidate polymorphisms for potential association with clear cell renal cell carcinoma (ccRCC based on independent group of 167 patients and 200 healthy controls. The obtained data were searched for independent effects of particular polymorphisms as well as haplotypes and genetic interactions. Association testing implied position rs4765623 in the SCARB1 gene (OR=1.688, 95% CI: 1.104–2.582, P=0.016 and a haplotype in VDR comprising positions rs739837, rs731236, rs7975232, and rs1544410 (P=0.012 to be the risk factors in the studied population. The study detected several epistatic effects contributing to the genetic susceptibility to ccRCC. Variation in GNAS1 was implicated in a strong synergistic interaction with BIRC5. This effect was part of a model suggested by multifactor dimensionality reduction method including also a synergy between GNAS1 and SCARB1 (P=0.036. Significance of GNAS1-SCARB1 interaction was further confirmed by logistic regression (P=0.041, which also indicated involvement of SCARB1 in additional interaction with EPAS1 (P=0.008 as well as revealing interactions between GNAS1 and EPAS1 (P=0.016, GNAS1 and MC1R (P=0.031, GNAS1 and VDR (P=0.032, and MC1R and VDR (P=0.035.

  12. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    International Nuclear Information System (INIS)

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-01

    Research highlights: → ALDH2 is an MDA-modified protein in old rat kidney tissues. → AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. → ALDH2 serves as a general transcriptional repressor by associating with HDACs. → MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  13. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji-Woong [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Kim, Jae-Hwan [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Cho, Sung-Chun; Ha, Moon-Kyung [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Song, Kye-Yong [Department of Pathology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  14. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome.

    Science.gov (United States)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-04-18

    Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H2O2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H2O2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Familial X/Y Translocation Encompassing ARSE in Two Moroccan Siblings with Sensorineural Deafness.

    Science.gov (United States)

    Amasdl, Saadia; Smaili, Wiam; Natiq, Abdelhafid; Hassani, Amale; Sbiti, Aziza; Agadr, Aomar; Sanlaville, Damien; Sefiani, Abdelaziz

    2017-01-01

    Unbalanced translocations involving X and Y chromosomes are rare and associated with a contiguous gene syndrome. The clinical phenotype is heterogeneous including mainly short stature, chondrodysplasia punctata, ichthyosis, hypogonadism, and intellectual disability. Here, we report 2 brothers with peculiar gestalt, short stature, and hearing loss, who harbor an X/Y translocation. Physical examination, brainstem acoustic potential evaluation, bone age, hormonal assessment, and X-ray investigations were performed. Because of their dysmorphic features, karyotyping, FISH, and aCGH were carried out. The probands had short stature, hypertelorism, midface hypoplasia, sensorineural hearing loss, normal intelligence as well as slight radial and ulnar bowing with brachytelephalangy. R-banding identified a derivative X chromosome with an abnormally expanded short arm. The mother was detected as a carrier of the same aberrant X chromosome. aCGH disclosed a 3.1-Mb distal deletion of chromosome region Xp22.33pter. This interval encompasses several genes, especially the short stature homeobox (SHOX) and arylsulfatase (ARSE) genes. The final karyotype of the probands was: 46,Y,der(X),t(X;Y)(p22;q12).ish der(X)(DXYS129-,DXYS153-)mat.arr[hg19] Xp22.33(61091_2689408)×1mat,Xp22.33(2701273_3258404)×0mat,Yq11.222q12 (21412851_59310245)×2. Herein, we describe a Moroccan family with a maternally inherited X/Y translocation and discuss the genotype-phenotype correlations according to the deleted genes. © 2017 S. Karger AG, Basel.

  16. Assessing brain immune activation in psychiatric disorders : Clinical and preclinical PET imaging studies of the 18-kDa translocator protein

    NARCIS (Netherlands)

    van der Doef, Thalia F; Doorduin, Janine; van Berckel, Bart N M; Cervenka, Simon

    2015-01-01

    Accumulating evidence from different lines of research suggests an involvement of the immune system in the pathophysiology of several psychiatric disorders. During recent years, a series of positron emission tomography (PET) studies have been published using radioligands for the translocator protein

  17. Detection of three common translocation breakpoints in non-Hodgkin's lymphomas by fluorescence in situ hybridization on routine paraffin-embedded tissue sections

    NARCIS (Netherlands)

    Haralambieva, E; Kleiverda, K; Mason, DY; Schuuring, E; Kluin, PM

    2002-01-01

    Non-random chromosomal translocations are specifically involved in the pathogenesis of many non-Hodgkin's lymphomas and have clinical implications as diagnostic and/or prognostic markers. Their detection is often impaired by technical problems, including the distribution of the breakpoints over

  18. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation

    DEFF Research Database (Denmark)

    Barres, Romain; Grémeaux, Thierry; Gual, Philippe

    2006-01-01

    a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma m...

  19. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    DEFF Research Database (Denmark)

    Habets, Daphna D J; Luiken, Joost J F P; Ouwens, Margriet

    2012-01-01

    Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-¿ knockout mice the roles of atypical PKCs (PKC-¿ and PKC-¿) in regulating...

  20. Translocation Study of Some Zooxanthellae Clade to the Survival and Growth of Goniastrea Aspera After Bleaching

    OpenAIRE

    Purnomo, Pujiono W

    2014-01-01

    Inter-host translocation technique of zooxanthellae was attempted to prove Buddemier and Futin's (1993) theory on adaptation. The recent trend of coral products trading must be anticipated by its mass production through artificial techniques, the alternation of natural resources. Translocation bio-technique of zooxanthellae on coral was expected to resolve the problem and the translocation study should provide fundamental answer to coral recovery. The study of zooxanthellae translocation was ...

  1. Microbial Translocation in HIV Infection is Associated with Dyslipidemia, Insulin Resistance, and Risk of Myocardial Infarction

    DEFF Research Database (Denmark)

    Pedersen, Karin Kaereby; Pedersen, Maria; Trøseid, Marius

    2013-01-01

    Microbial translocation has been suggested to be a driver of immune activation and inflammation. We hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals.......Microbial translocation has been suggested to be a driver of immune activation and inflammation. We hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals....

  2. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Science.gov (United States)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  3. Association of CAD, a multifunctional protein involved in pyrimidine synthesis, with mLST8, a component of the mTOR complexes

    Science.gov (United States)

    2013-01-01

    Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158

  4. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    Directory of Open Access Journals (Sweden)

    Cian M McCrudden

    Full Text Available Therapeutic inhibition of poly(ADP-ribose polymerase (PARP, as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699, induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  5. The complexities of 'otherness': reflections on embodiment of a young White British woman engaged in cross-generation research involving older people in Indonesia.

    Science.gov (United States)

    Norris, Meriel

    2015-05-01

    If interviews are to be considered embodied experiences, than the potential influence of the embodied researcher must be explored. A focus on specific attributes such as age or ethnicity belies the complex and negotiated space that both researcher and participant inhabit simultaneously. Drawing on empirical research with stroke survivors in an ethnically mixed area of Indonesia, this paper highlights the importance of considering embodiment as a specific methodological concern. Three specific interactions are described and analysed, illustrating the active nature of the embodied researcher in narrative production and development. The intersectionality of embodied features is evident, alongside their fluctuating influence in time and place. These interactions draw attention to the need to consider the researcher within the interview process and the subsequent analysis and presentation of narrative findings. The paper concludes with a reinforcement of the importance of ongoing and meaningful reflexivity in research, a need to consider the researcher as the other participant, and specifically a call to engage with and present the dynamic nature of embodiment.

  6. AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots.

    Science.gov (United States)

    Xu, Panglian; Yuan, Dongke; Liu, Ming; Li, Chunxin; Liu, Yiyang; Zhang, Shengchun; Yao, Nan; Yang, Chengwei

    2013-04-01

    Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.

  7. Neurobehavioral and neurometabolic (SPECT) correlates of paranormal information: involvement of the right hemisphere and its sensitivity to weak complex magnetic fields.

    Science.gov (United States)

    Roll, W G; Persinger, M A; Webster, D L; Tiller, S G; Cook, C M

    2002-02-01

    Experiments were designed to help elucidate the neurophysiological correlates for the experiences reported by Sean Harribance. For most of his life he has routinely experienced "flashes of images" of objects that were hidden and of accurate personal information concerning people with whom he was not familiar. The specificity of details for target pictures of people was correlated positively with the proportion of occipital alpha activity. Results from a complete neuropsychological assessment, Single Photon Emission Computed Tomography (SPECT), and screening electroencephalography suggested that his experiences were associated with increased activity within the parietal lobe and occipital regions of the right hemisphere. Sensed presences (subjectively localized to his left side) were evoked when weak, magnetic fields, whose temporal structure simulated long-term potentiation in the hippocampus, were applied over his right temporoparietal lobes. These results suggest that the phenomena attributed to paranormal or "extrasensory" processes are correlated quantitatively with morphological and functional anomalies involving the right parietotemporal cortices (or its thalamic inputs) and the hippocampal formation.

  8. Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development

    Directory of Open Access Journals (Sweden)

    Ming Zhu

    2017-10-01

    Full Text Available Long non-coding RNAs (lncRNAs have been reported to be involved in the development of maize plant. However, few focused on seed development of maize. Here, we identified 753 lncRNA candidates in maize genome from six seed samples. Similar to the mRNAs, lncRNAs showed tissue developmental stage specific and differential expression, indicating their putative role in seed development. Increasing evidence shows that crosstalk among RNAs mediated by shared microRNAs (miRNAs represents a novel layer of gene regulation, which plays important roles in plant development. Functional roles and regulatory mechanisms of lncRNAs as competing endogenous RNAs (ceRNA in plants, particularly in maize seed development, are unclear. We combined analyses of consistently altered 17 lncRNAs, 840 mRNAs and known miRNA to genome-wide investigate potential lncRNA-mediated ceRNA based on “ceRNA hypothesis”. The results uncovered seven novel lncRNAs as potential functional ceRNAs. Functional analyses based on their competitive coding-gene partners by Gene Ontology (GO and KEGG biological pathway demonstrated that combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in maize seed. These findings provided a useful platform for uncovering novel mechanisms of maize seed development and may provide opportunities for the functional characterization of individual lncRNA in future studies.

  9. Identification of FadAB Complexes Involved in Fatty Acid β-Oxidation in Streptomyces coelicolor and Construction of a Triacylglycerol Overproducing strain

    Directory of Open Access Journals (Sweden)

    Simón Menendez-Bravo

    2017-08-01

    Full Text Available Oleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. Streptomyces coelicolor is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far. Here, we identified and characterized three gene clusters involved in the β-oxidation of fatty acids (FA. The role of each of the three different S. coelicolor FadAB proteins in FA catabolism was confirmed by complementation of an Escherichia coliΔfadBA mutant strain deficient in β-oxidation. In S. coelicolor, the expression profile of the three gene clusters showed variation related with the stage of growth and the presence of FA in media. Flux balance analyses using a corrected version of the current S. coelicolor metabolic model containing detailed TAG biosynthesis reactions suggested the relevance of the identified fadAB genes in the accumulation of TAG. Thus, through the construction and analysis of fadAB knockout mutant strains, we obtained an S. coelicolor mutant that showed a 4.3-fold increase in the TAG content compared to the wild type strain grown under the same culture conditions.

  10. Unidirectional Movement of Cellulose Synthase Complexes in Arabidopsis Seed Coat Epidermal Cells Deposit Cellulose Involved in Mucilage Extrusion, Adherence, and Ray Formation1[OPEN

    Science.gov (United States)

    Lam, Patricia; Young, Robin; DeBolt, Seth

    2015-01-01

    CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence. PMID:25926481

  11. 40 CFR 798.5955 - Heritable translocation test in drosophila melanogaster.

    Science.gov (United States)

    2010-07-01

    ... drosophila melanogaster. 798.5955 Section 798.5955 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5955 Heritable translocation test in drosophila melanogaster. (a) Purpose. The heritable translocation test in Drosophila measures the induction of chromosomal translocations in germ cells of insects...

  12. Translocation as a conservation tool for Agassiz's desert tortoises: Survivorship, reproduction, and movements

    Science.gov (United States)

    K. E. Nussear; C. R. Tracy; P. A. Medica; D. S. Wilson; R. W. Marlow; P. S. Corn

    2012-01-01

    We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving...

  13. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen).

    Science.gov (United States)

    Vellani, Vittorio; Giacomoni, Chiara

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKC ε ) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKC ε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKC ε . We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  14. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen

    Directory of Open Access Journals (Sweden)

    Vittorio Vellani

    2017-01-01

    Full Text Available Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs. We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen, a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  15. Androgen receptor activation integrates complex transcriptional effects in osteoblasts, involving the growth factors TGF-β and IGF-I, and transcription factor C/EBPδ.

    Science.gov (United States)

    McCarthy, Thomas L; Centrella, Michael

    2015-11-15

    Osteoblasts respond to many growth factors including IGF-I and TGF-β, which themselves are sensitive to other bone growth regulators. Here we show that IGF-I gene promoter activity in prostaglandin E2 (PGE2) induced osteoblasts is suppressed by dihydrotestosterone (DHT) through an essential C/EBP response element (RE) in exon 1 of the igf1 gene. Inhibition by DHT fails to occur when the androgen receptor (AR) gene is mutated within its DNA binding domain. Correspondingly, DHT activated AR inhibits gene transactivation by C/EBPδ, and transgenic C/EBPδ expression inhibits AR activity. Inhibition by DHT persists when upstream Smad and Runx REs in the IGF-I gene promoter are mutated. TGF-β also enhances IGF-I gene promoter activity, although modestly relative to PGE2, and independently of the C/EBP, Smad, or Runx REs. Still, DHT suppresses TGF-β induced IGF-I promoter activity, but not its effects on DNA or collagen synthesis. Notably, DHT suppresses plasminogen activator inhibitor gene promoter activity, but synergistically increases Smad dependent gene promoter activity in TGF-β induced cells, which are differentially sensitive to AR mutations and the AR co-regulator ARA55. Finally, although the PGE2 sensitive C/EBP RE in the igf1 gene is not essential for basal TGF-β induction, C/EBPδ activity through this site is potently enhanced by TGF-β. Thus DHT suppresses the PGE2 and TGF-β induced IGF-I gene promoter and differentiates other aspects of TGF-β activity in osteoblasts. Our results extend the complex interactions among local and systemic bone growth regulators to DHT, and predict complications from anabolic steroid use in other DHT sensitive tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  17. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Omid Zarei

    2017-04-01

    Full Text Available Purpose: Implication of protein-protein interactions (PPIs in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d’Origine Nantais tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ. Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies.

  18. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    Science.gov (United States)

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  19. The role of lipid raft translocation of prohibitin in regulation of Akt and Raf-protected apoptosis of HaCaT cells upon ultraviolet B irradiation.

    Science.gov (United States)

    Wu, Qiong; Wu, Shiyong

    2017-07-01

    Prohibitin (PHB) plays a role in regulation of ultraviolet B light (UVB)-induced apoptosis of human keratinocytes, HaCaT cells. The regulatory function of PHB appears to be associated with its lipid raft translocation. However, the detailed mechanism for PHB-mediated apoptosis of these keratinocytes upon UVB irradiation is not clear. In this report, we determined the role of lipid raft translocation of PHB in regulation of UVB-induced apoptosis. Our data show that upon UVB irradiation PHB is translocated from the non-raft membrane to the lipid rafts, which is correlated with a release of both Akt and Raf from membrane. Overexpression of Akt and/or Raf impedes UVB-induced lipid raft translocation of PHB. Immunoprecipitation analysis indicates that UVB alters the interactions among PHB, Akt, and Raf. Reduced expression of PHB leads to a decreased phosphorylation of Akt and ERK, as well as a decreased activity of Akt, and increased apoptosis of the cells upon UVB irradiation. These results suggest that PHB regulates UVB-induced apoptosis of keratinocytes via a mechanism that involves detachment from Akt and Raf on the plasma membrane, and sequential lipid raft translocation. © 2017 Wiley Periodicals, Inc.

  20. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  1. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    Science.gov (United States)

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  2. Network analysis of translocated Takahe populations to identify disease surveillance targets.

    Science.gov (United States)

    Grange, Zoë L; VAN Andel, Mary; French, Nigel P; Gartrell, Brett D

    2014-04-01

    Social network analysis is being increasingly used in epidemiology and disease modeling in humans, domestic animals, and wildlife. We investigated this tool in describing a translocation network (area that allows movement of animals between geographically isolated locations) used for the conservation of an endangered flightless rail, the Takahe (Porphyrio hochstetteri). We collated records of Takahe translocations within New Zealand and used social network principles to describe the connectivity of the translocation network. That is, networks were constructed and analyzed using adjacency matrices with values based on the tie weights between nodes. Five annual network matrices were created using the Takahe data set, each incremental year included records of previous years. Weights of movements between connected locations were assigned by the number of Takahe moved. We calculated the number of nodes (i(total)) and the number of ties (t(total)) between the nodes. To quantify the small-world character of the networks, we compared the real networks to random graphs of the equivalent size, weighting, and node strength. Descriptive analysis of cumulative annual Takahe movement networks involved determination of node-level characteristics, including centrality descriptors of relevance to disease modeling such as weighted measures of in degree (k(i)(in)), out degree (k(i)(out)), and betweenness (B(i)). Key players were assigned according to the highest node measure of k(i)(in), k(i)(out), and B(i) per network. Networks increased in size throughout the time frame considered. The network had some degree small-world characteristics. Nodes with the highest cumulative tie weights connecting them were the captive breeding center, the Murchison Mountains and 2 offshore islands. The key player fluctuated between the captive breeding center and the Murchison Mountains. The cumulative networks identified the captive breeding center every year as the hub of the network until the final

  3. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    Science.gov (United States)

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments.

    Science.gov (United States)

    Pirazzini, Marco; Azarnia Tehran, Domenico; Leka, Oneda; Zanetti, Giulia; Rossetto, Ornella; Montecucco, Cesare

    2016-03-01

    Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. Copyright © 2015. Published by Elsevier B.V.

  5. Oxidative stress induces nuclear translocation of C-terminus of α-synuclein in dopaminergic cells

    International Nuclear Information System (INIS)

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu

    2006-01-01

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the α-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 μM H 2 O 2 treatment induced the translocation of α-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of α-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of α-synuclein, while full-length α-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no β-sheet structures. Our present results indicated that 200 μM H 2 O 2 treatment induces the intranuclear accumulation of the C-terminal fragment of α-synuclein in dopaminergic neurons, whose role remains to be investigated

  6. Managing Complexity

    DEFF Research Database (Denmark)

    Maylath, Bruce; Vandepitte, Sonia; Minacori, Patricia

    2013-01-01

    and into French. The complexity of the undertaking proved to be a central element in the students' learning, as the collaboration closely resembles the complexity of international documentation workplaces of language service providers. © Association of Teachers of Technical Writing.......This article discusses the largest and most complex international learning-by-doing project to date- a project involving translation from Danish and Dutch into English and editing into American English alongside a project involving writing, usability testing, and translation from English into Dutch...

  7. Markers of immunity and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Mortensen, Christian

    2015-01-01

    to be correlated to portal hypertension, a clinically relevant haemodynamic alteration, and appeared to be associated with increased mortality. To assess the consequences of BT on immunity, we developed an assay for the detection of bacterial DNA (bDNA), a novel marker of BT. Using the assay in the second study......Bacterial translocation (BT), the migration of enteric bacteria to extraintestinal sites, is related to immune stimulation and haemodynamic changes in experimental cirrhosis. These changes may be highly relevant to patients with cirrhosis, where changes in the circulation cause serious......, in 38 patients with ascites, we found no association between bDNA and immunity, in contrast to some previous findings. In the final paper, exploring one possible translocation route, we hypothesized a difference in bDNA levels between the blood from the veins draining the gut on one hand and the liver...

  8. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  9. Analysis of photosynthate translocation velocity and measurement of weighted average velocity in transporting pathway of crops

    International Nuclear Information System (INIS)

    Ge Cailin; Luo Shishi; Gong Jian; Zhang Hao; Ma Fei

    1996-08-01

    The translocation profile pattern of 14 C-photosynthate along the transporting pathway in crops were monitored by pulse-labelling a mature leaf with 14 CO 2 . The progressive spreading of translocation profile pattern along the sheath or stem indicates that the translocation of photosynthate along the sheath or stem proceed with a range of velocities rather than with just a single velocity. The method for measuring the weighted average velocity of photosynthate translocation along the sheath or stem was established in living crops. The weighted average velocity and the maximum velocity of photosynthate translocation along the sheath in rice and maize were measured actually. (4 figs., 3 tabs.)

  10. A strategy for generation and balancing of autosome: Y chromosome translocations.

    Science.gov (United States)

    Joshi, Sonal S; Cheong, Han; Meller, Victoria H

    2014-01-01

    We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced ( 2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.

  11. Polymer translocation in the presence of excluded volume and explicit hydrodynamic interactions

    International Nuclear Information System (INIS)

    Guillouzic,