WorldWideScience

Sample records for complex social networks

  1. Spatially Distributed Social Complex Networks

    Directory of Open Access Journals (Sweden)

    Gerald F. Frasco

    2014-01-01

    Full Text Available We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrat’s law for the rates of city growth (by population size, in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008.]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.

  2. Spatially Distributed Social Complex Networks

    Science.gov (United States)

    Frasco, Gerald F.; Sun, Jie; Rozenfeld, Hernán D.; ben-Avraham, Daniel

    2014-01-01

    We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrat's law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008).]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.

  3. Complexities of social networks: A Physicist's perspective

    OpenAIRE

    Sen, Parongama

    2006-01-01

    The review is a survey of the present status of research in social networks highlighting the topics of small world property, degree distributions, community structure, assortativity, modelling, dynamics and searching in social networks.

  4. Centrality Robustness and Link Prediction in Complex Social Networks

    DEFF Research Database (Denmark)

    Davidsen, Søren Atmakuri; Ortiz-Arroyo, Daniel

    2012-01-01

    . Secondly, we present a method to predict edges in dynamic social networks. Our experimental results indicate that the robustness of the centrality measures applied to more realistic social networks follows a predictable pattern and that the use of temporal statistics could improve the accuracy achieved......This chapter addresses two important issues in social network analysis that involve uncertainty. Firstly, we present am analysis on the robustness of centrality measures that extend the work presented in Borgati et al. using three types of complex network structures and one real social network...

  5. Bidirectional selection between two classes in complex social networks.

    Science.gov (United States)

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-19

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  6. Evolution of Cooperation in Social Dilemmas on Complex Networks

    Science.gov (United States)

    Iyer, Swami; Killingback, Timothy

    2016-01-01

    Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner’s dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games. PMID:26928428

  7. Nonlinear model of epidemic spreading in a complex social network.

    Science.gov (United States)

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  8. Interactive social contagions and co-infections on complex networks

    Science.gov (United States)

    Liu, Quan-Hui; Zhong, Lin-Feng; Wang, Wei; Zhou, Tao; Eugene Stanley, H.

    2018-01-01

    What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.

  9. Balancing the Quantitative and Qualitative Aspects of Social Network Analysis to Study Complex Social Systems

    OpenAIRE

    Schipper, Danny; Spekkink, Wouter

    2015-01-01

    Social Network Analysis (SNA) can be used to investigate complex social systems. SNA is typically applied as a quantitative method, which has important limitations. First, quantitative methods are capable of capturing the form of relationships (e.g. strength and frequency), but they are less suitable for capturing the content of relationships (e.g. interests and motivations). Second, while complex social systems are highly dynamic, the representations that SNA creates of such systems are ofte...

  10. Social power and opinion formation in complex networks

    Science.gov (United States)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  11. Impact of Social Punishment on Cooperative Behavior in Complex Networks

    Science.gov (United States)

    Wang, Zhen; Xia, Cheng-Yi; Meloni, Sandro; Zhou, Chang-Song; Moreno, Yamir

    2013-10-01

    Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems.

  12. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  13. How can social networks ever become complex? Modelling the emergence of complex networks from local social exchanges

    NARCIS (Netherlands)

    Pujol, Josep M.; Flache, Andreas; Delgado, Jordi; Sangüesa, Ramon; Sanguessa, R.

    2005-01-01

    Small-world and power-law network structures have been prominently proposed as models of large networks. However, the assumptions of these models usually-lack sociological grounding. We present a computational model grounded in social exchange theory. Agents search attractive exchange partners in a

  14. Advertising and Irreversible Opinion Spreading in Complex Social Networks

    Science.gov (United States)

    Candia, Julián

    Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.

  15. Analysis of Social Network Dynamics with Models from the Theory of Complex Adaptive Systems

    OpenAIRE

    Lymperopoulos , Ilias; Lekakos , George

    2013-01-01

    Part 4: Protocols, Regulation and Social Networking; International audience; The understanding and modeling of social dynamics in a complex and unpredictable world, emerges as a research target of particular importance. Success in this direction can yield valuable knowledge as to how social phenomena form and evolve in varying socioeconomic contexts comprising economic crises, societal disasters, cultural differences and security threats among others. The study of social dynamics occurring in...

  16. Visual social network analysis: effective approach to model complex human social, behaviour & culture.

    Science.gov (United States)

    Ahram, Tareq Z; Karwowski, Waldemar

    2012-01-01

    The advent and adoption of internet-based social networking has significantly altered our daily lives. The educational community has taken notice of the positive aspects of social networking such as creation of blogs and to support groups of system designers going through the same challenges and difficulties. This paper introduces a social networking framework for collaborative education, design and modeling of the next generation of smarter products and services. Human behaviour modeling in social networking application aims to ensure that human considerations for learners and designers have a prominent place in the integrated design and development of sustainable, smarter products throughout the total system lifecycle. Social networks blend self-directed learning and prescribed, existing information. The self-directed element creates interest within a learner and the ability to access existing information facilitates its transfer, and eventual retention of knowledge acquired.

  17. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    International Nuclear Information System (INIS)

    Wang Ya-Qi; Yang Xiao-Yuan; Han Yi-Liang; Wang Xu-An

    2013-01-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations. (interdisciplinary physics and related areas of science and technology)

  18. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    Science.gov (United States)

    Wang, Ya-Qi; Yang, Xiao-Yuan; Han, Yi-Liang; Wang, Xu-An

    2013-04-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.

  19. Understanding the social dimension of knowledge through complex network analysis

    NARCIS (Netherlands)

    Mas Tur, E.M.

    2016-01-01

    This thesis presents five studies on the social dimension of knowledge, with a focus on its creation and diffusion processes. Broadly speaking, the creation and diffusion of knowledge are phenomena inherent to human society as a whole. In this sense, the results of the works in this thesis can be

  20. Network-oriented modeling addressing complexity of cognitive, affective and social interactions

    CERN Document Server

    Treur, Jan

    2016-01-01

    This book presents a new approach that can be applied to complex, integrated individual and social human processes. It provides an alternative means of addressing complexity, better suited for its purpose than and effectively complementing traditional strategies involving isolation and separation assumptions. Network-oriented modeling allows high-level cognitive, affective and social models in the form of (cyclic) graphs to be constructed, which can be automatically transformed into executable simulation models. The modeling format used makes it easy to take into account theories and findings about complex cognitive and social processes, which often involve dynamics based on interrelating cycles. Accordingly, it makes it possible to address complex phenomena such as the integration of emotions within cognitive processes of all kinds, of internal simulations of the mental processes of others, and of social phenomena such as shared understandings and collective actions. A variety of sample models – including ...

  1. Connecting the Dots: Social Network Structure, Conflict, and Group Cognitive Complexity

    Science.gov (United States)

    Curseu, Petru L.; Janssen, Steffie E. A.; Raab, Jorg

    2012-01-01

    The current paper combines arguments from the social capital and group cognition literature to explain two different processes through which communication network structures and intra group conflict influence groups' cognitive complexity (GCC). We test in a sample of 44 groups the mediating role of intra group conflict in the relationship between…

  2. Flower-Visiting Social Wasps and Plants Interaction: Network Pattern and Environmental Complexity

    Directory of Open Access Journals (Sweden)

    Mateus Aparecido Clemente

    2012-01-01

    Full Text Available Network analysis as a tool for ecological interactions studies has been widely used since last decade. However, there are few studies on the factors that shape network patterns in communities. In this sense, we compared the topological properties of the interaction network between flower-visiting social wasps and plants in two distinct phytophysiognomies in a Brazilian savanna (Riparian Forest and Rocky Grassland. Results showed that the landscapes differed in species richness and composition, and also the interaction networks between wasps and plants had different patterns. The network was more complex in the Riparian Forest, with a larger number of species and individuals and a greater amount of connections between them. The network specialization degree was more generalist in the Riparian Forest than in the Rocky Grassland. This result was corroborated by means of the nestedness index. In both networks was found asymmetry, with a large number of wasps per plant species. In general aspects, most wasps had low niche amplitude, visiting from one to three plant species. Our results suggest that differences in structural complexity of the environment directly influence the structure of the interaction network between flower-visiting social wasps and plants.

  3. Complex Networks IX

    CERN Document Server

    Coronges, Kate; Gonçalves, Bruno; Sinatra, Roberta; Vespignani, Alessandro; Proceedings of the 9th Conference on Complex Networks; CompleNet 2018

    2018-01-01

    This book aims to bring together researchers and practitioners working across domains and research disciplines to measure, model, and visualize complex networks. It collects the works presented at the 9th International Conference on Complex Networks (CompleNet) 2018 in Boston, MA in March, 2018. With roots in physical, information and social science, the study of complex networks provides a formal set of mathematical methods, computational tools and theories to describe prescribe and predict dynamics and behaviors of complex systems. Despite their diversity, whether the systems are made up of physical, technological, informational, or social networks, they share many common organizing principles and thus can be studied with similar approaches. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as group decision-making, brain and cellular connectivity, network controllability and resiliency, online activism, recommendation systems, and cyber security.

  4. Social networks

    CERN Document Server

    Etaner-Uyar, A Sima

    2014-01-01

    The present volume provides a comprehensive resource for practitioners and researchers alike-both those new to the field as well as those who already have some experience. The work covers Social Network Analysis theory and methods with a focus on current applications and case studies applied in various domains such as mobile networks, security, machine learning and health. With the increasing popularity of Web 2.0, social media has become a widely used communication platform. Parallel to this development, Social Network Analysis gained in importance as a research field, while opening up many

  5. Reliability and Efficiency of Generalized Rumor Spreading Model on Complex Social Networks

    International Nuclear Information System (INIS)

    Naimi, Yaghoob; Naimi, Mohammad

    2013-01-01

    We introduce the generalized rumor spreading model and investigate some properties of this model on different complex social networks. Despite pervious rumor models that both the spreader-spreader (SS) and the spreader-stifler (SR) interactions have the same rate α, we define α (1) and α (2) for SS and SR interactions, respectively. The effect of variation of α (1) and α (2) on the final density of stiflers is investigated. Furthermore, the influence of the topological structure of the network in rumor spreading is studied by analyzing the behavior of several global parameters such as reliability and efficiency. Our results show that while networks with homogeneous connectivity patterns reach a higher reliability, scale-free topologies need a less time to reach a steady state with respect the rumor. (interdisciplinary physics and related areas of science and technology)

  6. Threshold behaviors of social dynamics and financial outcomes of Ponzi scheme diffusion in complex networks

    Science.gov (United States)

    Fu, Peihua; Zhu, Anding; Ni, He; Zhao, Xin; Li, Xiulin

    2018-01-01

    Ponzi schemes always lead to mass disasters after collapse. It is important to study the critical behaviors of both social dynamics and financial outcomes for Ponzi scheme diffusion in complex networks. We develop the potential-investor-divestor-investor (PIDI) model by considering the individual behavior of direct reinvestment. We find that only the spreading rate relates to the epidemic outbreak while the reinvestment rate relates to the zero and non-zero final states for social dynamics of both homo- and inhomogeneous networks. Financially, we find that there is a critical spreading threshold, above which the scheme needs not to use its own initial capital for taking off, i.e. the starting cost is covered by the rapidly inflowing funds. However, the higher the cost per recruit, the larger the critical spreading threshold and the worse the financial outcomes. Theoretical and simulation results also reveal that schemes are easier to take off in inhomogeneous networks. The reinvestment rate does not affect the starting. However, it improves the financial outcome in the early stages and postpones the outbreak of financial collapse. Some policy suggestions for the regulator from the perspective of social physics are proposed in the end of the paper.

  7. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  8. Advances in network complexity

    CERN Document Server

    Dehmer, Matthias; Emmert-Streib, Frank

    2013-01-01

    A well-balanced overview of mathematical approaches to describe complex systems, ranging from chemical reactions to gene regulation networks, from ecological systems to examples from social sciences. Matthias Dehmer and Abbe Mowshowitz, a well-known pioneer in the field, co-edit this volume and are careful to include not only classical but also non-classical approaches so as to ensure topicality. Overall, a valuable addition to the literature and a must-have for anyone dealing with complex systems.

  9. Organization of complex networks

    Science.gov (United States)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how

  10. A New Recommendation Algorithm Based on User’s Dynamic Information in Complex Social Network

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2015-01-01

    Full Text Available The development of recommendation system comes with the research of data sparsity, cold start, scalability, and privacy protection problems. Even though many papers proposed different improved recommendation algorithms to solve those problems, there is still plenty of room for improvement. In the complex social network, we can take full advantage of dynamic information such as user’s hobby, social relationship, and historical log to improve the performance of recommendation system. In this paper, we proposed a new recommendation algorithm which is based on social user’s dynamic information to solve the cold start problem of traditional collaborative filtering algorithm and also considered the dynamic factors. The algorithm takes user’s response information, dynamic interest, and the classic similar measurement of collaborative filtering algorithm into account. Then, we compared the new proposed recommendation algorithm with the traditional user based collaborative filtering algorithm and also presented some of the findings from experiment. The results of experiment demonstrate that the new proposed algorithm has a better recommended performance than the collaborative filtering algorithm in cold start scenario.

  11. Dynamics on and of complex networks applications to biology, computer science, and the social sciences

    CERN Document Server

    Ganguly, Niloy; Mukherjee, Animesh

    2009-01-01

    This self-contained book systematically explores the statistical dynamics on and of complex networks having relevance across a large number of scientific disciplines. The theories related to complex networks are increasingly being used by researchers for their usefulness in harnessing the most difficult problems of a particular discipline. The book is a collection of surveys and cutting-edge research contributions exploring the interdisciplinary relationship of dynamics on and of complex networks. Towards this goal, the work is thematically organized into three main sections: Part I studies th

  12. Local Social Networks

    DEFF Research Database (Denmark)

    Sapuppo, Antonio; Sørensen, Lene Tolstrup

    2011-01-01

    Online social networks have become essential for many users in their daily communication. Through a combination of the online social networks with opportunistic networks, a new concept arises: Local Social Networks. The target of local social networks is to promote social networking benefits...... in physical environment in order to leverage personal affinities in the users' surroundings. The purpose of this paper is to present and discuss the concept of local social networks as a new social communication system. Particularly, the preliminary architecture and the prototype of local social networks...

  13. Dissemination Of Opinions And Ideas Via Complex Contagion On Social Networks

    Science.gov (United States)

    2016-09-23

    conditions, diversity and social network clustering (modeling sense of community) need no longer be negatively correlated, as has been claimed. This implies...was developed based on the Axelrod model of cultural dissemination and a spatial public goods game (an extension of the well-known prisoners dilemma...networks, islamic extremists, online idealogy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES      4      19a.  NAME

  14. El complejo mundo de la interactividad: emociones y redes sociales The complex world of interactivity: emotions and social networks

    Directory of Open Access Journals (Sweden)

    Lourdes Sánchez Martín

    2011-07-01

    Full Text Available El objetivo de la presente investigación es discernir cómo debe plantearse un aprendizaje en nuevas tecnologías, en especial, en redes sociales. Para esto, se analizará la dinámica neurológica y psicológica de las emociones y cómo se desenvuelven en el ámbito de las redes sociales. La metodología que emplearemos será acudir a diversos estudios neurológicos y psicológicos actuales, en especial de Antonio Damasio, para analizar posteriormente qué sucede con las emociones cuando nos comunicamos a través de redes sociales, tomando como referente un experimento neurológico de dicho autor en el cerebro de varios voluntarios que muestra la aparición de diversos tipos de emociones. Por último, extrapolaremos este experimento a la aparición de emociones si se utiliza como medio de comunicación las redes sociales y realizaremos algunas conclusiones acerca de la dirección a la que debe tender el aprendizaje de nuevas tecnologías, en especial, redes sociales, teniendo en cuenta dichas observaciones.The objective of this research is to discern how it should consider learning on new technologies, especially in social networks. For this, we examine the neurological and psychological dynamics of emotions and how they develop in the field of social networks. Our methodology will go to various neurological and psychological studies today, including Antonio Damasio and how to analyze what happens when we communicate emotions through social networks, by reference to a neurological experiment that copyright in the brain several volunteers that shows the appearance of various types of emotions. Finally, we extrapolate this experiment to the appearance of emotions when social networks are used as media and will make some conclusions about the direction you should aim to learn new technologies, especially social networks, taking into account such observations.

  15. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  16. Social entrepreneurship and social networks

    OpenAIRE

    Dufays, Frédéric

    2013-01-01

    In this presentation, we argue that the sociology of social networks may provide interesting insights with regard to the emergence of social entrepreneurship both at micro and macro levels. There have already been several calls for research on social networks in the context of social entrepreneurship (Certo & Miller 2008; Gedajlovic, et al. 2013; Haugh 2007; Mair & Marti 2006; Short, et al. 2009). These calls often address the differences in structure and effects of social networks in a socia...

  17. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    OpenAIRE

    Blower, Sally; Go, Myong-Hyun

    2011-01-01

    Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagu...

  18. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    Directory of Open Access Journals (Sweden)

    Go Myong-Hyun

    2011-07-01

    Full Text Available Abstract Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability. Please see related article BMC Medicine, 2011, 9:87

  19. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?

    Science.gov (United States)

    Blower, Sally; Go, Myong-Hyun

    2011-07-19

    Mathematical models are useful tools for understanding and predicting epidemics. A recent innovative modeling study by Stehle and colleagues addressed the issue of how complex models need to be to ensure accuracy. The authors collected data on face-to-face contacts during a two-day conference. They then constructed a series of dynamic social contact networks, each of which was used to model an epidemic generated by a fast-spreading airborne pathogen. Intriguingly, Stehle and colleagues found that increasing model complexity did not always increase accuracy. Specifically, the most detailed contact network and a simplified version of this network generated very similar results. These results are extremely interesting and require further exploration to determine their generalizability.

  20. The model of microblog message diffusion based on complex social network

    Science.gov (United States)

    Zhang, Wei; Bai, Shu-Ying; Jin, Rui

    2014-05-01

    Microblog is a micromessage communication network in which users are the nodes and the followship between users are the edges. Sina Weibo is a typical case of these microblog service websites. As the enormous scale of nodes and complex links in the network, we choose a sample network crawled in Sina Weibo as the base of empirical analysis. The study starts with the analysis of its topological features, and brings in epidemiological SEIR model to explore the mode of message spreading throughout the microblog network. It is found that the network is obvious small-world and scale-free, which made it succeed in transferring messages and failed in resisting negative influence. In addition, the paper focuses on the rich nodes as they constitute a typical feature of Sina Weibo. It is also found that whether the message starts with a rich node will not account for its final coverage. Actually, the rich nodes always play the role of pivotal intermediaries who speed up the spreading and make the message known by much more people.

  1. Visualization of Social Networks

    NARCIS (Netherlands)

    Boertjes, E.M.; Kotterink, B.; Jager, E.J.

    2011-01-01

    Current visualizations of social networks are mostly some form of node-link diagram. Depending on the type of social network, this can be some treevisualization with a strict hierarchical structure or a more generic network visualization.

  2. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.

    Science.gov (United States)

    Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto

    2012-01-21

    Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction

  3. Modeling the effects of social impact on epidemic spreading in complex networks

    Science.gov (United States)

    Ni, Shunjiang; Weng, Wenguo; Zhang, Hui

    2011-11-01

    We investigate by mean-field analysis and extensive simulations the effects of social impact on epidemic spreading in various typical networks with two types of nodes: active nodes and passive nodes, of which the behavior patterns are modeled according to the social impact theory. In this study, nodes are not only the media to spread the virus, but also disseminate their opinions on the virus-whether there is a need for certain self-protection measures to be taken to reduce the risk of being infected. Our results indicate that the interaction between epidemic spreading and opinion dynamics can have significant influences on the spreading of infectious diseases and related applications, such as the implementation of prevention and control measures against the infectious diseases.

  4. Weak Links: Stabilizers of Complex Systems from Proteins to Social Networks

    Science.gov (United States)

    Csermely, Peter

    Why do women stabilize our societies? Why can we enjoy and understand Shakespeare? Why are fruitflies uniform? Why do omnivorous eating habits aid our survival? Why is Mona Lisa's smile beautiful? -- Is there any answer to these questions? This book shows that the statement: "weak links stabilize complex systems" holds the answers to all of the surprising questions above. The author (recipientof several distinguished science communication prizes) uses weak (low affinity, low probability) interactions as a thread to introduce a vast varietyof networks from proteins to ecosystems.

  5. Herding Complex Networks

    KAUST Repository

    Ruf, Sebastian F.; Egersted, Magnus; Shamma, Jeff S.

    2018-01-01

    the ability to drive a system to a specific set in the state space, was recently introduced as an alternative network control notion. This paper considers the application of herdability to the study of complex networks. The herdability of a class of networked

  6. Social network data analytics

    CERN Document Server

    Aggarwal, Charu C

    2011-01-01

    Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Pr

  7. Enterprise Social Networks

    DEFF Research Database (Denmark)

    Winkler, Till J.; Trier, Matthias

    2017-01-01

    Enterprise Social Networks (ESNs), d. h. Informationssysteme, die die Vernetzung von Mitarbeitern in Unternehmen fördern sollen, sind in verschiedenen Varianten und unter verschiedenen Bezeichnungen (etwa Enterprise Social Media, Corporate Social Software, Social Business oder Enterprise 2...

  8. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  9. Economia Informal em Rede: trocas económicas e complexidade social Informal economy network: economic exchanges and social complexity

    Directory of Open Access Journals (Sweden)

    Marzia Grassi

    2012-03-01

    Full Text Available Partindo das realidades empíricas de Cabo Verde e diásporas, este texto explora, até certo ponto, as limitações heurísticas de certas noções sugeridas pela mainstream do modelo neoliberal da economia sobre o «informal» em África. O texto debruça-se sobre diferentes dimensões, espaços e protagonistas de práticas de economia informal em rede. As repercussões identitárias das dinâmicas destas redes entre os cabo-verdianos, apreendidas através da observação de certas formas de sociabilidade dos actores sociais considerados, são igualmente exploradas.Based on the empirical realities of Cape Verde and some of its Diasporas, this article explores, to a certain extent, the heuristic limitations of certain notions suggested by the mainstream of the neoliberal economy model concerning the so called «informal economy» in Africa. The text deals with different dimensions, spaces and protagonists of practices of the informal economic networks. The identitarian repercussions of the dynamics of these networks among Capeverdians, apprehended through the observation of certain forms of socialibility of these social actors are also explored.

  10. Professional social networking.

    Science.gov (United States)

    Rowley, Robert D

    2014-12-01

    We review the current state of social communication between healthcare professionals, the role of consumer social networking, and some emerging technologies to address the gaps. In particular, the review covers (1) the current state of loose social networking for continuing medical education (CME) and other broadcast information dissemination; (2) social networking for business promotion; (3) social networking for peer collaboration, including simple communication as well as more robust data-centered collaboration around patient care; and (4) engaging patients on social platforms, including integrating consumer-originated data into the mix of healthcare data. We will see how, as the nature of healthcare delivery moves from the institution-centric way of tradition to a more social and networked ambulatory pattern that we see emerging today, the nature of health IT has also moved from enterprise-centric systems to more socially networked, cloud-based options.

  11. Interpreting participatory Fuzzy Cognitive Maps as complex networks in the social-ecological systems of the Amazonian forests

    Science.gov (United States)

    Varela, Consuelo; Tarquis, Ana M.; Blanco-Gutiérrez, Irene; Estebe, Paloma; Toledo, Marisol; Martorano, Lucieta

    2015-04-01

    Social-ecological systems are linked complex systems that represent interconnected human and biophysical processes evolving and adapting across temporal and spatial scales. In the real world, social-ecological systems pose substantial challenges for modeling. In this regard, Fuzzy Cognitive Maps (FCMs) have proven to be a useful method for capturing the functioning of this type of systems. FCMs are a semi-quantitative type of cognitive map that represent a system composed of relevant factors and weighted links showing the strength and direction of cause-effects relationships among factors. Therefore, FCMs can be interpreted as complex system structures or complex networks. In this sense, recent research has applied complex network concepts for the analysis of FCMs that represent social-ecological systems. Key to FCM the tool is its potential to allow feedback loops and to include stakeholder knowledge in the construction of the tool. Also, previous research has demonstrated their potential to represent system dynamics and simulate the effects of changes in the system, such as policy interventions. For illustrating this analysis, we have developed a series of participatory FCM for the study of the ecological and human systems related to biodiversity conservation in two case studies of the Amazonian region, the Bolivia lowlands of Guarayos and the Brazil Tapajos National forest. The research is carried out in the context of the EU project ROBIN1 and it is based on the development of a series of stakeholder workshops to analyze the current state of the socio-ecological environment in the Amazonian forest, reflecting conflicts and challenges for biodiversity conservation and human development. Stakeholders included all relevant actors in the local case studies, namely farmers, environmental groups, producer organizations, local and provincial authorities and scientists. In both case studies we illustrate the use of complex networks concepts, such as the adjacency

  12. Next Generation Social Networks

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Skouby, Knud Erik

    2008-01-01

    different online networks for communities of people who share interests or individuals who presents themselves through user produced content is what makes up the social networking of today. The purpose of this paper is to discuss perceived user requirements to the next generation social networks. The paper...

  13. Social cognitive radio networks

    CERN Document Server

    Chen, Xu

    2015-01-01

    This brief presents research results on social cognitive radio networks, a transformational and innovative networking paradigm that promotes the nexus between social interactions and cognitive radio networks. Along with a review of the research literature, the text examines the key motivation and challenges of social cognitive radio network design. Three socially inspired distributed spectrum sharing mechanisms are introduced: adaptive channel recommendation mechanism, imitation-based social spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism. The brief concludes with a discussion of future research directions which ascertains that exploiting social interactions for distributed spectrum sharing will advance the state-of-the-art of cognitive radio network design, spur a new line of thinking for future wireless networks, and enable novel wireless service and applications.

  14. Dynamic and interacting complex networks

    Science.gov (United States)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible

  15. Herding Complex Networks

    KAUST Repository

    Ruf, Sebastian F.

    2018-04-12

    The problem of controlling complex networks is of interest to disciplines ranging from biology to swarm robotics. However, controllability can be too strict a condition, failing to capture a range of desirable behaviors. Herdability, which describes the ability to drive a system to a specific set in the state space, was recently introduced as an alternative network control notion. This paper considers the application of herdability to the study of complex networks. The herdability of a class of networked systems is investigated and two problems related to ensuring system herdability are explored. The first is the input addition problem, which investigates which nodes in a network should receive inputs to ensure that the system is herdable. The second is a related problem of selecting the best single node from which to herd the network, in the case that a single node is guaranteed to make the system is herdable. In order to select the best herding node, a novel control energy based herdability centrality measure is introduced.

  16. Epidemic processes in complex networks

    Science.gov (United States)

    Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro

    2015-07-01

    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.

  17. Social traits, social networks and evolutionary biology.

    Science.gov (United States)

    Fisher, D N; McAdam, A G

    2017-12-01

    effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Multilayer Social Networks

    DEFF Research Database (Denmark)

    Dickison, Mark; Magnani, Matteo; Rossi, Luca

    social network systems, the evolution of interconnected social networks, and dynamic processes such as information spreading. A single real dataset is used to illustrate the concepts presented throughout the book, demonstrating both the practical utility and the potential shortcomings of the various...

  19. Social Networks and Health.

    Science.gov (United States)

    Perdiaris, Christos; Chardalias, Konstantinos; Magita, Andrianna; Mechili, Aggelos E; Diomidous, Marianna

    2015-01-01

    Nowadays the social networks have been developed into an advanced communications tool, which is important for all people to contact each other. These specific networks do offer lots of options as well as plenty of advantages and disadvantages. The social websites are many in number and titles, such as the facebook, the twitter, the bandoo etc. One of the most important function-mechanisms for the social network websites, are the marketing tools. The future goal is suggested to be the evolution of these programs. The development of these applications, which is going to lead into a new era for the social digital communication between the internet users, all around the globe.

  20. Attachment and social networks.

    Science.gov (United States)

    Gillath, Omri; C Karantzas, Gery; Lee, Juwon

    2018-02-21

    The current review covers two lines of research linking attachment and social networks. One focuses on attachment networks (the people who fulfill one's attachment needs), examining composition and age-related differences pertaining to these networks. The other line integrates attachment with social network analysis to investigate how individual differences in adult attachment are associated with the management and characteristics (e.g., density, multiplexity, and centrality) of people's social networks. We show that most people's attachment networks are small and hierarchical, with one figure being the primary attachment figure (often a mother or romantic partner, depending on age). Furthermore, attachment style predicts network characteristics and management, such that insecurity is associated with less closeness, multiplexity, centrality, and poorer management (less maintenance, more dissolution). Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  2. Contagion on complex networks with persuasion

    Science.gov (United States)

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  3. Vulnerability of complex networks

    Science.gov (United States)

    Mishkovski, Igor; Biey, Mario; Kocarev, Ljupco

    2011-01-01

    We consider normalized average edge betweenness of a network as a metric of network vulnerability. We suggest that normalized average edge betweenness together with is relative difference when certain number of nodes and/or edges are removed from the network is a measure of network vulnerability, called vulnerability index. Vulnerability index is calculated for four synthetic networks: Erdős-Rényi (ER) random networks, Barabási-Albert (BA) model of scale-free networks, Watts-Strogatz (WS) model of small-world networks, and geometric random networks. Real-world networks for which vulnerability index is calculated include: two human brain networks, three urban networks, one collaboration network, and two power grid networks. We find that WS model of small-world networks and biological networks (human brain networks) are the most robust networks among all networks studied in the paper.

  4. PERSON IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Андрей Борисович Шалимов

    2013-11-01

    Full Text Available Purpose: Our scientific purpose is creation of practical model of person’s representation in social networks (Facebook, Twitter, Classmates. As user of social networks, person is made conditional not only upon its own identity, but also upon the information about himself, which he is ready to share with his friends in contact list. Goal-setting and practical activities for their achievement mean that you should apply force, it can completely eliminates systemic factors, the system of power relations, which overwhelms human being in social networks.Methodology: The reconstruction of the model of human in the popularity of social networksResults: There is descripton of practical model of person's representation in social networks, it includes the management of own identity and the audience (the list of contacts. When person manages own identity, he answers the question, «Whom I can dare to be?». Person perceives himself in social networks' being, he understands himself and his place in the world, he identifies.Managing the way in social media means that you answer the question «What I want to tell?». Person in social media looks at events in the field of culture, economy, politics, social relations through the prism of his own attitudes, he forms and formulates his own agenda and he is going to tell about himself through them.Practical implications: Everyday people’s life, practical activities, including marketing in social networks.DOI: http://dx.doi.org/10.12731/2218-7405-2013-9-51

  5. Persistent homology of complex networks

    International Nuclear Information System (INIS)

    Horak, Danijela; Maletić, Slobodan; Rajković, Milan

    2009-01-01

    Long-lived topological features are distinguished from short-lived ones (considered as topological noise) in simplicial complexes constructed from complex networks. A new topological invariant, persistent homology, is determined and presented as a parameterized version of a Betti number. Complex networks with distinct degree distributions exhibit distinct persistent topological features. Persistent topological attributes, shown to be related to the robust quality of networks, also reflect the deficiency in certain connectivity properties of networks. Random networks, networks with exponential connectivity distribution and scale-free networks were considered for homological persistency analysis

  6. Social Networks and the Environment

    OpenAIRE

    Julio Videras

    2013-01-01

    This review discusses empirical research on social networks and the environment; it summarizes findings from representative studies and the conceptual frameworks social scientists use to examine the role of social networks. The article presents basic concepts in social network analysis, summarizes common challenges of empirical research on social networks, and outlines areas for future research. Finally, the article discusses the normative and positive meanings of social networks.

  7. [Social networks and medicine].

    Science.gov (United States)

    Bastardot, F; Vollenweider, P; Marques-Vidal, P

    2015-11-04

    Social networks (social media or #SoMe) have entered medical practice within the last few years. These new media--like Twitter or Skype--enrich interactions among physicians (telemedicine), among physicians and patients (virtual consultations) and change the way of teaching medicine. They also entail new ethical, deontological and legal issues: the extension of the consultation area beyond the medical office and the access of information by third parties were recently debated. We develop here a review of some social networks with their characteristics, applications for medicine and limitations, and we offer some recommendations of good practice.

  8. Online social support networks.

    Science.gov (United States)

    Mehta, Neil; Atreja, Ashish

    2015-04-01

    Peer support groups have a long history and have been shown to improve health outcomes. With the increasing familiarity with online social networks like Facebook and ubiquitous access to the Internet, online social support networks are becoming popular. While studies have shown the benefit of these networks in providing emotional support or meeting informational needs, robust data on improving outcomes such as a decrease in health services utilization or reduction in adverse outcomes is lacking. These networks also pose unique challenges in the areas of patient privacy, funding models, quality of content, and research agendas. Addressing these concerns while creating patient-centred, patient-powered online support networks will help leverage these platforms to complement traditional healthcare delivery models in the current environment of value-based care.

  9. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  10. Social exchange: Relations and networks

    OpenAIRE

    Dijkstra, Jacob

    2015-01-01

    In this short paper, I review the literature on social exchange networks, with specific attention to theoretical and experimental research. I indicate how social exchange theory is rooted in general social theory and mention a few of its main links to social network analysis and empirical network research. The paper provides an accessible entry into the literature on social exchange.

  11. Complex networks principles, methods and applications

    CERN Document Server

    Latora, Vito; Russo, Giovanni

    2017-01-01

    Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among the others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, ...

  12. Spreading dynamics in complex networks

    Science.gov (United States)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  13. Spreading dynamics in complex networks

    International Nuclear Information System (INIS)

    Pei, Sen; Makse, Hernán A

    2013-01-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)

  14. Privacy in social networking sites

    OpenAIRE

    Λεονάρδος, Γεώργιος; Leonardos, Giorgos

    2016-01-01

    The purpose of this study is to explore the aspects of privacy over the use of social networks web sites. More specific, we will show the types of social networks, their privacy mechanisms that are different in each social network site, their privacy options that are offered to users. We will report some serious privacy violations incidents of the most popular social networks sites such as Facebook, Twitter, LinkedIn. Also, we will report some important surveys about social networks and pr...

  15. Online Advertising in Social Networks

    Science.gov (United States)

    Bagherjeiran, Abraham; Bhatt, Rushi P.; Parekh, Rajesh; Chaoji, Vineet

    Online social networks offer opportunities to analyze user behavior and social connectivity and leverage resulting insights for effective online advertising. This chapter focuses on the role of social network information in online display advertising.

  16. Philosophy of social networking

    Directory of Open Access Journals (Sweden)

    Markova T. V.

    2018-04-01

    Full Text Available the article is devoted to the study of social networks impact on an individual, which are an important part of a modern society. Through reflections the reasons of the popularity of the phenomenon of virtual communication in the 21st century are determined: what drives a person when he / she registers on the sites for communication, premises for his / her actions and consequences. The latter is viewed from both a social and a personal point of view. After analyzing the charts of social networks popularity, the authors come to the conclusion that there is an increase in the population of the virtual communication supporters. It allows to assert that the problem of the termination of live communication is relevant to this day. Dualism of social networks influence on the consciousness of an individual is stated: together with negative consequences positive aspects are considered. By analyzing social media researches, as well as by the means of a survey, the dominant reason for the world wide web entering is identified. After that, it is clearly shown what a typical site for communication is; as a result, the pros and cons of such time spending are specified. The conclusion states the predominance of the Internet dependence over the other types of dependencies, also forecasts are made for the future of both social networks and the people caught in their web.

  17. Towards an Information Theory of Complex Networks

    CERN Document Server

    Dehmer, Matthias; Mehler, Alexander

    2011-01-01

    For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoreti

  18. The complex interplay of social networks, geography and HIV risk among Malaysian Drug Injectors: Results from respondent-driven sampling.

    Science.gov (United States)

    Zelenev, Alexei; Long, Elisa; Bazazi, Alexander R; Kamarulzaman, Adeeba; Altice, Frederick L

    2016-11-01

    HIV is primarily concentrated among people who inject drugs (PWID) in Malaysia, where currently HIV prevention and treatment coverage is inadequate. To improve the targeting of interventions, we examined HIV clustering and the role that social networks and geographical distance play in influencing HIV transmission among PWID. Data were derived from a respondent-driven survey sample (RDS) collected during 2010 of 460 PWID in greater Kuala Lumpur. Analysis focused on socio-demographic, clinical, behavioural, and network information. Spatial probit models were developed based on a distinction between the influence of peers (individuals nominated through a recruitment network) and neighbours (residing a close distance to the individual). The models were expanded to account for the potential influence of the network formation. Recruitment patterns of HIV-infected PWID clustered both spatially and across the recruitment networks. In addition, HIV-infected PWID were more likely to have peers and neighbours who inject with clean needles were HIV-infected and lived nearby (applied to identify injection network structures, and this provides an important mechanism for improving public health surveillance, accessing high-risk populations, and implementing risk-reduction interventions to slow HIV transmission. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Statistical mechanics of complex networks

    CERN Document Server

    Rubi, Miguel; Diaz-Guilera, Albert

    2003-01-01

    Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.

  20. The Social Network Classroom

    Science.gov (United States)

    Bunus, Peter

    Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.

  1. Border detection in complex networks

    International Nuclear Information System (INIS)

    Travencolo, Bruno A N; Viana, Matheus Palhares; Costa, Luciano da Fontoura

    2009-01-01

    One important issue implied by the finite nature of real-world networks regards the identification of their more external (border) and internal nodes. The present work proposes a formal and objective definition of these properties, founded on the recently introduced concept of node diversity. It is shown that this feature does not exhibit any relevant correlation with several well-established complex networks measurements. A methodology for the identification of the borders of complex networks is described and illustrated with respect to theoretical (geographical and knitted networks) as well as real-world networks (urban and word association networks), yielding interesting results and insights in both cases.

  2. 7th Workshop on Complex Networks

    CERN Document Server

    Gonçalves, Bruno; Menezes, Ronaldo; Sinatra, Roberta

    2016-01-01

    The last decades have seen the emergence of Complex Networks as the language with which a wide range of complex phenomena in fields as diverse as Physics, Computer Science, and Medicine (to name just a few) can be properly described and understood. This book provides a view of the state of the art in this dynamic field and covers topics ranging from network controllability, social structure, online behavior, recommendation systems, and network structure. This book includes the peer-reviewed list of works presented at the 7th Workshop on Complex Networks CompleNet 2016 which was hosted by the Université de Bourgogne, France, from March 23-25, 2016. The 28 carefully reviewed and selected contributions in this book address many topics related to complex networks and have been organized in seven major groups: (1) Theory of Complex Networks, (2) Multilayer networks, (3) Controllability of networks, (4) Algorithms for networks, (5) Community detection, (6) Dynamics and spreading phenomena on networks, (7) Applicat...

  3. Stabilizing weighted complex networks

    International Nuclear Information System (INIS)

    Xiang Linying; Chen Zengqiang; Liu Zhongxin; Chen Fei; Yuan Zhuzhi

    2007-01-01

    Real networks often consist of local units which interact with each other via asymmetric and heterogeneous connections. In this paper, the V-stability problem is investigated for a class of asymmetric weighted coupled networks with nonidentical node dynamics, which includes the unweighted network as a special case. Pinning control is suggested to stabilize such a coupled network. The complicated stabilization problem is reduced to measuring the semi-negative property of the characteristic matrix which embodies not only the network topology, but also the node self-dynamics and the control gains. It is found that network stabilizability depends critically on the second largest eigenvalue of the characteristic matrix. The smaller the second largest eigenvalue is, the more the network is pinning controllable. Numerical simulations of two representative networks composed of non-chaotic systems and chaotic systems, respectively, are shown for illustration and verification

  4. Social exchange : Relations and networks

    NARCIS (Netherlands)

    Dijkstra, Jacob

    2015-01-01

    In this short paper, I review the literature on social exchange networks, with specific attention to theoretical and experimental research. I indicate how social exchange theory is rooted in general social theory and mention a few of its main links to social network analysis and empirical network

  5. Communication in Animal Social Networks

    NARCIS (Netherlands)

    Snijders, Lysanne; Naguib, Marc

    2017-01-01

    Animal social networks and animal communication networks are key disciplines for understanding animal social behavior, yet these disciplines remain poorly integrated. In this review, we show how communication and social networks are inherently linked, with social signals reflecting and affecting

  6. SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Petrus M.A. Sloot

    2014-09-01

    Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.

  7. Combined Heuristic Attack Strategy on Complex Networks

    Directory of Open Access Journals (Sweden)

    Marek Šimon

    2017-01-01

    Full Text Available Usually, the existence of a complex network is considered an advantage feature and efforts are made to increase its robustness against an attack. However, there exist also harmful and/or malicious networks, from social ones like spreading hoax, corruption, phishing, extremist ideology, and terrorist support up to computer networks spreading computer viruses or DDoS attack software or even biological networks of carriers or transport centers spreading disease among the population. New attack strategy can be therefore used against malicious networks, as well as in a worst-case scenario test for robustness of a useful network. A common measure of robustness of networks is their disintegration level after removal of a fraction of nodes. This robustness can be calculated as a ratio of the number of nodes of the greatest remaining network component against the number of nodes in the original network. Our paper presents a combination of heuristics optimized for an attack on a complex network to achieve its greatest disintegration. Nodes are deleted sequentially based on a heuristic criterion. Efficiency of classical attack approaches is compared to the proposed approach on Barabási-Albert, scale-free with tunable power-law exponent, and Erdős-Rényi models of complex networks and on real-world networks. Our attack strategy results in a faster disintegration, which is counterbalanced by its slightly increased computational demands.

  8. Social network and addiction.

    Science.gov (United States)

    La Barbera, Daniele; La Paglia, Filippo; Valsavoia, Rosaria

    2009-01-01

    In recent decades, the rapid development of innovative Internet-based communication technologies created a new field of academic study among scholars. Particularly, the attention of researchers is focusing on new ways to form relationship-thought social web. Social Network sites constitute a new form of web communities, where people meet and share interests and activities. Due to exponential growth of these sites, an increasing number of scholars are beginning to study the emergent phenomena in order to identify any psychopathological risk related to use of social web, such as addiction. This article examines the recent literature about this issue.

  9. PSN: Portfolio Social Network

    DEFF Research Database (Denmark)

    Cortes, Jordi Magrina; Nizamani, Sarwat; Memon, Nasrullah

    2014-01-01

    In this paper we present a web-based information system which is a portfolio social network (PSN) that provides solutions to the recruiters and job seekers. The proposed system enables users to create portfolio so that he/she can add his specializations with piece of code if any specifically...

  10. Foraging Online Social Networks

    NARCIS (Netherlands)

    Koot, G.; Huis in ’t Veld, M.A.A.; Hendricksen, J.; Vries, A. de; Broek, E.L. van den

    2014-01-01

    A concise and practical introduction is given on Online Social Networks (OSN) and their application in law enforcement, including a brief survey of related work. Subsequently, a tool is introduced that can be used to search OSN in order to generate user profiles. Both its architecture and processing

  11. Change Detection in Social Networks

    National Research Council Canada - National Science Library

    McCulloh, Ian; Webb, Matthew; Graham, John; Carley, Kathleen; Horn, Daniel B

    2008-01-01

    .... This project proposes a new method for detecting change in social networks over time, by applying a cumulative sum statistical process control statistic to normally distributed network measures...

  12. Online Social Network Interactions:

    Directory of Open Access Journals (Sweden)

    Hui-Jung Chang

    2018-01-01

    Full Text Available A cross-cultural comparison of social networking structure on McDonald’s Facebook fan sites between Taiwan and the USA was conducted utilizing the individualism/collectivism dimension proposed by Hofstede. Four network indicators are used to describe the network structure of McDonald’s Facebook fan sites: size, density, clique and centralization. Individuals who post on both Facebook sites for the year of 2012 were considered as network participants for the purpose of the study. Due to the huge amount of data, only one thread of postings was sampled from each month of the year of 2012. The final data consists of 1002 postings written by 896 individuals and 5962 postings written by 5532 individuals from Taiwan and the USA respectively. The results indicated that the USA McDonald’s Facebook fan network has more fans, while Taiwan’s McDonald’s Facebook fan network is more densely connected. Cliques did form among the overall multiplex and within the individual uniplex networks in two countries, yet no significant differences were found between them. All the fan networks in both countries are relatively centralized, mostly on the site operators.

  13. Measure of robustness for complex networks

    Science.gov (United States)

    Youssef, Mina Nabil

    Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect

  14. Multifractal analysis of complex networks

    International Nuclear Information System (INIS)

    Wang Dan-Ling; Yu Zu-Guo; Anh V

    2012-01-01

    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)

  15. 8th Conference on Complex Networks

    CERN Document Server

    Menezes, Ronaldo; Sinatra, Roberta; Zlatic, Vinko

    2017-01-01

    This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommend...

  16. Promoting Social Network Awareness: A Social Network Monitoring System

    Science.gov (United States)

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  17. Animal welfare: a social networks perspective.

    Science.gov (United States)

    Kleinhappel, Tanja K; John, Elizabeth A; Pike, Thomas W; Wilkinson, Anna; Burman, Oliver H P

    2016-01-01

    Social network theory provides a useful tool to study complex social relationships in animals. The possibility to look beyond dyadic interactions by considering whole networks of social relationships allows researchers the opportunity to study social groups in more natural ways. As such, network-based analyses provide an informative way to investigate the factors influencing the social environment of group-living animals, and so has direct application to animal welfare. For example, animal groups in captivity are frequently disrupted by separations, reintroductions and/or mixing with unfamiliar individuals and this can lead to social stress and associated aggression. Social network analysis ofanimal groups can help identify the underlying causes of these socially-derived animal welfare concerns. In this review we discuss how this approach can be applied, and how it could be used to identify potential interventions and solutions in the area of animal welfare.

  18. Bell Inequalities for Complex Networks

    Science.gov (United States)

    2015-10-26

    AFRL-AFOSR-VA-TR-2015-0355 YIP Bell Inequalities for Complex Networks Greg Ver Steeg UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES Final Report 10/26...performance report PI: Greg Ver Steeg Young Investigator Award Grant Title: Bell Inequalities for Complex Networks Grant #: FA9550-12-1-0417 Reporting...October 20, 2015 Final Report for “Bell Inequalities for Complex Networks” Greg Ver Steeg Abstract This effort studied new methods to understand the effect

  19. Epidemic processes in complex networks

    OpenAIRE

    Pastor Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro

    2015-01-01

    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The t...

  20. Individual Search and Social Networks

    OpenAIRE

    Sanjeev Goyal; Stephanie Rosenkranz; Utz Weitzel; Vincent Buskens

    2014-01-01

    The explosion in online social networks motivates an enquiry into their structure and their welfare effects. A central feature of these networks is information sharing: online social networks lower the cost of getting information from others. These lower costs affect the attractiveness of individual search vis-a-vis a reliance on social networks. The paper reports the findings of an experiment on these effects. Our experiment shows that online networks can have large effects. Information acqu...

  1. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...

  2. Transition and Social networks

    OpenAIRE

    Raghavan, Raghu; Pawson, N.

    2011-01-01

    School leavers with learning disabilities often face difficulties in making a smooth transition from school to college, employment or more broadly, to adult life. The transition phase is traumatic for the young person with learning disabilities and their families as it often results in the loss of friendships, relationships and social networks. The aim of this chapter is to explore the issues of transition from adolescence to adulthood for young people with learning disabilities and its effe...

  3. 6th Workshop on Complex Networks

    CERN Document Server

    Simini, Filippo; Uzzo, Stephen; Wang, Dashun

    2015-01-01

    Elucidating the spatial and temporal dynamics of how things connect has become one of the most important areas of research in the 21st century. Network science now pervades nearly every science domain, resulting in new discoveries in a host of dynamic social and natural systems, including: how neurons connect and communicate in the brain, how information percolates within and among social networks, the evolution of science research through co-authorship networks, the spread of epidemics, and many other complex phenomena. Over the past decade, advances in computational power have put the tools of network analysis in the hands of increasing numbers of scientists, enabling more explorations of our world than ever before possible. Information science, social sciences, systems biology, ecosystems ecology, neuroscience and physics all benefit from this movement, which combines graph theory with data sciences to develop and validate theories about the world around us. This book brings together cutting-edge research ...

  4. Social Networks and Students' Orthography

    Directory of Open Access Journals (Sweden)

    E. Azizovic

    2017-12-01

    Full Text Available The paper studied spelling and technical errors of students on social networks (facebook, twitter, e-mail. Social networks have over the last decade become the primary means of communication, which have more than ever made real the idea of "one world - one village". Their usage is in the most part based on language, i.e. on the writing itself and reading of the same as its most complex parts. New aspects of the use of writing, which exclude handwriting, are already using some new writing platform, such as keyboards, smart - touch surfaces, etc., provide new opportunities for redefining, as well as challenges for the writings. This paper aims to give a modest contribution in this direction.

  5. Interests diffusion in social networks

    Science.gov (United States)

    D'Agostino, Gregorio; D'Antonio, Fulvio; De Nicola, Antonio; Tucci, Salvatore

    2015-10-01

    We provide a model for diffusion of interests in Social Networks (SNs). We demonstrate that the topology of the SN plays a crucial role in the dynamics of the individual interests. Understanding cultural phenomena on SNs and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.

  6. Complex networks: Dynamics and security

    Indian Academy of Sciences (India)

    This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. ... Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, USA; Institute of Mathematics and Computer Science, University of Sao Paulo, Brazil ...

  7. Social Networking Sites in Education

    OpenAIRE

    Suková, Lenka

    2010-01-01

    Diploma thesis deals with social networking sites and their use in education. Thesis is divided into two general parts. The first part deals with theory of learning; Bloom's taxonomy of educational objectives and new educational theory based on learning in networks -- Connectivism. After that thesis focuses on the definition of social networking sites, introduction of some of the best known social networking sites and examples of their use in foreign and domestic educational practice. The sec...

  8. Conceptualizing of Social Networking Sites

    OpenAIRE

    J. S. Sodhi; Shilpi Sharma

    2012-01-01

    People often move to their friends, families and colleagues when they feel urge and having doubts or queries to solve. Participation in social networking site has dramatically increased in recent years. Many social networking sites boost with million of members using their network on regular basis to communicate, share , create and collaborate with others. In this paper we explore the phenomenon of using social networking site to trace a link of the search from the community of users for bett...

  9. Signed Networks in Social Media

    OpenAIRE

    Leskovec, Jure; Huttenlocher, Daniel; Kleinberg, Jon

    2010-01-01

    Relations between users on social media sites often reflect a mixture of positive (friendly) and negative (antagonistic) interactions. In contrast to the bulk of research on social networks that has focused almost exclusively on positive interpretations of links between people, we study how the interplay between positive and negative relationships affects the structure of on-line social networks. We connect our analyses to theories of signed networks from social psychology. We find that the c...

  10. Seven Deadliest Social Network Attacks

    CERN Document Server

    Timm, Carl

    2010-01-01

    Do you need to keep up with the latest hacks, attacks, and exploits effecting social networks? Then you need Seven Deadliest Social Network Attacks. This book pinpoints the most dangerous hacks and exploits specific to social networks like Facebook, Twitter, and MySpace, laying out the anatomy of these attacks including how to make your system more secure. You will discover the best ways to defend against these vicious hacks with step-by-step instruction and learn techniques to make your computer and network impenetrable. Attacks detailed in this book include: Social Networking Infrastruct

  11. Wealth distribution on complex networks

    Science.gov (United States)

    Ichinomiya, Takashi

    2012-12-01

    We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.

  12. Social Network Gaming Trends

    Directory of Open Access Journals (Sweden)

    Michael Gathwright

    2010-01-01

    Full Text Available The purpose of this project was to determine how long the social network game Scratch-Offs, created by game development company Spice Rack Media, will remain financially viable. The game Scratch-Offs is a freeware game (users pay nothing for the actual software and is funded through micro transactions (users must pay small amounts of money to play actual games. This implies a relationship between total games played and revenue earned. Using data provided by Spice Rack, we were able to develop an exponential equation that accurately depicts usage trends over time. This equation was used to determine the date Scratch-Offs will no longer be profitable.

  13. Elgg 18 Social Networking

    CERN Document Server

    Costello, Cash

    2012-01-01

    This book provides more than just a step-by-step guide to installing and using Elgg. It includes practical advice gained through experience on what it takes to deploy and maintain an Elgg-based site. If you are a software developer or are familiar with PHP, it provides both a tutorial-based introduction and a quick reference guide so that you can quickly extend and customize Elgg. If you want to create a social networking site using Elgg and do not have a background in software development, this book provides all the information and advice that you need written just for you. If you are a devel

  14. Privacy in Social Networks

    CERN Document Server

    Zheleva, Elena

    2012-01-01

    This synthesis lecture provides a survey of work on privacy in online social networks (OSNs). This work encompasses concerns of users as well as service providers and third parties. Our goal is to approach such concerns from a computer-science perspective, and building upon existing work on privacy, security, statistical modeling and databases to provide an overview of the technical and algorithmic issues related to privacy in OSNs. We start our survey by introducing a simple OSN data model and describe common statistical-inference techniques that can be used to infer potentially sensitive inf

  15. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  16. The physics of communicability in complex networks

    International Nuclear Information System (INIS)

    Estrada, Ernesto; Hatano, Naomichi; Benzi, Michele

    2012-01-01

    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.

  17. Attractors in complex networks

    Science.gov (United States)

    Rodrigues, Alexandre A. P.

    2017-10-01

    In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).

  18. Hierarchy Measure for Complex Networks

    Science.gov (United States)

    Mones, Enys; Vicsek, Lilla; Vicsek, Tamás

    2012-01-01

    Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477

  19. Social Networks and Technology Adoption

    OpenAIRE

    Hogset, Heidi

    2005-01-01

    This study analyzes social network effects on Kenyan smallholders' decision to adopt improved natural resource management techniques. These effects are decomposed into effects from social influence and learning through networks (strong ties), group effects, weak ties effects, informal finance, and conflicts arising from technological externalities, controlling for non-network effects.

  20. Underage Children and Social Networking

    Science.gov (United States)

    Weeden, Shalynn; Cooke, Bethany; McVey, Michael

    2013-01-01

    Despite minimum age requirements for joining popular social networking services such as Facebook, many students misrepresent their real ages and join as active participants in the networks. This descriptive study examines the use of social networking services (SNSs) by children under the age of 13. The researchers surveyed a sample of 199…

  1. Border trees of complex networks

    International Nuclear Information System (INIS)

    Villas Boas, Paulino R; Rodrigues, Francisco A; Travieso, Gonzalo; Fontoura Costa, Luciano da

    2008-01-01

    The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed

  2. Measuring distances between complex networks

    International Nuclear Information System (INIS)

    Andrade, Roberto F.S.; Miranda, Jose G.V.; Pinho, Suani T.R.; Lobao, Thierry Petit

    2008-01-01

    A previously introduced concept of higher order neighborhoods in complex networks, [R.F.S. Andrade, J.G.V. Miranda, T.P. Lobao, Phys. Rev. E 73 (2006) 046101] is used to define a distance between networks with the same number of nodes. With such measure, expressed in terms of the matrix elements of the neighborhood matrices of each network, it is possible to compare, in a quantitative way, how far apart in the space of neighborhood matrices two networks are. The distance between these matrices depends on both the network topologies and the adopted node numberings. While the numbering of one network is fixed, a Monte Carlo algorithm is used to find the best numbering of the other network, in the sense that it minimizes the distance between the matrices. The minimal value found for the distance reflects differences in the neighborhood structures of the two networks that arise only from distinct topologies. This procedure ends up by providing a projection of the first network on the pattern of the second one. Examples are worked out allowing for a quantitative comparison for distances among distinct networks, as well as among distinct realizations of random networks

  3. Online networks destroy social trust

    OpenAIRE

    Sabatini, Fabio; Sarracino, Francesco

    2014-01-01

    Studies in the social capital literature have documented two stylised facts: first, a decline in measures of social participation has occurred in many OECD countries. Second, and more recently, the success of social networking sites (SNSs) has resulted in a steep rise in online social participation. Our study adds to this body of research by conducting the first empirical assessment of how online networking affects two economically relevant aspects of social capital, i.e. trust and sociabilit...

  4. Information communication on complex networks

    International Nuclear Information System (INIS)

    Igarashi, Akito; Kawamoto, Hiroki; Maruyama, Takahiro; Morioka, Atsushi; Naganuma, Yuki

    2013-01-01

    Since communication networks such as the Internet, which is regarded as a complex network, have recently become a huge scale and a lot of data pass through them, the improvement of packet routing strategies for transport is one of the most significant themes in the study of computer networks. It is especially important to find routing strategies which can bear as many traffic as possible without congestion in complex networks. First, using neural networks, we introduce a strategy for packet routing on complex networks, where path lengths and queue lengths in nodes are taken into account within a framework of statistical physics. Secondly, instead of using shortest paths, we propose efficient paths which avoid hubs, nodes with a great many degrees, on scale-free networks with a weight of each node. We improve the heuristic algorithm proposed by Danila et. al. which optimizes step by step routing properties on congestion by using the information of betweenness, the probability of paths passing through a node in all optimal paths which are defined according to a rule, and mitigates the congestion. We confirm the new heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in much smaller number of iteration steps. Finally, We model virus spreading and data transfer on peer-to-peer (P2P) networks. Using mean-field approximation, we obtain an analytical formulation and emulate virus spreading on the network and compare the results with those of simulation. Moreover, we investigate the mitigation of information traffic congestion in the P2P networks.

  5. Review of Public Safety in Viewpoint of Complex Networks

    International Nuclear Information System (INIS)

    Gai Chengcheng; Weng Wenguo; Yuan Hongyong

    2010-01-01

    In this paper, a brief review of public safety in viewpoint of complex networks is presented. Public safety incidents are divided into four categories: natural disasters, industry accidents, public health and social security, in which the complex network approaches and theories are need. We review how the complex network methods was developed and used in the studies of the three kinds of public safety incidents. The typical public safety incidents studied by the complex network methods in this paper are introduced, including the natural disaster chains, blackouts on electric power grids and epidemic spreading. Finally, we look ahead to the application prospects of the complex network theory on public safety.

  6. Conversation Analysis on Social Networking Sites

    OpenAIRE

    Belkaroui , Rami; Faiz , Rim; Elkhlifi , Aymen

    2014-01-01

    International audience; With the explosion of Web 2.0, people are becoming more communicative through expansion of services and multi-platform applications such as microblogs, forums and social networks which establishes social and collabora-tive backgrounds. These services can be seen as very large information repository containing millions of text messages usually organized into complex networks involving users interacting with each other at specific times. Several works focused only to ret...

  7. Ranking in evolving complex networks

    Science.gov (United States)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  8. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  9. Formulation and applications of complex network theory

    Science.gov (United States)

    Park, Juyong

    In recent years, there has been a great surge of interest among physicists in modeling social, technological, or biological systems as networks. Analyses of large-scale networks such as the Internet have led to discoveries of many unexpected network properties, including power-law degree distributions. These discoveries have prompted physicists to devise novel ways to model networks, both computational and theoretical. In this dissertation, we present several network models and their applications. First, we study the theory of Exponential Random Graphs. We derive it from the principle of maximum entropy, thereby showing that it is the equivalent of the Gibbs ensemble for networks. Using tools of statistical physics, we solve well-known and new examples that include power-law networks and the two-star model. Our solutions confirm the existence of a first-order phase transition for the latter whose exact behavior has not been presented previously. We also study degree correlations and clustering in networks. Degrees of adjacent vertices are positively correlated in social networks, whereas they are negatively correlated in other types of networks. We demonstrate that a negative degree correlation is a more natural state of a network, and therefore that social networks are an exception. We argue that variations in the number of vertices in social groups cause positive degree correlations, and analyze a model that incorporates such a mechanism. The model indeed shows a high level of degree correlation and clustering that is similar in value to those of real networks. Finally, we develop algorithms for ranking vertices in networks that represent pairwise comparisons. The first algorithm is based on the familiar concept of indirect wins and losses. The second algorithm is based on the concept of retrodictive accuracy, which is maximized by positioning as many winners above the losers as possible. We compare the rankings of American college football teams generated by our

  10. Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Sloep, Peter

    2009-01-01

    The original publication is available from www.springerlink.com. Sloep, P. (2009). Social Interaction in Learning Networks. In R. Koper (Ed.), Learning Network Services for Professional Development (pp 13-15). Berlin, Germany: Springer Verlag.

  11. On sampling social networking services

    OpenAIRE

    Wang, Baiyang

    2012-01-01

    This article aims at summarizing the existing methods for sampling social networking services and proposing a faster confidence interval for related sampling methods. It also includes comparisons of common network sampling techniques.

  12. Maximizing information exchange between complex networks

    International Nuclear Information System (INIS)

    West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo

    2008-01-01

    research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching

  13. Maximizing information exchange between complex networks

    Science.gov (United States)

    West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo

    2008-10-01

    modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.

  14. Maximizing information exchange between complex networks

    Energy Technology Data Exchange (ETDEWEB)

    West, Bruce J. [Mathematical and Information Science, Army Research Office, Research Triangle Park, NC 27708 (United States); Physics Department, Duke University, Durham, NC 27709 (United States)], E-mail: bwest@nc.rr.com; Geneston, Elvis L. [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Physics Department, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA 92515 (United States); Grigolini, Paolo [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Istituto di Processi Chimico Fisici del CNR, Area della Ricerca di Pisa, Via G. Moruzzi, 56124, Pisa (Italy); Dipartimento di Fisica ' E. Fermi' Universita' di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2008-10-15

    modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.

  15. Competitive cluster growth in complex networks.

    Science.gov (United States)

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  16. Online social networking for radiology.

    Science.gov (United States)

    Auffermann, William F; Chetlen, Alison L; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Heller, Matthew T; Nowitzki, Kristina M; Sherry, Steven J; Tillack, Allison A

    2015-01-01

    Online social networking services have changed the way we interact as a society and offer many opportunities to improve the way we practice radiology and medicine in general. This article begins with an introduction to social networking. Next, the latest advances in online social networking are reviewed, and areas where radiologists and clinicians may benefit from these new tools are discussed. This article concludes with several steps that the interested reader can take to become more involved in online social networking. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  17. Bribery games on interdependent complex networks.

    Science.gov (United States)

    Verma, Prateek; Nandi, Anjan K; Sengupta, Supratim

    2018-08-07

    Bribe demands present a social conflict scenario where decisions have wide-ranging economic and ethical consequences. Nevertheless, such incidents occur daily in many countries across the globe. Harassment bribery constitute a significant sub-set of such bribery incidents where a government official demands a bribe for providing a service to a citizen legally entitled to it. We employ an evolutionary game-theoretic framework to analyse the evolution of corrupt and honest strategies in structured populations characterized by an interdependent complex network. The effects of changing network topology, average number of links and asymmetry in size of the citizen and officer population on the proliferation of incidents of bribery are explored. A complex network topology is found to be beneficial for the dominance of corrupt strategies over a larger region of phase space when compared with the outcome for a regular network, for equal citizen and officer population sizes. However, the extent of the advantage depends critically on the network degree and topology. A different trend is observed when there is a difference between the citizen and officer population sizes. Under those circumstances, increasing randomness of the underlying citizen network can be beneficial to the fixation of honest officers up to a certain value of the network degree. Our analysis reveals how the interplay between network topology, connectivity and strategy update rules can affect population level outcomes in such asymmetric games. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Composing Music with Complex Networks

    Science.gov (United States)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  19. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  20. Modification Propagation in Complex Networks

    Science.gov (United States)

    Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador

    To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.

  1. Neuronal avalanches in complex networks

    Directory of Open Access Journals (Sweden)

    Victor Hernandez-Urbina

    2016-12-01

    Full Text Available Brain networks are neither regular nor random. Their structure allows for optimal information processing and transmission across the entire neural substrate of an organism. However, for topological features to be appropriately harnessed, brain networks should implement a dynamical regime which prevents phase-locked and chaotic behaviour. Critical neural dynamics refer to a dynamical regime in which the system is poised at the boundary between regularity and randomness. It has been reported that neural systems poised at this boundary achieve maximum computational power. In this paper, we review recent results regarding critical neural dynamics that emerge from systems whose underlying structure exhibits complex network properties.

  2. Using Social Network Graphs as Visualization Tools to Influence Peer Selection Decision-Making Strategies to Access Information about Complex Socioscientific Issues

    Science.gov (United States)

    Yoon, Susan A.

    2011-01-01

    This study extends previous research that explores how visualization affordances that computational tools provide and social network analyses that account for individual- and group-level dynamic processes can work in conjunction to improve learning outcomes. The study's main hypothesis is that when social network graphs are used in instruction,…

  3. Quantum social networks

    International Nuclear Information System (INIS)

    Cabello, Adán; López-Tarrida, Antonio J; Danielsen, Lars Eirik; Portillo, José R

    2012-01-01

    We introduce a physical approach to social networks (SNs) in which each actor is characterized by a yes–no test on a physical system. This allows us to consider SNs beyond those originated by interactions based on pre-existing properties, as in a classical SN (CSN). As an example of SNs beyond CSNs, we introduce quantum SNs (QSNs) in which actor i is characterized by a test of whether or not the system is in a quantum state |ψ i 〉. We show that QSNs outperform CSNs for a certain task and some graphs. We identify the simplest of these graphs and show that graphs in which QSNs outperform CSNs are increasingly frequent as the number of vertices increases. We also discuss more general SNs and identify the simplest graphs in which QSNs cannot be outperformed. (paper)

  4. Churn in Social Networks

    Science.gov (United States)

    Karnstedt, Marcel; Hennessy, Tara; Chan, Jeffrey; Basuchowdhuri, Partha; Hayes, Conor; Strufe, Thorsten

    In the past, churn has been identified as an issue across most industry sectors. In its most general sense it refers to the rate of loss of customers from a company's customer base. There is a simple reason for the attention churn attracts: churning customers mean a loss of revenue. Emerging from business spaces like telecommunications (telcom) and broadcast providers, where churn is a major issue, it is also regarded as a crucial problem in many other businesses, such as online games creators, but also online social networks and discussion sites. Companies aim at identifying the risk of churn in its early stages, as it is usually much cheaper to retain a customer than to try to win him or her back. If this risk can be accurately predicted, marketing departments can target customers efficiently with tailored incentives to prevent them from leaving.

  5. Controlling centrality in complex networks

    Science.gov (United States)

    Nicosia, V.; Criado, R.; Romance, M.; Russo, G.; Latora, V.

    2012-01-01

    Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific researches. The centrality score of a node within a network crucially depends on the entire pattern of connections, so that the usual approach is to compute node centralities once the network structure is assigned. We face here with the inverse problem, that is, we study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5 – 10% of the nodes. PMID:22355732

  6. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  7. Blockmodeling techniques for complex networks

    Science.gov (United States)

    Ball, Brian Joseph

    The class of network models known as stochastic blockmodels has recently been gaining popularity. In this dissertation, we present new work that uses blockmodels to answer questions about networks. We create a blockmodel based on the idea of link communities, which naturally gives rise to overlapping vertex communities. We derive a fast and accurate algorithm to fit the model to networks. This model can be related to another blockmodel, which allows the method to efficiently find nonoverlapping communities as well. We then create a heuristic based on the link community model whose use is to find the correct number of communities in a network. The heuristic is based on intuitive corrections to likelihood ratio tests. It does a good job finding the correct number of communities in both real networks and synthetic networks generated from the link communities model. Two commonly studied types of networks are citation networks, where research papers cite other papers, and coauthorship networks, where authors are connected if they've written a paper together. We study a multi-modal network from a large dataset of Physics publications that is the combination of the two, allowing for directed links between papers as citations, and an undirected edge between a scientist and a paper if they helped to write it. This allows for new insights on the relation between social interaction and scientific production. We also have the publication dates of papers, which lets us track our measures over time. Finally, we create a stochastic model for ranking vertices in a semi-directed network. The probability of connection between two vertices depends on the difference of their ranks. When this model is fit to high school friendship networks, the ranks appear to correspond with a measure of social status. Students have reciprocated and some unreciprocated edges with other students of closely similar rank that correspond to true friendship, and claim an aspirational friendship with a much

  8. The Ultimatum Game in complex networks

    International Nuclear Information System (INIS)

    Sinatra, R; Gómez-Gardeñes, J; Latora, V; Iranzo, J; Floría, L M; Moreno, Y

    2009-01-01

    We address the problem of how cooperative (altruistic-like) behavior arises in natural and social systems by analyzing an Ultimatum Game in complex networks. Specifically, players of three types are considered: (a) empathetic, whose aspiration levels, and offers, are equal, (b) pragmatic, who do not distinguish between the different roles and aim to obtain the same benefit, and (c) agents whose aspiration levels, and offers, are independent. We analyze the asymptotic behavior of pure populations with different topologies using two kinds of strategic update rules: natural selection, which relies on replicator dynamics, and social penalty, inspired by the Bak–Sneppen dynamics, in which players are subject to a social selection rule penalizing not only the less fit individuals, but also their first neighbors. We discuss the emergence of fairness in the different settings and network topologies

  9. A Social Networks in Education

    Science.gov (United States)

    Klimova, Blanka; Poulova, Petra

    2015-01-01

    At present social networks are becoming important in all areas of human activities. They are simply part and parcel of everyday life. They are mostly used for advertising, but they have already found their way into education. The future potential of social networks is high as it can be seen from their statistics on a daily, monthly or yearly…

  10. Social Networking Goes to School

    Science.gov (United States)

    Davis, Michelle R.

    2010-01-01

    Just a few years ago, social networking meant little more to educators than the headache of determining whether to penalize students for inappropriate activities captured on Facebook or MySpace. Now, teachers and students have an array of social-networking sites and tools--from Ning to VoiceThread and Second Life--to draw on for such serious uses…

  11. Risk aversion and social networks

    NARCIS (Netherlands)

    Kovářík, J.; van der Leij, M.J.

    2014-01-01

    This paper first investigates empirically the relationship between risk aversion and social network structure in a large group of undergraduate students. We find that risk aversion is strongly correlated to local network clustering, that is, the probability that one has a social tie to friends of

  12. Privacy in Online Social Networks

    NARCIS (Netherlands)

    Beye, Michael; Jeckmans, Arjan; Erkin, Zekeriya; Erkin, Zekeriya; Hartel, Pieter H.; Lagendijk, Reginald; Tang, Qiang; Abraham, A.

    Online Social Networks (OSNs) have become part of daily life for millions of users. Users building explicit networks that represent their social relationships and often share a wealth of personal information to their own benefit. The potential privacy risks of such behavior are often underestimated

  13. A Sensemaking Approach to Visual Analytics of Attribute-Rich Social Networks

    Science.gov (United States)

    Gou, Liang

    2012-01-01

    Social networks have become more complex, in particular considering the fact that elements in social networks are not only abstract topological nodes and links, but contain rich social attributes and reflecting diverse social relationships. For example, in a co-authorship social network in a scientific community, nodes in the social network, which…

  14. Multilevel Complex Networks and Systems

    Science.gov (United States)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  15. Risk aversion and social networks

    NARCIS (Netherlands)

    Kovarik, J.; van der Leij, M.J.

    2011-01-01

    Agents involved in the formation of a social or economic network typically face uncertainty about the benefits of creating a link. However, the interplay of such uncertainty and risk attitudes has been neglected in the network formation literature. We propose a dynamic network formation model that

  16. Risk aversion and social networks

    NARCIS (Netherlands)

    Kovářík, J.; van der Leij, M.J.

    2012-01-01

    Agents involved in the formation of a social or economic network typically face uncertainty about the benefits of creating a link. However, the interplay of such uncertainty and risk attitudes has been neglected in the network formation literature. We propose a dynamic network formation model that

  17. Social Network Supported Process Recommender System

    Directory of Open Access Journals (Sweden)

    Yanming Ye

    2014-01-01

    Full Text Available Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  18. Social network supported process recommender system.

    Science.gov (United States)

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  19. Entropy of dynamical social networks

    Science.gov (United States)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  20. NEXCADE: perturbation analysis for complex networks.

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    Full Text Available Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.

  1. Simulating social complexity a handbook

    CERN Document Server

    Meyer, Ruth

    2013-01-01

    Social systems are among the most complex known. This poses particular problems for those who wish to understand them. The complexity often makes analytic approaches infeasible and natural language approaches inadequate for relating intricate cause and effect. However, individual- and agent-based computational approaches hold out the possibility of new and deeper understanding of such systems.  Simulating Social Complexity examines all aspects of using agent- or individual-based simulation. This approach represents systems as individual elements having each their own set of differing states and internal processes. The interactions between elements in the simulation represent interactions in the target systems. What makes these elements "social" is that they are usefully interpretable as interacting elements of an observed society. In this, the focus is on human society, but can be extended to include social animals or artificial agents where such work enhances our understanding of human society.  The phenom...

  2. Dynamic social networks based on movement

    Science.gov (United States)

    Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.

    2016-01-01

    Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.

  3. Role models for complex networks

    Science.gov (United States)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  4. Anti-Social Networking

    Directory of Open Access Journals (Sweden)

    Chris Allen

    2014-01-01

    Full Text Available With research highlighting the growing incidence of public opposition to the building of mosques and the innovative use of social networking, especially Facebook, to disseminate and garner support for such opposition, a pilot study sought to investigate this in relation to the proposed Dudley “super mosque.” Focusing on the Facebook group Stop Dudley Super Mosque and Islamic Village, members were engaged online to explore why they opposed the mosque. Some of the emergent themes included planning and location, inclusion and public investment as well as those relating to notions of identity, heritage, otherness, and Islamification. Overt racist and Islamophobic reasons were also identified. The sense of political disconnect of members is also considered. Concluding with a contextualization of the findings within the existing body of scholarly output, in particular the building of mosques and Islamophobia, having recognized how spaces such as Facebook have potential to function as sites for research and method also, an extended methodological consideration is also included.

  5. The complex network of musical tastes

    Science.gov (United States)

    Buldú, Javier M.; Cano, P.; Koppenberger, M.; Almendral, Juan A.; Boccaletti, S.

    2007-06-01

    We present an empirical study of the evolution of a social network constructed under the influence of musical tastes. The network is obtained thanks to the selfless effort of a broad community of users who share playlists of their favourite songs with other users. When two songs co-occur in a playlist a link is created between them, leading to a complex network where songs are the fundamental nodes. In this representation, songs in the same playlist could belong to different musical genres, but they are prone to be linked by a certain musical taste (e.g. if songs A and B co-occur in several playlists, an user who likes A will probably like also B). Indeed, playlist collections such as the one under study are the basic material that feeds some commercial music recommendation engines. Since playlists have an input date, we are able to evaluate the topology of this particular complex network from scratch, observing how its characteristic parameters evolve in time. We compare our results with those obtained from an artificial network defined by means of a null model. This comparison yields some insight on the evolution and structure of such a network, which could be used as ground data for the development of proper models. Finally, we gather information that can be useful for the development of music recommendation engines and give some hints about how top-hits appear.

  6. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  7. Staying Safe on Social Network Sites

    Science.gov (United States)

    ... Tips Security Tip (ST06-003) Staying Safe on Social Networking Sites Original release date: January 26, 2011 | Last revised: ... so you should take certain precautions. What are social networking sites? Social networking sites, sometimes referred to as "friend- ...

  8. Networks in social policy problems

    CERN Document Server

    Scotti, marco

    2012-01-01

    Network science is the key to managing social communities, designing the structure of efficient organizations and planning for sustainable development. This book applies network science to contemporary social policy problems. In the first part, tools of diffusion and team design are deployed to challenges in adoption of ideas and the management of creativity. Ideas, unlike information, are generated and adopted in networks of personal ties. Chapters in the second part tackle problems of power and malfeasance in political and business organizations, where mechanisms in accessing and controlling informal networks often outweigh formal processes. The third part uses ideas from biology and physics to understand global economic and financial crises, ecological depletion and challenges to energy security. Ideal for researchers and policy makers involved in social network analysis, business strategy and economic policy, it deals with issues ranging from what makes public advisories effective to how networks influenc...

  9. RECOMMENDER SYSTEMS IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Cleomar Valois Batista Jr

    2011-12-01

    Full Text Available The continued and diversified growth of social networks has changed the way in which users interact with them. With these changes, what once was limited to social contact is now used for exchanging ideas and opinions, creating the need for new features. Users have so much information at their fingertips that they are unable to process it by themselves; hence, the need to develop new tools. Recommender systems were developed to address this need and many techniques were used for different approaches to the problem. To make relevant recommendations, these systems use large sets of data, not taking the social network of the user into consideration. Developing a recommender system that takes into account the social network of the user is another way of tackling the problem. The purpose of this project is to use the theory of six degrees of separation (Watts 2003 amongst users of a social network to enhance existing recommender systems.

  10. SOCIAL NETWORKS AND INTERPERSONAL COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Veronica GHEORGHIȚĂ

    2014-11-01

    Full Text Available Social networks visible influence people's ability to interact and communicate. Extending social circles by establishing virtual links involves a number of positive aspects such as: instant access to options for interaction, sharing of information to large communities of people, intensification of acts of communication, high levels of feedback and trust with people with whom we communicate. On the other hand, social networks adversely affects communication by decreasing the interaction face to face, by imposing superficial communications experiences, grammatical and spelling erosion of the language. Therefore, the study aims to capture the spread of social networks, their use and impact on interpersonal communication. More specifically, they look for the answer to the question: what is the nature of interpersonal communication that is found on social networking sites: personal, emotional, private or shared, informal, and public?

  11. 5th International Workshop on Complex Networks and their Applications

    CERN Document Server

    Gaito, Sabrina; Quattrociocchi, Walter; Sala, Alessandra

    2017-01-01

    This book highlights cutting-edge research in the field of network science, offering scientists, researchers and graduate students a unique opportunity to catch up on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the fifth International Workshop on Complex Networks & their Applications (COMPLEX NETWORKS 2016), which took place in Milan during the last week of November 2016. The carefully selected papers are divided into 11 sections reflecting the diversity and richness of research areas in the field. More specifically, the following topics are covered: Network models; Network measures; Community structure; Network dynamics; Diffusion, epidemics and spreading processes; Resilience and control; Network visualization; Social and political networks; Networks in finance and economics; Biological and ecological networks; and Network analysis.

  12. The Possibilities of Network Sociality

    Science.gov (United States)

    Willson, Michele

    Technologically networked social forms are broad, extensive and in demand. The rapid development and growth of web 2.0, or the social web, is evidence of the need and indeed hunger for social connectivity: people are searching for many and varied ways of enacting being-together. However, the ways in which we think of, research and write about network(ed) sociality are relatively recent and arguably restricted, warranting further critique and development. This article attempts to do several things: it raises questions about the types of sociality enacted in contemporary techno-society; critically explores the notion of the networked individual and the focus on the individual evident in much of the technology and sociality literature and asks questions about the place of the social in these discussions. It argues for a more well-balanced and multilevelled approach to questions of sociality in networked societies. The article starts from the position that possibilities enabled/afforded by the technologies we have in place have an effect upon the ways in which we understand being in the world together and our possible actions and futures. These possibilities are more than simply supplementary; in many ways they are transformative. The ways in which we grapple with these questions reveals as much about our understandings of sociality as it does about the technologies themselves.

  13. Markovian dynamics on complex reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu

    2013-08-10

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

  14. Markovian dynamics on complex reaction networks

    International Nuclear Information System (INIS)

    Goutsias, J.; Jenkinson, G.

    2013-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples

  15. Semantic mining of social networks

    CERN Document Server

    Tang, Jie

    2015-01-01

    The first kinds of questions we try to answer are: What are the fundamental factors that form the different categories of social ties? How have reciprocal relationships been developed fro parasocial relationships? How do connected users further form groups? Another theme addressed in this book is the study of social influence. Social influence occurs when one's opinions, emotions, or behaviors are affected by others, intentionally or unintentionally. Considerable research has been conducted to verify the existence of social influence in various networks.

  16. Effects of Degree-Biased Transmission Rate and Nonlinear Infectivity on Rumor Spreading in Complex Social Networks

    International Nuclear Information System (INIS)

    Naimi, Y.; Roshani, F.

    2010-12-01

    We introduce the generalized rumor spreading model and analytically investigate the epidemic spreading for this model on scale-free networks. To generalize the standard rumor spreading model (rumor model in which each node's infectivity equals its degree and all links have a uniform connectivity strength), we introduce not only the infectivity function to determine the simultaneous contacts that a given node (individual) establishes to its connected neighbors but also the connectivity strength function (CSF) for the direct link between two connected nodes that lead to degree-biased propagation of rumors. In the case of nonlinear functions, the generalization enters the infectivity's exponent α and the CSF's exponent β into the analytical rumor model. We show that one can adjust the exponents α and β to control the epidemic threshold which is absent for the standard rumor spreading model. In addition, we obtain the critical threshold for the generalized model on the finite scale-free network and compare our results with the standard model on the same network. We show that the generalized model has a greater threshold than the standard model. (author)

  17. Measurement methods on the complexity of network

    Institute of Scientific and Technical Information of China (English)

    LIN Lin; DING Gang; CHEN Guo-song

    2010-01-01

    Based on the size of network and the number of paths in the network,we proposed a model of topology complexity of a network to measure the topology complexity of the network.Based on the analyses of the effects of the number of the equipment,the types of equipment and the processing time of the node on the complexity of the network with the equipment-constrained,a complexity model of equipment-constrained network was constructed to measure the integrated complexity of the equipment-constrained network.The algorithms for the two models were also developed.An automatic generator of the random single label network was developed to test the models.The results show that the models can correctly evaluate the topology complexity and the integrated complexity of the networks.

  18. The Social Life of Social Networks

    DEFF Research Database (Denmark)

    Robertson, Scott P.; Vatrapu, Ravi; Medina, Richard

    2009-01-01

    dialogues wished to send other participants. We show a strong integration of the Web 2.0 and new media technologies of social networking, online video, and blogs. Outside of video content, users tended to direct others to groups and applications within the Facebook community, but this homophilous behavior......This paper examines the linkage patterns of people who posted links on the Facebook “walls” of Barack Obama, Hillary Clinton, and John McCain over two years prior to the 2008 U.S. Presidential election. Linkage patterns indicate the destinations to which participants in these social networking...

  19. On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy

    Directory of Open Access Journals (Sweden)

    Mikołaj Morzy

    2017-01-01

    Full Text Available One of the most popular methods of estimating the complexity of networks is to measure the entropy of network invariants, such as adjacency matrices or degree sequences. Unfortunately, entropy and all entropy-based information-theoretic measures have several vulnerabilities. These measures neither are independent of a particular representation of the network nor can capture the properties of the generative process, which produces the network. Instead, we advocate the use of the algorithmic entropy as the basis for complexity definition for networks. Algorithmic entropy (also known as Kolmogorov complexity or K-complexity for short evaluates the complexity of the description required for a lossless recreation of the network. This measure is not affected by a particular choice of network features and it does not depend on the method of network representation. We perform experiments on Shannon entropy and K-complexity for gradually evolving networks. The results of these experiments point to K-complexity as the more robust and reliable measure of network complexity. The original contribution of the paper includes the introduction of several new entropy-deceiving networks and the empirical comparison of entropy and K-complexity as fundamental quantities for constructing complexity measures for networks.

  20. Online Identities and Social Networking

    Science.gov (United States)

    Maheswaran, Muthucumaru; Ali, Bader; Ozguven, Hatice; Lord, Julien

    Online identities play a critical role in the social web that is taking shape on the Internet. Despite many technical proposals for creating and managing online identities, none has received widespread acceptance. Design and implementation of online identities that are socially acceptable on the Internet remains an open problem. This chapter discusses the interplay between online identities and social networking. Online social networks (OSNs) are growing at a rapid pace and has millions of members in them. While the recent trend is to create explicit OSNs such as Facebook and MySpace, we also have implicit OSNs such as interaction graphs created by email and instant messaging services. Explicit OSNs allow users to create profiles and use them to project their identities on the web. There are many interesting identity related issues in the context of social networking including how OSNs help and hinder the definition of online identities.

  1. Measurement of Online Social Networks

    Science.gov (United States)

    Gjoka, Mina

    2010-01-01

    In recent years, the popularity of online social networks (OSN) has risen to unprecedented levels, with the most popular ones having hundreds of millions of users. This success has generated interest within the networking community and has given rise to a number of measurement and characterization studies, which provide a first step towards their…

  2. Social networks and research output

    NARCIS (Netherlands)

    Ductor, L.; Fafchamps, M.; Goyal, S.; van der Leij, M.J.

    2014-01-01

    We study how knowledge about the social network of an individual researcher - as embodied in his coauthor relations - helps us in developing a more accurate prediction of his future productivity. We find that incorporating information about coauthor networks leads to a modest improvement in the

  3. Identification of hybrid node and link communities in complex networks.

    Science.gov (United States)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-02

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  4. Identification of hybrid node and link communities in complex networks

    Science.gov (United States)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  5. Mathematical Properties of Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available Many researchers are attempting to create systems which
    mimic human thought, or understand speech, or beat to the best human chess-player [14]. Understanding intelligence and Creating intelligent artifacts both are the twin goals of Artificial Intelligence (AI.In more recent times, the interest is focused on problems related with Complex Networks [3, 5,6, 19], in particular on questions such as clustering search and identification. We attempt, in this paper, a panoramic vision of such mathematical methods in AI.

  6. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  7. Fractal Analysis of Mobile Social Networks

    International Nuclear Information System (INIS)

    Zheng Wei; Pan Qian; Sun Chen; Deng Yu-Fan; Zhao Xiao-Kang; Kang Zhao

    2016-01-01

    Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs. (paper)

  8. Social networks and factor markets

    DEFF Research Database (Denmark)

    Abay, Kibrom Araya; Kahsay, Goytom Abraha; Berhane, Guush

    In the absence of well-established factor markets, the role of indigenous institutions and social networks can be substantial for mobilizing factors for agricultural production. We investigate the role of an indigenous social network in Ethiopia, the iddir, in facilitating factor market...... transactions among smallholder farmers. Using detailed longitudinal household survey data and employing a difference-in-differences approach, we find that iddir membership improves households’ access to factor markets. Specifically, we find that joining an iddir network improves households’ access to land...

  9. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  10. A framework for online social networking features

    Directory of Open Access Journals (Sweden)

    Mohsen Shafiei Nikabadi

    2014-06-01

    Full Text Available Social networks form a basis for maintaining social contacts, finding users with common interests, creating local content and sharing information. Recently networks have created a fundamental framework for analyzing and modeling the complex systems. Users' behavior studies and evaluates the system performance and leads to better planning and implementation of advertising policies on the web sites. Therefore, this study offers a framework for online social networks' characteristics. In terms of objective, this survey is practical descriptive. Sampling has been done among 384 of graduate students who have good experiences of membership in online social network. Confirmatory factor analysis is used to evaluate the validity of variables in research model. Characteristics of online social networks are defined based on six components and framework's indexes are analyzed through factor analysis. The reliability is calculated separately for each dimension and since they are all above 0.7, the reliability of the study can be confirmed. According to our research results, in terms of size, the number of people who apply for membership in various online social networking is an important index. In terms of individual preference to connect with, people who are relative play essential role in social network development. In terms of homogeneity variable, the number of people who visit their friends’ pages is important for measuring frequency variable. In terms of frequency, the use of entertainment and recreation services is more important index. In terms of proximity, being in the same city is a more important index and index of creating a sense of belonging and confidence is more important for measuring reciprocity variable.

  11. Dense power-law networks and simplicial complexes

    Science.gov (United States)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  12. Mathematical modelling of complex contagion on clustered networks

    Science.gov (United States)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  13. Mathematical modelling of complex contagion on clustered networks

    Directory of Open Access Journals (Sweden)

    David J. P. O'Sullivan

    2015-09-01

    Full Text Available The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010, adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the complex contagion effects of social reinforcement are important in such diffusion, in contrast to simple contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010, to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  14. Robustness and Optimization of Complex Networks : Reconstructability, Algorithms and Modeling

    NARCIS (Netherlands)

    Liu, D.

    2013-01-01

    The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our

  15. Brain networks of social comparison.

    Science.gov (United States)

    Kedia, Gayannée; Lindner, Michael; Mussweiler, Thomas; Ihssen, Niklas; Linden, David E J

    2013-03-27

    Social comparison, that is, the process of comparing oneself to other people, is a ubiquitous social cognitive mechanism; however, so far its neural correlates have remained unknown. The present study tested the hypothesis that social comparisons are supported by partly dissociated networks, depending on whether the dimension under comparison concerns a physical or a psychological attribute. We measured brain activity with functional MRI, whereas participants were comparing their own height or intelligence to that of individuals they personally know. Height comparisons were associated with higher activity in a frontoparietal network involved in spatial and numerical cognition. Conversely, intelligence comparisons recruited a network of midline areas that have been previously implicated in the attribution of mental states to oneself and others (Theory of mind). These findings suggest that social comparisons rely on diverse domain-specific mechanisms rather than on one unitary process.

  16. Unscrewing social media networks, twice

    DEFF Research Database (Denmark)

    Birkbak, Andreas

    2017-01-01

    Social media are often claimed to be an important new force in politics. One way to investigate such a claim is to follow an early call made in actor-network theory (ANT) to “unscrew” those entities that are assumed to be important and show how they are made up of heterogeneous networks of many...... different actors (Callon and Latour 1981). In this article I take steps towards unscrewing seven Facebook pages that were used to mobilize citizens for and against road pricing in Copenhagen in 2011-2012. But I encounter the difficulty that social media are already explicitly understood in Internet Studies...... that it can be combined with liberal notions of a singular public sphere (Somers 1995b; 1995a). In order to unscrew social media as a political force, I suggest that we need to work through both the assembling of social media networks and attend to corresponding reconstructions of liberal political narratives...

  17. Understanding Social Networks: Theories, Concepts, and Findings

    Science.gov (United States)

    Kadushin, Charles

    2012-01-01

    Despite the swift spread of social network concepts and their applications and the rising use of network analysis in social science, there is no book that provides a thorough general introduction for the serious reader. "Understanding Social Networks" fills that gap by explaining the big ideas that underlie the social network phenomenon.…

  18. A new information dimension of complex networks

    International Nuclear Information System (INIS)

    Wei, Daijun; Wei, Bo; Hu, Yong; Zhang, Haixin; Deng, Yong

    2014-01-01

    Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.

  19. A new information dimension of complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Daijun [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Science, Hubei University for Nationalities, Enshi 445000 (China); Wei, Bo [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Hu, Yong [Institute of Business Intelligence and Knowledge Discovery, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhang, Haixin [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Engineering, Vanderbilt University, TN 37235 (United States)

    2014-03-01

    Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.

  20. Relationship between Social Networks Adoption and Social Intelligence

    Science.gov (United States)

    Gunduz, Semseddin

    2017-01-01

    The purpose of this study was to set forth the relationship between the individuals' states to adopt social networks and social intelligence and analyze both concepts according to various variables. Research data were collected from 1145 social network users in the online media by using the Adoption of Social Network Scale and Social Intelligence…

  1. Social networks and environmental outcomes.

    Science.gov (United States)

    Barnes, Michele L; Lynham, John; Kalberg, Kolter; Leung, PingSun

    2016-06-07

    Social networks can profoundly affect human behavior, which is the primary force driving environmental change. However, empirical evidence linking microlevel social interactions to large-scale environmental outcomes has remained scarce. Here, we leverage comprehensive data on information-sharing networks among large-scale commercial tuna fishers to examine how social networks relate to shark bycatch, a global environmental issue. We demonstrate that the tendency for fishers to primarily share information within their ethnic group creates segregated networks that are strongly correlated with shark bycatch. However, some fishers share information across ethnic lines, and examinations of their bycatch rates show that network contacts are more strongly related to fishing behaviors than ethnicity. Our findings indicate that social networks are tied to actions that can directly impact marine ecosystems, and that biases toward within-group ties may impede the diffusion of sustainable behaviors. Importantly, our analysis suggests that enhanced communication channels across segregated fisher groups could have prevented the incidental catch of over 46,000 sharks between 2008 and 2012 in a single commercial fishery.

  2. Assessing Group Interaction with Social Language Network Analysis

    Science.gov (United States)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  3. Social networks and bronchial asthma.

    Science.gov (United States)

    D'Amato, Gennaro; Cecchi, Lorenzo; Liccardi, Gennaro; D'Amato, Maria; Stanghellini, Giovanni

    2013-02-01

    To focus on both positive and negative aspects of the interaction between asthmatic patients and the social networks, and to highlight the need of a psychological approach in some individuals to integrate pharmacological treatment is the purpose of review. There is evidence that in some asthmatic patients, the excessive use of social networks can induce depression and stress triggering bronchial obstruction, whereas in others their rational use can induce beneficial effects in terms of asthma management. The increasing asthma prevalence in developed countries seen at the end of last century has raised concern for the considerable burden of this disease on society as well as individuals. Bronchial asthma is a disease in which psychological implications play a role in increasing or in reducing the severity of bronchial obstruction. Internet and, in particular, social media are increasingly a part of daily life of both young and adult people, thus allowing virtual relationships with peers sharing similar interests and goals. Although social network users often disclose more about themselves online than they do in person, there might be a risk for adolescents and for sensitive individuals, who can be negatively influenced by an incorrect use. However, although some studies show an increased risk of depression, other observations suggest beneficial effects of social networks by enhancing communication, social connection and self-esteem.

  4. Networks in Social Policy Problems

    Science.gov (United States)

    Vedres, Balázs; Scotti, Marco

    2012-08-01

    1. Introduction M. Scotti and B. Vedres; Part I. Information, Collaboration, Innovation: The Creative Power of Networks: 2. Dissemination of health information within social networks C. Dhanjal, S. Blanchemanche, S. Clemençon, A. Rona-Tas and F. Rossi; 3. Scientific teams and networks change the face of knowledge creation S. Wuchty, J. Spiro, B. F. Jones and B. Uzzi; 4. Structural folds: the innovative potential of overlapping groups B. Vedres and D. Stark; 5. Team formation and performance on nanoHub: a network selection challenge in scientific communities D. Margolin, K. Ognyanova, M. Huang, Y. Huang and N. Contractor; Part II. Influence, Capture, Corruption: Networks Perspectives on Policy Institutions: 6. Modes of coordination of collective action: what actors in policy making? M. Diani; 7. Why skewed distributions of pay for executives is the cause of much grief: puzzles and few answers so far B. Kogut and J.-S. Yang; 8. Networks of institutional capture: a case of business in the State apparatus E. Lazega and L. Mounier; 9. The social and institutional structure of corruption: some typical network configurations of corruption transactions in Hungary Z. Szántó, I. J. Tóth and S. Varga; Part III. Crisis, Extinction, World System Change: Network Dynamics on a Large Scale: 10. How creative elements help the recovery of networks after crisis: lessons from biology A. Mihalik, A. S. Kaposi, I. A. Kovács, T. Nánási, R. Palotai, Á. Rák, M. S. Szalay-Beko and P. Csermely; 11. Networks and globalization policies D. R. White; 12. Network science in ecology: the structure of ecological communities and the biodiversity question A. Bodini, S. Allesina and C. Bondavalli; 13. Supply security in the European natural gas pipeline network M. Scotti and B. Vedres; 14. Conclusions and outlook A.-L. Barabási; Index.

  5. Critical Fluctuations in Spatial Complex Networks

    Science.gov (United States)

    Bradde, Serena; Caccioli, Fabio; Dall'Asta, Luca; Bianconi, Ginestra

    2010-05-01

    An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.

  6. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  7. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  8. Navigating Social Networks

    Science.gov (United States)

    Hamblin, DeAnna; Bartlett, Marilyn J.

    2013-01-01

    The authors note that when it comes to balancing free speech and schools' responsibilities, the online world is largely uncharted waters. Questions remain about the rights of both students and teachers in the world of social media. Although the lower courts have ruled that students' freedom of speech rights offer them some protection for…

  9. Complexity Characteristics of Currency Networks

    Science.gov (United States)

    Gorski, A. Z.; Drozdz, S.; Kwapien, J.; Oswiecimka, P.

    2006-11-01

    A large set of daily FOREX time series is analyzed. The corresponding correlation matrices (CM) are constructed for USD, EUR and PLN used as the base currencies. The triangle rule is interpreted as constraints reducing the number of independent returns. The CM spectrum is computed and compared with the cases of shuffled currencies and a fictitious random currency taken as a base currency. The Minimal Spanning Tree (MST) graphs are calculated and the clustering effects for strong currencies are found. It is shown that for MSTs the node rank has power like, scale free behavior. Finally, the scaling exponents are evaluated and found in the range analogous to those identified recently for various complex networks.

  10. Trust Transitivity in Social Networks

    OpenAIRE

    Richters, Oliver; Peixoto, Tiago P.

    2011-01-01

    Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical...

  11. Social network extraction based on Web: 1. Related superficial methods

    Science.gov (United States)

    Khairuddin Matyuso Nasution, Mahyuddin

    2018-01-01

    Often the nature of something affects methods to resolve the related issues about it. Likewise, methods to extract social networks from the Web, but involve the structured data types differently. This paper reveals several methods of social network extraction from the same sources that is Web: the basic superficial method, the underlying superficial method, the description superficial method, and the related superficial methods. In complexity we derive the inequalities between methods and so are their computations. In this case, we find that different results from the same tools make the difference from the more complex to the simpler: Extraction of social network by involving co-occurrence is more complex than using occurrences.

  12. BRAND COMMUNICATION ON SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Otilia-Elena PLATON

    2015-07-01

    Full Text Available The communication represents a basic element for the marketing activity that helps companies to achieve their objectives. Building long-term relationships between brands and consumers is one of the most important objectives pursued by marketers. This involves brand communication and creating multiple connections with consumers, even in the online environment. From this point of view, social networks proved to be an effective way of linking brands and consumers online. This paper aims to present some aspects involved by the usage of social networks in brand communication by analyzing several examples of online marketing campaigns implemented on Facebook on the occasion of Valentine's Day by six different brands.

  13. Social networks and factor markets

    DEFF Research Database (Denmark)

    Abay, Kibrom Araya; Kahsay, Goytom Abraha; Berhane, Guush

    2018-01-01

    We investigate the role of an indigenous social network in Ethiopia, the iddir, in facilitating factor market transactions among smallholder farmers. We use a detailed longitudinal household survey data and employ a fixed effects estimation to identify the effect of iddir membership on factor...... market transactions among farmers. We find that joining an iddir network improves households’ access to land, labour and credit transactions. Our findings also hint that iddir networks may crowd-out borrowing from local moneylenders (locally referred as ‘Arata Abedari’), a relatively expensive credit...

  14. Social networks user: current research

    OpenAIRE

    Agadullina E.R.

    2015-01-01

    The purpose of this article is to review current research studies focusing on the users of Facebook and their behaviors in social networks. This review is organized into two sections: 1) social-demographic characteristics (Age, Gender, Nationality); 2) personality characteristics (Neuroticism, Extraversion, Openness-to-Experience, Agreeableness, Conscientiousness, Narcissism, Self-esteem). The results showed that the information in the personal profile and online behavior are strongly connect...

  15. Social networks user: current research

    Directory of Open Access Journals (Sweden)

    Agadullina E.R.

    2015-12-01

    Full Text Available The purpose of this article is to review current research studies focusing on the users of Facebook and their behaviors in social networks. This review is organized into two sections: 1 social-demographic characteristics (Age, Gender, Nationality; 2 personality characteristics (Neuroticism, Extraversion, Openness-to-Experience, Agreeableness, Conscientiousness, Narcissism, Self-esteem. The results showed that the information in the personal profile and online behavior are strongly connected with socio-demographic and personality characteristics

  16. Socially Aware Heterogeneous Wireless Networks.

    Science.gov (United States)

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  17. Social networks: communication and change

    Directory of Open Access Journals (Sweden)

    Gustavo Cardoso

    2011-01-01

    Full Text Available Virtual social networks have brought about the possibility for open and plural debate, where all those with the necessary literacy skills and means are able to participate in the creation and dissemination of information. By pressing political agents and determining the “agenda” of a lot of the media, users demonstrate that we stand at an ideal platform for creating both real social movements and more or less fleeting events, as manifestos or virtual campaigns. Nonetheless, in order to understand the role of virtual social networks in today’s world, we need to answer some prior questions. Are we facing a new communication model, whereby the product of “disinterested” interactivity creates an aura of confidence in disseminated information, often quite higher that that seen in the “old media”? Will that interactivity be a chance to fight-off citizens’ growing detachment with regard to the “res publica”? Will we find in citizen-made journalism, transmitted through virtual social networks, the consecration of a true fourth power? On the other hand, can we call the distinct collective movements we have seen emerging true “social movements”?The present article aims to examine this and other issues that come to the fore in the intricate social world of cyberspace.

  18. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  19. Traffic Dynamics on Complex Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Traffic dynamics on complex networks are intriguing in recent years due to their practical implications in real communication networks. In this survey, we give a brief review of studies on traffic routing dynamics on complex networks. Strategies for improving transport efficiency, including designing efficient routing strategies and making appropriate adjustments to the underlying network structure, are introduced in this survey. Finally, a few open problems are discussed in this survey.

  20. SOCIAL NETWORK EFFECTS ON ROMANTIC RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    Fatma CAN

    2015-06-01

    Full Text Available The main objective of the study was to obtain information about social network variables in order to predict the relational commitment of married individuals and people having dating relationships. For this purpose, social network analysis has been carried out on 134 people having dating relationship and 154 married individuals and then Relationship Stability Scale, Subjective Norm Scale and Social Network Feature Survey prepared by the researcher were used. The results indicated that the approval of the closest social network member and the level of enjoyment of each other’s social network members had the best predictive value for relationship satisfaction and the investment to the relationship. The results also demonstrated that, approval of the social network had a negative impact on the level of the quality of alternatives and it showed that social networks were seen as a barrier function to have alternative relationships. Furthermore, by dividing social network members into two groups, for the dating group, the approval of the social network was the most significant variable for commitment but in the married group, the need for social network approval was not an important criteria because of having their relatioship already confirmed legally. When social network members were categorised and examined, the closest social network members did not differ by sex, but were varied in terms of relationship types. In the flirt group, one of their friends among his/her social network and their partners’ social network was specified as the closest social network member whereas in the married group, the closest social network member among his/her social network was their mother while it was their sibling among partner’s social network.

  1. From biological and social network metaphors to coupled bio-social wireless networks

    Science.gov (United States)

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  2. Critical Transitions in Social Network Activity

    DEFF Research Database (Denmark)

    Kuehn, Christian; Martens, Erik Andreas; Romero, Daniel M

    2014-01-01

    A large variety of complex systems in ecology, climate science, biomedicine and engineering have been observed to exhibit tipping points, where the dynamical state of the system abruptly changes. For example, such critical transitions may result in the sudden change of ecological environments...... a priori known events are preceded by variance and autocorrelation growth. Our findings thus clearly establish the necessary starting point to further investigate the relationship between abstract mathematical theory and various classes of critical transitions in social networks....

  3. Privacy and Social Networking Sites

    Science.gov (United States)

    Timm, Dianne M.; Duven, Carolyn J.

    2008-01-01

    College students are relying on the Internet to make connections with other people every day. As the Internet has developed and grown, so have the capabilities for interaction. Social networking sites, a group of Web sites that provide people with the opportunity to create an online profile and to share that profile with others, are a part of…

  4. Social Networking: Keeping It Clean

    Science.gov (United States)

    Waters, John K.

    2011-01-01

    The need to maintain an unpolluted learning environment is no easy task for schools and districts that have incorporated social networking sites into their educational life. The staff and teachers at Blaine High School in Minnesota's Anoka-Hennepin District 11 had been considering the pros and cons of establishing a school Facebook page when the…

  5. Epidemic dynamics and endemic states in complex networks

    Science.gov (United States)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2001-06-01

    We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.

  6. Epidemic dynamics and endemic states in complex networks

    International Nuclear Information System (INIS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2001-01-01

    We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks

  7. Spreading gossip in social networks

    Science.gov (United States)

    Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  8. Spreading gossip in social networks.

    Science.gov (United States)

    Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  9. Social structure of Facebook networks

    Science.gov (United States)

    Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.

    2012-08-01

    We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

  10. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  11. SocialBrowsing: Integrating Social Networks and Web Browsing

    National Research Council Canada - National Science Library

    Golbeck, Jennifer; Wasser, Michael M

    2007-01-01

    .... The extension is paired with services provided by social networking websites, analyzes the page's contents, and adds tooltips and highlighting to indicate when there is relevant social information...

  12. The complex network reliability and influential nodes

    Science.gov (United States)

    Li, Kai; He, Yongfeng

    2017-08-01

    In order to study the complex network node important degree and reliability, considering semi-local centrality, betweenness centrality and PageRank algorithm, through the simulation method to gradually remove nodes and recalculate the importance in the random network, small world network and scale-free network. Study the relationship between the largest connected component and node removed proportion, the research results show that betweenness centrality and PageRank algorithm based on the global information network are more effective for evaluating the importance of nodes, and the reliability of the network is related to the network topology.

  13. Social inheritance can explain the structure of animal social networks

    Science.gov (United States)

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  14. Food: Transformation in Social Networks

    Directory of Open Access Journals (Sweden)

    Daria N. Karpova

    2014-01-01

    Full Text Available The modem network and digitalized society is full of social changes in various accustomed spheres of our lives including transformation in food practices. The author gives an example of the easiest way how to book food virtually and get it home this day according to tastes of a customer. Moreover the article represents new forms of specific societies existed in the Internet called food-blogs. This, on the author's mind, changes the traditional mechanism of people's choice. Food-blogs are analyzed through the prism of multifunctionalism and dynamics of food and trust. When the process of food preparing and eating attains new communicative functions. Moreover the author notes some social reasons why one user choses this or that food-blog. For instance, the popularity of blogger and network users trust, mostly «blinded». Beside the point, the conception of «trust» used in the text is based on science works of contemporary sociologist P. Sztompka. Both socialized and communicative functions of food are described through theories of R. Bart and G. Simmel. It is underlined in the text that food transforms and gains new qualities notin traditional ways we used to think but in social and cultural construction in virtual space and through network communication.

  15. Social Networking: It's Not What You Think

    Science.gov (United States)

    Jones, Kevin D.

    2010-01-01

    This slide presentation reviews some of the current uses of the social networking sites available on the internet. It list some of the skills that are now considered obsolete and reviews the major social networking sites.

  16. Leveraging social networks for toxicovigilance.

    Science.gov (United States)

    Chary, Michael; Genes, Nicholas; McKenzie, Andrew; Manini, Alex F

    2013-06-01

    The landscape of drug abuse is shifting. Traditional means of characterizing these changes, such as national surveys or voluntary reporting by frontline clinicians, can miss changes in usage the emergence of novel drugs. Delays in detecting novel drug usage patterns make it difficult to evaluate public policy aimed at altering drug abuse. Increasingly, newer methods to inform frontline providers to recognize symptoms associated with novel drugs or methods of administration are needed. The growth of social networks may address this need. The objective of this manuscript is to introduce tools for using data from social networks to characterize drug abuse. We outline a structured approach to analyze social media in order to capture emerging trends in drug abuse by applying powerful methods from artificial intelligence, computational linguistics, graph theory, and agent-based modeling. First, we describe how to obtain data from social networks such as Twitter using publicly available automated programmatic interfaces. Then, we discuss how to use artificial intelligence techniques to extract content useful for purposes of toxicovigilance. This filtered content can be employed to generate real-time maps of drug usage across geographical regions. Beyond describing the real-time epidemiology of drug abuse, techniques from computational linguistics can uncover ways that drug discussions differ from other online conversations. Next, graph theory can elucidate the structure of networks discussing drug abuse, helping us learn what online interactions promote drug abuse and whether these interactions differ among drugs. Finally, agent-based modeling relates online interactions to psychological archetypes, providing a link between epidemiology and behavior. An analysis of social media discussions about drug abuse patterns with computational linguistics, graph theory, and agent-based modeling permits the real-time monitoring and characterization of trends of drugs of abuse. These

  17. Approaching human language with complex networks

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  18. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  19. Common neighbour structure and similarity intensity in complex networks

    Science.gov (United States)

    Hou, Lei; Liu, Kecheng

    2017-10-01

    Complex systems as networks always exhibit strong regularities, implying underlying mechanisms governing their evolution. In addition to the degree preference, the similarity has been argued to be another driver for networks. Assuming a network is randomly organised without similarity preference, the present paper studies the expected number of common neighbours between vertices. A symmetrical similarity index is accordingly developed by removing such expected number from the observed common neighbours. The developed index can not only describe the similarities between vertices, but also the dissimilarities. We further apply the proposed index to measure of the influence of similarity on the wring patterns of networks. Fifteen empirical networks as well as artificial networks are examined in terms of similarity intensity and degree heterogeneity. Results on real networks indicate that, social networks are strongly governed by the similarity as well as the degree preference, while the biological networks and infrastructure networks show no apparent similarity governance. Particularly, classical network models, such as the Barabási-Albert model, the Erdös-Rényi model and the Ring Lattice, cannot well describe the social networks in terms of the degree heterogeneity and similarity intensity. The findings may shed some light on the modelling and link prediction of different classes of networks.

  20. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  1. Synchronizability on complex networks via pinning control

    Indian Academy of Sciences (India)

    Keywords. Complex network; the pinning synchronization; synchronizability. ... The findings reveal the relationship between the decreasing speed of maximum eigenvalue sequence of the principal submatrices for coupling matrix and the synchronizability on complex networks via pinning control. We discuss the ...

  2. Brand marketing model on social networks

    OpenAIRE

    Jezukevičiūtė, Jolita; Davidavičienė, Vida

    2014-01-01

    Paper analyzes the brand and its marketing solutions on social networks. This analysis led to the creation of improved brand marketing model on social networks, which will contribute to the rapid and cheap organization brand recognition, increase competitive advantage and enhance consumer loyalty. Therefore, the brand and a variety of social networks are becoming a hot research area for brand marketing model on social networks. The world‘s most successful brand marketing models exploratory an...

  3. Social networking services: technologies and applications

    OpenAIRE

    Puzyrnyy, Oleksandr

    2011-01-01

    Puzyrnyy, Oleksandr. 2011. Social networking services: technologies and applications. Bachelor's Thesis. Kemi-Tornio University of Applied Sciences. Business and Culture. Pages 52. The aim of this thesis is to describe the concept of social networking, its technological base, business opportunities and future perspectives. The study discovers how social networks are made and which different purposes they might have. In addition, social networking is viewed as a part of business strategy o...

  4. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  5. Synchronization in complex networks with adaptive coupling

    International Nuclear Information System (INIS)

    Zhang Rong; Hu Manfeng; Xu Zhenyuan

    2007-01-01

    Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies

  6. Pinning impulsive control algorithms for complex network

    International Nuclear Information System (INIS)

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-01-01

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms

  7. Exploring the morphospace of communication efficiency in complex networks.

    Directory of Open Access Journals (Sweden)

    Joaquín Goñi

    Full Text Available Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing", we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion". The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.

  8. State of the art applications of social network analysis

    CERN Document Server

    Can, Fazli; Polat, Faruk

    2014-01-01

    Social network analysis increasingly bridges the discovery of patterns in diverse areas of study as more data becomes available and complex. Yet the construction of huge networks from large data often requires entirely different approaches for analysis including; graph theory, statistics, machine learning and data mining. This work covers frontier studies on social network analysis and mining from different perspectives such as social network sites, financial data, e-mails, forums, academic research funds, XML technology, blog content, community detection and clique finding, prediction of user

  9. Organizational Application of Social Networking Information Technologies

    Science.gov (United States)

    Reppert, Jeffrey R.

    2012-01-01

    The focus of this qualitative research study using the Delphi method is to provide a framework for leaders to develop their own social networks. By exploring concerns in four areas, leaders may be able to better plan, implement, and manage social networking systems in organizations. The areas addressed are: (a) social networking using…

  10. Complexities of Social Capital in Boards of Directors

    DEFF Research Database (Denmark)

    Sulinska, Iwona Magdalena

    and firm performance. Chapter 3 explores social capital of board chair, which has been overlooked in previous studies. It suggests that individual social capital of board chair is as important for organizational performance as social capital of CEO and directors. Therefore, performance effect derives from...... and external networks of social relationships created by board members. Evolution paths are consequently proposed for diversity and strength of external network ties, and for internal network cohesion. In light of the overarching research question, the final chapter summarizes the findings.......The aim of the dissertation is to disentangle complexities of social capital in boards of directors through proposing new theoretical perspectives and methodological approaches. Although extant previous research has discussed various aspects of social capital and its association with numerous...

  11. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  12. Social network models predict movement and connectivity in ecological landscapes.

    Science.gov (United States)

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  13. Organ trade using social networks

    OpenAIRE

    Waleed Alrogy; Dunia Jawdat; Muhannad Alsemari; Abdulrahman Alharbi; Abdullah Alasaad; Ali H Hajeer

    2016-01-01

    Organ transplantation is recognized worldwide as an effective treatment for organ failure. However, due to the increase in the number of patients requiring a transplant, a shortage of suitable organs for transplantation has become a global problem. Human organ trade is an illegal practice of buying or selling organs and is universally sentenced. The aim of this study was to search social network for organ trade and offerings in Saudi Arabia. The study was conducted from June 22, 2015 to Febru...

  14. Gender differences in social networks

    Directory of Open Access Journals (Sweden)

    Komaromi Bojana

    2014-01-01

    Full Text Available This paper examines gender differences in different types of social networks. One of the main concepts relevant for studying gender differences is homophily, which refers to the tendency of people to interact more with similar individuals. In this paper homophily is analysed within the structural perspective which explains that the structures of our networks depend primarily on opportunities for social interactions, i.e. the composition and dynamics of the social context in which these interactions are embedded. Homophily is evident among males and females as early as in childhood, only to be even more prominent in school and adult years. Sex segregation is probably the most evident in the organisational context, where it has detrimental effects on women's careers, as women are generally underrepresented in positions of power and authority. Research in the last two decades pointed to the facts: 1 that men and women have very different types of organisational networks, 2 that successful men and women adopt different strategies to reach similar career objectives and acquire similar resources, and 3 that organisations also need to be actively involved in solving these gender-related issues.

  15. Challenges of Health Games in the Social Network Environment.

    Science.gov (United States)

    Paredes, Hugo; Pinho, Anabela; Zagalo, Nelson

    2012-04-01

    Virtual communities and their benefits have been widely exploited to support patients, caregivers, families, and healthcare providers. The complexity of the social organization evolved the concept of virtual community to social networks, exploring the establishment of ties and relations between people. These technological platforms provide a way to keep up with one's connections network, through a set of communication and interaction tools. Games, as social interactive technologies, have great potential, ensuring a supportive community and thereby reducing social isolation. Serious social health games bring forward several research challenges. This article examines the potential benefits of the triad "health-serious games-social networks" and discusses some research challenges and opportunities of the liaison of serious health games and social networks.

  16. Citizen Data Science for Social Good in Complex Systems

    OpenAIRE

    Soumya Banerjee

    2018-01-01

    The confluence of massive amounts of openly available data, sophisticated machine learning algorithms and an enlightened citizenry willing to engage in data science presents novel opportunities for crowd sourced data science for social good. In this submission, I present vignettes of data science projects that I have been involved in and which have impact in various spheres of life and on social good. Complex systems are all around us: from social networks to transportation systems, cities, e...

  17. Competitive Dynamics on Complex Networks

    Science.gov (United States)

    Zhao, Jiuhua; Liu, Qipeng; Wang, Xiaofan

    2014-07-01

    We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is most likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.

  18. From Offline Social Networks to Online Social Networks: Changes in Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Yang SONG

    2015-01-01

    Full Text Available The paper reviewed studies of entrepreneurship based on the emergency of online social networks. Similar to offline social networks, entrepreneurs’ online social networks have their own unique characteristics. We first reviewed the offline network based research on entrepreneurship. Then we reviewed the studies of entrepreneurship in the context of online social networks including those focusing on topics of network structures and network ties. We highlighted online network communities based on the data collected from LinkedIn, Facebook and Twitter. Our research implies that both researcher and entrepreneurs are facing new opportunities due to the emergence of online social networks.

  19. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  20. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  1. Handbook of social network technologies and applications

    CERN Document Server

    Furht, Borko

    2010-01-01

    Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of ""Handbook of Social Networks: Technologies and Applications"" is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes

  2. Bipartite quantum states and random complex networks

    International Nuclear Information System (INIS)

    Garnerone, Silvano; Zanardi, Paolo; Giorda, Paolo

    2012-01-01

    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy S-bar while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling S-bar ∼c log n +g e where both the prefactor c and the sub-leading O(1) term g e are characteristic of the different classes of complex networks. In particular, g e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties. (paper)

  3. Enabling Controlling Complex Networks with Local Topological Information.

    Science.gov (United States)

    Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene

    2018-03-15

    Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.

  4. Networking, or What the Social Means in Social Media

    OpenAIRE

    Taina Bucher

    2015-01-01

    This article questions the meaning of the social in social media. It does this by revisiting boyd and Ellison’s seminal paper and definition of social network sites. The article argues that social media are not so much about articulating or making an existing network visible. Rather, being social in the context of social media simply means creating connections within the boundaries of adaptive algorithmic architectures. Every click, share, like, and post creates a connection, initiates a rela...

  5. Using Social Network Research in HRM

    DEFF Research Database (Denmark)

    Kaše, Robert; King, Zella; Minbaeva, Dana

    2013-01-01

    ; the impact of social networking sites on perceptions of relationships; and ethical issues in organizational network analysis, we propose specific suggestions to bring social network perspectives closer to HRM researchers and practitioners and rebalance our attention to people and to their relationships.......The article features a conversation between Rob Cross and Martin Kilduff about organizational network analysis in research and practice. It demonstrates the value of using social network perspectives in HRM. Drawing on the discussion about managing personal networks; managing the networks of others...

  6. Cut Based Method for Comparing Complex Networks.

    Science.gov (United States)

    Liu, Qun; Dong, Zhishan; Wang, En

    2018-03-23

    Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.

  7. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  8. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  10. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  11. Social networks and employment in India

    OpenAIRE

    Tushar K. Nandi

    2010-01-01

    We investigate the influence of social networks on employment. Using data from India, we estimate the effect of caste based social networks on employment. We use a methodology that allows us to control for several omitted variable biases that often confound network effect. Our results indicate that caste based social networks are important determinant of employment in India. The implication of our findings is that a policy of positive discrimination in labour market for disadvantaged caste is...

  12. Epidemics and rumours in complex networks

    CERN Document Server

    Draief, Moez

    2009-01-01

    Information propagation through peer-to-peer systems, online social systems, wireless mobile ad hoc networks and other modern structures can be modelled as an epidemic on a network of contacts. Understanding how epidemic processes interact with network topology allows us to predict ultimate course, understand phase transitions and develop strategies to control and optimise dissemination. This book is a concise introduction for applied mathematicians and computer scientists to basic models, analytical tools and mathematical and algorithmic results. Mathematical tools introduced include coupling

  13. Reconfigurable optical implementation of quantum complex networks

    Science.gov (United States)

    Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V.

    2018-05-01

    Network theory has played a dominant role in understanding the structure of complex systems and their dynamics. Recently, quantum complex networks, i.e. collections of quantum systems arranged in a non-regular topology, have been theoretically explored leading to significant progress in a multitude of diverse contexts including, e.g., quantum transport, open quantum systems, quantum communication, extreme violation of local realism, and quantum gravity theories. Despite important progress in several quantum platforms, the implementation of complex networks with arbitrary topology in quantum experiments is still a demanding task, especially if we require both a significant size of the network and the capability of generating arbitrary topology—from regular to any kind of non-trivial structure—in a single setup. Here we propose an all optical and reconfigurable implementation of quantum complex networks. The experimental proposal is based on optical frequency combs, parametric processes, pulse shaping and multimode measurements allowing the arbitrary control of the number of the nodes (optical modes) and topology of the links (interactions between the modes) within the network. Moreover, we also show how to simulate quantum dynamics within the network combined with the ability to address its individual nodes. To demonstrate the versatility of these features, we discuss the implementation of two recently proposed probing techniques for quantum complex networks and structured environments.

  14. Doing femininity and respectability: social networks and social capital among female members of Dutch student organisations

    NARCIS (Netherlands)

    Peters, K.B.M.; Roelofsen, M.

    2015-01-01

    This research explores the complexities that underlie the formation of women’s social networks at traditional social student organisations in the Netherlands, advancing theory on the intersectionality of gender and class in leisure space. Building on Pierre Bourdieu’s theory of social capital it

  15. Structural constraints in complex networks

    International Nuclear Information System (INIS)

    Zhou, S; Mondragon, R J

    2007-01-01

    We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich-club connectivity are preserved. We consider three real networks, the autonomous system (AS)-Internet, protein interaction and scientific collaboration. We show that for a given degree distribution, the rich-club connectivity is sensitive to the degree-degree correlation, and on the other hand the degree-degree correlation is constrained by the rich-club connectivity. In particular, in the case of the Internet, the assortative coefficient is always negative and a minor change in its value can reverse the network's rich-club structure completely; while fixing the degree distribution and the rich-club connectivity restricts the assortative coefficient to such a narrow range, that a reasonable model of the Internet can be produced by considering mainly the degree distribution and the rich-club connectivity. We also comment on the suitability of using the maximal random network as a null model to assess the rich-club connectivity in real networks

  16. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  17. Jamming in complex networks with degree correlation

    International Nuclear Information System (INIS)

    Pastore y Piontti, Ana L.; Braunstein, Lidia A.; Macri, Pablo A.

    2010-01-01

    We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.

  18. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  19. Good Communication: The Other Social Network for Successful IT Organizations

    Science.gov (United States)

    Trubitt, Lisa; Overholtzer, Jeff

    2009-01-01

    Social networks of the electronic variety have become thoroughly embedded in contemporary culture. People have woven these networks into their daily routines, using Facebook, Twitter, LinkedIn, online gaming environments, and other tools to build and maintain complex webs of professional and personal relationships. Chief Information Officers…

  20. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  1. Physics of flow in weighted complex networks

    Science.gov (United States)

    Wu, Zhenhua

    This thesis uses concepts from statistical physics to understand the physics of flow in weighted complex networks. The traditional model for random networks is the Erdoḧs-Renyi (ER.) network, where a network of N nodes is created by connecting each of the N(N - 1)/2 pairs of nodes with a probability p. The degree distribution, which is the probability distribution of the number of links per node, is a Poisson distribution. Recent studies of the topology in many networks such as the Internet and the world-wide airport network (WAN) reveal a power law degree distribution, known as a scale-free (SF) distribution. To yield a better description of network dynamics, we study weighted networks, where each link or node is given a number. One asks how the weights affect the static and the dynamic properties of the network. In this thesis, two important dynamic problems are studied: the current flow problem, described by Kirchhoff's laws, and the maximum flow problem, which maximizes the flow between two nodes. Percolation theory is applied to these studies of the dynamics in complex networks. We find that the current flow in disordered media belongs to the same universality class as the optimal path. In a randomly weighted network, we identify the infinite incipient percolation cluster as the "superhighway", which contains most of the traffic in a network. We propose an efficient strategy to improve significantly the global transport by improving the superhighways, which comprise a small fraction of the network. We also propose a network model with correlated weights to describe weighted networks such as the WAN. Our model agrees with WAN data, and provides insight into the advantages of correlated weights in networks. Lastly, the upper critical dimension is evaluated using two different numerical methods, and the result is consistent with the theoretical prediction.

  2. Stability analysis of impulsive parabolic complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)

    2011-11-15

    Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  3. Stability analysis of impulsive parabolic complex networks

    International Nuclear Information System (INIS)

    Wang Jinliang; Wu Huaining

    2011-01-01

    Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  4. Psychology and social networks: a dynamic network theory perspective.

    Science.gov (United States)

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  5. Epidemics spreading in interconnected complex networks

    International Nuclear Information System (INIS)

    Wang, Y.; Xiao, G.

    2012-01-01

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  6. Epidemics spreading in interconnected complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of High Performance Computing, Agency for Science, Technology and Research (A-STAR), Singapore 138632 (Singapore); Xiao, G., E-mail: egxxiao@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2012-09-03

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  7. Connecting Mobile Users Through Mobile Social Networks

    Directory of Open Access Journals (Sweden)

    Faisal Alkhateeb

    2012-10-01

    Full Text Available Nowadays, social networks become popular with the emerging of web-based social networking services. Recently, several mobile services are developed to connect users to their favourite social networks such as Facebook, Twitter, Flickr, etc. However, these services depends upon the existing web-based social networks. In this paper, we present a mobile service for joining groups across communities. The originality of the work is that the framework of the service allows creating and joining social networks that are self-contained for mobile company servers. The service consists of several sub-services such as users invitation, group finding and others. Users, regardless of their disability, can use the service and its sub-services without the need to create their own accounts on social web sites and thus their own groups. We also propose a privacy control policy for mobile social networks.

  8. Surname complex network for Brazil and Portugal

    Science.gov (United States)

    Ferreira, G. D.; Viswanathan, G. M.; da Silva, L. R.; Herrmann, H. J.

    2018-06-01

    We present a study of social networks based on the analysis of Brazilian and Portuguese family names (surnames). We construct networks whose nodes are names of families and whose edges represent parental relations between two families. From these networks we extract the connectivity distribution, clustering coefficient, shortest path and centrality. We find that the connectivity distribution follows an approximate power law. We associate the number of hubs, centrality and entropy to the degree of miscegenation in the societies in both countries. Our results show that Portuguese society has a higher miscegenation degree than Brazilian society. All networks analyzed lead to approximate inverse square power laws in the degree distribution. We conclude that the thermodynamic limit is reached for small networks (3 or 4 thousand nodes). The assortative mixing of all networks is negative, showing that the more connected vertices are connected to vertices with lower connectivity. Finally, the network of surnames presents some small world characteristics.

  9. A Social Network Analysis of Occupational Segregation

    DEFF Research Database (Denmark)

    Buhai, Ioan Sebastian; van der Leij, Marco

    We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important for job search, then expected homophily in the contact network structure...

  10. Egocentric Social Network Analysis of Pathological Gambling

    Science.gov (United States)

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  11. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  12. Emergence of communities and diversity in social networks.

    Science.gov (United States)

    Han, Xiao; Cao, Shinan; Shen, Zhesi; Zhang, Boyu; Wang, Wen-Xu; Cressman, Ross; Stanley, H Eugene

    2017-03-14

    Communities are common in complex networks and play a significant role in the functioning of social, biological, economic, and technological systems. Despite widespread interest in detecting community structures in complex networks and exploring the effect of communities on collective dynamics, a deep understanding of the emergence and prevalence of communities in social networks is still lacking. Addressing this fundamental problem is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in society. An elusive question is how communities with common internal properties arise in social networks with great individual diversity. Here, we answer this question using the ultimatum game, which has been a paradigm for characterizing altruism and fairness. We experimentally show that stable local communities with different internal agreements emerge spontaneously and induce social diversity into networks, which is in sharp contrast to populations with random interactions. Diverse communities and social norms come from the interaction between responders with inherent heterogeneous demands and rational proposers via local connections, where the former eventually become the community leaders. This result indicates that networks are significant in the emergence and stabilization of communities and social diversity. Our experimental results also provide valuable information about strategies for developing network models and theories of evolutionary games and social dynamics.

  13. Will Learning Social Inclusion Assist Rural Networks

    Science.gov (United States)

    Marchant, Jillian

    2013-01-01

    Current research on social networks in some rural communities reports continuing demise despite efforts to build resilient communities. Several factors are identified as contributing to social decline including globalisation and rural social characteristics. Particular rural social characteristics, such as strong social bonds among members of…

  14. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    Science.gov (United States)

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  15. Attack robustness and centrality of complex networks.

    Directory of Open Access Journals (Sweden)

    Swami Iyer

    Full Text Available Many complex systems can be described by networks, in which the constituent components are represented by vertices and the connections between the components are represented by edges between the corresponding vertices. A fundamental issue concerning complex networked systems is the robustness of the overall system to the failure of its constituent parts. Since the degree to which a networked system continues to function, as its component parts are degraded, typically depends on the integrity of the underlying network, the question of system robustness can be addressed by analyzing how the network structure changes as vertices are removed. Previous work has considered how the structure of complex networks change as vertices are removed uniformly at random, in decreasing order of their degree, or in decreasing order of their betweenness centrality. Here we extend these studies by investigating the effect on network structure of targeting vertices for removal based on a wider range of non-local measures of potential importance than simply degree or betweenness. We consider the effect of such targeted vertex removal on model networks with different degree distributions, clustering coefficients and assortativity coefficients, and for a variety of empirical networks.

  16. Social networks and human development / Redes sociales y desarrollo humano

    Directory of Open Access Journals (Sweden)

    Sara Gallego Trijueque

    2011-10-01

    Full Text Available The aim of this work is a brief introduction to the concept of social networks and their importance in society. Social networks have been responsible over the centuries to preserve community values, in addition to being facilitators of social interaction in human development processes, through communication and relationships between individuals.

  17. Social Media and Social Networking Applications for Teaching and Learning

    Science.gov (United States)

    Yeo, Michelle Mei Ling

    2014-01-01

    This paper aims to better understand the experiences of the youth and the educators with the tapping of social media like YouTube videos and the social networking application of Facebook for teaching and learning. This paper is interested in appropriating the benefits of leveraging of social media and networking applications like YouTube and…

  18. Social networks and family violence in cross-cultural perspective.

    Science.gov (United States)

    Korbin, J E

    1995-01-01

    The purpose of this chapter was twofold. First, the chapter put forward a brief cross-cultural perspective indicating that multiple types of intrafamilial violence occur cross-culturally. Second, the chapter placed social networks at the core of a complex etiology of intrafamilial violence. The purpose of giving centrality to social networks is not to suggest that social networks are the sole or primary agent contributing to family violence but to broaden the context in which family violence is viewed beyond that of the perpetrator, the victim/survivor, or the violent dyad.

  19. Spatio-temporal keyword queries in social networks

    DEFF Research Database (Denmark)

    Cozza, V.; Messina, Alessandro; Montesi, D.

    2013-01-01

    Due to the large amount of social network data produced at an ever growing speed and their complex nature, recent works have addressed the problem of efficiently querying such data according to social, temporal or spatial dimensions. In this work we propose a data model that keeps into account al...

  20. Collective Dynamics in Physical and Social Networks

    Science.gov (United States)

    Isakov, Alexander

    We study four systems where individual units come together to display a range of collective behavior. First, we consider a physical system of phase oscillators on a network that expands the Kuramoto model to include oscillator-network interactions and the presence of noise: using a Hebbian-like learning rule, oscillators that synchronize in turn strengthen their connections to each other. We find that the average degree of connectivity strongly affects rates of flipping between aligned and anti-aligned states, and that this result persists to the case of complex networks. Turning to a fully multi-player, multi-strategy evolutionary dynamics model of cooperating bacteria that change who they give resources to and take resources from, we find several regimes that give rise to high levels of collective structure in the resulting networks. In this setting, we also explore the conditions in which an intervention that affects cooperation itself (e.g. "seeding the network with defectors") can lead to wiping out an infection. We find a non-monotonic connection between the percent of disabled cooperation and cure rate, suggesting that in some regimes a limited perturbation can lead to total population collapse. At a larger scale, we study how the locomotor system recovers after amputation in fruit flies. Through experiment and a theoretical model of multi-legged motion controlled by neural oscillators, we find that proprioception plays a role in the ability of flies to control leg forces appropriately to recover from a large initial turning bias induced by the injury. Finally, at the human scale, we consider a social network in a traditional society in Africa to understand how social ties lead to group formation for collective action (stealth raids). We identify critical and distinct roles for both leadership (important for catalyzing a group) and friendship (important for final composition). We conclude with prospects for future work.

  1. Amygdala Volume and Social Network Size in Humans

    OpenAIRE

    Bickart, Kevin C.; Wright, Christopher I.; Dautoff, Rebecca J.; Dickerson, Bradford C.; Barrett, Lisa Feldman

    2010-01-01

    We demonstrated that amygdala volume (corrected for total intracranial volume) positively correlated with the size and complexity of social networks in adult humans ranging in age from 19 to 83 years. This relationship was specific to the amygdala as compared to other subcortical structures. An exploratory analysis of the entire cortical mantle also revealed an association between social network variables and cortical thickness in three cortical areas, two of which share dense connectivity wi...

  2. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  3. Predicting and Controlling Complex Networks

    Science.gov (United States)

    2015-06-22

    ubiquitous in nature and fundamental to evolution in ecosystems. However, a significant chal- lenge remains in understanding biodiversity since, by the...networks and control . . . . . . . . . . . . . . . . . . . 7 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically...Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games,” Physical Review E 83

  4. Social Rewards and Social Networks in the Human Brain.

    Science.gov (United States)

    Fareri, Dominic S; Delgado, Mauricio R

    2014-08-01

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. © The Author(s) 2014.

  5. Controlling extreme events on complex networks

    Science.gov (United States)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  6. Social networks in cardiovascular disease management.

    Science.gov (United States)

    Shaya, Fadia T; Yan, Xia; Farshid, Maryam; Barakat, Samer; Jung, Miah; Low, Sara; Fedder, Donald

    2010-12-01

    Cardiovascular disease remains the leading cause of death in the USA. Social networks have a positive association with obesity, smoking cessation and weight loss. This article summarizes studies evaluating the impact of social networks on the management of cardiovascular disease. The 35 studies included in the article describe the impact of social networks on a decreased incidence of cardiovascular disease, depression and mortality. In addition, having a large-sized social network is also associated with better outcomes and improved health. The role of pharmacists is beginning to play an important role in the patient-centered medical home, which needs to be incorporated into social networks. The patient-centered medical home can serve as an adaptive source for social network evolvement.

  7. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  8. Community Size Effects on Epidemic Spreading in Multiplex Social Networks

    OpenAIRE

    Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie

    2016-01-01

    The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people's reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explo...

  9. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....

  10. Coupled disease-behavior dynamics on complex networks: A review

    Science.gov (United States)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  11. Networking for philanthropy: increasing volunteer behavior via social networking sites.

    Science.gov (United States)

    Kim, Yoojung; Lee, Wei-Na

    2014-03-01

    Social networking sites (SNSs) provide a unique social venue to engage the young generation in philanthropy through their networking capabilities. An integrated model that incorporates social capital into the Theory of Reasoned Action is developed to explain volunteer behavior through social networks. As expected, volunteer behavior was predicted by volunteer intention, which was influenced by attitudes and subjective norms. In addition, social capital, an outcome of the extensive use of SNSs, was as an important driver of users' attitude and subjective norms toward volunteering via SNSs.

  12. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...

  13. Social Networking Sites: A premise on enhancement

    OpenAIRE

    MANINDERPAL SINGH SAINI; GYEWON MOON

    2013-01-01

    This article address five constructs that are paramount toward continued evolution of social networking sites (SNS`s) they include, - stabilisation, visual, language, security and flexibility. These constructs add to our proposed framework. Firmly grounded research on social networking sites and literature, we propose that user feedback, is the critical component that stimulates the development and growth of social networking sites online. We offer a framework that can aid new and current soc...

  14. PRIVACY PROTECTION PROBLEMS IN SOCIAL NETWORKS

    OpenAIRE

    OKUR, M. Cudi

    2011-01-01

    Protecting privacy has become a major concern for most social network users because of increased difficulties of controlling the online data. This article presents an assessment of the common privacy related risks of social networking sites. Open and hidden privacy risks of active and passive online profiles are examined and increasing share of social networking in these phenomena is discussed. Inadequacy of available legal and institutional protection is demonstrated and the effectiveness of...

  15. Social Networks and Political Parties in Chile

    OpenAIRE

    Adler Lomnitz, Larissa

    2002-01-01

    This paper describes the origin and evolution of two Chilean political parties (the Radical Party and the Christian Democrat Party) through the analysis of the social networks that originated and composed them. The aim of this study is to propose a model of national political cultures on the basis of the structure of social networks related to power and of the symbol system, which legitimizes it. The structure of social networks, horizontal and vertical, are based on reciprocal or redistribut...

  16. The Strategic Paradox of Social Networks

    Science.gov (United States)

    2011-03-18

    United States claimed to have met online.9 And in 2010, Facebook claimed over 500 million users, which would make the social networking service the...service culture, or occupational specialty. One drawback with social networks concerns the protection of individual privacy. Facebook , for...St ra te gy R es ea rc h Pr oj ec t THE STRATEGIC PARADOX OF SOCIAL NETWORKS BY COLONEL ROBERT COTE United States Marine Corps

  17. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  18. Low Computational Complexity Network Coding For Mobile Networks

    DEFF Research Database (Denmark)

    Heide, Janus

    2012-01-01

    Network Coding (NC) is a technique that can provide benefits in many types of networks, some examples from wireless networks are: In relay networks, either the physical or the data link layer, to reduce the number of transmissions. In reliable multicast, to reduce the amount of signaling and enable......-flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...

  19. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  20. Privacy Breach Analysis in Social Networks

    Science.gov (United States)

    Nagle, Frank

    This chapter addresses various aspects of analyzing privacy breaches in social networks. We first review literature that defines three types of privacy breaches in social networks: interactive, active, and passive. We then survey the various network anonymization schemes that have been constructed to address these privacy breaches. After exploring these breaches and anonymization schemes, we evaluate a measure for determining the level of anonymity inherent in a network graph based on its topological structure. Finally, we close by emphasizing the difficulty of anonymizing social network data while maintaining usability for research purposes and offering areas for future work.

  1. Hazard tolerance of spatially distributed complex networks

    International Nuclear Information System (INIS)

    Dunn, Sarah; Wilkinson, Sean

    2017-01-01

    In this paper, we present a new methodology for quantifying the reliability of complex systems, using techniques from network graph theory. In recent years, network theory has been applied to many areas of research and has allowed us to gain insight into the behaviour of real systems that would otherwise be difficult or impossible to analyse, for example increasingly complex infrastructure systems. Although this work has made great advances in understanding complex systems, the vast majority of these studies only consider a systems topological reliability and largely ignore their spatial component. It has been shown that the omission of this spatial component can have potentially devastating consequences. In this paper, we propose a number of algorithms for generating a range of synthetic spatial networks with different topological and spatial characteristics and identify real-world networks that share the same characteristics. We assess the influence of nodal location and the spatial distribution of highly connected nodes on hazard tolerance by comparing our generic networks to benchmark networks. We discuss the relevance of these findings for real world networks and show that the combination of topological and spatial configurations renders many real world networks vulnerable to certain spatial hazards. - Highlights: • We develop a method for quantifying the reliability of real-world systems. • We assess the spatial resilience of synthetic spatially distributed networks. • We form algorithms to generate spatial scale-free and exponential networks. • We show how these “synthetic” networks are proxies for real world systems. • Conclude that many real world systems are vulnerable to spatially coherent hazard.

  2. Data mining for social network data

    CERN Document Server

    Memon, Nasrullah; Hicks, David L; Chen, Hsinchun

    2010-01-01

    Driven by counter-terrorism efforts, marketing analysis and an explosion in online social networking in recent years, data mining has moved to the forefront of information science. This proposed Special Issue on ""Data Mining for Social Network Data"" will present a broad range of recent studies in social networking analysis. It will focus on emerging trends and needs in discovery and analysis of communities, solitary and social activities, and activities in open fora, and commercial sites as well. It will also look at network modeling, infrastructure construction, dynamic growth and evolution

  3. Information and influence propagation in social networks

    CERN Document Server

    Chen, Wei; Lakshmanan, Laks V S

    2013-01-01

    Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models

  4. Information processing in complex networks

    OpenAIRE

    Quax, R.

    2013-01-01

    Eerste resultaten van onderzoek van Rick Quax suggereren dat een combinatie van informatietheorie, netwerktheorie en statistische mechanica kan leiden tot een veelbelovende theorie om het gedrag van complexe netwerken te voorspellen. Er bestaat nog weinig theorie over het gedrag van dynamische eenheden die verbonden zijn in een netwerk, zoals neuronen in een breinnetwerk of genen in een gen-regulatienetwerk. Quax combineert informatietheorie, netwerktheorie, en statistische onderzoeken en mec...

  5. Competition between global and local online social networks

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-04-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.

  6. Competition between global and local online social networks.

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-04-27

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.

  7. Social relations: network, support and relational strain

    DEFF Research Database (Denmark)

    Due, P; Holstein, B; Lund, Rikke

    1999-01-01

    We introduce a conceptual framework with social relations as the main concept and the structure and the function of social relations as subconcepts. The structure of social relations covers aspects of formal relations and social network. The function of social relations covers social support......,011. The postal questionnaires were answered by a random sample in each of the age groups. The results show marked age and gender differences in both the structure and the function of social relations. The social network, measured as weekly contacts, weakens with age and so does instrumental support. Emotional...... support is unrelated to this decline in contact frequency and appears to be at the same level for younger and older individuals. Relational strain, measured as conflicts, declines with age for all kinds of social relations. The weakening of the social network with age does not seem to affect the level...

  8. Cascade phenomenon against subsequent failures in complex networks

    Science.gov (United States)

    Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng

    2018-06-01

    Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.

  9. Latent Space Approaches to Social Network Analysis

    National Research Council Canada - National Science Library

    Hoff, Peter D; Raftery, Adrian E; Handcock, Mark S

    2001-01-01

    .... In studies of social networks, recent emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the presence of a specified...

  10. Epidemic extinction paths in complex networks

    Science.gov (United States)

    Hindes, Jason; Schwartz, Ira B.

    2017-05-01

    We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.

  11. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  12. Cascade-based attacks on complex networks

    Science.gov (United States)

    Motter, Adilson E.; Lai, Ying-Cheng

    2002-12-01

    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.

  13. Mapping stochastic processes onto complex networks

    International Nuclear Information System (INIS)

    Shirazi, A H; Reza Jafari, G; Davoudi, J; Peinke, J; Reza Rahimi Tabar, M; Sahimi, Muhammad

    2009-01-01

    We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks

  14. Threshold Learning Dynamics in Social Networks

    Science.gov (United States)

    González-Avella, Juan Carlos; Eguíluz, Victor M.; Marsili, Matteo; Vega-Redondo, Fernado; San Miguel, Maxi

    2011-01-01

    Social learning is defined as the ability of a population to aggregate information, a process which must crucially depend on the mechanisms of social interaction. Consumers choosing which product to buy, or voters deciding which option to take with respect to an important issue, typically confront external signals to the information gathered from their contacts. Economic models typically predict that correct social learning occurs in large populations unless some individuals display unbounded influence. We challenge this conclusion by showing that an intuitive threshold process of individual adjustment does not always lead to such social learning. We find, specifically, that three generic regimes exist separated by sharp discontinuous transitions. And only in one of them, where the threshold is within a suitable intermediate range, the population learns the correct information. In the other two, where the threshold is either too high or too low, the system either freezes or enters into persistent flux, respectively. These regimes are generally observed in different social networks (both complex or regular), but limited interaction is found to promote correct learning by enlarging the parameter region where it occurs. PMID:21637714

  15. Dynamic properties of epidemic spreading on finite size complex networks

    Science.gov (United States)

    Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben

    2005-11-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  16. Aging in complex interdependency networks.

    Science.gov (United States)

    Vural, Dervis C; Morrison, Greg; Mahadevan, L

    2014-02-01

    Although species longevity is subject to a diverse range of evolutionary forces, the mortality curves of a wide variety of organisms are rather similar. Here we argue that qualitative and quantitative features of aging can be reproduced by a simple model based on the interdependence of fault-prone agents on one other. In addition to fitting our theory to the empiric mortality curves of six very different organisms, we establish the dependence of lifetime and aging rate on initial conditions, damage and repair rate, and system size. We compare the size distributions of disease and death and see that they have qualitatively different properties. We show that aging patterns are independent of the details of interdependence network structure, which suggests that aging is a many-body effect, and that the qualitative and quantitative features of aging are not sensitively dependent on the details of dependency structure or its formation.

  17. Hypergraph topological quantities for tagged social networks

    Science.gov (United States)

    Zlatić, Vinko; Ghoshal, Gourab; Caldarelli, Guido

    2009-09-01

    Recent years have witnessed the emergence of a new class of social networks, which require us to move beyond previously employed representations of complex graph structures. A notable example is that of the folksonomy, an online process where users collaboratively employ tags to resources to impart structure to an otherwise undifferentiated database. In a recent paper, we proposed a mathematical model that represents these structures as tripartite hypergraphs and defined basic topological quantities of interest. In this paper, we extend our model by defining additional quantities such as edge distributions, vertex similarity and correlations as well as clustering. We then empirically measure these quantities on two real life folksonomies, the popular online photo sharing site Flickr and the bookmarking site CiteULike. We find that these systems share similar qualitative features with the majority of complex networks that have been previously studied. We propose that the quantities and methodology described here can be used as a standard tool in measuring the structure of tagged networks.

  18. Pinning impulsive control algorithms for complex network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wen [School of Information and Mathematics, Yangtze University, Jingzhou 434023 (China); Lü, Jinhu [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Shihua [College of Mathematics and Statistics, Wuhan University, Wuhan 430072 (China); Yu, Xinghuo [School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  19. Opinion evolution in different social acquaintance networks.

    Science.gov (United States)

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion p h and variation proportion p v are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve p v +2p h =2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This

  20. Opinion evolution in different social acquaintance networks

    Science.gov (United States)

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion ph and variation proportion pv are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve pv+2 ph=2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This

  1. Social networking and privacy attitudes among

    OpenAIRE

    Kristen A. Carruth; Harvey J. Ginsburg

    2014-01-01

    Daily use of social networking sites (SNS) such as Facebook has become routine for millions of Internet users. Facebook is currently still the most popular social media site. Social networking has been rapidly adopted by societies around the world. In particular, social media like Facebook provide sites where users can personalize a profile with their information, pictures, and videos that can be shared with other users. This information can be used in ways that may violate users’ privacy ...

  2. Social networks, social satisfaction and place attachment in the neighborhood

    NARCIS (Netherlands)

    Weijs - Perrée, M.; van den Berg, P.E.W.; Arentze, T.A.; Kemperman, A.D.A.M.

    2017-01-01

    Feeling socially integrated and being satisfied with one’s social life are important indicators for happiness and well-being of individuals and for the strength of local communities. The effect of the living environment on social networks and the importance of local social contacts in the

  3. Mapping and discrimination of networks in the complexity-entropy plane

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2017-10-01

    Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.

  4. Mobile Social Network in a Cultural Context

    DEFF Research Database (Denmark)

    Liu, Jun

    2010-01-01

    , and mobile phone rumours, this study observes that mobile social networks are a way that Chinese people cultivate, maintain and strengthen their guanxi networks. Embedding the reliability of guanxi, the message spreading via mobile communication always enjoys high credibility, while mutual obligation...... of mobile social network in China therefore emanate not only from Information and Communication Technologies, but also from the socio-cultural source - guanxi - deeply rooted in Chinese society.......the chapter “Mobile Social Network in a Cultural Context” examines the guanxi-embedded mobile social network in China. By focusing on three concrete case studies with 56 in-depth interviews, including New Year text message greetings, mobile social networks for job allocations among migrant workers...

  5. Mobile social networking an innovative approach

    CERN Document Server

    Zhang, Daqing

    2014-01-01

    The use of contextually aware, pervasive, distributed computing, and sensor networks to bridge the gap between the physical and online worlds is the basis of mobile social networking. This book shows how applications can be built to provide mobile social networking, the research issues that need to be solved to enable this vision, and how mobile social networking can be used to provide computational intelligence that will improve daily life. With contributions from the fields of sociology, computer science, human-computer interaction and design, this book demonstrates how mobile social networks can be inferred from users' physical interactions both with the environment and with others, as well as how users behave around them and how their behavior differs on mobile vs. traditional online social networks.

  6. Social network in patient safety: Social media visibility

    Directory of Open Access Journals (Sweden)

    Azucena Santillán García

    2011-11-01

    Full Text Available Internet social network (social media is a powerful communication tool, and its use is expanding significantly. This paper seeks to know the current state of visibility in online social networks of active citizen talking about patient safety. This is an observational cross-sectional study whose target population is the websites Facebook, Twitter and Tuenti in Spain. By three consecutive cuts social profiles were found using the searching terms “seguridad+paciente” and “safety+patient”. There were found 5 profiles on Facebook that met the search criteria, 6 on Twitter and none were found on Tuenti. It is concluded that although there is evidence of the rise of social networking, citizen network involved in patient safety appears not to be significantly represented within the social networks examined.

  7. How Many "Friends" Do You Need? Teaching Students How to Network Using Social Media

    Science.gov (United States)

    Sacks, Michael Alan; Graves, Nikki

    2012-01-01

    Student reliance on social media is undeniable. However, while we largely regard social media as a new phenomena, the concepts underlying it come directly from social network theory in sociology and organizational behavior. In this article, the authors examine how the social network concepts of size, quality, complexity, diffusion, and distance…

  8. Social network and lifestyle in Danish adults

    DEFF Research Database (Denmark)

    Osler, Merete

    1995-01-01

    Analyzed associations between 2,987 adults' social networks and lifestyles in terms of leisure activity, smoking, and the intake of vegetables. Compared with socially integrated men, those with few social contacts or little social support were more often inactive during leisure time and did not e...... health related behaviors. (PsycINFO Database Record (c) 2012 APA, all rights reserved)...

  9. Link prediction in multiplex online social networks

    Science.gov (United States)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  10. Inferring network topology from complex dynamics

    International Nuclear Information System (INIS)

    Shandilya, Srinivas Gorur; Timme, Marc

    2011-01-01

    Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.

  11. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  12. Using Social Network Analysis to Investigate Positive EOL Communication.

    Science.gov (United States)

    Xu, Jiayun; Yang, Rumei; Wilson, Andrew; Reblin, Maija; Clayton, Margaret F; Ellington, Lee

    2018-04-30

    End of life (EOL) communication is a complex process involving the whole family and multiple care providers. Applications of analysis techniques that account for communication beyond the patient and patient/provider, will improve clinical understanding of EOL communication. To introduce the use of social network analysis to EOL communication data, and to provide an example of applying social network analysis to home hospice interactions. We provide a description of social network analysis using social network analysis to model communication patterns during home hospice nursing visits. We describe three social network attributes (i.e. magnitude, directionality, and reciprocity) in the expression of positive emotion among hospice nurses, family caregivers, and hospice cancer patients. Differences in communication structure by primary family caregiver gender and across time were also examined. Magnitude (frequency) in the expression of positive emotion occurred most often between nurses and caregivers or nurses and patients. Female caregivers directed more positive emotion to nurses, and nurses directed more positive emotion to other family caregivers when the primary family caregiver was male. Reciprocity (mutuality) in positive emotion declined towards day of death, but increased on day of actual patient death. There was variation in reciprocity by the type of positive emotion expressed. Our example demonstrates that social network analysis can be used to better understand the process of EOL communication. Social network analysis can be expanded to other areas of EOL research, such as EOL decision-making and health care teamwork. Copyright © 2018. Published by Elsevier Inc.

  13. Science, Society, and Social Networking

    Science.gov (United States)

    White, K. S.; Lohwater, T.

    2009-12-01

    The increased use of social networking is changing the way that scientific societies interact with their members and others. The American Association for the Advancement of Science (AAAS) uses a variety of online networks to engage its members and the broader scientific community. AAAS members and non-members can interact with AAAS staff and each other on AAAS sites on Facebook, YouTube, and Twitter, as well as blogs and forums on the AAAS website (www.aaas.org). These tools allow scientists to more readily become engaged in policy by providing information on current science policy topics as well as methods of involvement. For example, members and the public can comment on policy-relevant stories from Science magazine’s ScienceInsider blog, download a weekly policy podcast, receive a weekly email update of policy issues affecting the scientific community, or watch a congressional hearing from their computer. AAAS resource websites and outreach programs, including Communicating Science (www.aaas.org/communicatingscience), Working with Congress (www.aaas.org/spp/cstc/) and Science Careers (http://sciencecareers.sciencemag.org) also provide tools for scientists to become more personally engaged in communicating their findings and involved in the policy process.

  14. Trust transitivity in social networks.

    Directory of Open Access Journals (Sweden)

    Oliver Richters

    Full Text Available Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical realizations. We find that the existence of a non-zero fraction of absolute trust (i.e. entirely confident trust is a requirement for the viability of global trust propagation in large systems: The average pair-wise trust is marked by a discontinuous transition at a specific fraction of absolute trust, below which it vanishes. Furthermore, we perform an extensive analysis of the Pretty Good Privacy (PGP web of trust, in view of the concepts introduced. We compare different scenarios of trust distribution: community- and authority-centered. We find that these scenarios lead to sharply different patterns of trust propagation, due to the segregation of authority hubs and densely-connected communities. While the authority-centered scenario is more efficient, and leads to higher average trust values, it favours weakly-connected "fringe" nodes, which are directly trusted by authorities. The community-centered scheme, on the other hand, favours nodes with intermediate in/out-degrees, in detriment of the authorities and its "fringe" peers.

  15. Trust Transitivity in Social Networks

    Science.gov (United States)

    Richters, Oliver; Peixoto, Tiago P.

    2011-01-01

    Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical realizations. We find that the existence of a non-zero fraction of absolute trust (i.e. entirely confident trust) is a requirement for the viability of global trust propagation in large systems: The average pair-wise trust is marked by a discontinuous transition at a specific fraction of absolute trust, below which it vanishes. Furthermore, we perform an extensive analysis of the Pretty Good Privacy (PGP) web of trust, in view of the concepts introduced. We compare different scenarios of trust distribution: community- and authority-centered. We find that these scenarios lead to sharply different patterns of trust propagation, due to the segregation of authority hubs and densely-connected communities. While the authority-centered scenario is more efficient, and leads to higher average trust values, it favours weakly-connected “fringe” nodes, which are directly trusted by authorities. The community-centered scheme, on the other hand, favours nodes with intermediate in/out-degrees, in detriment of the authorities and its “fringe” peers. PMID:21483683

  16. Kinship, family and social network

    Directory of Open Access Journals (Sweden)

    2000-12-01

    Full Text Available There is considerable overlap between Le Play's mid-eighteenth-century household model map and the regional TFR map of central-southern Europe in the 1980s. The author examines the overall structure of relationships involved in Le Play's typology and observes that both the stem-family and the unstable family area in the Southern Europe are marked by a small, close-knit network of strong ties, with kinship predominance. Vice versa, the social support hinges upon a network of kin in the stem-family area, upon an alliance among different kindred units in the unstable Mediterranean area. All this leads to formulating a hypothesis of a tri-partite model for Western European relationship models. How can we explain the relationship between family predominance as anthropological embedding and family collapse as demographic reaction? The author reconsiders this question in the light of Festinger's cognitive dissonance theory and Elder's 'principle of accentuation': different, regionally rooted, family and kinship patterns "react" in contact with an appropriate reagent, such as the macro-process of modernisation, generating different patterns of today's demographic behaviour.

  17. On the origins of hierarchy in complex networks

    Science.gov (United States)

    Corominas-Murtra, Bernat; Goñi, Joaquín; Solé, Ricard V.; Rodríguez-Caso, Carlos

    2013-01-01

    Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks. PMID:23898177

  18. GFT centrality: A new node importance measure for complex networks

    Science.gov (United States)

    Singh, Rahul; Chakraborty, Abhishek; Manoj, B. S.

    2017-12-01

    Identifying central nodes is very crucial to design efficient communication networks or to recognize key individuals of a social network. In this paper, we introduce Graph Fourier Transform Centrality (GFT-C), a metric that incorporates local as well as global characteristics of a node, to quantify the importance of a node in a complex network. GFT-C of a reference node in a network is estimated from the GFT coefficients derived from the importance signal of the reference node. Our study reveals the superiority of GFT-C over traditional centralities such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and Google PageRank centrality, in the context of various arbitrary and real-world networks with different degree-degree correlations.

  19. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  20. A Geovisual Analytic Approach to Understanding Geo-Social Relationships in the International Trade Network

    OpenAIRE

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M.

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social...

  1. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  2. Optimal search strategies on complex networks

    OpenAIRE

    Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2014-01-01

    Complex networks are ubiquitous in nature and play a role of paramount importance in many contexts. Internet and the cyberworld, which permeate our everyday life, are self-organized hierarchical graphs. Urban traffic flows on intricate road networks, which impact both transportation design and epidemic control. In the brain, neurons are cabled through heterogeneous connections, which support the propagation of electric signals. In all these cases, the true challenge is to unveil the mechanism...

  3. Chaotification of complex networks with impulsive control.

    Science.gov (United States)

    Guan, Zhi-Hong; Liu, Feng; Li, Juan; Wang, Yan-Wu

    2012-06-01

    This paper investigates the chaotification problem of complex dynamical networks (CDN) with impulsive control. Both the discrete and continuous cases are studied. The method is presented to drive all states of every node in CDN to chaos. The proposed impulsive control strategy is effective for both the originally stable and unstable CDN. The upper bound of the impulse intervals for originally stable networks is derived. Finally, the effectiveness of the theoretical results is verified by numerical examples.

  4. Identifying modular relations in complex brain networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Mørup, Morten; Siebner, Hartwig

    2012-01-01

    We evaluate the infinite relational model (IRM) against two simpler alternative nonparametric Bayesian models for identifying structures in multi subject brain networks. The models are evaluated for their ability to predict new data and infer reproducible structures. Prediction and reproducibility...... and obtains comparable reproducibility and predictability. For resting state functional magnetic resonance imaging data from 30 healthy controls the IRM model is also superior to the two simpler alternatives, suggesting that brain networks indeed exhibit universal complex relational structure...

  5. Analysis and Design of Complex Network Environments

    Science.gov (United States)

    2012-03-01

    and J. Lowe, “The myths and facts behind cyber security risks for industrial control systems ,” in the Proceedings of the VDE Kongress, VDE Congress...questions about 1) how to model them, 2) the design of experiments necessary to discover their structure (and thus adapt system inputs to optimize the...theoretical work that clarifies fundamental limitations of complex networks with network engineering and systems biology to implement specific designs and

  6. Self-similarity and scaling theory of complex networks

    Science.gov (United States)

    Song, Chaoming

    Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.

  7. Corporate Social Responsibility in Online Social Networks

    DEFF Research Database (Denmark)

    Horn, Christian; Brem, Alexander; Wölfl, S.

    2014-01-01

    Considering growing public awareness of social, ethical and ecological responsibility, companies have constantly been increasing their efforts in CSR communications. Social Media as tools of brand communication receive increasing attention and it is expected that the marketing sector...

  8. Social Software: Participants' Experience Using Social Networking for Learning

    Science.gov (United States)

    Batchelder, Cecil W.

    2010-01-01

    Social networking tools used in learning provides instructional design with tools for transformative change in education. This study focused on defining the meanings and essences of social networking through the lived common experiences of 7 college students. The problem of the study was a lack of learner voice in understanding the value of social…

  9. Going Social: The Impact of Social Networking in Promoting Education

    Science.gov (United States)

    Jain, Neelesh Kumar; Verma, Ashish; Verma, Rama Shankar; Tiwari, Prashant

    2012-01-01

    The growth and the popularity of the Social networks has a high impact on the development of the students in the field of Personality, Attitudes, Knowledge and on its whole academic performance in classroom and society. This paper envisage on the impact of Social Network on Education and Training of the students.

  10. Studies on a network of complex neurons

    Science.gov (United States)

    Chakravarthy, Srinivasa V.; Ghosh, Joydeep

    1993-09-01

    In the last decade, much effort has been directed towards understanding the role of chaos in the brain. Work with rabbits reveals that in the resting state the electrical activity on the surface of the olfactory bulb is chaotic. But, when the animal is involved in a recognition task, the activity shifts to a specific pattern corresponding to the odor that is being recognized. Unstable, quasiperiodic behavior can be found in a class of conservative, deterministic physical systems called the Hamiltonian systems. In this paper, we formulate a complex version of Hopfield's network of real parameters and show that a variation on this model is a conservative system. Conditions under which the complex network can be used as a Content Addressable memory are studied. We also examine the effect of singularities of the complex sigmoid function on the network dynamics. The network exhibits unpredictable behavior at the singularities due to the failure of a uniqueness condition for the solution of the dynamic equations. On incorporating a weight adaptation rule, the structure of the resulting complex network equations is shown to have an interesting similarity with Kosko's Adaptive Bidirectional Associative Memory.

  11. Size reduction of complex networks preserving modularity

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  12. Mining of the social network extraction

    Science.gov (United States)

    Nasution, M. K. M.; Hardi, M.; Syah, R.

    2017-01-01

    The use of Web as social media is steadily gaining ground in the study of social actor behaviour. However, information in Web can be interpreted in accordance with the ability of the method such as superficial methods for extracting social networks. Each method however has features and drawbacks: it cannot reveal the behaviour of social actors, but it has the hidden information about them. Therefore, this paper aims to reveal such information in the social networks mining. Social behaviour could be expressed through a set of words extracted from the list of snippets.

  13. Characterizing English Poetic Style Using Complex Networks

    Science.gov (United States)

    Roxas-Villanueva, Ranzivelle Marianne; Nambatac, Maelori Krista; Tapang, Giovanni

    Complex networks have been proven useful in characterizing written texts. Here, we use networks to probe if there exist a similarity within, and difference across, era as reflected within the poem's structure. In literary history, boundary lines are set to distinguish the change in writing styles through time. We obtain the network parameters and motif frequencies of 845 poems published from 1522 to 1931 and relate this to the writing of the Elizabethan, 17th Century, Augustan, Romantic and Victorian eras. Analysis of the different network parameters shows a significant difference of the Augustan era (1667-1780) with the rest. The network parameters and the convex hull and centroids of the motif frequencies reflect the adjectival sequence pattern of the poems of the Augustan era.

  14. Spreading in online social networks: the role of social reinforcement.

    Science.gov (United States)

    Zheng, Muhua; Lü, Linyuan; Zhao, Ming

    2013-07-01

    Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.

  15. Bose-Einstein Condensation in Complex Networks

    International Nuclear Information System (INIS)

    Bianconi, Ginestra; Barabasi, Albert-Laszlo

    2001-01-01

    The evolution of many complex systems, including the World Wide Web, business, and citation networks, is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within the framework of equilibrium quantum gases predicts that the 'first-mover-advantage,' 'fit-get-rich,' and 'winner-takes-all' phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks

  16. Spatial price dynamics: From complex network perspective

    Science.gov (United States)

    Li, Y. L.; Bi, J. T.; Sun, H. J.

    2008-10-01

    The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.

  17. An improved sampling method of complex network

    Science.gov (United States)

    Gao, Qi; Ding, Xintong; Pan, Feng; Li, Weixing

    2014-12-01

    Sampling subnet is an important topic of complex network research. Sampling methods influence the structure and characteristics of subnet. Random multiple snowball with Cohen (RMSC) process sampling which combines the advantages of random sampling and snowball sampling is proposed in this paper. It has the ability to explore global information and discover the local structure at the same time. The experiments indicate that this novel sampling method could keep the similarity between sampling subnet and original network on degree distribution, connectivity rate and average shortest path. This method is applicable to the situation where the prior knowledge about degree distribution of original network is not sufficient.

  18. Social Networking Sites and Language Learning

    Science.gov (United States)

    Brick, Billy

    2011-01-01

    This article examines a study of seven learners who logged their experiences on the language leaning social networking site Livemocha over a period of three months. The features of the site are described and the likelihood of their future success is considered. The learners were introduced to the Social Networking Site (SNS) and asked to learn a…

  19. Social Networking on the Semantic Web

    Science.gov (United States)

    Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam

    2005-01-01

    Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…

  20. Social Networking and Academic Performance: A Review

    Science.gov (United States)

    Doleck, Tenzin; Lajoie, Susanne

    2018-01-01

    The ubiquitous use of social networking sites by students and the potential impacts of such use on academic performance are of both theoretical and practical importance. Hence, this paper addresses the question: how does the use of social networking sites influence academic performance? The present review synthesizes the empirical findings of the…

  1. Collective Learning in Games through Social Networks

    NARCIS (Netherlands)

    Kosterman, S.; Gierasimczuk, N.; Armentano, M.G.; Monteserin, A.; Tang, J.; Yannibelli, V.

    2015-01-01

    This paper argues that combining social networks communication and games can positively influence the learning behavior of players. We propose a computational model that combines features of social network learning (communication) and game-based learning (strategy reinforcement). The focus is on

  2. The Social Dynamics of Innovation Networks

    NARCIS (Netherlands)

    Rutten, Roel; Benneworth, Paul Stephen; Irawati, Dessy; Boekema, Frans

    2014-01-01

    The social dynamics of innovation networks captures the important role of trust, social capital, institutions and norms and values in the creation of knowledge in innovation networks. In doing so, this book connects to a long-standing debate on the socio-spatial context of innovation in economic

  3. Social Networks and Corporate Information Security

    Directory of Open Access Journals (Sweden)

    Ekaterina Gennadievna Kondratova

    2013-06-01

    Full Text Available It is defined in the article social networks as a tool in the hands of cyber-criminals to compromise the organization’s data. The author focuses on a list of threats to information security caused by social networks usage, which should be considered in the set up of information security management system of the company.

  4. Social Networks: Gated Communities or Free Cantons?

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Online social networks and other cloud-based services have concentrated the control of the web in the hands of a few corporations. Our personal data has been commodified, often without our knowledge or consent. Is there a way to retain all the benefits of social networking without giving up control of our data?

  5. Designing for Privacy in Ubiquitous Social Networking

    DEFF Research Database (Denmark)

    Sapuppo, Antonio; Figueiras, Joao

    2015-01-01

    Improving human communication during face–to–face meetings is nowadays possible by transferring online social networking benefits to the physical world. This is enabled by the ubiquitous social networking services that became available by means of wirelessly interconnected smart devices...

  6. Entrepreneurial Idea Identification through Online Social Networks

    Science.gov (United States)

    Lang, Matthew C.

    2010-01-01

    The increasing use of social network websites may signal a change in the way the next generation of entrepreneurs identify entrepreneurial ideas. An important part of the entrepreneurship literature emphasizes how vital the use of social networks is to entrepreneurial idea identification, opportunity recognition, and ultimately new venture…

  7. Social networking for well-being

    NARCIS (Netherlands)

    Steen, M.G.D.; Aarts, O.A.J.; Broekman, C.C.M.T.; Prins, S.C.L.

    2011-01-01

    In this paper, we present some of the work that is being done in the WeCare project (in the AAL programme). The project’s goal is to introduce social networking services in the lives of older people, in order to improve their well-being. Participation in social networks, both online and ‘in real

  8. Ponzi scheme diffusion in complex networks

    Science.gov (United States)

    Zhu, Anding; Fu, Peihua; Zhang, Qinghe; Chen, Zhenyue

    2017-08-01

    Ponzi schemes taking the form of Internet-based financial schemes have been negatively affecting China's economy for the last two years. Because there is currently a lack of modeling research on Ponzi scheme diffusion within social networks yet, we develop a potential-investor-divestor (PID) model to investigate the diffusion dynamics of Ponzi scheme in both homogeneous and inhomogeneous networks. Our simulation study of artificial and real Facebook social networks shows that the structure of investor networks does indeed affect the characteristics of dynamics. Both the average degree of distribution and the power-law degree of distribution will reduce the spreading critical threshold and will speed up the rate of diffusion. A high speed of diffusion is the key to alleviating the interest burden and improving the financial outcomes for the Ponzi scheme operator. The zero-crossing point of fund flux function we introduce proves to be a feasible index for reflecting the fast-worsening situation of fiscal instability and predicting the forthcoming collapse. The faster the scheme diffuses, the higher a peak it will reach and the sooner it will collapse. We should keep a vigilant eye on the harm of Ponzi scheme diffusion through modern social networks.

  9. Social network sites: Indispensable or optional social tools?

    DEFF Research Database (Denmark)

    Shklovski, Irina

    2012-01-01

    Much research has enumerated potential benefits of online social network sites. Given the pervasiveness of these sites and the numbers of people that use them daily, both re-search and media tend to make the assumption that social network sites have become indispensible to their users. Based...... on the analysis of qualitative data from users of social network sites in Russia and Kazakhstan, this paper consid-ers under what conditions social network sites can become indispensable to their users and when these technologies remain on the periphery of life despite fulfilling useful func-tions. For some...... respondents, these sites had become indis-pensable tools as they were integrated into everyday rou-tines of communicating with emotionally important and proximal contacts and were often used for coordination of offline activities. For others social network sites remained spaces where they occasionally visited...

  10. Digital Social Network Mining for Topic Discovery

    Science.gov (United States)

    Moradianzadeh, Pooya; Mohi, Maryam; Sadighi Moshkenani, Mohsen

    Networked computers are expanding more and more around the world, and digital social networks becoming of great importance for many people's work and leisure. This paper mainly focused on discovering the topic of exchanging information in digital social network. In brief, our method is to use a hierarchical dictionary of related topics and words that mapped to a graph. Then, with comparing the extracted keywords from the context of social network with graph nodes, probability of relation between context and desired topics will be computed. This model can be used in many applications such as advertising, viral marketing and high-risk group detection.

  11. Defining nodes in complex brain networks

    Directory of Open Access Journals (Sweden)

    Matthew Lawrence Stanley

    2013-11-01

    Full Text Available Network science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results. One particular issue that remains controversial in functional brain network analyses is the definition of a network node. In functional brain networks a node represents some predefined collection of brain tissue, and an edge measures the functional connectivity between pairs of nodes. The characteristics of a node, chosen by the researcher, vary considerably in the literature. This manuscript reviews the current state of the art based on published manuscripts and highlights the strengths and weaknesses of three main methods for defining nodes. Voxel-wise networks are constructed by assigning a node to each, equally sized brain area (voxel. The fMRI time-series recorded from each voxel is then used to create the functional network. Anatomical methods utilize atlases to define the nodes based on brain structure. The fMRI time-series from all voxels within the anatomical area are averaged and subsequently used to generate the network. Functional activation methods rely on data from traditional fMRI activation studies, often from databases, to identify network nodes. Such methods identify the peaks or centers of mass from activation maps to determine the location of the nodes. Small (~10-20 millimeter diameter spheres located at the coordinates of the activation foci are then applied to the data being used in the network analysis. The fMRI time-series from all voxels in the sphere are then averaged, and the resultant time series is used to generate the network. We attempt to clarify the discussion and move the study of complex brain networks forward. While the correct method to be used remains an open, possibly unsolvable question that

  12. Networks of networks the last frontier of complexity

    CERN Document Server

    Scala, Antonio

    2014-01-01

    The present work is meant as a reference to provide an organic and comprehensive view of the most relevant results in the exciting new field of Networks of Networks (NetoNets). Seminal papers have recently been published posing the basis to study what happens when different networks interact, thus providing evidence for the emergence of new, unexpected behaviors and vulnerabilities. From those seminal works, the awareness on the importance understanding Networks of Networks (NetoNets) has spread to the entire community of Complexity Science. The reader will benefit from the experience of some of the most well-recognized leaders in this field. The contents have been aggregated under four headings; General Theory, Phenomenology, Applications and Risk Assessment. The reader will be impressed by the different applications of the general paradigm that span from physiology, to financial risk, to transports. We are currently making the first steps to reduce the distance between the language and the way of thinking o...

  13. Atomic switch networks as complex adaptive systems

    Science.gov (United States)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  14. Applications of social media and social network analysis

    CERN Document Server

    Kazienko, Przemyslaw

    2015-01-01

    This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to commun

  15. Mining social networks and security informatics

    CERN Document Server

    Özyer, Tansel; Rokne, Jon; Khoury, Suheil

    2013-01-01

    Crime, terrorism and security are in the forefront of current societal concerns. This edited volume presents research based on social network techniques showing how data from crime and terror networks can be analyzed and how information can be extracted. The topics covered include crime data mining and visualization; organized crime detection; crime network visualization; computational criminology; aspects of terror network analyses and threat prediction including cyberterrorism and the related area of dark web; privacy issues in social networks; security informatics; graph algorithms for soci

  16. COMMUNICATION MANAGEMENT CRISIS IN SOCIAL NETWORKS

    OpenAIRE

    Ana Mª Enrique Jiménez

    2013-01-01

    It is often in the social networks where you detect the first signs of a potential crisis situation. Today, many companies decide to be present in social networks to communicate, listen and respond to their audiences openly with immediacy. A simple complaint is visible and propagates through the network in seconds, being capable of generating a negative impact on the corporate image of the organization. The same can happen to the contrary, ie, to praise the performance of a company, which may...

  17. Corporate Social Networking: Risks and Opportunities

    OpenAIRE

    Straumsheim, Jan Henrik Schou

    2011-01-01

    Social networks have seen an explosive growth over the last few years, with the most popular online services totaling over half a billion users. These networks have started permeating several aspects of our daily lives: for example by changing the ways we communicate with our friends and family, share media and organize events. Popular social networking websites like Facebook and Twitter now account for over half of the content shared on the web. Norwegian businesses are taking note, and are ...

  18. Analyzing negative ties in social networks

    Directory of Open Access Journals (Sweden)

    Mankirat Kaur

    2016-03-01

    Full Text Available Online social networks are a source of sharing information and maintaining personal contacts with other people through social interactions and thus forming virtual communities online. Social networks are crowded with positive and negative relations. Positive relations are formed by support, endorsement and friendship and thus, create a network of well-connected users whereas negative relations are a result of opposition, distrust and avoidance creating disconnected networks. Due to increase in illegal activities such as masquerading, conspiring and creating fake profiles on online social networks, exploring and analyzing these negative activities becomes the need of hour. Usually negative ties are treated in same way as positive ties in many theories such as balance theory and blockmodeling analysis. But the standard concepts of social network analysis do not yield same results in respect of each tie. This paper presents a survey on analyzing negative ties in social networks through various types of network analysis techniques that are used for examining ties such as status, centrality and power measures. Due to the difference in characteristics of flow in positive and negative tie networks some of these measures are not applicable on negative ties. This paper also discusses new methods that have been developed specifically for analyzing negative ties such as negative degree, and h∗ measure along with the measures based on mixture of positive and negative ties. The different types of social network analysis approaches have been reviewed and compared to determine the best approach that can appropriately identify the negative ties in online networks. It has been analyzed that only few measures such as Degree and PN centrality are applicable for identifying outsiders in network. For applicability in online networks, the performance of PN measure needs to be verified and further, new measures should be developed based upon negative clique concept.

  19. Information filtering on coupled social networks.

    Science.gov (United States)

    Nie, Da-Cheng; Zhang, Zi-Ke; Zhou, Jun-Lin; Fu, Yan; Zhang, Kui

    2014-01-01

    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks.

  20. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  1. Data reliability in complex directed networks

    Science.gov (United States)

    Sanz, Joaquín; Cozzo, Emanuele; Moreno, Yamir

    2013-12-01

    The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economics, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of the newest, best performing models—due to Guimerá and Sales-Pardo in 2009—to directed networks. The new methodology is able to identify missing and spurious directed interactions with more precision than previous approaches, which renders it particularly useful for analyzing data reliability in systems like trophic webs, gene regulatory networks, communication patterns and several social systems. We also show, using real-world networks, how the method can be employed to help search for new interactions in an efficient way.

  2. Data reliability in complex directed networks

    International Nuclear Information System (INIS)

    Sanz, Joaquín; Cozzo, Emanuele; Moreno, Yamir

    2013-01-01

    The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economics, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of the newest, best performing models—due to Guimerá and Sales-Pardo in 2009—to directed networks. The new methodology is able to identify missing and spurious directed interactions with more precision than previous approaches, which renders it particularly useful for analyzing data reliability in systems like trophic webs, gene regulatory networks, communication patterns and several social systems. We also show, using real-world networks, how the method can be employed to help search for new interactions in an efficient way. (paper)

  3. Consumer engagement in social networks brand community

    OpenAIRE

    Rybakovas, Paulius

    2016-01-01

    Consumers increasingly integrate social media into their day-to-day lives. For companies consumer engagement in a brand community on social network is becoming increasingly important for developing relations with consumers. Consumer engagement in a brand community on social network creates a dynamic relationship between the community members and the brand which contributes to an increase in consumer loyalty to the brand. The literature is abundant of studies, which examines the consumer engag...

  4. Social Networks: Rational Learning and Information Aggregation

    Science.gov (United States)

    2009-09-01

    predecessor, Gale and Kariv (2003) who generalize the payoff equalization result of Bala and Goyal (1998) in connected social networks (discussed below...requires more notation. Using Bayes’ Rule and the assumption of equal priors on the state θ, we have that the social belief given by observing... Social Networks: Rational Learning and Information Aggregation by Ilan Lobel B.Sc., Pontif́ıcia Universidade Católica do Rio de Janeiro (2004

  5. Complex networks with scale-free nature and hierarchical modularity

    Science.gov (United States)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  6. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  7. Energy Complexity of Recurrent Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří

    2014-01-01

    Roč. 26, č. 5 (2014), s. 953-973 ISSN 0899-7667 R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : neural network * finite automaton * energy complexity * optimal size Subject RIV: IN - Informatics, Computer Science Impact factor: 2.207, year: 2014

  8. Complex networks from multivariate time series

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Hartman, David; Vejmelka, Martin

    2010-01-01

    Roč. 12, - (2010), A-14382 ISSN 1607-7962. [General Asembly of the European Geophysical Society. 02.05.2010-07.05.2010, Vienna] R&D Projects: GA AV ČR IAA300420805 Institutional research plan: CEZ:AV0Z10300504 Keywords : complex network * surface air temperature * reanalysis data * global change Subject RIV: BB - Applied Statistics, Operational Research

  9. Synchronization coupled systems to complex networks

    CERN Document Server

    Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas

    2018-01-01

    A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...

  10. Social Working Memory: Neurocognitive networks and plasticity

    OpenAIRE

    Meyer, Meghan Leigh

    2014-01-01

    The social world is incredibly complex and the ability to keep track of various pieces of social information at once is imperative for success as a social species. Yet, how humans manage social information in mind has to date remained a mystery. On the one hand, psychological models of working memory, or the ability to maintain and manipulate information in mind, suggest that managing social information in mind would rely on generic working memory processes. However, recent research in social...

  11. 5th Workshop on Complex Networks

    CERN Document Server

    Menezes, Ronaldo; Omicini, Andrea; Poncela-Casasnovas, Julia

    2014-01-01

    A network is a mathematical object consisting of a set of points that are connected to each other in some fashion by lines. It turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems, food webs, or  protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social and professional relationships such as friendship, sex partners, network of Hollywood actors, co-authorship networks and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development...

  12. Social Network Sites, Individual Social Capital and Happiness

    NARCIS (Netherlands)

    E. Arampatzi (Efstratia); M.J. Burger (Martijn); N.A. Novik (Natallia)

    2016-01-01

    textabstractCan online social contacts replace the importance of real-life social connections in our pursuit of happiness? With the growing use of social network sites (SNSs), attention has been increasingly drawn to this topic. Our study empirically examines the effect of SNS use on happiness for

  13. One Health in social networks and social media.

    Science.gov (United States)

    Mekaru, S R; Brownstein, J S

    2014-08-01

    In the rapidly evolving world of social media, social networks, mobile applications and citizen science, online communities can develop organically and separately from larger or more established organisations. The One Health online community is experiencing expansion from both the bottom up and the top down. In this paper, the authors review social media's strengths and weaknesses, earlier work examining Internet resources for One Health, the current state of One Health in social media (e.g. Facebook, Twitter, YouTube) and online social networking sites (e.g. LinkedIn and ResearchGate), as well as social media in One Health-related citizen science projects. While One Health has a fairly strong presence on websites, its social media presence is more limited and has an uneven geographic distribution. In work following the Stone Mountain Meeting,the One Health Global Network Task Force Report recommended the creation of an online community of practice. Professional social networks as well as the strategic use of social media should be employed in this effort. Finally, One Health-related research projects using volunteers (citizen science) often use social media to enhance their recruitment. Including these researchers in a community of practitioners would take full advantage of their existing social media presence. In conclusion, the interactive nature of social media, combined with increasing global Internet access, provides the One Health community with opportunities to meaningfully expand their community and promote their message.

  14. Rede social de apoio às pessoas idosas estomizadas à luz da complexidade Red social de apoyo a las personas de la tercera edad estomizadas a la luz de la complejidad Social network of support for stomized seniors according to complexity

    Directory of Open Access Journals (Sweden)

    Edaiane Joana Lima Barros

    2008-01-01

    salud. CONCLUSIÓN: La red social de apoyo se muestra, por medio de relaciones e interacciones, insertada en el sistema social complejo. Las relaciones de cuidado se hacen presentes en esta red social de apoyo a las personas de la tercera edad estomizadas y la familia.OBJECTIVE: To describe the social network of support for stomized elderly people, represented by eco-maps of the multiple supporting relationships according to the Complexity referential. METHODS: Case study, carried out in a stomatherapy service at a university hospital in the Southern region of Brazil. Patients were four elderly stomized people, three women and one man, interviewed at their homes. RESULTS: The importance of family support, friend/neighbor network, stomatherapy service with its workers/interns of other stomized people in the care for elderly stomized people became evident. Although the Basic Health Unit is the entry door for the Single Health System service, the subjects of this study sought care for their health needs in the hospital itself. CONCLUSION: The social network of support reveals itself through relationships and interactions inserted in the complex social system. Care relationships are present in this social network of support to elderly stomized people and their families.

  15. Spreading paths in partially observed social networks

    OpenAIRE

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-01-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, s...

  16. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  17. Web Mining and Social Networking

    DEFF Research Database (Denmark)

    Xu, Guandong; Zhang, Yanchun; Li, Lin

    This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web ...... sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.......This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web...... mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal...

  18. Organ trade using social networks.

    Science.gov (United States)

    Alrogy, Waleed; Jawdat, Dunia; Alsemari, Muhannad; Alharbi, Abdulrahman; Alasaad, Abdullah; Hajeer, Ali H

    2016-01-01

    Organ transplantation is recognized worldwide as an effective treatment for organ failure. However, due to the increase in the number of patients requiring a transplant, a shortage of suitable organs for transplantation has become a global problem. Human organ trade is an illegal practice of buying or selling organs and is universally sentenced. The aim of this study was to search social network for organ trade and offerings in Saudi Arabia. The study was conducted from June 22, 2015 to February 19, 2016. The search was conducted on Twitter, Google answers, and Facebook using the following terms: kidney for sale, kidneys for sale, liver for sale, kidney wanted, liver wanted, kidney donor, and liver donor. We found a total of 557 adverts on organ trade, 165 (30%) from donors or sellers, and 392 (70%) from recipients or buyers. On Twitter, we found 472 (85%) adverts, on Google answers 61 (11%), and on Facebook 24 (4%). Organ trade is a global problem, and yet it is increasingly seen in many countries. Although the Saudi Center for Organ Transplantation by-laws specifically prohibits and monitors any form of commercial transplantation, it is still essential to enforce guidelines for medical professionals to detect and prevent such criminal acts.

  19. Organ trade using social networks

    Directory of Open Access Journals (Sweden)

    Waleed Alrogy

    2016-01-01

    Full Text Available Organ transplantation is recognized worldwide as an effective treatment for organ failure. However, due to the increase in the number of patients requiring a transplant, a shortage of suitable organs for transplantation has become a global problem. Human organ trade is an illegal practice of buying or selling organs and is universally sentenced. The aim of this study was to search social network for organ trade and offerings in Saudi Arabia. The study was conducted from June 22, 2015 to February 19, 2016. The search was conducted on Twitter, Google answers, and Facebook using the following terms: kidney for sale, kidneys for sale, liver for sale, kidney wanted, liver wanted, kidney donor, and liver donor. We found a total of 557 adverts on organ trade, 165 (30% from donors or sellers, and 392 (70% from recipients or buyers. On Twitter, we found 472 (85% adverts, on Google answers 61 (11%, and on Facebook 24 (4%. Organ trade is a global problem, and yet it is increasingly seen in many countries. Although the Saudi Center for Organ Transplantation by-laws specifically prohibits and monitors any form of commercial transplantation, it is still essential to enforce guidelines for medical professionals to detect and prevent such criminal acts.

  20. Brand communities embedded in social networks ?

    OpenAIRE

    Zaglia, Melanie E.

    2013-01-01

    Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social ...

  1. Modern Social Support Structures: Online Social Networks and their Implications for Social Workers

    Directory of Open Access Journals (Sweden)

    Kala Chakradhar

    2009-03-01

    Full Text Available Mapping and assessing social networks and the quality of their social support is a valuable intervention strategy for social workers. These networks have now spread onto the digital realm in the form of Online Social Networks (OSNs. This study investigated the nature of social support provided by such networks to their users in a rural mid-South University (USA and explored parallels with the current understanding of social support in conventional social networks. A web-based survey administered to college students revealed that users of these online networks were predominantly undergraduate first year students, female, single, unemployed and from a variety of academic disciplines. The examination of the components of OSNs appears to mirror those of offline networks. They also seem to complement the effects of each other while contributing to an individual's support system. The paper concludes with critical implications of such online social networking for University students and social workers in practice and education.

  2. The Social Origins of Networks and Diffusion.

    Science.gov (United States)

    Centola, Damon

    2015-03-01

    Recent research on social contagion has demonstrated significant effects of network topology on the dynamics of diffusion. However, network topologies are not given a priori. Rather, they are patterns of relations that emerge from individual and structural features of society, such as population composition, group heterogeneity, homophily, and social consolidation. Following Blau and Schwartz, the author develops a model of social network formation that explores how social and structural constraints on tie formation generate emergent social topologies and then explores the effectiveness of these social networks for the dynamics of social diffusion. Results show that, at one extreme, high levels of consolidation can create highly balkanized communities with poor integration of shared norms and practices. As suggested by Blau and Schwartz, reducing consolidation creates more crosscutting circles and significantly improves the dynamics of social diffusion across the population. However, the author finds that further reducing consolidation creates highly intersecting social networks that fail to support the widespread diffusion of norms and practices, indicating that successful social diffusion can depend on moderate to high levels of structural consolidation.

  3. A Web-Based Tool for Automatic Data Collection, Curation, and Visualization of Complex Healthcare Survey Studies including Social Network Analysis

    Directory of Open Access Journals (Sweden)

    José Alberto Benítez

    2017-01-01

    Full Text Available There is a great concern nowadays regarding alcohol consumption and drug abuse, especially in young people. Analyzing the social environment where these adolescents are immersed, as well as a series of measures determining the alcohol abuse risk or personal situation and perception using a number of questionnaires like AUDIT, FAS, KIDSCREEN, and others, it is possible to gain insight into the current situation of a given individual regarding his/her consumption behavior. But this analysis, in order to be achieved, requires the use of tools that can ease the process of questionnaire creation, data gathering, curation and representation, and later analysis and visualization to the user. This research presents the design and construction of a web-based platform able to facilitate each of the mentioned processes by integrating the different phases into an intuitive system with a graphical user interface that hides the complexity underlying each of the questionnaires and techniques used and presenting the results in a flexible and visual way, avoiding any manual handling of data during the process. Advantages of this approach are shown and compared to the previous situation where some of the tasks were accomplished by time consuming and error prone manipulations of data.

  4. A Web-Based Tool for Automatic Data Collection, Curation, and Visualization of Complex Healthcare Survey Studies including Social Network Analysis.

    Science.gov (United States)

    Benítez, José Alberto; Labra, José Emilio; Quiroga, Enedina; Martín, Vicente; García, Isaías; Marqués-Sánchez, Pilar; Benavides, Carmen

    2017-01-01

    There is a great concern nowadays regarding alcohol consumption and drug abuse, especially in young people. Analyzing the social environment where these adolescents are immersed, as well as a series of measures determining the alcohol abuse risk or personal situation and perception using a number of questionnaires like AUDIT, FAS, KIDSCREEN, and others, it is possible to gain insight into the current situation of a given individual regarding his/her consumption behavior. But this analysis, in order to be achieved, requires the use of tools that can ease the process of questionnaire creation, data gathering, curation and representation, and later analysis and visualization to the user. This research presents the design and construction of a web-based platform able to facilitate each of the mentioned processes by integrating the different phases into an intuitive system with a graphical user interface that hides the complexity underlying each of the questionnaires and techniques used and presenting the results in a flexible and visual way, avoiding any manual handling of data during the process. Advantages of this approach are shown and compared to the previous situation where some of the tasks were accomplished by time consuming and error prone manipulations of data.

  5. [Social networks in drinking behaviors among Japanese: support network, drinking network, and intervening network].

    Science.gov (United States)

    Yoshihara, Chika; Shimizu, Shinji

    2005-10-01

    The national representative sample was analyzed to examine the relationship between respondents' drinking practice and the social network which was constructed of three different types of network: support network, drinking network, and intervening network. Non-parametric statistical analysis was conducted with chi square method and ANOVA analysis, due to the risk of small samples in some basic tabulation cells. The main results are as follows: (1) In the support network of workplace associates, moderate drinkers enjoyed much more sociable support care than both nondrinkers and hard drinkers, which might suggest a similar effect as the French paradox. Meanwhile in the familial and kinship network, the more intervening care support was provided, the harder respondents' drinking practice. (2) The drinking network among Japanese people for both sexes is likely to be convergent upon certain types of network categories and not decentralized in various categories. This might reflect of the drinking culture of Japan, which permits people to drink everyday as a practice, especially male drinkers. Subsequently, solitary drinking is not optional for female drinkers. (3) Intervening network analysis showed that the harder the respondents' drinking practices, the more frequently their drinking behaviors were checked in almost all the categories of network. A rather complicated gender double-standard was found in the network of hard drinkers with their friends, particularly for female drinkers. Medical professionals played a similar intervening role for men as family and kinship networks but to a less degree than friends for females. The social network is considerably associated with respondents' drinking, providing both sociability for moderate drinkers and intervention for hard drinkers, depending on network categories. To minimize the risk of hard drinking and advance self-healthy drinking there should be more research development on drinking practice and the social network.

  6. SOCIAL NETWORKS AS DISPOSITIVES OF NEOLIBERAL GOVERNMENTALITY

    Directory of Open Access Journals (Sweden)

    Julio Cesar Lemes de Castro

    2016-10-01

    Full Text Available This article of theoretical reflection investigates the social networks that emerge in the context of Web 2.0, such as Facebook, as dispositives of neoliberal governmentality in the sense proposed by Foucault. From the standpoint of government of self, the design of social networks establishes a competition for attention that tends to favor the neoliberal culture of performance. In terms of social organization, the way in which users intertwine their connections is paralleled by the neoliberal paradigm of spontaneous market order. Furthermore, the use of personal information on these users, encompassing all their activities within the networks, in order to set up databases to attract advertisers reflects the neoliberal tendency of colonization of the different realms of existence by economic forces. However, the tensions that accompany neoliberal governmentality in social networks reveal its limitations, opening the possibility for these networks to also act as instruments of resistance to neoliberalism.

  7. Social networks a framework of computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2014-01-01

    This volume provides the audience with an updated, in-depth and highly coherent material on the conceptually appealing and practically sound information technology of Computational Intelligence applied to the analysis, synthesis and evaluation of social networks. The volume involves studies devoted to key issues of social networks including community structure detection in networks, online social networks, knowledge growth and evaluation, and diversity of collaboration mechanisms.  The book engages a wealth of methods of Computational Intelligence along with well-known techniques of linear programming, Formal Concept Analysis, machine learning, and agent modeling.  Human-centricity is of paramount relevance and this facet manifests in many ways including personalized semantics, trust metric, and personal knowledge management; just to highlight a few of these aspects. The contributors to this volume report on various essential applications including cyber attacks detection, building enterprise social network...

  8. Contributions of Social Networking for Innovation

    Directory of Open Access Journals (Sweden)

    Daniela Maria Cartoni

    2013-04-01

    Full Text Available This paper investigates the role of virtual social networks as a mechanism complementary to formal channels of technology transfer represented by ICT and by private centers of R & D in industry. The strengthening of Web 2.0 has provided the expansion of collaborative tools, in particular the social networks, with a strong influence on the spread of knowledge and innovation. To evaluate the potential of virtual networks, a survey had been conducted to identify and describe the characteristics of some of the major social networks used in Brazil (LinkedIn, Orkut and Twitter. Even this phenomenon is not mature, the study identified the potential and benefits of social networks as informal structures that help in generation of knowledge and innovation diffusion, as a field to be explored and developed.

  9. Factors determining nestedness in complex networks.

    Directory of Open Access Journals (Sweden)

    Samuel Jonhson

    Full Text Available Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding, allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity. We find that most of the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been discounted - as a second factor - we find that nestedness is strongly correlated with disassortativity and hence - as random networks have been recently found to be naturally disassortative - they also tend to be naturally nested just as the result of chance.

  10. Social network analysis of study environment

    Directory of Open Access Journals (Sweden)

    Blaženka Divjak

    2010-06-01

    Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.

  11. Volunteerism: Social Network Dynamics and Education

    Science.gov (United States)

    Ajrouch, Kristine J.; Antonucci, Toni C.; Webster, Noah J.

    2016-01-01

    Objectives . We examine how changes in social networks influence volunteerism through bridging (diversity) and bonding (spending time) mechanisms. We further investigate whether social network change substitutes or amplifies the effects of education on volunteerism. Methods . Data (n = 543) are drawn from a two-wave survey of Social Relations and Health over the Life Course (SRHLC). Zero-inflated negative binomial regressions were conducted to test competing hypotheses about how changes in social network characteristics alone and in conjunction with education level predict likelihood and frequency of volunteering. Results . Changes in social networks were associated with volunteerism: as the proportion of family members decreased and the average number of network members living within a one-hour drive increased over time, participants reported higher odds of volunteering. The substitution hypothesis was supported: social networks that exhibited more geographic proximity and greater contact frequency over-time compensated for lower levels of education to predict volunteering more hours. Discussion . The dynamic role of social networks and the ways in which they may work through bridging and bonding to influence both likelihood and frequency of volunteering are discussed. The potential benefits of volunteerism in light of longer life expectancies and smaller families are also considered. PMID:25512570

  12. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  13. Urbanism, Neighborhood Context, and Social Networks.

    Science.gov (United States)

    Cornwell, Erin York; Behler, Rachel L

    2015-09-01

    Theories of urbanism suggest that the urban context erodes individuals' strong social ties with friends and family. Recent research has narrowed focus to the neighborhood context, emphasizing how localized structural disadvantage affects community-level cohesion and social capital. In this paper, we argue that neighborhood context also shapes social ties with friends and family- particularly for community-dwelling seniors. We hypothesize that neighborhood disadvantage, residential instability, and disorder restrict residents' abilities to cultivate close relationships with neighbors and non-neighbor friends and family. Using data from the National Social Life, Health, and Aging Project (NSHAP), we find that older adults who live in disadvantaged neighborhoods have smaller social networks. Neighborhood disadvantage is also associated with less close network ties and less frequent interaction - but only among men. Furthermore, residents of disordered neighborhoods have smaller networks and weaker ties. We urge scholars to pay greater attention to how neighborhood context contributes to disparities in network-based access to resources.

  14. Benford's Law Applies to Online Social Networks.

    Science.gov (United States)

    Golbeck, Jennifer

    2015-01-01

    Benford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to social and behavioral features of users in online social networks. Using social data from five major social networks (Facebook, Twitter, Google Plus, Pinterest, and LiveJournal), we show that the distribution of first significant digits of friend and follower counts for users in these systems follow Benford's Law. The same is true for the number of posts users make. We extend this to egocentric networks, showing that friend counts among the people in an individual's social network also follows the expected distribution. We discuss how this can be used to detect suspicious or fraudulent activity online and to validate datasets.

  15. Benford's Law Applies to Online Social Networks.

    Directory of Open Access Journals (Sweden)

    Jennifer Golbeck

    Full Text Available Benford's Law states that, in naturally occurring systems, the frequency of numbers' first digits is not evenly distributed. Numbers beginning with a 1 occur roughly 30% of the time, and are six times more common than numbers beginning with a 9. We show that Benford's Law applies to social and behavioral features of users in online social networks. Using social data from five major social networks (Facebook, Twitter, Google Plus, Pinterest, and LiveJournal, we show that the distribution of first significant digits of friend and follower counts for users in these systems follow Benford's Law. The same is true for the number of posts users make. We extend this to egocentric networks, showing that friend counts among the people in an individual's social network also follows the expected distribution. We discuss how this can be used to detect suspicious or fraudulent activity online and to validate datasets.

  16. Complex network description of the ionosphere

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.

  17. Regional Use of Social Networking Tools

    Science.gov (United States)

    2014-12-01

    4 2.1.7 Tumblr 4 2.1.8 Instagram 4 2.2 Local Social Networking Services 5 3 Regional Preferences for Social Networking Tools 6 4 African Region...YouTube 280 million Twitter 255 million LinkedIn n/a Pinterest n/a Tumblr 300 million Instagram 200 million The active-user base numbers...so this percentage may decline in the future. 2.1.8 Instagram Instagram , acquired by Facebook in 2012, is a mobile social networking service that

  18. The genre tutorial and social networks terminology

    Directory of Open Access Journals (Sweden)

    Márcio Sales Santiago

    2014-02-01

    Full Text Available This paper analyzes the terminology in the Internet social networks tutorials. A tutorial is a specialized text, full of terms, aiming to teach an individual or group of individuals who need some guidelines to operationalize a computerized tool, such as a social network. It is necessary to identify linguistic and terminological characteristics from the specialized lexical units in this digital genre. Social networks terminology is described and exemplified here. The results show that it is possible to refer to two specific terminologies in tutorials which help to determine the terminological profile of the thematic area, specifically from the point of view of denomination.

  19. Evolution of individual versus social learning on social networks.

    Science.gov (United States)

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Incorporating profile information in community detection for online social networks

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2014-07-01

    Community structure is an important feature in the study of complex networks. It is because nodes of the same community may have similar properties. In this paper we extend two popular community detection methods to partition online social networks. In our extended methods, the profile information of users is used for partitioning. We apply the extended methods in several sample networks of Facebook. Compared with the original methods, the community structures we obtain have higher modularity. Our results indicate that users' profile information is consistent with the community structure of their friendship network to some extent. To the best of our knowledge, this paper is the first to discuss how profile information can be used to improve community detection in online social networks.

  1. Model of community emergence in weighted social networks

    Science.gov (United States)

    Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.

    2009-04-01

    Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.

  2. Descrivere un Social Network Site: un approccio empirico

    DEFF Research Database (Denmark)

    Rossi, Luca; Di Lascio, F Marta L; Pacelli, Barbara

    2015-01-01

    This chapters provide methods to describe in a quantitative way, a social network site as a whole. Besides the most commonly used metrics such as number of users or level of activity the chapter proposes more complex metrics based on topi diversity and language fidelity....

  3. Social Networks and Social Revolution. Evidence from Romania

    Directory of Open Access Journals (Sweden)

    Androniciuc Andra

    2017-01-01

    No other means of communication have had such a rapid development as the Internet, a mediumthat is undoubtedly changing the rules of the political game. In this article, we take a look at theuse of social networks during social and political movements, with particular focus on the 2014,2015 and 2017 Romanian protests. We conclude that social networks alone do not instigaterevolutions, but they are valuable tools for citizens to organize free protests, recruit and trainparticipants, which can lead to further collective action and social change.

  4. How complex a dynamical network can be?

    International Nuclear Information System (INIS)

    Baptista, M.S.; Kakmeni, F. Moukam; Del Magno, Gianluigi; Hussein, M.S.

    2011-01-01

    Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen; (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes.

  5. Maintenance of cultural diversity: social roles, social networks, and cognitive networks.

    Science.gov (United States)

    Abrams, Marshall

    2014-06-01

    Smaldino suggests that patterns that give rise to group-level cultural traits can also increase individual-level cultural diversity. I distinguish social roles and related social network structures and discuss ways in which each might maintain diversity. I suggest that cognitive analogs of "cohesion," a property of networks that helps maintenance of diversity, might mediate the effects of social roles on diversity.

  6. COMPLEX NETWORKS IN CLIMATE SCIENCE: PROGRESS, OPPORTUNITIES AND CHALLENGES

    Data.gov (United States)

    National Aeronautics and Space Administration — COMPLEX NETWORKS IN CLIMATE SCIENCE: PROGRESS, OPPORTUNITIES AND CHALLENGES KARSTEN STEINHAEUSER, NITESH V. CHAWLA, AND AUROOP R. GANGULY Abstract. Networks have...

  7. Social networking policies in nursing education.

    Science.gov (United States)

    Frazier, Blake; Culley, Joan M; Hein, Laura C; Williams, Amber; Tavakoli, Abbas S

    2014-03-01

    Social networking use has increased exponentially in the past few years. A literature review related to social networking and nursing revealed a research gap between nursing practice and education. Although there was information available on the appropriate use of social networking sites, there was limited research on the use of social networking policies within nursing education. The purpose of this study was to identify current use of social media by faculty and students and a need for policies within nursing education at one institution. A survey was developed and administered to nursing students (n = 273) and nursing faculty (n = 33). Inferential statistics included χ², Fisher exact test, t test, and General Linear Model. Cronbach's α was used to assess internal consistency of social media scales. The χ² result indicates that there were associations with the group and several social media items. t Test results indicate significant differences between student and faculty for average of policies are good (P = .0127), policies and discipline (P = .0315), and policy at the study school (P = .0013). General Linear Model analyses revealed significant differences for "friend" a patient with a bond, unprofessional posts, policy, and nursing with class level. Results showed that students and faculty supported the development of a social networking policy.

  8. Power-Hop: A Pervasive Observation for Real Complex Networks

    Science.gov (United States)

    2016-03-14

    e.g., power grid, the Internet and the web-graph), social (e.g., friendship networks — Facebook , Gowalla—and co- authorship networks ), urban (e.g...Mislove A., Cha M. and Gummadi K.P. On the evolution of user interaction in Facebook . In Proc. Workshop on Online Social Networks 2009. doi...scale-free distribution is pervasive and describes a large variety of networks , ranging from social and urban to technological and biological networks

  9. Modeling Epidemics Spreading on Social Contact Networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  10. Social networking: a matter of character?

    NARCIS (Netherlands)

    Vieth, Marius N.; Kommers, Petrus A.M.

    2014-01-01

    Over the last couple of years, online social networks such as Facebook have tremendously grown in popularity, especially among students. The technological advancements proceed faster than the understanding of the psychological factors behind this development. While motivations and gratifications

  11. Social networking mining, visualization, and security

    CERN Document Server

    Dehuri, Satchidananda; Wang, Gi-Nam

    2014-01-01

    With the proliferation of social media and on-line communities in networked world a large gamut of data has been collected and stored in databases. The rate at which such data is stored is growing at a phenomenal rate and pushing the classical methods of data analysis to their limits. This book presents an integrated framework of recent empirical and theoretical research on social network analysis based on a wide range of techniques from various disciplines like data mining, social sciences, mathematics, statistics, physics, network science, machine learning with visualization techniques, and security. The book illustrates the potential of multi-disciplinary techniques in various real life problems and intends to motivate researchers in social network analysis to design more effective tools by integrating swarm intelligence and data mining.  

  12. Quantum Google in a Complex Network

    Science.gov (United States)

    Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel

    2013-01-01

    We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks. PMID:24091980

  13. Quantum Google in a Complex Network

    Science.gov (United States)

    Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel

    2013-10-01

    We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks.

  14. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  15. Complex network approach to fractional time series

    Energy Technology Data Exchange (ETDEWEB)

    Manshour, Pouya [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2015-10-15

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  16. Different Epidemic Models on Complex Networks

    International Nuclear Information System (INIS)

    Zhang Haifeng; Small, Michael; Fu Xinchu

    2009-01-01

    Models for diseases spreading are not just limited to SIS or SIR. For instance, for the spreading of AIDS/HIV, the susceptible individuals can be classified into different cases according to their immunity, and similarly, the infected individuals can be sorted into different classes according to their infectivity. Moreover, some diseases may develop through several stages. Many authors have shown that the individuals' relation can be viewed as a complex network. So in this paper, in order to better explain the dynamical behavior of epidemics, we consider different epidemic models on complex networks, and obtain the epidemic threshold for each case. Finally, we present numerical simulations for each case to verify our results.

  17. Social Support and Social Networks in COPD: A Scoping Review.

    Science.gov (United States)

    Barton, Christopher; Effing, Tanya W; Cafarella, Paul

    2015-01-01

    A scoping review was conducted to determine the size and nature of the evidence describing associations between social support and networks on health, management and clinical outcomes amongst patients with COPD. Searches of PubMed, PsychInfo and CINAHL were undertaken for the period 1966-December 2013. A descriptive synthesis of the main findings was undertaken to demonstrate where there is current evidence for associations between social support, networks and health outcomes, and where further research is needed. The search yielded 318 papers of which 287 were excluded after applying selection criteria. Two areas emerged in which there was consistent evidence of benefit of social support; namely mental health and self-efficacy. There was inconsistent evidence for a relationship between perceived social support and quality of life, physical functioning and self-rated health. Hospital readmission was not associated with level of perceived social support. Only a small number of studies (3 articles) have reported on the social network of individuals with COPD. There remains a need to identify the factors that promote and enable social support. In particular, there is a need to further understand the characteristics of social networks within the broader social structural conditions in which COPD patients live and manage their illness.

  18. Surmountable Chasms: Networks and Social Innovation for Resilient Systems

    Directory of Open Access Journals (Sweden)

    Michele-Lee Moore

    2011-03-01

    Full Text Available Complex challenges demand complex solutions. By their very nature, these problems are difficult to define and are often the result of rigid social structures that effectively act as "traps". However, resilience theory and the adaptive cycle can serve as a useful framework for understanding how humans may move beyond these traps and towards the social innovation that is required to address many complex problems. This paper explores the critical question of whether networks help facilitate innovations to bridge the seemingly insurmountable chasms of complex problems to create change across scales, thereby increasing resilience. The argument is made that research has not yet adequately articulated the strategic agency that must be present within the network in order for cross scale interactions to occur. By examining institutional entrepreneurship through case studies and examples, this paper proposes that agency within networks requires specific skills from entrepreneurs, including ones that enable pattern generation, relationship building and brokering, knowledge and resource brokering, and network recharging. Ultimately, this begins to build a more complete understanding of how networks may improve human capacity to respond to complex problems and heighten overall resilience.

  19. The topology and dynamics of complex networks

    Science.gov (United States)

    Dezso, Zoltan

    We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.

  20. Cascade of links in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yeqian; Sun, Bihui [Department of Management Science, School of Government, Beijing Normal University, 100875 Beijing (China); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, 100875 Beijing (China)

    2017-01-30

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  1. Cascade of links in complex networks

    International Nuclear Information System (INIS)

    Feng, Yeqian; Sun, Bihui; Zeng, An

    2017-01-01

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  2. Complex growing networks with intrinsic vertex fitness

    International Nuclear Information System (INIS)

    Bedogne, C.; Rodgers, G. J.

    2006-01-01

    One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution ρ(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined

  3. HIV/AIDS, social capital, and online social networks.

    Science.gov (United States)

    Drushel, Bruce E

    2013-01-01

    The prospects for online social networks as sites of information-gathering and affiliation for persons with AIDS and others concerned about HIV/AIDS not only represent the latest development in a trend toward circumventing traditional media and official information sources, but also may offer hope for a revitalization of HIV/AIDS discourse in the public sphere. This article provides an overview of three decades of information-seeking on the pandemic and its social and personal implications, as well as case studies of three examples of social networking surrounding HIV/AIDS. It finds preliminary evidence of the formation of strong and weak ties as described in Social Network Theory and suggests that the online accumulation of social capital by opinion leaders could facilitate dissemination of messages on HIV/AIDS awareness and testing.

  4. Online Social Networking: A Primer for Radiology

    OpenAIRE

    Prasanna, Prasanth M.; Seagull, F. Jacob; Nagy, Paul

    2011-01-01

    Online social networking is an immature, but rapidly evolving industry of web-based technologies that allow individuals to develop online relationships. News stories populate the headlines about various websites which can facilitate patient and doctor interaction. There remain questions about protecting patient confidentiality and defining etiquette in order to preserve the doctor/patient relationship and protect physicians. How much social networking-based communication or other forms of E-c...

  5. Returns to Social Network Capital among Traders

    OpenAIRE

    Marcel Fafchamps; Bart Minten

    2000-01-01

    Using data on agricultural traders in Madagascar, this paper shows that social network capital has a large effect on firm productivity. Better connected traders have significantly larger sales and value added than less connected traders after controlling for physical and human inputs as well as for entrepreneur characteristics. The analysis indicates that three dimensions of social network capital should be distinguished: relationships with other traders, which among other things help firms e...

  6. The social brain network and autism.

    Science.gov (United States)

    Misra, Vivek

    2014-04-01

    Available research data in Autism suggests the role of a network of brain areas, often known as the 'social brain'. Recent studies highlight the role of genetic mutations as underlying patho-mechanism in Autism. This mini review, discusses the basic concepts behind social brain networks, theory of mind and genetic factors associated with Autism. It critically evaluates and explores the relationship between the behavioral outcomes and genetic factors providing a conceptual framework for understanding of autism.

  7. Crawling Facebook for Social Network Analysis Purposes

    OpenAIRE

    Catanese, Salvatore A.; De Meo, Pasquale; Ferrara, Emilio; Fiumara, Giacomo; Provetti, Alessandro

    2011-01-01

    We describe our work in the collection and analysis of massive data describing the connections between participants to online social networks. Alternative approaches to social network data collection are defined and evaluated in practice, against the popular Facebook Web site. Thanks to our ad-hoc, privacy-compliant crawlers, two large samples, comprising millions of connections, have been collected; the data is anonymous and organized as an undirected graph. We describe a set of tools that w...

  8. DEPENDENCE ON SOCIAL NETWORKING SITES IN ADOLESCENTS

    OpenAIRE

    Ranjith; Santosh; Amita Rao; Ramgopal; Ashvij

    2016-01-01

    BACKGROUND Social Networking Sites (SNSs) are “web-based services” that allow individuals to: (1) Construct a public or semi-public profile within a bounded system, (2) Articulate a list of other users with whom they share a connection, and (3) View and traverse their list of connections and those made by others within the system.” Social networking sites like Facebook, WhatsApp, Snapchat, Twitter, etc. are virtual communities where users can create individual public profiles,...

  9. Binary Classification Method of Social Network Users

    Directory of Open Access Journals (Sweden)

    I. A. Poryadin

    2017-01-01

    Full Text Available The subject of research is a binary classification method of social network users based on the data analysis they have placed. Relevance of the task to gain information about a person by examining the content of his/her pages in social networks is exemplified. The most common approach to its solution is a visual browsing. The order of the regional authority in our country illustrates that its using in school education is needed. The article shows restrictions on the visual browsing of pupil’s pages in social networks as a tool for the teacher and the school psychologist and justifies that a process of social network users’ data analysis should be automated. Explores publications, which describe such data acquisition, processing, and analysis methods and considers their advantages and disadvantages. The article also gives arguments to support a proposal to study the classification method of social network users. One such method is credit scoring, which is used in banks and credit institutions to assess the solvency of clients. Based on the high efficiency of the method there is a proposal for significant expansion of its using in other areas of society. The possibility to use logistic regression as the mathematical apparatus of the proposed method of binary classification has been justified. Such an approach enables taking into account the different types of data extracted from social networks. Among them: the personal user data, information about hobbies, friends, graphic and text information, behaviour characteristics. The article describes a number of existing methods of data transformation that can be applied to solve the problem. An experiment of binary gender-based classification of social network users is described. A logistic model obtained for this example includes multiple logical variables obtained by transforming the user surnames. This experiment confirms the feasibility of the proposed method. Further work is to define a system

  10. The Commercial Utilization of Social Networks

    OpenAIRE

    Adlaf, Petr

    2011-01-01

    The presented bachelor's thesis deals with advertisement. It answers the question of what advertisement is, why firms use advertisement and what its benefits are. It concentrates especially on Internet advertisement presented through social networks. These social networks have come to occupy a significant position on the Internet during the last five years and offer new possibilities in terms of creating advertising campaigns (Hypertargeting). The thesis presents the division and comparison o...

  11. Jana: Confidential Communications on Social Networks

    Science.gov (United States)

    2017-08-09

    consuming phone resources and privacy leakage ?” We address this challenge via an extensive user study. Next, we ask “How can we detect background apps...not support secret group communications. Furthermore, access to such social networks via mobile platforms raises a series of concerns like leakage of...not support secret group communications. Furthermore, access to such social networks via mobile platforms raises a series of concerns like leakage of

  12. Marketing Impact on Diffusion in Social Networks

    OpenAIRE

    Naumov, Pavel; Tao, Jia

    2016-01-01

    The paper proposes a way to add marketing into the standard threshold model of social networks. Within this framework, the paper studies logical properties of the influence relation between sets of agents in social networks. Two different forms of this relation are considered: one for promotional marketing and the other for preventive marketing. In each case a sound and complete logical system describing properties of the influence relation is proposed. Both systems could be viewed as extensi...

  13. Multilayer Brokerage in Geo-Social Networks

    OpenAIRE

    Hristova, Desislava; Panzarasa, Pietro; Mascolo, Cecilia

    2016-01-01

    This is a metadata record relating to an article that cannot be shared due to publisher copyright. Open network structures and brokerage positions have long been seen as playing a crucial role in sustaining social capital and competitive advantage. The degree to which individuals intermediate between otherwise disconnected others can differ across online and offline social networks. For example, users may broker online between two others who then exchange offline the i...

  14. Multimedia Information Networks in Social Media

    Science.gov (United States)

    Cao, Liangliang; Qi, Guojun; Tsai, Shen-Fu; Tsai, Min-Hsuan; Pozo, Andrey Del; Huang, Thomas S.; Zhang, Xuemei; Lim, Suk Hwan

    The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.

  15. Brand communities embedded in social networks.

    Science.gov (United States)

    Zaglia, Melanie E

    2013-02-01

    Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers' interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes.

  16. Social networks, big data and transport planning

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Sanchez, T.; Lidon Mars Aicart, M. del; Arroyo Lopez, M.R.; Serna Nocedal, A.

    2016-07-01

    The characteristics of people who are related or tied to each individual affects her activitytravel behavior. That influence is especially associated to social and recreational activities, which are increasingly important. Collecting high quality data from those social networks is very difficult, because respondents are asked about their general social life, which is most demanding to remember that specific facts. On the other hand, currently there are different potential sources of transport data, which is characterized by the huge amount of information available, the velocity with it is obtained and the variety of format in which is presented. This sort of information is commonly known as Big Data. In this paper we identify potential sources of social network related big data that can be used in Transport Planning. Then, a review of current applications in Transport Planning is presented. Finally, some future prospects of using social network related big data are highlighted. (Author)

  17. Evolution of the social network of scientific collaborations

    Science.gov (United States)

    Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.

    2002-08-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.

  18. Information diffusion in structured online social networks

    Science.gov (United States)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  19. Content Propagation in Online Social Networks

    NARCIS (Netherlands)

    Blenn, N.

    2014-01-01

    This thesis presents methods and techniques to analyze content propagation within online social networks (OSNs) using a graph theoretical approach. Important factors and different techniques to analyze and describe content propagation, starting from the smallest entity in a network, representing a

  20. Segmentation of users of social networking websites

    NARCIS (Netherlands)

    Lorenzo-Romero, C.; Alarcon-del-Amo, M.d.C.; Constantinides, Efthymios

    2012-01-01

    The typology of networked consumers in The Netherlands presented in this study, was based on an online survey and obtained using latent segmentation analysis. This approach is based on the frequency with which users perform different activities, their sociodemographic variables, social networking

  1. Settings in Social Networks : a Measurement Model

    NARCIS (Netherlands)

    Schweinberger, Michael; Snijders, Tom A.B.

    2003-01-01

    A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive

  2. Temporal fidelity in dynamic social networks

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Sapiezynski, Piotr; Pentland, Alex ‘Sandy’

    2015-01-01

    of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution...

  3. Emergent explosive synchronization in adaptive complex networks

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  4. SOCIAL NETWORK OPTIMIZATION A NEW METHAHEURISTIC FOR GENERAL OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Hassan Sherafat

    2017-12-01

    Full Text Available In the recent years metaheuristics were studied and developed as powerful technics for hard optimization problems. Some of well-known technics in this field are: Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, and Swarm Intelligence, which are applied successfully to many complex optimization problems. In this paper, we introduce a new metaheuristic for solving such problems based on social networks concept, named as Social Network Optimization – SNO. We show that a wide range of np-hard optimization problems may be solved by SNO.

  5. The Nature Terrorism Reports on Social Networks

    Directory of Open Access Journals (Sweden)

    James Okolie-Osemene

    2015-12-01

    Full Text Available As new tools of communication, an in-depth study of social networking in the era of global terrorism is attempted in this article. This emerging tradition of information sharing is driven by social media technology which has greatly revolutionalised communication in all sectors. The article explored the information sharing relevance of new technologies in the age of terrorism and counterterrorism. It focused on how social networks are increasingly utilised by different groups. In terms of methodology, the study extracted and utilised positive, negative and neutral posts, updates, tweets and reports on social networks through different individual and organisational media accounts and blogs, and analysed the data qualitatively. Findings show that despite being used by extremist groups in promoting their political agenda, social networks are also useful in promoting positive perceptions that society has about Muslims in the era of terrorism, emphasising that Muslims are not terrorists. Through the instrumentality of social media, users are able to map the trends of terrorism and responses from stakeholders in government and security sector in curbing the menace. Given their capacity to reach a wider audience, breaking cultural and religious barriers, social networks serve as early warning signs and make it possible for people to share new ideas on possible ways of curbing the proliferation of terrorist organisations.

  6. SOCIAL NETWORKS BETWEEN ICTS AND MORAL DECADENCE

    Directory of Open Access Journals (Sweden)

    Domingo Alarcón Ortiz

    2013-07-01

    Full Text Available The paradox of social networks in organizations is that they are a very important means of formation, training, update, information and communication, but also represent a symptom of cultural decay, because with them have been provided and processes of disinformation uncontrolled distribution of malicious information, which is assaulted by people. The abuse as to upload information indiscriminately leads to pathological, anti-social and cynical time’s behaviors. As many users of social networks does not assume a code of ethics according to social needs, then its limits of performance in terms of dignity and self-respect will not operate, constitute a serious social threat, against which the appropriate response has not been generated.  To participate in social networks, people end up exposing itself to that your privacy was hurt with impunity and thereby will limit or annul the opportunity to defend their dignity, turning them into a set of highly vulnerable entities. But as there is social by joining the network pressure, the question is it worth being in these networks? If you want to stay informed and share information, raises the dilemma of to where it can and should go.

  7. Cognitive Benefits of Online Social Networking for Healthy Older Adults.

    Science.gov (United States)

    Myhre, Janelle W; Mehl, Matthias R; Glisky, Elizabeth L

    2017-09-01

    Research suggests that older adults who remain socially active and cognitively engaged have better cognitive function than those who are isolated and disengaged. This study examined the efficacy of learning and using an online social networking website, Facebook.com, as an intervention to maintain or enhance cognitive function in older adults. Forty-one older adults were assigned to learn and use Facebook (n = 14) or an online diary website (active control, n = 13) for 8 weeks or placed on a waitlist (n = 14). Outcome measures included neuropsychological tests of executive functions, memory, and processing speed and self-report questionnaires about social engagement. The Facebook group showed a significant increase in a composite measure of updating, an executive function factor associated with complex working memory tasks, compared to no significant change in the control groups. Other measures of cognitive function and social support showed no differential improvement in the Facebook group. Learning and using an online social networking site may provide specific benefits for complex working memory in a group of healthy older adults. This may reflect the particular cognitive demands associated with online social networking and/or the benefits of social engagement more generally. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Measuring Social Capital in Virtual Social Networks; Introducing Workable Indices

    Directory of Open Access Journals (Sweden)

    Hamid Abdollahian

    2013-12-01

    Full Text Available This paper will attempt to offer a set of indicators that together construct a model which will help to measure social capital among users of social networks. The world is now experiencing some new changes that are affecting conceptual equations in social sciences, two of which are of our concern here: 1- the concept of social capital that has opened its way into epistemological basis of social sciences, and; 2- the world has welcomed the birth and development of social networks in our daily life, affecting many aspects of social actions. There is Facebook from among a handful of social networks that has reached the threshold of international networking capacity with roughly one billion users. We will use Robert Putnam's theory of social capital alongside Frank's methodological innovation regarding measuring tools of social capital in order to create a marriage between these two as well as to address a yet more problematizing issue, i.e., how to measure social capital of the Facebook users. Accordingly the paper will focus on Facebook as the field of research and will introduce triangulation approach that we used in order to come up with the set of indicators. Participatory observation and online survey were used as constructing elements of triangulation approach so to generate the necessary data for the above purpose. At first, we used participatory observation through which 14 targeted samples were selected and whatever they had in their profile in Facebook were collected and analyzed. This analysis helped us to construct our questionnaire which was launched through Google docs. In the end, some 218 respondent returned their completed questionnaires. The final stage of analysis consisted of finding out how we can use the results to offer a new tool for measuring social capital of Facebook users. The research findings indicated that there are 10 indicators which should be put together if social capital is to be properly measured.

  9. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    Science.gov (United States)

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  10. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    Directory of Open Access Journals (Sweden)

    Nina So

    Full Text Available Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing

  11. Social networks and their influence over the social consciousness forming

    Directory of Open Access Journals (Sweden)

    A. G. Ananeva

    2011-09-01

    Full Text Available The article describes the analysis of social network influence on social consciousness forming. The examples of connection between international politic courses and events and blogosrheres’ virtual activity are given. Due to the analysis made, authors point at negative consequences following the information wars’ dissemination.

  12. Composition and structure of a large online social network in The Netherlands.

    Directory of Open Access Journals (Sweden)

    Rense Corten

    Full Text Available Limitations in data collection have long been an obstacle in research on friendship networks. Most earlier studies use either a sample of ego-networks, or complete network data on a relatively small group (e.g., a single organization. The rise of online social networking services such as Friendster and Facebook, however, provides researchers with opportunities to study friendship networks on a much larger scale. This study uses complete network data from Hyves, a popular online social networking service in The Netherlands, comprising over eight million members and over 400 million online friendship relations. In the first study of its kind for The Netherlands, I examine the structure of this network in terms of the degree distribution, characteristic path length, clustering, and degree assortativity. Results indicate that this network shares features of other large complex networks, but also deviates in other respects. In addition, a comparison with other online social networks shows that these networks show remarkable similarities.

  13. Composition and structure of a large online social network in The Netherlands.

    Science.gov (United States)

    Corten, Rense

    2012-01-01

    Limitations in data collection have long been an obstacle in research on friendship networks. Most earlier studies use either a sample of ego-networks, or complete network data on a relatively small group (e.g., a single organization). The rise of online social networking services such as Friendster and Facebook, however, provides researchers with opportunities to study friendship networks on a much larger scale. This study uses complete network data from Hyves, a popular online social networking service in The Netherlands, comprising over eight million members and over 400 million online friendship relations. In the first study of its kind for The Netherlands, I examine the structure of this network in terms of the degree distribution, characteristic path length, clustering, and degree assortativity. Results indicate that this network shares features of other large complex networks, but also deviates in other respects. In addition, a comparison with other online social networks shows that these networks show remarkable similarities.

  14. Data Storage for Social Networks A Socially Aware Approach

    CERN Document Server

    Tran, Duc A

    2012-01-01

    Evidenced by the success of Facebook, Twitter, and LinkedIn, online social networks (OSNs) have become ubiquitous, offering novel ways for people to access information and communicate with each other. As the increasing popularity of social networking is undeniable, scalability is an important issue for any OSN that wants to serve a large number of users. Storing user data for the entire network on a single server can quickly lead to a bottleneck, and, consequently, more servers are needed to expand storage capacity and lower data request traffic per server. Adding more servers is just one step

  15. Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory

    Directory of Open Access Journals (Sweden)

    Nai-Ru Xu

    2016-01-01

    Full Text Available The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of agile supply chain network, presents the evolutionary mechanism of agile supply chain network based on complex network theory, and uses Matlab to simulate degree distribution, average path length, clustering coefficient, and node betweenness. Simulation results show that the evolution result displays the scale-free property. It lays the foundations of further research on agile supply chain network based on complex network theory.

  16. Social media networking: Facebook and Twitter.

    Science.gov (United States)

    Schneider, Andrew; Jackson, Rem; Baum, Neil

    2010-01-01

    The new wave of marketing and practice promotion will include social media networking. This article will discuss Facebook and Twitter. After reading this article you, will have an understanding of these two important aspects of social media and how you might use Facebook and Twitter in your practice to enhance your communication with your existing patients and attract new patients.

  17. Spatial and Social Networks in Organizational Innovation

    Science.gov (United States)

    Wineman, Jean D.; Kabo, Felichism W.; Davis, Gerald F.

    2009-01-01

    Research on the enabling factors of innovation has focused on either the social component of organizations or on the spatial dimensions involved in the innovation process. But no one has examined the aggregate consequences of the link from spatial layout, to social networks, to innovation. This project enriches our understanding of how innovation…

  18. Online Social Networking: Usage in Adolescents

    Science.gov (United States)

    Raju, Nevil Johnson; Valsaraj, Blessy Prabha; Noronha, Judith

    2015-01-01

    Online social networking (OSN) has played a significant role on the relationship among college students. It is becoming a popular medium for socializing online and tools to facilitate friendship. Young adults and adolescents are the most prolific users of OSN sites. The frequent use of OSN sites results in addiction toward these sites and…

  19. College Students' Social Networking Experiences on Facebook

    Science.gov (United States)

    Pempek, Tiffany A.; Yermolayeva, Yevdokiya A.; Calvert, Sandra L.

    2009-01-01

    Millions of contemporary young adults use social networking sites. However, little is known about how much, why, and how they use these sites. In this study, 92 undergraduates completed a diary-like measure each day for a week, reporting daily time use and responding to an activities checklist to assess their use of the popular social networking…

  20. Facebook, Social Networking, and Business Education

    Science.gov (United States)

    Taylor, Steven A.; Mulligan, Jamie R.; Ishida, Chiharu

    2012-01-01

    Brown (2012) asserts that faculty perceptions of Web 2.0 for teaching will influence its adoption. For example, social media's influence on educational delivery is growing (Hrastinski and Dennon 2012). Zulu et al. (2011) note that business educators are only beginning to understand social networking related to education. We report an exploratory…