WorldWideScience

Sample records for complex sheet metal

  1. Methodology development for the sustainability process assessment of sheet metal forming of complex-shaped products

    International Nuclear Information System (INIS)

    Pankratov, D L; Kashapova, L R

    2015-01-01

    A methodology was developed for automated assessment of the reliability of the process of sheet metal forming process to reduce the defects in complex components manufacture. The article identifies the range of allowable values of the stamp parameters to obtain defect-free punching of spars trucks. (paper)

  2. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    Science.gov (United States)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  3. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  4. Horizontal electromagnetic casting of thin metal sheets

    Science.gov (United States)

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  5. Horizontal electromagnetic casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  6. Strategic surfaces in sheet metal forming

    DEFF Research Database (Denmark)

    Olsson, David Dam; Andreasen, Jan Lasson; Bay, Niels

    Out-line: Introduction to tribology in sheet metal forming Developed strategic surfaces Tribological testing of strategic surfaces Conclusion......Out-line: Introduction to tribology in sheet metal forming Developed strategic surfaces Tribological testing of strategic surfaces Conclusion...

  7. Laser welding of sheet metals

    Science.gov (United States)

    Xie, Jian

    Laser welding of sheet metals is an important application of high power lasers, and has many advantages over conventional welding techniques. Laser welding has a great potential to replace other welding technique in the car-body manufacturing because of high laser weld quality and relatively low manufacturing cost associated with the laser technique. However, a few problems related to the laser welding of sheet metals limit its applications in industries. To have a better understanding of the welding process, laser welding experimental studies and theoretical analysis are necessary. Temperature-dependent absorptivities of various metals are obtained theoretically for COsb2, COIL (Chemical Oxygen-Iodine Laser) and Nd:YAG lasers. It is found that the absorptivities for COIL and Nd:YAG lasers are 2.84 and 3.16 times higher than for the COsb2 laser, and the absorptivity increases with increasing temperature of the metals. Surface roughness and oxide films can enhance the absorption significantly. The reflectivity of as-received steel sheets decreases from 65-80% to 30-40% with surface oxide films for COsb2 lasers. Laser welding experiments show that the tensile strengths of the weld metals are higher than the base metals. For samples with surface oxide films, the oxygen concentration in the weld metals is found to be higher than in the specimens without oxidation, and the toughness of the weld metals is degraded. When steel powders are added to bridge the gap between two sheets, the oxygen content in the weld metals decreases and the toughness increases. A mathematical model is developed for the melt depth due to a stationary laser beam. The model results show that the melt depth increases rapidly with time at the beginning of laser irradiation and then increases slowly. Also, the melt depth is found to increase rapidly with laser intensities and then increases slowly for higher intensity. The average rate of melting and the times to reach the melting and boiling

  8. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  9. Simulation of stationary sheet metal cutting processes

    NARCIS (Netherlands)

    Wisselink, H.H.; Huetink, Han

    1998-01-01

    In stationary sheet metal cutting processes, like guillotining and slitting, the sheet is cut progressively from one end to the other. This in contrary with transient processes (blanking) where the sheet is cut at once. Where transient shearing processes can be modelled in 2-D (plain strain or

  10. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  11. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  12. Ultrasonic imaging of sheet metal forming.

    Science.gov (United States)

    Keitmann-Curdes, Oliver; Hansen, Christian; Knoll, Patrick; Meier, Horst; Ermert, Helmut

    2004-04-01

    With sheet metal hydroforming, a sheet metal is formed by a liquid medium under high pressure (up to 1000 bar) and a cavity contour (die). As the exact state of forming is of interest, an ultrasonic imaging system is under development. The task is to determine the geometry of a sheet metal contour with respect to the original (before forming) and the final (die) state of the sheet metal. For this purpose, two different contour reconstruction algorithms were designed, tested and compared. With the reconstruction results it will be possible to determine the optimal distribution of transmitters and receivers in the ultrasonic transducer matrix. Experiments were conducted with one pair of transducers (unfocussed, center frequency 2 MHz) and a three axis stepper motor set-up. For each experimental set of data, the contour was reconstructed with both SAFT reconstruction algorithms. Both algorithms incorporate a priori information such as original and final contour and maximal axial dislocation of the sheet metal. The results for both algorithms are compared and the relative mean error in axial direction is 0.30% and 0.48%.

  13. Assembly for testing weldability of sheet metal

    Science.gov (United States)

    David, S.A.; Woodhouse, J.J.

    A test assembly for determining the weldability of sheet metal includes (1) a circular plate having an annular groove in one side thereof, a counterbore being formed in the outer wall of said groove and the surface portion of said base circumscribed by the inner wall of said groove being coplanar with the bottom of said counterbore, (2) a test disk of sheet metal the periphery of which is positioned in said counterbore and the outer surface of which is coplanar with said one side of said base, and (3) means for holding the periphery of said test disk against the bottom of said counterbore.

  14. Research on Computer Integrated Manufacturing of Sheet Metal Parts for Lithium Battery

    Directory of Open Access Journals (Sweden)

    Pan Wei-Min

    2016-01-01

    Full Text Available Lithium battery has been widely used as the main driving force of the new energy vehicle in recent years. Sheet metal parts are formed by means of pressure forming techniques with the characteristics of light weight, small size and high structural strength. The sheet metal forming has higher productivity and material utilization than the mechanical cutting, therefore sheet metal parts are widely used in many fields, such as modern automotive industry, aviation, aerospace, machine tools, instruments and household appliances. In this paper, taking a complex lithium battery box as an example, the integrated manufacturing of sheet metal parts is studied, and the digital integrated design and manufacturing process system is proposed. The technology is studied such as sheet metal design, unfolding, sheet nesting and laser cutting, CNC turret punch stamping programming, CNC bending etc. The feasibility of the method is verified through the examples of products and the integrated manufacturing of sheet metal box is completed.

  15. Lubricant failure in sheet metal forming processes

    NARCIS (Netherlands)

    van der Heide, Emile

    2002-01-01

    The application of tribology to sheet metal forming processes (SMF) contributes to a general industrial aim i.e., to make products of high quality at an increasingly competitive way, by enhancing the tool life and maintaining a constant level of friction during forming. Both aspects are served by

  16. Electromagnetic augmentation for casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  17. Sheet-bulk metal forming – forming of functional components from sheet metals

    Directory of Open Access Journals (Sweden)

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  18. Lubricant Test Methods for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2008-01-01

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...... appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has...

  19. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  20. Process control for sheet-metal stamping process modeling, controller design and shop-floor implementation

    CERN Document Server

    Lim, Yongseob; Ulsoy, A Galip

    2014-01-01

    Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shopfloor deployment are presented along with ideas for further...

  1. Stiffness management of sheet metal parts using laser metal deposition

    Science.gov (United States)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  2. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  3. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  4. FEM Analysis on Electromagnetic Processing of Thin Metal Sheets

    Directory of Open Access Journals (Sweden)

    PASCA Sorin

    2014-10-01

    Full Text Available Based on finite element analysis, this paper investigates a possible new technology for electromagnetic processing of thin metal sheets, in order to improve the productivity, especially on automated manufacturing lines. This technology consists of induction heating process followed by magnetoforming process, both applied to metal sheet, using the same tool coil for both processes.

  5. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Kiridena, Vijitha [Ford Scientific Research Lab., Dearborn, MI (United States); Verma, Ravi [Boeing Research and Technology (BR& T), Seattle, WA (United States); Gutowski, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Roth, John [Pennsylvania State Univ., University Park, PA (United States)

    2018-03-31

    The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, is a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.

  6. Modeling of Sandwich Sheets with Metallic Foam

    International Nuclear Information System (INIS)

    Mata, H.; Jorge, R. Natal; Fernandes, A. A.; Parente, M. P. L.; Santos, A.; Valente, R. A. F.

    2011-01-01

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  7. Deglaciation of the Eurasian ice sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of

  8. Tribo-systems for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels

    2009-01-01

    The present paper gives an overview of more than 10 years work by the author’s research group through participation in national as well as international framework programmes on developing and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners ......’s research group has especially been involved in the development of a system of tribo-tests for sheet metal forming and in testing and modelling of friction and limits of lubrication of new, environmentally friendly lubricants and tool materials.......The present paper gives an overview of more than 10 years work by the author’s research group through participation in national as well as international framework programmes on developing and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners...... in the programmes come from Germany, United Kingdom, Finland, Poland, Slovenia, Spain and Denmark. They represent lubricant developers, testing experts and industrial end users as well as numerical modelling experts simulating fundamental lubrication mechanisms and computing basic process parameters. The author...

  9. Variation simulation for compliant sheet metal assemblies with applications

    Science.gov (United States)

    Long, Yufeng

    Sheet metals are widely used in discrete products, such as automobiles, aircraft, furniture and electronics appliances, due to their good manufacturability and low cost. A typical automotive body assembly consists of more than 300 parts welded together in more than 200 assembly fixture stations. Such an assembly system is usually quite complex, and takes a long time to develop. As the automotive customer demands products of increasing quality in a shorter time, engineers in automotive industry turn to computer-aided engineering (CAE) tools for help. Computers are an invaluable resource for engineers, not only to simplify and automate the design process, but also to share design specifications with manufacturing groups so that production systems can be tooled up quickly and efficiently. Therefore, it is beneficial to develop computerized simulation and evaluation tools for development of automotive body assembly systems. It is a well-known fact that assembly architectures (joints, fixtures, and assembly lines) have a profound impact on dimensional quality of compliant sheet metal assemblies. To evaluate sheet metal assembly architectures, a special dimensional analysis tool need be developed for predicting dimensional variation of the assembly. Then, the corresponding systematic tools can be established to help engineers select the assembly architectures. In this dissertation, a unified variation model is developed to predict variation in compliant sheet metal assemblies by considering fixture-induced rigid-body motion, deformation and springback. Based on the unified variation model, variation propagation models in multiple assembly stations with various configurations are established. To evaluate the dimensional capability of assembly architectures, quantitative indices are proposed based on the sensitivity matrix, which are independent of the variation level of the process. Examples are given to demonstrate their applications in selecting robust assembly

  10. Adaptive numerical analysis of wrinkling in sheet metal forming

    NARCIS (Netherlands)

    Selman, A.; Meinders, Vincent T.; van den Boogaard, Antonius H.; Huetink, Han

    2003-01-01

    Hutchinson approach has been successfully used by a number of researchers in thin sheet metal forming processes for wrinkling prediction. However, Hutchinson approach is limited to regions of the sheet that are free of any contact. Therefore, a new wrinkling indicator that can be used in the contact

  11. Working with Design: A Package for Sheet Metal

    Science.gov (United States)

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  12. Analytical study for deformability of laminated sheet metal

    Directory of Open Access Journals (Sweden)

    Mohammed H. Serror

    2013-01-01

    Full Text Available While a freestanding high-strength sheet metal subject to tension will rupture at a small strain, it is anticipated that lamination with a ductile sheet metal will retard this instability to an extent that depends on the relative thickness, the relative stiffness, and the hardening exponent of the ductile sheet. This paper presents an analytical study for the deformability of such laminate within the context of necking instability. Laminates of high-strength sheet metal and ductile low-strength sheet metal are studied assuming: (1 sheets are fully bonded; and (2 metals obey the power law material model. The effect of hardening exponent, volume fraction and relative stiffness of the ductile component has been studied. In addition, stability of both uniform and nonuniform deformations has been investigated under plane strain condition. The results have shown the retardation of the high-strength layer instability by lamination with the ductile layer. This has been achieved through controlling the aforementioned key parameters of the ductile component, while the laminate exhibits marked enhancement in strength–ductility combination that is essential for metal forming applications.

  13. Analytical study for deformability of laminated sheet metal.

    Science.gov (United States)

    Serror, Mohammed H

    2013-01-01

    While a freestanding high-strength sheet metal subject to tension will rupture at a small strain, it is anticipated that lamination with a ductile sheet metal will retard this instability to an extent that depends on the relative thickness, the relative stiffness, and the hardening exponent of the ductile sheet. This paper presents an analytical study for the deformability of such laminate within the context of necking instability. Laminates of high-strength sheet metal and ductile low-strength sheet metal are studied assuming: (1) sheets are fully bonded; and (2) metals obey the power law material model. The effect of hardening exponent, volume fraction and relative stiffness of the ductile component has been studied. In addition, stability of both uniform and nonuniform deformations has been investigated under plane strain condition. The results have shown the retardation of the high-strength layer instability by lamination with the ductile layer. This has been achieved through controlling the aforementioned key parameters of the ductile component, while the laminate exhibits marked enhancement in strength-ductility combination that is essential for metal forming applications.

  14. Capabilities of Using Fem in Sheet-Metal Forming

    Directory of Open Access Journals (Sweden)

    Korga S.

    2016-06-01

    Full Text Available The aim of this study was to determine and select boundary conditions of modeling and FEM simulation for plastic processing on the example of sheet-metal forming. For sheet-metal deformation analysis, Deform 3D has been used. The study presents research methods for real and virtual conditions. There are also described common features and these differentiating obtained results. Research of conducted process of sheet-metal forming allows to determine the effectiveness of computer research methods. The finite-element method can be used as an effective tool for the study of plastic processing phenomena considering various operating conditions of individual elements provided the appropriate tools for FEM analysis.

  15. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer ......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  16. Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Dekkers, E.C.A.; Geers, M.G.D.

    2012-01-01

    While the industrial interest in sheet metal with improved specific-properties led to the design of new alloys with complex microstructures, predicting their safe forming limits and understanding their microstructural deformation mechanisms remain as significant challenges largely due to the

  17. A System of Test Methods for Sheet Metal Forming Tribology

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2007-01-01

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...

  18. Accounting for material scatter in sheet metal forming simulations

    NARCIS (Netherlands)

    Wiebenga, J.H.; Atzema, E.H.; Atzema, E.H.; Boterman, R.; Abspoel, M.; van den Boogaard, Antonius H.; Hora, P.

    2013-01-01

    Robust design of forming processes is gaining attention throughout the industry. To analyze the robustness of a sheet metal forming process using Finite Element (FE) simulations, an accurate input in terms of parameter variation is required. This paper presents a pragmatic, accurate and economic

  19. Wrinkling in Sheet metal Forming: Experimental Testing vs. numerical Analysis

    NARCIS (Netherlands)

    Selman, A.; Atzema, Eisso H.; Meinders, Vincent T.; van den Boogaard, Antonius H.; Huetink, Han

    2003-01-01

    Following a number of publications on numerical prediction of wrinkling in thin sheet metal forming, the present part of our work is devoted to the comparison of numerical results with those obtained through experimental testing. A number of hemispherical product samples have been used with various

  20. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    Science.gov (United States)

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  1. Fuzzy set theory applied to bend sequencing for sheet metal

    NARCIS (Netherlands)

    Ong, S.K.; de Vin, L.J.; de Vin, L.J.; Nee, A.Y.C.; Kals, H.J.J.

    1997-01-01

    Brake forming is widely applied in the high variety and small batch part manufacturing of sheet metal components, for the bending of straight bending lines. Currently, the planning of the bending sequences is a task that has to be performed manually, involving many heuristic criteria. However,

  2. Bifurcation Instability of sheet metal during spring-back

    Science.gov (United States)

    Kim, Jong-Bong; Yang, Dong-Yol; Yoon, Jeong Whan

    2013-05-01

    In automotive and home appliance industries, there are many complex-shaped sheet metal components which need to be fabricated in multiple stamping operations. For example, the manufacturing of an outer case of washing machine consists of stamping followed by a bending operation. After the first stage of the stamping process, a large amount of spring-back takes place, and therefore, it is difficult to proceed to the next stage of the bending process. In the stamping process of that kind of sheet component with low geometric constraint, the forming area is large compared to the forming depth. Therefore, the formed part is in an unstable state and is less geometrically constrained, which causes a large amount of spring-back. To investigate this phenomenon, finite element analyses are carried out. During a spring-back analysis after forming, bifurcation takes place and the finite element solution procedure using the Newton-Raphson scheme becomes unstable. To get a stable post-bifurcation solution, a bifurcation algorithm is introduced at the bifurcation point. The deformed shapes obtained from finite element analyses are in good agreement with the experimental data. From this study, it is shown that the bifurcation behaviour enlarges the spring-back and the degree of dimensional error. To obtain additional possible post-bifurcation solutions, non-bifurcation analyses using initial guesses obtained in a modal analysis are carried. For the initial guesses, lowed four eigenmodes are utilized. Finally, the post-bifurcation behaviour and spring-back amount are investigated for various process parameters including the forming depth, punch width and corner radius.

  3. Electrochemical analysis of metal complexes

    NARCIS (Netherlands)

    Jong, de H.G.

    1987-01-01

    The present study is concerned with the electroanalytical chemistry of complexes of metals with large ligands. The main purpose was to develop quantitative descriptions of the voltammetric current-potential relation of metal complex systems with different diffusion coefficients of the

  4. Testing of environmentally friendly lubricants for sheet metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2005-01-01

    the authors have especially been involved in the development of a system of test methods for sheet metal forming and in testing of friction and limits of lubrication of new, environmentally friendly lubricants. An overview of the developed tests is presented together with selected results....... Kingdom, Finland, Poland, Slovenia, Spain and Denmark. Partners in the programmes represent lubricant developers, testing experts and industrial end users as well as numerical modelling experts simulating fundamental lubrication mechanisms and computing basic process parameters. In these programmes...

  5. Liquid lubrication in sheet metal forming at mesoscopic scale

    DEFF Research Database (Denmark)

    Hubert, C.; Dubar, L.; Bay, Niels

    2012-01-01

    The lubricant entrapment and escape phenomena in metal forming are studied experimentally as well as numerically. Experiments are carried out in strip reduction of aluminium sheet applying a transparent die to study the fluid flow between mesoscopic cavities. The numerical strategy is based...... on a weak fluid/structure coupling involving the Finite Element Method and analytical calculations. It allows to quantify the final shape of the lubricant pockets...

  6. Metal complexes of phosphinic acids

    International Nuclear Information System (INIS)

    Das, P.N.M.; Kuchen, W.; Keck, H.; Haegele, G.

    1977-01-01

    Pr(III), Nd(III) and Eu(III) complexes of dimethyldithiophosphinic acid have been prepared. Their properties and structures have been studied using elemental analysis, molecular weight determination, IR, UV, mass, NMR, magnetic studies, etc. It is found that these metals form neutral complexes of the type ML 3 where L is a deprotonated bidentate dimethyldithiophosphinic acid molecule. The coordination number exhibited by these metals in this case is six. Octahedral structures have been assigned to these complexes. (author)

  7. Die Deformation Measurement System during Sheet Metal Forming

    Science.gov (United States)

    Funada, J.; Takahashi, S.; Fukiharu, H.

    2011-08-01

    In order to reduce affection to the earth environment, it is necessary to lighten the vehicles. For this purpose, high tensile steels are applied. Because of high strength, high forming force is required for producing automotive sheet metal parts. In this situation, since the dies are elastic, they are deformed during forming parts. For reducing die developing period, sheet metal forming simulation is widely applied. In the numerical simulation, rigid dies are usually used for shortening computing time. It means that the forming conditions in the actual forming and the simulation are different. It will make large errors in the results between actual forming and simulation. It can be said that if contact pressure between dies and a sheet metal in the simulation can be reproduced in the actual forming, the differences of forming results between them can also been reduced. The basic idea is to estimate die shape which can produce the same distribution as computed from simulation with rigid dies. In this study, die deformation analyses with Finite Element Method as basic technologies are evaluated. For example, simple shape and actual dies elastic contact problems were investigated. The contact width between simple shape dies was investigated. The computed solutions were in good agreement with experimental results. The one case of the actual dies in two cases was also investigated. Bending force was applied to the blank holder with a mechanical press machine. The methodology shown with applying inductive displacement sensor for measuring die deformation during applying force was also proposed.

  8. Mesh refinement study and experimental validation for stretch bending of sheet metals

    Science.gov (United States)

    Raupach, M.; Kreissl, S.; Vuaille, L.; Möller, T.; Friebe, H.; Volk, W.

    2017-09-01

    For sheet metal parts with small radii and large bending angles, the sheet metal forming simulation reaches their application limits. Alternatives are complex shell formulations and volume elements. For volume elements, the necessary number of elements over the thickness is important. Valid values are not available depending on discrete radii. Therefore in this work, a convergence study is performed using the example of an angular stretch bend test with a radius to thickness ratio of 1. For various states of mesh refinement, simulations are performed, various results are presented, analysed and discussed with regard to convergence behaviour to the necessary number of elements in thickness direction. Recommendations for suitable validation variables are derived. Based on the refinement study, a simulation model for an experimental validation is developed. The experiments are carried out in a sheet metal forming machine. Experimental angular stretch bend test with a punch radius of 1 mm are performed until failure and the strain distribution on the top side of the sheet is measured. Finally, simulation and experiments are compared based on the surface strain.

  9. Complex metal hydrides

    DEFF Research Database (Denmark)

    Ley, Morten Brix

    2014-01-01

    og batterier de to mest lovende energibærere til mobile applikationer. Komplekse metalhydrider er blevet undersøgt i vid udstrækning over de sidste tyve år, siden de gravimetrisk og volumetrisk kan indeholde store mængder brint. Derfor er metal borhydrider velegnet til faststofopbevaring af brint...

  10. Shape measurement in sheet metal formation: requirements and solutions

    Science.gov (United States)

    Hoefling, Roland; Aswendt, Petra; Neugebauer, Reimund

    1999-09-01

    Basically, optical profilometry has a wide spread application potential in sheet metal forming starting at the design stage when models have to be digitized, followed by needs for shape acquisition in tooling technology, and finally in on-line testing during mass production. In particular, deep-drawing of car body components and surface structures of aircrafts put high demands on metrology. In the past, a number of restrictions caused application limits of optical 3D sensing in this field. The paper will show, that object size greater than 1 m, measuring time less than 1 s, vertical resolution less than 10-4 of object size and the capability to work on shining, oil-covered metallic surfaces are key criteria for industrial applications. New approaches are described addressing these practical needs. Based upon high brightness, high contrast pixel by pixel projection equipment (Digital Micromirror Device of Texas Instruments Inc.), algorithms have been developed and tested that meet the objectives named above. Multilevel adaption generates near-to- perfect sinusoidal fringes across the field of view and advanced phase analysis improves both, measuring accuracy and reliability of operation. Fast data acquisition has been obtained by development of sophisticated synchronization hardware. An application example will be given showing surface structures on a large sheet metal part at two different scales of height.

  11. Testing of Lubricant Performance in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Friis, Kasper Leth

    2008-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. The problems are especially pronounced, when forming tribologically...... and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners in the programmes come from Germany, United Kingdom, Finland, Poland, Slovenia, Spain and Denmark. They represent lubricant developers, testing experts and industrial end users as well as numerical...

  12. Numerical Prediction of Springback Shape of Severely Bent Sheet Metal

    International Nuclear Information System (INIS)

    Iwata, Noritoshi; Murata, Atsunobu; Yogo, Yasuhiro; Tsutamori, Hideo; Niihara, Masatomo; Ishikura, Hiroshi; Umezu, Yasuyoshi

    2007-01-01

    In the sheet metal forming simulation, the shell element widely used is assumed as a plane stress state based on the Mindlin-Reissner theory. Numerical prediction with the conventional shell element is not accurate when the bending radius is small compared to the sheet thickness. The main reason is because the strain and stress formulation of the conventional shell element does not fit the actual phenomenon. In order to predict precisely the springback of a bent sheet with a severe bend, a measurement method for through-thickness strain has been proposed. The strain was formulated based on measurement results and calculation results from solid element. Through-thickness stress distribution was formulated based on the equilibrium. The proposed shell element based on the formulations was newly introduced into the FEM code. The accuracy of this method's prediction of the springback shape of two bent processes has been confirmed. As a result, it was found that the springback shape even in severe bending can be predicted with high accuracy. Moreover, the calculation time in the proposed shell element is about twice that in the conventional shell element, and has been shortened to about 1/20 compared to a solid element

  13. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    Science.gov (United States)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  14. Research on Computer Integrated Manufacturing of Sheet Metal Parts for Lithium Battery

    OpenAIRE

    Pan Wei-Min; Li Guo-Hua; Li Meng-Han

    2016-01-01

    Lithium battery has been widely used as the main driving force of the new energy vehicle in recent years. Sheet metal parts are formed by means of pressure forming techniques with the characteristics of light weight, small size and high structural strength. The sheet metal forming has higher productivity and material utilization than the mechanical cutting, therefore sheet metal parts are widely used in many fields, such as modern automotive industry, aviation, aerospace, machine tools, instr...

  15. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    Science.gov (United States)

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-01

    One way to reduce the CO2 emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensive door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.

  16. Formability models for warm sheet metal forming analysis

    Science.gov (United States)

    Jiang, Sen

    Several closed form models for the prediction of strain space sheet metal formability as a function of temperature and strain rate are proposed. The proposed models require only failure strain information from the uniaxial tension test at an elevated temperature setting and failure strain information from the traditionally defined strain space forming limit diagram at room temperature, thereby featuring the advantage of offering a full forming limit description without having to carry out expensive experimental studies for multiple modes of deformation under the elevated temperature. The Power law, Voce, and Johnson-Cook hardening models are considered along with the yield criterions of Hill's 48 and Logan-Hosford yield criteria. Acceptable correlations between the theory and experiment are reported for all the models under a plane strain condition. Among all the proposed models, the model featuring Johnson-Cook hardening model and Logan-Hosford yield behavior (LHJC model) was shown to best correlate with experiment. The sensitivity of the model with respect to various forming parameters is discussed. This work is significant to those aiming to incorporate closed-form formability models directly into numerical simulation programs for the purpose of design and analysis of products manufactured through the warm sheet metal forming process. An improvement based upon Swift's diffuse necking theory, is suggested in order to enhance the reliability of the model for biaxial stretch conditions. Theory relating to this improvement is provided in Appendix B.

  17. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    International Nuclear Information System (INIS)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph; Sommitsch, Christof; Feuerhuber, Hannes

    2010-01-01

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  18. Separations in Communication Complexity Using Cheat Sheets and Information Complexity

    NARCIS (Netherlands)

    A. Anshu (Anurag); A. Belovs (Aleksandr); S. Ben-David (Shalev); M. Goos (Mika); R. Jain (Rahul); R. Kothari (Robin); T. J. Lee (Troy); M. Santha (Miklos)

    2016-01-01

    textabstractWhile exponential separations are known between quantum and randomized communication complexity for partial functions (Raz, STOC 1999), the best known separation between these measures for a total function is quadratic, witnessed by the disjointness function. We give the first

  19. Transition Metal Complexes and Catalysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Transition Metal Complexes and Catalysis. Balaji R Jagirdar. General Article Volume 4 Issue 9 ... Author Affiliations. Balaji R Jagirdar1. Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  20. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  1. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  2. Automotive Body Sheet Metal Maintenance II; Auto Body Repair and Refinishing 2: 9035.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The automotive body sheet metal maintenance course is an advanced course in sheet metal techniques and emphasizes the perfection of skills in sheetmetal repair and fabrication techniques. This nine week course (135 clock hours) provides the learner with a variety of experiences and supplies him with general information, technical knowledge, basic…

  3. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation

    Science.gov (United States)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2017-01-01

    In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.

  4. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    Science.gov (United States)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  5. Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation

    International Nuclear Information System (INIS)

    Dilip Kumar, K.; Appukuttan, K.K.; Neelakantha, V.L.; Naik, Padmayya S.

    2014-01-01

    Highlights: • The spring back and thinning effect during L-bending was determined on aluminum sheet. • Beyond a particular clearance, the above said effects are linearly increasing. • Below the critical clearance scratches will occur on the surface due to wear. • As the clearance reduces, the wear rate increases on the punching surface. - Abstract: In automotive industry, significant efforts are being put forth to replace steel sheets with aluminum sheets for various applications. Besides its higher cost, there are several technical hurdles for wide usage of aluminum sheets in forming. Major problems in aluminum sheet metal forming operations are deformation errors and spring back effect. These problems are dependent on the number of parameters such as die and tool geometry, friction condition, loading condition and anisotropic properties of the metal. To predict the exact shape, the geometry based punch contact program must be used. The shape changes once the punch is withdrawn, because of the materials elasticity. Prediction of such a spring back effect is a major challenging problem in industry involving sheet metal forming operations. It also needs applying appropriate back tension during the forming complex shapes. Slight deformation of the metal leads to non-axisymmetric loading. One can predict the residual stress by determining plastic and elastic deformation. Thus appropriate spring back effect can be investigated. The present investigation was carried out to determine the spring back and thinning effect of aluminum sheet metal during L-bending operation. Number of specimens with thickness varying from 0.5 mm to 3.5 mm were prepared. The experiments were conducted for different clearances between punch and die. It is observed that, beyond a particular clearance for each thickness of the sheet metal, the spring back and thinning effects were linearly increasing. However, below the critical clearance, scratches on the surface of the sheet metal were

  6. Strategy to prevent surface deflections for automotive sheet metal parts

    Science.gov (United States)

    Weinschenk, A.; Volk, W.

    2017-09-01

    Surface deflections are undesirable in automotive outer panels because they disturb their visual appearance. As a consequence, the geometry of the deep drawing tool is manually adjusted during tryout until the produced parts do not display any surface deflections. The aim of this paper is to reduce this time-consuming and cost-intensive tryout by slightly changing the geometry of the tool in an early state of the product development process to lower the risk of surface deflections. Therefore, this paper shows the influence of geometrical parameters of the deep drawing tool on the occurrence of surface deflections. A multiple curved outer panel with a door handle depression is chosen for the investigation. Typically, so-called “teddy bear ears” occur around the depression. The sheet metal material AA6016 with a sheet thickness of 1.0 mm is used. Numerical simulations of the draw operation and springback are performed in AutoForm. An analysis of the curvature before and after springback is used to detect surface deflections. The influence of the stresses and curvatures on the appearance of surface deflections is analyzed. For the experimental validation, stoning is used to detect surface deflections on a physical part. A very good agreement between the numerical and experimental results was obtained. The results show that the existence of surface deflections strongly depends on the initial curvature of the part and the appearance depends on the distribution of minor stresses. It is possible to reduce the risk of surface deflections during the design phase by changing the geometry.

  7. Review on progressive microforming of bulk metal parts directly using sheet metals (Keynote Paper

    Directory of Open Access Journals (Sweden)

    Fu M.W.

    2015-01-01

    Full Text Available Due to the ubiquitous trend of product miniaturization, energy saving and weight reduction, micro/meso-scale parts have been widely used in many industrial clusters. Micromanufacturing processes for production of such micro/meso-scale parts are thus critically needed. Microforming, as one of these micro manufacturing processes, is a promising process and thus got many explorations and researches. Compared with the research on size effect affected deformation behaviours, less attention has been paid to the process development for mass production of micro-parts. The product quality and fabrication productivity of micro-parts depend on the involved process chain. To address the difficulty in handling and transporting of the micro-sized workpiece, development of a progressive microforming process for directly fabricating bulk micro-parts using sheet metals seems quite promising as it avoids or facilitates billet handling, transportation, positioning, and ejection in the process chain. In this paper, an intensive review on the latest development of progressive microforming technologies is presented. First of all, the paper summarizes the characteristic of progressive microforming directly using sheet metal. The size effect-affected deformation behaviour and the dimensional accuracy, deformation load, ductile fracture, and the surface finish of the microformed parts by progressive microforming using sheet metals are then presented. Finally, some research issues from the implementation of mass production perspective are also discussed.

  8. Experimental Investigation of Frictional Resistances in the Drawbead Region of the Sheet Metal Forming Processes

    Science.gov (United States)

    Trzepiecinski, T.; Fejkiel, R.; Lemu, H. G.

    2017-11-01

    Drawbeads are used in sheet metal forming to restrain the sheet from flowing freely into die cavity, especially in the case of forming unsymmetrical drawpieces. This process is necessary to produce an optimal stamped part without wrinkles and cracks. In this paper, a special tribological simulator is used to evaluate the frictional resistances during flowing the sheet through the circular shape bead. The tests were conducted on DC04 carbon steel sheets with a sheet thickness of 0.8 mm. Experiments were carried out at different process parameters: friction conditions, specimen widths, heights and surface roughness of drawbead. The results obtained in the drawbead friction test show that the value of friction coefficient depends on the width of the sample. The character of sheet deformation during bending and reverse bending on the sheet thickness over the drawbead changes the surface topography and real contact area of sheet and tool.

  9. Numerical investigation of blanking for metal polymer sandwich sheets

    Directory of Open Access Journals (Sweden)

    Gutknecht Florian

    2016-01-01

    Full Text Available Metal polymer sandwich sheets consist of materials with drastically different mechanical properties. Due to this fact and because of high local gradients in the cutting zone during the blanking process, traditional process strategies and empirical knowledge are difficult to apply. A finite-element simulation of the shear cutting process is used to predict the necessary force and the geometry of the cutting surface. A fully-coupled ductile damage model is used for the description of the material behaviour. This model considers the influence of shear and compression-dominated stress states on the initiation of damage. Experimental tensile and compression test data is used for the identification of material parameters. The results of the blanking simulation are compared with experimental data. Furthermore, the evolution of the stress state is analysed to gain understanding of the underlying physics. Finally this model enables the prediction of core compression and other quantities such as the acting stresses and corresponding triaxilities, which provide valuable information for the development of analytical models.

  10. Elastoplastic properties of transversely isotropic sintered metal fiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, T.F. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics and Center for Nano and Micro Mechanics, AML, Tsinghua University, Beijing 100084 (China); Deng, Z.C. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116024 (China)

    2016-04-26

    Sintering of layered metal fiber sheets produces a structured, tunable, paper-like material that holds promise for thermal and biomaterial applications. Particularly promising for these areas is a material system synthesized by the sequential-overlap method, which produces a networked, transversely isotropic open cell porous material. Engineering application of these materials has been limited due in part to uncertainty about their mechanical responses. Here, we present a comprehensive structural and mechanical characterization of these materials, and define a modeling framework suitable for engineering design. X-ray tomography revealed a layered structure with an isotropic fiber distribution within each layer. In-plane uniaxial compression and tension tests revealed a linear dependence of Young's modulus and yield strength upon relative fiber density. Out-of-plane tests, however, revealed much lower Young's modulus and strength, with quartic and cubic dependence upon relative density, respectively. Fiber fracture was the dominant mode of failure for tension within the “in-plane” directions of the fiber layers, and fiber decohesion was the dominant mode of failure for tension applied in the “out-of-plane” direction, normal to the layers. Models based upon dispersions of beams predicted both in-plane and out-of-plane elastoplastic properties as a function of the relative density of fibers. These models provide a foundation for mechanical design with and optimization of these materials for a broad range of potential applications.

  11. Tool Monitoring and Electronic Event Logging for Sheet Metal Forming Processes

    Directory of Open Access Journals (Sweden)

    Gerd Heiserich

    2010-06-01

    Full Text Available This contribution describes some innovative solutions regarding sensor systems for tool monitoring in the sheet metal industry. Autonomous and tamper-proof sensors, which are integrated in the forming tools, can detect and count the strokes carried out by a sheet metal forming press. Furthermore, an electronic event logger for documentary purposes and quality control was developed. Based on this technical solution, new business models such as leasing of sheet metal forming tools can be established for cooperation among enterprises. These models allow usage-based billing for the contractors, taking the effectively produced number of parts into account.

  12. PHYSICAL BASES OF SYSTEMS CREATION FOR MAGNETIC-IMPULSIVE ATTRACTION OF THIN-WALLED SHEET METALS

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2009-01-01

    Full Text Available The work is dedicated to the physical base of systems creating for the thin-walled sheet metals magnetic pulse attraction. Some practical realization models of the author’s suggestions are represented.

  13. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    Science.gov (United States)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  14. Elaboration of the technology of forming a conical product of sheet metal

    Directory of Open Access Journals (Sweden)

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  15. Research on Liquid Forming Process of Nickel Superalloys Thin Sheet Metals

    Directory of Open Access Journals (Sweden)

    Hyrcza-Michalska M.

    2017-12-01

    Full Text Available The paper presents the study of drawability of thin sheet metals made of a nickel superalloy Inconel type. The manufacturing process of axisymmetric cup – cone and a closed section profile in the form of a circular tube were designed and analyzed. In both cases, working fluid-oil was used in place of the rigid tools. The process of forming liquid is currently the only alternative method for obtaining complex shapes, coatings, and especially if we do it with high-strength materials. In the case of nickel superalloys the search for efficient methods to manufacture of the shaped shell is one of the most considerable problems in aircraft industry [1-5]. However, the automotive industries have the same problem with so-called advanced high-strength steels (AHSS. Due to this, both industrial problems have been examined and the emphasis have been put on the process of liquid forming (hydroforming. The study includes physical tests and the corresponding numerical simulations performed, using the software Eta/Dynaform 5.9. Numerical analysis of the qualitative and quantitative forecasting enables the formability of materials with complex and unusual characteristics of the mechanical properties and forming technology. It has been found that only the computer aided design based on physical and numerical modeling, makes efficient plastic processing possible using a method of hydroforming. Drawability evaluation based on the determination of the mechanical properties of complex characteristics is an indispensable element of this design in the best practice of industrial manufacturing products made of thin sheet metals.

  16. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    DEFF Research Database (Denmark)

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.

    2014-01-01

    Significance We present the first detailed reconstruction of surface elevation changes of the Greenland Ice Sheet from NASA’s laser altimetry data. Time series at nearly 100,000 locations allow the characterization of ice sheet changes at scales ranging from individual outlet glaciers to larger...

  17. Bending Properties of Sandwich Beams with Fiber Metal Laminate Face Sheet

    Directory of Open Access Journals (Sweden)

    Mostafa Sabzikar Boroujerdy1

    2013-01-01

    Full Text Available Sandwich structures are widely used in aerospace, high speed trains and marine applications because of lightweight and high in-plane and flexural stiffness. Sandwich structures consist of two thin face sheets and a core. Face sheets usually are made from highly stiff and highly strong materials; In general, the face sheets may be of different metal or composite layers. Both metal and composite face sheets have advantages and disadvantages, and searching for new materials with better properties is in progress. In this paper flexural behavior of a new generation sandwich beams with fiber metal laminate (FML face sheets were investigated experimentally. Three groups of specimens with different layer arrangements of face sheets consist of (Al/GE (0-90/GE(90-0/Al, (Al/GE(0-90/Al/GE(90-0 and (GE(0-90-0-90-90-0-90-0 and 40 kg/m3 polyurethane foam core were made and tested. The results show that sandwich beams with FML face sheets have better resistance against local loads, while composite faces are weak against intense loads. Also, FML faces are lighter than metal face sheets and have better connection to foam core. Also, a simple classical theory was used to predict the force-deflection behaviour of sandwich beams in elastic region. Good agreement between the experimental results and analytical prediction were obtained. Sandwich beams with FML face sheets have larger elastic region than beams with composite face sheets therefore agreement between the analytical and experimental results in these specimens are in larger area.

  18. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  19. 75 FR 15741 - Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of...

    Science.gov (United States)

    2010-03-30

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,630] Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of Investigation Pursuant to Section 223... on July 13, 2009 on behalf of workers of Steel Metal Workers International Association, Local 292...

  20. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface ...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear.......The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface...... finish, material pick-up has traditionally been reduced, but some surface preparations withstand adhesive wear better. To investigate the effect on galling performance of different surface preparations lubricated tests have been performed using a strip reduction rig. Two different tool materials, Vancron...

  1. Polyoxometalate coordinated transition metal complexes as ...

    Indian Academy of Sciences (India)

    Keywords. Heptamolybdate type polyoxometalate cluster anion; transition metal coordination complexes; ... industrial chemistry. This oxidation can be divided into three categories: (i) the cleavage of the C=C bond by using the surface of the metal oxide, e.g., osmium or .... supported cobalt complexes (catalysts 1 and 2) pro-.

  2. metal complexes of copper(ii)

    African Journals Online (AJOL)

    Catalytic activity of polymer metal complexes was studied by Vinodkumar and Mathew [3]. Antimicrobial activities of Cu(II), Co(II), Zn (II) Pb (II) oligomer metal complexes was studied by Kaya et al. [4-6]. Thermal ... tetrahydrofuran, methanol, N,N-dimethylformamide, ethanol, dimethylsulfoxide, nitrobenzene, chloroform, ethyl ...

  3. Metallic complexes with glyphosate: a review

    International Nuclear Information System (INIS)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique

    2005-01-01

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  4. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    Science.gov (United States)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  5. Rapid Prototyping by Single Point Incremental Forming of Sheet Metal

    DEFF Research Database (Denmark)

    Skjødt, Martin

    2008-01-01

    explains a lot of experimental observation seen in the literature. SPIF of tailored blanks produced by friction stir welding. It is demonstrated that SPIF of tailored sheets produced by friction stir welding is possible and a promising way of combining two innovative manufacturing processes. Multi stage...

  6. Non-proportional deformation paths for sheet metal - experiments

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; van Riel, M.; Khan, A.S.; Farrokh, B

    2010-01-01

    A biaxial sheet testing device was developed that prescribe arbitrary strain paths as a combination of plane strain tension and simple shear. In this way orthogonal strain paths changes with and without unloading can be obtained as well as cyclic shear loading with combined stretching. This

  7. NUMISHEET 2016: 10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes

    International Nuclear Information System (INIS)

    2016-01-01

    The NUMISHEET conference series have been established as a world-class forum through which new intellectual ideas and technologies in the area of sheet metal forming simulation are exchanged. Previous NUMISHEET conferences have given enormous contributions to industry and academia in what regards the development of new methods and ideas for the numerical simulation of sheet metal forming processes. Previous NUMISHEET conferences were held in: Zurich (Switzerland, 1991), Isehara (Japan, 1993), Dearborn (USA, 1996), Besancon (France, 1999), Jeju Island (South Korea, 2002), Detroit (USA, 2005), Interlaken (Switzerland, 2008), Seoul (South Korea, 2011) and Melbourne (Australia, 2014). The NUMISHEET 2016 conference will be held in Bristol, UK. It features technical, keynote and plenary sessions and mini-symposiums in diverse sheet metal forming areas including the recently introduced incremental sheet forming and electromagnetic forming, as well as new prominent numerical methods such as IsoGeometric Analysis and meshless methods for sheet analysis. NUMISHEET 2016 will have eight academic plenary lectures delivered by worldwide recognised experts in the areas of sheet metal forming, material modelling and numerical methods in general. Also, NUMISHEET 2016 will have three industrial plenary lectures which will be addressed by three different companies with strong businesses in sheet metal forming processes: AutoForm, Crown Technology and Jaguar Land Rover. One of the most distinguishing features of NUMISHEET conference series is the industrial benchmark sessions, during which numerical simulations of industrial sheet formed parts are compared with experimental results from the industry. The benchmark sessions provide an extraordinary opportunity for networking, for the exchange of technologies related to sheet metal forming and for the numerical validation of sheet metal forming codes/software. Three benchmark studies have been organised in NUMISHEET 2016: BM1) &apos

  8. Development and pilot production of three ingot-source beryllium sheet metal parts

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1975-01-01

    Results of an extensive development program aimed at making three, separate, structural components from beryllium, using sheet-metal fabrication methods, are presented. Ingot-source beryllium sheet at thicknesses of 0.100, 0.125, and 0.170 inch is formed in a fully-recrystallized and in a partially-recrystallized condition. The tensile yield strength is 26,000 psi after full recrystallization. After partial recrystallization, tensile yield strength is between 35,000 and 45,000 psi, depending upon sheet thickness, heat treat temperature, and time at temperature. The high yield strength is retained in the parts after forming. (U.S.)

  9. A NEW TREND IN MAGNETIC-PULSE METAL WORKING ASSOCIATED WITH THIN-WALLED SHEET METAL ATTRACTION. HISTORY AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    A.V. Gnatov

    2013-04-01

    Full Text Available Within the scope of this article, a summary is presented on the main world achievements of the new trend in magnetic-pulse metal working associated with attraction of specified sheet metal sections in vehicle production and repair. The importance of the new trend has been justified, its basic sources disclosed. Alternative straightening methods for damaged sheet metals are given.

  10. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    NARCIS (Netherlands)

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R.|info:eu-repo/dai/nl/073765643; Simonsen, Sebastian B.; Nagarajan, Sudhagar; van Angelen, Jan H.|info:eu-repo/dai/nl/325922470

    2014-01-01

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass

  11. Complexes of natural carbohydrates with metal cations

    International Nuclear Information System (INIS)

    Alekseev, Yurii E; Garnovskii, Alexander D; Zhdanov, Yu A

    1998-01-01

    Data on the interaction of natural carbohydrates (mono-, oligo-, and poly-saccharides, amino sugars, and natural organic acids of carbohydrate origin) with metal cations are surveyed and described systematically. The structural diversity of carbohydrate metal complexes, caused by some specific features of carbohydrates as ligands, is demonstrated. The influence of complex formation on the chemical properties of carbohydrates is discussed. It is shown that the formation of metal complexes plays an important role in the configurational and conformational analysis of carbohydrates. The practical significance of the coordination interaction in the series of carbohydrate ligands is demonstrated. The bibliography includes 571 references.

  12. Research on NC laser combined cutting optimization model of sheet metal parts

    Science.gov (United States)

    Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.

  13. Multi-scale friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.

    2013-01-01

    Finite element (FE) formability analyses are everyday practice in the metal-forming industry to reduce costs and lead time of new metal products. Although the predictive capabilities of FE software codes have improved significantly over the years, unfortunately, the experimental trial-and-error

  14. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  15. COMPUTER CONTROLLED EXPERIMENTAL DEVICE FOR INVESTIGATIONS OF TRIBOLOGICAL INFLUENCES IN SHEET METAL FORMING

    Directory of Open Access Journals (Sweden)

    Tomislav Vujinović

    2012-05-01

    Full Text Available Sheet metal forming, especially deep drawing process is influenced by many factors. Blank holding force and drawbead displacement are two of them that can be controlled during the forming process.For this purpose, an electro-hydraulic computerized sheet-metal strip sliding device has been constructed. The basic characteristic of this device is realization of variable contact pressure and drawbead height as functions of time or stripe displacement. There are both, pressure and drawbead, ten linear and nonlinear functions. Additional features consist of the ability to measure drawing force, contact pressure, drawbead displacement etc.The device overview and first results of steel sheet stripe sliding over rounded drawbead are presented in the paper.

  16. Computer controlled experimental device for investigations of tribological influences in sheet metal forming

    Directory of Open Access Journals (Sweden)

    Milan Djordjevic

    2012-05-01

    Full Text Available Sheet metal forming, especially deep drawing process, is influenced by many factors. Blank holding force and drawbead displacement are two of them that can be controlled during the forming process. For this purpose, electro-hydraulic computerized sheet-metal strip sliding device has been constructed. Basic characteristic of this device is realization of variable contact pressure and drawbead height as functions of time or stripe displacement. There are both, pressure and drawbead, ten linear and nonlinear functions. Additional features consist of the ability to measure drawing force, contact pressure, drawbead displacement etc. Presented in the paper are the device overview and the first results of steel sheet stripe sliding over rounded  drawbead.

  17. New tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Ceron, Ermanno

    The environmental issue, concerning the lubrication in sheet metal forming, has become considerably important in the past 10 years. Besides the fact that legislation is becoming more restrictive on the type of lubricant industry is allowed to use, many companies are embracing the path of social...... that the performance of the workpiece materials have to improve in order to satisfy higher strength and lower weight requirements. This however leads to challenges in the forming operation, especially when high surface expansion and elevated strain are involved. The challenge is to achieve long production run...... the reluctance of industry in the application of new solutions, due to the high trial costs. This project presents a new methodology for testing new environmentally friendly tribo-systems for sheet metal forming of advanced high strength steels and stainless steels. For the purpose, a new Universal Sheet...

  18. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  19. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    Science.gov (United States)

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.

  20. Effect of material scatter on the plastic behavior and stretchability in sheet metal forming

    NARCIS (Netherlands)

    Wiebenga, J.H.; Atzema, E.H.; Atzema, E.H.; An, Y.G.; Vegter, H.; van den Boogaard, Antonius H.

    2014-01-01

    Robust design of forming processes is gaining attention throughout the industry. To analyze the robustness of a sheet metal forming process using Finite Element (FE) simulations, an accurate input in terms of parameter scatter is required. This paper presents a pragmatic, accurate and economic

  1. An expert system for process planning of sheet metal parts produced

    Indian Academy of Sciences (India)

    Process planning of sheet metal part is an important activity in the design of compound die. Traditional methods of carrying out this task are manual, tedious, time-consuming, error-prone and experiencebased. This paper describes the research work involved in the development of an expert system for process planning of ...

  2. Multi-scale friction modeling for sheet metal forming: the mixed lubrication regime

    NARCIS (Netherlands)

    Hol, J.; Meinders, Vincent T.; Geijselaers, Hubertus J.M.; van den Boogaard, Antonius H.

    2015-01-01

    A mixed lubrication friction model is presented to accurately account for friction in sheet metal forming FE sim-ulations. The advanced friction model comprises a coupling between a hydrodynamic friction model and a boundary lubrication friction model, based on the lubricant film thickness. Mixed

  3. Friction and lubrication modeling in sheet metal forming simulations of a Volvo XC90 inner door

    NARCIS (Netherlands)

    Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J.H.; Chezan, A.R.; Carleer, B.D.; Carleer, B.D.; van den Boogaard, Antonius H.

    2016-01-01

    The quality of sheet metal formed parts is strongly dependent on the tribology, friction and lubrication conditions that are acting in the actual production process. Although friction is of key importance, it is currently not considered in detail in stamping simulations. This paper presents a

  4. Wrinkling criteria in sheet metal forming for single sided contact situation and its application

    NARCIS (Netherlands)

    Nagy, Geza T.; Valkering, Kasper; Huetink, Han

    2005-01-01

    The general wrinkling theory based on the rate formulation of the principle of virtual work has been applied in a number of studies on wrinkling during sheet metal forming. No contact with the die was allowed. In this study it is shown that with the right choice of wrinkling modes, the theory can

  5. Testing and modelling of industrial tribo-systems for sheet metal forming

    DEFF Research Database (Denmark)

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real prod...

  6. An expert system for process planning of sheet metal parts produced ...

    Indian Academy of Sciences (India)

    Process planning of sheet metal part is an important activity in the design of compound die. Traditional methods of carrying out this task are manual, tedious, time-consuming, error-prone and experiencebased. This paper describes the research work involved in the development of an expert system for process planning of ...

  7. Zoom lens designs for use in sheet metal cutting by high power CO2-lasers

    NARCIS (Netherlands)

    Beckmann, L.H.J.F.; Maerten, O.

    1993-01-01

    For best results and the highest speed of cutting sheet metal by high power lasers, the numerical aperture of the focussed beam must be properly matched to the material thickness. To alleviate the need for frequent changes of fixed-focal-length lenses a zoom lens system which allows fast and

  8. Determination of crystallographic young’s modulus for sheet metals by in situ neutron diffraction

    Science.gov (United States)

    Vitzthum, S. J.; Hartmann, C.; Weiss, H. A.; Baumgartner, G.; Hofmann, M.; Volk, W.

    2017-09-01

    Elastic recovery is an important issue in sheet metal forming, especially in the context of the upcoming use of high strength steels due to shifted relations between Young’s modulus and strength. One important factor when it comes to elastic recovery prediction is a deep understanding for the elasto-plastic characteristics of the material. Today in general simple elastic behavior with constant Young’s modulus and Poisson’s ratio is assumed. Macroscopic analysis in standard tests shows that these assumptions are insufficient for an appropriate prediction of elastic recovery in sheet metal forming, which is why different phenomenological correlation models are derived. An experimental setup and microscopic investigation to further prove these models and to verify the approaches on another scale for sheet metals is presented within this paper. In the study microscopic deformation behavior of loading and unloading of a HC260LA sheet metal is analysed using in-situ neutron diffraction. Based on the lattice plane strains an orientation specific crystallographic Young’s modulus for different rolling directions is determined.

  9. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    2024 and AA7075) are investigated for the resistance spot welding of AA1050 aluminum sheets of three different thicknesses. Microstructural and mechanical analysis demonstrates that significant improvement in weld bead morphology and strength are obtained with the addition of metal powder...

  10. Lithium Adsorption on Graphene: From Isolated Adatoms to Metallic Sheets.

    Science.gov (United States)

    Garay-Tapia, A M; Romero, Aldo H; Barone, Veronica

    2012-03-13

    We have studied Li adsorption on graphene for Li concentrations ranging from about 1% to 50% by means of density functional theory calculations. At low adsorbant densities, we observe a strong ionic interaction characterized by a substantial charge transfer from the adatoms to the substrate. In this low concentration regime, the electronic density around the Li adatoms is well localized and does not contribute to the electronic behavior in the vicinity of the Fermi level. For larger concentrations, we observe the formation of a chemically bound Li layer characterized by a stronger binding energy as well as a significant density of states above the Fermi level coming from both graphene and the two-dimensional Li sheet.

  11. Development of oil canning index model for sheet metal forming products with large curvature

    Science.gov (United States)

    Kim, Honglae; Lee, Seonggi; Murugesan, Mohanraj; Hong, Seokmoo; Lee, Shanghun; Ki, Juncheol; Jung, Hunchul; Kim, Naksoo

    2017-09-01

    Oil canning is predominantly caused by unequal stretches and heterogeneous stress distributions in steel sheets, which affects the appearance of components and develop noise and vibration problems. This paper proposes the formulation of an Oil canning index (OCI) model that can predict the occurrence of oil canning in the sheet metal. To investigate the influence of material properties, we used electro-galvanized (EGI) and galvanized (GI) steel sheets with different thicknesses and processing conditions. Furthermore, this paper presents an appropriate experimental and numerical procedure for determining the sheet stiffness and indentation properties to evaluate the oil canning results. Experiments were carried out by varying the tensile force over different materials, thicknesses, and bead force. Comparison of the discrete results obtained from these experiments confirmed that the product shape characteristics, such as curvature, have a significant influence on the oil canning occurrence. Based on the results, we propose the new OCI model, which can effectively predict the oil canning occurrence owing to the shape curvature. Verification of the accuracy and usability of our model has been carried out by simulating the experiments that were done with the sheet metal. The authors observed a good agreement between the experimental and numerical results from the model. This research work can be considered as a very effective method for eliminating appearance defects from the automobile products.

  12. A numerical simulation of thermodynamic processes for cryogenic metal forming of aluminum sheets and comparison with experimental results

    International Nuclear Information System (INIS)

    Reichl, Ch.; Schneider, R.; Hohenauer, W.; Grabner, F.; Grant, R.J.

    2017-01-01

    Highlights: • Thermodynamic processes for cryogenic sheet metal forming tools were examined. • Static and transient temperature field simulations are evaluated on a Nakajima tool. • Differently arranged cooling loops lead to homogeneous temperature distribution. • Scaling of the geometry leads to significantly increased heat transfer times. • The temperature management of complex forming tools can be developed numerically. - Abstract: Forming at cryogenic temperatures provides a significant improvement in formability of aluminum sheets. This offers the potential for light, complex and highly integrated one-piece components to be produced out of aluminum alloys at sub-zero temperatures. This would allow weight reduction, environmental conservation and cost reduction of a car body to give one example in the automotive industry. For temperature supported processes special forming tools and cooling strategies are required to be able to reach and maintain process stability. Time dependent numerical simulations of the thermodynamic processes of cryogenic sheet metal forming covering all aspects of heat transfer through conduction, convection and radiation play a vital role in the design and development of future tools and are presented for several geometries. Cooling (and heating) strategies (including selection of the number of cooling loops and their relative positioning) in a Nakajima testing tool were evaluated using computational fluid dynamics. These simulations were performed with static and transient solvers to demonstrate the extraction of tool surface temperature distributions on different forming tool geometries. Comparisons of predicted temperature characteristics of an aluminum sheet and experimentally determined temperature distributions were made. The temperature distribution of the surface of an aluminum sheet could be predicted with high accuracy. Further, the influence of the tool size on the parameters temperature transfer times and

  13. Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks

    Directory of Open Access Journals (Sweden)

    Hora Pavel

    2016-01-01

    Full Text Available The industrial based prediction in sheet metal forming bases still on the Forming Limit Diagrams (FLD as formally proposed by Keeler 1. The FLD are commonly specified by the Nakajima tests and evaluated with the so called cross section method. Although widely used, the FLC concept has numerous serious limitations. In the paper the influences of bending on the FLC as well as the later crack limits will be discussed. Both criteria will be combined to an extended FLC concept (X-FLC. The new concept demonstrates that the Nakajima tests are not only appropriate for the evaluation of the necking instability but for the detection of the real crack strains too. For the evaluation of the crack strains a new local thinning method is proposed and tested for special 6xxx Al-alloys.

  14. Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2016-09-01

    Full Text Available To meet the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs such as the International Committee on Non-Ionizing Radiation Protection (ICNIRP guidelines, thin metallic sheets are often used to shield magnetic field leakage in high power applications of wireless power transfer (WPT systems based on magnetic field coupling. However, the metals in the vicinity of the WPT coils cause the decrease of self and mutual inductances and increase of effective series resistance; as such, the electric performance including transmission power and the efficiency of the system is affected. With the research objective of further investigating excellent shielding effectiveness associated with system performance, the utilization of the optimal magnetic field shielding method by metallic sheets in magnetic field coupling WPT is carried out in this paper. The circuit and 3D Finite Element Analysis (FEA models are combined to predict the magnetic field distribution and electrical performance. Simulation and experiment results show that the method is very effective by obtaining the largest possible coupling coefficient of the WPT coils within the allowable range and then reducing the value nearest to and no smaller than the critical coupling coefficient via geometric unbroken metallic sheets. The optimal magnetic field shielding method which considers the system efficiency, transmission power, transmission distance, and system size is also achieved using the analytic hierarchy process (AHP. The results can benefit WPT by helping to achieve efficient energy transfer and safe use in metal shielded equipment.

  15. Springback prediction in sheet metal forming process based on the hybrid SA

    International Nuclear Information System (INIS)

    Guo Yuqin; Jiang Hong; Wang Xiaochun; Li Fuzhu

    2005-01-01

    In terms of the intensive similarity between the sheet metal forming-springback process and that of the annealing of metals, it is suggested that the simulation of the sheet metal forming process is performed with the Nonlinear FEM and the springback prediction is implemented by solving the large-scale combinational optimum problem established on the base of the energy descending and balancing in deformed part. The BFGS-SA hybrid SA approach is proposed to solve this problem and improve the computing efficiency of the traditional SA and its capability of obtaining the global optimum solution. At the same time, the correlative annealing strategies for the SA algorithm are determined in here. By comparing the calculation results of sample part with those of experiment measurement at the specified sections, the rationality of the schedule of springback prediction used and the validity of the BFGS-SA algorithm proposed are verified

  16. Feasibility Study on Flexibly Reconfigurable Roll Forming Process for Sheet Metal and Its Implementation

    Directory of Open Access Journals (Sweden)

    Jun-Seok Yoon

    2014-06-01

    Full Text Available A multicurved sheet metal surface for a skin structure has usually been manufactured using a conventional die forming process involving the use of both a die and a press machine in accordance with the product shape. However, such processes are economically inefficient because additional production costs are incurred for the development and management of forming tools. To overcome this drawback, many alternative processes have been developed; however, these still suffer from problems due to defects such as dimples and wrinkles occurring in the sheet. In this study, a new sheet metal forming process called the flexibly reconfigurable roll forming (FRRF process is proposed as an alternative to existing processes. Unlike existing processes, FRRF can reduce additional production costs resulting from material loss and significantly reduce forming errors. Furthermore, it involves the use of a smaller apparatus. The methodology and applicable procedure of the FRRF process are described. Numerical forming simulations of representative multicurved sheet surfaces are conducted using FEM. In addition, a simple apparatus is developed for verifying the feasibility of this process, and a doubly curved metal is formed to verify the applicability of the reconfigurable roller, a critical component in this forming process.

  17. Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets.

    Science.gov (United States)

    Lü, Kun; Zhou, Jian; Zhou, Le; Chen, X S; Chan, Siew Hwa; Sun, Qiang

    2012-06-21

    Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Monte Carlo simulations, TMPc sheets (TM = Sc, Ti, and Fe) are studied for pre-combustion CO(2) capture by considering the adsorptions of H(2)/CO(2) gas mixtures. It is found that ScPc sheet shows a good selectivity for CO(2), and the excess uptake capacity of single-component CO(2) on ScPc sheet at 298 K and 50 bar is found to be 2949 mg/g, larger than that of any other reported porous materials. Furthermore, electrostatic potential and natural bond orbital analyses are performed to reveal the underlying interaction mechanisms, showing that electrostatic interactions as well as the donation and back donation of electrons between the transition metal ions and the CO(2) molecules play a key role in the capture.

  18. Modelling of size effects on behavior of thin sheet metals for bipolar plate manufacturing

    OpenAIRE

    Koç, Muammer; Mahabunphachai, Sasawat

    2013-01-01

    The grain-to-feature size ratio in micro-forming processes is predicted to have a vital impact on the material behavior in addition to the well-known effect of the grain size itself as manifested by the Hall-Petch relation. In this study, the "size effects" on the material flow curve of thin sheet metals under hydraulic bulge testing conditions were investigated. The ratio of the sheet thickness to the material grain size (N = t0/d) was used as a parameter to characterize the interactive effe...

  19. Shubnikov de Haas quantum oscillation of the surface states in the metallic Bismuth Telluride sheets

    OpenAIRE

    Chen, Taishi; Han, Junhao; Li, Zhaoguo; Song, Fengqi; Zhao, Bo; Wang, Xuefeng; Wang, Baigeng; Wan, Jianguo; Han, Min; Zhang, Rong; Wang, Guanghou

    2013-01-01

    Metallic Bi2Te3 crystalline sheets with the room-temperature resistivity of above 10 m{\\Omega} cm were prepared and their magnetoresistive transport was measured in a field of up to 9 Tesla. The Shubnikov de Haas oscillations were identified from the secondly-derived magnetoresistance curves. While changing the angle between the field and normal axis of the sheets, we find that the oscillation periods present a cosine dependence on the angle. This indicates a two-dimensional transport due to ...

  20. Novel metals and metal complexes as platforms for cancer therapy.

    Science.gov (United States)

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping

    2010-06-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.

  1. Analysis of Fluctuating Friction Version in Sheet Metallic Designing

    Science.gov (United States)

    Ambarayil Joy, Jithin; Jung, Dong Won

    2018-02-01

    Conservative Coulomb method indicates steady constant of rub in thin metal panel making that appears or feels close to the real thing. It contributes to describing attainable future event too high shear pressure in making ahead in the position of high R-value steel (AHRS). The study is conducted by pretend the making and spring back of a specific panel to understand the characteristic of the stamping procedure. Corresponding of the describe probable future results with (i) physical force-dependent changeable rub method, (ii) perpetual rub method, and the conclusion of exploratory facts point out a significant upgrading of spring back forecast with the prospective method.

  2. Studies on the finite element simulation in sheet metal stamping processes

    Science.gov (United States)

    Huang, Ying

    The sheet metal stamping process plays an important role in modern industry. With the ever-increasing demand for shape complexity, product quality and new materials, the traditional trial and error method for setting up a sheet metal stamping process is no longer efficient. As a result, the Finite Element Modeling (FEM) method has now been widely used. From a physical point of view, the formability and the quality of a product are influenced by several factors. The design of the product in the initial stage and the motion of the press during the production stage are two of these crucial factors. This thesis focuses on the numerical simulation for these two factors using FEM. Currently, there are a number of commercial FEM software systems available in the market. These software systems are based on an incremental FEM process that models the sheet metal stamping process in small incremental steps. Even though the incremental FEM is accurate, it is not suitable for the initial conceptual design for its needing of detailed design parameters and enormous calculation times. As a result, another type of FEM, called the inverse FEM method or one-step FEM method, has been proposed. While it is less accurate than that of the incremental method, this method requires much less computation and hence, has a great potential. However, it also faces a number of unsolved problems, which limits its application. This motivates the presented research. After the review of the basic theory of the inverse method, a new modified arc-length search method is proposed to find better initial solution. The methods to deal with the vertical walls are also discussed and presented. Then, a generalized multi-step inverse FEM method is proposed. It solves two key obstacles: the first one is to determine the initial solution of the intermediate three-dimensional configurations and the other is to control the movement of nodes so they could only slide on constraint surfaces during the search by

  3. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  4. Friction and lubrication modeling in sheet metal forming simulations of a Volvo XC90 inner door

    Science.gov (United States)

    Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J. H.; Chezan, T.; Carleer, B.; van den Boogaard, A. H.

    2016-11-01

    The quality of sheet metal formed parts is strongly dependent on the tribology, friction and lubrication conditions that are acting in the actual production process. Although friction is of key importance, it is currently not considered in detail in stamping simulations. This paper presents a selection of results considering friction and lubrication modeling in sheet metal forming simulations of the Volvo XC90 right rear door inner. For this purpose, the TriboForm software is used in combination with the AutoForm software. Validation of the simulation results is performed using door inner parts taken from the press line in a full-scale production run. The results demonstrate the improved prediction accuracy of stamping simulations by accounting for accurate friction and lubrication conditions, and the strong influence of friction conditions on both the part quality and the overall production stability.

  5. Forming limit diagrams for anisotropic metal sheets with different yield criteria

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is analyzed by using the M-K-model approach, and forming limit diagrams are drawn based on the critical strains for localization. The analyses account for plastic anisotropy, and predict......For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is analyzed by using the M-K-model approach, and forming limit diagrams are drawn based on the critical strains for localization. The analyses account for plastic anisotropy...... is inclined to the orthotropic axes. Furthermore, the effect of allowing for nonzero shear strains outside the necking band is considered. In all analyses the rotation of the orthotropic axes is accounted for, and a few studies are used to evaluate the effect of assuming the development of a plastic spin. (C...

  6. The concept of virtual material testing and its application to sheet metal forming simulations

    OpenAIRE

    Butz, A.; Pagenkopf, J.; Baiker, M.; Helm, D.

    2016-01-01

    A crystal plasticity based full-field microstructure simulation approach is used to virtually determine mechanical properties of sheet metals. Microstructural features like the specific grain morphology and the crystallographic texture are taken into account to predict the plastic anisotropy. A special focus is on the determination of the Lankford coefficients and on the yield surface under plane stress conditions. Compared to experimental procedures, virtual material testing allows to genera...

  7. Multiobjective Optimization for Fixture Locating Layout of Sheet Metal Part Using SVR and NSGA-II

    OpenAIRE

    Yuan Yang; Zhongqi Wang; Bo Yang; Zewang Jing; Yonggang Kang

    2017-01-01

    Fixture plays a significant role in determining the sheet metal part (SMP) spatial position and restraining its excessive deformation in many manufacturing operations. However, it is still a difficult task to design and optimize SMP fixture locating layout at present because there exist multiple conflicting objectives and excessive computational cost of finite element analysis (FEA) during the optimization process. To this end, a new multiobjective optimization method for SMP fixture locating...

  8. Experimental and Numerical Investigation of Kinematic Hardening Behavior in Sheet Metals

    International Nuclear Information System (INIS)

    Cheng, Hang Shawn; Lee, Wonoh; Cao Jian; Seniw, Mark; Wang Huiping; Chung, Kwansoo

    2007-01-01

    Characterization of material hardening behavior has been investigated by many researchers in the past decades. Experimental investigation of thin sheet metals under cyclic loading has become a challenging issue. A new test fixture has been developed to use with a regular tensile-compression machine (for example, MTS machine). Experimental results of tension-compression tests are presented followed by a review of existing testing methods. Numerical modeling of the tested data is presented using a new kinematic hardening model

  9. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    degradation was analysed by the strip reduction test, simulating resistance to galling during ironing. It was shown that the surface condition of both the tools and the sheet metal was of importance to the galling resistance. Numerical simulations of the experimental tests were compared with the experimental...... test results. The software program DEFORM™ 3D was used to analyse the pressure and temperature development in the tool/work piece interface during strip reduction....

  10. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    Science.gov (United States)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  11. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    Science.gov (United States)

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.

  12. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    Science.gov (United States)

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  13. Development of a new biaxial testing system for generating forming limit diagrams for sheet metals under hot stamping conditions

    OpenAIRE

    Shao, Z; Li, N; Lin, J; Dean, TA

    2016-01-01

    Conventional experimental approaches used to generate forming limit diagrams (FLDs) for sheet metals at different linear strain paths are not applicable to hot stamping and cold die quenching processes because cooling occurs prior to deformation and consistent values of heating rate, cooling rate, deformation temperature and strain rate are not easy to obtain. A novel biaxial testing system for use in a Gleeble testing machine has been adopted to generate forming limits of sheet metals, inclu...

  14. The Effect of the Use of Technological Lubricants Based on Vegetable Oils on the Process of Titanium Sheet Metal Forming

    Directory of Open Access Journals (Sweden)

    Więckowski W.

    2017-06-01

    Full Text Available The paper evaluates the drawability of titanium sheet metal Grade 2, with the focus on friction conditions that are present in the sheet metal forming process. The study aims to present the results of the examinations of the friction coefficient during a strip drawing test. The focus of the experiment was on lubricants based on vegetable oils i.e. rapeseed oil, sunflower oil and olive oil. Boric acid was used to improve the lubricating properties of vegetable oils. The results of numerical simulations of the process of forming a cover with stiffening components made of grade 2 titanium sheet metal was also presented. The numerical simulation was carried out using the FEM method with PAMStamp 2G software. The effect of conditions of friction between the sheet metal and tool parts and pressure force of the blank holder on the forming process were investigated. Numerical calculations were performed with consideration for the phenomenon of material strain hardening and anisotropy of plastic properties of the sheet metal formed. The analysis of the deformations and reduction in wall thickness of the drawn parts can be used for determination of the effect of changes in selected parameters on the process of drawn part forming. The quality of drawn parts was assessed based on the shape inaccuracy determined during simulation of forming. The inaccuracy depended on the conditions of the process and strength properties of the titanium sheet metal.

  15. Standard test method for determining the superplastic properties of metallic sheet materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes the procedure for determining the superplastic forming properties (SPF) of a metallic sheet material. It includes tests both for the basic SPF properties and also for derived SPF properties. The test for basic properties encompasses effects due to strain hardening or softening. 1.2 This test method covers sheet materials with thicknesses of at least 0.5 mm but not greater than 6 mm. It characterizes the material under a uni-axial tensile stress condition. Note 1—Most industrial applications of superplastic forming involve a multi-axial stress condition in a sheet; however it is more convenient to characterize a material under a uni-axial tensile stress condition. Tests should be performed in different orientations to the rolling direction of the sheet to ascertain initial anisotropy. 1.3 This method has been used successfully between strain rates of 10-5 to 10-1 per second. 1.4 This method has been used successfully on Aluminum and Titanium alloys. The use of the method wi...

  16. Effect of anisotropic yield function evolution on formability of sheet metal

    Science.gov (United States)

    Choi, H. J.; Choi, Y.; Lee, K. J.; Lee, J. Y.; Bandyopadhyay, K.; Lee, M.-G.

    2017-10-01

    For the evaluation of anisotropic yield functions and hardening models, formability has been often investigated in the forming of sheet metals. The formability has been investigated in many ways, but a common conclusion is that it is significantly influenced by sheet anisotropy, especially the directional differences in yield stress and r-value along the material direction. Therefore, numerous works have been presented in terms of the accurate modeling of anisotropic behavior of sheet metals and its implementation into the finite element simulations. The previous efforts include the effects of quadratic or non-quadratic yield functions, their associated or non-associated flow rules and isotropic or non-isotropic hardening laws on formability. However, most of these works assumed that the anisotropic yield functions maintain their initial shapes, while they evolve by isotropic expansion or kinematic translation. Then, they could not consider the anisotropic evolution under monotonic loading with different deformation modes. In the present work, various anisotropic constitutive models were comparatively evaluated for the performance in predicting the earing profile in the cup drawing and the forming limit diagram. The constitutive models include the Hill48 quadratic yield function with associated and non-associated flow rules, and the non-quadratic Yld2000-2d function with associated flow rule. For both yield functions, the evolution of anisotropy was employed by considering the anisotropic coefficients as a function of equivalent plastic strain. The influence of the anisotropy evolution was comparatively evaluated by the computational simulations.

  17. The quantitative representation of fiber-and sheet-texture in metals of cubic system

    International Nuclear Information System (INIS)

    Kim, H.J.; Kim, S.C.; Chun, B.C.; Lee, C.Y.

    1983-01-01

    This is the first article of a series dealing with studies on the quantitative representation of fiber-and sheet-type textures in metals of cubic crystal system. Texture measurements by neutron diffraction method are analyzed using Bunge's series expansion method and the effect of series truncation is studied for samples of various texture sharpness. The present article describes two computer programs, TXFIB and TXSHT, develped for the analysis of the respective fiber-and sheet-type texture. Using these computer programs, the orientation distribution function can be expanded in the series of generalized spherical harmonics up to 58th term from 6 experimental pole figures as input. Estimations of various errors involved in the texture analysis and texture sharpness index are also included in the programs. (Author)

  18. TDPAC studies on metal-complex ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yoshitaka [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Abe, Shizuko; Okada, Takuya [and others

    1997-03-01

    TDPAC spectra of {sup 117}In (left-arrow {sup 117}Cd) and {sup 111}Cd (left-arrow {sup 111m}Cd) in the mixed metal complex N(C{sub 4}H{sub 9}){sub 4}(M(II)Fe(III)(C{sub 2}O{sub 4}){sub 3})(M=Fe,Ni), the related substraces and LiNbO{sub 3} have been studied. In this paper, pure potassium iron (III) oxalate was prepared and mixed metal complexes were synthesized by changing amount of reagents and the order added, then observed by TDPAC. 2 mol%Cd was dispersed throughout potassium iron oxalate and potassium nickel oxalate, formulating M(II){sub 0.98}Cd(II){sub 0.02}C{sub 2}O{sub 4}{center_dot}2H{sub 2}O (M=Fe, Ni) with the same crystal structure. The formation reaction of mixed metal complex-Fe(II) was faster than that of iron oxalate. Its mixed metal complex-Ni(II) was slower than that of iron oxalate. The rate of quadrupole oscillation was obtained by {omega}{sub Q}({sup 117}In)=67.3 Mrad/s and {omega}{sub Q}({sup 111}Cd)=29.7 Mrad/s of which values were determined by TDPAC spectra of {sup 117}In and {sup 111}Cd in LiNbO{sub 3} at 4K. The value showed pure ion bond of oxygen coordinated with {sup 117}In and {sup 111}Cd. 0.08 {eta} was determined by TDPAC spectrum of {sup 111}Cd(left-arrow {sup 111m}Cd). The rate of {omega}{sub Q} of mixed metal oxalate complex was larger than 2.3, indicating 5s and 5p orbital electron took part in bond of oxygen of oxalic acid or approaching oxygen ion to In nucleus depend on the structual relaxation in decaying of {sup 117}In(left-arrow {sup 117}Cd). (S.Y.)

  19. Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure.

    Science.gov (United States)

    Williams, Corin; Xie, Angela W; Yamato, Masayuki; Okano, Teruo; Wong, Joyce Y

    2011-08-01

    Children suffering from congenital heart defects (CHD) often require vascular reconstruction. Pediatric patients would greatly benefit from a cell-based tissue engineered vascular patch (TEVP) that has potential for growth. As artery structure and function are intimately linked, mimicking native tissue organization is an important design consideration. In this study, we cultured human mesenchymal stem cell on patterned thermo-responsive substrates. Cell alignment improved over time up to 2 wk in culture when sheets were ready for harvest. We then used cell sheets as "functional units" to build complex tissue structures that mimic native vascular smooth muscle cell organization in the medial layer of the artery. Cell sheets could be stacked using a gelatin stamp such that individual sheets in the construct were well aligned with each other (mimic of circumferential orientation) or at angles with respect to each other (mimic of herringbone structure). Controlling tissue organization layer-by-layer will be a powerful approach to building tissues with well defined and complex structure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. METAL COMPLEXES OF SALICYLHYDROXAMIC ACID AND 1,10 ...

    African Journals Online (AJOL)

    Preferred Customer

    Metal complexes which are formed in biological systems between a ligand and a metal ion are in dynamic equilibrium with the free metal ion in a more or less aqueous environment. All biologically important metal ions can form complexes and the number of different chemical species which can be coordinated with these ...

  1. Analysis of Sheet Metal Tapping Screw Fabrication Using a Finite Element Method

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2016-10-01

    Full Text Available The malformation of sheet metal tapping screw threads in the screw threading process increases the cost of screw threading dies and their maintenance. Die factories do not reveal their screw threading die design techniques, so production and maintenance processes are established by trial-and-error or worker experience and passing down such techniques and documenting quality control is difficult. In this study, screw thread forming design and process analysis were carried out by combining computer-aided design software with computer-aided metal forming analysis software. Simulation results were verified in an actual forming process. The sheet metal tapping screw forging size error was less than 0.90%, except at a sharp angle, which was associated with an error of 3.075%, thereby demonstrating the accuracy of the simulated forming process. The numerical analysis process can be utilized to shorten forming development time; to reduce the number of die tests, and to improve product quality and die service life, reducing the cost of development and promoting the overall competitiveness of the company.

  2. 40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.

    Science.gov (United States)

    2010-07-01

    ... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...

  3. 40 CFR 721.10104 - Halophosphate mixed metal complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...

  4. Testing and modelling of industrial tribo-systems for sheet metal forming

    DEFF Research Database (Denmark)

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real prod....... The backstroke force and tool surface temperature are found to be highly sensitive to the initiation of galling. Furthermore the results combined with numerical investigations indicates that the level of the interface temperature is a vital factor predicting the initiation of galling....

  5. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  6. Cross-linked graphene oxide sheets via modified extracted cellulose with high metal adsorption.

    Science.gov (United States)

    Yakout, Amr A; El-Sokkary, Ramadan H; Shreadah, Mohamed A; Abdel Hamid, Omnia G

    2017-09-15

    We have studied the extraction of Cu(II) and Pb(II) ions from different types of aqueous solution by novel cross-linked graphene oxide sheets by modified extracted cellulose. The novel sorbent cellulose was extracted from the mangrove trees (Avicennia marina) and it was then grafted with acrylamide and immobilized by ethylenediamine for cross-linking process. The cross-linked graphene oxide sheets were identified by means of FT-IR, SEM and XRD. The adsorption studies of synthesized sorbent was optimized. Langmuir and Freundlich models were used for establish sorption equilibria. The cross-linked graphene oxide sheets showed maximum adsorption capacity 46.39 and 186.48mgg -1 for Cu(II) and Pb(II), respectively. The potential applications of this sorbent was applied to remove Cu(II) and Pb(II) metal ions from hard water samples by using a multi-stage micro-column technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  8. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  9. Ultrasonic measurement of through-thickness stress gradients in textured sheet metals

    International Nuclear Information System (INIS)

    Man Chising; Li Jianbo; Fan Xingyan; Lu Weiyang

    2000-01-01

    The objective of this investigation is to explore the possibility of using the dispersion of high-frequency Rayleigh waves for the evaluation of through-thickness stress gradients at the surface of metal sheets. We consider an orthorhombic sheet of cubic metal with through-thickness inhomogeneities in stress and texture, and adopt a coordinate system under which the rolling (RD), transverse (TD), and normal direction (ND) of the sheet are taken as the 1-, 2-, and 3-direction, respectively. We restrict our attention to the special case where only the stress components T 11 (x 3 ) and T 22 (x 3 ) in the sheet are nonzero, and consider only Rayleigh waves of sufficiently high frequency for which the sheet can be taken as the half-space x 3 ≥0. For Rayleigh waves of two different frequencies (with wave numbers k 1 and k k 2 respectively) propagating on the same wave path along either RD or TD, we appeal to an analysis of J. Li and Man to obtain a high-frequency asymptotic formula which gives the relative change in time-of-flight Δt/t 0 as (1/k 1 -1/k 2 ) times a linear combination of the derivatives T 11 ' (0), T 22 ' (0), W 4m0 ' (0)(m=0,2,4) and W 6m0 (0)(m=0,2,4,6) at the surface are ascertained and the material constants in the acoustoelastic consitutive equation of this polycrystal are known. An experiment was performed on an AA7075-T651 aluminum alloy beam, in which Δt/t 0 was measured for various values of T 11 (0) and T 11 ' (0) produced by beam bending (with (T 22 ≡0). The relevant texture coefficients of the beam were measured by X-ray diffraction. To obtain specific predictions from the aforementioned symptotic formula, we replace the material constants of the sample by their counterparts predicted for polycrystalline (pure) aluminum by the Man-Paroni model. The predictions and Δt/t 0 are then compared with the experimental results

  10. Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes

    Science.gov (United States)

    Kern, Alexander

    1991-01-01

    Direct lightning strikes melt metal parts of various systems, like fuel and propellant tanks of rockets and airplanes, at the point of strike. Responsible for this melting are the impulse current and, if occurring, the long duration current, both carrying a remarkable charge Q. For studying these meltings the simulation in the laboratory has to be based on the parameters of natural lightnings. International standards exist defining certain threat levels of natural lightnings and giving possible generator circuits for the simulation. The melting caused by both types of lightning currents show different appearance. Their characteristics, their differences in melting and heating of metal sheets are investigated. Nevertheless the simulation of lightning in the laboratory is imperfect. While natural lightning is a discharge without a counter electrode, the simulation always demands a close counter electrode. The influence of this counter electrode is studied.

  11. Determination of friction in sheet metal forming by means of simulative tribo-tests

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels

    2013-01-01

    operations a coefficient of friction μ is often determined by calibration of the simulation results with experimental observations of material flow and/or measured load. In case of modeling of new stamping operations μ is typically selected based on former experience. These procedures are, however......Numerical modeling of complex sheet stamping operations is well developed and implemented in industry. The weakest link now seems to be appropriate modeling of friction and to some extent also material properties especially when it comes to new lubricants and materials. In modeling of 3-D stamping......, not appropriate when introducing new tribo-systems (lubricant, workpiece material, tool material or tool coating). In order to determine friction under the very varied conditions in sheet stamping simulative testing may be applied, e.g., Plane-Strip-Testing (PST), Draw-Bead-Testing (DBT) and Bending...

  12. Development and Testing of Tailored Tool Surfaces for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin

    This thesis describes measures taken to minimize or substitute environmentally hazardous lubricants applied in sheet metal forming processes by less harmful lubricants or not applying lubricant at all. The breakdown of lubricant film often leads to galling, and therefore application of the hazard......This thesis describes measures taken to minimize or substitute environmentally hazardous lubricants applied in sheet metal forming processes by less harmful lubricants or not applying lubricant at all. The breakdown of lubricant film often leads to galling, and therefore application......; compressibility of lubricants, application of structured tool surfaces and application of anti-seizure tool coatings. In order to analyze the mechanisms of lubricant entrapment and escape, knowledge of the lubricant bulk modulus characterizing the compressibility of lubricant is required. Two methods were studied...... ironing production of deep drawn, stainless steel cans, Diamond-Like Carbon (DLC) coating were deposited on SRT tools. The DLC coated tools with multi-, double- and single-layer coating structures were tested under severe tribological conditions, i.e, high normal pressure and temperature. A screening test...

  13. On the lightweighting of automobile engine components : forming sheet metal connecting rod

    Science.gov (United States)

    Date, P. P.; Kasture, R. N.; Kore, A. S.

    2017-09-01

    Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.

  14. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    International Nuclear Information System (INIS)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder; Papadimitratos, Alexios; Zakhidov, Anvar A.

    2015-01-01

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process

  15. Some recent developments in sheet metal forming for production of lightweight automotive parts

    Science.gov (United States)

    Tisza, M.; Lukács, Zs; Kovács, P.; Budai, D.

    2017-09-01

    Low cost manufacturing in the automotive industry is one of the main targets due to the ever increasing global competition among car manufacturers all over the World. Sheet metal forming is one of the most important key technologies in the automotive industry; therefore the elaboration of new, innovative low cost manufacturing processes is one of the main objectives in sheet metal forming as well. In 2015 with the initiative of the Imperial College London a research consortium was established under the umbrella Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles. The primary aim of this project is to provide affordable low cost weight reduction in mass production of vehicles considering the entire life-cycle. In this project, 19 European Institutions (Universities and Research Institutions) from 9 European countries are participating with the above targets. The University of Miskolc is one of the members of this research Consortium. In this paper, some preliminary results with the contributions of the University of Miskolc will be introduced.

  16. Subglacial drainage of the Eurasian Ice Sheet Complex during the last glacial period

    Science.gov (United States)

    Shackleton, C.; Patton, H.; Winsborrow, M.; Hubbard, A.; Andreassen, K.

    2017-12-01

    The presence and behaviour of water at the interface between an ice sheet and its substrate exerts a fundamental control over many aspects of ice dynamics. The long-term evolution of subglacial hydrology is therefore a key issue when considering how ice sheets respond to environmental change. We investigate the long-term development of the subglacial drainage system beneath the Eurasian Ice Sheet Complex (EISC) - the third largest ice mass globally during the Last Glacial Maximum. At its peak the EISC comprised three semi-independent ice sheets centered over the Barents Sea, Fennoscandia, and the British Isles, which merged together to form continuous ice cover over more than 60° of longitude and 30° of latitude. Using empirically constrained modelled ice sheet surfaces and high-resolution isostatically corrected topographies, we calculate hydraulic pressure potential surfaces across a full glacial cycle (37-10 ka BP). Snapshots of hydraulic activity are produced at a temporal resolution of 100 years, with hydraulic potential minima used as a proxy for potential subglacial lake locations, and channelized flow routing. Up to 4000 potential lakes are predicted during ice maximum conditions, some reaching extents over 100 km2. More than 70% have a surface area cycle, reflecting the first-order influence of divergent topographic relief within each sub-domain. Furthermore, drainage switching and water piracy in response to subtle changes in ice surface configurations are observed, with potential implications for the stability of major palaeo-ice streams in the Baltic and Barents seas. The persistency of hydraulic potential minima during the last glacial period is used to identify possible sites of preserved palaeo-subglacial lakes, defining useful target areas for further field-based investigations.

  17. The evolution and geological footprint of the last Eurasian ice-sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob

    2017-04-01

    During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along

  18. Enhanced Structural Support of Metal Sites as Nodes in Metal-Organic Frameworks Compared to Metal Complexes

    OpenAIRE

    Das, Sanjit

    2013-01-01

    Metal-organic frameworks are a new class of crystalline, porous solid-state materials with metal ions periodically linked by organic linkers. This gives rise to one-, two- or three-dimensional structures. Here, we compare the stability of similar metal sites toward external ligand (solvent) induced disruption of the coordination environment in metal complexes and in metal-organic frameworks. Our experimental results show that a metal site as node of a metal-organic framework retains much high...

  19. synthesis and characterisation of some metal complexes of hybrid

    African Journals Online (AJOL)

    a

    KEY WORDS: Aminophosphines, Metal complexes, Cobalt(II) complex, Crystal structure. INTRODUCTION. Transition metal complexes of tertiary phosphines have been extensively studied owing to the donor-acceptor properties of the phosphorus atom which provides enhanced coordination abilities of the ligands thus ...

  20. Estimating projectile perpendicular impact velocity on metal sheet targets from the shape of the target hole.

    Science.gov (United States)

    Tsach, Tsadok; Landau, Eliezer; Shor, Yaron; Volkov, Nikolai; Chaikovsky, Alan

    2009-01-01

    The correlation between bullet hole shapes in metal and projectile impact velocity was examined. A series of shots were fired from an M-16A1 assault rifle of 5.56 mm caliber toward a 1-mm thick metal target. All shots were fired at a perpendicular angle to the metal sheets, and the velocity was measured just before the projectile hit the target. Velocities ranged between 400 and 900 m/sec. From the replica of the shooting hole, a perpendicular plane was created, showing the symmetrical properties of the hole. The best mathematical equation describing the shape of the entrance hole was the exponential function in the form: Y x = A + Be kx. The empirical equation of the hole defined using the regression method is: Y x,V = 8.268/V 0.578018 e(0.584x/V0.005). This equation describes the general shape of shooting holes created by velocities ranging from 440 to 750 m/sec. From this equation, one can estimate the bullet velocity when it hits the target.

  1. Quantitative texture analysis of metal sheets and polymer foils by neutron diffraction

    Science.gov (United States)

    Vratislav, Stanislav; Dlouhá, Maja; Kalvoda, Ladislav; Grishin, Alexander

    2006-11-01

    Experimental and calculation techniques for quantitative texture analysis based on the ODF combined with the diffraction of thermal neutrons were developed and tested. In our work the texture of the oriented steel sheets was investigated after different stages of their processing. The texture experiments were carried out on the KSN-2 diffractometer (installed by the LVR-15 reactor in Rez near Prague) which is equipped with the TG-1 texture goniometer-supplied automatic data collection for transmission and reflection geometry. The TODF-N package was used and the ODF values were obtained together with all texture characteristics. Although most of our texture studies performed until recently concentrated on metallic materials, now we have extended research field to texture investigation of semi-crystalline polymer materials (rigid PVC foils) finding an extensive industrial application. Results achieved in our study confirm that the quantitative texture analysis in connection with neutron diffraction can help to improve the technology of the preparation of oriented magnetic steel sheets and to determine the final functional properties of polymer foils.

  2. Precision machining, sheet-metal work and welding at the heart of CERN

    CERN Multimedia

    2001-01-01

    From the writing of specifications and the production of high-tech components, to technology transfer and call-out work on-site, the MF group in EST Division offers CERN users a wide variety of services. Its full range of activities is presented in a new brochure. In addition to its many physicists and engineers, CERN also has teams of mechanics, welders and sheet-metalworkers whose expertise is a precious asset for the Organization. Within the MF Group (Manufacturing Facilities, EST Division) these teams perform precision machining, sheet-metal work and welding. As an example, the Group has been responsible for producing radiofrequency accelerating cells to a precision of the order of 1/100th mm and with a surface roughness of only 0.1 micron. The Group's workshops also manufactured the stainless steel vacuum chamber for the brand new n-TOF experiment (Bulletin n°47/2000), a 200-m long cylindrical chamber with a diameter of just 800 millimetres! The MF Group is assisted in its task of providing me...

  3. Friction and lubrication modelling in sheet metal forming simulations of the Volvo XC90 inner door

    Science.gov (United States)

    Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J. H.; Chezan, T.; Carleer, B.; van den Boogaard, A. H.

    2016-08-01

    The quality of sheet metal formed parts is strongly dependent on the friction and lubrication conditions that are acting in the actual production process. Although friction is of key importance, it is currently not considered in detail in stamping simulations. This paper presents project results considering friction and lubrication modelling in stamping simulations of the Volvo XC90 inner door. For this purpose, the TriboForm software is used in combination with the AutoForm software. Validation of the simulation results is performed based on door-inner parts taken from the press line in a full-scale production run. The project results demonstrate the improved prediction accuracy of stamping simulations.

  4. Off-Line Testing of Tribo-Systems for Sheet Metal Forming Production

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    Off-line testing of new tribo-systems for sheet metal forming production is an important issue, when new, environmentally benign lubricants are to be introduced. To obtain useful results it is, however, vital to ensure similar conditions as in the production process regarding the main tribo......-parameters, which are tool/workpiece normal pressure, sliding length, sliding speed and interface contact temperature. The paper describes a generic methodology for such tests exemplified on an industrial, multistage deep drawing example, where deep drawing is followed by two successive re-drawing operations...... leading to very high tool/workpiece interface pressure and temperature in the second re-draw. Under such conditions only the best lubricant systems work satisfactory, and the paper shows how the performance of different tribo-systems in production may be predicted by off-line testing combined...

  5. Testing and Prediction of Limits of Lubrication in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels

    2012-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems, here meaning the combination of tool_material/workpiece_material/lubricant, in order to substitute hazardous lubricants such as chlorinated paraffin...... oils. Testing of new tribo-systems under production conditions is, however, very costly. For preliminary testing it is more feasible to introduce laboratory tests. In this paper a new methodology for testing new tribo-systems is presented. The methodology describes a series of investigations combining...... laboratory and production tests as well as numerical analyses in order to evaluate and compare performance of the new tribo-systems. A part is selected from industrial production and analyzed by this methodology in order to substitute the existing tribo-system with a new one....

  6. Standard test method for plastic strain ratio r for sheet metal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers special tension testing for the measurement of the plastic strain ratio, r, of sheet metal intended for deep-drawing applications. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Analysis of Nugget Formation During Resistance Spot Welding on Dissimilar Metal Sheets of Aluminum and Magnesium Alloys

    Science.gov (United States)

    Luo, Yi; Li, Jinglong

    2014-10-01

    The nugget formation of resistance spot welding (RSW) on dissimilar material sheets of aluminum and magnesium alloys was studied, and the element distribution, microstructure, and microhardness distribution near the joint interface were analyzed. It was found that the staggered high regions at the contact interface of aluminum and magnesium alloy sheets, where the dissimilar metal melted together, tended to be the preferred nucleation regions of nugget. The main technical problem of RSW on dissimilar metal sheets of aluminum and magnesium alloys was the brittle-hard Al12Mg17 intermetallic compounds distributed in the nugget, with hardness much higher than either side of the base materials. Microcracks tended to generate at the interface of the nugget and base materials, which affected weld quality and strength.

  8. Early Transition Metal Alkyl and Tetrahydroborate Complexes.

    Science.gov (United States)

    Jensen, James Allen

    1988-06-01

    An investigation of early transition metal alkyl and tetrahydroborate complexes as catalytic models and ceramic precursors has been initiated. The compounds MX _2 (dmpe)_2, dmpe = 1,2-bis(dimethylphosphino)ethane, for M = Ti, V, Cr, and X = Br, I, BH_4, have been prepared. These complexes are paramagnetic and have been shown by X-ray crystallography to have trans-octahedral structures. The BH_4^{-} groups in Ti(BH_4)_2(dmpe) _2 bond to the metal in a bidentate manner. This structure is in marked contrast to the structure of the vanadium analogue, V(BH_4)_2 (dmpe)_2, which displays two unidentate BH_4^{-} groups. Alkylation of Ti(BH_4)_2 (dmpe)_2 with LiMe results in the complex TiMe_2(dmpe) _2 which is diamagnetic in both solution and solid state. Single crystal X-ray and neutron diffraction studies show that there may be strong Ti-C pi -bonding. A tetragonal compression along the C -Ti-C bond vector accounts for the observed diamegnetism. A series of complexes of the formula Ti(BH _4)_3(PR_3)_2 has been prepared where PR_3 = PMe_3, PEt_3, PMe_3Ph, and P(OMe)_3 . The X-ray crystal structure of Ti(BH _4)_3(PMe_3)_2 reveals a pseudo trigonal bipyramidal geometry in which two BH_4^{-} groups display an unusual "side-on" bonding mode. The "side-on" ligation mode has been attributed to a Jahn-Teller distortion of the orbitally degenerate d^1 ground state. In contrast, the non-Jahn-Teller susceptible vanadium analogue, V(BH_4)_3 (PMe_3)_2, possesses a nearly ideal D_{rm 3h} >=ometry with three bidentate tetrahydroborate groups. Addition of excess PMe_3 to V(BH_4)_3(PMe _3)_2water forms the vanadium(III) oxo dimer (V(BH_4)_2 (PMe_3)_2]_2 [mu-O) which has been structurally characterized. The compound Ti(CH_2CMe _3)_4 can be prepared by addition of Ti(OEt)_4 to LiCH_2 CMe_3. Sublimation of Ti(CH _2CMe_3)_4 over a substrate heated to 250^ circC results in the chemical vapor deposition of amorphous TiC thin films. This CVD approach has been extended to the Group 4 borides: Ti

  9. Investigations on Green Preparation of Heavy Metal Saponin Complexes

    Directory of Open Access Journals (Sweden)

    Maher Abed el Aziz

    2017-04-01

    Full Text Available Green preparation of heavy metal saponin complexes has been successfully optimized by direct combination between crude extract of Olea Europaea and Citrus Aurantium with divalent heavy metals, Pb2+ and Cd2+. The main operating factors affecting preparation process were investigated and evaluated in terms of setting time, heavy metal ion concentration, crude extract concentration, and pH value of the medium. Saponin complexes had been prepared using the optimum concentrations of heavy metal ions (120 ppm and optimum concentration of crude extract (600 ppm in the slightly alkaline medium. The presence of saponin in plants was confirmed by chemical tests and UV/Vis analysis. Amount of prepared saponine complexes has the order: (Pb/Olive > (Cd/Olive > (Pb/Citrus > (Cd/Citrus. In this process, saponins was isolated and heavy metals were eliminated by a simple, faster and without a huge amount of solvents. The process itself seems to be green isolation of saponins from plants, green removal of heavy metal from aqueous waste streams or green preparation of heavy metal saponin complexes. The process exhibits several advantages and hence benefits, among of them are shorter setting time, higher volume reduction factor and no chemical or solvents used. Direct combination between heavy metals solution and plant extract solution to prepare saponin complex could be considered three in one process. During preparation of the complex, saponin isolated or extracted by heavy metals and the heavy metal eliminated or removed by saponin solution.

  10. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Kasper T. Møller

    2017-10-01

    Full Text Available Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.

  11. Mixed Metal Complexes of Isoniazid and Ascorbic Acid: Chelation ...

    African Journals Online (AJOL)

    HP

    these ligands and their metal complexes have revealed the bi-dentate coordination of isoniazid ligand to ... of the drugs on coordination with a metal is enhanced ..... James, O.O., Nwinyi, C.O. and. Allensela, M.A. (2008). Cobalt(II) complexes of mixed antibiotics: Synthesis,. Characterization, antimicrobial potential and their.

  12. Synthesis and characterization of some metal complexes of a Schiff ...

    African Journals Online (AJOL)

    dione-2-imine-N-. 2-propionate (IDIP) ... coordination to metals [25, 27], particularly, Schiff bases and their metal complexes have been shown to exhibit ..... The values show that the manganese and cobalt complexes are high spin, the iron ...

  13. DNA interactions and biocidal activity of metal complexes of ...

    Indian Academy of Sciences (India)

    Narendrula Vamsikrishna

    cancer agents, and the binding between DNA and metal complexes were used in understanding the interaction between the drugs and DNA. In general, the tumour cells can be smashed by stopping the replication of the unnatural DNA. Using Schiff base transition metal complex in particular, affected DNA may be dented by.

  14. Higher coordination numbers of metals in isolated complexes

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    The material pertaining to island complexes with polydentate ligands where transition and rare earth metals have coordination numbers from 7 to 10 is generalized. The coordination of different ligands in the complexes of these metals depending on the chemical composition and structure of chelating ligand, as well as characteristics of the central atom, is considered

  15. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses described...

  16. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    NARCIS (Netherlands)

    Leeuwen, van Herman P.; Town, Raewyn M.

    2016-01-01

    Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain

  17. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    Unknown

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae ... dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements ... group metals, and the ability of dip2– to function as a tridentate ligand, we expect to find anionic complexes of the type ...

  18. Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain.

    Science.gov (United States)

    Zhou, Yungang; Su, Qiulei; Wang, Zhiguo; Deng, Huiqiu; Zu, Xiaotao

    2013-11-14

    Prompted by recent experimental achievement of transition metal (TM) atoms substituted in MoS2 nanostructures during growth or saturating existing vacancies (Sun et al., ACS Nano, 2013, 7, 3506; Deepak et al., J. Am. Chem. Soc., 2007, 129, 12549), we explored, via density functional theory, the magnetic properties of a series of 3d TM atoms substituted in a MoS2 sheet, and found that Mn, Fe, Co, Ni, Cu and Zn substitutions can induce magnetism in the MoS2 sheet. The localizing unpaired 3d electrons of TM atoms respond to the introduction of a magnetic moment. Depending on the species of TM atoms, the substituted MoS2 sheet can be a metal, semiconductor or half-metal. Remarkably, the applied elastic strain can be used to control the strength of the spin-splitting of TM-3d orbitals, leading to an effective manipulation of the magnetism of the TM-substituted MoS2 sheet. We found that the magnetic moment of the Mn- and Fe-substituted MoS2 sheets can monotonously increase with the increase of tensile strain, while the magnetic moment of Co-, Ni-, Cu- and Zn-substituted MoS2 sheets initially increases and then decreases with the increase of tensile strain. An instructive mechanism was proposed to qualitatively explain the variation of magnetism with elastic strain. The finding of the magnetoelastic effect here is technologically important for the fabrication of strain-driven spin devices on MoS2 nanostructures, which allows us to go beyond the current scope limited to the spin devices within graphene and BN-based nanostructures.

  19. Unravelling metal mobility under complex contaminant signatures.

    Science.gov (United States)

    de Souza Machado, Anderson Abel; Spencer, Kate L; Zarfl, Christiane; O'Shea, Francis T

    2018-05-01

    Metals are concerning pollutants in estuaries, where contamination can undergo significant remobilisation driven by physico-chemical forcing. Environmental concentrations of metals in estuarine sediments are often higher than natural backgrounds, but show no contiguity to potential sources. Thus, better understanding the metal mobility in estuaries is essential to improve identification of pollution sources and their accountability for environmental effects. This study aims to identify the key biogeochemical drivers of metal mobilisation on contaminated estuarine sediments through (1) evaluation of the potential mobilisation under controlled conditions, and (2) investigation of the relevance of metal mobilisation for in situ pollution levels in an area with multiple contaminant sources. Sediments from a saltmarsh adjacent to a coastal landfill, a marina, and a shipyard on the Thames Estuary (Essex, UK) were exposed in the laboratory (24h, N=96, 20°C) to water under various salinity, pH, and redox potential. Major cations, Fe(II), and trace metal concentrations were analysed in the leachate and sediment. Salinity, pH and redox had a significant effect on metal mobilisation (pmetal spatial distribution. However, physicochemical parameters explained up to 97% of geochemically normalized metal concentrations in sediments. Organic matter and pH were dominant factors for most of the metal concentrations at the sediment surface. At subsurface, major cations (Ca, Na, Mg and K) were determinant predictors of metal concentrations. Applying the empirical model obtained in the laboratory to geochemical conditions of the studied saltmarsh it was possible to demonstrate that Fe mobilisation regulates the fate of this (and other) metal in that area. Thus, present results highlight the importance of metal mobility to control sediment pollution and estuarine fate of metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    CERN Document Server

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  1. Plasmon hybridization in complex metallic nanostructures

    Science.gov (United States)

    Hao, Feng

    With Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) method, we theoretically investigated the optical properties of some complex metallic nanostructures (coupled nanoparticle/wire, nanostars, nanorings and combined ring/disk nanocavity systems). We applied the analytical formulism of PH studying the plasmonic coupling of a spherical metallic nanoparticle and an infinite long cylindrical nanowire. The plasmon resonance of the coupled system is shown shifted in frequency, which highly depends on the polarization of incident light relative to the geometry of the structure. We also showed the nanoparticle serves as an efficient antenna coupling the electromagnetic radiation into the low-energy propagating wire plasmons. We performed an experimental and theoretical analysis of the optical properties of gold nanorings with different sizes and cross sections. For light polarized parallel to the ring, the optical spectrum sensitively depends on the incident angle. When light incidence is normal to the ring, two dipolar resonance is observed. As the incident light is titled, some previously dark mulipolar plasmon resonances will be excited as a consequence of the retardation. The concept of plasmon hybridization is combined with the power of brute-force numerical methods to understand the plasmonic properties of some very complicated nanostructures. We showed the plasmons of a gold nanostar are a result of hybridization of the plasmons of the core and the tips of the particle. The core serves as a nanoantenna, dramatically enhanced the optical spectrum and the field enhancement of the nanostar. We also applied this method analyzing the plasmonic modes of a nanocavity structure composed of a nanodisk with a surrounding minoring. For the concentric combination, we showed the nature of the plasmon modes can be understood as the plasmon hybrization of an individual ring and disk. The interation results in a blueshifted and broadened superradiant antibonding

  2. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    Science.gov (United States)

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  3. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  4. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  5. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    A. Ganopolski

    2010-04-01

    Full Text Available A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.

  6. Sorption of heavy metal ions on new metal-ligand complexes chemically derived from Lycopodium clavatum

    Energy Technology Data Exchange (ETDEWEB)

    Pehlivan, E.; Ersoz, M.; Yildiz, S. [Univ. of Selcuk, Konya (Turkey); Duncan, H.J. [Univ. of Glasgow, Scotland (United Kingdom)

    1994-08-01

    Sorption of heavy metal ions from aqueous solution has been investigated as a function of pH using a novel exchanger system whereby Lycopodium clavatum is functionalized with carboxylate and glyoxime metal-ligand complexes. The new ligand exchangers were prepared using a reaction of diaminosporopollenin with various metal-ligand complexes of glyoxime and monocarboxylic acid. The sorptive behavior of these metal-ligand exchangers and the possibilities to remove and to recover selectively heavy metal cations using these systems are discussed on the basis of their chemical natures and their complexing properties.

  7. SYNTHESIS AND CHARACTERIZATION OF SALICYLALDAZINE AND ITS METAL (II) COMPLEXES DERIVED FROM METAL (II) CHLORIDES

    OpenAIRE

    Jamila wazir

    2016-01-01

    The salicylaldazine (ligand) and its metal (II) complexes like copper (II), nickel (II), zinc (II), cobalt (II) and manganese (II) complexes has been synthesized and characterized by different techniques using FTIR, UV-VIS spectroscopy. The ligand (salicylaldazine) is synthesized by the condensation reaction of salicylaldehyde and hydrazine sulfate. The salicylaldazine metal (II) complexes like Cu (II) , Ni(II), Zn (II), Co(II), Mn(II) were prepared by using metal (II) chloride in dioxane. Th...

  8. Molecular modeling of metal complexation by a fluoroquinolone antibiotic.

    Science.gov (United States)

    Aristilde, Ludmilla; Sposito, Garrison

    2008-11-01

    An understanding of the factors controlling the chemodynamics of fluoroquinolone antibiotics in different environmental matrices is a necessary prerequisite to the assessment of their potential impact on nontarget organisms in soils and receiving waters. Of particular interest are the complexes formed between fluoroquinolones and metal cations, which are believed to be important in the mechanism of sequestration of the antibiotic by minerals and natural organic matter. The structures of these complexes have not been fully resolved by conventional spectroscopy; therefore, molecular simulations may provide useful complementary insights. We present results from apparently the first molecular dynamics simulations of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), in aqueous complexes with five metal cations typically found in soils and surface waters: Ca2+, Mg2+, Fe2+, Na+, and K+. The interatomic potential functions employed in the simulations were validated by comparison with available structural data for solid-phase Cipro-hexahydrate and for the metal cations in aqueous solution. Although no comprehensive structural data on the aqueous complexes appear to be available, properties of the metal complexes predicted by our simulations agree with available data for solid-phase metal-Cipro complexes. Our results indicate that the ionic potential of the metal cation controls the stability of the complex formed and that the hydration number of the metal cation in aqueous solution determines its coordination number with O atoms in the metal-Cipro complex. In respect to environmental chemodynamics, our results imply that Cipro will form two configurations of bidendate chelates with metal centers on exposed surfaces of mineral oxides, water-bridged surface complexes with exchangeable cations in clay mineral interlayers, and cation-bridged complexes with functional groups in natural organic matter.

  9. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets

    Directory of Open Access Journals (Sweden)

    Siya Zhu

    2015-10-01

    Full Text Available Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS2 system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of ab-initio method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

  10. Multiobjective Optimization for Fixture Locating Layout of Sheet Metal Part Using SVR and NSGA-II

    Directory of Open Access Journals (Sweden)

    Yuan Yang

    2017-01-01

    Full Text Available Fixture plays a significant role in determining the sheet metal part (SMP spatial position and restraining its excessive deformation in many manufacturing operations. However, it is still a difficult task to design and optimize SMP fixture locating layout at present because there exist multiple conflicting objectives and excessive computational cost of finite element analysis (FEA during the optimization process. To this end, a new multiobjective optimization method for SMP fixture locating layout is proposed in this paper based on the support vector regression (SVR surrogate model and the elitist nondominated sorting genetic algorithm (NSGA-II. By using ABAQUS™ Python script interface, a parametric FEA model is established. And the fixture locating layout is treated as design variables, while the overall deformation and maximum deformation of SMP under external forces are as the multiple objective functions. First, a limited number of training and testing samples are generated by combining Latin hypercube design (LHD with FEA. Second, two SVR prediction models corresponding to the multiple objectives are established by learning from the limited training samples and are integrated as the multiobjective optimization surrogate model. Third, NSGA-II is applied to determine the Pareto optimal solutions of SMP fixture locating layout. Finally, a multiobjective optimization for fixture locating layout of an aircraft fuselage skin case is conducted to illustrate and verify the proposed method.

  11. PREPARATION OF CONSTRUCTION PRODUCTION OF METAL SHEET FOR MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Piotr Penkała

    2013-03-01

    Full Text Available The design of sheet metal parts, pressed, used in the automotive industry is very complicated. Many factors influence the final shape of the part. Contemporary designer does not need to have the knowledge needed to understand the essence of its all requirements that are placed on parts of the body. It is only important that they are aware of their existence and know who in the company can help them in their fulfilment of the construction. Nowadays, only the constructor creates a CAD model geometry, which is assumed to provide the functionality. The rest of the aspects such as the provision of adequate stiffness, manufacturability, assembly features, vibration analysis, etc., are the arena of other specialists. This is the essence of constructing simultaneous, where many cell companies often work on the same element, giving it a set of features impossible to obtain by one expert on everything. Therefore, the role of the designer is often limited to being only a CAD system operator.

  12. Standard test method for ball punch deformation of metallic sheet material

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the procedure for conducting the ball punch deformation test for metallic sheet materials intended for forming applications. The test applies to specimens with thicknesses between 0.008 and 0.080 in. (0.20 and 2.00 mm). 1.2 The values stated in inch–pound units are to be regarded as the standard. Note 1—The ball punch deformation test is intended to replace the Olsen cup test by standardizing many of the test parameters that previously have been left to the discretion of the testing laboratory. Note 2—The modified Erichsen test has been standardized in Europe. The main differences between the ball punch deformation test and the Erichsen test are the diameters of the penetrator and the dies. Erichsen cup heights are given in SI units. 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.4 This standard does...

  13. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  14. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    Science.gov (United States)

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  15. Chemically-modified graphene sheets as an active layer for eco-friendly metal electroplating on plastic substrates

    International Nuclear Information System (INIS)

    Oh, Joon-Suk; Hwang, Taeseon; Nam, Gi-Yong; Hong, Jung-Pyo; Bae, Ah-Hyun; Son, Sang-Ik; Lee, Geun-Ho; Sung, Hak kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Nam, Jae-Do

    2012-01-01

    Eco-friendly nickel (Ni) electroplating was carried out on a plastic substrate using chemically modified graphene sheets as an active and conductive layer to initiate electroplating without using conventional pre-treatment or electroless metal-seeding processes. A graphene oxide (GO) solution was self-assembled on a polyethylene terephthalate (PET) film followed by evaporation to give GO layers (thickness around 6.5 μm) on PET (GO/PET) film. Then, the GO/PET film was chemically and thermally reduced to convert the GO layers to reduced graphene oxide (RGO) layers on the PET substrate. The RGO-coated PET (RGO/PET) film showed the sheet resistance of 100 Ω per square. On RGO/PET film, Ni electroplating was conducted under the constant-current condition and the entire surface of the PET film was completely metalized with Ni without any voids.

  16. fusion on metal ion complexation of porphycene

    Indian Academy of Sciences (India)

    Complexation of −′ fused -extended porphycene, namely dinaphthoporphycene was carried out successfully with copper(II) and its solid state structure shows a square-type planar N4-coordination core. The photophysical and electrochemical properties of this complex, along with the nickel(II) complex were also ...

  17. Synthesis and characterization of transition metal complexes ...

    African Journals Online (AJOL)

    Basing on the above data, Fe(II) and Co(II) complexes of HMCFCH and HMPFCH have been assigned a dimeric octahedral geometry. VO(II) complexes of HMCFCH and HMPFCH have been assigned sulfate bridged dimeric square pyramidal geometry. Mn(II) complex of HMCFCH has been assigned a dimeric octahedral ...

  18. Analysis of stress and deformation fields of shape complex beams

    Directory of Open Access Journals (Sweden)

    Pástor Miroslav

    2018-01-01

    Full Text Available In this paper is investigated the analysis of stress and deformation fields of shape complex beams. The shape complex beams are made from load-bearing sheet (trapezoidal sheet circumferentially connected with strips of sheet metal, these beams are a substitute for more complex and heavier beams. The numerical analysis with static load are performed for these beams. The effect of three different types of connections between load-bearing sheet and strips of sheet metal is investigated. The first type of connection is represented by the trapezoidal sheet perfectly welded to the strips of sheet metal, the second type of connection is represented by the trapezoidal sheet welded to the strips of sheet metal only on the base sides of the trapezoidal sheet. The third one is represented by point welds. The stress and deformation fields for all types of the connections are compared and the suitable variant is chosen.

  19. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  20. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  1. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  2. Device of connecting the metal sheet lining a concrete enclosure to a pipe opening inside the enclosure

    International Nuclear Information System (INIS)

    Petit, Guy.

    1975-01-01

    Said invention relates to a sealed device connecting a metal sheet anchored on the internal side of a concrete vessel containing a hot pressurized fluid, with a metallic pipe opening inside said vessel. It is intended for heat insulating structures so-called 'hot skin' used for the pressure vessels of some boiling water reactors. Said invention is intended for different types of said pipe such as: the penetrations for the inlets and outlets of the primary circuit, or anchoring cylindrical sheaths used as supports of components or other elements located inside said pressure vessel [fr

  3. Preparation and Characterization of a Hydrophobic Metal-Organic Framework Membrane Supported on Thin Porous Metal Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Canfield, Nathan L.; Liu, Wei

    2016-02-29

    A hydrophobic metal-organic framework (MOF) UiO-66-CH3 is prepared and its solvothermal stability is investigated in comparison to UiO-66. It is confirmed that the MOF stability is enhanced by introduction of the two methyl groups, while the water adsorption is reduced. Given its hydrophobicity and stability, UiO-66-CH3 is proposed as an attractive membrane material for gas separation under moisture conditions. The UiO-66-CH3 membrane is prepared on a 50µm-thin porous Ni support sheet for the first time by use of a secondary growth method. It is found that uniform seed coating on the support is necessary to form a continuous membrane. In addition to growth time and temperature, presence of a modulator in the growth solution is found to be useful for controlling hydrothermal membrane growth on the seeded support. A dense, inter-grown membrane layer is formed by 24-h growth over a temperature range from 120 oC to 160 oC. The membrane surface comprises 500 nm octahedral crystals, which are supposed to grow out of the original 100 nm spherical seeding crystals. The separation characteristics of resulting membranes are tested with pure CO2, air, CO2/air mixture, and humid CO2/air mixture. CO2 permeance as high as 1.9E-06 mol/m2/s/Pa at 31oC is obtained. Unlike the hydrophilic zeolite membranes, CO2 permeation through this membrane is not blocked by the presence of water vapor in the feed gas. The results suggest that this MOF framework is a promising membrane material worth to be further investigated for separation of CO2 and other small molecules from humid gas mixtures.

  4. 3d-METAL COMPLEXES WITH BARBITURIC ACID DERIVATIVES

    Directory of Open Access Journals (Sweden)

    T. V. Koksharova

    2015-04-01

    Full Text Available The various aspects of the 3d-metal complexes with barbiturates and uric acid chemistry such as composition, structure, physicochemical properties, possible fields of application – have been illustrated in this review

  5. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    Unknown

    membered chelate rings; molecular modelling; five-membered chelate ring. 1. Introduction. The chemistry of transition metal complexes of thiosemicarbazones has been receiving considerable attention largely because of their pharmacological ...

  6. Mesoporous diphosphine-transition metal complex catalyst for hydroformylation

    NARCIS (Netherlands)

    Reek, J.N.H.; Coppens, M.O.

    2012-01-01

    The invention pertains to a diphosphine-transition metal complex comprising a diphosphine-transition metal ligand that is covalently bonded to an insoluble mesoporous support having an average pore diameter of from 4.5 nm to 50 nm, characterized in that the ligand as attached to the support has the

  7. Stability of complex coacervate core micelles containing metal coordination polymer

    NARCIS (Netherlands)

    Yan, Y.; Keizer, de A.; Cohen Stuart, M.A.; Drechsler, M.; Besseling, N.A.M.

    2008-01-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and

  8. Inkjet Printing of 3D Metallic Silver Complex Microstructures

    NARCIS (Netherlands)

    Wits, Wessel Willems; Sridhar, Ashok; Dimitrov, D.

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief

  9. Biological activities of some Fluoroquinolones-metal complexes ...

    African Journals Online (AJOL)

    Background: Metal ions play a vital role in the design of more biologically active drugs. Aim: The paper reviewed the antimicrobial, toxicological and DNA cleavage studies of some synthesized metal complexes of fluoroquinolone antibiotics. Materials and Methods: Literature searches were done using scientific databases.

  10. DINUCLEAR METAL COMPLEXES DERIVED FROM A BIS ...

    African Journals Online (AJOL)

    Preferred Customer

    Electrothermal IA 9200, Digital Melting Point Apparatus and elemental analyses were undertaken using a Flash EA ... the reaction mixture was kept in an ice bath. The stirring was continued for ca. ... of methanol and triethylamine and then 0.58 mmol of metal salt, dissolved in the same solvent, was added to the suspension.

  11. Modeling and Control of the Springback Effect in the Bottom Sheet Metal Part One-Stage Drawing Process

    Directory of Open Access Journals (Sweden)

    A. S. Chumadin

    2014-01-01

    Full Text Available The main objective of this study is to reduce a manufacturing complexity of bottom sheet metal parts by improving the accuracy of parts produced. This study is aimed at using the finite element analysis to prove assumptions that there is a transition frontier between the processes of forming and drawing, and there are capabilities to control springback effect by moving this frontier positions.The process, the stress-strain state of which in the dome corresponds to the process of forming parts, and in the flange area to the drawing process, was considered to be a formingdrawing process.Based on previous studies, techniques to reduce a springback have been proposed which enable us to use three calculation schemes for the process simulation:The frontier transition position control between the processes of forming and drawing by changing the contact pressure on the flange by varying the frictions coefficients on the die and binder surfaces;Springback manage through the additional tensile forces in the flange area of the blank;Springback manage through the technological insert at the first process stage.For ease of comparison with previous research results the same geometric parameters and material properties of the items are used in the simulation.The springback analysis used a finite element method in the AutoFormTM incremental module with automatically mashed and standard tolerance computation properties. The blank, binder, punch, and die were then imported to the module by CATIATM interface in .iges format.The calculation has shown that the optimal value for the least thinning and springback parts are available for the second scheme whereby ring punch makes additional tension in the flange area (from 1.09 to 0.35 mm with thinning from 0.80 to 0.73 mm. The use of flange retention of sheet blank at the expense of variable frictional forces showed the springback value reduction by 4 times (from 1.09 to 0.27 mm. However thinning was 16% (from 0.80 to

  12. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    DEFF Research Database (Denmark)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.

    2012-01-01

    , while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical...

  13. Effect of strain path change on limits to ductility of anisotropic metal sheets

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    plasticity models to fit a set of experimental data for cold-rolled steel sheet. The predicted forming limit diagrams show strong dependence on whether or not the load on the sheet is removed between two load steps on a non-proportional strain path. This dependence is investigated in detail for one...... response. (C) 2000 Elsevier Science Ltd. All rights reserved....

  14. Flexible Engineering Structures from the Corrugated Metal Sheets - Comparison of Costs of Solutions used in the Road Building

    Science.gov (United States)

    Ołdakowska, E.

    2017-11-01

    The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.

  15. Organometallic complexes of the platinum metals: Synthesis ...

    Indian Academy of Sciences (India)

    R ligands with [Rh(PPh3)3Cl] yields organorhodium complexes (7-R) analogous to 6-R, but without any hydrido intermediate. N-(2 -hydroxyphenyl)benzaldimines (hpbz-R) react with [Rh(PPh3)3Cl] to yield a group of organorhodium complexes (8-R), where the hpbz-R ligands are coordinated in CNO-fashion. Upon interac-.

  16. Integral sheet metal design via severe plastic deformation - state of the art and future challenges

    Science.gov (United States)

    Bruder, E.; Kaune, V.; Müller, C.

    2014-08-01

    The innovative forming processes Linear Flow Splitting (LFS) and Linear Bend Splitting (LBS) were developed to facilitate the continuous production of branched profiles with tailored sheet thickness by inducing severe plastic strain. In contrast to most SPD processes the stress state in LFS and LBS is very complex and plastic deformation is confined to limited volumes which results in steep strain gradients and consequently ultrafine grained (UFG) gradient microstructures. Even though the processes have been commercialized, the increased lightweight potential that originates from the local grain refinement remains mostly idle since it is neither fully understood nor easily assessable yet. The present work shows the state of the art for the LFS and LBS processes and compares the microstructures and distribution of mechanical properties for different steels processed with different LFS parameters. The data is used to identify characteristic manufacturing induced properties that are insensitive to processing parameters. Based on the experimental results a material flow model for the processing zone is proposed which is discussed with respect to the current understanding of plasticity at severe strains.

  17. Time series analysis of tool wear in sheet metal stamping using acoustic emission

    Science.gov (United States)

    Vignesh Shanbhag, V.; Pereira, P. Michael; Rolfe, F. Bernard; Arunachalam, N.

    2017-09-01

    Galling is an adhesive wear mode that often affects the lifespan of stamping tools. Since stamping tools represent significant economic cost, even a slight improvement in maintenance cost is of high importance for the stamping industry. In other manufacturing industries, online tool condition monitoring has been used to prevent tool wear-related failure. However, monitoring the acoustic emission signal from a stamping process is a non-trivial task since the acoustic emission signal is non-stationary and non-transient. There have been numerous studies examining acoustic emissions in sheet metal stamping. However, very few have focused in detail on how the signals change as wear on the tool surface progresses prior to failure. In this study, time domain analysis was applied to the acoustic emission signals to extract features related to tool wear. To understand the wear progression, accelerated stamping tests were performed using a semi-industrial stamping setup which can perform clamping, piercing, stamping in a single cycle. The time domain features related to stamping were computed for the acoustic emissions signal of each part. The sidewalls of the stamped parts were scanned using an optical profilometer to obtain profiles of the worn part, and they were qualitatively correlated to that of the acoustic emissions signal. Based on the wear behaviour, the wear data can be divided into three stages: - In the first stage, no wear is observed, in the second stage, adhesive wear is likely to occur, and in the third stage severe abrasive plus adhesive wear is likely to occur. Scanning electron microscopy showed the formation of lumps on the stamping tool, which represents galling behavior. Correlation between the time domain features of the acoustic emissions signal and the wear progression identified in this study lays the basis for tool diagnostics in stamping industry.

  18. Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approach

    Directory of Open Access Journals (Sweden)

    Mantra Prasad Satpathy

    2015-12-01

    Full Text Available Ultrasonic welding has been used in the market over the past twenty years and serving to the manufacturing industries like aviation, medical, microelectronics and many more due to various hurdles faced by conventional fusion welding process. It takes very short time (less than one second to weld materials, thus it can be used for mass production. But many times, the problems faced by industries due to this process are the poor weld quality and strength of the joints. In fact, the quality and success of the welding depend upon its control parameters. In this present study, the control parameters like vibration amplitude, weld pressure and weld time are considered for the welding of dissimilar metals like aluminum (AA1100 and brass (UNS C27000 sheet of 0.3 mm thickness. Experiments are conducted according to the full factorial design with four replications to obtain the responses like tensile shear stress, T-peel stress and weld area. All these data are utilized to develop a non-linear second order regression model between the responses and predictors. As the quality is an important issue in these manufacturing industries, the optimal combinations of these process parameters are found out by using fuzzy logic approach and genetic algorithm (GA approach. During experiments, the temperature measurement of the weld zone has also been performed to study its effect on different quality characteristics. From the confirmatory test, it has been observed that, the fuzzy logic yields better output results than GA. A variety of weld quality levels, such as “under weld”, “good weld” and “over weld” have also been defined by performing micro structural analysis.

  19. Form and position measurement of sheet metal parts by boundary outlines extracting strategy

    Science.gov (United States)

    Ma, Liqun; Fan, Jingjing; Zhou, Zili; Li, Yongqian

    2017-08-01

    This paper proposes a new strategy of extracting boundary points from scanning point cloud (SPC) data of sheet metal parts (SMPs). This strategy is suitable for bending SMPs with slowly changing surfaces. To cope with the problem that the SMP is too thin to have enough points of its lateral surface to be calculated for the boundary outline, the boundary points are obtained by moving ridge points which is the maximum curvature points on the marginal of parts along theoretical position direction. In this article, the strategy is explained firstly and then carried out on two different experimental SMPs. The strategy contains several steps. Firstly, we construct a slice set called multiple direction slices (MDS) along a curve fitted by boundary points of SPC. Then marginal point data (MPD) is obtained completely and accurately by MDS. And then the chamfer arc data is extracted from MPD by setting identification model of chamfer arc's two endpoints. Then the ridge points which are the maximal curvature points of chamfer arc data are picked out from chamfer arc data. Finally, by moving the ridge points along a certain direction for a fixed distance, the boundary points are calculated out. Two experiments are carried out to identify position error and form error of the extracted boundary points. The measurement results of boundary outlines of a 6mm thick SMP from a three coordinate measuring machine (CMM) is taken as reference in the first experiment. The second experiment regards theoretical boundary outline as reference. Both two experiments demonstrate the effectiveness of the strategy.

  20. Investigation on lateral resistance of joints made with drywall and sheet metal screws in bagasse particleboard and comparison with that of commercial MDF

    OpenAIRE

    Eshaghi,Saeed; Faezipour,Mahdi; Taghiyari,Hamid Reza

    2013-01-01

    In this research, effects of screw diameter, screw type, panel type, and end distance on lateral resistance of the joints made with drywall and sheet metal screws were studied in bagasse particleboard and the results were compared to those obtained from commercial medium density fiberboard (MDF). The accuracy of EYM in prediction of lateral resistance was then investigated. The drywall screws comprised of size 8 with coarse thread and size 10 with fine thread; the sheet metal screws comprised...

  1. Synthesis, characterization and biological profile of metal and azo-metal complexes of embelin

    Directory of Open Access Journals (Sweden)

    R. Aravindhan

    2014-12-01

    Full Text Available The present study emphasizes synthesis and bioprofiling of embelin, embelin-metal (EM and embelin-azo-metal (EAM complexes in detail. EM complexes were prepared using pure embelin and d-block transition elements, namely Mn, Fe, Co, Ni, Cu, and Zn. Similarly, EAM complexes were synthesized using phenyl azo-embelin with the said transition metals. Embelin, EM, and EAM complexes were subjected to ultra violet visible spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, electrospray ionization mass spectrometry, thermogravimetric analysis, carbon hydrogen nitrogen sulfur analysis. With regard to bioprofiling, the test complexes were studied for the antioxidant and antimicrobial activities. Results revealed that the prepared EM and EAM complexes form octahedral complexes with embelin with the yield in the range of 45–75%. All the instrumental analyses authenticate the interaction of metals with bidentate embelin through its enolic and quinonic oxygen atoms as [M(Emb2(H2O2]H2O and [M(Emb-Azo2(H2O2]. The antioxidant profile studies suggested that upon complexation with metals, the free radical scavenging activity of embelin reduced significantly. But, with regard to antimicrobial activity, cobalt and nickel embelin complexes displayed>80% growth inhibition in comparison with embelin alone. The hemolytic activity studies suggested that both embelin and the metal complexes are non-hemolytic. The reason for the reduction in antioxidant and an increase in antimicrobial activities were discussed in detail.

  2. Alkali metal complexes of 6-methyl-2-pyridone: simple formulae, but not so simple structures.

    Science.gov (United States)

    Clegg, William; Tooke, Duncan M

    2013-12-01

    Reaction of 6-methyl-2-pyridone (Hmhp) with Na or K metal, or with Rb or Cs 2-ethylhexoxide, in an appropriate single or mixed solvent, yields a series of solvated polymeric complexes with the empirical formulae M(mhp)(H2O)2 [(1), M = Na; (2), M = K], M(mhp)(H2O) [(3), M = Rb; (4), M = Cs] and Cs(mhp)(ROH) [(5), R = Me; (6), R = Et]. All of the products have been crystallographically characterized and show sheet polymeric structures, except for a double-chain structure for (2). In all of the structures, mhp(-) and solvent molecules function as bridging ligands; two metal ions are bridged (μ2) by each solvent molecule in (1), (5) and (6), while (2) contains both μ2 and μ3 triple bridges, and (3) and (4) display highly unusual μ4 quadruple bridging of metal ions by water molecules. The pyridonate O atom bridges two or three metal ions in each case. Nitrogen is also involved in coordination to the heavier metals; it bonds to a single ion in (3) and (4), but has an almost unprecedented bridging role in (5) and (6). As a result of the extensive bridging by ligands, coordination numbers between 6 and 8 are achieved for the metal ions. In each structure, all solvent OH groups form hydrogen bonds to pyridonate O and, in some cases, N atoms. With one exception, these are the first reported pyridonate complexes of the alkali metals Na-Cs that do not also include transition metals.

  3. Factors governing the metal coordination number in metal complexes from Cambridge Structural Database analyses.

    Science.gov (United States)

    Dudev, Minko; Wang, Jonathan; Dudev, Todor; Lim, Carmay

    2006-02-02

    The metal coordination number (CN) is a key determinant of the structure and properties of metal complexes. It also plays an important role in metal selectivity in certain metalloproteins. Despite its central role, the preferred CN for several metal cations remains ambiguous, and the factors determining the metal CN are not fully understood. Here, we evaluate how the CN depends on (1) the metal's size, charge, and charge-accepting ability for a given set of ligands, and (2) the ligand's size, charge, charge-donating ability, and denticity for a given metal by analyzing the Cambridge Structural Database (CSD) structures of metal ions in the periodic table. The results show that for a given ligand type, the metal's size seems to affect its CN more than its charge, especially if the ligand is neutral, whereas, for a given metal type, the ligand's charge and charge-donating ability appear to affect the metal CN more than the ligand's size. Interestingly, all 98 metal cations surveyed could adopt more than than one CN, and most of them show an apparent preference toward even rather than odd CNs. Furthermore, as compared to the preferred metal CNs observed in the CSD, those in protein binding sites generally remain the same. This implies that the protein matrix (excluding amino acid residues in the metal's first and second coordination shell) does not impose severe geometrical restrictions on the bound metal cation.

  4. Extraction of complexes of metal ions with pyridine oxyazo compounds

    International Nuclear Information System (INIS)

    Lobanov, F.I.; Nurtaeva, G.K.; Ergozhin, E.E.

    1983-01-01

    Modern state and prospects of the development of investigas tions in the field of extraction of complexes of metal ions (V, In, Cd, Nb, REE, RU, Ta, U, Zr and others) with pyridine oxyazo compoUnds are analyzed. Application of pyridine oxyazo compounds as extraction-photometric reagents is described. Basic methods of oxyazo compounds preparation are considered along with reagent properties and physical-chemical characteristics. Flow diagrams of ion extraction are presented for the above metals. Mechanisms of complexing reactions for metal ions with pyridine oxyazo compounds and stability of forming complexes are considered in detail. Concrete methods of extraction-photometric separation and element determination permitting to find simultaneously several metal ions with similar properties in the case of their joint presence are described

  5. Lability of nanoparticulate metal complexes in electrochemical speciation analysis

    DEFF Research Database (Denmark)

    van Leeuwen, Herman P.; Town, Raewyn M.

    2016-01-01

    equilibrium with the reduced concentration of the electroactive free M2+ in its diffusion layer. Since the metal ion binding sites are confined to the NP body, the conventional reaction layer in the form of a layer adjacent to the electrode surface is immaterial. Instead an intraparticulate reaction zone may...... of the electrochemical technique is crucial in the lability towards the electrode surface. In contrast, for nanoparticulate complexes it is the dynamics of the exchange of the electroactive metal ion with the surrounding medium that governs the effective lability towards the electrode surface.......Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain...

  6. studies on transition metal complexes of herbicidal compounds. ii

    African Journals Online (AJOL)

    a

    donor and it forms binuclear octahedral metal complexes, possessing alkoxide bridging. Cobalt(II) complex exhibits thermochromism. Antimicrobial studies on ..... coordination. N1 or N3 may be involved in this process (Figure 1) [18-20]. (iii) Positive shifts in ν(C-O) and ν(N-H) are strong indications of the participation of the.

  7. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Compared with organic dyes, inorganic metal complex dyes have high thermal and chemical stability. Among these complexes, polypyridyl ruthenium sensitizers were widely used and investi- gated for their high stability and outstanding redox properties and good response to natural visible sunlight. The sensitizers an-.

  8. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    Science.gov (United States)

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  9. Mixed metal complexes of isoniazid and ascorbic acid: chelation ...

    African Journals Online (AJOL)

    Novel mixed complexes of isoniazid and ascorbic acid have been synthesized and characterized using infrared, electronic absorption data, elemental analysis, molar conductivity, melting point, thin layer chromatography and solubility. The metal ions involved in the complex formation are Cu2+, Zn2+ and Cd2+. The melting ...

  10. Functionalization of protein crystals with metal ions, complexes and nanoparticles.

    Science.gov (United States)

    Abe, Satoshi; Maity, Basudev; Ueno, Takafumi

    2018-04-01

    Self-assembled proteins have specific functions in biology. With inspiration provided by natural protein systems, several artificial protein assemblies have been constructed via site-specific mutations or metal coordination, which have important applications in catalysis, material and bio-supramolecular chemistry. Similar to natural protein assemblies, protein crystals have been recognized as protein assemblies formed of densely-packed monomeric proteins. Protein crystals can be functionalized with metal ions, metal complexes or nanoparticles via soaking, co-crystallization, creating new metal binding sites by site-specific mutations. The field of protein crystal engineering with metal coordination is relatively new and has gained considerable attention for developing solid biomaterials as well as structural investigations of enzymatic reactions, growth of nanoparticles and catalysis. This review highlights recent and significant research on functionalization of protein crystals with metal coordination and future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Degradation of metal-nitrilotriacetate complexes by Chelatobacter heintzii

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, H. Jr.; Girvin, D.C.; Plymale, A.E.; Harvey, S.D.; Workman, D.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-03-01

    Nitrilotriacetic acid (NTA) is a synthetic chelating agent that can form strong water-soluble complexes with a wide range of radionuclide and metal ions and has been used to decontaminate nuclear reactors and in the processing of nuclear materials. The codisposal of NTA or other synthetic chelating agents with radionuclides may result in increased dispersal of radionuclides in soil and subsurface environments. Understanding the influence of aqueous geochemistry on NTA degradation is essential to predict the mobility and fate of inorganic contaminant-NTA complexes in the subsurface. Chelatobacter heintzii (ATCC 29600) was shown to degrade {sup 14}C-labeled NTA to {sup 14}CO{sub 2} with first-order kinetics at concentrations ranging from 0.05 to 5.23 {mu}M (0.01-1 {mu}g of NTA mL{sup -1}). The degradation of various metal-NTA complexes was investigated under conditions in which NTA was predominantly present as the metal-NTA complex, and the order for the rates of degradation is given. The degradability of the various metal-NTA complexes was not related to their thermodynamic stability constants, but was related to the lability of the various metal-NTA complexes or the relative rates of formation of HNTA{sup 2-}. 58 refs., 5 figs., 2 tabs.

  12. DFT study on metal-mediated uracil base pair complexes

    Directory of Open Access Journals (Sweden)

    Ayhan Üngördü

    2017-11-01

    Full Text Available The most stable of metal-mediated uracil base pair complexes were determined. Method was used density functional theory, B3LYP. The calculations of systems containing C, H, N, O were described by 6-311++G(d,p and cc-PVTZ basis sets and LANL2DZ and SDD basis sets was used for transition metals. Then Egap values of complexes were calculated and the electrical conductivity of the complexes for single nanowires was studied by band theory. Metal-mediated uracil base pair complexes which will be used as conductive wires in nanotechnology were predicted. In nanoworld, this study is expected to show a way for practical applications.

  13. Pharmacologically significant tetraaza macrocyclic metal complexes ...

    Indian Academy of Sciences (India)

    MOHAMMAD SHAKIR

    2017-11-22

    Nov 22, 2017 ... along with medical sector (up to 60% of the total human infections are provoked by biofilms).24–26 The Candida biofilms formation has an important ..... 784.01 respectively, correspond to the nitrogen isotope. The mass spectra of Schiff base macrocyclic complexes of Co(II), (a) Ni, (b) Cu(II), (c) and Zn(II), ...

  14. Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.

    Science.gov (United States)

    Joshi, Tanmaya; Graham, Bim; Spiccia, Leone

    2015-08-18

    Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking

  15. Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance.

    Science.gov (United States)

    Wang, Jun; Li, Kai; Zhong, Hai-xia; Xu, Dan; Wang, Zhong-li; Jiang, Zheng; Wu, Zhi-jian; Zhang, Xin-bo

    2015-09-01

    Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Strain rate dependent hardening of DP600 sheet metal for large strains under in-plane biaxial loadings

    Science.gov (United States)

    Liu, W.; Guines, D.; Léotoing, L.; Ragneau, E.

    2016-10-01

    In this work, an in-plane biaxial tensile test of cruciform specimen is performed to identify the visco-plastic hardening behaviour of metallic sheets for both large strains and intermediate strain rates at room temperature. Firstly, an optimal shape of the specimen is suggested. Then, dynamic biaxial tensile tests are carried out for a dual phase DP600 steel sheet. Experimental forces on the two axes of the specimen are measured during the test and strains in the central area of the specimen are post-treated by means of Digital Image Correlation (DIC) technique. Finally, considering a Hill48 anisotropic yield criterion, two strain rate dependent hardening laws are identified thanks to an inverse procedure based on a Finite Element (FE) modelling of the biaxial tensile test and on the experimental data mentioned above. The identified biaxial flow curves are then compared with the ones from a classical uniaxial tensile test.

  17. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...... Bending Under Tension tests. The overall results show that the methodology ensures satisfactory agreement between laboratory tests and production tests, although disagreement can occur, if tribological conditions are not the same in the two cases....

  18. Dinuclear metal complexes derived from a bis-chelating heterocyclic ...

    African Journals Online (AJOL)

    The analytical data indicate that the metal to ligand ratio is 2:1 in all the complexes. The coordination of triethylamine, water and chloride ion are observed in the Co(II), Zn(II) and Ni(II) complexes. The absence of ionizable or coordinated chloride in Cu(II) complex is a notable feature. Octahedral geometry for Co(II), Zn(II) and ...

  19. One metal-organic frameworks showing two-dimensional sheet structure: Synthesis, structure, and magnetic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yong Hong [School of Chemistry and Material Science, Huaibei Normal University, Huaibei (China); Wang, Zhe Yu [No. 1 High School of Huaibei, Huaibei (China)

    2015-02-15

    Under hydrothermal condition, the reaction of 2,4-dichlorophenoxyacetic acid (2,4-DH) and 1,3-bis(4-pyridyl)propane with MnCl{sub 2} ·2H{sub 2}O gave a novel metal-organic framework (MOF), [Mn(2,4-D)2 (H{sub 2}O){sub 2}]{sub n} (1). This complex was characterized by IR, elemental analysis, powder X-ray diffraction, and thermogravimetry analysis. X-Ray single-crystal diffraction shows that the Mn(II) ions are bidendate bridged by carboxyl groups in the syn–anti mode, giving a two-dimensional (2D) network. Temperature-dependent magnetic studies reveal that there are weak antiferromagnetic exchange interactions between the Mn(II) ions transmitted by carboxyl groups.

  20. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  1. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    Science.gov (United States)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  2. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    OpenAIRE

    Edith eJoseph; Edith eJoseph; Sylvie eCario; Anaële eSimon; Marie eWörle; Rocco eMazzeo; Pilar eJunier; Daniel eJob

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxal...

  3. Magnetite-sulfide-metal complexes in the Allende meteorite

    Science.gov (United States)

    Haggerty, S. E.; Mcmahon, B. M.

    1979-01-01

    A model of liquid immiscibility is presented that seemingly accounts for the sulfide-oxide-metal complexes that are present in olivine-rich chondrules in the Allende meteorite. The four major assemblages that are identified are: (1) magnetite + Ni-Fe metal; (2) magnetite + troilite + Ni-Fe metal; (3) magnetite + troilite + pentlandite + Ni-Fe metal; and (4) troilite + or - pentlandite. Specific attention is focused on oxide-metal associations and experimental data confirm earlier suggestions that magnetite results from the oxidation of an initially high-Fe-content metal alloy. Oxidation decreases the modal abundance of the Fe metal and this is accompanied by substantial increases in Ni contents which reach a maximum of approximately 70 wt % Ni. The proposed oxidation mechanism is entirely consistent with condensation of Fe-metal + olivine (Fa5) that subsequently reequilibrated at lower temperatures. Although the sulfide constituents could also have formed by the reaction of Fe-Ni metal + gaseous H2S, sulfide immiscibility under increased conditions of partial O2 pressure is the preferred process.

  4. Metal Complexes for Organic Optoelectronic Applications

    Science.gov (United States)

    Huang, Liang

    Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i

  5. Metal complexes and solvent extraction properties of isonitrosoacetophenone 2-aminobenzoylhydrazone.

    Science.gov (United States)

    Gup, Ramazan; Giziroğlu, Emrah

    2006-11-01

    Three types of copper complexes as well as an oximate-bridged nickel complex with isonitrosoacetophenone 2-aminobenzoylhydrazone (H(2)L) have been prepared in ethanolic solution and characterized by elemental analyses, IR, (1)H NMR, UV-vis and magnetic susceptibility measurement. IR spectra show the ligand coordinates as a neutral, monoanionic and dianionic O,N,N-tridentate acylhydrazoneoxime ligand depending reaction conditions and metal salts employed. The elemental analyses results, spectroscopic and magnetic data are consistent with the formation of mononuclear copper complexes and binuclear complexes with both copper and nickel. The effects of varying pH and solvent on the absorption behavior of both ligand and complexes have been investigated. The extraction ability of acylhydrazoneoxime ligand has been examined by the liquid-liquid extraction of selected transition metal [Cu(2+), Ni(2+), Co(2+), Cr(3+), Hg(2+), Zn(2+), Cd(2+) and Mn(2+)] cations. The ligand shows strong binding ability toward copper(II) ion.

  6. Studies On Some Acid Divalent-Metal Nitrilotriacetate Complexes

    Directory of Open Access Journals (Sweden)

    N. E. Milad

    2000-10-01

    Full Text Available IR and 1H-NMR studies on nitrilotriacetic acid (H3NTA suggest that the acid exists in the zwitterion form, which allows the existence of intermolecular hydrogen bonding. A tetrahedral structure is established for eleven (1:1 anhydrous acid-metal (II nitrilotriacetates complexes. The ten Dq values for the colored complexes were determined spectrophotometrically. The pKa values for the eleven acid metal complexes [M(HNTA].(OH23] were determined and compared with the corresponding pKa values of the [M(OH2n]+2 ions and also with the log β1 values of the corresponding [M(NTA]- complexes. X-ray diffraction studies on the ligand and on eight of these complexes are described.

  7. DNA interactions and biocidal activity of metal complexes of ...

    Indian Academy of Sciences (India)

    Narendrula Vamsikrishna

    115.3. 2.4 Synthesis of metal complexes. To a hot methanolic solution of the Schiff base [2-(-(benzo. [d]thiazol-6-ylimino)methyl)-4-chlorophenol/2-(-(benzo[d] thiazol-6-ylimino)methyl)-4-nitrophenol] (10 mmol), a solu- tion of metal(II) acetate of copper, nickel or cobalt (10 mmol) in hot methanol was added drop wise and the ...

  8. Epidotisation and fluid flow in sheeted dyke complex : new field and experimental constraints

    Science.gov (United States)

    Coelho, Gabriel; Sizaret, Stanislas; Arbaret, Laurent; Branquet, Yannick; Champallier, Rémi

    2013-04-01

    Hydrothermal system in oceanic crust is usually studied via dredge samples and drilled holes but their equivalent are also found in ophiolitic complexes (Oman, Cyprus). In the deepest zone, the fluids react with the sheeted diabase dikes at 400°C and 400 bars to form epidosites by enrichment in epidote and quartz [1]. Mineralogy and chemistry of epidosites have been widely studied on fields [1] and hydrology is generally studied using numerical models [2]. However, the relations and the timing of the emplacement of diabase dikes, their alteration in epidosite and the regional deformation remain unclear. We performed experiments on diabase sampled in the Troodos complex (Cyprus), 1) to stress the P-T-fO2-fluid composition conditions of the reaction of epidotisation and, 2) to quantify interrelations between the permeability and the epidotisation during deformation. In Troodos, we observed two major types of epidosite: 1) a pervasive epidosite in the core of dikes and a banding which is parallel to chilled margins and, 2) assemblages of epidote and quartz as alteration fronts in cooling joints or in the form of veins cross-cutting non-epidotised dikes. This last type of epidotisation clearly appears to be a hydrothermal veining process. We synthesized epidote in a static autoclave with external heating at 500°C and 2500 bars. Epidote was formed by the following reaction: 6 albite + 2 hematite + anorthite + 7 Ca2+ + 6 H2O → 4 epidote + 8 quartz + 6 Na+ + 8 H+. The calculated variation of the molar volume is about -3% (creation of porosity). Two parameters are essential to synthesize epidote from diabase: the oxygen fugacity and the composition of the fluid (enriched in Ca and Fe). However, there is an obvious problem of nucleation at 400°C and 400 bars. In order to understand how fluid flows throughout sheeted dikes, in situ measurements of permeability during coaxial deformation have been performed in a Paterson apparatus by infiltration of Argon and water. The

  9. Thinning behavior of laminated sheets metal in warm deep-drawing process under various grain sizes

    Directory of Open Access Journals (Sweden)

    Kadkhodayan Mehran

    2016-01-01

    Full Text Available The purpose of present research is to investigate the thickness distribution on the warm deep-drawing process of laminated sheets consisting of aluminum alloy series 1050, 5052 and stainless steel 304 (SUS, experimentally. Individually for each layer, the influences of blank temperature and grain size on thinning behavior are clearly demonstrated. In order to survey the thinning behavior in laminate sheet behavior during warm deep-drawing process; three blank temperatures namely, 25° C, 100° C and 160° C are examined. Moreover, to obtain different grain sizes, the aluminium sheets are annealed at 350° C, 400° C and 450° C for 1 hour. Results indicate that increasing temperature and grain size lead to maximum thinning in all layers in Al 1050/SUS and Al 5052/SUS specimens increase. In addition, the most susceptible zone to fracture in aluminum sheets (Al 1050 and Al 5052 is punch profile radius region; nevertheless, for stainless steel sheets this zone switch to central zone of formed cup. These can be attributed to the fact that the adhesive layer play a crucial role in thickness distribution of steel 304 layer, therefore the distribution of thickness strain for adhesive layer is also investigated.

  10. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  11. The Experimental Analysis of Forming and Strength of Clinch Riveting Sheet Metal Joint Made of Different Materials

    Directory of Open Access Journals (Sweden)

    Jacek Mucha

    2013-01-01

    Full Text Available The paper presents the pressed joint technology using forming process with or without additional fastener. The capabilities for increasing the load-carrying ability of mechanical joints by applying special rivets and dies were presented. The experimental research focused on joining steel sheet metal made of different materials. The joint forming was performed with the solid round die and rectangular split die for riveted joint forming. The load-carrying ability of joints was evaluated by measuring the maximum load force in the shearing test in the tensile testing machine. The effect of joint forming process on joined material strain was compared by measuring the microhardness of the joints.

  12. Vacuum filling of complex microchannels with liquid metal.

    Science.gov (United States)

    Lin, Yiliang; Gordon, Olivia; Khan, M Rashed; Vasquez, Neyanel; Genzer, Jan; Dickey, Michael D

    2017-09-12

    This paper describes the utilization of vacuum to fill complex microchannels with liquid metal. Microchannels filled with liquid metal are useful as conductors for soft and stretchable electronics, as well as for microfluidic components such as electrodes, antennas, pumps, or heaters. Liquid metals are often injected manually into the inlet of a microchannel using a syringe. Injection can only occur if displaced air in the channels has a pathway to escape, which is usually accomplished using outlets. The positive pressure (relative to atmosphere) needed to inject fluids can also cause leaks or delamination of the channels during injection. Here we show a simple and hands-free method to fill microchannels with liquid metal that addresses these issues. The process begins by covering a single inlet with liquid metal. Placing the entire structure in a vacuum chamber removes the air from the channels and the surrounding elastomer. Restoring atmospheric pressure in the chamber creates a positive pressure differential that pushes the metal into the channels. Experiments and a simple model of the filling process both suggest that the elastomeric channel walls absorb residual air displaced by the metal as it fills the channels. Thus, the metal can fill dead-ends with features as small as several microns and branched structures within seconds without the need for any outlets. The method can also fill completely serpentine microchannels up to a few meters in length. The ability to fill dense and complex geometries with liquid metal in this manner may enable broader application of liquid metals in electronic and microfluidic applications.

  13. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  14. Physicochemical and biological properties of new steroid metal complexes

    International Nuclear Information System (INIS)

    Huber, R.

    1980-04-01

    The aim of this investigation was to prepare stable steroid metal chelates by chemical conversion of the natural steroid hormones testerone, 5α-dihydrotestosterone (5α-DHT) and estradiol and to characterize these by means of their spectroscopic and other physico-chemical properties. In addition, various measuring techniques for the qualitative and quantitative study of complex stabilities and hydrolytic properties were employed. The distribution of some tritiated steroid metal complexes in the tissues of rats was tested using whole animal autoradiography, mainly with a view to identifying whether selective concentration occurs in certain organs. (orig.) [de

  15. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  16. Degradation of metal-nitrilotriacetate complexes by nitrilotriacetate monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Xun, L.; Reeder, R.B. [Washington State Univ. at Tri-Cities, Richland, WA (United States)]|[Pacific Northwest National Lab., Richland, WA (United States); Plymale, A.E.; Girvin, D.C.; Bolton, H. Jr. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    Studies of metal-NTA complex degradation using NTA monooxygenase (NTA-Mo) can provide a mechanistic understanding of NTA degradatioon and lead to approaches to remediate recalcitrant metal-NTA complexes (e.g., NiNTA{sup -}). NTA can exist in aqueous systems as various species depending upon the pH and types and concentrations of ions present (e.g., HNTA{sup 2-}, CaNTA{sup -}, MgNTA{sup -}). An understanding of the aqueous speciation of NTA is necessary to determine the substrate range of NTA complexes degraded by NTA-Mo. The protonated form of NTA (HNTA{sup 2-}) and CaNTA{sup -} were not degraded by NTA-Mo, while MgNTA{sup -}, MnNTA{sup -}, CoNTA{sup -}, FeNTA{sup -}, NiNTA{sup -}, and ZnNTA{sup -} were degraded with similar K{sub m}`s. This is surprising because these metal-NTA complexes have different rates of biodegradation by whole cells. This suggests that biodegradation of various metal-NTA complexes is limited by the rate of transport into the cell and that NTA-Mo may be useful for degrading metal-NTA complexes recalcitrant to degradation by whole cells. In mixed systems containing both substrate (MgNTA{sup -}) and nonsubstrate (CaNTA{sup -}), aqueous speciation modeling was able to provide the substrate concentration, which correlated well with the rate data (r{sup 2} = 0.95). This demonstrates that aqueous speciation modeling can be used to predict the rate of NTA degradation by NTA-Mo for complex systems containing multiple species. 21 refs., 3 tabs.

  17. Luminescent molecular rods - transition-metal alkynyl complexes.

    Science.gov (United States)

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  18. Dinuclear transition metal complexes in carbon nanostructured materials synthesis

    Science.gov (United States)

    Ayuso, J. I.; Hernández, E.; Delgado, E.

    2013-06-01

    Carbon nanomaterials (CNMs) were prepared with two similar techniques using organometallic complexes as catalysts precursors. Chemical vapour deposition (CVD) and pyrolysis with chlorine gas approaches were employed in order to explore the effect of dinuclear transition metal compounds [Fe2(CO)6(μ-S2C6H2X2), (X=OH, Cl)] in synthesis of CNMs. Our to-date results have shown these complexes generate different carbonaceous materials when they are used in bulk, it was also observed that their performances in synthesis differ even though these compounds are analogous. With X=OH complex used in CVD process, metal nanoparticles of ca. 20-50 nm in size and embedded in carbon matrix were obtained. X=C1 complex has been used in pyrolysis experiments and showed an entire volatilisation or no reaction, depending on selected temperature. Furthermore, obtaining of a new tetranuclear iron cluster is presented in this work.

  19. Exposure of sheet-metal workers to asbestos during the construction and renovation of commercial buildings in New York City. A case study in social medicine.

    Science.gov (United States)

    Drucker, E; Nagin, D; Michaels, D; Lacher, M; Zoloth, S

    1987-01-01

    New York City sheet-metal workers have a history of significant exposure to asbestos. Prior to 1972 when the use of sprayed asbestos insulation was banned in New York City, sheet-metal workers involved in building construction were exposed as they worked adjacent to spraying operations. Subsequent to that date, exposure continued as they renovated these same buildings. In 1982 the Occupational Health Program of Montefiore Medical Center and the Albert Einstein College of Medicine initiated a multidimensional asbestos evaluation and intervention program for the sheet-metal industry and union in New York. The long-term goal of the program was to eliminate asbestos exposure through the safe, systematic removal of asbestos in New York City buildings, most likely a legislated solution. In the short term, we attempted to assess and reduce asbestos exposure in the sheet-metal trade by a series of steps consisting of: mortality and morbidity studies; a medical audit of clinical screening services provided to sheet-metal workers; a comprehensive health education program; development of safe work practices; evaluation of personal protective equipment; and investigation into and support of legislative and regulatory solutions to the problem of asbestos contamination of commercial buildings. This intervention can be seen as a case study in the practice of social medicine.

  20. Quantification of Galling in Sheet Metal Forming by surface topography characterisation

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Bay, Niels; De Chiffre, Leonardo

    1998-01-01

    One of the major problems in forming of stainless steel sheet is galling due to lubricant film breakdown leading to scoring and bad surface quality. In a Danish research programme new lubricants substituting the normally applied chlorinated paraffin oils are being developed and tested for this pu...

  1. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein-DNA Complex.

    Science.gov (United States)

    Sinha, Kaustubh; Sangani, Sahil S; Kehr, Andrew D; Rule, Gordon S; Jen-Jacobson, Linda

    2016-11-08

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein-DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein-DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg 2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu 3+ or two La 3+ cations bind, and two new crystal structures confirm that Lu 3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1 H- 15 N amide resonances, for 1 H- 13 C Ile-δ-CH 3 resonances, and for stereospecifically assigned Leu-δ-CH 3 and Val-γ-CH 3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex.

  2. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex

    Science.gov (United States)

    2016-01-01

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446

  3. The role of metal complexes in nuclear reactor decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Prince, A.A.M.; Raghavan, P.S.; Gopalan, R. [Madras Christian College, Tambaram, Chennai (India); Velmurugan, S.; Narasimhan, S.V. [Bhabha Atomic Research Center (BARC) (IN). Water and Steam Chemistry Lab. (WSCL)

    2006-07-15

    Chemical decontamination is the process of removal of radioactivity from corrosion products formed on structural materials in the nuclear reactors. These corrosion products cause problems for the operation and maintenance of the plants. Removal of the radioactive contaminants can be achieved by dissolving the oxide from the system surface using organic complexing agents in low concentrations known as dilute chemical decontamination (DCD) formulations. These organic complexing agents attack the oxide surface and form metal complexes, which further accelerate the dissolution process. The stability of the complexes plays an important role in dissolving the radioactive contaminated oxides. In addition, the DCD process is operated through ion exchange resins for the removal of the dissolved metal ions and radioactive nuclides. In the present study, the kinetics of dissolution of various model corrosion products such as magnetite (Fe{sub 3}O{sub 4}), hematite ({alpha}-Fe{sub 2}O{sub 3}) and maghemite ({gamma}-Fe{sub 2}O{sub 3}) have been studied in the presence of complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), hydroxyethylethylenediaminepentaacetic acid (HEEDTA), and 2,6 pyridinedicarboxylic acid (PDCA). The reductive roles of metal complexes and organic reducing agents are discussed. (orig.)

  4. Method for synthesizing metal bis(borano) hypophosphite complexes

    Science.gov (United States)

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  5. Metal-citrate complex transport in Kineococcus radiotolerans.

    Science.gov (United States)

    Huta, Brian P; Miller, Nigel H; Robertson, Eleanor L; Doyle, Robert P

    2018-03-01

    The growth of an organism is highly dependent on the acquisition of carbon and metals, and availability of these nutrients in the environment affects its survival. Organisms can obtain both nutrients simultaneously through proteins of the CitMHS superfamily. Bioinformatic studies suggested a CitMHS gene (Accession number ABS03965.1) in Kineococcus radiotolerans. Radio flux assays following 14-C radiolabelled citrate, either free or complexed to a variety of metal ions, in K. radiotolerans demonstrated internalization of the citrate when bound to select metal ions only, primarily in the form of calcium-citrate. A pH response was also observed, consistent with a permease (ATP independent) mechanism as noted for other CitMHS family members, with greater uptake at pH 7 compared to pH 10. These results confirm the ability of K. radiotolerans to transport complexed citrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrocatalysis of Hydrogen Evolution by Transition Metal Complexes

    Czech Academy of Sciences Publication Activity Database

    Heyrovský, Michael

    2001-01-01

    Roč. 66, č. 1 (2001), s. 67-80 ISSN 0010-0765 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : transition metals * thiocyanate complexes * electroreduction Subject RIV: CG - Electrochemistry Impact factor: 0.778, year: 2001

  7. A comprehensive in vitro biological investigation of metal complexes ...

    African Journals Online (AJOL)

    Md. Mahabob Ullah Mazumder

    Objective: The inquisitive objective of the study was to observe the antimicrobial, cytotoxicity, and antioxidant activities of some newly synthesized metal complexes of tolfenamic acid. Methods: While antimicrobial activity was studied by disk diffusion method, cytotoxicity was studied by performing brine shrimp lethality ...

  8. Structural systematics of some metal complexes with 4,5 ...

    Indian Academy of Sciences (India)

    dafone in dimethyl formamide at 402 nm is found to be quenched in these reported dafone complexes (1-4). Keywords. Transition metal ions; imine ligand; crystal structure; fluorescence. 1. Introduction. Design and synthesis of coordination compounds of different nuclearity ... hydroxide (E Merck, India), cobalt(II) perchlorate.

  9. Schiff base transition metal complexes for Suzuki–Miyaura cross ...

    Indian Academy of Sciences (India)

    RASHEEDA M ANSARI

    2017-08-19

    Aug 19, 2017 ... Abstract. Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of ...

  10. Metathesis synthesis and characterization of complex metal fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    V MANIVANNAN*, P PARHI and JONATHAN W KRAMER. Department of Mechanical Engineering, Campus Delivery 1374, Colorado State University, Fort Collins,. CO 80523, USA. MS received 30 April 2008. Abstract. Metathesis synthesis of complex metal fluorides using mechanochemical activation has been reported.

  11. A new Mannich base and its transition metal (II) complexes ...

    Indian Academy of Sciences (India)

    Unknown

    some metal complexes of this type of Mannich base and investigate its bonding characteristics. We herein report a new Mannich base, N-(1-morpholinoben- zyl) semicarbazide formed by the three-component condensation, containing active hydrogen on nitro- gen (morpholine), benzaldehyde and semicarbazide.

  12. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    Furthermore, the scavenging superoxide anion free radical (O•−₂ ) activity of biopolymer-metal complexes were determined by nitroblue tetrazolium light reduction assay method. The antioxidant capacity of BSA-M has markedly increased. The conjugated BSA-M (M=Cu, Mn) showed preeminent scavenging activity ...

  13. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline. R MURUGESAN† and E SUBRAMANIAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. †Deputed on F.I.P. from Department of Chemistry, T.D.M.N.S. College ...

  14. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and

  15. Are 90Y metal ligand complexes possible antineoplastics?

    International Nuclear Information System (INIS)

    Schomaecker, K.; Franke, W.G.; Muenze, R.; Medizinische Akademie, Dresden

    1989-01-01

    Treatment of tumor-bearing mice with 90 Y-citrate revealed a significant influence on tumor growth and survival time. The radiotherapeutic effect depended on the kind of tumor as well as on the form of application. Promising results were gained with 90 Y metal ligand complexes both in pelliative treatment of skeletal metastases and in soft tissue tumor therapy

  16. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Metal Complex Dyes for Dye-Sensitized Solar Cells: ... Author Affiliations. N Sekar1 Vishal Y Gehlot. Dyestuff Technology Department Institute of Chemical Technology (Formerly UDCT) Nathalal Parekh Marg Matunga Mumbai 400 019, India.

  17. Schiff base transition metal complexes for Suzuki–Miyaura cross ...

    Indian Academy of Sciences (India)

    Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of azomethine group.

  18. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    consequence, it can be considered as a bio-functional mimic of enzyme SOD and has a promising application prospect in antioxidant drug field. Keywords. Bovine serum albumin; biopolymer metal complexes; superoxide; free radical; scavenging activity. 1. Introduction. Reactive oxygen species (ROS), natural byproducts.

  19. Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands

    Czech Academy of Sciences Publication Activity Database

    Večeřa, M.; Varga, Vojtěch; Císařová, I.; Pinkas, Jiří; Kucharczyk, P.; Sedlařík, V.; Lamač, Martin

    2016-01-01

    Roč. 35, č. 5 (2016), s. 785-798 ISSN 0276-7333 R&D Projects: GA ČR(CZ) GA14-08531S; GA MŠk(CZ) LO1504 Institutional support: RVO:61388955 Keywords : group 4 metal complexes * cyclopentadienyl-ketimide ligands * metallocenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.862, year: 2016

  20. [Applications of metal ions and their complexes in medicine I].

    Science.gov (United States)

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila

    2003-01-01

    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions.

  1. Tridentate Schiff base (ONO) transition metal complexes: Synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 7. Tridentate Schiff base (ONO) transition metal complexes: Synthesis, crystal structure, spectroscopic and larvicidal studies. SUNDARAMURTHY SANTHA LAKSHMI KANNAPPAN GEETHA P MAHADEVI. Regular Article Volume 128 Issue 7 July 2016 pp ...

  2. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Doped polyaniline materials with metal oxalate complexes of Cr, Fe, Mn, Co and Al were synthesized by in situ chemical oxidative polymerization of aniline using potassium perdisulphate as oxidant in aqueous sulphuric acid medium. These polymer materials were characterized by chemical analyses, spectral studies ...

  3. Sub-chronic toxicological studies of transition metal complexes of ...

    African Journals Online (AJOL)

    However, Naproxen metal complexes showed comparatively lower side effects than naproxen. Hematological report suggested that naproxen was in process of initiating inflammation which was justified by decreasing the mean value hemoglobin and hematocrit level and increasing the white blood cells level. There were ...

  4. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    , Os; X = Cl, Br) to afford complexes of type [M(PPh3)2(Hsaltsc)2], in which the salicylaldehyde thiosemicarbazone ligand is coordinated to the metal as a bidentate N,S-donor forming a four-membered chelate ring. Reaction of benzaldehyde ...

  5. Metal-isonitrile adducts for preparing radionuclide complexes

    International Nuclear Information System (INIS)

    Carpenter, A.P.; Linder, K.E.; Maheu, L.J.; Patz, M.A.; Thompson, J.S.; Tulip, T.H.; Subramanyam, V.

    1988-01-01

    An method for preparing a coordination complex of isonitrile ligand and a radioisotope of Te, Ru, Co, Pt, Re, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Nb and Ta from a non-radioactive metal adduct of the isonitrile

  6. Schiff base transition metal complexes for Suzuki–Miyaura cross

    Indian Academy of Sciences (India)

    Schiff base ligand and its complex with iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) ions were synthesized using 4-aminoacetophenone and salicylaldehyde and characterized. FTIR spectrum shows that bidentate coordination of metal ions with ligand where O, N are electron donating sites of azomethine group.

  7. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties.

    Science.gov (United States)

    Ma, Dongwei; Lu, Zhansheng; Ju, Weiwei; Tang, Yanan

    2012-04-11

    BN sheets with absorbed transition metal (TM) single atoms, including Fe, Co, and Ni, and their dimers have been investigated by using a first-principles method within the generalized gradient approximation. All of the TM atoms studied are found to be chemically adsorbed on BN sheets. Upon adsorption, the binding energies of the Fe and Co single atoms are modest and almost independent of the adsorption sites, indicating the high mobility of the adatoms and isolated particles to be easily formed on the surface. However, Ni atoms are found to bind tightly to BN sheets and may adopt a layer-by-layer growth mode. The Fe, Co, and Ni dimers tend to lie (nearly) perpendicular to the BN plane. Due to the wide band gap of the pure BN sheet, the electronic structures of the BN sheets with TM adatoms are determined primarily by the distribution of TM electronic states around the Fermi level. Very interesting spin gapless semiconductors or half-metals can be obtained in the studied systems. The magnetism of the TM atoms is preserved well on the BN sheet, very close to that of the corresponding free atoms and often weakly dependent on the adsorption sites. The present results indicate that BN sheets with adsorbed TM atoms have potential applications in fields such as spintronics and magnetic data storage due to the special spin-polarized electronic structures and magnetic properties they possess.

  8. Formation of difluorosulfane complexes of the third row transition metals by sulfur-to-metal fluorine migration in trifluorosulfane metal complexes: the anomaly of trifluorosulfane iridium tricarbonyl.

    Science.gov (United States)

    Gao, Xiaozhen; Li, Nan; King, R Bruce

    2014-12-01

    The stability of the experimentally known complex (Et3P)2Ir(CO)(Cl)(F)(SF3) of the third row transition metal iridium suggests that SF3 complexes of the third row transition metals might be viable species in contrast to the SF3 complexes of the first row transition metals previously studied by theoretical methods. However, the metal complexes [M](SF3) ([M] = Ta(CO)5, Re(CO)4, CpW(CO)2, CpOs(CO), and CpPt) containing three-electron donor tetrahedral SF3 ligands are thermodynamically disfavored relative to the isomeric [M](SF2)(F) derivatives with predicted energy differences ranging from -19 to -44 kcal/mol. The one exception is an Ir(SF3)(CO)3 isomer containing a one-electron donor pseudo-square-pyramidal SF3 ligand having essentially the same energy as the lowest energy Ir(SF2)(F)(CO)3 isomer. This, as well as the stability of the known (Et3P)2Ir(CO)(Cl)(F)(SF3), suggests that metal complexes containing one-electron donor pseudo-square-pyramidal SF3 ligands might be viable synthetic objectives in contrast to those containing three-electron donor tetrahedral SF3 ligands. The [M](SF2)(F) derivatives formed by sulfur-to-metal fluorine migration from isomeric [M](SF3) complexes are predicted to be viable toward SF2 dissociation to give the corresponding [M](F) derivatives. This suggests the possibility of synthesizing metal complexes of the difluorosulfane (SF2) ligand via the corresponding metal trifluorosulfane complexes with the SF3(+) cation as the ultimate source of the SF2 ligand. Such a synthetic approach bypasses the need for the very unstable SF2 as a synthetic reagent.

  9. N-Heterocyclic carbene metal complexes: photoluminescence and applications.

    Science.gov (United States)

    Visbal, Renso; Gimeno, M Concepción

    2014-05-21

    This review covers the advances made in the synthesis of luminescent transition metal complexes containing N-heterocyclic carbene (NHC) ligands. The presence of a high field strength ligand such as an NHC in the complexes gives rise to high energy emissions, and consequently, to the desired blue colour needed for OLED applications. Furthermore, the great versatility of NHC ligands for structural modifications, together with the use of other ancillary ligands in the complex, provides numerous possibilities for the synthesis of phosphorescent materials, with emission colours over the entire visible spectra and potential future applications in fields such as photochemical water-splitting, chemosensors, dye-sensitised solar cells, oxygen sensors, and medicine.

  10. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems

    Science.gov (United States)

    Johnson, K. J.; Fein, J. B.

    2002-12-01

    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  11. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.

    Science.gov (United States)

    Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A

    2017-08-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.

  12. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    Science.gov (United States)

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  13. Transition metal complexes of an isatinic quinolyl hydrazone

    Directory of Open Access Journals (Sweden)

    Seleem Hussein S

    2011-06-01

    Full Text Available Abstract Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-ylhydrazono] indolin-2-one. Results Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III, Co(II, Ni(II, Cu(II, VO(II and Pd(II ions. The ligand showed a variety of modes of bonding viz. (NNO2-, (NO- and (NO per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II- complexes have the preferable square planar geometry (D4h- symmetry and depend mainly on the mole ratio (M:L. Conclusion The effect of the type of the metal ion for the same anion (Cl- is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl- except complex 5 (SO42- in which it uses its lactam form. The obtained Pd(II- complexes (dimeric, mono- and binuclear are affected by the mole ratio (M:L and have the square planar (D4h geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II > Vanadyl(II > Cobalt

  14. Biotransformation of uranium and transition metal citrate complexes by clostridia

    International Nuclear Information System (INIS)

    Francis, A.J.; Joshi-Tope, G.A.; Dodge, C.J.; Gillow, J.B.

    2002-01-01

    Clostridium sphenoides, which uses citric acid as its sole carbon source, metabolized equimolar Fe(III)-citrate with the degradation of citric acid and the reduction of Fe(III) to Fe(II), but not the U(VI)-citrate complex. However, in the presence of excess citric acid or added glucose it was reduced to U(IV)-citrate. In contrast, Clostridium sp., which ferments glucose but not citrate, reduced Fe(III)-citrate to Fe(II)-citrate and U(VI)-citrate to U(IV)-citrate only when supplied with glucose. These results show that complexed uranium is readily accessible as an electron acceptor despite the bacterium's inability to metabolize the organic ligand complexed to the actinide. These results also show that the metabolism of the metal-citrate complex depends upon the type of complex formed between the metal and citric acid. Fe(III) forms a bidentate complex with citric acid and was metabolized, whereas U forms a binuclear complex with citric acid and was recalcitrant. (author)

  15. Protection of Metal Artifacts with the Formation of Metal?Oxalates Complexes by Beauveria bassiana

    OpenAIRE

    Joseph, Edith; Cario, Sylvie; Simon, Ana?le; W?rle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid a...

  16. Methanogens predominate in natural corrosion protective layers on metal sheet piles.

    NARCIS (Netherlands)

    Kip, Nardy; Jansen, S.; Leite, M.F.A.; De Hollander, M.; Afanasyev, M.; Kuramae, E.E.; van Veen, J.A.

    2017-01-01

    Microorganisms are able to cause, but also to inhibit or protect against corrosion. Corrosion inhibition by microbial processes may be due to the formation of mineral deposition layers on metal objects. Such deposition layers have been found in archaeological studies on ancient metal objects, buried

  17. Methanogens predominate in natural corrosion protective layers on metal sheet piles

    NARCIS (Netherlands)

    Kip, Nardy; Jansen, Stefan; Leite, Marcio F.A.; De Hollander, Mattias; Afanasyev, M.; Kuramae, Eiko E.; Van Veen, Johannes A.

    2017-01-01

    Microorganisms are able to cause, but also to inhibit or protect against corrosion. Corrosion inhibition by microbial processes may be due to the formation of mineral deposition layers on metal objects. Such deposition layers have been found in archaeological studies on ancient metal objects,

  18. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Science.gov (United States)

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  19. Rhodamine spirolactam sensors operated by sulfur-cooperated metal complexation

    Science.gov (United States)

    Heo, Gisuk; Lee, Dahye; Kim, Chi Gwan; Do, Jung Yun

    2018-01-01

    New rhodamine Schiff base sensors were developed to improve selective sensing by introducing sulfide, ester, and dithiocarbonate groups, as well as using ketones coupled to rhodamine-hydrazine. Metal sensing proceeded through the 1:1 complexation of the metal ion for most sensors in the presence of Cu2 + and Hg2 +. A sensor carrying a dithiocarbonate group responded selectively to Hg2 + showing a strong colorimetric change and intense fluorescence. The association constants of the sensors were determined from a linear plot performed at micro-molar concentrations to afford values in the range of 104. Sensing was interrupted at the initial time of Hg2 + exposure due to the isomerization of imine and preferential metal bonding of two dithiocarbonate groups regardless of the main structure of rhodamine. The sensors exhibited the reversible and reproducible performance for Hg2 + sensing.

  20. A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications.

    Science.gov (United States)

    Zou, Rujia; Zhang, Zhenyu; Yu, Li; Tian, Qiwei; Chen, Zhigang; Hu, Junqing

    2011-12-02

    In the fabrication of flexible devices, highly ordered nanoscale texturing, such as semiconductor metal oxide nanorod arrays on flexible substrates, is critical for optimal performance. Use of transparent conducting films, metallic films, and polymer substrates is limited by mechanical brittleness, chemical and thermal instability, or low electrical conductivity, low melting point, and so on. A simple and general nanocrystal-seed-directed hydrothermal route has now been developed for large-scale growth of nanorod arrays of various semiconductor metal oxides (MO), including TiO(2), ZnO, MnO(2), CuO, and ZrO(2) on both sides of flexible graphene (G) sheets to form sandwichlike MO/G/MO heterostructures. The TiO(2)/G/TiO(2) heterostructures have much higher photocatalytic activity than TiO(2) nanorods, with a photocatalytic degradation rate of methylene blue that is four times faster than that of the TiO(2) nanorods, and are thus promising candidates for photocatalytic decontamination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets

    International Nuclear Information System (INIS)

    Zidane, I; Guines, D; Léotoing, L; Ragneau, E

    2010-01-01

    The main objective of this work is to propose a new experimental device able to give for a single specimen a good prediction of rheological parameters and formability under static and dynamic conditions (for intermediate strain rates). In this paper, we focus on the characterization of sheet metal forming. The proposed device is a servo-hydraulic testing machine provided with four independent dynamic actuators allowing biaxial tensile tests on cruciform specimens. The formability is evaluated thanks to the classical forming limit diagram (FLD), and one of the difficulties of this study was the design of a dedicated specimen for which the necking phenomenon appears in its central zone. If necking is located in the central zone of the specimen, then the speed ratio between the two axes controls the strain path in this zone and a whole forming limit curve can be covered. Such a specimen is proposed through a numerical and experimental validation procedure. A rigorous procedure for the detection of numerical and experimental forming strains is also presented. Finally, an experimental forming limit curve is determined and validated for an aluminium alloy dedicated to the sheet forming processes (AA5086)

  2. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Vergeldt, F.; Gerkema, E.; Maca, J.; As, van H.; Lens, P.N.L.

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as

  3. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. The dynamic behavior of the exohedral transition metal complexes of B₄₀ : η⁶- and η⁷-B₄₀Cr(CO) ₃ and Cr(CO) ₃η⁷-B₄η₀-Cr(CO) ₃. NAIWRIT KARMODAK ELUVATHINGAL D JEMMIS. REGULAR ARTICLE Volume 129 Issue 7 July 2017 pp ...

  4. mer and fac isomerism in tris chelate diimine metal complexes.

    Science.gov (United States)

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  5. DEVELOPING A KNOWLEDGE-DASED DECISION STEM TO SELECT THE STEELS OF DIESFOR SHEET-METAL FORMING

    Directory of Open Access Journals (Sweden)

    EMİN GÜNDOĞAR

    1997-12-01

    Full Text Available Material selection is a problem solving and decison making process. In the selection of die materials, some points are very important. For this reasons, daıabases are not enough to select the steels of dies for sheet metal in themselves. They do not incorporate data relating to all of the contributin g factors needed for quantitive interpretations. To solve the user's problem are requried expertises and knowledge obtained from experts. In this study, a knowledg e-hased decision making system is introduced which is included the knowledge and experiences of the experts that subject fo ı med from rules and there is a database inc l uding the cbaracterictics of die steels. · In this syste m also comprises �ision making mechanizm that selects suitable die steels by using user inte rface.

  6. Design of conveyor utilization monitoring system: a case study of powder coating line in sheet metal fabrication

    Science.gov (United States)

    Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk

    2018-03-01

    Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.

  7. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    Science.gov (United States)

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  8. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Edith eJoseph

    2012-01-01

    Full Text Available Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archaeological and modern metal artefacts. The production of copper-oxalates was confirmed directly using metallic pieces (both archaeological and modern. The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates and probably goethite. However, the formation of a homogeneous layer on the object is not yet optimal. Silver nitrate was extracellularly reduced into nanoparticles of elemental silver by an unknown mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artefacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  9. Protection of Metal Artifacts with the Formation of Metal-Oxalates Complexes by Beauveria bassiana.

    Science.gov (United States)

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2011-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L(-1), and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  10. Metal based SOD mimetic therapeutic agents: Synthesis, characterization and biochemical studies of metal complexes

    Directory of Open Access Journals (Sweden)

    J. Joseph

    2017-05-01

    Full Text Available Coordination compounds of Fe(III, Co(II, Ni(II, Cu(II and Zn(II with the Schiff base obtained through the condensation of L1 and L2 (L1 – obtained through the condensation of 4-aminoantipyrine with furfuraldehyde and L2 – derived from 2-aminobenzothiazole and 3-nitrobenzaldehyde were synthesized under reflux conditions. The newly formed complexes were characterized using elemental analysis, magnetic susceptibility, molar conductance, 1H NMR, UV–Vis., IR and ESR techniques. Cyclic voltammogram of the complexes in DMSO solution at 300 K was recorded and their salient features were summarized. The X-band ESR spectrum of the copper complex in DMSO solution at 300 and 77 K was recorded. The in vitro biological screening of the investigated compounds was tested against the bacterial species, and fungal species by disc diffusion method. The antimicrobial activity of metal complexes was dependent on the microbial species tested, ligand and the metal salts used. A comparative study of inhibition values of Schiff bases and their complexes indicates that the complexes exhibit higher antimicrobial activity than the free ligands. The DNA binding studies were performed for the complexes using cyclic voltammetry and electronic absorption spectra. Superoxide dismutase activity of these complexes has also been examined.

  11. Investigating the Pulse Mode Laser Joining of Overlapped Plastic and Metal Sheets

    Science.gov (United States)

    Bauernhuber, Andor; Markovits, Tamás; Takács, János

    The growing utilization of plastic materials in our devices calls for joining them with traditional, often applied structural materials, like metals. Laser assisted metal plastic joining can be used to solve the problem mentioned above, however, relatively few materials have been investigated which could be used to create this special joint. In the course of this research, authors used pulse mode Nd:YAG laser source, structural steel and poly(methyl methacrylate) to create joining between rarely examined material pairs so far, and to explore the effects of technological settings like laser pulse shape, laser spot size, welding speed and joint strength. Material surfaces were also modified (sand blasting,) to enhance joint properties. In plastic material during joining and torn surfaces were investigated. Joints with good strength results were prepared to enable further research on transparent-absorbent metal plastic joining.

  12. Metal complexes as antibacterial agents: Synthesis, characterization and antibacterial activity of some 3d metal complexes of sulphadimidine

    Directory of Open Access Journals (Sweden)

    Adedibu Clement Tella

    2010-06-01

    Full Text Available Metal complexes of Sulphadimidine(SAD were synthesized.The complexes were formulated as [Co(SAD2Cl2], [Cu(SAD2 (H2O2], [Ni (SAD2 Cl2 H2O], [Cd (SAD2 Br2], [Fe (SAD3](H­2O­3 and [Mn (SAD2Cl2] characterized by elemental Analysis, conductivity, IR , UV-Vis, Magnet moment and 1H-NMR and Mass spectroscopies. Co(II, Mn (II,  and Ni(II sulphadimidine complexes consist of metal ion which coordinates through amino nitrogen of the terminal NH2 group and oxygen of sulfonamidic group of the two molecules of sulphadimidine ligand and two halide ions to form octahedral structure while Cd(II coordinates with sulphadimidine through amino nitrogen of the terminal NH2 group with two bromine ions to complete tetrahedral structure. In Cu(II sulphadimidine complex, copper ion coordinates through both pyrimidinic nitrogen (heterocyclic nitrogen and sulfonamidic nitrogen of the two molecules of sulphadimidine. Fe(III coordinates to three molecules of sulphadimidine through heterocyclic nitrogen (pyrimidinic nitrogen and sulfonamidic nitrogen,with three molecules of water outside the coordination sphere. Both Fe(III and Cu(II complexes exhibit octahedral geometry. The antibacterial activity of the complexes and the ligands was investigated against Esherichia coli,  Staphylococcus aureus and Klebsiella pneumonia .  The data obtained revealed that the complexes showed greater activity against the three micro-organisms when compared to parent compound. Stability constant of the complexes were evaluated for the metal salts, the order of stability constant b was found to be Cu (II > Fe (III >Ni(II> Co (II > Cd (II.The values of stability constant (b was found to be log 6.31, 5.93, 5.29, 4.63 and 3.92, respectively. The stability constant data revealed that this ligand may be used as antidote or chelating agent for medical treatment of metals overload or poisoning.

  13. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  14. Metal Complexation with Chitosan and its Grafted Copolymer

    International Nuclear Information System (INIS)

    Abo-Hussen, A.A.; Elkholy, S.S.; Elsabee, M.Z.

    2005-01-01

    The adsorption of M (II); Co (II), Ni (If), Cu (II), Zn (II) and Cd (II) from aqueous solutions by chitosan flakes and beads have been studied. The maximum up-take of M (II) ions on chitosan beads was greater than on flakes. Batch adsorption experiments were carried out as a function of ph, agitation period and initial concentration of the metal ions. A ph of 6.0 was found to be optimum for M (II) adsorption on chitosan flakes and beads. The uptake of the ions was determined from the changes in its concentration, as measured by ultraviolet and visible spectroscopy. The metal ions uptake of chitosan grafted with vinyl pyridine (VP) is higher than that of the chitosan. The experimental data of the adsorption equilibrium from M (II)-solutions correlated well with the Langmuir and Freundlich equations. Several spectroscopic methods have been used to study the formation of the polymer/metal cation complex. The cation coordination is accompanied by proton displacement off the polymer or by fixation of a hydroxide ion in aqueous solutions. The largest ionic displacement is observed with Cu (II) and Zn (II) demonstrating the largest affinity of chitosan for these ions. The FT-IR spectral of the complexes show that both the amino and hydroxyl groups of chitosan participated in the chelation process. The ESR spectra of Cu-complex show an absorption at gi 2.06, g// = 2.23, A// x 10-4 (cm-1) = 160 and G = 3.8 indicating the formation of square planar structure. The adsorption of M (II) ions followed the sequence Cu (II) > Zn (II) > Cd (II) > Ni (II) > Co (II), this order seems to be independent on the size and the physical form of chitosan. SEM shows small membranous structure on the surface of chitosan flakes as compared to Cu (Il)- chitosan complex. EDTA was used for the desorption studies

  15. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    Science.gov (United States)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  16. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides.

    Science.gov (United States)

    Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    2017-11-02

    The fluorolytic sol-gel synthesis for binary metal fluorides (AlF₃, CaF₂, MgF₂) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF₅, Ca₂AlF₇, LiMgAlF₆). The formation and crystallization of nanoscopic ternary CaAlF₅ and Ca₂AlF₇ sols in ethanol were studied by 19 F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF₅, Ca₂AlF₇, and LiMgAlF₆ xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19 F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF₅ and Ca₂AlF₇ derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  17. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides

    Directory of Open Access Journals (Sweden)

    Alexander Rehmer

    2017-11-01

    Full Text Available The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2 has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6. The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance spectroscopy, as well as transmission electron microscopy (TEM. The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA. The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications.

  18. Exposing "Bright" Metals: Promising Advances in Photoactivated Anticancer Transition Metal Complexes.

    Science.gov (United States)

    Bjelosevic, Aleksandra; Pages, Benjamin J; Spare, Lawson K; Deo, Krishant M; Ang, Dale L; Aldrich-Wright, Janice R

    2018-02-12

    Photodynamic therapy (PDT) is an increasingly prominent field in anticancer research. PDT agents are typically nontoxic in the absence of light and can be stimulated with nonionising irradiation to "activate" their cytotoxic effect. Photosensitzers are not classified as chemotherapy drugs although it is advantageous to control the toxicity of a drug through localised irradiation allowing for selective treatment. Transition metals are an extremely versatile class of compounds with various unique properties such as oxidation state, coordination number, redox potential and molecular geometry that can be tailored for specific uses. This makes them excellent PDT candidates as their properties can be manipulated to absorb a specific range of light wavelengths, cross cellular membranes or target specific sites in vitro. This article reviews recent advances in transition metal PDT agents, with a focus on structural scaffolds from which several metal complexes in a series are synthesised, as well as their in vitro cytotoxicity in the presence or absence of irradiation. The success of clinical photoactive agents such as Photofrin® has inspired the development of thousands of potential PDT agents. Transition metal complexes in particular have demonstrated excellent versatility and diversity when it comes to PDT for treatment of invasive cancers. This review has highlighted some of the many recent advances of transition metal PDT agents with high in vitro and in vivo phototoxic activity. Photoactive transition metal complexes have proven their potential due to their inherent physicochemical variety, allowing them to fill a niche in the PDT world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and P-89-577...

  20. Accurate Hardening Modeling As Basis For The Realistic Simulation Of Sheet Forming Processes With Complex Strain-Path Changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  1. Accurate hardening modeling as basis for the realistic simulation of sheet forming processes with complex strain-path changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  2. A cheat sheet to navigate the complex maze of pharmaceutical exclusivities in Europe.

    Science.gov (United States)

    Tomas, Marta Cavero; Peng, Bo

    2017-07-01

    As the two leading markets for pharmaceutical and biotech companies, the USA and Europe offer incentives to stimulate drug innovation, including patent and regulatory exclusivities. These exclusivities extend periods during which companies can market their products free of generic or other competition and recoup their investment. Pharmaceutical and biotech companies should carefully assess the different types of exclusivities available when developing regulatory submissions, patent filing strategies. The authors have previously summarized the USA exclusivities in an earlier publication. This article focuses on European exclusivities. Due to space limitations, it focuses on small molecule drugs. Analogously to the format previously used, we have provided a cheat sheet of European exclusivities for small molecule drugs in Figure 1 .

  3. Metal complex modified azo polymers for multilevel organic memories

    Science.gov (United States)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  4. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  5. Chemical bonding of hydrogen molecules to transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, G.J.

    1990-01-01

    The complex W(CO){sub 3}(PR{sub 3}){sub 2}(H{sub 2}) (CO = carbonyl; PR{sub 3} = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H{sub 2} exchanges easily with D{sub 2}. This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H{sub 2} bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H{sub 2})(R{sub 2}PCH{sub 2}CH{sub 2}PR{sub 2}){sub 2} were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig.

  6. New method for springback compensation for the stamping of sheet metal components

    Science.gov (United States)

    Birkert, A.; Hartmann, B.; Straub, M.

    2017-09-01

    The need for car body structures of higher strength and at the same time lower weight results in serious challenges for the stamping process. Especially the use of high strength steel and aluminium sheets is causing growing problems with regard to elastic springback. To produce accurate parts the stamping dies must be adjusted more or less by the amount of the springback in the opposite direction. For this purpose well-known software solutions use the Displacement Adjustment Method or algorithms which are closely based on that method. A crucial issue of this method is that the generated die surfaces deviate from those of the target geometry with regard to surface area. A new Physical Compensation Method has been developed and validated which takes geometrical nonlinearity into account and creates compensated die geometries with equal-in-area die surfaces. In contrast to the standard mathematical/geometrical approach, the adjusted geometry is generated by a physical approach, which makes use of the virtual part stiffness. Hereby the target geometry is being deformed mechanically in a virtual process based on the springback simulation results by applying virtual forces in an additional elastic simulation. By doing so better part dimensions can be obtained in less tool optimization loops.

  7. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    Science.gov (United States)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  8. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  9. Joining technology for parts for plastic and thin sheet metal parts; Fuegetechniken fuer Bauteile aus Kunststoff und duennwandigem Metall

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers-Hestermann, G. [BOELLHOFF, Bielefeld (Germany)

    2001-07-01

    With the ongoing application of new materials (Al, Mg, Plastic) as an alternative to steel in light-weight body in white construction it is necessary to develop and use other joining and fixing technologies than spot welding, bolt-and nut-welding. These new technologies for example are mechanical joining technology as clinching and self-pierce-riveting, blind-riveting and special elements to fix other parts as blind-rivets and self-piercing nuts and bolts. These products are mainly used for metal materials and mixed structures. To fix other parts to plastic-parts direct-screwing or the after-moulding-technology with metal or plastic inserts is used. (orig.) [German] Mit der verstaerkten Anwendung von weiteren Werkstoffen (Al, Mg, Kunststoffe) als Stahl im Automobilbau ist die Notwendigkeit erwachsen, alternative Fuege- und Befestigungstechniken zum Punktschweissen, Bolzen- und Mutternschweissen zu entwickeln. Hierzu gehoeren die mechanischen Fuegetechniken wie Stanznieten, Clinchen, Blindnieten sowie die sogenannten Funktionselemente zum Befestigen von Anbauteilen, wie Blind- und Stanznietmuttern und -bolzen. Diese Verfahren werden ueberwiegend fuer metallische Werkstoffe oder bei Mischbauweise angewandt. Fuer die Befestigung an Kunststoffbauteilen wird die Direktverschraubung oder die after-moulding-technik (AMTEC {sup registered}) verwendet. (orig.)

  10. Experimental research and numerical optimisation of multi-point sheet metal forming implementation using a solid elastic cushion system

    Science.gov (United States)

    Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.

    2017-09-01

    There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.

  11. Experimental characterization and modeling of the hardening behavior of the sheet steel LH800

    NARCIS (Netherlands)

    Noman, M.; Clausmeyer, T.; Barthel, C.; Svendsen, B.; Huetink, Han; van Riel, M.

    2010-01-01

    In complex forming processes, sheet metal undergoes large plastic deformations involving significant induced flow anisotropy resulting from the development of persistent oriented (planar) dislocation structures. The aim of the present work is the formulation and identification of a phenomenological

  12. Extraction of cupferronate complexes of certain metals and their reextraction

    International Nuclear Information System (INIS)

    Nadezhda, A.A.; Ivanova, K.P.; Gorbenko, F.P.

    1980-01-01

    The extraction of Fe, Sn, Bi, Cu, Y, Pb, Al, G, Ni, Zn, Cd, Mn cupferronate complexes with isoaml alcohol and their reextraction with acids are studied. Extraction and reextraction are investigated depending on the acidity from the solutions of sulfuric, hydrochloric, nitric and perchloric acids. Cupferron distribution among isoaml alchol and the aqueous solution with various pH is studied. It is established that cuperronates of the metals studied are extracted quantitatively. An effect of the acid anion nature on the extraction of all cupferronates is observed [ru

  13. Oxidation of limonene catalyzed by Metal(Salen) complexes

    OpenAIRE

    Lima, L. F.; Corraza, M. L.; Cardozo-Filho, L.; Márquez-Alvarez, H.; Antunes, O. A. C.

    2006-01-01

    The compound R-(+)limonene is available and cheap than its oxidized products. Consequently, the selective oxidation of R(+)limonene has attracted attention as a promising process for the production of compounds with a higher market value, such as cis/trans-1,2-limoneneoxide, cis/trans-carveol and/or carvone. One of the these processes, described in the recent literature, is submission of R-(+)limonene to an oxidation reaction catalyzed by neutral or cationic Metal(Salen) complexes, in the pre...

  14. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  15. Metal complex polymer for second harmonic generation and electroluminescence applications

    Science.gov (United States)

    Tao, X. T.; Suzuki, H.; Watanabe, T.; Lee, S. H.; Miyata, S.; Sasabe, H.

    1997-03-01

    We report the second harmonic generation and electroluminescent (EL) properties of a soluble metal complex polyurethane (PU). The PU was prepared by the reaction of a zinc Schiff base with 4,4'-diphenylmethane-diisocyanate. The polymer film has been effectively poled under a corona field and its linear and nonlinear optical (NLO) properties were characterized. The results indicated that the NLO effects of the polymer are mainly originated in the distorted coordination tetragonals formed by the central zinc atoms and coordination atoms. The polymer shows strong photoluminescence under a ultraviolet-lamp illumination and can be used as a luminescent material for EL devices.

  16. Transistor-like behavior of transition metal complexes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Guckian, A; Ulstrup, Jens

    2005-01-01

    Electron transport through semiconductor and metallic nanoscale structures,(1) molecular monolayers,2-6 and single molecules(7-15) connected to external electrodes display rectification, switch, and staircase functionality of potential importance in future miniaturization of electronic devices...... the redox level is brought into the energy window between the Fermi levels of the electrodes by the overpotential ("gate voltage"). The current-voltage characteristics for two Os(II)/(III) complexes have been characterized systematically and supported by theoretical frames based on molecular charge...

  17. Petrophysical characterization of the hydrothermal root zone in the sheeted dike complex from IODP Hole 1256D.

    Science.gov (United States)

    Violay, M.; Pezard, P. A.; Ildefonse, B.; Belghoul, A.; Mainprice, D.

    2009-04-01

    IODP (Integrated Ocean Drilling Program.) Site 1256 is located on the Cocos Plate in the Eastern Equatorial Pacific Ocean. It samples 15 Ma-old oceanic lithosphere that was formed at the EPR during a period of superfast spreading rate (> 200mm/yr). Drilling operations at Site 1256 were conducted during three ODP and IODP expeditions, and reached for the first time gabbros below the sheeted dike complex in Hole 1256D. This offers a unique opportunity to study in situ the fossil root zone of the sheeted dike complex in present-day oceanic crust. This zone is a boundary layer between the magmatic system of the melt lens (around 1100 °C), and the overlying high temperature hydrothermal system (≤ 450 °C). This boundary layer during crustal accretion is critical to our understanding of crustal processes along mid-ocean ridges. This work focuses on the petrophysical characterization of the root zone. Physical properties were determined from downhole geophysical profiles and images, and from laboratory petrophysical measurements from 21 minicores. Dikes, granoblastic dikes and gabbros testify to an important hydrothermal circulation in the vicinity of the magmatic lens. Porosity is primarily controlled by sample initial texture, hydrothermal alteration, and recrystallization processes. Green schist facies alteration of basalts is associated to relatively higher porosity values (≈ 2%) and a very variable organization of the pore space, as revealed by electrical properties. The electrical formation factor in diabase is high and variable (920 to 6087). Granoblastic dikes are characterized by locally recrystallized texture with Cpx and Opx (granulite facies) and little alteration at low temperature. The recrystallization induces abrupt decrease in porosity (fairly constant porosity, which likely consist mostly in microcracks. Crack density increases linearly with depth from 0.02 in diabase to 0.08 in gabbros. It is consistent with a fissural porosity (crack aspect ratio

  18. Cyclic Bending and Stationary Drawing Deformation of Metal Sheets : Experiments and Associated Numerical Simulations

    Science.gov (United States)

    Moreira, L. P.; Romão, E. C.; Ferron, G.; Vieira, L. C. A.; Sampaio, A. P.

    2005-08-01

    A simple bend-draw experimental device is employed to analyze the behavior of narrow strips submitted to a nearly cyclic bending deformation mode followed by a steady state drawing. In this bending-drawing experiment, the strip is firstly bent over a central bead and two lateral beads by applying a controlled holding load and then is pulled out of device throughout the bead radii by a drawing load. The apparatus is mounted in a standard tensile test machine where the holding and drawing loads are recorded with an acquisition data system. The specimen is a rectangular strip cut with 320 mm long and 7 mm wide. The longitudinal (1) and width (w) strip plastic strains are determined from two hardness marks 120 mm spaced whereas the corresponding thickness (t) strain is obtained by volume conservation. Previous experiments showed a correlation between the plastic strain (ɛw/ɛt)BD resulting from the bending-drawing and the Lankford R-values obtained from the uniaxial tensile test. However, previous 3D numerical simulations based upon Hill's quadratic and Ferron's yield criteria revealed a better correlation between the (ɛw/ɛt)BD and the stress ratio σPS/σ(α), where σPS stands for the plane-strain tension yield stress and σ(α) for the uniaxial yield stress in uniaxial tension along the drawing direction making an angle α with the rolling direction. In the present work, the behavior of an IF steel sheet is firstly evaluated by means of uniaxial tensile and drawing-bending experiments conducted at every 15 degrees with respect to the rolling direction. Afterwards, the bending-drawing experiment is investigated with the commercial finite element (FE) code ABAQUS/Standard in an attempt to assess the influence of cyclic loadings upon the bending-drawing strain-ratios.

  19. Prediction of Forming Limit Diagrams in Sheet Metals Using Different Yield Criteria

    Science.gov (United States)

    Noori, H.; Mahmudi, R.

    2007-09-01

    Based on the analysis proposed by Jones and Gillis (JG), forming limit diagrams (FLDs) are calculated from idealization of the sheet deformation into three stages: (I) homogenous deformation up to maximum load, (II) deformation localization under constant load, and (III) local necking with a precipitous drop in load. A constant cross-head speed is assumed in the deformation program for the first time. This means that the logarithmic strain rate varies during deformation, while in all previous works, the strain rate is assumed to be constant. In the calculation, three yield criteria including Hill’s 1948 quadratic criterion, Hill’s 1979 nonquadratic criterion, and Hosford’s 1979 criterion are used. Using these yield criteria and the JG model, the effects of material parameters such as strain hardening, strain-rate sensitivity, and plastic anisotropy on the shape and level of the forming limit curves are studied. In addition, the capability of the JG model to predict the limit strains is demonstrated through comparison of calculated results with experimental data for interstitial-free (IF) steel and aluminum alloys 2036-T4, 3003-O, 5052-O, and 8014-O. It is observed that while the model predicts the FLDs of 2036-T4 and 5052-O more closely, it overestimates the forming limit strains for IF steel, 3003-O, and 8014-O aluminum alloys. It is concluded that the accuracy of the prediction depends on the measured mechanical properties of the material, the applied yield criterion, and the method of strain measurement, which determines how the FLDs are passed through different points. For those cases in which the predicted FLD is above the experimental one, care must be taken not to use the models for industrial purposes.

  20. Four new metal complexes with the amino acid deoxyalliin

    Energy Technology Data Exchange (ETDEWEB)

    Massabni, Antonio C.; Corbi, Pedro P. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: massabni@iq.unesp.br; Melnikov, Petr [Universidade Federal do Mato Grosso do Sul, Campo Grande, MS (Brazil). Centro de Ciencias Exatas e Tecnologia; Zacharias, Marisa A. [Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP (Brazil); Rechenberg, Hercilio R. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2005-07-15

    The solid complexes [Co(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}], [Ni(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}], [Cu(C{sub 6}H{sub 1})0NO{sub 2}S){sub 2}] and [Fe(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}] were obtained from the reaction of cobalt(II), nickel(II), copper(II) and iron(II) salts with the potassium salt of the amino acid deoxyalliin (S-allyl-L-cysteine). Electronic absorption spectra of the complexes are typical of octahedral structures. Infrared spectroscopy confirms the ligand coordination to the metal ions through (COO{sup -}) and (NH{sub 2}) groups. EPR spectrum of the Cu(II) complex indicates a slight distortion of its octahedral symmetry. Moessbauer parameters permitted to identify the presence of iron(II) and iron(III) species in the same sample, both of octahedral geometry. Thermal decomposition of the complexes lead to the formation of CoO, NiO, CuO and Fe{sub 2}O{sub 3} as final products. The compounds show poor solubility in water and in the common organic solvents. (author)

  1. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  2. PML in Application - An Example of Integral Sheet Metal Design with Higher Order Bifurcations

    OpenAIRE

    Raßler, Jochen; Rollmann, Thomas; Wu, Zhenyu; Anderl, Reiner

    2008-01-01

    Processes are very important for the success within many business fields. They define the proper application of methods, technologies, tools, and company structures in order to reach business goals. Not only manufacturing processes have to be defined from the start point to their end, also other processes like product development processes need a proper description to gain success. For example in automotive industries complex product development processes are necessary and defined prior to pr...

  3. Effect of strain rate on shear properties and fracture characteristics of DP600 and AA5182-O sheet metal alloys

    Directory of Open Access Journals (Sweden)

    Rahmaan Taamjeed

    2015-01-01

    Full Text Available Shear tests were performed at strain rates ranging from quasi-static (.01 s−1 to 600 s−1 for DP600 steel and AA5182-O sheet metal alloys at room temperature. A miniature sized shear specimen was modified and validated in this work to perform high strain rate shear testing. Digital image correlation (DIC techniques were employed to measure the strains in the experiments, and a criterion to detect the onset of fracture based on the hardening rate of the materials is proposed. At equivalent strains greater than 20%, the DP600 and AA5182 alloys demonstrated a reduced work hardening rate at elevated strain rates. At lower strains, the DP600 shows positive rate sensitivity while the AA5182 was not sensitive to strain rate. For both alloys, the equivalent fracture strain and elongation to failure decreased with strain rate. A conversion of the shear stress to an equivalent stress using the von Mises yield criterion provided excellent agreement with the results from tensile tests at elevated strain rates. Unlike the tensile test, the shear test is not limited by the onset of necking so the equivalent stress can be determined over a larger range of strain.

  4. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.

    Science.gov (United States)

    Bullock, R Morris; Chambers, Geoffrey M

    2017-08-28

    This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  5. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  6. Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Salandro, Wesley A.; Jones, Joshua J.; McNeal, Timothy A.; Roth, John T.; Hong, Sung Tae; Smith, Mark T.

    2010-10-01

    Previous studies have shown that the presence of a pulsed electrical current, applied during the deformation process of an aluminum specimen, can significantly improve the formability of the aluminum without heating the metal above its maximum operating temperature range. The research herein extends these findings by examining the effect of electrical pulsing on 5052 and 5083 Aluminum Alloys. Two different parameter sets were used while pulsing three different heat treatments (As Is, 398°C, and 510°C) for each of the two aluminum alloys. For this research, the electrical pulsing is applied to the aluminum while the specimens are deformed, without halting the deformation process (a manufacturing technique known as Electrically-Assisted Manufacturing). The analysis focuses on establishing the effect the electrical pulsing has on the aluminum alloy’s various heat treatments by examining the displacement of the material throughout the testing region of dogbone-shaped specimens. The results from this research show that pulsing significantly increases the maximum achievable elongation of the aluminum (when compared to baseline tests conducted without electrical pulsing). Another beneficial effect produced by electrical pulsing is that the engineering flow stress within the material is considerably reduced. The electrical pulses also cause the aluminum to deform non-uniformly, such that the material exhibits a diffuse neck where the minimum deformation occurs near the ends of the specimen (near the clamps) and the maximum deformation occurs near the center of the specimen (where fracture ultimately occurs). This diffuse necking effect is similar to what can be experienced during superplastic deformation. However, when comparing the presence of a diffuse neck in this research, electrical pulsing does not create as significant of a diffuse neck as superplastic deformation. Electrical pulsing has the potential to be more efficient than traditional methods of incremental

  7. Neutron diffraction studies of transition metal hydride complexes

    International Nuclear Information System (INIS)

    Koetzle, T.F.; Bau, R.

    1976-01-01

    Investigations of H 3 Ta(C 5 H 5 ) 2 (III), HW 2 (CO) 9 (NO) (IV), and HW 2 (CO) 8 (NO) (P(OCH 3 ) 3 ) (V) have been completed. Preliminary results are available for HFeCo 3 (CO) 9 [P(OCH 3 ) 3 ] 3 (VII). This work, together with studies of HMo 2 (C 5 H 5 ) 2 (CO) 4 (P(CH 3 ) 2 ) (VI) and [(C 2 H 5 ) 4 N] + [HCr 2 (CO) 10 ] - carried out at Argonne has led to some general observations on the geometry and the nature of bonding in these compounds. For example, in the structures of IV and V, both of which have bent W--H--W linkages (less than W--H--W in the range 125-130 0 ), there is conclusive evidence for the existence of a closed three-center W--H--W bond with significant metal-metal interaction. Such is the case, because extensions of the axial W--C and W--N bonds trans to the hydride intersect at a point near the center of the W--H--W triangle. The geometry of VI, which also contains a bent M--H--M bond, is consistent with that of IV and V. Bridging M--H bonds in these second- and third-row hydrides range in length from 1.85 to 1.89 A, compared to 1.75 A in the first-row polynuclear complex VII. For metals of corresponding rows, bridging M--H bonds are about 0.1 A longer than terminal bonds, which are classified as single covalent bonds

  8. Structural and thermal characterization of ternary complexes of piroxicam and alanine with transition metals: Uranyl binary and ternary complexes of piroxicam. Spectroscopic characterization and properties of metal complexes

    Science.gov (United States)

    Mohamed, Gehad G.

    2005-12-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) complexes with piroxicam (Pir) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO 2(II) binary complex was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary complexes were isolated in 1:1:1 (M:H 2L 1:L 2) ratios. The solid complexes were isolated in the general formulae [M(H 2L)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 1), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 0)); [M(H 2L)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.

  9. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  10. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    1993-01-01

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  11. Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests

    International Nuclear Information System (INIS)

    Abbassi, Fethi; Mistou, Sebastien; Zghal, Ali

    2013-01-01

    Highlights: ► Cruciform specimen designed and biaxial tensile test carried out. ► Stereo Correlation Image technique is used for 3D full-filed measurements. ► SEM fractography analysis is used to explain the fracture mechanism. ► Constitutive modeling of the necking phenomenon was developed using GTN model. - Abstract: The aim of the presented investigations is to perform an analysis of fracture and instability during simple and complex load testing by addressing the influence of ductile damage evolution in necking processes. In this context, an improved experimental methodology was developed and successfully used to evaluate localization of deformation during uniaxial and biaxial tensile tests. The biaxial tensile tests are carried out using cruciform specimen loaded using a biaxial testing machine. In this experimental investigation, Stereo-Image Correlation technique has is used to produce the heterogeneous deformations map within the specimen surface. Scanning electron microscope is used to evaluate the fracture mechanism and the micro-voids growth. A finite element model of uniaxial and biaxial tensile tests are developed, where a ductile damage model Gurson–Tvergaard–Needleman (GTN) is used to describe material deformation involving damage evolution. Comparison between the experimental and the simulation results show the accuracy of the finite element model to predict the instability phenomenon. The advanced measurement techniques contribute to understand better the ductile fracture mechanism

  12. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    Science.gov (United States)

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  13. Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes

    Science.gov (United States)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe

    2018-03-01

    We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

  14. Metal complex-based electron-transfer mediators in dye-sensitized solar cells

    Science.gov (United States)

    Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano

    2006-03-28

    This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.

  15. Resonance Raman spectra of metal halide vapor complexes

    International Nuclear Information System (INIS)

    Paptheodorou, G.N.

    1978-01-01

    Resonance Raman spectra of complex vapor phase compounds formed by reacting ''acidic'' gases (A 2 X 6 = Al 2 Cl 6 , Al 2 Br 6 , In 2 Cl 6 ) with metal halides have been measured. Spectra obtained from equilibrium vapor mixtures of A 2 X 6 over solid MX 2 (= PdCl 2 , PdBr 2 , CuCl 2 , CoBr 2 , TiCl 2 , FeCl 2 , NiCl 2 , PtCl 2 ) were a superposition of the A 2 X 6 -AX 3 bands and in few cases of new resonance-enhanced polarized bands due to MA 2 X 8 and/or MAX 5 complexes. At temperatures above 800 0 K, characteristic bands due to MX 2 (g) (M = Fe, Co, Ni, Cu, Zn) and M 2 X 4 (g) (M = Cu) were observed. The predominant features of the PdAl 2 Cl 8 , CuAl 2 Cl 8 , and PdAl 2 Br 6 spectra were three high-intensity, polarized bands which were attributed to the vibrational modes of the complex coupled to the electronic state of the central atom. The spectra of CuAlCl 5 (g), CuInCl 5 (g) and Cu 2 Cl 4 (g) species showed resonance enhancement of selective fundamentals which were attributed to vibrational modes of trigonally coordinated Cu(II). Resonance Raman spectra of U 2 Cl 10 (g) and UCl 5 .AlCl 3 (g) were characterized by the presence of a strong band attributed to the U-Cl/sub t/ stretching frequency. Raman band intensity measurements were carried out for the iron(III) chloride vapors and for the vapor complexes of CuAl 2 Cl 8 , CuInCl 5 and UCl 5 .AlCl 3 using different laser powers and frequencies. The measurements suggested increasing spectroscopic temperatures and decomposition of the vapor complexes. The data are discussed in terms of the distribution of vibrational modes and the structure of the vapor species. 22 figs

  16. Study of distorted octahedral structure in 3d transition metal complexes using XAFS

    Science.gov (United States)

    Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.

    2018-01-01

    Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.

  17. The role of Glutathione, Cysteine and D-Penicillamine in exchanging Palladium and Vanadium metals from albumin metal complex.

    Science.gov (United States)

    Mukhtiar, Muhammad; Jan, Syed Umer; Ullah, Ihsan; Hussain, Abid; Ullah, Izhar; Gul, Rahman; Ali, Essa; Jabbar, Abdul; Kuthu, Zulfiqar Hussan; Wasim, Muhammad; Khan, Muhammad Farid

    2017-11-01

    Thiol groups are extensively present across biological systems being found in range of small molecules (e.g. Glutathione, Homo-cysteine) and proteins (e.g. albumin, haemo-globin). Albumin is considered to be a major thiol containing protein present in circulating Plasma. Albumin contains a single thiolate group located at cysteine-34(cys-34) at its active site. Albumin also binds a wide variety of metals and metals complexes at various sites around the protein. Usually heavy metals are preferentially attached with the thiol group of albumin. The binding of heavy metals at cys-34 provides a mechanism by which the residence time of potentially toxic species in the body can be increased. In this research we have assessed the oxidative modification of and metal binding capacity of cys-34 with heavy metals Palladium and Vanadium to investigate the ease with which it is possible to effect disulfide-thiol exchange at this sites/or remove a metal bound at this position. Both the metals were treated with albumin and then the albumin metals (Pd and V) complexes were treated with small thoil molecules like Glutathione, Cysteine and D-Penicillamine. Our finding showed that the albumin thiol group retained the metals with itself by forming some strong bonding with the Thiols group, it is concluded from this finding that if by chance both the metals enter the living system; strongly disturb the chemistry and physiological function of this bio-molecule.

  18. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Directory of Open Access Journals (Sweden)

    Jin H

    2014-05-01

    Full Text Available Han Jin,1 Kai Zhang,2 Chunyan Qiao,1 Anliang Yuan,1 Daowei Li,1 Liang Zhao,1 Ce Shi,1 Xiaowei Xu,1 Shilei Ni,1 Changyu Zheng,3 Xiaohua Liu,4 Bai Yang,2 Hongchen Sun11Department of Pathology, School of Stomatology, Jilin University, Changchun, People’s Republic of China; 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People’s Republic of China; 3Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 4Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USAAbstract: Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2 gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al nanocomposites plus human BMP-2 complementary(cDNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI

  19. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guodong [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    -, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of α-ketols to α-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  20. A Rh III-N-heterocyclic carbene complex from metal-metal singly ...

    Indian Academy of Sciences (India)

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory ... to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  1. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as ...

    Indian Academy of Sciences (India)

    based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the -isophorone oxidation. C S Thatte ... A new chitosan-based Schiff base was prepared and complexed with manganese, cobalt and copper. These Schiff ...

  2. Spectroscopy of metal-ion complexes with peptide-related ligands.

    Science.gov (United States)

    Dunbar, Robert C

    2015-01-01

    With new experimental tools and techniques developing rapidly, spectroscopic approaches to characterizing gas-phase metal ion complexes have emerged as a lively area of current research, with particular emphasis on structural and conformational information. The present review gives detailed attention to the metal-ion complexes of amino acids (and simple derivatives), much of whose study has focused on the question of charge-solvation vs salt-bridge modes of complexation. Alkali metal ions have been most frequently examined, but work with other metal ions is discussed to the extent to which they have been studied. The majority of work has been with simple cationic metal ion complexes, while recent excursions into deprotonated complexes, anionic complexes, and dimer complexes are also of interest. Interest is growing in complexes of small peptides, which are discussed both in the context of possible zwitterion formation as a charge-solvation alternative, and of the alternative metal-ion bond formation to amide nitrogens in structures involving iminol tautomerization. The small amount of work on complexes of large peptides and proteins is considered, as are the structural consequences of solvation of the gas-phase complexes. Spectroscopy in the visible/UV wavelength region has seen less attention than the IR region for structure determination of gas-phase metal-ion complexes; the state of this field is briefly reviewed.

  3. Perforation of metal sheets

    DEFF Research Database (Denmark)

    Steenstrup, Jens Erik

    The main purposes of this project are:1. Development of a dynamic model for the piercing and performation process2. Analyses of the main parameters3. Establishing demands for process improvements4. Expansion of the existing parameter limitsThe literature survey describes the process influence of ...... and a tool designed for punches with minimum length. Further, a systematic problem solving procedure is established. This procedure includes simulation as an integrated part, necessary for problem detection and to predict a favourable solution....

  4. Oxidation of limonene catalyzed by Metal(Salen complexes

    Directory of Open Access Journals (Sweden)

    L. F. Lima

    2006-03-01

    Full Text Available The compound R-(+limonene is available and cheap than its oxidized products. Consequently, the selective oxidation of R(+limonene has attracted attention as a promising process for the production of compounds with a higher market value, such as cis/trans-1,2-limoneneoxide, cis/trans-carveol and/or carvone. One of the these processes, described in the recent literature, is submission of R-(+limonene to an oxidation reaction catalyzed by neutral or cationic Metal(Salen complexes, in the presence of effective terminal oxidants such as NaOCl or PhIO. These reactions are commonly carried out in organic solvents (dichromethane, ethyl acetate, acetonitrile or acetone. Thus, the main objective of the present work was to study the effect of several factors (type of oxidant, catalyst, solvent and time on reaction selectivity for the high-priced compounds referred to above. For this purposes, experimental statistical multivariate analysis was used in conjunction with a complete experimental design. From the results it was observed that for the three targeted products (1,2-limoneneoxide, carveol or carvone some factors, including the nature of the terminal oxidant and the catalyst, were significant for product selectivity (with a confidence level of 95%. Therefore, this statistical analysis proved to be suitable for choosing of the best reaction conditions for a specific desired product.

  5. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    Science.gov (United States)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  6. Thermal stress for all-ceramics rolls used in molten metal to produce stable high quality galvanized steel sheet

    OpenAIRE

    Noda, Nao-Aki; Yamada, Masahiro; Sano, Yoshikazu; Sugiyama, Shigetada; Kobayashi, Shoichi

    2008-01-01

    The zinc coated steel sheet has been mostly used for automobile and other industries because of its high corrosion resistance. This paper deals with the development of new ceramics support roll used for a continuous galvanizing pot to manufacture stable galvanizing steel sheet. Usually stainless steel rolls coated by tungsten carbide are used to support and stabilize the strip in a continuous galvanizing pot, which is filled with molten zinc. However, corrosion and abrasion arise on the roll ...

  7. Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands.

    Science.gov (United States)

    Deicke, Michael; Mohr, Jan Frieder; Bellenger, Jean-Philippe; Wichard, Thomas

    2014-12-07

    Metal isotope coded profiling (MICP) introduces a universal discovery platform for metal chelating natural products that act as metallophores, ion buffers or sequestering agents. The detection of cation and oxoanion complexing ligands is facilitated by the identification of unique isotopic signatures created by the application of isotopically pure metals.

  8. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    Poomalai Jayaseelan

    2016-09-01

    Full Text Available A novel Schiff base ligand has been prepared by the condensation between butanedione monoxime with 3,3′-diaminobenzidine. The ligand and metal complexes have been characterized by elemental analysis, UV, IR, 1H NMR, conductivity measurements, EPR and magnetic studies. The molar conductance studies of Cu(II, Ni(II, Co(II and Mn(II complexes showed non-electrolyte in nature. The ligand acts as dibasic with two N4-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The spectroscopic data of metal complexes indicated that the metal ions are complexed with azomethine nitrogen and oxyimino nitrogen atoms. The binuclear metal complexes exhibit octahedral arrangements. DNA binding properties of copper(II metal complex have been investigated by electronic absorption spectroscopy. Results suggest that the copper(II complex bind to DNA via an intercalation binding mode. The nucleolytic cleavage activities of the ligand and their complexes were assayed on CT-DNA using gel electrophoresis in the presence and absence of H2O2. The ligand showed increased nuclease activity when administered as copper complex and copper(II complex behave as efficient chemical nucleases with hydrogen peroxide activation. The anti-microbial activities and thermal studies have also been studied. In anti-microbial activity all complexes showed good anti-microbial activity higher than ligand against gram positive, gram negative bacteria and fungi.

  9. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    Science.gov (United States)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  10. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  11. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, R. Morris; Chambers, Geoffrey M.

    2017-07-24

    This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant amine function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.

  12. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge.

    Science.gov (United States)

    Pulicharla, Rama; Das, Ratul Kumar; Brar, Satinder Kaur; Drogui, Patrick; Sarma, Saurabh Jyoti; Verma, Mausam; Surampalli, Rao Y; Valero, Jose R

    2015-11-01

    Complexation of antibiotics with metals is a well-known phenomenon. Wastewater treatment plants contain metals and antibiotics, thus it is essential to know the effect of these complexes on toxicity towards microorganisms, typically present in secondary treatment processes. In this study, stability constants and toxicity of chlortetracycline (CTC) and metal (Ca, Mg, Cu and Cr) complexes were investigated. The calculated stability constants of CTC-metal complexes followed the order: Mg-CTC>Ca-CTC>Cu-CTC>Cr-CTC. Gram positive Bacillus thuringiensis (Bt) and Gram negative Enterobacter aerogenes (Ea) bacteria were used as model microorganisms to evaluate the toxicity of CTC and its metal complexes. CTC-metal complexes were more toxic than the CTC itself for Bt whereas for Ea, CTC and its metal complexes showed similar toxicity. In contrast, CTC spiked wastewater sludge (WWS) did not show any toxic effect compared to synthetic sewage. This study provides evidence that CTC and its metal complexes are toxic to bacteria when they are biologically available. As for WWS, CTC was adsorbed to solid part and was not biologically available to show measurable toxic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The introduction to the chemistry of second-sphere complexes of metals in solutions

    International Nuclear Information System (INIS)

    Mironov, V.E.; Isaev, I.D.

    1986-01-01

    Investigation data on the chemistry of second-sphere complexes of metal ions (alkali, alkaline earth, transition, rare earth and other metals) in solutions are generalized. Modern representations about the processes of their formation, investigation methods, thermodynamics, structure, the nature of forces to form them are described. Perspectives of the development of the chemistry of second-sphere complexes in solutions are given

  14. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  15. Novel D–π–A dye sensitizers of polymeric metal complexes with ...

    Indian Academy of Sciences (India)

    Novel D––A dye sensitizers of polymeric metal complexes with triphenylamine derivatives as donor for dye-sensitized solar cells: synthesis, characterization and ... All the four polymeric metal complexes exhibited some photovoltaic performance, the highest photoelectric conversion efficiency of compound P4 reached ...

  16. Reactivity of olefin and allyl ligands in π-complexes of metals

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    The data on reactivity of olefin and allyl ligands in transition metal (Ru, W) π-complexes, published up to 1984 are presented. Metal ion coordination of olefins causes their appreciable reactivity change. Transformations of π-olefin ligands into σ-alkyl ones, interaction of π-complexes with oxygen nucleophilic reagents, amines, halogenides and pseudohalogenides are considered

  17. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  18. Metallic complexes with glyphosate: a review; Complexos metalicos com o herbicida glifosato: revisao

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Claudia F.B.; Mazo, Luiz Henrique [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: claudiabreda@iqsc.usp.br

    2005-11-15

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  19. Colour interceptions, thermal stability and surface morphology of polyester metal complexes

    International Nuclear Information System (INIS)

    Zohdy, M.H.

    2005-01-01

    Chelating copolymers via grafting of acrylic acid (AAc) and acrylamide (AAm/AAc) comonomer mixture onto polyester micro fiber fabrics (PETMF) using gamma-radiation technique were prepared. The prepared graft chains (PETMF-g-AAc) and (PETMF-g-PAAc/PAAm) acted as chelating sites for some selected transition metal ions. The prepared graft copolymers and their metal complexes were characterized using thermogravimetric analysis (TGA), colour parameters and surface morphology measurements. The colour interception and strength measurements showed that the metal complexation is homogeneously distributed. The results showed that the thermal stability of PETMF was improved after graft copolymerization and metal complexes. Moreover, the degree of grafting enhanced the thermal stability values of the grafted and complexed copolymers up to 25% of magnitude, on the other hand the activation energy of the grafted-copolymer with acrylic acid increased up to 80%. The SEM observation gives further supports to the homogenous distribution of grafting and metal complexation

  20. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    Science.gov (United States)

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  1. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    Science.gov (United States)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  2. On the capacity to the complexing of alkaline earth metal and magnesium chromates

    International Nuclear Information System (INIS)

    Orekhov, O.L.

    1978-01-01

    Considered is the capacity to the complexing of magnesium chromates and alkaline earth metal chromates with ammonium chromates in aqueous solutions. It has been established that the complexing of alkaline earth metal and magnesium chromates is effected by a nature of initial salts as well as their solubilities and the presence of crystallization water. Capacity of magnesium ions and alkaline rare earth metals to the complexing decreases in a series of Mg-Ca-Sr-Ba. Ca complexes exceed magnesium derivatives in respect of stability

  3. Speciation Studies of Some Toxic Metal Complexes of Glycylglycine ...

    African Journals Online (AJOL)

    NICO

    mixtures apart from its established utility in understanding ... Chemical speciation of metals is important for an understand- ... Titrations with differ- ent ratios (1:2.5, 1:3.5 and 1:5) of metal-ligand were performed with 0.4 mol L–1 sodium hydroxide solution. The mixtures obtained from PG and water are non-ideal due.

  4. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    Science.gov (United States)

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  5. Newly Synthesized Doxorubicin Complexes with Selected Metals-Synthesis, Structure and Anti-Breast Cancer Activity.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Świderski, Grzegorz; Krętowski, Rafał; Lewandowski, Włodzimierz

    2017-07-04

    Doxorubicin (DOX) is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of newly synthesized DOX complexes with selected metals (Mg, Mn, Co, Ni, Fe, Cu, Zn) on apoptosis, cell cycle, viability, proliferation and cytotoxicity in the breast cancer cell line MCF-7. Complexation of DOX with metals has likewise been the subject of our research. The current work showed that the tested bivalent metals at a given pH condition formed metal:DOX complexes in a ratio of 2:1, while iron complexes with DOX in a ratio of 3:1. The studies also showed that selected metal-DOX complexes (Mg-DOX, Mn-DOX, Ni-DOX) at 0.5 µM concentration significantly decreased cell viability and proliferation, however they increased caspase 7 activity. Results also indicated that studied metal-DOX complexes showed high cytotoxicity in MCF-7 cells. Therefore they were chosen for cell cycle check-points and apoptosis/necrosis analysis studied by flow cytometry. Obtained results suggest that doxorubicin complexed by specified metals can be considered as a potential anti-breast cancer agent, which is characterized by a higher efficacy than a parent drug.

  6. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  7. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Methodology for Off-line Evaluation of New Environmentally Friendly Tribo-systems for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels

    2013-01-01

    Increasing focus on environmental issues in industrial production has urged sheet stamping companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. Production testing of new lubricants is, however, costly and makes industry reluctant...... towards testing alternative solutions. The present paper presents a methodology for off-line testing of new tribo-systems based on numerical modelling of production process as well as laboratory test to adjust the latter combined with testing of selected tribo-systems on a new automatic sheet......-tribo-tester emulating typical sheet forming production processes. Final testing of the tribo-systems in production verifies the methodology. © 2013 CIRP....

  9. Process for the displacement of cyanide ions from metal-cyanide complexes

    Science.gov (United States)

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  10. Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents

    Science.gov (United States)

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1987-01-01

    A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  11. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    Science.gov (United States)

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  12. Grey–Taguchi method to optimize the percent zinc coating balances edge joints for galvanized steel sheets using metal inert gas pulse brazing process

    Directory of Open Access Journals (Sweden)

    Khasempong Songsorn

    2016-06-01

    Full Text Available The objective of this work was to optimize the percent zinc coating balances edge joints of galvanized steel sheets using the metal inert gas pulse brazing process. The Taguchi method and grey relational analysis were used to determine the relationship between the metal inert gas pulse brazing process parameters and percent zinc coating balances edge joints. The metal inert gas pulse brazing process parameters used in this study included wire feed speeds, arc voltages, travel speed, peak currents, and pulse frequency. The characteristics of metal inert gas pulse brazing process that were considered to find response were percent zinc coating balances edge joints on the upper edge joint (PZBEJ1, the lower edge joint (PZBEJ2, and the back sides of the edge joint (PZBEJ3. Analysis of variance was performed to determine the impact of an individual process parameter on the quality parameters. The results showed that the optimal parameters in which grey relational grade increases at the highest level were wire feed speeds at 3.25 m/min, arc voltages at 16 V, travel speeds at 0.9 m/min, peak currents at 425 A, and pulse frequency at 35 Hz. These parameters gave a 74.90% higher response value than those of the initial parameters of metal inert gas pulse brazing process.

  13. Structures and energetics of complexation of metal ions with ammonia, water, and benzene: A computational study.

    Science.gov (United States)

    Sharma, Bhaskar; Neela, Y Indra; Narahari Sastry, G

    2016-04-30

    Quantum chemical calculations have been performed at CCSD(T)/def2-TZVP level to investigate the strength and nature of interactions of ammonia (NH3 ), water (H2 O), and benzene (C6 H6 ) with various metal ions and validated with the available experimental results. For all the considered metal ions, a preference for C6 H6 is observed for dicationic ions whereas the monocationic ions prefer to bind with NH3 . Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) analysis has been employed at PBE0AC/def2-TZVP level on these complexes (closed shell), to understand the various energy terms contributing to binding energy (BE). The DFT-SAPT result shows that for the metal ion complexes with H2 O electrostatic component is the major contributor to the BE whereas, for C6 H6 complexes polarization component is dominant, except in the case of alkali metal ion complexes. However, in case of NH3 complexes, electrostatic component is dominant for s-block metal ions, whereas, for the d and p-block metal ion complexes both electrostatic and polarization components are important. The geometry (M(+) -N and M(+) -O distance for NH3 and H2 O complexes respectively, and cation-π distance for C6 H6 complexes) for the alkali and alkaline earth metal ion complexes increases down the group. Natural population analysis performed on NH3 , H2 O, and C6 H6 complexes shows that the charge transfer to metal ions is higher in case of C6 H6 complexes. © 2015 Wiley Periodicals, Inc.

  14. Determination of metal-ligand stoichiometries for inorganic complexes using total reflection X-ray fluorescence.

    Science.gov (United States)

    Greaves, E D; Bennun, L; Gomez, J; Nemeth, P; Sajo-Bohus, L

    The methods usually used to determine the ratio metal-ligand in inorganic complexes require a set of solutions with different concentrations for both the ligand and metal. We propose a new method using the total reflection X-ray fluorescence technique, in which the ratio between metal and ligand is determined precisely, easily, and quickly. Experimental results provide evidence that for different chemical complexes, the ligand-metal ratio determined by this technique deviates at most from stoichiometric values by 6%. The technique is restricted usually to elements with Z above 14, and its detection limit is on the order of 10(-8) g/g.

  15. On the Use of Maximum Force Criteria to Predict Localised Necking in Metal Sheets under Stretch-Bending

    Directory of Open Access Journals (Sweden)

    Domingo Morales-Palma

    2017-11-01

    Full Text Available The maximum force criteria and their derivatives, the Swift and Hill criteria, have been extensively used in the past to study sheet formability. Many extensions or modifications of these criteria have been proposed to improve necking predictions under only stretching conditions. This work analyses the maximum force principle under stretch-bending conditions and develops two different approaches to predict necking. The first is a generalisation of classical maximum force criteria to stretch-bending processes. The second approach is an extension of a previous work of the authors based on critical distance concepts, suggesting that necking of the sheet is controlled by the damage of a critical material volume located at the inner side of the sheet. An analytical deformation model is proposed to characterise the stretch-bending process under plane-strain conditions. Different parameters are considered, such as the thickness reduction, the gradient of variables through the sheet thickness, the thickness stress and the anisotropy of the material. The proposed necking models have been successfully applied to predict the failure in different materials, such as steel, brass and aluminium.

  16. Preparation and characterisation of some transition metal complexes of niacinamide (vitamin b3)

    International Nuclear Information System (INIS)

    Hasan, M.M.; Hossain, M.E.; Halim, M.E.

    2015-01-01

    Niacinamide forms metal complexes of general formula (M(C/sub 6/H/sub 6/N/sub 2/O)2)Cl/sub 2/; where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) in the aqueous medium. The complexes were formulated by comparing the experimental and calculated data for C, H, N and metal. The prepared complexes were characterized by different physicochemical methods. The UV-vis, FTIR spectral analysis and thermo gravimetric analysis (TGA). TGA of these complexes have been discussed. Magnetic susceptibility values indicate that all complexes except Zn complex are paramagnetic in nature. The redox properties of the metal ions in the Mn, Cu and Zn complexes have been discussed from the cyclic voltammetric studies. In all cases the systems are quasi reversible. (author)

  17. Transition metal complexes supported on metal-organic frameworks for heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Omar K.; Hupp, Joseph T.; Delferro, Massimiliano; Klet, Rachel C.

    2017-02-07

    A robust mesoporous metal-organic framework comprising a hafnium-based metal-organic framework and a single-site zirconium-benzyl species is provided. The hafnium, zirconium-benzyl metal-organic framework is useful as a catalyst for the polymerization of an alkene.

  18. Calculation of formation constants of single-charged complex ions of bivalent metals in solutions

    International Nuclear Information System (INIS)

    Allakhverdov, G.R.

    1985-01-01

    A new method for calculating formation constants of complexes of bivalent metals in solutions is suggested. The method is based on using relations characterizing concentration dependence of activity factors and theis interrelation with osmotic coefficients. It is shown that the results of formation constant calculations of complexes MX + (M-Mg, Ca, Sr, Ba, Cd, Co, Zn, Ni, Fe, Mn, Cu; X-Cl, Br, I, NOΛ3) performed with a computer using experimental data in the 0.1-0.5 m(m-molality) concentration range, are in satisfactory agreement with literature data obtained by various research methods. It is established that for all metals the stability of halide complexes drops in the MCl + >MBr + >MI + series. In the series of complexes formed by alkaline earth metals, the complexes stability grows with increase of metal atomic number

  19. Transition metal complexes with oxygen donor ligands: a synthesis, spectral, thermal and antimicrobial study

    Directory of Open Access Journals (Sweden)

    VAIBHAV N. PATANGE

    2008-10-01

    Full Text Available Transition metal complexes of chalcones derived from the conden¬sation of 3-acetyl-6-methyl-2H-pyran-2,4(3H-dione (dehydroacetic acid and p-methoxybenzaldehyde (HL1 or p-nitrobenzaldehyde (HL2 were synthesized and characterized by elemental analysis, conductometry, thermal analysis, magnetic measurements, IR, 1H-NMR, UV–Vis spectroscopy and a microbial study. From the analytical and thermal data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand. The molar conductance data revealed that all the metal chelates were non-electrolytes. The thermal stability of the complexes was studied by thermogravimetry and the decomposition schemes of the complexes are given. The ligands and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli, and fungicidal activity against Aspergillus flavus, Curvularia lunata and Penicillium notatum.

  20. Metal ion cage complexes as imaging agents for cancer cells

    International Nuclear Information System (INIS)

    Di Bartolo, N.; Smith, S.; Sargeson, A.

    2000-01-01

    Full text: Cage ligands are very attractive for use in radiolabelling antibodies. Their synthesis is based around Co(III) octahedral co-ordination chemistry and they may be easily derivatised for attachment to antibodies. They are known to form kinetically inert metal complexes. Copper-64 (t 1/2 = 12.7 h) has been identified as having potential value in diagnostic and therapeutic application. Its positron annihilation radiation is useful for PET imaging, while its beta (E max 578 keV, 37.2 %) emissions may also be suitable for therapy. In the current study, the new hexa-aza-cryptand, 1 -N-(4-amino-benzyl)-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]eicosane- 1,8-diamine, or SarAr, has been synthesised specifically for radiolabelling antibodies with 64 Cu and a kit formulation has been produced. The resulting radiolabelled immunoconjugate ( 64 Cu-SarArB-72.3) was injected into nude mice bearing LS174t colorectal carcinoma. Clearance of 64 CuSarAr-B72.3 from the liver and kidneys was typical of a whole IgG antibody. Tumour localisation was comparable to similar radiolabelled immunoconjugates (38± 5 % ID/g at 48 hours). Biodistribution studies of 123 I- and 111 In- radiolabelled B72.3 were conducted in the same animal model. MIRDOSE 3 was used to compare target to non-target dose of their analogous therapeutic counterparts ( 90 Y and 131 I respectively) with 64 Cu-SarAr-B72.3. Total body dose for 64 Cu-SarAr-B72.3 was significantly lower (0.09 rad/mCi) than analogous products ( 131 I-B72.3, 2.64 rad/mCi; 90 Y- B72.3, 2.387 rad/mCi) while still providing enough dose to small tumours to be potentially therapeutic. In order to assess therapeutic effect of 64 Cu, a biological study was conducted over a 12 month period. Nude mice bearing tumours between 3.5 - 5.5 mm in length were injected with various doses (0, 10, 20, 30, 40 MBq) of 64 Cu-SarAr-B72.3. Animals were regularly monitored for tumour size, animal mass, behavioural and physical abnormalities (e.g. movement / gait

  1. Synthesis, spectral, thermal, potentiometric and antimicrobial studies of transition metal complexes of tridentate ligand

    Directory of Open Access Journals (Sweden)

    Sarika M. Jadhav

    2014-01-01

    Full Text Available A series of metal complexes of Cu(II, Ni(II, Co(II, Fe(III and Mn(II have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H pyran-2,4(3H-dione or DHA, o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40% solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions.

  2. Metal-ion complexes of functionalised 1,10-Phenanthrolines as hydrolytic synzymes

    NARCIS (Netherlands)

    Weijnen, J.G.J.

    1993-01-01

    In this thesis metal-ion complexes of functionalised 1,10-phenanthroline derivatives have been studied as model systems for hydrolytic metallo-enzymes. Amphiphilic metallo- complexes incorporated into micelles or vesicles and water-soluble complexes in pure aqueous buffer solutions, have

  3. Divalent metal complexes of 4-amino-N-pyrimidin-2-ylbenzene ...

    African Journals Online (AJOL)

    In all the complexes the metal ions coordinate through pyrimidinic nitrogen and sulphonamidic nitrogen of the two molecules of APS. The suggested structure for Cd(II) complex of APS is tetrahedral, while that of Cu(II), Mn(II) and Ni(II) APS complexes is octahedral. The inner coordination spheres were occupied by two water ...

  4. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  5. A new Mannich base and its transition metal (II) complexes ...

    Indian Academy of Sciences (India)

    The monomeric and non-electrolytic nature of the complexes is evidenced by their magnetic susceptibility and low conductance data. The electrochemical property of the ligand and its complexes in acetonitrile solution was studied by cyclic voltammetry. The X-band ESR spectra of the Cu(II) complex in DMSO at 300 and 77 ...

  6. Antibacterial activity of metal complexes of antifolate drug ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... methanol in 2:1 mole ratios for Cu(II) and Co(II) complexes and 1:1 for silver ... The physical properties of the complexes showed that ... properties. The zones of inhibition of the Ag(I) complex- es are presented in Table 4. The minimum inhibitory concentration (MIC) and the minimum bacteria concen-.

  7. Synthesis and characterization of transition metal complexes derived from some biologically active furoic acid hydrazones

    Directory of Open Access Journals (Sweden)

    P. Venkateswar Rao

    2007-04-01

    Full Text Available Two new physiologically active ligands, N’-2-[(E-1-hydroxy-4-methyl-2-oxo-2H-8-chromenyl ethylidene-2-furan carbohydrazide (HMCFCH and N’-2-[(Z-1-(4-hydroxy-6-methyl-2-oxo-2H-pyranyl ethylidene]-furan carbohydrazide (HMPFCH and their VO(II, Mn(II, Fe(II, Co(II, Ni(II and Cu(II complexes have been prepared. The ligands and the metal complexes have been characterized by elemental analyses, electrical conductance, magnetic susceptibility measurements, UV-Vis, IR, and ESR spectroscopic data. Basing on the above data, Fe(II and Co(II complexes of HMCFCH and HMPFCH have been assigned a dimeric octahedral geometry. VO(II complexes of HMCFCH and HMPFCH have been assigned sulfate bridged dimeric square pyramidal geometry. Mn(II complex of HMCFCH has been assigned a dimeric octahedral geometry, where as Mn(II complex of HMPFCH has been ascribed to monomeric octahedral geometry. Cu(II and Ni(II complexes of HMCFCH have been ascribed to a polymeric structure. Ni(II complex of HMPFCH has been assigned a dimeric square planar geometry. Cu(II complex of HMPFCH has been proposed an octahedral geometry. The ligands and their metal chelates were screened against S. aureus and P. aeruginosa. The ligands and the metal complexes have been found to be active against these microorganisms. The ligands show more activity than the metal complexes.

  8. Critical survey of stability constants of EDTA complexes critical evaluation of equilibrium constants in solution stability constants of metal complexes

    CERN Document Server

    Anderegg, G

    2013-01-01

    Critical Survey of Stability Constants of EDTA Complexes focuses on the computations, values, and characteristics of stability constants. The book emphasizes that for a critical discussion of experimentally determined stability constants, it is important to consider the precision of the values that manifests the self-consistency of the constant, taking into consideration the random errors. The publication reviews the stability constants of metal complexes. The numerical calculations affirm the reactions and transformations of metal ions when exposed to varying conditions. The text also present

  9. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    Science.gov (United States)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  10. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  11. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    International Nuclear Information System (INIS)

    Zhang Yu; Cai Xiyun; Lang Xianming; Qiao Xianliang; Li Xuehua; Chen Jingwen

    2012-01-01

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC 50 values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: ► The complex of antibiotic with metal is a mixture of various complexation modes. ► Antibiotic and metal act as various combined interactions when their complexation is ignored. ► Antibiotic, metal, and their complex act as concentration addition interaction. ► Complex commonly is the highest toxicant. ► Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  12. Multiheteromacrocycles that complex metal ions. Third progress report, 1 May 1976--30 April 1977

    International Nuclear Information System (INIS)

    Cram, D.J.

    1977-01-01

    The overall objective of this research is to design, synthesize and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes and clusters. Host organic compounds consist of strategically placed solvating, coordinating and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The specific compounds synthesized and their complexing and lipophilizing properties are summarized

  13. Self-Assembly of Mono- and Dinuclear Metal Complexes; Oxidation Catalysis and Metalloenzyme Models

    NARCIS (Netherlands)

    Gelling, Onko-Jan; Rispens, Minze T.; Lubben, Marcel; Feringa, Bernard

    1994-01-01

    In this chapter several approaches to achieve assembly of mono- and dinuclear metal complexes, which can be considered structural and functional models for metalloenzymes, are described. The emphasis lies on oxidation chemistry, summarizing O2 binding, hydroxylation, demethylation, dehalogenation

  14. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions.

    Science.gov (United States)

    Meyer, Michael; Steinke, Thomas; Sühnel, Jürgen

    2007-02-01

    Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction.

  15. Interactions between metal cations with H2 in the M - H2 complexes ...

    Indian Academy of Sciences (India)

    Interaction; metal cation–dihydrogen complexes; well depth; binding energy; PECs; energy components; DHDF; CCSD(T); SAPT; NBO. 1. Introduction. Interactions between metal cations and neutral molecu- les play important roles in a variety of contexts including gas storage in solid materials, ion solvation, laser plas-.

  16. A detailed in vitro study of naproxen metal complexes in quest of ...

    African Journals Online (AJOL)

    Results: The Naproxen metal chelates showed significant anti-inflammatory effects in dose dependent manner. Naproxen standard showed maximum inhibition occurred 73.21% at the dose of 2000 lg/ml. Among Naproxen metal chelates, Naproxen silver complex showed potent antimicrobial activity against most of the ...

  17. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes

    NARCIS (Netherlands)

    Armitt, D.J.; Bruce, M.I.; Gaudio, M.; Zaitseva, N.N.; Skelton, B.W.; White, A.H.; Le Guennic, B.; Halet, J.-F.; Fox, M.A.; Roberts, R.L.; Hartl, F.; Low, P.J.

    2008-01-01

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of

  18. Transition metal M(II complexes with isonicotinoylhydrazone-9-anthraldehyde

    Directory of Open Access Journals (Sweden)

    Dianu M.L.

    2010-01-01

    Full Text Available New complexes of isonicotinoylhydrazone-9-anthraldehyde with Cu(II, Co(II and Ni(II have been prepared and characterized by analytical and physico-chemical techniques, such as elemental and thermal analyses, magnetic susceptibility and conductivity measurements, and electronic, EPR and IR spectral studies. The infrared spectral studies revealed the bidentate or monodentate nature of the Schiff base in the complexes; the pyridine nitrogen does not participate in the coordination. A tetrahedral geometry is suggested for the nitrate-complexes and an octahedral geometry for the others. Thermal studies support the chemical formulation of these complexes.

  19. Synthesis and characterization of some metal complexes of a Schiff ...

    African Journals Online (AJOL)

    Orgel, L.F. An Introduction to Transition Metal Chemistry: Ligand Field Theory, Buttler and. Tanner: London; 1960. 46. Lewis, J.; Wilkins, R.G. Modern Coordination Chemistry, Principles and Methods,. Interscience: New York; 1967. 47. Kettle, S.F.A. Coordination Compounds, Thomas Nelson and Sons Ltd.: England; 1979.

  20. New trends for metal complexes with anticancer activity

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.; Sadler, Peter J.

    2008-01-01

    Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic

  1. Reactions of transition metal complexes with cyclic ethers

    International Nuclear Information System (INIS)

    Milstein, D.

    1977-02-01

    Three novel reactions of epoxides with homogeneous transition-metal catalysts have been explored: (a) the selective rearrangement of internal epoxides to ketones; (b) the cleavage of C-C bond in epoxides having electron-attracting substituents; (c) the transformation of terminal epoxides into esters. Based on an intensive kinetic study, a general mechanism for the transformations of epoxides is postulated

  2. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2 ... Metal carboxylates; ring opening reactions; cyclic anhydrides; structural study. Abstract. Hydrolytic and solvolytic ring opening reactions of phthalic anhydride, pyromellitic dianhydride and 2,3-pyridine dicarboxylic anhydride in the presence of various ...

  3. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    Proteins are well-known for efficiency and selecti- vity that few other natural or artificial molecules can match,24,25 whether in catalysis or molecular recogni- tion. Owing to 35 cysteine residues, human serum albu- min (HSA) is facile to be combined with metal ions. The serum albumin is readily available, non-antigenic.

  4. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, Konstantin N [Department of Chemistry, S.A. Esenin Ryazan State Pedagogical University, Ryazan (Russian Federation); Bondarev, Oleg G; Polosukhin, Aleksei I [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-07-31

    The data published during the last five years on the application of chiral derivatives of phosphorous acid in coordination chemistry and enantioselective catalysis are summarised and discussed. The effect of the nature of these ligands on the structure of metal complexes and on the efficiency of catalytic organic syntheses is shown. Hydroformylation, hydrogenation, allylic substitution and conjugate addition catalysed by transition metal complexes with optically active phosphites and hydrophosphoranes are considered. The prospects for the development of this field of research are demonstrated.

  5. Design of supramolecular metal complex catalytic systems for organic and petrochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, Eduard A; Maksimov, Anton L; Runova, Elena A [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-01-31

    The state-of-the-art in investigations into the supramolecular catalysis by metal complexes using macrocyclic receptor molecules is surveyed. The emphasis is placed on issues related to the design of novel metal complex catalysts capable of molecular recognition and to their applications in organic synthesis, in particular, in such reactions as hydrogenation, hydroformylation, carbonylation, hydroxylation, Wacker oxidation, biomimetic oxidation, and some others. The factors affecting the activity, stability and selectivity of such catalytic systems are discussed.

  6. Metal Fluoride Complexes of Na,K-ATPase

    Science.gov (United States)

    Cornelius, Flemming; Mahmmoud, Yasser A.; Toyoshima, Chikashi

    2011-01-01

    The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K+·Pi with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na+, after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na+ demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway. PMID:21708939

  7. Synthesis, physico-chemical characterization and biological activity of 2-aminobenzimidazole complexes with different metal ions

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2004-01-01

    Full Text Available Complexes of 2-aminobenzimidazole (L with nitrates of cobalt(II nickel(II, copper (II, zinc(II and silver(I were synthesized. The molar ratio metal:ligand in the reaction of the complex formation was 1:2. It should be noticed, that the reaction of all the metal salts yielded bis(ligand complexes of the general formula M(L2(NO32 × nH2O (M=Co, Ni Cu, Zn or Ag; n=0, 1, 2 or 6. The complexes were characterized by elemental analysis of the metal, molar conductivity, magnetic susceptibility measurements and IR spectra. Co(II, Ni(II and Cu(II complexes behave as non-electrolytes, whilst Zn(II and Ag(I are 1:1 electrolytes. Cu(II complex has a square-planar stereochemistry, Ag(I complex is linear, whilst the Co(II, Ni(II and Zn(II complexes have a tetrahedral configuration. In all the complexes ligand is coordinated by participation of the pyridine nitrogen of the benzimidazole ring. The antimicrobial activity of the ligand and its complexes against Pseudomonas aeruginosa, Bacillus sp. Staphylococcus aureus and Saccharomyces cerevisiae was investigated. The effect of metal on the ligand antimicrobial activity is discussed.

  8. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    NAIWRIT KARMODAK

    Abstract. The dynamic nature of the exohedral η6- and the η7-complexes of B40 with Cr(CO)3 has been explored using density functional theory. The ab initio molecular dynamic simulations were performed at. 1200 K to investigate the fluxionality of the heptagonal and hexagonal faces of exohedral B40 complexes.

  9. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    Abstract. The dynamic nature of the exohedral η⁶- and the η⁷-complexes of B₄₀ with Cr(CO) ₃ has been explored using density functional theory. The ab initio molecular dynamic simulations were performed at 1200 K to investigate the fluxionality of the heptagonal and hexagonal faces of exohedral B40 complexes.

  10. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    Science.gov (United States)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  11. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    Science.gov (United States)

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  12. The preparation and characterization of the metal-texaphyrin complex and metal-texaphyrin-antibody conjugate

    International Nuclear Information System (INIS)

    Rekova, M.; Kral, V.; Jedinakova-Krizova, V.

    2006-01-01

    This work was aimed to the preparation of yttrium-texaphyrin or lutetium-texaphyrin complex and the characterization of these complexes by various methods. The yttrium-texaphyrin complex (or the lutetium-texaphyrin complex) was prepared via transmetallation of the calcium-texaphyrin complex in ethanol at 70 deg C. The complexes prepared were purified on reverse-phase SepPak TM columns (C18). Mass spectrometry (MS-ESI) and UV-VIS spectrophotometry were used for analytical determination of the yttrium-texaphyrin complex and lutetium-texaphyrin complex in the transmetallation product. The complexes were characterized by UV-VIS spectrophotometry, IRFT spectroscopy, FT-Raman spectroscopy, etc. The complexes were also labelled with radionuclides such as 90 Y and 177 Lu. These complexes are conjugated with the monoclonal antibody and labelled with 90 Y or 177 Lu nuclides. After clinical testing, the radionuclide-texaphyrin-monoclonal antibody immunoconjugates can be used for diagnosis and therapy. (author)

  13. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development.

    Science.gov (United States)

    Kim, In Jung; Kim, Sangsoo; Park, Jeahyun; Eom, Intae; Kim, Sunam; Kim, Jin-Hong; Ha, Sung Chul; Kim, Yeon Gil; Hwang, Kwang Yeon; Nam, Ki Hyun

    2016-09-01

    Many fluorescent proteins (FPs) show fluorescence quenching by specific metal ions, which can be applied towards metal biosensor development. In this study, we investigated the significant fluorescence quenching of Dronpa by Co(2+) and Cu(2+) ions. Crystal structures of Co(2+) -, Ni(2+) - and Cu(2+) -bound Dronpa revealed previously unseen, unique, metal-binding sites for fluorescence quenching. These metal ions commonly interact with surface-exposed histidine residues (His194-His210 and His210-His212), and interact indirectly with chromophores. Structural analysis of the Co(2+) - and Cu(2+) - binding sites of Dronpa provides insight into FP-based metal biosensor engineering. © 2016 Federation of European Biochemical Societies.

  14. Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals

    Science.gov (United States)

    Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.

    2018-01-01

    Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.

  15. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  16. Biological activities of some Fluoroquinolones-metal complexes

    African Journals Online (AJOL)

    McRoy

    synthesis of two zinc (II) complexes with ciprofloxacin,. [cfH2]2[ZnCl4].2H2O and. [Zn(cf)2]3H2O[32] and a cobalt complex, compound. [Co(cf)2].3H2O.[33] The complex [cfH2]2[ZnCl4].2H2O was shown to be ionic consisting of a tetrachlorozincate(II) dianion and two protonated monatomic ciprofloxacin molecules, while.

  17. Destruction of chemical warfare agent simulants by air and moisture stable metal NHC complexes.

    Science.gov (United States)

    Weetman, Catherine; Notman, Stuart; Arnold, Polly L

    2018-02-20

    The cooperative effect of both NHC and metal centre has been found to destroy chemical warfare agent (CWA) simulants. Choice of both the metal and NHC is key to these transformations as simple, monodentate N-heterocyclic carbenes in combination with silver or vanadium can promote stoichiometric destruction, whilst bidentate, aryloxide-tethered NHC complexes of silver and alkali metals promote breakdown under mild heating. Iron-NHC complexes generated in situ are competent catalysts for the destruction of each of the three targetted CWA simulants.

  18. Preparation of Palladium-Impregnated Ceria by Metal Complex Decomposition for Methane Steam Reforming Catalysis

    Directory of Open Access Journals (Sweden)

    Worawat Wattanathana

    2017-01-01

    Full Text Available Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2 powders were synthesized by thermal decomposition of cerium(III complexes prepared by using cerium(III nitrate or cerium(III chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2 species than the materials prepared from cerium(III-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.

  19. Complexes of 3.6 kDa Maltodextrin with Some Metals

    Directory of Open Access Journals (Sweden)

    Christopher H. Schilling

    2004-06-01

    Full Text Available Preparation of magnesium, lanthanum, and bismuth(III complexes of 3.6 kDa maltodextrin and some properties of the resulting materials are presented. The metal derivatives contain metals bound to the oxygen atoms of the hydroxyl groups of maltodextrin. Additionally, the metal atoms are coordinated to the hydroxyl groups of the D-glucose units of the macroligand. Such coordination stabilized the metal – oxygen bond against hydrolysis, even in boiling water. The presence of magnesium and lanthanum atoms increased the thermal stability of maltodextrin, whereas bismuth atoms decreased it.

  20. Gas phase hydrogen/deuterium exchange of arginine and arginine dipeptides complexed with alkali metals.

    Science.gov (United States)

    Mertens, Laura A; Marzluff, Elaine M

    2011-08-25

    The hydrogen/deuterium (H/D) exchange of protonated and alkali-metal cationized Arg-Gly and Gly-Arg peptides with D(2)O in the gas phase was studied using electrospray ionization quadropole ion trap mass spectrometry. The Arg-Gly and Gly-Arg alkali metal complexes exchange significantly more hydrogens than protonated Arg-Gly and Gly-Arg. We propose a mechanism where the peptide shifts between a zwitterionic salt bridge and nonzwitterionic charge solvated conformations. The increased rate of H/D exchange of the alkali metal complexes is attributed to the peptide metal complexes' small energy difference between the salt-bridge conformation and the nonzwitterionic charge-solvated conformation. Implications for the applicability of this mechanism to other zwitterionic systems are discussed. © 2011 American Chemical Society

  1. Pushing the Limits of Delta Bonding in Metal-Chromium Complexes with Redox Changes and Metal Swapping.

    Science.gov (United States)

    Eisenhart, Reed J; Rudd, P Alex; Planas, Nora; Boyce, David W; Carlson, Rebecca K; Tolman, William B; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2015-08-03

    Into the metalloligand Cr[N(o-(NCH2P((i)Pr)2)C6H4)3] (1, CrL) was inserted a second chromium atom to generate the dichromium complex Cr2L (2), which is a homobimetallic analogue of the known MCrL complexes, where M is manganese (3) or iron (4). The cationic and anionic counterparts, [MCrL](+) and [MCrL](-), respectively, were targeted, and each MCr pair was isolated in at least one other redox state. The solid-state structures of the [MCrL](+,0,-) redox members are essentially the same, with ultrashort metal-metal bonds between 1.96 and 1.74 Å. The formal shortness ratios (r) of these interactions are between 0.84 and 0.74 and are interpreted as triple to quintuple metal-metal bonds with the aid of theory. The trio of (d-d)(10) species [Cr2L](-) (2(red)), MnCrL (3), and [FeCrL](+) (4(ox)) are S = 0 diamagnets. On the basis of M-Cr bond distances and theoretical calculations, the strength of the metal-metal bond across the (d-d)(10) series increases in the order Fe Complex 2(red) was further investigated by resonance Raman spectroscopy, and a band at 434 cm(-1) was assigned as the Cr-Cr bond vibration. Finally, 4(ox) exhibited a Mössbauer doublet with an isomer shift of 0.18 mm/s that suggests a primarily Fe-based oxidation to Fe(I).

  2. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  3. A detailed in vitro study of naproxen metal complexes in quest of ...

    African Journals Online (AJOL)

    Md. Sharif Hasan

    2016-07-01

    Jul 1, 2016 ... Conclusion: The present study demonstrated that Naproxen and its complexes possess in vitro anti-inflammatory activity while silver, .... freely soluble in different coordination solvents such as. DMF, DMSO, THF and .... Naproxen metal chelates, Cobalt-Naproxen complex showed highest protection of RBC ...

  4. BIOASSAY STUDIES OF METAL(II) COMPLEXES OF 2,2'-(ETHANE ...

    African Journals Online (AJOL)

    Preferred Customer

    diyldiimino)diacetic acid (EDDA) were prepared and characterized. Coordination complexes of the EDDA ... corresponding amines with alkyl halide to bear diammines of the same class with different substituents. ... Bioassay studies of metal(II) complexes of 2,2'-(ethane-1,2-diyldiimino)diacetic acid. Bull. Chem. Soc. Ethiop.

  5. Cations in a Molecular Funnel: Vibrational Spectroscopy of Isolated Cyclodextrin Complexes with Alkali Metals

    NARCIS (Netherlands)

    Gámez, F.; Hurtado, P.; Hortal, A.R.; Martínez-Haya, B.; Berden, G.; Oomens, J.

    2013-01-01

    The benchmark inclusion complexes formed by -cyclodextrin (CD) with alkali-metal cations are investigated under isolated conditions in the gas phase. The relative CD-M+ (M=Li+, Na+, K+, Cs+) binding affinities and the structure of the complexes are determined from a combination of mass spectrometry,

  6. Luminescent Stability of Hybrids Based on Different Borate Glass Matrix’s and Organic Metal Complexes

    Science.gov (United States)

    Petrova, Olga; Avetisov, Roman; Akkuzina, Alina; Anurova, Mariia; Mozhevitina, Elena; Khomyakov, Andrew; Taydakov, Ilya; Avetissov, Igor

    2017-08-01

    The stability of the luminescent properties of new hybrid materials based on 8-oxyquinoline metal (Li, Rb, Sr) complexes and Eu complex with phenanthroline and low-melting Pb-based inorganic glass matrixes under conditions of prolonged exposure under ambient conditions and heating above the glass transition temperature of the matrix’s has been investigated.

  7. Confirmation of molecular formulas of metallic complexes through X-ray fluorescence quantitative analysis

    International Nuclear Information System (INIS)

    Filgueiras, C.A.L.; Marques, E.V.; Machado, R.M.

    1984-01-01

    X-ray fluorescence spectrophotometry was employed to determined the metal content in a series of five transition element complexes (Mn, Ti, Zn, V). The results confirmed the molecular formulas of these complexes, already proposed on the basis of elemental microanalysis, solution condutimetry and other analytical methods. (C.L.B.) [pt

  8. FIRST-ROW TRANSITION METAL COMPLEXES OF OMEPRAZOLE AS ANTI-ULCERATIVE DRUGS

    Directory of Open Access Journals (Sweden)

    Suman Malik

    2010-12-01

    Full Text Available Omeprazole (OME is a proton pump inhibitor (PPI. PPIs have enabled to improve the treatment of various acid-peptic disorders. OME is a weak base and it can form several complexes with transition and non-transition metal ions. In the present paper, we are describing series of transition metal complexes of omeprazole i.e., 5-methoxy-2[(4methoxy-3, 5dimethyl-2-pyridinyl methylsulfinyl]-1H-benzimidazole with CuII, MnII, CoII, NiII, FeII, ZnII and HgII. These complexes were characterized by elemental analysis, molar conductivity, IR, NMR, magnetic susceptibility, UV-visible spectral studies, ESR, SEM and X-ray diffraction. Based on the above studies, the ligand behaves as bidentate O, N donor and forms coordinate bonds through C=N and S=O groups. The complexes were found to non-electrolytic in nature on the basis of low values of molar conductivity. Analytical data and stoichiometry analysis suggest ligand to metal ratio of 2:1 for all the complexes. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for Mn(II,Co(II, Ni(II,Fe(II and Cu(II complexes and tetrahedral for Hg(II and Zn(II complexes. Ligands and their metal complexes have been screened for their antibacterial and antifungal activities against bacteria Pseudomonas, Staphylococcus aureus and fungi Aspergillus niger and A. flavous.

  9. kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters.

    Science.gov (United States)

    Witte, U; Schneider, F; Traub, M; Hoffmann, D; Drovs, S; Brand, T; Unger, A

    2016-10-03

    A direct diode laser was built with > 800 W output power at 940 nm to 980 nm. The radiation is coupled into a 100 µm fiber and the NA ex fiber is 0.17. The laser system is based on pump modules that are wavelength stabilized by VBGs. Dense and coarse wavelength multiplexing are realized with commercially available ultra-steep dielectric filters. The electro-optical efficiency is above 30%. Based on a detailed analysis of losses, an improved e-o-efficiency in the range of 40% to 45% is expected in the near future. System performance and reliability were demonstrated with sheet metal cutting tests on stainless steel with a thickness of 4.2 mm.

  10. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  11. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  12. Metal transfer within the Escherichia coli HypB-HypA complex of hydrogenase accessory proteins.

    Science.gov (United States)

    Douglas, Colin D; Ngu, Thanh T; Kaluarachchi, Harini; Zamble, Deborah B

    2013-09-03

    The maturation of [NiFe]-hydrogenase in Escherichia coli is a complex process involving many steps and multiple accessory proteins. The two accessory proteins HypA and HypB interact with each other and are thought to cooperate to insert nickel into the active site of the hydrogenase-3 precursor protein. Both of these accessory proteins bind metal individually, but little is known about the metal-binding activities of the proteins once they assemble together into a functional complex. In this study, we investigate how complex formation modulates metal binding to the E. coli proteins HypA and HypB. This work lead to a re-evaluation of the HypA nickel affinity, revealing a KD on the order of 10(-8) M. HypA can efficiently remove nickel, but not zinc, from the metal-binding site in the GTPase domain of HypB, a process that is less efficient when complex formation between HypA and HypB is disrupted. Furthermore, nickel release from HypB to HypA is specifically accelerated when HypB is loaded with GDP, but not GTP. These results are consistent with the HypA-HypB complex serving as a transfer step in the relay of nickel from membrane transporter to its final destination in the hydrogenase active site and suggest that this complex contributes to the metal fidelity of this pathway.

  13. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs

  14. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    Science.gov (United States)

    Iyer, Vivekanantan S.; Vollhardt, K. Peter C.

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  15. Stability constant of the trisglycinto metal complexes | Na'aliya ...

    African Journals Online (AJOL)

    The stability constants of iron, manganese, cobalt, and nickel complexes of glycine have been determined in aqueous solution by potentiometric titration with standard sodium hydroxide solution. The values of the stepwise stability constants were obtained by ORIGIN '50' program. The overall stability constants of the ...

  16. Zinc (II) metal ion complexes of Chitosan: Toward heterogeneous ...

    African Journals Online (AJOL)

    The Application of Zn(II)-Chit for the polymerization of VAc yielded PVAc in good yield. The catalyst efficiency of Zn(II)-Chit for the polymerization of VAc was considerably high in terms of induction period and percentage yield of PVAc. Keywords: Chitosan, Zn(II)-Chitosan Complex, Catalyst, Polymerization, Polyvinyl Acetate ...

  17. Mixed amido-cyclopentadienyl group 4 metal complexes

    Czech Academy of Sciences Publication Activity Database

    Havlík, Aleš; Lamač, Martin; Pinkas, Jiří; Růžička, A.; Horáček, Michal

    2015-01-01

    Roč. 5, č. 73 (2015), s. 59154-59166 ISSN 2046-2069 R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : BOND COVALENT RADII * IMIDO COMPLEXES * SIDE-ON Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.289, year: 2015

  18. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    The conductivity of the polymer samples strongly depended on the degree of crystallinity induced by complex counter anions as dopant. All the polymer materials, as evident from TGA curves, were observed to undergo three-step degradation of water loss, de-doping and decomposition of polymer. Further, the thermal ...

  19. Metal complexes of salicylhydroxamic acid and 1,10-phen ...

    African Journals Online (AJOL)

    ) complexes involving 1,10-phenanthroline were studied pH-potentiometrically in 0.15 mol.L-1 NaNO3 aqueous solutions at 37 oC. The protonation constants of salicylhydroxamic acid and 1,10-phenanthroline as well their binary and mixed ...

  20. The dynamic behavior of the exohedral transition metal complexes ...

    Indian Academy of Sciences (India)

    NAIWRIT KARMODAK

    Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012,. India. E-mail: jemmis@ipc.iisc.ernet.in. MS received 16 February 2017; accepted 13 April 2017. Abstract. The dynamic nature of the exohedral η6- and the η7-complexes of B40 with Cr(CO)3 has been explored ...

  1. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    Unknown

    (4). Structure determination of the [Ru(PPh3)2(bztsc-NO2)2] complex (figure 2) shows that the thiosemicarbazone ligands are again coordinated in a similar fashion (10) as before, forming four-membered chelate rings. This exercise therefore indicates that intramolecular hydrogen bonding is not responsible for the unusual ...

  2. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    cis positions are occupied by carboxylate groups and another two cis positions are by 1,10-phenanthroline. ... which the dicarboxylates are at para position to each other. The cationic part is a complex cation of tetra-aqua ..... nology, New Delhi, India for financial support. References. 1. Spivey A L and Andrews B I 2001 ...

  3. Synthesis, spectral, thermal and antimicrobial studies of some new tri metallic biologically active ceftriaxone complexes

    Science.gov (United States)

    Ali, Alaa E.

    2011-01-01

    Iron, cobalt, nickel and copper complexes of ceftriaxone were prepared in 1:3 ligand:metal ratio to examine the ligating properties of the different moieties of the drug. The complexes were found to have high percentages of coordinated water molecules. The modes of bonding were discussed depending on the infrared spectral absorption peaks of the different allowed vibrations. The Nujol mull electronic absorption spectra and the magnetic moment values indicated the Oh geometry of the metal ions in the complexes. The ESR spectra of the iron, cobalt, and copper complexes were determined and discussed. The thermal behaviors of the complexes were studied by TG and DTA techniques. The antimicrobial activities of the complexes were examined and compared to that of the ceftriaxone itself.

  4. Investigation of the complexation of metal-ions by strong ligands in fresh and marine water.

    Science.gov (United States)

    Pesavento, Maria; Biesuz, Raffaela; Profumo, Antonella; Soldi, Teresa

    2003-01-01

    The detection and investigation of metal ions bound in strong complexes in natural waters is a difficult task, due to low concentration of the metal ions themselves, and also of the strong ligands, which, moreover, are often not of a well-defined composition. Here, a method is proposed for the investigation of the speciation of metal ions in natural waters. It is based on the sorption of metal ions on strongly sorbing ion exchange resins, i.e. complexing resins. For this reason the method is called Resin Titration. It has been shown in previous investigations that the concentration of metal ion totally sorbed by a particular resin, and its reaction coefficient in the solution phase in the presence of the resin, can be determined from the sorption data using a simple relationship. Here, a data treatment (the Ruzic linearization method) is proposed for also determining the concentration of the ligands responsible for the complex in equilibrium with the resin. The method was applied to data obtained by Resin Titration of a freshwater and a seawater. Copper(II) and aluminium(III) were considered, using Chelex 100 as a titrant, due to its strong sorbing properties towards these metal ions. The results were: the total metal concentration in equilibrium with the resin, the side reaction coefficients, and the concentration of ligands. In all these cases the ligands forming very strong complexes were found to be at concentration lower than that of the metals. The Ruzic linearization method allows the determination of the concentration of the ligands forming very strong complexes in equilibrium with Chelex 100. The reaction coefficient was better determined by the calculation method previously proposed for RT. The ligands responsible for the strong complexes were found to be at low concentration, often lower than that of the metal ions considered. The metal in the original sample is partly bound to these ligands, since the complexes are very strong. Only a part of the metal

  5. Metal resistance systems in cultivated bacteria: are they found in complex communities?

    Science.gov (United States)

    Gillan, David C

    2016-04-01

    Metal resistance systems found in complex bacterial communities by shotgun metagenomic approaches were reviewed. For that, 6 recent studies investigating 9 metal-contaminated environments (water or sediments) were selected. Of the 22 possible metal-resistance systems, only 14 were found in complex communities. These widespread and easily detected metal-resistance systems were mainly biogenic sulfide production (dsr genes), resistance mediated in the periplasm (CopK and multicopper oxidases such as PcoA/CopA), efflux proteins (HME-RND systems, P-type ATPases, and the cation diffusion facilitator CzcD) as well as proteins used to treat oxidative damages (e.g., SodA) and down-regulation of transporters. A total of 8 metal-resistance systems were not found in the complex communities investigated. These rare systems include metal resistance by phosphatases, ureases, metallophores, outer membrane vesicles, methylation genes and cytoplasmic metal accumulation systems. In this case rarity may also be explained by a lack of knowledge on the specific genes involved and/or analytical biases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Peptides having antimicrobial activity and their complexes with transition metal ions.

    Science.gov (United States)

    Jeżowska-Bojczuk, Małgorzata; Stokowa-Sołtys, Kamila

    2018-01-01

    Peptide antibiotics are produced by bacterial, mammalian, insect or plant organisms in defense against invasive microbial pathogens. Therefore, they are gaining importance as anti-infective agents. There are a number of antibiotics that require metal ions to function properly. Metal ions play a key role in their action and are involved in specific interactions with proteins, nucleic acids and other biomolecules. On the other hand, it is well known that some antimicrobial agents possess functional groups that enable them interacting with metal ions present in physiological fluids. Some findings support a hypothesis that they may alter the serum metal ions concentration in humans. Complexes usually have a higher positive charge than uncomplexed compounds. This means that they might interact more tightly with polyanionic DNA and RNA molecules. It has been shown that several metal ion complexes with antibiotics promote degradation of DNA. Some of them, such as bleomycin, form stable complexes with redox metal ions and split the nucleic acids chain via the free radicals mechanism. However, this is not a rule. For example blasticidin does not cause DNA damage. This indicates that some peptide antibiotics can be considered as ligands that effectively lower the oxidative activity of transition metal ions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Lutetium-177 complexation of DOTA and DTPA in the presence of competing metals

    International Nuclear Information System (INIS)

    Watanabe, Satoshi; Ishioka, Noriko S.; Hashimoto, Kazuyuki

    2013-01-01

    177 Lu complexation of DOTA and DTPA is investigated by the addition of Ca(II), Fe(II) and Zn(II). The 177 Lu complexation yield of DTPA was higher than that of DOTA in the presence of Ca(II), Fe(II) and Zn(II). Therefore, it was found that the 177 Lu complexation of DTPA was more advantageous compared with DOTA in the presence of competing metals, Ca, Fe and Zn. (author)

  8. Synthesis, characterization, biological and electrical conductivity studies of some Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    A. R. Yaul

    2014-05-01

    Full Text Available Metal complexes of VO(IV, Zr(IV, Th(IV and UO2(VI with Schiff base ligands derived from 4-nitrobenzoylhydrazide with 2-hydroxy-5-methylacetophenone (H2L1 or 2-hydroxy-5-chloroacetophenone (H2L2 have been prepared. All the complexes have been characterized on the basis of elemental analyses, magnetic susceptibility measurement, electronic and IR spectra and thermogravimetric analysis. The IR spectral data suggested that the ligands behave as dibasic tridentate moiety towards the central metal ion coordinating through phenolic oxygen, enolic oxygen and azomethine nitrogen atoms. The elemental analyses show a 1:1 metal:ligand stoichiometry for all the complexes except Th(IV which has 1:2 stoichiometry. The thermal analysis evidenced that thermal transformations of complexes are processes according to TG curves including dehydration, thermolysis and oxidative degradation of Schiff base. The final product of decomposition is the most stable metallic oxide. The kinetic analysis of the thermogravimetric data was performed by using the Coats-Redfern method. Solid state electrical conductivity of the complexes has been measured in their compressed pellet form over a 310-413 K temperature range. All the complexes show semiconducting behavior as their conductivity increases with increasing temperature and a function of ionic size. All the complexes along with ligands were also screened for their antibacterial and antifungal activities. DOI: http://dx.doi.org/10.4314/bcse.v28i2.9

  9. Quantitative structure-activity relationships for aqueous metal-siderophore complexes.

    Science.gov (United States)

    Duckworth, Owen W; Bargar, John R; Sposito, Garrison

    2009-01-15

    Siderophores, biogenic chelating agents that facilitate the solubilization and uptake of ferric iron, form stable complexes with a wide range of nutrient and contaminant metals and thus may profoundly affect their fate, transport, and biogeochemical cycling. To understand more comprehensively the factors that control the stability and reactivity, as well as the potential for microbial uptake, of metal-siderophore complexes, we probed the structures of complexes formed between the trihydroxamate siderophore desferrioxamine B (DFOB) and Cu(II), Ga(III), Mn(II), Ni(II), and Zn(II) in solution by using extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that all metals studied are dominantly in octahedral coordination, with significant Jahn-Teller distortion of the Cu(II)HDFOB(0) complex. Additionally, log-transformed complex stability constants correlate not only with the charge-normalized interatomic distances within the complex, affirming and expanding existing predictive relationships, but also with the Debye-Waller parameter of the first coordination shell. The derived structure-activity relationships not only quantitatively relate the measured physical architecture of aqueous complexes to their observed stability but also allow for the prediction of siderophore-metal stability constants.

  10. Metal Complexes with a Hexadentate Macrocyclic Diamine-Tetracarbene Ligand.

    Science.gov (United States)

    Lu, Taotao; Yang, Chu-Fan; Zhang, Li-Yi; Fei, Fan; Chen, Xue-Tai; Xue, Zi-Ling

    2017-10-02

    A hexadentate macrocyclic N-heterocyclic carbene (NHC) ligand precursor (H 4 L)(PF 6 ) 4 containing four benzimidazolium and two secondary amine groups, has been synthesized and characterized. Coordination chemistry of this new macrocyclic diamine-tetracarbene ligand has been studied by the synthesis of its Ag(I), Au(I), Ni(II), and Pd(II) complexes. Reactions of (H 4 L)(PF 6 ) 4 with different equiv of Ag 2 O result in Ag(I) complexes [Ag(H 2 L)](PF 6 ) 3 (1) and [Ag 2 (H 2 L)](PF 6 ) 4 (2). A mononuclear Au(I) complex [Au(H 2 L)](PF 6 ) 3 (3) and a trinuclear Au(I) complex [Au 3 (H 2 L)(Cl) 2 ](PF 6 ) (4) are obtained by transmetalation of 1 and 2 with AuCl(SMe 2 ), respectively. Reactions of (H 4 L)(PF 6 ) 4 with Ni(OAc) 2 and Pd(OAc) 2 in the presence of NaOAc yield [Ni(L)](PF 6 ) 2 (5) and [Pd(L)](PF 6 ) 2 (6), respectively, containing one Ni(II) and Pd(II) ion with distorted square-planar geometry. Using more NaOAc results in the formation of unusual dinuclear complexes [Ni 2 (L-2H)](PF 6 ) 2 (7) and [Pd 2 (L-2H)](PF 6 ) 2 (8) (L-2H = deprotonated ligand after removing two H + ions from two secondary amine groups in L), respectively, featuring a rare M 2 N 2 core formed by two bridging amides. 7 is also formed by the reaction of 5 with 1.0 equiv of Ni(OAc) 2 ·4H 2 O in the presence of NaOAc. Transmetalation of 2 with 2.0 equiv of Ni(PPh 3 ) 2 Cl 2 gives [Ni 2 (L)(μ-O)](PF 6 ) 2 (9), the first example of a dinuclear Ni(II) complex with a singly bridging oxo group. 9 is converted to 7 in good yield through the treatment with NaOAc.

  11. Speciation Studies of Some Toxic Metal Complexes of Glycylglycine ...

    African Journals Online (AJOL)

    The formation equilibria of complexes of Pb(II), Cd(II) and Hg(II) with glycylglycine were investigated pH-metrically in propylene glycol-water mixtures (0–60 % v/v) at 303 K and an ionic strength of 0.16 mol L–1. The dominant species detected were ML+ and ML2H22+ for Pb(II); MLH2+ and ML2H+ for Cd(II) and ML+,ML2 ...

  12. thiosemicarbazide complexes with some first row transition metal i

    Indian Academy of Sciences (India)

    Unknown

    after decomposition with a mixture of conc. HNO3 and HCl, followed by conc. .... which falls in the range reported for an 1:1 electrolyte 19, indicating solvolysis in DMF, while other complexes show molar conductivities of 33⋅3–63⋅4 Ω–1 cm2 mol–1, suggesting their non-electrolytic nature 19. The following equations ...

  13. A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions.

    Science.gov (United States)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N; Nam, Wonwoo

    2013-05-01

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal-oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)-oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)-oxo complex binding scandium ions. The Mn(IV)-oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)-oxo complex are markedly influenced by binding of Sc(3+) ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C-H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)-oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal-oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  14. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    Science.gov (United States)

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  15. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    Science.gov (United States)

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  16. Assessment of atmospheric trace metals in the western Bushveld Igneous Complex, South Africa

    Directory of Open Access Journals (Sweden)

    Pieter G. Van Zyl"

    2014-03-01

    Full Text Available Trace metal species emitted into the atmosphere from natural and anthropogenic sources can cause various health-related and environmental problems. Limited data exist for atmospheric trace metal concentrations in South Africa, which has the largest industrialised economy in Africa, with significant mining and metallurgical activities. A large fraction of these mineral assets is concentrated in the Bushveld Igneous Complex, with the western limb being the most exploited. To partially address this knowledge gap, atmospheric trace metals were collected in the western Bushveld Igneous Complex at Marikana in the North West Province. Diurnal PM2.5 and PM10 samples were collected for 1 year. A total of 27 trace metal species were determined. With the exception of Ni, none of the trace metals measured during the sampling period exceeded local or international air quality standard limit values. Total trace metal concentrations in the PM10 fraction peaked during the dry months and were regularly washed out during the wet season. A less significant seasonal trend was observed for the trace metal concentrations in the PM2.5 fraction; a finding attributed to a faster replenishment of smaller particles into the atmosphere after rain events. About 80% of the PM10 trace metal levels measured occurred in the PM2.5 fraction, while 40% or more of all metals emanated from the PM2.5 fraction. This finding indicated a strong influence of anthropogenic sources. Four meaningful emission sources were determined from explorative principal component factor analysis: crustal, vanadium related, base metal related and ferrochromium related, which correlated well with the anticipated atmospheric trace metal sources in the region.

  17. Metal complexes in cancer therapy – an update from drug design perspective

    Directory of Open Access Journals (Sweden)

    Ndagi U

    2017-03-01

    Full Text Available Umar Ndagi, Ndumiso Mhlongo, Mahmoud E Soliman Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa Abstract: In the past, metal-based compounds were widely used in the treatment of disease conditions, but the lack of clear distinction between the therapeutic and toxic doses was a major challenge. With the discovery of cisplatin by Barnett Rosenberg in 1960, a milestone in the history of metal-based compounds used in the treatment of cancers was witnessed. This forms the foundation for the modern era of the metal-based anticancer drugs. Platinum drugs, such as cisplatin, carboplatin and oxaliplatin, are the mainstay of the metal-based compounds in the treatment of cancer, but the delay in the therapeutic accomplishment of other metal-based compounds hampered the progress of research in this field. Recently, however, there has been an upsurge of activities relying on the structural information, aimed at improving and developing other forms of metal-based compounds and nonclassical platinum complexes whose mechanism of action is distinct from known drugs such as cisplatin. In line with this, many more metal-based compounds have been synthesized by redesigning the existing chemical structure through ligand substitution or building the entire new compound with enhanced safety and cytotoxic profile. However, because of increased emphasis on the clinical relevance of metal-based complexes, a few of these drugs are currently on clinical trial and many more are awaiting ethical approval to join the trial. In this review, we seek to give an overview of previous reviews on the cytotoxic effect of metal-based complexes while focusing more on newly designed metal-based complexes and their cytotoxic effect on the cancer cell lines, as well as on new approach to metal-based drug design and molecular target in cancer therapy. We are optimistic that the concept of selective

  18. The preparation and use of metal salen complexes derived from cyclobutane diamine

    Science.gov (United States)

    Patil, Smita

    The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.

  19. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have......Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...

  20. THEORETICAL STUDY ON 15-CROWN-5 COMPLEX WITH SOME METAL CATIONS

    Directory of Open Access Journals (Sweden)

    Yahmin Yahmin

    2012-06-01

    Full Text Available The capability of 15-crown-5 ethers to form complexes with some metal cations (Li+, Na+, K+, Zn2+, Cd2+ and Hg2+ was investigated by an ab initio quantum mechanical method. The calculations were performed at the RHF/lanl2mb level of theory. The interaction energies were used to evaluate the metal binding capability of the crown ether. The effect of nature of the metal on the binding properties was also studied. The results of the calculations showed that the interaction energy of the complexes increased in proportion with the ratio of ion charge, electronegativity and ionization potential to the cation diameter. In addition, based on the extraction distribution coefficient in the gas phase, it is found that the 15-crown-5 could not extract metal cations investigated.

  1. Interaction of natural complexing agents with soil bound heavy metals -geochemical and environmental technical aspects

    International Nuclear Information System (INIS)

    Fischer, K.

    1994-01-01

    The sanitation of heavy metal polluted soils requires the application of an adequate technology, which should be consistent in its ecological aims and methodology. Therefore a research programme has been developed at the 'Institute of Ecological Chemistry' of the 'GSF-Research Center', Neuherberg, which has its starting point in the study of influences of natural organic complexing agents on the chemical activity and dynamic of heavy metals in soils. The groundlaying idea is to elevate the concentration of complexing agents in the soil solution by additional application and possible stimulation of their microbial production to such an extent, that heavy metals will be enhanced solubilized, mobilized and removed together with the seepage water. Batch experiments in order to extract heavy metals from typical soil components (bentonite, peat) by amino acids demonstrate, that removal rates up to 95% can be obtained. (orig.) [de

  2. Intraparticulate Metal Speciation Analysis of Soft Complexing Nanoparticles. The Intrinsic Chemical Heterogeneity of Metal-Humic Acid Complexes

    DEFF Research Database (Denmark)

    Town, R. M.; van Leeuwen, Herman P.

    2016-01-01

    The counterion condensation-Dorman (CCD) model for the electrostatic features of soft, charged nanopartides (NPs) is applied to the determination of the intrinsic stability constants, kit, for inner-sphere Cd(II) and Cu(II) complexes with humic acid NPs. The novel CCD model accounts for the stron...

  3. Molar absorption coefficients and stability constants of Zincon metal complexes for determination of metal ions and bioinorganic applications.

    Science.gov (United States)

    Kocyła, Anna; Pomorski, Adam; Krężel, Artur

    2017-11-01

    Zincon (ZI) is one of the most common chromophoric chelating probes for the determination of Zn 2+ and Cu 2+ ions. It is also known to bind other metal ions. However, literature data on its binding properties and molar absorption coefficients are rather poor, varying among publications or determined only in certain conditions. There are no systematic studies on Zn 2+ and Cu 2+ affinities towards ZI performed under various conditions. However, this widely commercially available and inexpensive agent is frequently the first choice probe for the measurement of metal binding and release as well as determination of affinity constants of other ligands/macromolecules of interest. Here, we establish the spectral properties and the stability of ZI and its complexes with Zn 2+ , Cu 2+ , Cd 2+ , Hg 2+ , Co 2+ , Ni 2+ and Pb 2+ at multiple pH values from 6 to 9.9. The obtained results show that in water solution the MZI complex is predominant, but in the case of Co 2+ and Ni 2+ , M(ZI) 2 complexes are also formed. The molar absorption coefficient at 618 nm for ZnZI and 599nm for CuZI complexes at pH7.4 in buffered (I=0.1M) water solutions are 24,200 and 26,100M -1 cm -1 , respectively. Dissociation constants of those complexes are 2.09×10 -6 and 4.68×10 -17 M. We also characterized the metal-assisted Zincon decomposition. Our results provide new and reassessed optical and stability data that are applicable to a wide range of chemical and bioinorganic applications including metal ion detection, and quantification and affinity studies of ligands of interest. Accurate values of molar absorption coefficients of Zincon complex with Zn 2+ , Cd 2+ , Hg 2+ , Co 2+ , Ni 2+ , Cu 2+ , and Pb 2+ for rapid metal ion quantification are provided. Zincon stability constants with Zn 2+ and Cu 2+ in a wide pH range were determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  5. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    Science.gov (United States)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  6. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  7. Numerical analysis of the effect of the TEM00 radiation mode polarisation on the cut shape in laser cutting of thick metal sheets

    International Nuclear Information System (INIS)

    Zaitsev, A V; Kovalev, O B; Orishich, Anatolii M; Fomin, V M

    2005-01-01

    The effect of polarisation of a Gaussian beam on the radiation absorption during laser cutting of metals is investigated. A generalised formula is proposed for calculating the absorption coefficient, which describes the polarisation of three types (linear, elliptical, and circular), taking into account the fact that the beam may interact with a metal surface of an arbitrary shape. A comparison with the existing analogues (in the cases of linear and circular radiation polarisation) confirmed the advantage of employing the formula for the spatial description of the shape of the surface produced, which is highly important for processing (cutting, welding, drilling) of thick materials. The effect of laser radiation characteristics on the surface shape and cut depth in cutting stainless steel sheets is investigated numerically. It is shown for the first time that the cutting of materials by the TEM 00 beam is most efficient when the beam has elliptical polarisation directed along the direction of beam displacement and characterised by a specific axial ratio. (laser applications and other topics in quantum electronics)

  8. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral-at-metal complexes.

    Science.gov (United States)

    Gong, Lei; Chen, Liang-An; Meggers, Eric

    2014-10-06

    Due to the relationship between structure and function in chemistry, access to novel chemical structures ultimately drives the discovery of novel chemical function. In this light, the formidable utility of the octahedral geometry of six-coordinate metal complexes is founded in its stereochemical complexity combined with the ability to access chemical space that might be unavailable for purely organic compounds. In this Minireview we wish to draw attention to inert octahedral chiral-at-metal complexes as an emerging class of metal-templated asymmetric "organocatalysts" which exploit the globular, rigid nature and stereochemical options of octahedral compounds and promise to provide new opportunities in the field of catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural and Spectral Properties of Curcumin and Metal- Curcumin Complex Derived from Turmeric (Curcuma longa)

    Science.gov (United States)

    Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh

    Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.

  10. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    Science.gov (United States)

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.

  11. H-D exchange and other reactions of saturated hydrocarbons in solutions of transition metal complexes

    International Nuclear Information System (INIS)

    Shilov, A.E.; Shteinman, A.A.

    1975-01-01

    Heating methane, ethane and other paraffins with solutions of chlorides of Pt(II) or Pt(IV) in heavy water there was H-D exchange of D 2 O with RH molecule. The reaction was inhibited by chloride ions and accompanied by reduction of metal compounds. The investigation of kinetics and mechanism of these reactions has shown that alkyl derivatives of transition metals are the intermediates, the reaction rate increases with electron accepting properties of metal complexes and electron donating properties of C-H containing compounds. C-H bond was found to be activated to some reactions of substitution and dehydrogenation as well. (K.A.)

  12. Synthesis, structure and reactivity of rare-earth metal complexes containing anionic phosphorus ligands.

    Science.gov (United States)

    Li, Tianshu; Kaercher, Sabrina; Roesky, Peter W

    2014-01-07

    A comprehensive review of structurally characterized rare-earth metal complexes containing anionic phosphorus ligands is presented. Since rare-earth elements form hard ions and phosphorus is considered as a soft ligand, the rare-earth metal phosphorus coordination is regarded as a less favorite combination. Three classes of phosphorus ligands, (1) the monoanionic organophosphide ligands (PR2(-)) bearing one negative charge on the phosphorus atom; (2) the dianionic phosphinidene (PR(2-)) and P(3-) ligands; and (3) the pure inorganic polyphosphide ligands (Pn(x-)), are included here. Particular attention has been paid to the synthesis, structure, and reactivity of the rare-earth metal phosphides.

  13. Stromatolites, Metals, Statistics and Microbial Mats: A Complex Interplay

    Science.gov (United States)

    Spear, J. R.

    2014-12-01

    Initially thought to be relatively 'simple' ecosystems for study, microbial mats have long been considered ideal for any number of research questions. Microbial mats can be found in any number of environments, both natural and manmade, and are typically dependent upon the physiochemical environment for their structure, maintenance and longevity. Ultimately, these and other parameters govern community whereby a microbial mat provides overall ecosystem services to their environment. On the edge of a hotspring in Yellowstone National Park we have found an active microbial mat community that can form a laminated, lithified, accretionary structure that is likely the best example of a living and growing stromatolite. In the outfall channel of the sulfidic Stinking Spring, Utah, we have found examples of both naturally occurring laminated and floating mats where the carbon flux is controlled by abiotic degassing of CO2 rather than metabolism. δ13C-bicarbonate uptake experiments reveal an autotrophic growth rate of 0 - 0.16%/day while δ13C-acetate reveals a higher heterotrophic growth rate of 0.03 - 0.65%/day, which highlights the role of heterotrophs in these mats. Similar growth experiments on Little Hot Creek, California laminated microbial mats reveal a trend for top-down microbial growth with similar microbial taxonomy and diversity to other mat-types. Of a curious note is that incubation experiments with Little Hot Creek mats reveals the importance of particular metals in mat structure and function. Statistically, alpha- and beta-diversity metrics are often used to characterize microbial communities in such systems, but from an analysis of a wastewater treatment system, Hill diversities can better interpret the effective number of species to produce an ecologically intuitive quantity to better understand a microbial mat ecosystem.

  14. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  15. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet

    2017-07-04

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  16. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    Science.gov (United States)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  17. Strongly Phosphorescent Transition Metal π-Complexes of Boron-Boron Triple Bonds.

    Science.gov (United States)

    Braunschweig, Holger; Dellermann, Theresa; Dewhurst, Rian D; Hupp, Benjamin; Kramer, Thomas; Mattock, James D; Mies, Jan; Phukan, Ashwini K; Steffen, Andreas; Vargas, Alfredo

    2017-04-05

    Herein are reported the first π-complexes of compounds with boron-boron triple bonds with transition metals, in this case Cu I . Three different compounds were isolated that differ in the number of copper atoms bound to the BB unit. Metalation of the B-B triple bonds causes lengthening of the B-B and B-C NHC bonds, as well as large upfield shifts of the 11 B NMR signals, suggesting greater orbital interactions between the boron and transition metal atoms than those observed with recently published diboryne/alkali metal cation complexes. In contrast to previously reported fluorescent copper(I) π-complexes of boron-boron double bonds, the Cu n -π-diboryne compounds (n = 2, 3) show intense phosphorescence in the red to near-IR region from their triplet excited states, according to their microsecond lifetimes, with quantum yields of up to 58%. While the Cu diborene bond is dominated by electrostatic interactions, giving rise to S 1 and T 1 states of pure IL(π-π*) nature, DFT studies show that the Cu I π-complexes of diborynes reported herein exhibit enhanced metal d orbital contributions to HOMO and HOMO-1, which results in S 1 and T 1 having significant MLCT character, enabling strong spin-orbit coupling for highly efficient intersystem-crossing S 1 → T n and phosphorescence T 1 → S 0 .

  18. 'Pincer' dicarbene complexes of some early transition metals and uranium.

    Science.gov (United States)

    Pugh, David; Wright, Joseph A; Freeman, Sandra; Danopoulos, Andreas A

    2006-02-14

    The complexes [(C-N-C)MX(n)(thf)(m)] with the 'pincer' 2,6-bis(imidazolylidene)pyridine, (C-N-C) = 2,6-bis(arylimidazol-2-ylidene)pyridine, aryl = 2,6-Pr(i)2C6H3, M = V, X = Cl, n = 2, m = 1 1a; M = Cr, X = Cl, n = 2, m = 0, 2a, X = Br, 2b; M = Mn, X = Br, n = 2, m = 0, 3; M = Nb, X = Cl, n = 3, m = 0, 4; and M = U, X = Cl, n = 4, m = 0, 5, were synthesised by (a) substitution of labile tmed (1a), thf (2a, 3, 5) or dme (4) by free (C-N-C) or by (b) reaction of the bisimidazolium salt (CH-N-CH)Br2 with {Cr[N(SiMe3)2]2(thf)2} followed by amine elimination (2b). Attempted alkylation of 1a, 2, 3a and 4 with Grignard or alkyl lithiums gave intractable mixtures, and in one case [reaction of 1a with (mesityl)MgBr] resulted in exchange of Cl by Br (1b). Oxidation of 1a or [(C-N-C)VCl3] with 4-methylmorpholine N-oxide afforded the trans-V(C-N-C)(=O)Cl2, 6, which by reaction with AgBF4 in MeCN gave trans-[V(C-N-C)(=O)(MeCN)2][BF4]2, 7. Reaction of 1a with p-tolyl azide gave trans-V(C-N-C)(=N-p-tolyl)Cl2 8. The complex trans-Ti(C-N-C)(=NBu(t))Cl2, 9, was prepared by substitution of the pyridine ligands in Ti(NBu(t))Cl2(py)3 by C-N-C.

  19. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  20. Synthesis and thermal studies of tetraaza macrocylic ligand and its transition metal complexes. DNA binding affinity of copper complex.

    Science.gov (United States)

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2011-09-01

    A Tetraaza Macrocylic Ligand (H2L) and its complexes, [Cd(H2L)(OH2)2](NO3)(2)·1/2OH2 (I), [Co(H2L)(OH2)](NO3)(2)·1/2OH2 (II), [Cu(H2L)(NO3)2]·3/2OH2 (III) and [Ni(H2L)(NO3)(OH2)]NO3·OH2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH2)2] (V), [CoL(OH2)2] (VI), [CuL(OH2)2] (VII) and [Ni(H2L)(NO3)2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H2L and its copper complex (III) can bind to DNA through an intercalative mode. The H2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.