WorldWideScience

Sample records for complex nonlinear behaviour

  1. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  2. Nonlinear Subincremental Method for Determination of Elastic-Plastic-Creep Behaviour

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye; Gunneskov, O.

    1985-01-01

    to general elastic-plastic-creep behaviour including problems with a highly nonlinear total strain path caused by the occurrence of creep hardening. This nonlinear method degenerates to the linear approach for elastic-plastic behaviour and when secondary creep is present. It is also linear during step......The frequently used subincremental method has so far been used on a linear interpolation of the total strain path within each main step. This method has proven successful when elastic-plastic behaviour and secondary creep is involved. The authors propose a nonlinear subincremental method applicable...

  3. Rich complex behaviour of self-assembled nanoparticles far from equilibrium.

    Science.gov (United States)

    Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F Ömer

    2017-04-26

    A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish.

  4. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  5. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  6. Complex nonlinear behaviour of a fixed bed reactor with reactant recycle

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    The fixed bed reactor with reactant recycle investigated in this paper can exhibit periodic solutions. These solutions bifurcate from the steady state in a Hopf bifurcation. The Hopf bifurcation encountered at the lowest value of the inlet concentration turns the steady state unstable and marks......,that the dynamic behaviour of a fixed bed reactor with reactant recycle is much more complex than previously reported....

  7. SCARF-4, Nonlinear Stresses in Pressure Vessel Liner with Plastic Behaviour Simulation

    International Nuclear Information System (INIS)

    Chadwick, A.

    1976-01-01

    1 - Nature of physical problem solved: Calculates non-linear stresses in a pressure vessel liner, simulating plastic behaviour on both panels and shear connectors. 2 - Method of solution: Iterations on the relevant formulae to obtain values of forces and deflections, adding a displacement factor when yielding has occurred. 3 - Restrictions on the complexity of the problem: It is assumed that the left-hand end-load will stay constant throughout each loading cycle. Number of panels must be less than or equal to 62

  8. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    Science.gov (United States)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  9. Controllable behaviours of rogue wave triplets in the nonautonomous nonlinear and dispersive system

    International Nuclear Information System (INIS)

    Dai Chaoqing; Tian Qing; Zhu Shiqun

    2012-01-01

    A similarity transformation connecting the variable coefficient nonlinear Schrödinger equation with the standard nonlinear Schrödinger equation is constructed. The self-similar rogue wave triplet solutions (rational solutions) are analytically obtained for the nonautonomous nonlinear and dispersive system. The controllable behaviours of rogue wave triplets in two typical soliton management systems are discussed. In the exponential dispersion decreasing fibre, three kinds of rogue wave triplets with controllable behaviours are analysed. In the periodic distributed system, the rogue wave triplets recur periodically in the form of a cluster. (paper)

  10. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    Science.gov (United States)

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  11. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  12. On the complexity of computing two nonlinearity measures

    DEFF Research Database (Denmark)

    Find, Magnus Gausdal

    2014-01-01

    We study the computational complexity of two Boolean nonlinearity measures: the nonlinearity and the multiplicative complexity. We show that if one-way functions exist, no algorithm can compute the multiplicative complexity in time 2O(n) given the truth table of length 2n, in fact under the same ...

  13. Third Conference on nonlinear science and complexity (NSC)

    CERN Document Server

    Machado, José; Baleanu, Dumitru; Dynamical Systems and Methods

    2012-01-01

    Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers:\\ Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics. Mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies. Nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial l...

  14. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  15. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  16. Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications

    Science.gov (United States)

    Pesaresi, L.; Salles, L.; Jones, A.; Green, J. S.; Schwingshackl, C. W.

    2017-02-01

    Underplatform dampers (UPD) are commonly used in aircraft engines to mitigate the risk of high-cycle fatigue failure of turbine blades. The energy dissipated at the friction contact interface of the damper reduces the vibration amplitude significantly, and the couplings of the blades can also lead to significant shifts of the resonance frequencies of the bladed disk. The highly nonlinear behaviour of bladed discs constrained by UPDs requires an advanced modelling approach to ensure that the correct damper geometry is selected during the design of the turbine, and that no unexpected resonance frequencies and amplitudes will occur in operation. Approaches based on an explicit model of the damper in combination with multi-harmonic balance solvers have emerged as a promising way to predict the nonlinear behaviour of UPDs correctly, however rigorous experimental validations are required before approaches of this type can be used with confidence. In this study, a nonlinear analysis based on an updated explicit damper model having different levels of detail is performed, and the results are evaluated against a newly-developed UPD test rig. Detailed linear finite element models are used as input for the nonlinear analysis, allowing the inclusion of damper flexibility and inertia effects. The nonlinear friction interface between the blades and the damper is described with a dense grid of 3D friction contact elements which allow accurate capturing of the underlying nonlinear mechanism that drives the global nonlinear behaviour. The introduced explicit damper model showed a great dependence on the correct contact pressure distribution. The use of an accurate, measurement based, distribution, better matched the nonlinear dynamic behaviour of the test rig. Good agreement with the measured frequency response data could only be reached when the zero harmonic term (constant term) was included in the multi-harmonic expansion of the nonlinear problem, highlighting its importance

  17. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  18. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  19. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.

    Science.gov (United States)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  20. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  1. Nonlinear rheology of complex fluid-fluid interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.; Fischer, P.

    2014-01-01

    Fluid–fluid interfaces stabilized by proteins, protein aggregates, polymers, or colloidal particles, tend to have a complex microstructure. Their response to an applied deformation is often highly nonlinear, even at small deformation (rates). The nonlinearity of the response is a result of changes

  2. Nonlinear FE analysis of reinforced concrete panels subjected to in-plane force

    International Nuclear Information System (INIS)

    Lee, H. P.; Lee, S. J.; Jun, Y. S.; Su, J. M.

    2003-01-01

    Reinforced concrete structures subjected to in-plane force exhibit strong nonlinear behaviour due to complex material properties, cracks, interactions between concrete and steel and shear transfer exists in crack surface. Especially if there is crack formations, nonlinear behaviour increases. Thus the prediction of nonlinear behaviour of reinforced concrete includes failure or crushing is very difficult task. Various constitutive equations for concrete stress-strain relationship to predict nonlinear behaviour of reinforced concrete have been proposed. But the study for reinforced concrete analysis model using plastic material model is still demanded. So the purpose of this research is to formulate standard 8-node shell element using plasticity material model for concrete and to analyze nonlinear behaviour of RC panel subjected to in-plane force

  3. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  4. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.

    Science.gov (United States)

    Nicolle, S; Vezin, P; Palierne, J-F

    2010-03-22

    Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Complex dynamics and morphogenesis an introduction to nonlinear science

    CERN Document Server

    Misbah, Chaouqi

    2017-01-01

    This book offers an introduction to the physics of nonlinear phenomena through two complementary approaches: bifurcation theory and catastrophe theory. Readers will be gradually introduced to the language and formalisms of nonlinear sciences, which constitute the framework to describe complex systems. The difficulty with complex systems is that their evolution cannot be fully predicted because of the interdependence and interactions between their different components. Starting with simple examples and working toward an increasing level of universalization, the work explores diverse scenarios of bifurcations and elementary catastrophes which characterize the qualitative behavior of nonlinear systems. The study of temporal evolution is undertaken using the equations that characterize stationary or oscillatory solutions, while spatial analysis introduces the fascinating problem of morphogenesis. Accessible to undergraduate university students in any discipline concerned with nonlinear phenomena (physics, mathema...

  6. On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions

    Directory of Open Access Journals (Sweden)

    Magdy A. El-Tawil

    2009-01-01

    Full Text Available A perturbing nonlinear Schrodinger equation is studied under general complex nonhomogeneities and complex initial conditions for zero boundary conditions. The perturbation method together with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the symbolic solution algorithm is tested through computing the possible approximations under truncation procedures. The method of solution is illustrated through case studies and figures.

  7. Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...

  8. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  9. Analysis of the elastic behaviour of nonclassical nonlinear mesoscopic materials in quasi-static experiments

    International Nuclear Information System (INIS)

    Ruffino, E.; Scalerandi, M.

    2000-01-01

    As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented

  10. Asymptotic behaviour of a nonlinear model for the geographic diffusion of infections diseases

    International Nuclear Information System (INIS)

    Kirane, M.; Kouachi, S.

    1994-01-01

    In this paper a nonlinear diffusion model for the geographical spread of infective diseases is studied. In addition to proving well-posedness of the associated initial-boundary value problem, the large time behaviour is analyzed. (author). 4 refs

  11. A discrete element model for the investigation of the geometrically nonlinear behaviour of solids

    Science.gov (United States)

    Ockelmann, Felix; Dinkler, Dieter

    2018-07-01

    A three-dimensional discrete element model for elastic solids with large deformations is presented. Therefore, an discontinuum approach is made for solids. The properties of elastic material are transferred analytically into the parameters of a discrete element model. A new and improved octahedron gap-filled face-centred cubic close packing of spheres is split into unit cells, to determine the parameters of the discrete element model. The symmetrical unit cells allow a model with equal shear components in each contact plane and fully isotropic behaviour for Poisson's ratio above 0. To validate and show the broad field of applications of the new model, the pin-pin Euler elastica is presented and investigated. The thin and sensitive structure tends to undergo large deformations and rotations with a highly geometrically nonlinear behaviour. This behaviour of the elastica can be modelled and is compared to reference solutions. Afterwards, an improved more realistic simulation of the elastica is presented which softens secondary buckling phenomena. The model is capable of simulating solids with small strains but large deformations and a strongly geometrically nonlinear behaviour, taking the shear stiffness of the material into account correctly.

  12. Modelling the nonlinear behaviour of double walled carbon nanotube based resonator with curvature factors

    Science.gov (United States)

    Patel, Ajay M.; Joshi, Anand Y.

    2016-10-01

    This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.

  13. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  14. Investigating Linear and Nonlinear Viscoelastic behaviour and microstructures of Gelatine-Multiwalled carbon nanotubes composites

    KAUST Repository

    Yang, Zhi

    2015-12-01

    We have investigated the linear and nonlinear rheology of various gelatine-multiwalled carbon nanotube (gel-MWNT) composites, namely physically-crosslinked-gelatine gel-MWNT composites, chemically-crosslinked-gelatine gel-MWNT composites, and chemically-physically-crosslinked-gelatine gel-MWNT composites. Further, the internal structures of these gel-MWNT composites were characterized by ultra-small angle neutron scattering and scanning electron microscopy. The adsorption of gelatine onto the surface of MWNT is also investigated to understand gelatine-assisted dispersion of MWNT during ultrasonication. For all gelatine gels, addition of MWNT increases their complex modulus. The dependence of storage modulus with frequency for gelatine-MWNT composites is similar to that of the corresponding neat gelatine matrix. However, by incorporating MWNT, the dependence of the loss modulus on frequency is reduced. The linear viscoelastic region is decreased approximately linearly with the increase of MWNT concentration. The pre-stress results demonstrate that the addition of MWNT does not change the strain-hardening behaviour of physically-crosslinked gelatine gel. However, the addition of MWNT can increase the strain-hardening behaviour of chemically-crosslinked gelatine gel, and chemically-physically crosslinked gelatine gel. Results from light microscopy, cryo-SEM, and USANS demonstrate the hierarchical structures of MWNT, including that tens-of-micron scale MWNT agglomerates are present. Furthermore, the adsorption curve of gelatine onto the surface of MWNT follows two-stage pseudo-saturation behaviour.

  15. Cumulative effect of structural nonlinearities: chaotic dynamics of cantilever beam system with impacts

    International Nuclear Information System (INIS)

    Emans, Joseph; Wiercigroch, Marian; Krivtsov, Anton M.

    2005-01-01

    The nonlinear analysis of a common beam system was performed, and the method for such, outlined and presented. Nonlinear terms for the governing dynamic equations were extracted and the behaviour of the system was investigated. The analysis was carried out with and without physically realistic parameters, to show the characteristics of the system, and the physically realistic responses. Also, the response as part of a more complex system was considered, in order to investigate the cumulative effects of nonlinearities. Chaos, as well as periodic motion was found readily for the physically unrealistic parameters. In addition, nonlinear behaviour such as co-existence of attractors was found even at modest oscillation levels during investigations with realistic parameters. When considered as part of a more complex system with further nonlinearities, comparisons with linear beam theory show the classical approach to be lacking in accuracy of qualitative predictions, even at weak oscillations

  16. A new differential equations-based model for nonlinear history-dependent magnetic behaviour

    International Nuclear Information System (INIS)

    Aktaa, J.; Weth, A. von der

    2000-01-01

    The paper presents a new kind of numerical model describing nonlinear magnetic behaviour. The model is formulated as a set of differential equations taking into account history dependence phenomena like the magnetisation hysteresis as well as saturation effects. The capability of the model is demonstrated carrying out comparisons between measurements and calculations

  17. Nonlinear dynamics as an engine of computation.

    Science.gov (United States)

    Kia, Behnam; Lindner, John F; Ditto, William L

    2017-03-06

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  18. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  19. Exact Solutions of Five Complex Nonlinear Schrödinger Equations by Semi-Inverse Variational Principle

    International Nuclear Information System (INIS)

    Najafi Mohammad; Arbabi Somayeh

    2014-01-01

    In this paper, we establish exact solutions for five complex nonlinear Schrödinger equations. The semi-inverse variational principle (SVP) is used to construct exact soliton solutions of five complex nonlinear Schrödinger equations. Many new families of exact soliton solutions of five complex nonlinear Schrödinger equations are successfully obtained. (general)

  20. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    Science.gov (United States)

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  1. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xiu-you [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Zhou, Yu-fei [College of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China)

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  2. Data based identification and prediction of nonlinear and complex dynamical systems

    Science.gov (United States)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical

  3. Data based identification and prediction of nonlinear and complex dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-Xu [School of Systems Science, Beijing Normal University, Beijing, 100875 (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lai, Ying-Cheng, E-mail: Ying-Cheng.Lai@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-07-12

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear

  4. Data based identification and prediction of nonlinear and complex dynamical systems

    International Nuclear Information System (INIS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-01-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear

  5. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  6. Qualitative aspects of nonlinear wave motion: Complexity and simplicity

    International Nuclear Information System (INIS)

    Engelbrecht, J.

    1993-01-01

    The nonlinear wave processes possess many qualitative properties which cannot be described by linear theories. In this presentation, an attempt is made to systematize the main aspects of this fascinating area. The sources of nonlinearities are analyzed in order to understand why and how the nonlinear mathematical models are formulated. The technique of evolution equations is discussed then as a main mathematical tool to separate multiwave processes into single waves. The evolution equations give concise but in many cases sufficient description of wave processes in solids permitting to analyze spectral changes, phase changes and velocities, coupling of waves, and interaction of nonlinearities with other physical effects of the same order. Several new problems are listed. Knowing the reasons, the seemingly complex problems can be effectively analyzed. 61 refs

  7. Non-linear bending behaviour of a reinforced concrete post. Generation of aleatory signals

    International Nuclear Information System (INIS)

    Chachoua, A.

    1999-07-01

    The cyclic behaviour of reinforced concrete structures under high-level solicitations is of prime importance for the para-seismic studies and dimensioning of nuclear facility buildings. The main characteristics of concrete materials are: the non-linear relationship between stresses and deformations, and the development of cracks leading to a loss of tightness and to the occurrence of plastic or residual deformations. The aim of this study is to find the most suitable method for the modeling of the behaviour of concrete under aleatory loading, and the modeling of the seismic excitation source using models based on pulse signals and white noise. (J.S.)

  8. A Novel Rational Design Method for Laminated Composite Structures Exhibiting Complex Geometrically Nonlinear Buckling Behaviour

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2012-01-01

    This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior of...

  9. Poromechanical approach describing the moisture influence on the non-linear quasi-static and dynamic behaviour of porous building materials

    NARCIS (Netherlands)

    Carmeliet, J.; Abeele, van den K.E.A.

    2004-01-01

    The non-linear quasi-static and dynamic elastic behaviour of Berea sandstone has been experimentally analysed showing hysteresis and a strong influence of moisture especially in the lower saturation range. It is shown that non-linear hysteretic response originates within the "bond system" of the

  10. Nonlinear Elastodynamic Behaviour Analysis of High-Speed Spatial Parallel Coordinate Measuring Machines

    Directory of Open Access Journals (Sweden)

    Xiulong Chen

    2012-10-01

    Full Text Available In order to study the elastodynamic behaviour of 4- universal joints- prismatic pairs- spherical joints / universal joints- prismatic pairs- universal joints 4-UPS-UPU high-speed spatial PCMMs(parallel coordinate measuring machines, the nonlinear time-varying dynamics model, which comprehensively considers geometric nonlinearity and the rigid-flexible coupling effect, is derived by using Lagrange equations and finite element methods. Based on the Newmark method, the kinematics output response of 4-UPS-UPU PCMMs is illustrated through numerical simulation. The results of the simulation show that the flexibility of the links is demonstrated to have a significant impact on the system dynamics response. This research can provide the important theoretical base of the optimization design and vibration control for 4-UPS-UPU PCMMs.

  11. Complex behavior in chains of nonlinear oscillators.

    Science.gov (United States)

    Alonso, Leandro M

    2017-06-01

    This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.

  12. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.

    Science.gov (United States)

    Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F

    2014-11-21

    Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.

  13. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    Science.gov (United States)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  14. Analysis of Instantaneous Linear, Nonlinear and Complex Cardiovascular Dynamics from Videophotoplethysmography.

    Science.gov (United States)

    Valenza, Gaetano; Iozzia, Luca; Cerina, Luca; Mainardi, Luca; Barbieri, Riccardo

    2018-05-01

    There is a fast growing interest in the use of non-contact devices for health and performance assessment in humans. In particular, the use of non-contact videophotoplethysmography (vPPG) has been recently demonstrated as a feasible way to extract cardiovascular information. Nevertheless, proper validation of vPPG-derived heartbeat dynamics is still missing. We aim to an in-depth validation of time-varying, linear and nonlinear/complex dynamics of the pulse rate variability extracted from vPPG. We apply inhomogeneous pointprocess nonlinear models to assess instantaneous measures defined in the time, frequency, and bispectral domains as estimated through vPPG and standard ECG. Instantaneous complexity measures, such as the instantaneous Lyapunov exponents and the recently defined inhomogeneous point-process approximate and sample entropy, were estimated as well. Video recordings were processed using our recently proposed method based on zerophase principal component analysis. Experimental data were gathered from 60 young healthy subjects (age: 24±3 years) undergoing postural changes (rest-to-stand maneuver). Group averaged results show that there is an overall agreement between linear and nonlinear/complexity indices computed from ECG and vPPG during resting state conditions. However, important differences are found, particularly in the bispectral and complexity domains, in recordings where the subjects has been instructed to stand up. Although significant differences exist between cardiovascular estimates from vPPG and ECG, it is very promising that instantaneous sympathovagal changes, as well as time-varying complex dynamics, were correctly identified, especially during resting state. In addition to a further improvement of the video signal quality, more research is advocated towards a more precise estimation of cardiovascular dynamics by a comprehensive nonlinear/complex paradigm specifically tailored to the non-contact quantification. Schattauer GmbH.

  15. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  16. On the dimension of complex responses in nonlinear structural vibrations

    Science.gov (United States)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to

  17. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  18. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved...

  19. Genetic algorithms applied to nonlinear and complex domains

    International Nuclear Information System (INIS)

    Barash, D; Woodin, A E

    1999-01-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means

  20. Nonlinear dynamics, chaos and complex cardiac arrhythmias

    Science.gov (United States)

    Glass, L.; Courtemanche, M.; Shrier, A.; Goldberger, A. L.

    1987-01-01

    Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analyzed, which show some correspondence to clinical observations.

  1. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    This thesis focuses on non-linear soil response to the type of cyclic loading experienced under offshore gravity base platform foundations. These loads are dominated by a cyclic component around the main wave frequency, which may well mobilize soil non-linearity under severe sea-states. Superimposed on this main component are lower level higher frequency loads caused by resonant oscillations of the platform. The thesis presents results of specially designed triaxial tests to simulate this loading condition. The tests simultaneously applied two cyclic load components at different frequencies and amplitudes. The measured soil response to each component has been isolated through a frequency domain separation. It was found that the soil responds to the superimposed high frequency low level component as if the soil had a cyclically time-varying stiffness. If the superimposed component does not lead to load reversals, this stiffness variation is controlled by the frequency and amplitude of the main load component and by the hysteretic non-linearity of the soil. If the superimposed component causes reversals, the influence of the hysteretic non-linearity on the stiffness variation is reduced. The higher the degree of reversal, the more this influence it taken over by the variation in the instantaneous unloading-reloading stiffness of the soil. It was also found that this type of two-frequency cyclic soil testing is generally superior over conventional single-frequency testing in the way it enforces the soil to reveal several of its inherent properties not deducible from ordinary tests. Benefits of analyzing non-linear response in the frequency domain is demonstrated throughout this thesis. The ability of various theoretical soil models to simulate the observed soil behaviour under two-frequency cyclic loading has, been investigated through numerical analyses. It was found that only those models that are based on kinematic hardening are able to reproduce what was observed

  2. Stress analysis of liners for prestressed concrete reactor pressure vessels with regard to non-linear behaviour of liner material and of anchor-characteristics

    International Nuclear Information System (INIS)

    Oberpichler, R.; Schnellenbach, G.

    1975-01-01

    The thin liner attached by anchors like a membrane to the interior wall of a prestressed concrete reactor pressure vessel (PCRV) has to provide the leak-tightness of the vessel. Furthermore the liner may serve as internal shuttering for placing of concrete as well as a support for the cooling system. The two-dimensional behaviour of the liner is investigated with regard to non-linear anchor-characteristics and non-linear material behaviour of the liner. The analysis is based on a plane stress model under the assumption of a membrane state of the liner. Calculations are performed by the dynamic relaxation method. With the aid of available non-linear stress-strain diagrams, describing the post-buckling behaviour, individual panels are considered as buckled ones. The adjacent unbuckled panels are calculated on other non-linear diagrams. Strains and stresses in the liner and additional shear loads in the anchors can be calculated with arbitrary sizing and spacing of the anchors. With respect to the parameters they are easily controlled. Since actual loads on the liner are defined by the PCRV-behaviour, an economical and safe design is possible. Finally an extreme case is calculated to assess the maximum value of the shear-forces assuming zero post-buckling capacity for the buckled panel. (Auth.)

  3. Coping with the Complexity of Economics

    CERN Document Server

    Faggini, Marisa

    2009-01-01

    The purpose of the science of complexity is to provide, if not a unified approach, at least useful tools to tackling complex problems in various scientific domains. Generally, complexity is considered a fundamental challenge to the reductionist approach in science as a whole and to its ideas of certainty and randomness. The overall behaviour of a complex system is different from and more than the sum of its parts. The behaviour of non-linear complex systems depends on the interaction (often with retroactive effects) among its constituent parts and not so much (or not only) on the characteristics of these parts themselves; the sum of the behaviour of single parts does not necessarily provide us with an explanation of the aggregate behaviour of a system. All this is true for economic systems. These are based on the activities of single economic agents. Each individual can obtain only partial knowledge that is focussed around its "world" (local information) and react to external shocks in different ways (local r...

  4. An introduction to complex systems society, ecology, and nonlinear dynamics

    CERN Document Server

    Fieguth, Paul

    2017-01-01

    This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or per...

  5. Ethnographic methods for process evaluations of complex health behaviour interventions.

    Science.gov (United States)

    Morgan-Trimmer, Sarah; Wood, Fiona

    2016-05-04

    This article outlines the contribution that ethnography could make to process evaluations for trials of complex health-behaviour interventions. Process evaluations are increasingly used to examine how health-behaviour interventions operate to produce outcomes and often employ qualitative methods to do this. Ethnography shares commonalities with the qualitative methods currently used in health-behaviour evaluations but has a distinctive approach over and above these methods. It is an overlooked methodology in trials of complex health-behaviour interventions that has much to contribute to the understanding of how interventions work. These benefits are discussed here with respect to three strengths of ethnographic methodology: (1) producing valid data, (2) understanding data within social contexts, and (3) building theory productively. The limitations of ethnography within the context of process evaluations are also discussed.

  6. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  7. Complexity, Chaos, and Nonlinear Dynamics: A New Perspective on Career Development Theory

    Science.gov (United States)

    Bloch, Deborah P.

    2005-01-01

    The author presents a theory of career development drawing on nonlinear dynamics and chaos and complexity theories. Career is presented as a complex adaptive entity, a fractal of the human entity. Characteristics of complex adaptive entities, including (a) autopiesis, or self-regeneration; (b) open exchange; (c) participation in networks; (d)…

  8. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    International Nuclear Information System (INIS)

    Manakov, S V; Santini, P M

    2008-01-01

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking

  9. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    Energy Technology Data Exchange (ETDEWEB)

    Manakov, S V [Landau Institute for Theoretical Physics, Moscow (Russian Federation); Santini, P M [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazz.le Aldo Moro 2, I-00185 Rome (Italy)

    2008-02-08

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking.

  10. Mean Square Synchronization of Stochastic Nonlinear Delayed Coupled Complex Networks

    Directory of Open Access Journals (Sweden)

    Chengrong Xie

    2013-01-01

    Full Text Available We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.

  11. Genetic algorithms applied to nonlinear and complex domains; TOPICAL

    International Nuclear Information System (INIS)

    Barash, D; Woodin, A E

    1999-01-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means

  12. Nonlinear physics: Catastrophe, chaos and complexity

    International Nuclear Information System (INIS)

    Arecchi, F.T.

    1992-01-01

    Currently in the world of physics, there is open debate on the role of the three C's - catastrophe, chaos and complexity. Seen as new ideas or paradigms, incapable of being harmonized within the realm of traditional physics, these terms seem to be creating turmoil in the classical physics establishment whose foundations date back to the early seventeenth century. This paper first defines catastrophe, chaos and complexity and shows how these terms are all connected to nonlinear dynamics and how they have long since been present within scientific treatises. It also evidences the relationship of the three C's with the concept of organization, inappropriately called self-organization, and with recognition and decisional strategies of cognitive systems. Relevant to natural science, the development of these considerations is necessitating the re-examination of the role and capabilities of human knowledge and a return to inter-disciplinary scientific-philosophical debate

  13. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations...

  14. Chaotic, informational and synchronous behaviour of multiplex networks

    Science.gov (United States)

    Baptista, M. S.; Szmoski, R. M.; Pereira, R. F.; Pinto, S. E. De Souza

    2016-03-01

    The understanding of the relationship between topology and behaviour in interconnected networks would allow to charac- terise and predict behaviour in many real complex networks since both are usually not simultaneously known. Most previous studies have focused on the relationship between topology and synchronisation. In this work, we provide analytical formulas that shows how topology drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex net- works with constant Jacobian. We also study this relationship numerically in multiplex networks of Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec- tion between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.

  15. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  16. Effect of nonlinear electrostatic forces on the dynamic behaviour of a capacitive ring-based Coriolis Vibrating Gyroscope under severe shock

    Science.gov (United States)

    Chouvion, B.; McWilliam, S.; Popov, A. A.

    2018-06-01

    This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed for a multi-supported ring resonator by describing the in-plane ring response as a finite sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It is shown that the supports can induce mode coupling and that mode coupling occurs when the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically simulating the governing equations of motion. For the severe shock cases investigated, when the electrode gap reduces by ∼ 60 % , it is found that three ring modes of vibration (1 θ, 2 θ and 3 θ) and a 9th order force expansion are needed to obtain converged results for the global shock behaviour. Numerical results when the 2 θ mode is driven at resonance indicate that electrostatic nonlinearity introduces mode coupling which has potential to reduce sensor performance under operating conditions. Under some circumstances it is also found that severe shocks can cause the vibrating response to jump to another stable state with much lower vibration amplitude. This behaviour is mainly a function of shock amplitude and rigid-body motion damping.

  17. Swarm robotics and complex behaviour of continuum material

    Science.gov (United States)

    dell'Erba, Ramiro

    2018-05-01

    In swarm robotics, just as for an animal swarm in nature, one of the aims is to reach and maintain a desired configuration. One of the possibilities for the team, to reach this aim, is to see what its neighbours are doing. This approach generates a rules system governing the movement of the single robot just by reference to neighbour's motion. The same approach is used in position-based dynamics to simulate behaviour of complex continuum materials under deformation. Therefore, in some previous works, we have considered a two-dimensional lattice of particles and calculated its time evolution by using a rules system derived from our experience in swarm robotics. The new position of a particle, like the element of a swarm, is determined by the spatial position of the other particles. No dynamic is considered, but it can be thought as being hidden in the behaviour rules. This method has given good results in some simple situations reproducing the behaviour of deformable bodies under imposed strain. In this paper we try to stress our model to highlight its limits and how they can be improved. Some other, more complex, examples are computed and discussed. Shear test, different lattices, different fracture mechanisms and ASTM shape sample behaviour have been investigated by the software tool we have developed.

  18. Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction

    CERN Document Server

    Nicolis, Gregoire

    2007-01-01

    Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h

  19. Detecting nonlinearity in run-up on a natural beach

    Directory of Open Access Journals (Sweden)

    K. R. Bryan

    2007-07-01

    Full Text Available Natural geophysical timeseries bear the signature of a number of complex, possibly inseparable, and generally unknown combination of linear, stable non-linear and chaotic processes. Quantifying the relative contribution of, in particular, the non-linear components will allow improved modelling and prediction of natural systems, or at least define some limitations on predictability. However, difficulties arise; for example, in cases where the series are naturally cyclic (e.g. water waves, it is most unclear how this cyclic behaviour impacts on the techniques commonly used to detect the nonlinear behaviour in other fields. Here a non-linear autoregressive forecasting technique which has had success in demonstrating nonlinearity in non-cyclical geophysical timeseries, is applied to a timeseries generated by videoing the waterline on a natural beach (run-up, which has some irregular oscillatory behaviour that is in part induced by the incoming wave field. In such cases, the deterministic shape of each run-up cycle has a strong influence on forecasting results, causing questionable results at small (within a cycle prediction distances. However, the technique can clearly differentiate between random surrogate series and natural timeseries at larger prediction distances (greater than one cycle. Therefore it was possible to clearly identify nonlinearity in the relationship between observed run-up cycles in that a local autoregressive model was more adept at predicting run-up cycles than a global one. Results suggest that despite forcing from waves impacting on the beach, each run-up cycle evolves somewhat independently, depending on a non-linear interaction with previous run-up cycles. More generally, a key outcome of the study is that oscillatory data provide a similar challenge to differentiating chaotic signals from correlated noise in that the deterministic shape causes an additional source of autocorrelation which in turn influences the

  20. Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit

    International Nuclear Information System (INIS)

    Arulgnanam, A.; Thamilmaran, K.; Daniel, M.

    2009-01-01

    A two dimensional nonautonomous dissipative forced series LCR circuit with a simple nonlinear element exhibiting an immense variety of dynamical features is proposed for the first time. Unlike the usual cases of nonlinear element, the nonlinear element used here possesses three segment piecewise linear character with one positive and one negative slope. This nonlinearity is verified to be sufficient to produce chaos with high complexity in many established nonautonomous nonlinear circuits, such as MLC, MLCV, driven Chua, etc., thus indicating an universal behavior similar to the familiar Chua's diode. The dynamics of the proposed circuit is studied experimentally, confirmed numerically, simulated through PSPICE and proved mathematically. An important feature of the circuit is its ability to show dual chaotic behavior.

  1. Single molecule magnet behaviour in robust dysprosium-biradical complexes.

    Science.gov (United States)

    Bernot, Kevin; Pointillart, Fabrice; Rosa, Patrick; Etienne, Mael; Sessoli, Roberta; Gatteschi, Dante

    2010-09-21

    A Dy-biradical complex was synthesized and characterized down to very low temperature. ac magnetic measurements reveal single molecule magnet behaviour visible without any application of dc field. The transition to the quantum tunneling regime is evidenced. Photophysical and EPR measurements provide evidence of the excellent stability of these complexes in solution.

  2. PT-symmetry breaking in complex nonlinear wave equations and their deformations

    International Nuclear Information System (INIS)

    Cavaglia, Andrea; Fring, Andreas; Bagchi, Bijan

    2011-01-01

    We investigate complex versions of the Korteweg-deVries equations and an Ito-type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic and elliptic solutions for these models including those which are physically feasible in an obvious sense, that is those with real energies, but also those with complex energy spectra. The reality of the energy is usually attributed to different realizations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly, the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples, some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.

  3. Localized excitations in nonlinear complex systems current state of the art and future perspectives

    CERN Document Server

    Cuevas-Maraver, Jesús; Frantzeskakis, Dimitri; Karachalios, Nikos; Kevrekidis, Panayotis; Palmero-Acebedo, Faustino

    2014-01-01

    The study of nonlinear localized excitations is a long-standing challenge for research in basic and applied science, as well as engineering, due to their importance in understanding and predicting phenomena arising in nonlinear and complex systems, but also due to their potential for the development and design of novel applications. This volume is a compilation of chapters representing the current state-of-the-art on the field of localized excitations and their role in the dynamics of complex physical systems.

  4. Synthesis, characterization and oxidative behaviour of dioxoruthenium(VI) complexes

    International Nuclear Information System (INIS)

    Agarwal, D.D.; Rastogi, Rachana

    1995-01-01

    Dioxoruthenium(VI) complexes are found to give low yield of epoxide but good yield of cyclohexanone. The complexes are electro active giving metal centered Ru VI /Ru V couple. Cis-stilbene gives trans epoxide and benzaldehyde. Norbornene gives exo epoxy norbornene. The selectivity for allylic oxidation is high. In the present note the synthesis of dioxoruthenium(VI) complexes and their oxidation behaviour is reported. The dioxoruthenium(VI) complexes have been stoichiometrically found to be good oxidants. (author). 21 refs., 1 tab

  5. Nonlinear model of epidemic spreading in a complex social network.

    Science.gov (United States)

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  6. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  7. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  8. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  9. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi; Hemar, Yacine; Hilliou, loic; Gilbert, Elliot P.; McGillivray, Duncan James; Williams, Martin A. K.; Chaieb, Saharoui

    2015-01-01

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  10. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  11. Complex nonlinear Fourier transform and its inverse

    International Nuclear Information System (INIS)

    Saksida, Pavle

    2015-01-01

    We study the nonlinear Fourier transform associated to the integrable systems of AKNS-ZS type. Two versions of this transform appear in connection with the AKNS-ZS systems. These two versions can be considered as two real forms of a single complex transform F c . We construct an explicit algorithm for the calculation of the inverse transform (F c ) -1 (h) for an arbitrary argument h. The result is given in the form of a convergent series of functions in the domain space and the terms of this series can be computed explicitly by means of finitely many integrations. (paper)

  12. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    Science.gov (United States)

    Abd El Baky, Hussien

    This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond

  13. PNN NGC 246: A Complex Photometric Behaviour That Requires Wet

    Directory of Open Access Journals (Sweden)

    Pérez J. M. González

    2003-03-01

    Full Text Available We present a study over three single-site campaigns to investigate the photometric behaviour of the PNN NGC 246. We observed this object in 2000 and 2001. The analysis of the light curves indicates complex and variable temporal spectra. Using wavelet analysis we have found evidences for changes on time scales of hours in the 2000 dataset. The temporal spectra obtained during 2001 are quite different from the results of the previous year. The modulations in the light curve are more noticeable and the temporal spectra present a higher number of modulation frequencies. One peculiar characteristic is the presence of a variable harmonic structure related to one of these modulation frequencies. This complex photometric behaviour may be explained by a more complicated unresolved combination of modulation frequencies, but more likely due to a combination of pulsations of the star plus modulations related to interaction with a close companion, maybe indicating a disc. However, these characteristics cannot be confirmed from single site observations. The complex and variable behaviour of NGC 246 needs the WET co-operation in order to completely resolve its light curve.

  14. The landscape of nonlinear structural dynamics: an introduction.

    Science.gov (United States)

    Butlin, T; Woodhouse, J; Champneys, A R

    2015-09-28

    Nonlinear behaviour is ever-present in vibrations and other dynamical motions of engineering structures. Manifestations of nonlinearity include amplitude-dependent natural frequencies, buzz, squeak and rattle, self-excited oscillation and non-repeatability. This article primarily serves as an extended introduction to a theme issue in which such nonlinear phenomena are highlighted through diverse case studies. More ambitiously though, there is another goal. Both the engineering context and the mathematical techniques that can be used to identify, analyse, control or exploit these phenomena in practice are placed in the context of a mind-map, which has been created through expert elicitation. This map, which is available in software through the electronic supplementary material, attempts to provide a practitioner's guide to what hitherto might seem like a vast and complex research landscape. © 2015 The Authors.

  15. Understanding social behaviour with the help of complexity science (Invited article)

    NARCIS (Netherlands)

    Hemelrijk, C.K.

    2002-01-01

    In the study of complexity, a new kind of explanation has been developed for social behaviour. It shows how patterns of social behaviour can arise as a side-effect of the interaction of individuals with their social or physical environment (e.g. by self-organization). This development may influence

  16. A new sub-equation method applied to obtain exact travelling wave solutions of some complex nonlinear equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.

  17. Without bounds a scientific canvas of nonlinearity and complex dynamics

    CERN Document Server

    Ryazantsev, Yuri; Starov, Victor; Huang, Guo-Xiang; Chetverikov, Alexander; Arena, Paolo; Nepomnyashchy, Alex; Ferrus, Alberto; Morozov, Eugene

    2013-01-01

    Bringing together over fifty contributions on all aspects of nonlinear and complex dynamics, this impressive topical collection is both a scientific and personal tribute, on the occasion of his 70th birthday, by many outstanding colleagues in the broad fields of research pursued by Prof. Manuel G Velarde. The topics selected reflect the research areas covered by the famous Instituto Pluridisciplinar at the Universidad Complutense of Madrid, which he co-founded over two decades ago, and include: fluid physics and related nonlinear phenomena at interfaces and in other geometries, wetting and spreading dynamics, geophysical and astrophysical flows, and novel aspects of electronic transport in anharmonic lattices, as well as topics in neurodynamics and robotics.

  18. Nonlinear stability of source defects in the complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Beck, Margaret; Nguyen, Toan T; Sandstede, Björn; Zumbrun, Kevin

    2014-01-01

    In an appropriate moving coordinate frame, source defects are time-periodic solutions to reaction–diffusion equations that are spatially asymptotic to spatially periodic wave trains whose group velocities point away from the core of the defect. In this paper, we rigorously establish nonlinear stability of spectrally stable source defects in the complex Ginzburg–Landau equation. Due to the outward transport at the far field, localized perturbations may lead to a highly non-localized response even on the linear level. To overcome this, we first investigate in detail the dynamics of the solution to the linearized equation. This allows us to determine an approximate solution that satisfies the full equation up to and including quadratic terms in the nonlinearity. This approximation utilizes the fact that the non-localized phase response, resulting from the embedded zero eigenvalues, can be captured, to leading order, by the nonlinear Burgers equation. The analysis is completed by obtaining detailed estimates for the resolvent kernel and pointwise estimates for Green's function, which allow one to close a nonlinear iteration scheme. (paper)

  19. Dynamic analysis of nonlinear behaviour in inertial actuators

    International Nuclear Information System (INIS)

    Borgo, M Dal; Tehrani, M Ghandchi; Elliott, S J

    2016-01-01

    Inertial actuators are devices typically used to generate the control force on a vibrating structure. Generally, an inertial actuator comprises a proof-mass suspended in a magnetic field. The inertial force due to the moving mass is used to produce the secondary force needed to control the vibration of the primary structure. Inertial actuators can show nonlinear behaviour, such as stroke saturation when driven at high input voltages. If the input voltage is beyond their limit, they can hit the end stop of the actuator casing and saturate. In this paper, the force generated by an inertial actuator is measured experimentally and numerical simulations of a linear piecewise stiffness model are carried out and compared with the results of analytical methods. First, a numerical model for a symmetric bilinear stiffness is derived and a parametric study is carried out to investigate the change of the end stop stiffness. In addition, the variation of the amplitude of the excitation is considered and a comparison is made with the analytical solution using the harmonic balance method. Finally, experimental measurements are carried out and the results are compared with simulated data to establish the accuracy of the model. (paper)

  20. Complex fluid network optimization and control integrative design based on nonlinear dynamic model

    International Nuclear Information System (INIS)

    Sui, Jinxue; Yang, Li; Hu, Yunan

    2016-01-01

    In view of distribution according to complex fluid network’s needs, this paper proposed one optimization computation method of the nonlinear programming mathematical model based on genetic algorithm. The simulation result shows that the overall energy consumption of the optimized fluid network has a decrease obviously. The control model of the fluid network is established based on nonlinear dynamics. We design the control law based on feedback linearization, take the optimal value by genetic algorithm as the simulation data, can also solve the branch resistance under the optimal value. These resistances can provide technical support and reference for fluid network design and construction, so can realize complex fluid network optimization and control integration design.

  1. Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo

    2017-02-01

    The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.

  2. Mediation, moderation, and context: Understanding complex relations among cognition, affect, and health behaviour.

    Science.gov (United States)

    Kiviniemi, Marc T; Ellis, Erin M; Hall, Marissa G; Moss, Jennifer L; Lillie, Sarah E; Brewer, Noel T; Klein, William M P

    2018-01-01

    Researchers have historically treated cognition and affect as separate constructs in motivating health behaviour. We present a framework and empirical evidence for complex relations between cognition and affect in predicting health behaviour. Main Outcome, Design and Results: First, affect and cognition can mediate each other's relation to health behaviour. Second, affect and cognition can moderate the other's impact. Third, context can change the interplay of affect and cognition. Fourth, affect and cognition may be indelibly fused in some psychological constructs (e.g. worry, anticipated regret and reactance). These four propositions in our framework are not mutually exclusive. Examination of the types of complex relations described here can benefit theory development, empirical testing of theories and intervention design. Doing so will advance the understanding of mechanisms involved in regulation of health behaviours and the effectiveness of interventions to change health behaviours.

  3. Pescara benchmarks: nonlinear identification

    Science.gov (United States)

    Gandino, E.; Garibaldi, L.; Marchesiello, S.

    2011-07-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  4. Pescara benchmarks: nonlinear identification

    International Nuclear Information System (INIS)

    Gandino, E; Garibaldi, L; Marchesiello, S

    2011-01-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  5. Design of steel-liners and their anchorage with regard to non-linear behaviour of liner-material and anchorage

    International Nuclear Information System (INIS)

    Oberpichler, R.

    1979-01-01

    The thin steel liner attached by studs or rib-type anchors to the interior wall of a Prestressed Concrete Reactor Pressure Vessel (PCRV) or a Concrete Containment Vessel (PCCV) has to provide the leak-tightness of the vessel. The liner also may serve as internal shuttering for placing concrete as well as a support for the cooling system or thermal isolation. Mainly strained by self-limited loads imposed on the liner by deformations of the vessel-wall or by heatup inside the vessel the liner predominantly will function in a compressive biaxially strained state like a membrane. The vessel-wall is assumed to be a rigid boundary without reactions caused by the liner-anchor-restraints. Furthermore it is assumed that the liner supported in a close-spaced pattern to the concrete with respect to self-limited loads and all effects of non-linear behaviour of liner-material and non-linear anchor-characteristics will not fail by instability, especially not by an effect of snapthrough. Only one essential mode of failure, the shear connector failure is assumed to be basis for all liner investigations. Design of the liner and its anchorage therefore is based on the analysis of large deformations with regard to elastic-plastic behaviour of liner-material and non-linear anchor characteristics. By this method both economical and safe sizing and spacing of the anchors can be calculated. (orig.)

  6. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  7. Complex nonlinear Lagrangian for the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.

    2005-01-01

    The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)

  8. Nonlinear dynamical systems for theory and research in ergonomics.

    Science.gov (United States)

    Guastello, Stephen J

    2017-02-01

    Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.

  9. The inherent complexity in nonlinear business cycle model in resonance

    International Nuclear Information System (INIS)

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  10. Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes

    International Nuclear Information System (INIS)

    Liu Tao; Zhao Jun; Hill, David J.

    2009-01-01

    In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.

  11. Electrochemical behaviour of cuprous complexes of dithia-alkanedicarboxylic acids

    NARCIS (Netherlands)

    Pieterse, M.M.J.; Janssen, L.J.J.

    1972-01-01

    The composition and electrochemical behaviour of the cuprous complexes of dithia-alkanedicarboxylic acids viz., 2,5-dithiahexane-1,6-dicarboxylic acid (I); 3,6 dithiaoctane-1,8-dicarboxylic acid (II); 4,7-dithiadecane-1,10-dicarboxylic acid (III) and 2,2,

  12. Some aspects of floor spectra of 1DOF nonlinear primary structures

    International Nuclear Information System (INIS)

    Politopoulos, I.; Feau, C.

    2007-01-01

    In this paper the influence of the nonlinear behaviour of the primary structure on floor spectra is investigated by means of simple models. The general trends of floor spectra for different types of nonlinear behaviour of one degree of freedom (1DOF) primary structure are shown and we point out their common futures and their differences. A special attention is given to the cases of elastoplastic and nonlinear elastic behaviours and methods to determine an equivalent linear oscillator are proposed. The properties (frequency and damping) of this equivalent linear oscillator are quite different from the properties of equivalent linear oscillators commonly considered in practice. In particular, in the case of elastoplastic behaviour, there is no frequency shift and damping is smaller than assumed by other methods commonly used. In the case of nonlinear elastic behaviour, the concept of an equivalent frequency which is a random variable is used. Finally, a design floor spectrum of primary structures, exhibiting energy dissipating nonlinear behaviour is proposed. (authors)

  13. Nonlinear complexity analysis of brain FMRI signals in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Moses O Sokunbi

    Full Text Available We investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H. 13 patients meeting diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV criteria for schizophrenia and 16 healthy controls underwent fMRI scanning at 1.5 T. The fMRI data of both groups of participants were pre-processed, the entropy characterized and the Hurst exponent extracted. Whole brain entropy and H maps of the groups were generated and analysed. The results after adjusting for age and sex differences together show that patients with schizophrenia exhibited higher complexity than healthy controls, at mean whole brain and regional levels. Also, both Sample entropy and Hurst exponent agree that patients with schizophrenia have more complex fMRI signals than healthy controls. These results suggest that schizophrenia is associated with more complex signal patterns when compared to healthy controls, supporting the increase in complexity hypothesis, where system complexity increases with age or disease, and also consistent with the notion that schizophrenia is characterised by a dysregulation of the nonlinear dynamics of underlying neuronal systems.

  14. Structural Observability and Sensor Node Selection for Complex Networks Governed by Nonlinear Balance Equations

    NARCIS (Netherlands)

    Kawano, Yu; Cao, Ming

    2017-01-01

    We define and then study the structural observability for a class of complex networks whose dynamics are governed by the nonlinear balance equations. Although related notions of observability of such complex networks have been studied before and in particular, necessary conditions have been reported

  15. Deciphering the imprint of topology on nonlinear dynamical network stability

    International Nuclear Information System (INIS)

    Nitzbon, J; Schultz, P; Heitzig, J; Kurths, J; Hellmann, F

    2017-01-01

    Coupled oscillator networks show complex interrelations between topological characteristics of the network and the nonlinear stability of single nodes with respect to large but realistic perturbations. We extend previous results on these relations by incorporating sampling-based measures of the transient behaviour of the system, its survivability, as well as its asymptotic behaviour, its basin stability. By combining basin stability and survivability we uncover novel, previously unknown asymptotic states with solitary, desynchronized oscillators which are rotating with a frequency different from their natural one. They occur almost exclusively after perturbations at nodes with specific topological properties. More generally we confirm and significantly refine the results on the distinguished role tree-shaped appendices play for nonlinear stability. We find a topological classification scheme for nodes located in such appendices, that exactly separates them according to their stability properties, thus establishing a strong link between topology and dynamics. Hence, the results can be used for the identification of vulnerable nodes in power grids or other coupled oscillator networks. From this classification we can derive general design principles for resilient power grids. We find that striving for homogeneous network topologies facilitates a better performance in terms of nonlinear dynamical network stability. While the employed second-order Kuramoto-like model is parametrised to be representative for power grids, we expect these insights to transfer to other critical infrastructure systems or complex network dynamics appearing in various other fields. (paper)

  16. Emergence of Complex Spatio-Temporal Behavior in Nonlinear Field Theories

    International Nuclear Information System (INIS)

    Gleiser, Marcelo; Howell, Rafael C.

    2006-01-01

    We investigate the emergence of time-dependent nonperturbative configurations during the evolution of nonlinear scalar field models with symmetric and asymmetric double-well potentials. Complex spatio-temporal behavior emerges as the system seeks to establish equipartition after a fast quench. We show that fast quenches may dramatically modify the decay rate of metastable states in first order phase transitions. We discuss possible applications in condensed matter systems and early universe cosmology

  17. Nonlinear eigen-mode structures in complex astroclouds

    Science.gov (United States)

    Karmakar, P. K.; Haloi, A.

    2017-05-01

    The evolutionary dynamics of strongly nonlinear waves (of arbitrary amplitude) in an inhomogeneous complex astrophysical viscous cloud is investigated without recourse to any kind of swindle. It consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neural hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method transforms the analytic model into a conjugated pair of intermixed non-integrable energy integral laws. A natural excitation of electrostatic quasi-monotonic compressive dispersive shock-like eigen-modes is numerically demonstrated. In contrast, the self-gravitational waves grow purely as non-monotonic compressive oscillatory shock-like structures. The unique features of both the distinct classes are depicted. Their non-trivial significance in the astro-context is emphasized.

  18. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    Science.gov (United States)

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-03-08

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  19. Correlation between detrended fluctuation analysis and the Lempel-Ziv complexity in nonlinear time series analysis

    International Nuclear Information System (INIS)

    Tang You-Fu; Liu Shu-Lin; Jiang Rui-Hong; Liu Ying-Hui

    2013-01-01

    We study the correlation between detrended fluctuation analysis (DFA) and the Lempel-Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamic systems including a logistic map and a Duffing model are investigated. Moreover, the influence of Gaussian random noise on both the DFA and LZC are analyzed. The results show a high correlation between the DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent a and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained

  20. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    Science.gov (United States)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  1. Information mining in weighted complex networks with nonlinear rating projection

    Science.gov (United States)

    Liao, Hao; Zeng, An; Zhou, Mingyang; Mao, Rui; Wang, Bing-Hong

    2017-10-01

    Weighted rating networks are commonly used by e-commerce providers nowadays. In order to generate an objective ranking of online items' quality according to users' ratings, many sophisticated algorithms have been proposed in the complex networks domain. In this paper, instead of proposing new algorithms we focus on a more fundamental problem: the nonlinear rating projection. The basic idea is that even though the rating values given by users are linearly separated, the real preference of users to items between the different given values is nonlinear. We thus design an approach to project the original ratings of users to more representative values. This approach can be regarded as a data pretreatment method. Simulation in both artificial and real networks shows that the performance of the ranking algorithms can be improved when the projected ratings are used.

  2. Leading healthcare in complexity.

    Science.gov (United States)

    Cohn, Jeffrey

    2014-12-01

    Healthcare institutions and providers are in complexity. Networks of interconnections from relationships and technology create conditions in which interdependencies and non-linear dynamics lead to surprising, unpredictable outcomes. Previous effective approaches to leadership, focusing on top-down bureaucratic methods, are no longer effective. Leading in complexity requires leaders to accept the complexity, create an adaptive space in which innovation and creativity can flourish and then integrate the successful practices that emerge into the formal organizational structure. Several methods for doing adaptive space work will be discussed. Readers will be able to contrast traditional leadership approaches with leading in complexity. They will learn new behaviours that are required of complexity leaders, along with challenges they will face, often from other leaders within the organization.

  3. Electrochemical behaviour of silver complexes of dithia-alkanedicarboxylic acids

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1972-01-01

    The composition and electrochemical behaviour of the Ag-complexes of dithia-alkane-dicarboxylic acids, viz. 2,5-dithiahexane-1,6-dicarboxylic acid (I), 3,6-dithiaoctane-1,8-dicarboxylic acid(II), 4,7-dithiadecane-1,10-dicarboxylic acid (III) and 2,2,7,7,-tetramethyl-3,6-dithiaoctane-1,8-dicarboxylic

  4. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    Science.gov (United States)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  5. On system behaviour using complex networks of a compression algorithm

    Science.gov (United States)

    Walker, David M.; Correa, Debora C.; Small, Michael

    2018-01-01

    We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

  6. Emergence of complex space-temporal order in nonlinear field theories

    International Nuclear Information System (INIS)

    Gleiser, Marcelo

    2006-01-01

    We investigate the emergence of time-dependent nonperturbative configurations during the evolution of nonlinear scalar field models with symmetric and asymmetric double-well potentials. Complex space-temporal behavior emerges as the system seeks to establish equipartition after a fast quench. We show that fast quenches may dramatically modify the decay rate of metastable states in first order phase transitions. We discuss possible applications in condensed matter systems and in inflationary cosmology. (author)

  7. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  8. Complexity in behavioural organization and strongylid infection among wild chimpanzees

    Czech Academy of Sciences Publication Activity Database

    Burgunder, J.; Pafčo, B.; Petrželková, Klára Judita; Modrý, David; Hashimoto, C.; MacIntosh, A. J. J.

    2017-01-01

    Roč. 129, July (2017), s. 257-268 ISSN 0003-3472 Institutional support: RVO:60077344 Keywords : behavioural complexity * chimpanzees * fractal analysis * health monitoring * Pan troglodytes schweinfurthii * strongylid infection Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.869, year: 2016

  9. Complexity in behavioural organization and strongylid infection among wild chimpanzees

    Czech Academy of Sciences Publication Activity Database

    Burgunder, J.; Pafčo, B.; Petrželková, Klára Judita; Modrý, D.; Hashimoto, C.; MacIntosh, A. J. J.

    2017-01-01

    Roč. 129, July (2017), s. 257-268 ISSN 0003-3472 Institutional support: RVO:68081766 Keywords : behavioural complexity * chimpanzees * fractal analysis * health monitoring * Pan troglodytes schweinfurthii * strongylid infection Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.869, year: 2016

  10. Nonlinear complex dynamics and Keynesian rigidity: A short introduction

    Science.gov (United States)

    Jovero, Edgardo

    2005-09-01

    The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.

  11. Neptunium speciation (complexation and redox behaviour) in aqueous citrate medium

    International Nuclear Information System (INIS)

    Bonin, L.; Ansoborlo, E.; Moisy, Ph.

    2005-01-01

    Full text of publication follows: In the framework of the French Environmental Nuclear Toxicology programme, additional experiments related to the decorporation of actinides are planned. The lack of information on the neptunium behaviour within blood and the inefficiency of therapeutic treatments, led us to study the complexation of this element with basic anions. Within this purpose, the in vitro behaviour of Np IV and Np V in simple media simulating biological media was studied: blood plasma is one of the media of interest and it can be simulated, from a chemical point of view, by an aqueous solution with pH 7.4, containing ions such as citrate (1.6 10 -4 mol/L), lactate (1.5 10 -3 mol/L), CO 3 2- (2.5 10 -2 mol/L), PO 4 3- (1.1 10 -3 mol/L), SO 4 2- (3.3 10 -4 mol/L) and Cl - (9 10 -2 mol/L). This study was more specifically focused on the behaviour of neptunium with citrate ion, which is also a basic ligand to consider when one wishes to study the migration of actinides in the environment, since it exists in significant amounts in the ground due to its production by the plants. In order to determine the speciation of this system, spectrophotometry was more particularly used. Concerning the complexation phenomenon, the existence of several complexes of Np V with various acid-basic forms of the citrate anion was observed; regarding Np IV , two complexes, with 1:1 and 1:2 stoichiometry, have been respectively observed. The reactivity of Np VI is probably similar to the behaviour of U VI , which is reported in literature to form a complex with a 1:1 stoichiometry with the Cit 3- anion From the quantitative study of these equilibria, it has been possible to determine the values of various equilibrium constants. Concerning the stability of neptunium towards oxido-reduction, it was confirmed that Np VI was very quickly reduced to Np V by the citrate anions, whereas Np IV was stable. In the case of Np V , it was observed that, depending on the pH and the citrate

  12. Experimental investigation and theoretical modelling of the nonlinear acoustical behaviour of a liver tissue and comparison with a tissue mimicking hydrogel.

    Science.gov (United States)

    Casciaro, Sergio; Demitri, Christian; Conversano, Francesco; Casciaro, Ernesto; Distante, Alessandro

    2008-02-01

    Native harmonics generated by nonlinear distortion of ultrasound during propagation in a medium may cause misinterpretations in spectral analysis when studying contrast agents. The aim of this paper is to quantitatively evaluate nonlinear propagation effects of diagnostic ultrasound pulses in biological tissues and to assess whether a cellulose-based hydrogel can be a suitable material for tissue mimicking purposes. Hydrogel and pig liver tissue samples of various thicknesses were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values (range 0.06-0.60). Second harmonic and first harmonic amplitudes were extracted from spectra of received signals and their ratio was then used to compare hydrogel and liver behaviours. Resulting trends are very similar for sample thicknesses up to 8 cm and highlight a significant increase in nonlinearity for MI > 0.3, for both liver and hydrogel. A numerical procedure was also employed to calculate pressure distribution along the beam axis: these theoretical results showed a very good agreement with experimental data in the low pressure range, though failed in predicting the MI threshold. In conclusion, the hydrogel resulted to be a suitable material for manufacturing tissue mimicking phantoms, in particular to study contrast agent behaviour with a "low power approach".

  13. Nonlinear eigen-mode structures in complex astroclouds

    International Nuclear Information System (INIS)

    Karmakar, P K; Haloi, A

    2017-01-01

    The evolutionary dynamics of strongly nonlinear waves (of arbitrary amplitude) in an inhomogeneous complex astrophysical viscous cloud is investigated without recourse to any kind of swindle. It consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neural hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method transforms the analytic model into a conjugated pair of intermixed non-integrable energy integral laws. A natural excitation of electrostatic quasi-monotonic compressive dispersive shock-like eigen-modes is numerically demonstrated. In contrast, the self-gravitational waves grow purely as non-monotonic compressive oscillatory shock-like structures. The unique features of both the distinct classes are depicted. Their non-trivial significance in the astro-context is emphasized. (paper)

  14. Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings

    Science.gov (United States)

    Porta, Alberto; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Cysarz, Dirk; Van Leeuwen, Peter; Takahashi, Anielle C. M.; Catai, Aparecida M.; Gnecchi-Ruscone, Tomaso

    2015-01-01

    Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales. PMID:25806002

  15. A complex, nonlinear dynamic systems perspective on Ayurveda and Ayurvedic research.

    Science.gov (United States)

    Rioux, Jennifer

    2012-07-01

    The fields of complexity theory and nonlinear dynamic systems (NDS) are relevant for analyzing the theory and practice of Ayurvedic medicine from a Western scientific perspective. Ayurvedic definitions of health map clearly onto the tenets of both systems and complexity theory and focus primarily on the preservation of organismic equanimity. Health care research informed by NDS and complexity theory would prioritize (1) ascertaining patterns reflected in whole systems as opposed to isolating components; (2) relationships and dynamic interaction rather than static end-points; (3) transitions, change and cumulative effects, consistent with delivery of therapeutic packages in the reality of the clinical setting; and (4) simultaneously exploring both local and global levels of healing phenomena. NDS and complexity theory are useful in examining nonlinear transitions between states of health and illness; the qualitative nature of shifts in health status; and looking at emergent properties and behaviors stemming from interactions between organismic and environmental systems. Complexity and NDS theory also demonstrate promise for enhancing the suitability of research strategies applied to Ayurvedic medicine through utilizing core concepts such as initial conditions, emergent properties, fractal patterns, and critical fluctuations. In the Ayurvedic paradigm, multiple scales and their interactions are addressed simultaneously, necessitating data collection on change patterns that occur on continuums of both time and space, and are viewed as complementary rather than isolated and discrete. Serious consideration of Ayurvedic clinical understandings will necessitate new measurement options that can account for the relevance of both context and environmental factors, in terms of local biology and the processual features of the clinical encounter. Relevant research design issues will need to address clinical tailoring strategies and provide mechanisms for mapping patterns of

  16. CIME school “Fully Nonlinear PDEs in Real and Complex Geometry and Optics”

    CERN Document Server

    Capogna, Luca; Gutiérrez, Cristian E; Montanari, Annamaria

    2014-01-01

    The purpose of this CIME summer school was to present current areas of research arising both in the theoretical and applied setting that involve fully nonlinear partial different equations. The equations presented in the school stem from the fields of Conformal Mapping Theory, Differential Geometry, Optics, and Geometric Theory of Several Complex Variables. The school consisted of four courses: Extremal problems for quasiconformal mappings in space by Luca Capogna, Fully nonlinear equations in geometry by Pengfei Guan, Monge-Ampere type equations and geometric optics by Cristian E. Gutiérrez, and On the Levi Monge Ampere equation by Annamaria Montanari.

  17. Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis

    Science.gov (United States)

    Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.

    We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.

  18. Behaviour of nonlinear dynamic susceptibility above the Curie point in the cubic ferromagnetics CdCr2S4 and CdCr2Se4

    International Nuclear Information System (INIS)

    Luzyanin, I.D.; Khavronin, V.P.

    1984-01-01

    Results are presented of an experimental investigation of the behaviour of the nonlinear dynamic susceptibility in the phase transition region the cubic, weakly anisotropic ferromagnetics CdCr 2 S 4 and CdCr 2 Se 4 . It is shown that above the Curie point Tsub(C) two temperature regions, a scaling and anomalous, can be distinguished which involve critical phenomena of different nature. In the scaling region which corresponds to 4πchisub(0)) < or approximately 25, the behaviour found for the linear and nonlinear susceptibilities are in satisfactory agreement with the theoretical predictions based on similarity considerations. The anomalous region is directly adjacent to Tsub(C). In this region phenomena are observed which are not consistent with current concepts regarding the nature of second order phase transitions e.g. hysteresis with respect to magnetic field, a ''residual'' second order signal which persists a long time after switching off of the external stationary field and an anomalous behavioUr of the susceptibility at low frequencies. The resemblence of the phenomena observed in the anomalous region with those occurring in spin glasses is noted

  19. Electrical behaviour of strontium-doped lanthanum manganite interfaces

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.; Jacobsen, Torben

    2005-01-01

    The contact resistance of strontium-doped lanthanum manganite (LSM) contact pairs is investigated by polarisation analysis at different temperatures and atmospheres. The ceramic contacts have a high contact resistance, and strongly nonlinear current–voltage behaviour is observed at low temperatur....... The nonlinear behaviour is ascribed to the presence of energy barriers at the contact interface. Generally, point contacts showed a more linear behaviour than plane contact interfaces....

  20. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    Science.gov (United States)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  1. The emergence of complex behaviours in molecular magnetic materials.

    Science.gov (United States)

    Goss, Karin; Gatteschi, Dante; Bogani, Lapo

    2014-09-14

    Molecular magnetism is considered an area where magnetic phenomena that are usually difficult to demonstrate can emerge with particular clarity. Over the years, however, less understandable systems have appeared in the literature of molecular magnetic materials, in some cases showing features that hint at the spontaneous emergence of global structures out of local interactions. This ingredient is typical of a wider class of problems, called complex behaviours, where the theory of complexity is currently being developed. In this perspective we wish to focus our attention on these systems and the underlying problematic that they highlight. We particularly highlight the emergence of the signatures of complexity in several molecular magnetic systems, which may provide unexplored opportunities for physical and chemical investigations.

  2. Neptunium speciation (complexation and redox behaviour) in aqueous citrate medium

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L.; Ansoborlo, E.; Moisy, Ph. [CEA Marcoule (France)

    2005-07-01

    Full text of publication follows: In the framework of the French Environmental Nuclear Toxicology programme, additional experiments related to the decorporation of actinides are planned. The lack of information on the neptunium behaviour within blood and the inefficiency of therapeutic treatments, led us to study the complexation of this element with basic anions. Within this purpose, the in vitro behaviour of Np{sup IV} and Np{sup V} in simple media simulating biological media was studied: blood plasma is one of the media of interest and it can be simulated, from a chemical point of view, by an aqueous solution with pH 7.4, containing ions such as citrate (1.6 10{sup -4} mol/L), lactate (1.5 10{sup -3} mol/L), CO{sub 3}{sup 2-} (2.5 10{sup -2} mol/L), PO{sub 4}{sup 3-} (1.1 10{sup -3} mol/L), SO{sub 4}{sup 2-} (3.3 10{sup -4} mol/L) and Cl{sup -} (9 10{sup -2} mol/L). This study was more specifically focused on the behaviour of neptunium with citrate ion, which is also a basic ligand to consider when one wishes to study the migration of actinides in the environment, since it exists in significant amounts in the ground due to its production by the plants. In order to determine the speciation of this system, spectrophotometry was more particularly used. Concerning the complexation phenomenon, the existence of several complexes of Np{sup V} with various acid-basic forms of the citrate anion was observed; regarding Np{sup IV}, two complexes, with 1:1 and 1:2 stoichiometry, have been respectively observed. The reactivity of Np{sup VI} is probably similar to the behaviour of U{sup VI}, which is reported in literature to form a complex with a 1:1 stoichiometry with the Cit{sup 3-}anion From the quantitative study of these equilibria, it has been possible to determine the values of various equilibrium constants. Concerning the stability of neptunium towards oxido-reduction, it was confirmed that Np{sup VI} was very quickly reduced to Np{sup V} by the citrate anions

  3. Laterally Loaded Single Pile Response Considering the Influence of Suction and Non-Linear Behaviour of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2017-12-01

    Full Text Available A hybrid BEM-p-y curves approach was developed for the single pile analysis with free/fixed head restraint conditions. The method considers the soil non-linear behaviour by means of p-y curves in series to a multi-layered elastic half-space. The non-linearity of reinforced concrete pile sections, also considering the influence of tension-stiffening, has been considered. The model reproduces the influence of suction by increasing the stress state and hence the stiffness of shallow soil-layers. Suction is modeled using the Modified-Kovacs model. The hybrid BEM-py curves method was validated by comparing results from data of 22 load tests on single piles. In addition, a detailed comparison is presented between measured and computed data on a large-diameter reinforced concrete bored single pile.

  4. Plain and oscillatory solitons of the cubic complex Ginzburg-Landau equation with nonlinear gradient terms

    Science.gov (United States)

    Facão, M.; Carvalho, M. I.

    2017-10-01

    In this work, we present parameter regions for the existence of stable plain solitons of the cubic complex Ginzburg-Landau equation (CGLE) with higher-order terms associated with a fourth-order expansion. Using a perturbation approach around the nonlinear Schrödinger equation soliton and a full numerical analysis that solves an ordinary differential equation for the soliton profiles and using the Evans method in the search for unstable eigenvalues, we have found that the minimum equation allowing these stable solitons is the cubic CGLE plus a term known in optics as Raman-delayed response, which is responsible for the redshift of the spectrum. The other favorable term for the occurrence of stable solitons is a term that represents the increase of nonlinear gain with higher frequencies. At the stability boundary, a bifurcation occurs giving rise to stable oscillatory solitons for higher values of the nonlinear gain. These oscillations can have very high amplitudes, with the pulse energy changing more than two orders of magnitude in a period, and they can even exhibit more complex dynamics such as period-doubling.

  5. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  7. Nonlinear electrorheological instability of two Rivlin-Ericksen elastico-viscous fluids

    CERN Document Server

    El-Dib, Y O

    2003-01-01

    The behaviour of surface waves propagating between two Rivlin-Ericksen elastico-viscous fluids is examined. The investigation is made in the presence of a vertical electric field and a relative horizontal constant velocity. The influence of both surface tension and gravity force is taken into account. Due to the inclusion of streaming flow a mathematical simplification is considered. The viscoelastic contribution is demonstrated in the boundary conditions. From this point of view the approximation equations of motion are solved in the absence of viscoelastic effects. The solutions of the linearized equations of motion under nonlinear boundary conditions lead to derivation of a nonlinear equation governing the interfacial displacement and having damping terms with complex coefficients. This equation is accomplished by utilizing the cubic nonlinearity. The use of the Gardner-Morikawa transformation yields a simplified linear dispersion relation so that the periodic solution for the linear form is utilized. The ...

  8. New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma

    Science.gov (United States)

    Das, G. C.; Sarma, Ridip

    2018-04-01

    Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.

  9. Complex motion in nonlinear-map model of elevators in energy-saving traffic

    International Nuclear Information System (INIS)

    Nagatani, Takashi

    2011-01-01

    We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips. - Highlights: → We propose the nonlinear-map model in energy-saving traffic of elevators. → We study the dynamical behavior and dynamical transitions in the system of elevators. → We derive the fixed point of the nonlinear map analytically. → We clarify the dependence of the motion on the loading parameter and the number.

  10. Complex motion in nonlinear-map model of elevators in energy-saving traffic

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Takashi, E-mail: tmtnaga@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Division of Thermal Science, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2011-05-16

    We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips. - Highlights: We propose the nonlinear-map model in energy-saving traffic of elevators. We study the dynamical behavior and dynamical transitions in the system of elevators. We derive the fixed point of the nonlinear map analytically. We clarify the dependence of the motion on the loading parameter and the number.

  11. Non-linear analysis of the behaviour of a thin and squat reinforced concrete wall on a seismic table

    International Nuclear Information System (INIS)

    Mazars, J.; Ghavamian, S.; Ile, N.; Reynouard, J.M.

    1998-01-01

    This work concerns the modeling and analysis of the seismic behaviour of a thin reinforced concrete wall using an experiment performed by the NUPEC (Nuclear Power Engineering Corporation) Japanese organisation with the Tadotsu seismic table. The wall with a height/width ratio close to 1, has its extremities stiffened and its base embedded. The wall, loaded on its top with a 122 t weight, is submitted to several seismic levels up to its collapse. A non-linear seismic analysis and different 2-D and 3-D finite elements modeling were used to simulate the behaviour of the structure submitted to a strong dynamic shear. The results presented in this paper belong to the ''Seismic Shear Wall Standard Problem'' benchmark jointly organized the NUPEC and OECD organizations. (J.S.)

  12. Experimental observation of nonlinear behaviour in a helium plasma discharge in the presence of a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Toma, M.; Sanduloviciu, M.

    1994-01-01

    The nonlinear behaviour in an electrical discharge plasma due to the action of an external nonuniform magnetic field is presented. The discharge geometry and the magnetic field configuration ('inverse' cylindrical magnetron discharge) were so chosen that there is a possibility to control the net electron flux in a certain region of a positive electrode. The plasma discharge nonlinearity manifested in the profile of the current-voltage, current-magnetic field and current-gas pressure characteristics by the appearance of the anomalous negative resistance, in the bistability and hysteresis and also in the periodical and chaotic variation of the discharge current. The profile of the current variation vs control discharge parameters was related to the appearance of a space charge structure in the shape of nearly spherical bulges, delimited from the surrounding plasma by a double layer. (Author)

  13. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Science.gov (United States)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  14. A solution approach for non-linear analysis of concrete members

    International Nuclear Information System (INIS)

    Hadi, N. M.; Das, S.

    1999-01-01

    Non-linear solution of reinforced concrete structural members, at and beyond its maximum strength poses complex numerical problems. This is due to the fact that concrete exhibits strain softening behaviour once it reaches its maximum strength. This paper introduces an improved non-linear solution capable to overcome the numerical problems efficiently. The paper also presents a new concept of modeling discrete cracks in concrete members by using gap elements. Gap elements are placed in between two adjacent concrete elements in tensile zone. The magnitude of elongation of gap elements, which represents the width of the crack in concrete, increases edith the increase of tensile stress in those elements. As a result, transfer of local from one concrete element to adjacent elements reduces. Results of non-linear finite element analysis of three concrete beams using this new solution strategy are compared with those obtained by other researchers, and a good agreement is achieved. (authors). 13 refs. 9 figs.,

  15. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  16. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  17. LDV measurement of small nonlinearities in flat and curved membranes. A model for eardrum nonlinear acoustic behaviour

    Science.gov (United States)

    Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx

    2016-06-01

    Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.

  18. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  19. Impulsive Controller Design for Complex Nonlinear Singular Networked Systems with Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Xian-Lin Zhao

    2013-01-01

    Full Text Available Globally exponential stability of Complex (with coupling Nonlinear Singular Impulsive Networked Control Systems (CNSINCS with packet dropouts and time-delay is investigated. Firstly, the mathematic model of CNSINCS is established. Then, by employing the method of Lyapunov functional, exponential stability criteria are obtained and the impulsive controller design method is given. Finally, some simulation results are provided to demonstrate the effectiveness of the proposed method.

  20. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  1. More light on the U clan. [Uranium behaviour in complex ores

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, S.A. (Potchefstroom Univ. for C.H.E. (South Africa). Dept. of Geology)

    1983-07-01

    A thorough knowledge of the geochemistry of uranium is necessary for the exploration and beneficiation of this mineral. At present we lack knowledge of the behaviour of uranium minerals in complex ores. This article deals with the geochemistry of uranium, its group identity, uranium minerals and the extraction mineralogy.

  2. The nonlinear response of the complex structural system in nuclear reactors using dynamic substructure method

    International Nuclear Information System (INIS)

    Zheng, Z.C.; Xie, G.; Du, Q.H.

    1987-01-01

    Because of the existence of nonlinear characteristics in practical engineering structures, such as large steam turbine-foundation system and offshore platform, it is necessary to predict nonlinear dynamic responses for these very large and complex structural systems subjected extreme load. Due to the limited storage and high executing cost of computers, there are still some difficulties in the analysis for such systems although the traditional finite element methods provide basic available methods to the problems. The dynamic substructure methods, which were developed as a branch of general structural dynamics in the past more than 20 years and have been widely used from aircraft, space vehicles to other mechanical and civil engineering structures, present a powerful method to the analysis of very large structural systems. The key to success is due to the considerable reduction in the number of degrees of freedom while not changing the physical essence of the problems investigated. The dynamic substructure method has been extended to nonlinear system and applicated to the analysis of nonlinear dynamic response of an offshore platform by Z.C. Zheng, et al. (1983, 1985a, b, c). In this paper, the method is presented to analyze dynamic responses of the systems contained intrinsic nonlinearities and with nonlinear attachments and nonlinear supports of nuclear structural systems. The efficiency of the method becomes more clear for nonlinear dynamic problems due to the adoption of iterating processes. For simplicity, the analysis procedure is demonstrated briefly. The generalized substructure method of nonlinear systems is similar to linear systems, only the nonlinear terms are treated as pseudo-forces. Interface coordinates are classified into two categories, the connecting interface coordinates which connect with each other directly in the global system and the linking interface coordinates which link to each other through attachments. (orig./GL)

  3. Asymptotic behaviour of a rescattering series for nonlinear reggeons

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Martynov, E.S.

    1990-01-01

    A series of elastic re-scattering (both quasi-eikonal and U-matrix ones) for reggeons with nonlinear trajectories are estimated asymptotically. The calculations are performed for models of supercritical and dipole pomerons. A weak dependence of the series of re-scattering on reggeon trajectory nonlinearity is revealed. 13 refs.; 3 figs

  4. The application of nonlinear dynamics in the study of ferroelectric materials

    International Nuclear Information System (INIS)

    Blochwitz, S.; Habel, R.; Diestelhorst, M.; Beige, H.

    1996-01-01

    It is well known that the structural phase transitions in ferroelectric materials are connected with strong nonlinear properties. So we can expect all features of nonlinear dynamical systems such as period-doubling cascades and chaos in a dynamical system that contains ferroelectric materials. Therefore we can apply nonlinear dynamics to these ferroelectric materials and we are doing it in two directions: (i) We study the structural phase transitions by analyzing the large signal behaviour with means of nonlinear dynamics. (ii) We control the chaotic behaviour of the system with the method proposed by Ott, Grebogi and Yorke. (authors)

  5. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  6. Predictive ethoinformatics reveals the complex migratory behaviour of a pelagic seabird, the Manx Shearwater

    Science.gov (United States)

    Freeman, Robin; Dean, Ben; Kirk, Holly; Leonard, Kerry; Phillips, Richard A.; Perrins, Chris M.; Guilford, Tim

    2013-01-01

    Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover. PMID:23635496

  7. Sibutramine-associated psychotic symptoms and zolpidem-induced complex behaviours: implications for patient safety.

    Science.gov (United States)

    Wiglusz, Mariusz S; Cubała, Wiesław Jerzy; Nowak, Paweł; Jakuszkowiak-Wojten, Katarzyna; Landowski, Jerzy; Krysta, Krzysztof

    2013-09-01

    Sibutramine is a weight loss agent recently withdrawn from the European market due to cardiovascular risk concerns. It was used for long-term obesity treatment. Zolpidem is a short acting hypnotic agent commonly used in the treatment of insomnia. A number of case reports describing psychotic reaction to sibutramine were reported in the literature. We present a case of a 61-year-old Caucasian woman who developed two psychotic episodes related to sibutramine treatment. The second psychotic episode was complicated with complex behaviours after zolpidem use due to insomnia. Sibutramine and zolpidem discontinuation resulted in rapid resolution of psychotic symptoms. This case suggests a possibility of incidence of psychotic symptoms and complex behaviour disturbances in patients prescribed sibutramine or other monoaminergic reuptake inhibitors.

  8. Sophisticated Fowl: The Complex Behaviour and Cognitive Skills of Chickens and Red Junglefowl

    Directory of Open Access Journals (Sweden)

    Laura Garnham

    2018-01-01

    Full Text Available The world’s most numerous bird, the domestic chicken, and their wild ancestor, the red junglefowl, have long been used as model species for animal behaviour research. Recently, this research has advanced our understanding of the social behaviour, personality, and cognition of fowl, and demonstrated their sophisticated behaviour and cognitive skills. Here, we overview some of this research, starting with describing research investigating the well-developed senses of fowl, before presenting how socially and cognitively complex they can be. The realisation that domestic chickens, our most abundant production animal, are behaviourally and cognitively sophisticated should encourage an increase in general appraise and fascination towards them. In turn, this should inspire increased use of them as both research and hobby animals, as well as improvements in their unfortunately often poor welfare.

  9. Multiple scaling behaviour and nonlinear traits in music scores

    Science.gov (United States)

    González-Espinoza, Alfredo; Larralde, Hernán; Martínez-Mekler, Gustavo; Müller, Markus

    2017-12-01

    We present a statistical analysis of music scores from different composers using detrended fluctuation analysis (DFA). We find different fluctuation profiles that correspond to distinct autocorrelation structures of the musical pieces. Further, we reveal evidence for the presence of nonlinear autocorrelations by estimating the DFA of the magnitude series, a result validated by a corresponding study of appropriate surrogate data. The amount and the character of nonlinear correlations vary from one composer to another. Finally, we performed a simple experiment in order to evaluate the pleasantness of the musical surrogate pieces in comparison with the original music and find that nonlinear correlations could play an important role in the aesthetic perception of a musical piece.

  10. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  11. Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2014-06-01

    Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.

  12. A study on axial and torsional resonant mode matching for a mechanical system with complex nonlinear geometries

    Science.gov (United States)

    Watson, Brett; Yeo, Leslie; Friend, James

    2010-06-01

    Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes significantly more complex. In this paper, two novel modeling techniques are demonstrated to extract the axial and torsional resonant frequencies of a complex nonlinear geometry. The first decomposes the complex geometry into easy to model components, while the second uses scaling techniques combined with the finite element method. Both models overcome problems associated with using current analytical methods as design tools, and enable a full investigation of how changes in the geometric parameters affect the resonant frequencies of interest. The benefit of such models is then demonstrated through their use in the design of a prototype piezoelectric ultrasonic resonant micromotor which has improved performance characteristics over previous prototypes.

  13. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  14. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Knudsen, Kim

    2014-01-01

    to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...

  15. Asymptotic behaviour of solutions of nonlinear delay difference equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    Anna Kisiolek

    2005-10-01

    Full Text Available We consider the second-order nonlinear difference equations of the form Δ(rn−1Δxn−1+pnf(xn−k=hn. We show that there exists a solution (xn, which possesses the asymptotic behaviour ‖xn−a∑j=0n−1(1/rj+b‖=o(1, a,b∈ℝ. In this paper, we extend the results of Agarwal (1992, Dawidowski et al. (2001, Drozdowicz and Popenda (1987, M. Migda (2001, and M. Migda and J. Migda (1988. We suppose that f has values in Banach space and satisfies some conditions with respect to the measure of noncompactness and measure of weak noncompactness.

  16. Behaviour of the homologues of Rf and Db in complexing media

    International Nuclear Information System (INIS)

    Trubert, D.; Monroy Guzman, F.; Hussonnois, M.; Brillard, L.; Le Naour, C.; Servajean, V.; Constantinescu, O.; Constantinescu, M.; Ardisson, G.; Barci, V.; Weiss, B.

    1999-01-01

    In order to study the chemical behaviour of the trans-actinide elements, the chemical properties of their most probable homologues have been investigated by ion exchange methods in various complexing media. A new chromatographic method allowing the determination of distribution coefficients in the case o short-lived isotopes has been developed and successfully tested with the RACHEL device. (authors)

  17. Interactive Evolution of Complex Behaviours Through Skill Encapsulation

    DEFF Research Database (Denmark)

    González de Prado Salas, Pablo; Risi, Sebastian

    2017-01-01

    Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution by it...... in evolutionary computation and, as the results in this paper show, IEC-ESP is able to solve complex control problems that are challenging for a traditional fitness-based approach.......Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution...... by iteratively selecting the parents for the next generation. IEC has shown promise in a variety of different domains, but evolving more complex or hierarchically composed behaviours remains challenging with the traditional IEC approach. To overcome this challenge, this paper combines the recently introduced ESP...

  18. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  19. Spectral properties of a confined nonlinear quantum oscillator in one and three dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Gordon, Christopher R.

    2013-01-01

    We analyze the spectral behaviour of a nonlinear quantum oscillator model under confinement. The underlying potential is given by a harmonic oscillator interaction plus a nonlinear term that can be weakened or strengthened through a parameter. Numerical eigenvalues of the model in one and three dimensions are presented. The asymptotic behaviour of the eigenvalues for confinement relaxation and for vanishing nonlinear term in the potential is investigated. Our findings are compared with existing results.

  20. Nonlinear complexity behaviors of agent-based 3D Potts financial dynamics with random environments

    Science.gov (United States)

    Xing, Yani; Wang, Jun

    2018-02-01

    A new microscopic 3D Potts interaction financial price model is established in this work, to investigate the nonlinear complexity behaviors of stock markets. 3D Potts model, which extends the 2D Potts model to three-dimensional, is a cubic lattice model to explain the interaction behavior among the agents. In order to explore the complexity of real financial markets and the 3D Potts financial model, a new random coarse-grained Lempel-Ziv complexity is proposed to certain series, such as the price returns, the price volatilities, and the random time d-returns. Then the composite multiscale entropy (CMSE) method is applied to the intrinsic mode functions (IMFs) and the corresponding shuffled data to study the complexity behaviors. The empirical results indicate that the 3D financial model is feasible.

  1. Nonlinear Stochastic stability analysis of Wind Turbine Wings by Monte Carlo Simulations

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Iwankiewiczb, R.; Nielsen, Søren R.K.

    2007-01-01

    and inertial contributions. A reduced two-degrees-of-freedom modal expansion is used specifying the modal coordinate of the fundamental blade and edgewise fixed base eigenmodes of the beam. The rotating beam is subjected to harmonic and narrow-banded support point motion from the nacelle displacement...... under narrow-banded excitation, and it is shown that the qualitative behaviour of the strange attractor is very similar for the periodic and almost periodic responses, whereas the strange attractor for the chaotic case loses structure as the excitation becomes narrow-banded. Furthermore......, the characteristic behaviour of the strange attractor is shown to be identifiable by the so-called information dimension. Due to the complexity of the coupled nonlinear structural system all analyses are carried out via Monte Carlo simulations....

  2. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  3. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Vladimir P. Agapov

    2017-01-01

    Full Text Available Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists. 

  4. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  5. Nonlinear and Complex Dynamics in Real Systems

    OpenAIRE

    William Barnett; Apostolos Serletis; Demitre Serletis

    2005-01-01

    This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...

  6. Nonlinear mechanics of non-rigid origami: an efficient computational approach

    Science.gov (United States)

    Liu, K.; Paulino, G. H.

    2017-10-01

    Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.

  7. Simple and complex chimera states in a nonlinearly coupled oscillatory medium

    Science.gov (United States)

    Bolotov, Maxim; Smirnov, Lev; Osipov, Grigory; Pikovsky, Arkady

    2018-04-01

    We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equation. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this equation. Stability calculations reveal that only some of these states are stable. We demonstrate that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits into subdomains with different mean frequencies. Further development of instability leads to turbulent chimeras.

  8. Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface.

    Science.gov (United States)

    Li, Quanyang; Zhao, Zhengtao

    2017-10-01

    This research investigated the complexation behaviour between lactoferrin (Lf) and sodium caseinate (NaCas) before and after heat treatment. The results showed that heating facilitated their interaction and different complexes were formed at different Lf/NaCas ratios. The presence of low concentrations of NaCas resulted in the rapid precipitation of Lf, while no precipitation was observed at the NaCas concentrations higher than Lf/NaCas ratio of 2:1. The formed complexes at the ratio of 2:1 have an average diameter of 194±9.0nm and they exhibited a great capacity in lowering the air/water interfacial tension. Further increase of NaCas concentration to ratios of 1:1 and 1:2 resulted in the formation of smaller complexes with average diameters of 60±2.5nm. The complexes formed at these two ratios showed similar adsorption behaviour at the air/water interface and they exhibited lower capacity in decreasing the interfacial tension than the ratio of 2:1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  10. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  11. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    Science.gov (United States)

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  12. Modal nudging in nonlinear elasticity: Tailoring the elastic post-buckling behaviour of engineering structures

    Science.gov (United States)

    Cox, B. S.; Groh, R. M. J.; Avitabile, D.; Pirrera, A.

    2018-07-01

    The buckling and post-buckling behaviour of slender structures is increasingly being harnessed for smart functionalities. Equally, the post-buckling regime of many traditional engineering structures is not being used for design and may therefore harbour latent load-bearing capacity for further structural efficiency. Both applications can benefit from a robust means of modifying and controlling the post-buckling behaviour for a specific purpose. To this end, we introduce a structural design paradigm termed modal nudging, which can be used to tailor the post-buckling response of slender engineering structures without any significant increase in mass. Modal nudging uses deformation modes of stable post-buckled equilibria to perturb the undeformed baseline geometry of the structure imperceptibly, thereby favouring the seeded post-buckling response over potential alternatives. The benefits of this technique are enhanced control over the post-buckling behaviour, such as modal differentiation for smart structures that use snap-buckling for shape adaptation, or alternatively, increased load-carrying capacity, increased compliance or a shift from imperfection sensitivity to imperfection insensitivity. Although these concepts are, in theory, of general applicability, we concentrate here on planar frame structures analysed using the nonlinear finite element method and numerical continuation procedures. Using these computational techniques, we show that planar frame structures may exhibit isolated regions of stable equilibria in otherwise unstable post-buckling regimes, or indeed stable equilibria entirely disconnected from the natural structural response. In both cases, the load-carrying capacity of these isolated stable equilibria is greater than the natural structural response of the frames. Using the concept of modal nudging it is possible to "nudge" the frames onto these equilibrium paths of greater load-carrying capacity. Due to the scale invariance of modal nudging

  13. Nonlinear damage detection in composite structures using bispectral analysis

    Science.gov (United States)

    Ciampa, Francesco; Pickering, Simon; Scarselli, Gennaro; Meo, Michele

    2014-03-01

    Literature offers a quantitative number of diagnostic methods that can continuously provide detailed information of the material defects and damages in aerospace and civil engineering applications. Indeed, low velocity impact damages can considerably degrade the integrity of structural components and, if not detected, they can result in catastrophic failure conditions. This paper presents a nonlinear Structural Health Monitoring (SHM) method, based on ultrasonic guided waves (GW), for the detection of the nonlinear signature in a damaged composite structure. The proposed technique, based on a bispectral analysis of ultrasonic input waveforms, allows for the evaluation of the nonlinear response due to the presence of cracks and delaminations. Indeed, such a methodology was used to characterize the nonlinear behaviour of the structure, by exploiting the frequency mixing of the original waveform acquired from a sparse array of sensors. The robustness of bispectral analysis was experimentally demonstrated on a damaged carbon fibre reinforce plastic (CFRP) composite panel, and the nonlinear source was retrieved with a high level of accuracy. Unlike other linear and nonlinear ultrasonic methods for damage detection, this methodology does not require any baseline with the undamaged structure for the evaluation of the nonlinear source, nor a priori knowledge of the mechanical properties of the specimen. Moreover, bispectral analysis can be considered as a nonlinear elastic wave spectroscopy (NEWS) technique for materials showing either classical or non-classical nonlinear behaviour.

  14. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity.

    Science.gov (United States)

    Ahmad, Farooq; Richardson, Michael K

    2013-01-01

    This study aimed to develop and characterize a novel (standard) open field test adapted for larval zebrafish. We also developed and characterized a variant of the same assay consisting of a colour-enriched open field; this was used to assess the impact of environmental complexity on patterns of exploratory behaviours as well to determine natural colour preference/avoidance. We report the following main findings: (1) zebrafish larvae display characteristic patterns of exploratory behaviours in the standard open field, such as thigmotaxis/centre avoidance; (2) environmental complexity (i.e. presence of colours) differentially affects patterns of exploratory behaviours and greatly attenuates natural zone preference; (3) larvae displayed the ability to discriminate colours. As reported previously in adult zebrafish, larvae showed avoidance towards blue and black; however, in contrast to the reported adult behaviour, larvae displayed avoidance towards red. Avoidance towards yellow and preference for green and orange are shown for the first time, (4) compared to standard open field tests, exposure to the colour-enriched open field resulted in an enhanced expression of anxiety-like behaviours. To conclude, we not only developed and adapted a traditional rodent behavioural assay that serves as a gold standard in preclinical drug screening, but we also provide a version of the same test that affords the possibility to investigate the impact of environmental stress on behaviour in larval zebrafish while representing the first test for assessment of natural colour preference/avoidance in larval zebrafish. In the future, these assays will improve preclinical drug screening methodologies towards the goal to uncover novel drugs. This article is part of a Special Issue entitled: insert SI title. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  16. Power laws and elastic nonlinearity in materials with complex microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it

    2016-01-28

    Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.

  17. Dynamic nonlinear elasticity in geo materials

    International Nuclear Information System (INIS)

    Ostrovsky, L.A.; Johnson, P.A.

    2001-01-01

    The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that has broad implications to earth and materials sciences, including strong ground motion, rock physics, nondestructive evaluation and materials science. The mechanical properties of rock appear to place it in a broader class of materials, it can be named the Structural nonlinear elasticity class (also Mesoscopic/nano scale elasticity, or MS/NSE class). These terms are in contrast to materials that display classical, Atomic Elasticity, such as most fluids and monocrystalline solids. The difference between these two categories of materials is both in intensity and origin of their nonlinear response. The nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small because the intermolecular forces are extremely strong. In contrast, the materials considered below contain small soft features that it is called the bond system (cracks, grain contacts, dislocations, etc.) within a hard matrix and relaxation (slow dynamical effects) are characteristic, non of which appear in atomic elastic materials. The research begins with a brief historical background from nonlinear acoustics to the recent developments in rock nonlinearity. This is followed by an overview of some representative laboratory measurements which serve as primary indicators of nonlinear behaviour, followed by theoretical development, and finally, mention a variety of observations of nonlinearity under field conditions and applications to nondestructive testing of materials. The goal is not to survey all papers published in the are but to demonstrate some experimental and theoretical results and ideas that will the reader to become oriented in this broad and rapidly growing area bridging macro-, meso- and microscale (nano scale) phenomena in physics, materials science, and geophysics

  18. Grey-box state-space identification of nonlinear mechanical vibrations

    Science.gov (United States)

    Noël, J. P.; Schoukens, J.

    2018-05-01

    The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.

  19. Nonlinear Analysis of Rotors Supported by Air Foil Journal Bearings – Theory and Experiments

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen

    with a good margin of rotordynamical stable operation. To ensure this, good mathematical models, capable of accurately predicting the dynamic behaviour of the rotor-bearing system, are required at the design stage. This thesis focuses on developing and improving existing mathematical models for predicting...... mechanical behaviour of the bump foils was carefully examined. A mathematical model capable of predicting this nonlinear behaviour was developed and compared to the experimental results with good agreement. With the second test rig, the overall nonlinear behaviour of the rotor-bearing system was investigated...

  20. Nonlinear dynamics of the human lumbar intervertebral disc.

    Science.gov (United States)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2015-02-05

    Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modelling of a bridge-shaped nonlinear piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Gafforelli, G; Corigliano, A; Xu, R; Kim, S G

    2013-01-01

    Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters

  2. Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1995-04-01

    Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.

  3. Dynamical Chaos Rise in the System of Large Number of Nonlinear Coupled Oscillators

    International Nuclear Information System (INIS)

    Buts, V.A.; Koval'chuk, I.K.; Tarasov, D.V.

    2007-01-01

    The problem of dynamical chaos arising in distributed systems is considered. It was shown that in many cases it is possible to allocate relatively isolated subsystem which may be simpler for investigation. We suppose that chaos in this subsystem leads to chaotic behaviour of all system. Besides, the allocated subsystem may be used for describing complex dynamics of nonlinear three-wave interaction, in particular, in plasma systems. The analytical criterion of arising dynamics chaos in distributed system was obtained. This criterion was confirmed by numerical simulation

  4. Complex oscillatory behaviour in a delayed protein cross talk model with periodic forcing

    International Nuclear Information System (INIS)

    Nikolov, Svetoslav

    2009-01-01

    The purpose of this paper is to examine the effects of periodic forcing on the time delay protein cross talk model behaviour. We assume periodic variation for the plasma membrane permeability. The dynamic behaviour of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing can very easily give rise to complex dynamics, including a period-doubling cascade, chaos, quasi-periodic oscillating, and periodic windows. Finally, we calculate the maximal Lyapunov exponent in the regions of the parameter space where chaotic motion of delayed protein cross talk model with periodic forcing exists.

  5. Imports, and competitive business cycle: an approach nonlinear; Importaciones, ciclo economico y competitividad: una aproximacion no lineal

    Energy Technology Data Exchange (ETDEWEB)

    Mourelle, E.; Cancelo, J. R.

    2012-11-01

    The analysis of imports has traditionally been based on the linearity assumption, even though empirical evidence suggests more complex dynamics. Their behaviour is mainly influenced by the level of economic activity and prices, and economic theory maintains a linear long-run relationship linking these variables. This paper investigates whether short-run deviations of imports from this equilibrium also show a linear evolution or not. Empirical evidence based on Spanish imports of goods reveals the existence of non-linearity in their short-run deviations and it is also demonstrated that the underlying factor behind this asymmetric behaviour is the cyclical state of the economy. (Author) 25 refs.

  6. Theory for stationary nonlinear wave propagation in complex magnetic geometry

    International Nuclear Information System (INIS)

    Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.

    1977-08-01

    We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)

  7. Chaotic behaviour in the non-linear optimal control of unilaterally contacting building systems during earthquakes

    CERN Document Server

    Liolios, A

    2003-01-01

    The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-theta method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-c...

  8. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    Science.gov (United States)

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  9. Exponential synchronization of two nonlinearly non-delayed and delayed coupled complex dynamical networks

    International Nuclear Information System (INIS)

    Zheng Song

    2012-01-01

    In this paper, the exponential synchronization between two nonlinearly coupled complex networks with non-delayed and delayed coupling is investigated with Lyapunov-Krasovskii-type functionals. Based on the stability analysis of the impulsive differential equation and the linear matrix inequality, sufficient delay-dependent conditions for exponential synchronization are derived, and a linear impulsive controller and simple updated laws are also designed. Furthermore, the coupling matrices need not be symmetric or irreducible. Numerical examples are presented to verify the effectiveness and correctness of the synchronization criteria obtained.

  10. Geometry and quadratic nonlinearity of charge transfer complexes in solution: A theoretical study

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Ramasesha, S.; Pandey, Ravindra; Das, Puspendu K.

    2011-01-01

    In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, β HRS and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.

  11. Nonlinear rock behavior and its implications on deeper-level platinum mining

    CSIR Research Space (South Africa)

    Watson, BP

    2008-10-01

    Full Text Available Uniaxial tests performed on core from instrumented sites at Amandelbult 1 shaft, Impala 10 shaft and Union Section Spud-shaft showed a nonlinear elastic relationship between applied load and induced deformation. This nonlinear behaviour does...

  12. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    Science.gov (United States)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  13. Assessment of linear and nonlinear/complex heartbeat dynamics in subclinical depression (dysphoria).

    Science.gov (United States)

    Greco, Alberto; Messerotti Benvenuti, Simone; Gentili, Claudio; Palomba, Daniela; Scilingo, Enzo Pasquale; Valenza, Gaetano

    2018-03-29

    Depression is one of the leading causes of disability worldwide. Most previous studies have focused on major depression, and studies on subclinical depression, such as those on so-called dysphoria, have been overlooked. Indeed, dysphoria is associated with a high prevalence of somatic disorders, and a reduction of quality of life and life expectancy. In current clinical practice, dysphoria is assessed using psychometric questionnaires and structured interviews only, without taking into account objective pathophysiological indices. To address this problem, in this study we investigated heartbeat linear and nonlinear dynamics to derive objective autonomic nervous system biomarkers of dysphoria. Sixty undergraduate students participated in the study: according to clinical evaluation, 24 of them were dysphoric. Extensive group-wise statistics was performed to characterize the pathological and control groups. Moreover, a recursive feature elimination algorithm based on a K-NN classifier was carried out for the automatic recognition of dysphoria at a single-subject level. The results showed that the most significant group-wise differences referred to increased heartbeat complexity (particularly for fractal dimension, sample entropy and recurrence plot analysis) with regards to the healthy controls, confirming dysfunctional nonlinear sympatho-vagal dynamics in mood disorders. Furthermore, a balanced accuracy of 79.17% was achieved in automatically distinguishing dysphoric patients from controls, with the most informative power attributed to nonlinear, spectral and polyspectral quantifiers of cardiovascular variability. This study experimentally supports the assessment of dysphoria as a defined clinical condition with specific characteristics which are different both from healthy, fully euthymic controls and from full-blown major depression.

  14. The impact of manufacturing complexity drivers on performance-a preliminary study

    Science.gov (United States)

    Huah Leang, Suh; Mahmood, Wan Hasrulnizzam Wan; Rahman, Muhamad Arfauz A.

    2018-03-01

    Manufacturing systems, in pursuit of cost, time and flexibility optimisation are becoming more and more complex, exhibiting a dynamic and nonlinear behaviour. Unpredictability is a distinct characteristic of such behaviour and effects production planning significantly. Therefore, this study was undertaken to investigate the priority level and current achievement of manufacturing performance in Malaysia’s manufacturing industry and the complexity drivers on manufacturing productivity performance. The results showed that Malaysia’s manufacturing industry prioritised product quality and they managed to achieve a good on time delivery performance. However, for other manufacturing performance, there was a difference where the current achievement of manufacturing performances in Malaysia’s manufacturing industry is slightly lower than the priority given to them. The strong correlation of significant value for priority status was observed between efficient production levelling (finished goods) and finish product management while the strong correlation of significant value for current achievement was minimised the number of workstation and factory transportation system. This indicates that complexity drivers have an impact towards manufacturing performance. Consequently, it is necessary to identify complexity drivers to achieve well manufacturing performance.

  15. Device Applications of Nonlinear Dynamics

    CERN Document Server

    Baglio, Salvatore

    2006-01-01

    This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.

  16. Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank.

    Directory of Open Access Journals (Sweden)

    Marco Bardoscia

    Full Text Available We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.

  17. Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour.

    Science.gov (United States)

    Lin, Shuang-Yan; Zhao, Lang; Ke, Hongshan; Guo, Yun-Nan; Tang, Jinkui; Guo, Yang; Dou, Jianmin

    2012-03-21

    Two linear tetranuclear lanthanide complexes of general formula [Ln(4)(L)(2)(C(6)H(5)COO)(12)(MeOH)(4)], where HL = 2,6-bis((furan-2-ylmethylimino)methyl)-4-methylphenol, () and Ln(III) = Dy(III) (1) and Gd(III) (2), have been synthesized and characterized. The crystal structural analysis demonstrates that two Schiff-base ligands inhibit the growth of benzoate bridged 1D chains, leading to the isolation of discrete tetranuclear complexes due to their steric hindrances. Every Ln(III) ion is coordinated by eight donor atoms in a distorted bicapped trigonal-prismatic arrangement. Alternating current (ac) susceptibility measurements of complex 1 reveal a frequency- and temperature-dependent out-of-phase signal under zero dc field, typical of single-molecule magnet (SMM) behaviour with an anisotropic barrier Δ(eff) = 17.2 K.

  18. Existentialism and organization behaviour : How existentialism can have a contribution to complexity theory and sense-making

    NARCIS (Netherlands)

    Blomme, R.J.; Bornebroek te Lintelo, K.

    2012-01-01

    This article aims to develop a conception consisting of insights from complexity theory and additional notions from Weick’s sense-making theory and existentialism for examining organization behaviour.

  19. Introduction to nonlinear science

    CERN Document Server

    Nicolis, G

    1995-01-01

    One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...

  20. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...

  1. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    Science.gov (United States)

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    Science.gov (United States)

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  3. The coupled nonlinear dynamics of a lift system

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk [The University of Northampton, School of Science and Technology, Avenue Campus, St George' s Avenue, Northampton (United Kingdom)

    2014-12-10

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.

  4. Chaotic behaviour in the non-linear optimal control of unilaterally contacting building systems during earthquakes

    International Nuclear Information System (INIS)

    Liolios, A.A.; Boglou, A.K.

    2003-01-01

    The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-θ method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-convex linear complementarity problem is solved with a reduced number of unknowns

  5. Chaos and Structures in Nonlinear Plasmas

    Science.gov (United States)

    Chen, James

    In recent decades, the concepts and applications of chaos, complexity, and nonlinear dynamics have profoundly influenced scientific as well as literary thinking. Some aspects of these concepts are used in almost all of the geophysical disciplines. Chaos and Structures in Nonlinear Plasmas, written by two respected plasma physicists, focuses on nonlinear phenomena in laboratory and space plasmas, which are rich in nonlinear and complex collective effects. Chaos is treated only insofar as it relates to some aspects of nonlinear plasma physics.At the outset, the authors note that plasma physics research has made fundamental contributions to modern nonlinear sciences. For example, the Poincare surface of section technique was extensively used in studies of stochastic field lines in magnetically confined plasmas and turbulence. More generally, nonlinearity in plasma waves and wave-wave and wave-particle interactions critically determines the propagation of energy through a plasma medium. The book also makes it clear that the importance of understanding nonlinear waves goes beyond plasma physics, extending to such diverse fields as solid state physics, fluid dynamics, atmospheric physics, and optics. In space physics, non-linear plasma physics is essential for interpreting in situ as well as remote-sensing data.

  6. Nonlinear waves in bipolar complex viscous astroclouds

    Science.gov (United States)

    Karmakar, P. K.; Haloi, A.

    2017-05-01

    A theoretical evolutionary model to analyze the dynamics of strongly nonlinear waves in inhomogeneous complex astrophysical viscous clouds on the gravito-electrostatic scales of space and time is procedurally set up. It compositionally consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neutral hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method reduces the inter-coupled structure equations into a pair of intermixed forced Korteweg-de Vries-Burgers (f-KdVB) equations. The force-terms are self-consistently sourced by inhomogeneous gravito-electrostatic interplay. A numerical illustrative shape-analysis based on judicious astronomical parametric platform shows the electrostatic waves evolving as compressive dispersive shock-like eigen-modes. A unique transition from quasi-monotonic to non-monotonic oscillatory compressive shock-like patterns is found to exist. In contrast, the self-gravitational and effective perturbations grow purely as non-monotonic compressive oscillatory shock-like structures with no such transitory features. It is seen that the referral frame velocity acts as amplitude-reducing agent (stabilizing source) for the electrostatic fluctuations solely. A comparison in the prognostic light of various earlier satellite-based observations and in-situ measurements is presented. The paper ends up with synoptic highlights on the main implications and non-trivial applications in the interstellar space and cosmic plasma environments leading to bounded structure formation.

  7. Nonlinear frequency shift of finite-amplitude electrostatic surface waves

    International Nuclear Information System (INIS)

    Stenflo, L.

    1989-01-01

    The problem concerning the appropriate form for the nonlinear frequency shift arising from slow density modulations of electrostatic surface waves in a semi-infinite unmagnetized plasma is reconsidered. The spatial dependence of the wave amplitude normal to the surface is kept general in order to allow for possible nonlinear attenuation behaviour of the surface waves. It is found that if the frequency shift is expressed as a function of the density and its gradient then the result is identical with that of Zhelyazkov, I. Proceedings International Conference on Plasma Physics, Kiev, 1987, Vol. 2, p. 694, who assumed a linear exponential attenuation behaviour. (author)

  8. Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics

    Science.gov (United States)

    Zhang, Yali; Wang, Jun

    2017-09-01

    In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.

  9. How Random Is Social Behaviour? Disentangling Social Complexity through the Study of a Wild House Mouse Population

    Science.gov (United States)

    Perony, Nicolas; Tessone, Claudio J.; König, Barbara; Schweitzer, Frank

    2012-01-01

    Out of all the complex phenomena displayed in the behaviour of animal groups, many are thought to be emergent properties of rather simple decisions at the individual level. Some of these phenomena may also be explained by random processes only. Here we investigate to what extent the interaction dynamics of a population of wild house mice (Mus domesticus) in their natural environment can be explained by a simple stochastic model. We first introduce the notion of perceptual landscape, a novel tool used here to describe the utilisation of space by the mouse colony based on the sampling of individuals in discrete locations. We then implement the behavioural assumptions of the perceptual landscape in a multi-agent simulation to verify their accuracy in the reproduction of observed social patterns. We find that many high-level features – with the exception of territoriality – of our behavioural dataset can be accounted for at the population level through the use of this simplified representation. Our findings underline the potential importance of random factors in the apparent complexity of the mice's social structure. These results resonate in the general context of adaptive behaviour versus elementary environmental interactions. PMID:23209394

  10. Social complexity, modernity and suicide: an assessment of Durkheim's suicide from the perspective of a non-linear analysis of complex social systems.

    Science.gov (United States)

    Condorelli, Rosalia

    2016-01-01

    Can we share even today the same vision of modernity which Durkheim left us by its suicide analysis? or can society 'surprise us'? The answer to these questions can be inspired by several studies which found that beginning the second half of the twentieth century suicides in western countries more industrialized and modernized do not increase in a constant, linear way as modernization and social fragmentation process increases, as well as Durkheim's theory seems to lead us to predict. Despite continued modernizing process, they found stabilizing or falling overall suicide rate trends. Therefore, a gradual process of adaptation to the stress of modernization associated to low social integration levels seems to be activated in modern society. Assuming this perspective, the paper highlights as this tendency may be understood in the light of the new concept of social systems as complex adaptive systems, systems which are able to adapt to environmental perturbations and generate as a whole surprising, emergent effects due to nonlinear interactions among their components. So, in the frame of Nonlinear Dynamical System Modeling, we formalize the logic of suicide decision-making process responsible for changes at aggregate level in suicide growth rates by a nonlinear differential equation structured in a logistic way, and in so doing we attempt to capture the mechanism underlying the change process in suicide growth rate and to test the hypothesis that system's dynamics exhibits a restrained increase process as expression of an adaptation process to the liquidity of social ties in modern society. In particular, a Nonlinear Logistic Map is applied to suicide data in a modern society such as the Italian one from 1875 to 2010. The analytic results, seeming to confirm the idea of the activation of an adaptation process to the liquidity of social ties, constitutes an opportunity for a more general reflection on the current configuration of modern society, by relating the

  11. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  12. Social inequality, lifestyles and health - a non-linear canonical correlation analysis based on the approach of Pierre Bourdieu.

    Science.gov (United States)

    Grosse Frie, Kirstin; Janssen, Christian

    2009-01-01

    Based on the theoretical and empirical approach of Pierre Bourdieu, a multivariate non-linear method is introduced as an alternative way to analyse the complex relationships between social determinants and health. The analysis is based on face-to-face interviews with 695 randomly selected respondents aged 30 to 59. Variables regarding socio-economic status, life circumstances, lifestyles, health-related behaviour and health were chosen for the analysis. In order to determine whether the respondents can be differentiated and described based on these variables, a non-linear canonical correlation analysis (OVERALS) was performed. The results can be described on three dimensions; Eigenvalues add up to the fit of 1.444, which can be interpreted as approximately 50 % of explained variance. The three-dimensional space illustrates correspondences between variables and provides a framework for interpretation based on latent dimensions, which can be described by age, education, income and gender. Using non-linear canonical correlation analysis, health characteristics can be analysed in conjunction with socio-economic conditions and lifestyles. Based on Bourdieus theoretical approach, the complex correlations between these variables can be more substantially interpreted and presented.

  13. Behaviour of the recoil atom in anionic, cationic and double Co-complexes

    International Nuclear Information System (INIS)

    Di Risio, C.; Marques, R.O.

    1984-01-01

    Thermal annealing of damages caused by the (n, γ) reaction in solid phase cobalt complexes has been studied. This study is based on the annealing of cationic and anionic sites for cis-[Co(en) 2 (NO 2 ) 2 ] [CoEDTA] 3H 2 O, in comparison with the behaviour of simple complexes like cis-[Co(en) 2 (NO 2 ) 2 ] Cl and [CoEDTA] 2 Ba.4H 2 O (en: etilendiamin). Competition between the annealing and chemical descomposition processes is analyzed for different crystalline systems. The separation of the different chemical species was carried out by paper electrophoresis. Using isothermal annealing analysis data, speed constants for each reaction are obtained. (author) [es

  14. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    Science.gov (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  15. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    International Nuclear Information System (INIS)

    Cooling, M P; Humphrey, V F; Wilkens, V

    2011-01-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  16. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    Science.gov (United States)

    Cooling, M. P.; Humphrey, V. F.; Wilkens, V.

    2011-02-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  17. Intervention Fidelity for a Complex Behaviour Change Intervention in Community Pharmacy Addressing Cardiovascular Disease Risk

    Science.gov (United States)

    McNamara, K. P.; O'Reilly, S. L.; George, J.; Peterson, G. M.; Jackson, S. L.; Duncan, G.; Howarth, H.; Dunbar, J. A.

    2015-01-01

    Background: Delivery of cardiovascular disease (CVD) prevention programs by community pharmacists appears effective and enhances health service access. However, their capacity to implement complex behavioural change processes during patient counselling remains largely unexplored. This study aims to determine intervention fidelity by pharmacists…

  18. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  19. An experimental investigation into nonlinear dynamics of a magneto-rheological elastomer sandwich beam

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H; Li, Weihua; Alici, Gursel

    2016-01-01

    An experimental investigation has been carried out on the nonlinear dynamics of a clamped–clamped Magneto-Rheological Elastomer (MRE) sandwich beam with a point mass when subjected to a point excitation. Three sets of experiments have been conducted namely for (i) an aluminium beam, (ii) a MRE sandwich beam in the absence of a magnetic field and (iii) a MRE sandwich beam in the presence of a magnetic field. An electrodynamic shaker was used to excite each system and the corresponding displacement of the point mass was measured: for the third experiment (iii), an array of magnets has been placed at various distances away from the centre of the point mass to investigate the effect of changing stiffness and damping properties on the nonlinear dynamical behaviour. An interesting feature for the third group is the beam point mass displacement was no longer symmetric as the stiffness and damping of the system are increased when moving towards the magnets. Both the first and second groups exhibited distinct nonlinear behaviour; however, for the third group this work shows that for a low magnetic field the sandwich beam exhibits two distinct resonance peaks, one occurring above and the other below the fundamental natural frequency of the transverse motion, with the right one larger. For a larger magnetic field, these peaks even out until the magnetic force was large enough that the hardening-type nonlinear behaviour changes to a softening-type; a significant qualitative change in the nonlinear dynamical behaviour of the system, due to the presence of the magnetic field, was observed. (paper)

  20. Nonlinear Dynamics in Complex Systems Theory and Applications for the Life-, Neuro- and Natural Sciences

    CERN Document Server

    Fuchs, Armin

    2013-01-01

    With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified.This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz ...

  1. Modelling and control of a nonlinear magnetostrictive actuator system

    Science.gov (United States)

    Ramli, M. H. M.; Majeed, A. P. P. Abdul; Anuar, M. A. M.; Mohamed, Z.

    2018-04-01

    This paper explores the implementation of a feedforward control method to a nonlinear control system, in particular, Magnetostrictive Actuators (MA) that has excellent properties of energy conversion between the mechanical and magnetic form through magnetostriction effects which could be used in actuating and sensing application. MA is known to exhibit hysteresis behaviour and it is rate dependent (the level of hysteresis depends closely on the rate of input excitation frequency). This is, nonetheless, an undesirable behaviour and has to be eliminated in realising high precision application. The MA is modelled by a phenomenological modelling approach via Prandtl-Ishlinskii (P-I) operator to characterise the hysteresis nonlinearities. A feedforward control strategy is designed and implemented to linearize and eliminate the hysteresis by model inversion. The results show that the P-I operator has the capability to model the hysteretic nonlinearity of MA with an acceptable accuracy. Furthermore, the proposed control scheme has demonstrated to be effective in providing superior trajectory tracking.

  2. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  3. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  4. Magneto and spectral behaviour of lanthanide(III) perchlorate complexes of n-isonicotinamidoanisalaldimine

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Sarin, R.K.

    1996-01-01

    A new series of lanthanide(III) perchlorate complexes of N-isonicotinamidoanisalaldimine (INH-SAL) with the general composition (Ln(INH-SAL) 4 )(ClO) 4 ) 3 (Ln=La, Pr, Nd, Sm, Gd, Tb or Dy) were synthesized and characterized by elemental analyses, conductance, molecular weight, infrared and electronic spectral data. INH-SAL acts as a bidentate (N, O) chelating agents. The tentative coordination number eight has been assigned. Thermal behaviour of some representative chelates has also been investigated. (author). 14 refs., 2 tabs

  5. Complex motion in nonlinear-map model of elevators in energy-saving traffic

    Science.gov (United States)

    Nagatani, Takashi

    2011-05-01

    We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips.

  6. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables predic...... prediction of short term triaxial behaviour from uniaxial stress-strain curves. Key results from a nonlinear finite element calculation of a gas-filled cavity are given, and the general features are related to a simple nonlinear method of stress evaluation....

  7. Nonlinear propagation of the extraordinary mode in a hot magnetoplasma

    International Nuclear Information System (INIS)

    Khiet, Tu; Furutani, Y.; Ichikawa, Y.H.

    1978-07-01

    Kinetic theory for a nonlinear propagation of quasi-monochromatic extraordinary waves is presented. It reveals that propagation of an envelope of the extraordinary carriers is described by the nonlinear Schroedinger equation. In a cold plasma limit, a detailed analysis is carried out on a behaviour of the envelope of the upper- and the lower-hybrid waves at respective resonant frequency ranges. (author)

  8. Chaotic behaviour of nonlinear coupled reaction–diffusion system in ...

    Indian Academy of Sciences (India)

    chaos in four-dimensional space by the generalized definitions of spatial ... according to nonlinear noise in the real physical world, f(φ(x),ψ(x)) and g(φ(x) ... tion in ecological system, where φm,n(s) is the host density in generations s and s + 1,.

  9. Nonlinear dynamics of a pseudoelastic shape memory alloy system—theory and experiment

    International Nuclear Information System (INIS)

    Enemark, S; F Santos, I; A Savi, M

    2014-01-01

    In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilities and varying stiffness. Besides, these properties depend on the temperature and pretension conditions. Because of these capabilities, shape memory alloys are interesting in relation to engineering design of dynamic systems. A theoretical model based on a modification of the 1D Brinson model was established. Basically, the hardening and the sub-loop behaviour were altered. The model parameters were extracted from force–displacement tests of the spring at different constant temperatures as well as from differential scanning calorimetry. Model predictions were compared with experimental results of free and forced vibrations of the system setup under different temperature conditions. The experiments give a thorough insight into dynamic systems involving pseudoelastic shape memory alloys. Comparison between experimental results and the proposed model shows that the model is able to explain and predict the overall nonlinear behaviour of the system. (paper)

  10. Dynamic nonlinear interaction of elastic plates on discrete supports

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1984-01-01

    A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt

  11. Ageing of the nonlinear optical susceptibility in soft matter

    International Nuclear Information System (INIS)

    Ghofraniha, N; Conti, C; Leonardo, R Di; Ruzicka, B; Ruocco, G

    2007-01-01

    We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems

  12. A Non-Linear Model of Information Seeking Behaviour

    Science.gov (United States)

    Foster, Allen

    2005-01-01

    Introduction:The results of a study of information seeking behaviour of inter-disciplinary academic and postgraduate researchers are reported. Method. The study applied the naturalistic methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling…

  13. NATO Advanced Research Workshop on Recent advances in Nonlinear Dynamics and Complex System Physics

    CERN Document Server

    Casati, Giulio; Complex Phenomena in Nanoscale Systems

    2009-01-01

    Nanoscale physics has become one of the rapidly developing areas of contemporary physics because of its direct relevance to newly emerging area, nanotechnologies. Nanoscale devices and quantum functional materials are usually constructed based on the results of fundamental studies on nanoscale physics. Therefore studying physical phenomena in nanosized systems is of importance for progressive development of nanotechnologies. In this context study of complex phenomena in such systems and using them for controlling purposes is of great practical importance. Namely, such studies are brought together in this book, which contains 27 papers on various aspects of nanoscale physics and nonlinear dynamics.

  14. Effects of geometric non-linearity on energy release rates in a realistic wind turbine blade cross section

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert; Belloni, Federico

    2015-01-01

    Most wind turbine rotor blades comprise several adhesively connected sub-components typically made from glass fibre reinforced polymer composite materials. It is a well-known fact that wind turbine blades are prone to fail in their adhesive joints. However, owing to the complexity...... of their structural behaviour, little is known about the root causes of adhesive joint failure. This paper investigates the effects of geometrical non-linearity on energy release rates (ERRs) of transversely oriented cracks present in the adhesive joints of a wind turbine rotor blade. Utilising a computationally...

  15. A Modal-Based Substructure Method Applied to Nonlinear Rotordynamic Systems

    Directory of Open Access Journals (Sweden)

    Helmut J. Holl

    2009-01-01

    Full Text Available The discretisation of rotordynamic systems usually results in a high number of coordinates, so the computation of the solution of the equations of motion is very time consuming. An efficient semianalytic time-integration method combined with a substructure technique is given, which accounts for nonsymmetric matrices and local nonlinearities. The partitioning of the equation of motion into two substructures is performed. Symmetric and linear background systems are defined for each substructure. The excitation of the substructure comes from the given excitation force, the nonlinear restoring force, the induced force due to the gyroscopic and circulatory effects of the substructure under consideration and the coupling force of the substructures. The high effort for the analysis with complex numbers, which is necessary for nonsymmetric systems, is omitted. The solution is computed by means of an integral formulation. A suitable approximation for the unknown coordinates, which are involved in the coupling forces, has to be introduced and the integration results in Green's functions of the considered substructures. Modal analysis is performed for each linear and symmetric background system of the substructure. Modal reduction can be easily incorporated and the solution is calculated iteratively. The numerical behaviour of the algorithm is discussed and compared to other approximate methods of nonlinear structural dynamics for a benchmark problem and a representative example.

  16. Behaviour in O of the Neural Networks Training Cost

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1998-01-01

    We study the behaviour in zero of the derivatives of the cost function used when training non-linear neural networks. It is shown that a fair number offirst, second and higher order derivatives vanish in zero, validating the belief that 0 is a peculiar and potentially harmful location. These calc......We study the behaviour in zero of the derivatives of the cost function used when training non-linear neural networks. It is shown that a fair number offirst, second and higher order derivatives vanish in zero, validating the belief that 0 is a peculiar and potentially harmful location....... These calculations arerelated to practical and theoretical aspects of neural networks training....

  17. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  18. Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour

    International Nuclear Information System (INIS)

    Buckingham, Robert J; Miller, Peter D

    2014-01-01

    Rational solutions of the inhomogeneous Painlevé-II equation and of a related coupled Painlevé-II system have recently arisen in studies of fluid vortices and of the sine-Gordon equation. For the sine-Gordon application in particular it is of interest to understand the large-degree asymptotic behaviour of the rational Painlevé-II functions. We explicitly compute the leading-order large-degree asymptotics of these two families of rational functions valid in the whole complex plane with the exception of a neighbourhood of a certain piecewise-smooth closed curve. We obtain rigorous error bounds by using the Deift–Zhou nonlinear steepest-descent method for Riemann–Hilbert problems. (paper)

  19. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    Science.gov (United States)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  20. Managing complex, high risk projects a guide to basic and advanced project management

    CERN Document Server

    Marle, Franck

    2016-01-01

    Maximizing reader insights into project management and handling complexity-driven risks, this book explores propagation effects, non-linear consequences, loops, and the emergence of positive properties that may occur over the course of a project. This book presents an introduction to project management and analysis of traditional project management approaches and their limits regarding complexity. It also includes overviews of recent research works about project complexity modelling and management as well as project complexity-driven issues. Moreover, the authors propose their own new approaches, new methodologies and new tools which may be used by project managers and/or researchers and/or students in the management of their projects. These new elements include project complexity definitions and frameworks, multi-criteria approaches for project complexity measurement, advanced methodologies for project management (propagation studies to anticipate potential behaviour of the project, and clustering approaches...

  1. Nonlinear plasma waves excited near resonance

    International Nuclear Information System (INIS)

    Cohen, B.I.; Kaufman, A.N.

    1977-01-01

    The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations

  2. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  3. Complex behaviour and predictability of the European dry spell regimes

    Directory of Open Access Journals (Sweden)

    X. Lana

    2010-09-01

    Full Text Available The complex spatial and temporal characteristics of European dry spell lengths, DSL, (sequences of consecutive days with rainfall amount below a certain threshold and their randomness and predictive instability are analysed from daily pluviometric series recorded at 267 rain gauges along the second half of the 20th century. DSL are obtained by considering four thresholds, R0, of 0.1, 1.0, 5.0 and 10.0 mm/day. A proper quantification of the complexity, randomness and predictive instability of the different DSL regimes in Europe is achieved on the basis of fractal analyses and dynamic system theory, including the reconstruction theorem. First, the concept of lacunarity is applied to the series of daily rainfall, and the lacunarity curves are well fitted to Cantor and random Cantor sets. Second, the rescaled analysis reveals that randomness, persistence and anti-persistence are present on the European DSL series. Third, the complexity of the physical process governing the DSL series is quantified by the minimum number of nonlinear equations determined by the correlation dimension. And fourth, the loss of memory of the physical process, which is one of the reasons for the complex predictability, is characterized by the values of the Kolmogorov entropy, and the predictive instability is directly associated with positive Lyapunov exponents. In this way, new bases for a better prediction of DSLs in Europe, sometimes leading to drought episodes, are established. Concretely, three predictive strategies are proposed in Sect. 5. It is worth mentioning that the spatial distribution of all fractal parameters does not solely depend on latitude and longitude but also reflects the effects of orography, continental climate or vicinity to the Atlantic and Arctic Oceans and Mediterranean Sea.

  4. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  5. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  6. Reflections on the nature of non-linear responses of the climate to forcing

    Science.gov (United States)

    Ditlevsen, Peter

    2017-04-01

    On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009

  7. Synchronization coupled systems to complex networks

    CERN Document Server

    Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas

    2018-01-01

    A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...

  8. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  9. Solitons in PT-symmetric potential with competing nonlinearity

    International Nuclear Information System (INIS)

    Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine

    2012-01-01

    We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.

  10. Nonlinear structures for extended Korteweg–de Vries equation in ...

    Indian Academy of Sciences (India)

    The presence of immobile nanodust grains changes the general properties of the ...... rational-type solutions, which may be helpful to explain the creation of very .... investigate the behaviour of nonlinear structures in the Earth's ionosphere ...

  11. COMBINED DELAY AND GRAPH EMBEDDING OF EPILEPTIC DISCHARGES IN EEG REVEALS COMPLEX AND RECURRENT NONLINEAR DYNAMICS.

    Science.gov (United States)

    Erem, B; Hyde, D E; Peters, J M; Duffy, F H; Brooks, D H; Warfield, S K

    2015-04-01

    The dynamical structure of the brain's electrical signals contains valuable information about its physiology. Here we combine techniques for nonlinear dynamical analysis and manifold identification to reveal complex and recurrent dynamics in interictal epileptiform discharges (IEDs). Our results suggest that recurrent IEDs exhibit some consistent dynamics, which may only last briefly, and so individual IED dynamics may need to be considered in order to understand their genesis. This could potentially serve to constrain the dynamics of the inverse source localization problem.

  12. A q-deformed nonlinear map

    International Nuclear Information System (INIS)

    Jaganathan, Ramaswamy; Sinha, Sudeshna

    2005-01-01

    A scheme of q-deformation of nonlinear maps is introduced. As a specific example, a q-deformation procedure related to the Tsallis q-exponential function is applied to the logistic map. Compared to the canonical logistic map, the resulting family of q-logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors-a phenomenon rare in one-dimensional maps

  13. Nonlinear dynamics in the Einstein-Friedmann equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the gravitational field equations on the basis of general relativity and nonlinear dynamics. The space component of the Einstein-Friedmann equation shows the chaotic behaviours in case the following conditions are satisfied: (i)the expanding ratio: h=x . /x max = +0.14) for the occurrence of the chaotic behaviours in the Einstein-Friedmann equation (0 ≤ λ ≤ +0.14). The numerical calculations are performed with the use of the Microsoft EXCEL(2003), and the results are shown in the following cases; λ = 2b = +0.06 and +0.14.

  14. Nonlinear dynamic soil-structure interaction in earthquake engineering

    International Nuclear Information System (INIS)

    Nieto-Ferro, Alex

    2013-01-01

    The present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter sub-domain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions. (author)

  15. Emergent Behaviour

    NARCIS (Netherlands)

    Blom, H.A.P.; Everdij, M.H.C.; Bouarfa, S.; Cook, A; Rivas, D

    2016-01-01

    In complexity science a property or behaviour of a system is called emergent if it is not a property or behaviour of the constituting elements of the system, though results from the interactions between its constituting elements. In the socio-technical air transportation system these interactions

  16. Non-linear behaviour of power density and exposure time of argon laser on ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, E M; Talaat, M S; Salem, E F [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    1997-12-31

    In ophthalmology, the thermal effect of argon laser is the most widely used category of laser- tissue interaction. The rise in tissue temperature has to exceed a threshold value for photo coagulation of retinal blood vessels. This value mainly depends on the laser. The most suitable argon laser power P and exposure time (t) which would be more effective for thermal and electrical behaviour of chicken eye was studied. This was achieved by measuring the variations in ocular temperature in electroretinogram (ERG) records under the effect of argon experiment, while power density (P) and exposure time (t) were varied in four different ways for each dose (pt). Results indicated that for the same laser dose, the temperature distribution of the eye, using low power density and high exposure time was higher than that high power density and low exposure time, indicating non-linearity of the laser dose. This finding was confirmed by ERG records which showed similar variations in b-wave latency, amplitude and duration, for the laser exposure conditions. This indicates variations in retinal function due to laser-dependent temperature variations. 5 figs., 3 tabs.

  17. Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances

    International Nuclear Information System (INIS)

    Perez Polo, Manuel F.; Perez Molina, Manuel

    2007-01-01

    Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations

  18. Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com

    2007-07-15

    Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.

  19. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    Science.gov (United States)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  20. Energy and Transmissibility in Nonlinear Viscous Base Isolators

    Science.gov (United States)

    Markou, Athanasios A.; Manolis, George D.

    2016-09-01

    High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.

  1. Analysis of dual-phase-lag thermal behaviour in layered films with temperature-dependent interface thermal resistance

    International Nuclear Information System (INIS)

    Liu, K-C

    2005-01-01

    This work analyses theoretically the dual-phase-lag thermal behaviour in two-layered thin films with an interface thermal resistance, which is predicted by the radiation boundary condition model. The effect of the interface thermal resistance on the transmission-reflection phenomenon, induced by a pulsed volumetric source adjacent to the exterior surface of one layer, is investigated. Due to the difference between the two layers in the relaxation times, τ q and τ T , and the nonlinearity of the interfacial boundary condition, complexity is introduced and some mathematical difficulties are involved in solving the present problem. A hybrid application of the Laplace transform method and a control-volume formulation are used along with the linearization technique. The results show that the effect of the thermophysical properties on the behaviour of the energy passing across the interface gradually reduces with increasing interface thermal resistance. The lagging thermal behaviour depends on the magnitude of τ T and τ q more than on the ratio of τ T /τ q

  2. Nonlinear Growth Curves in Developmental Research

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and asymptotic levels can be estimated. A variety of growth models are described beginning with the linear growth model and moving to nonlinear models of varying complexity. A detailed discussion of nonlinear models is provided, highlighting the added insights into complex developmental processes associated with their use. A collection of growth models are fit to repeated measures of height from participants of the Berkeley Growth and Guidance Studies from early childhood through adulthood. PMID:21824131

  3. Sports teams as complex adaptive systems: manipulating player numbers shapes behaviours during football small-sided games.

    Science.gov (United States)

    Silva, Pedro; Vilar, Luís; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-01-01

    Small-sided and conditioned games (SSCGs) in sport have been modelled as complex adaptive systems. Research has shown that the relative space per player (RSP) formulated in SSCGs can impact on emergent tactical behaviours. In this study we adopted a systems orientation to analyse how different RSP values, obtained through manipulations of player numbers, influenced four measures of interpersonal coordination observed during performance in SSCGs. For this purpose we calculated positional data (GPS 15 Hz) from ten U-15 football players performing in three SSCGs varying in player numbers (3v3, 4v4 and 5v5). Key measures of SSCG system behaviours included values of (1) players' dispersion, (2) teams' separateness, (3) coupling strength and time delays between participants' emerging movements, respectively. Results showed that values of participants' dispersion increased, but the teams' separateness remained identical across treatments. Coupling strength and time delay also showed consistent values across SSCGs. These results exemplified how complex adaptive systems, like football teams, can harness inherent degeneracy to maintain similar team spatial-temporal relations with opponents through changes in inter-individual coordination modes (i.e., players' dispersion). The results imply that different team behaviours might emerge at different ratios of field dimension/player numbers. Therefore, sport pedagogists should carefully evaluate the effects of changing RSP in SSCGs as a way of promoting increased or decreased pressure on players.

  4. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  5. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  6. Earthquake analysis with nonlinear soil-structure interaction and nonlinear supports of components

    International Nuclear Information System (INIS)

    Hansson, V.

    1990-01-01

    For the determination of the seismic response of a structure the soil-structure interaction in most cases is modelled by a mass-spring-damper-system. Normally design concepts for components and piping are based on linear calculations and stress limitations. A concept for a reactor building for the HTR 100 consisted of a relatively high structure compared with the dimensions of the foundation. The structure was comparatively deep embedded in the soil, so here the embedment influences significantly the soil-structure interaction. The assembly of reactor vessel, heat exchanger and circulators has a height of about 37 m. Supports are arranged at different levels. Due to temperature deformations of the vessel and of the support constructions small gaps at the supports may only be avoided by complicated constructions of the supports. Nonlinear analyses were performed for soil, building and component with all supports. The finite element analyses used time histories. In order to describe the radiation damping the hysteresis of the soil with 1 percent material damping was considered. Nonlinearities in the interface of soil and foundation and due to gaps and friction at the supports were taken into account. The stiffness of the support constructions influences reactions and accelerations to a high extent. Properly chosen stiffnesses of the support constructions lead to a behaviour similar to linear elastic behaviour. 13 figs

  7. Periodicity of a class of nonlinear fuzzy systems with delays

    International Nuclear Information System (INIS)

    Yu Jiali; Yi Zhang; Zhang Lei

    2009-01-01

    The well known Takagi-Sugeno (T-S) model gives an effective method to combine some simple local systems with their linguistic description to represent complex nonlinear dynamic systems. By using the T-S method, a class of local nonlinear systems having nice dynamic properties can be employed to represent some global complex nonlinear systems. This paper proposes to study the periodicity of a class of global nonlinear fuzzy systems with delays by using T-S method. Conditions for guaranteeing periodicity are derived. Examples are employed to illustrate the theory.

  8. On decisive factors of liner anchorage behaviour

    International Nuclear Information System (INIS)

    Bucchardt, F.; Weber, M.; Yazdi, F.

    1984-01-01

    Design of reinforced and prestressed containments for nuclear power plants in the FRG shall be guided by DIN 25459; this also includes the structural behaviour of the liner. While the containment safety analysis is a more global matter, the liner and especially the liner anchorage behaviour concentrates on local effects which need a more refined local area description. Due to the predominant stiffness of the concrete structure liner failure analysis are performed by decoupling the steel membrane which is then only supported by anchorage springs. A comprehensive nonlinear analytical study is carried out to examine the anchorage behaviour. (Author) [pt

  9. Breathers and rogue waves: Demonstration with coupled nonlinear ...

    Indian Academy of Sciences (India)

    It has been found that the rational solution of nonlinear Schrödinger (NLS) ..... Figures 3a and 3b illustrate the behaviour of this solution, which is periodic both ... peaks increases or decreases and if the direction gets changed or not when the ...

  10. Contributions to the nonlinear modeling of the mechanical behaviour of concrete and of reinforced and prestressed concrete structures

    International Nuclear Information System (INIS)

    Abbas, Krayani

    2007-12-01

    The knowledge of the mechanical behaviour of the material and its loading history (at any point of the structure) is necessary to evaluate the tightness of a containment structure and therefore its durability. An elastic plastic non local damage model is developed for modelling the mechanical behaviour of concrete. A regularization technique is introduced on the part responsible of the strain-softening behaviour in order to avoid the numerical problems due to the phenomenon of localisation of damage. The constitutive law and its numerical implementation are detailed. The consistent tangent matrix is derived, where the numerical differentiation technique is applied to integrate plastic constitutive laws and to obtain a quadratic convergence with the Newton-Raphson method at Gauss-point level and in the solution of the boundary value problem. Simulations have shown the capacity of the model to reproduce the classical and complex structural behaviour of concrete. The comparisons with the isotropic damage models illustrate the improvements achieved by introducing the plasticity to the damage formulation: the mode of failure is reproduced correctly (mode I and mixed mode) and the ultimate load is in good agreement with the experimental data. Finally, we present modifications of the classical non local damage model in order to take into account the boundary effects. Our justification is based on micro-mechanical arguments in which the interactions between microcracks are reduced nearby the free boundary. (author)

  11. A simple predistortion technique for suppression of nonlinear effects in periodic signals generated by nonlinear transducers

    Science.gov (United States)

    Novak, A.; Simon, L.; Lotton, P.

    2018-04-01

    Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.

  12. Relating the bipolar spectrum to dysregulation of behavioural activation: a perspective from dynamical modelling.

    Science.gov (United States)

    Steinacher, Arno; Wright, Kim A

    2013-01-01

    Bipolar Disorders affect a substantial minority of the population and result in significant personal, social and economic costs. Understanding of the causes of, and consequently the most effective interventions for, this condition is an area requiring development. Drawing upon theories of Bipolar Disorder that propose the condition to be underpinned by dysregulation of systems governing behavioural activation or approach motivation, we present a mathematical model of the regulation of behavioural activation. The model is informed by non-linear, dynamical principles and as such proposes that the transition from "non-bipolar" to "bipolar" diagnostic status corresponds to a switch from mono- to multistability of behavioural activation level, rather than an increase in oscillation of mood. Consistent with descriptions of the behavioural activation or approach system in the literature, auto-activation and auto-inhibitory feedback is inherent within our model. Comparison between our model and empirical, observational data reveals that by increasing the non-linearity dimension in our model, important features of Bipolar Spectrum disorders are reproduced. Analysis from stochastic simulation of the system reveals the role of noise in behavioural activation regulation and indicates that an increase of nonlinearity promotes noise to jump scales from small fluctuations of activation levels to longer lasting, but less variable episodes. We conclude that further research is required to relate parameters of our model to key behavioural and biological variables observed in Bipolar Disorder.

  13. Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle

    Directory of Open Access Journals (Sweden)

    Teresa D'Aprile

    2000-11-01

    Full Text Available In this paper we study the existence of concentrated solutions of the nonlinear field equation $$ -h^{2}Delta v+V(xv-h^{p}Delta_{p}v+ W'(v=0,, $$ where $v:{mathbb R}^{N}o{mathbb R}^{N+1}$, $Ngeq 3$, $p>N$, the potential $V$ is positive and radial, and $W$ is an appropriate singular function satisfying a suitable symmetric property. Provided that $h$ is sufficiently small, we are able to find solutions with a certain spherical symmetry which exhibit a concentration behaviour near a circle centered at zero as $ho 0^{+}$. Such solutions are obtained as critical points for the associated energy functional; the proofs of the results are variational and the arguments rely on topological tools. Furthermore a penalization-type method is developed for the identification of the desired solutions.

  14. Study on complexation behaviour of uranium and thorium with amino acids at different temperatures in aqueous media

    International Nuclear Information System (INIS)

    Joshi, J.D.; Patel, M.R.; Patel, A.D.

    1992-01-01

    The complexation behaviour of uranium and thorium with important amino acids have been studied using Irving-Rossotti titration technique at 25deg, 35deg and 45degC in inert atmosphere of nitrogen and 0.1M ionic strength using NaClO 4 . The thermodynamic parameters ΔG, ΔH and ΔS have been calculated. Results indicate that thorium (IV) is forming more stable complexes than UO 2 2+ . (author). 3 refs., 2 tab

  15. Stabilization and Control Models of Systems With Hysteresis Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mihail E. Semenov

    2012-05-01

    Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.

  16. Einstein-Friedmann equation, nonlinear dynamics and chaotic behaviours

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Nakano, Shingo; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the Einstein-Friedmann equation [Case 1] on the basis of the bifurcation theory and shown that the chaotic behaviours in the Einstein-Friedmann equation [Case 1] are reduced to the pitchfork bifurcation and the homoclinic bifurcation. We have obtained the following results: (i) 'The chaos region diagram' (the p-λ plane) in the Einstein-Friedmann equation [Case 1]. (ii) 'The chaos inducing chart' of the homoclinic orbital systems in the unforced differential equations. We have discussed the non-integrable conditions in the Einstein-Friedmann equation and proposed the chaotic model: p=p 0 ρ n (n≥0). In case n≠0,1, the Einstein-Friedmann equation is not integrable and there may occur chaotic behaviours. The cosmological constant (λ) turns out to play important roles for the non-integrable condition in the Einstein-Friedmann equation and also for the pitchfork bifurcation and the homoclinic bifurcation in the relativistic field equation. With the use of the E-infinity theory, we have also discussed the physical quantities in the gravitational field equations, and obtained the formula logκ=-10(1/φ) 2 [1+(φ) 8 ]=-26.737, which is in nice agreement with the experiment (-26.730).

  17. The study of two, three and four dimensional nonlinear dynamics of nuclear fission reactors and effective parameters on its behaviour

    International Nuclear Information System (INIS)

    Tajik, M.; Ghasemizad, A.

    2008-01-01

    In this research, new physical fission reactor parameters which have very sensitive effects on the qualitative behavior of a reactor, are introduced. Therefore, the two, the nonlinear dynamics of two, three and four dimensional, considering almost the effective parameters are formulated for describing nuclear fission reactor systems. Using both analytical and numerical methods, the stability and instability of the given dynamical equations and the conditions of stability are studied in these systems. We have shown that the two parameters of the mean energy residence time in fuel and coolant and also their ratios have the most qualitative effects on the dynamical behaviour of a typical nuclear fission reactor. Increasing or decreasing of these parameters from a captain limit can lead to stability or un stability in a given system

  18. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  19. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  20. XXIII International Conference on Nonlinear Dynamics of Electronic Systems

    CERN Document Server

    Stoop, Ruedi; Stramaglia, Sebastiano

    2017-01-01

    This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.

  1. Mirror box therapy added to cognitive behavioural therapy in three chronic complex regional pain syndrome type I patients : a pilot study

    NARCIS (Netherlands)

    Tichelaar, Y. I. G. Vladimir; Geertzen, Jan H. B.; Keizer, Doeke; van Wilgen, C. Paul

    Complex regional pain syndrome type I is a disorder of the extremities with disability and pain as the most prominent features. This paper describes the results of cognitive behavioural therapy combined with mirror box therapy in three patients with chronic complex regional pain syndrome type I.

  2. Single-step emulation of nonlinear fiber-optic link with gaussian mixture model

    DEFF Research Database (Denmark)

    Borkowski, Robert; Doberstein, Andy; Haisch, Hansjörg

    2015-01-01

    We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission.......We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission....

  3. Synchronization, TIGoRS, and Information Flow in Complex Systems: Dispositional Cellular Automata.

    Science.gov (United States)

    Sulis, William H

    2016-04-01

    Synchronization has a long history in physics where it refers to the phase matching of two identical oscillators. This notion has been extensively studied in physics as well as in biology, where it has been applied to such widely varying phenomena as the flashing of fireflies and firing of neurons in the brain. Human behavior, however, may be recurrent but it is not oscillatory even though many physiological systems do exhibit oscillatory tendencies. Moreover, much of human behaviour is collaborative and cooperative, where the individual behaviours may be distinct yet contemporaneous (if not simultaneous) and taken collectively express some functionality. In the context of behaviour, the important aspect is the repeated co-occurrence in time of behaviours that facilitate the propagation of information or of functionality, regardless of whether or not these behaviours are similar or identical. An example of this weaker notion of synchronization is transient induced global response synchronization (TIGoRS). Previous work has shown that TIGoRS is a ubiquitous phenomenon among complex systems, enabling them to stably parse environmental transients into salient units to which they stably respond. This leads to the notion of Sulis machines, which emergently generate a primitive linguistic structure through their dynamics. This article reviews the notion of TIGoRS and its expression in several complex systems models including tempered neural networks, driven cellular automata and cocktail party automata. The emergent linguistics of Sulis machines are discussed. A new class of complex systems model, the dispositional cellular automaton is introduced. A new metric for TIGoRS, the excess synchronization, is introduced and applied to the study of TIGoRS in dispositional cellular automata. It is shown that these automata exhibit a nonlinear synchronization response to certain perturbing transients.

  4. An automated approach towards detecting complex behaviours in deep brain oscillations.

    Science.gov (United States)

    Mace, Michael; Yousif, Nada; Naushahi, Mohammad; Abdullah-Al-Mamun, Khondaker; Wang, Shouyan; Nandi, Dipankar; Vaidyanathan, Ravi

    2014-03-15

    Extracting event-related potentials (ERPs) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP need not conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5 ± 6.5, 76.7 ± 12.8, 90.0 ± 4.1] and [92.6 ± 6.3, 86.0 ± 9.0, 29.8 ± 12.3] (mean ± 1 std) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A novel sort of adaptive complex synchronizations of two indistinguishable chaotic complex nonlinear models with uncertain parameters and its applications in secure communications

    Science.gov (United States)

    Mahmoud, Emad E.; Abood, Fatimah S.

    In this paper, we will demonstrate the adaptive complex anti-lag synchronization (CALS) of two indistinguishable complex chaotic nonlinear systems with the parameters which are uncertain. The significance of CALS is not advised well in the literature yet. The CALS contains or consolidate two sorts of synchronizations (anti-lag synchronization ALS and lag synchronization LS). The state variable of the master system synchronizes with an alternate state variable of the slave system. Depending on the function of Lyapunov, a plan is orchestrated to achieve CALS of chaotic attractors of complex systems with unverifiable parameters. CALS of two indistinguishable complexes of Lü systems is viewed as, for example, an occasion for affirming the likelihood of the plan exhibited. In physics, we can see complex chaotic systems in numerous different applications, for example, applied sciences or engineering. With a specific end goal to affirm the proposed synchronization plan viability and demonstrate the hypothetical outcomes, we can compute the numerical simulation. The above outcomes will give the hypothetical establishment to the secure communication applications. CALS of complex chaotic systems in which a state variable of the master system synchronizes with an alternate state variable of the slave system is an encouraging sort of synchronization as it contributes excellent security in secure communication. Amid this secure communication, the synchronization between transmitter and collector is shut and message signals are recouped. The encryption and restoration of the signals are simulated numerically.

  6. Relating the bipolar spectrum to dysregulation of behavioural activation: a perspective from dynamical modelling.

    Directory of Open Access Journals (Sweden)

    Arno Steinacher

    Full Text Available Bipolar Disorders affect a substantial minority of the population and result in significant personal, social and economic costs. Understanding of the causes of, and consequently the most effective interventions for, this condition is an area requiring development. Drawing upon theories of Bipolar Disorder that propose the condition to be underpinned by dysregulation of systems governing behavioural activation or approach motivation, we present a mathematical model of the regulation of behavioural activation. The model is informed by non-linear, dynamical principles and as such proposes that the transition from "non-bipolar" to "bipolar" diagnostic status corresponds to a switch from mono- to multistability of behavioural activation level, rather than an increase in oscillation of mood. Consistent with descriptions of the behavioural activation or approach system in the literature, auto-activation and auto-inhibitory feedback is inherent within our model. Comparison between our model and empirical, observational data reveals that by increasing the non-linearity dimension in our model, important features of Bipolar Spectrum disorders are reproduced. Analysis from stochastic simulation of the system reveals the role of noise in behavioural activation regulation and indicates that an increase of nonlinearity promotes noise to jump scales from small fluctuations of activation levels to longer lasting, but less variable episodes. We conclude that further research is required to relate parameters of our model to key behavioural and biological variables observed in Bipolar Disorder.

  7. On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M; Mahmoud, Emad E; Arafa, Ayman A

    2013-01-01

    In this paper we deal with the projective synchronization (PS) of hyperchaotic complex nonlinear systems and its application in secure communications based on passive theory. The unpredictability of the scaling factor in PS can additionally enhance the security of communications. In this paper, a scheme for secure message transmission is proposed, and we try to transmit more than one large or bounded message from the transmitter to the receiver. The new hyperchaotic complex Lorenz system is employed to encrypt these messages. In the transmitter, the original messages are modulated into its parameter. In the receiver, we assume that the parameter of the receiver system is uncertain. The controllers and corresponding parameter update law are constructed to achieve PS between the transmitter and receiver system with an uncertain parameter, and identify the unknown parameter via passive theory. The original messages can be recovered successfully through some simple operations by the estimated parameter. Numerical results have verified the effectiveness and feasibility of the presented method. (paper)

  8. Bäcklund transformation, analytic soliton solutions and numerical simulation for a (2+1)-dimensional complex Ginzburg-Landau equation in a nonlinear fiber

    Science.gov (United States)

    Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong

    2017-10-01

    In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.

  9. Modelling the nonlinearity of piezoelectric actuators in active ...

    African Journals Online (AJOL)

    Piezoelectric actuators have great capabilities as elements of intelligent structures for active vibration cancellation. One problem with this type of actuator is its nonlinear behaviour. In active vibration control systems, it is important to have an accurate model of the control branch. This paper demonstrates the ability of neural ...

  10. Nonlinear optical behaviour of absorbing CdSxSe1-x interference filters

    International Nuclear Information System (INIS)

    Ferencz, K.; Szipoecs, R.

    1988-01-01

    First experimental results of nonlinear, thin film interference filter wedges with mixed CdS x Se 1-x as spacer material at the 633 nm wavelength of He-Ne laser are reported. Optical bistability is observed with less than 7.5 mW of optical power in single-cavity structures. The change in refractive index is found to be positive which is in accordance with the thermal mechanism of nonlinearity. Producing a double-cavity structure a device is obtained which works as an optical astable multivibrator having periodical change of transmission as the function of time. (author)

  11. Nonlinear dynamic analysis and state space representation of a manipulator under viscoelastic material conditions

    Directory of Open Access Journals (Sweden)

    Esfandiar, H.

    2013-05-01

    Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.

  12. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    is designed and implemented on the test bed that successfully diagnoses internal or external leakages, friction variations in the actuator or fault related to pressure sensors. The presented algorithm uses the position and pressure measurements to detect and isolate faults, avoiding missed detection and false...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...... if they are not detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault...

  13. Thinking in complexity the complex dynamics of matter, mind, and mankind

    CERN Document Server

    Mainzer, Klaus

    1994-01-01

    The theory of nonlinear complex systems has become a successful and widely used problem-solving approach in the natural sciences - from laser physics, quantum chaos and meteorology to molecular modeling in chemistry and computer simulations of cell growth in biology In recent times it has been recognized that many of the social, ecological and political problems of mankind are also of a global, complex and nonlinear nature And one of the most exciting topics of present scientific and public interest is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems In this wide-ranging but concise treatment Prof Mainzer discusses, in nontechnical language, the common framework behind these endeavours Special emphasis is given to the evolution of new structures in natural and cultural systems and it is seen clearly how the new integrative approach of complexity theory can give new insights that were not available using traditional reductionistic methods

  14. Simulation of nonlinear random vibrations using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Paez, T.L.; Tucker, S.; O`Gorman, C.

    1997-02-01

    The simulation of mechanical system random vibrations is important in structural dynamics, but it is particularly difficult when the system under consideration is nonlinear. Artificial neural networks provide a useful tool for the modeling of nonlinear systems, however, such modeling may be inefficient or insufficiently accurate when the system under consideration is complex. This paper shows that there are several transformations that can be used to uncouple and simplify the components of motion of a complex nonlinear system, thereby making its modeling and random vibration simulation, via component modeling with artificial neural networks, a much simpler problem. A numerical example is presented.

  15. Developing a complex intervention for diet and activity behaviour change in obese pregnant women (the UPBEAT trial); assessment of behavioural change and process evaluation in a pilot randomised controlled trial.

    Science.gov (United States)

    Poston, Lucilla; Briley, Annette L; Barr, Suzanne; Bell, Ruth; Croker, Helen; Coxon, Kirstie; Essex, Holly N; Hunt, Claire; Hayes, Louise; Howard, Louise M; Khazaezadeh, Nina; Kinnunen, Tarja; Nelson, Scott M; Oteng-Ntim, Eugene; Robson, Stephen C; Sattar, Naveed; Seed, Paul T; Wardle, Jane; Sanders, Thomas A B; Sandall, Jane

    2013-07-15

    Complex interventions in obese pregnant women should be theoretically based, feasible and shown to demonstrate anticipated behavioural change prior to inception of large randomised controlled trials (RCTs). The aim was to determine if a) a complex intervention in obese pregnant women leads to anticipated changes in diet and physical activity behaviours, and b) to refine the intervention protocol through process evaluation of intervention fidelity. We undertook a pilot RCT of a complex intervention in obese pregnant women, comparing routine antenatal care with an intervention to reduce dietary glycaemic load and saturated fat intake, and increase physical activity. Subjects included 183 obese pregnant women (mean BMI 36.3 kg/m2). Compared to women in the control arm, women in the intervention arm had a significant reduction in dietary glycaemic load (33 points, 95% CI -47 to -20), (p change. Physical discomfort and sustained barriers to physical activity were common at 28 weeks' gestation. Process evaluation identified barriers to recruitment, group attendance and compliance, leading to modification of intervention delivery. This pilot trial of a complex intervention in obese pregnant women suggests greater potential for change in dietary intake than for change in physical activity, and through process evaluation illustrates the considerable advantage of performing an exploratory trial of a complex intervention in obese pregnant women before undertaking a large RCT. ISRCTN89971375.

  16. Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales

    Science.gov (United States)

    French, Jon; Payo, Andres; Murray, Brad; Orford, Julian; Eliot, Matt; Cowell, Peter

    2016-03-01

    a reduced complexity model and the term itself is both misleading and, arguably, unhelpful. Accordingly, we synthesise a set of requirements for what might be termed 'appropriate complexity modelling' of quantitative coastal morphological change at scales commensurate with contemporary management and policy-making requirements: 1) The system being studied must be bounded with reference to the time and space scales at which behaviours of interest emerge and/or scientific or management problems arise; 2) model complexity and comprehensiveness must be appropriate to the problem at hand; 3) modellers should seek a priori insights into what kind of behaviours are likely to be evident at the scale of interest and the extent to which the behavioural validity of a model may be constrained by its underlying assumptions and its comprehensiveness; 4) informed by qualitative insights into likely dynamic behaviour, models should then be formulated with a view to resolving critical state changes; and 5) meso-scale modelling of coastal morphological change should reflect critically on the role of modelling and its relation to the observable world.

  17. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  18. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    International Nuclear Information System (INIS)

    Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan

    2015-01-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)

  19. Picosecond optical nonlinearities in symmetrical and unsymmetrical ...

    Indian Academy of Sciences (India)

    It is evident that the saturable absorption (SA) behaviour changed to reverse sat- urable absorption (RSA) and the nonlinear coefficients were obtained using the equation α = α0I/[1 + (I/Is)]. The open-aperture scans were fitted by solving the propagation equation for homogeneous medium dI/dz = {−α0I/[1+(I/Is)]}−βI2.

  20. Nonlinear temperature effects on multifractal complexity of metabolic rate of mice

    Directory of Open Access Journals (Sweden)

    Fabio A. Labra

    2016-10-01

    Full Text Available Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r(VO2, in the laboratory mouse Mus musculus, assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA, finding that r(VO2 fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 102 s, either monofractal or weak multifractal dynamics are observed depending on whether Ta  15 °C respectively. For larger time scales, r(VO2 fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ(q, showing that the infinite number of exponents h(q can be described by only two independent parameters, a and b. We also show that the long-range correlation structure of r(VO2 time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system.

  1. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  2. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  3. Nonlinear signal processing for ultrasonic imaging of material complexity

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Vejvodová, Šárka; Převorovský, Zdeněk

    2010-01-01

    Roč. 59, č. 2 (2010), s. 108-117 ISSN 1736-6046 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear signal processing * TR-NEWS * symmetry analysis * DORT Subject RIV: BI - Acoustics Impact factor: 0.464, year: 2010 www.eap.ee/proceedings

  4. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  5. Catalytic properties and dynamic behaviour of uranium complexes

    International Nuclear Information System (INIS)

    Le Marechal, J.F.

    1986-01-01

    The catalytic properties of organometallic uranium III and IV compounds in solution as well as reaction mechanisms are studied. The structure in solution of CpUCl 3 L 2 (L=THF, HMPA, OPPh 3 , OP(OR) 3 ) is investigated. When L=HMPA, the complex exists in two isomers in equilibrium with the L ligands either in trans or mer-cis configuration. The isomerization (Ea=92 kJ mol -1 ) as well as the bimolecular exchange with an outer sphere ligand L are observable in 1 H and 31 P NMR, and quantified with the spin saturation transfer technique in several solvents and at different temperatures between 230 and 330 K. This property is extended to other ligands. The compound U(AlH 4 ) 3 is synthetized. This compound catalyses the hydroalumination of olefins by LiAlH 4 with a very good anti-Markovnikov regioselectivity. A simple mechanism for this reaction is suggested. The reactions of the organoaluminates products with several reactants (D 2 O, I 2 , CH 2 O, Allyl-Br...) has been shown to be a powerful synthetic tool. Some specific alkenes and alkynes exhibit an interesting behaviour as dimerization or β-alkyl elimination which is easily interpreted by our mechanism [fr

  6. Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media

    CERN Document Server

    El-Dib, Y O

    2003-01-01

    In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...

  7. Large time behaviour of oscillatory nonlinear solute transport in porous media

    NARCIS (Netherlands)

    Duijn, van C.J.; Zee, van der S.E.A.T.M.

    2018-01-01

    Oscillations in flow occur under many different situations in natural porous media, due to tidal, daily or seasonal patterns. In this paper, we investigate how such oscillations in flow affect the transport of an initially sharp solute front, if the solute undergoes nonlinear sorption and,

  8. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  9. Design and development of a parametrically excited nonlinear energy harvester

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel

    2016-01-01

    Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.

  10. Peri-implantitis: a complex condition with non-linear characteristics

    NARCIS (Netherlands)

    Papantonopoulos, G.H.; Gogos, C.; Housos, E.; Bountis, T.; Loos, B.G.

    2015-01-01

    Aim To cluster peri-implantitis patients and explore non-linear patterns in peri-implant bone levels. Materials and Methods Clinical and radiographic variables were retrieved from 94 implant-treated patients (340 implants, mean 7.1 ± 4.1 years in function). Kernel probability density estimations on

  11. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  12. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....

  13. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  14. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  15. Solution strategies for linear and nonlinear instability phenomena for arbitrarily thin shell structures

    International Nuclear Information System (INIS)

    Eckstein, U.; Harte, R.; Kraetzig, W.B.; Wittek, U.

    1983-01-01

    In order to describe nonlinear response and instability behaviour the paper starts with the total potential energy considering the basic kinematic equations of a consistent nonlinear shell theory for large displacements and moderate rotations. The material behaviour is assumed to be hyperelastic and isotropic. The incrementation and discretization of the total potential energy leads to the tangent stiffness relation, which is the central equation of computational algorithms based on combined incremental and iterative techniques. Here a symmetrized form of the RIKS/WEMPNER-algorithm for positive and negative load incrementation represents the basis of the nonlinear solution technique. To detect secondary equilibrium branches at points of neutral equilibrium within nonlinear primary paths a quadratic eigenvalue-problem has to be solved. In order to follow those complicated nonlinear response phenomena the RIKS/WEMPNER incrementation/iteration process is combined with a simultaneous solution of the linearized quadratic eigenvalue-problem. Additionally the essentials of a recently derived family of arbitrarily curved shell elements for linear (LACS) and geometrically nonlinear (NACS) shell problems are presented. The main advantage of these elements is the exact description of all geometric properties as well as the energy-equivalent representation of the applied loads in combination with an efficient algorithm to form the stiffness submatrices. Especially the NACS-elements are designed to improve the accuracy of the solution in the deep postbuckling range including moderate rotations. The derived finite elements and solution strategies are applied to a certain number of typical shell problems to prove the precision of the shell elements and to demonstrate the possibilities of tracing linear and nonlinear bifurcation problems as well as snap-through phenomena with and without secondary bifurcation branches. (orig.)

  16. Can Sleep and Resting Behaviours Be Used as Indicators of Welfare in Shelter Dogs (Canis lupus familiaris?

    Directory of Open Access Journals (Sweden)

    Sara C Owczarczak-Garstecka

    Full Text Available Previous research on humans and animals suggests that the analysis of sleep patterns may reliably inform us about welfare status, but little research of this kind has been carried out for non-human animals in an applied context. This study explored the use of sleep and resting behaviour as indicators of welfare by describing the activity patterns of dogs (Canis lupus familiaris housed in rescue shelters, and comparing their sleep patterns to other behavioural and cognitive measures of welfare. Sleep and activity patterns were observed over five non-consecutive days in a population of 15 dogs. Subsequently, the characteristics of sleep and resting behaviour were described and the impact of activity on patterns of sleep and resting behaviour analysed. Shelter dogs slept for 2.8% of the day, 14.3% less than previously reported and experienced less sleep fragmentation at night (32 sleep bouts. There were no statistically significant relationships between behaviours exhibited during the day and sleep behaviour. A higher proportion of daytime resting behaviour was significantly associated with a positive judgement bias, less repetitive behaviour and increased time spent coded as 'relaxed' across days by shelter staff. These results suggest that, in the context of a busy shelter environment, the ability to rest more during the day could be a sign of improved welfare. Considering the non-linear relationship between sleep and welfare in humans, the relationship between sleep and behavioural indicators of welfare, including judgement bias, in shelter dogs may be more complex than this study could detect.

  17. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-10-15

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  18. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    International Nuclear Information System (INIS)

    Chou, Chia-Chun

    2016-01-01

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  19. Nonlinear dynamics and chaotic behaviour of spin wave instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, S M; Aguiar, F.M. de.

    1986-09-01

    Recent experiments revealed that spin wave instabilities driven by microwave fields, either parallel or transverse to the static magnetic field, display chaotic dynamics similar to other physical systems. A theory based on the coupled nonlinear equations of motion for two spin wave modes is presented which explains most features of the experimental observations. The model predicts subharmonic routes to chaos that depend on the parameter values. For certain parameters the system exhibits a Feigenbaum scenario characteristic of one-dimensional maps. Other parameters lead to different subharmonic routes indicative of multidimensional behavior, as observed in some experiments.

  20. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    Science.gov (United States)

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  1. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.

  2. Behaviour of concrete nuclear containment structures upto ultimate failure with special reference to MAPP-1 containment

    International Nuclear Information System (INIS)

    Appa Rao, T.V.S.R.

    1975-01-01

    Theoretical and experimental methods for investigating the behaviour of concrete secondary containment structures subjected to loads upto their ultimate failure have been discussed in the paper. Need for inelastic nonlinear analysis of containments has been emphasized. Different contitutive models of concrete that can be employed in the nonlinear analysis of concrete structures were briefly reviewed. Based on the experimental results obtained in a 1:12 scale model test conducted at the Structural Engineering Research (Regional) Centre, Madras, behaviour of the MAPP-1 containment to internal pressure loading upto its ultimate failure has been discussed. (author)

  3. Nonlinear Growth Models in M"plus" and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2009-01-01

    Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear…

  4. Sports teams as complex adaptive systems: manipulating player numbers shapes behaviours during football small-sided games

    OpenAIRE

    Silva, Pedro; Vilar, Lu?s; Davids, Keith; Ara?jo, Duarte; Garganta, J?lio

    2016-01-01

    Small-sided and conditioned games (SSCGs) in sport have been modelled as complex adaptive systems. Research has shown that the relative space per player (RSP) formulated in SSCGs can impact on emergent tactical behaviours. In this study we adopted a systems orientation to analyse how different RSP values, obtained through manipulations of player numbers, influenced four measures of interpersonal coordination observed during performance in SSCGs. For this purpose we calculated positional data ...

  5. Method of asymptotic expansions and qualitative analysis of finite-dimensional models in the nonlinear field theory

    International Nuclear Information System (INIS)

    Eleonskij, V.M.; Kulagin, N.E.; Novozhilova, N.S.; Silin, V.P.

    1984-01-01

    The reasons which prevent the existence of periodic in time and self-localised in space solutions of the nonlinear wave equation u=F (u) are determined by the methods of qualitative theory of dynamical systems. The correspondence between the qualitative behaviour of special (separatrix) trajectories in the phase space and asymptotic solutions of the nonlinear wave equation is analysed

  6. Economic Decision Making: Application of the Theory of Complex Systems

    Science.gov (United States)

    Kitt, Robert

    In this chapter the complex systems are discussed in the context of economic and business policy and decision making. It will be showed and motivated that social systems are typically chaotic, non-linear and/or non-equilibrium and therefore complex systems. It is discussed that the rapid change in global consumer behaviour is underway, that further increases the complexity in business and management. For policy making under complexity, following principles are offered: openness and international competition, tolerance and variety of ideas, self-reliability and low dependence on external help. The chapter contains four applications that build on the theoretical motivation of complexity in social systems. The first application demonstrates that small economies have good prospects to gain from the global processes underway, if they can demonstrate production flexibility, reliable business ethics and good risk management. The second application elaborates on and discusses the opportunities and challenges in decision making under complexity from macro and micro economic perspective. In this environment, the challenges for corporate management are being also permanently changed: the balance between short term noise and long term chaos whose attractor includes customers, shareholders and employees must be found. The emergence of chaos in economic relationships is demonstrated by a simple system of differential equations that relate the stakeholders described above. The chapter concludes with two financial applications: about debt and risk management. The non-equilibrium economic establishment leads to additional problems by using excessive borrowing; unexpected downturns in economy can more easily kill companies. Finally, the demand for quantitative improvements in risk management is postulated. Development of the financial markets has triggered non-linearity to spike in prices of various production articles such as agricultural and other commodities that has added market

  7. The influence of farmer demographic characteristics on environmental behaviour: a review.

    Science.gov (United States)

    Burton, Rob J F

    2014-03-15

    Many agricultural studies have observed a relationship between farmer demographic characteristics and environmental behaviours. These relationships are frequently employed in the construction of models, the identification of farmer types, or as part of more descriptive analyses aimed at understanding farmers' environmental behaviour. However, they have also often been found to be inconsistent or contradictory. Although a considerable body of literature has built up around the subject area, research has a tendency to focus on factors such as the direction, strength and consistency of the relationship - leaving the issue of causality largely to speculation. This review addresses this gap by reviewing literature on 4 key demographic variables: age, experience, education, and gender for hypothesised causal links. Overall the review indicates that the issue of causality is a complex one. Inconsistent relationships can be attributed to the presence of multiple causal pathways, the role of scheme factors in determining which pathway is important, inadequately specified measurements of demographic characteristics, and the treatment of non-linear causalities as linear. In addition, all demographic characteristics were perceived to be influenced (to varying extents) by cultural-historical patterns leading to cohort effects or socialised differences in the relationship with environmental behaviour. The paper concludes that more work is required on the issue of causality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.

  9. Origin of SMM behaviour in an asymmetric Er(III) Schiff base complex: a combined experimental and theoretical study.

    Science.gov (United States)

    Das, Chinmoy; Upadhyay, Apoorva; Vaidya, Shefali; Singh, Saurabh Kumar; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2015-04-11

    An asymmetric erbium(III) Schiff base complex [Er(HL)2(NO3)3] was synthesized which shows SMM behaviour with an Ueff of 5.2 K. Dipolar interaction in 1 significantly reduced upon dilution which increases the barrier height to 51.5 K. Ab initio calculations were performed to shed light on the mechanism of magnetization relaxation.

  10. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil

    International Nuclear Information System (INIS)

    Donoso, Guillermo; Ladera, Celso L

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)

  11. New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2017-01-01

    Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.

  12. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.

    Science.gov (United States)

    Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang

    2017-06-12

    Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.

  13. Non-linear behaviour of multi-phase MOX fuels: a micro-mechanical approach

    International Nuclear Information System (INIS)

    Rousette, S.; Gatt, J.M.; Michel, J.C.

    2005-01-01

    The modelling of mechanical pellet-clad interaction requires knowledge of the thermo-mechanical behaviour of nuclear fuels. Some nuclear fuels such as MOX are composed of several phases. The mechanical properties of these phases, which are elasto-visco-plastic in-pile, are changing in-pile. The objective is to formulate a mechanical behaviour law taking all the physical phenomena into account in the different phases, which can easily be introduced into a fuel rod modelling code. Consequently, Non-uniform Transformation Field Analysis (NTFA) is used on the one hand, to correctly capture the heterogeneity of the anelastic strain in the different phases and, on the other hand, to provide a simple overall constitutive law for computational codes. This method is a good way to describe the behaviour of MOX fuel. Transformation Field Analysis (TFA), which corresponds to piecewise uniform transformation fields, is used to perform a sensitivity study. (authors)

  14. Geometrical phases from global gauge invariance of nonlinear classical field theories

    International Nuclear Information System (INIS)

    Garrison, J.C.; Chiao, R.Y.

    1988-01-01

    We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics

  15. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  16. Investigation of the nonlinear static and dynamic behaviour of rectangular microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid; Younis, Mohammad I.

    2016-01-01

    We present an investigation of the static and dynamic behavior of the nonlinear von-Karman plates when actuated by the nonlinear electrostatic forces. The investigation is based on a reduced order model developed using the Galerkin method, which rely on modeshapes and in-plane shape functions extracted using a finite element method. In this study, a fully clamped microplate is considered. We investigate the static behavior and the results are validated by comparison with the results calculated by a finite element model. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary resonance. The microplate shows a strong hardening behavior due to the cubic nonlinearity of mid-plane stretching. However, the behavior switches to softening as the DC load is increased.

  17. Investigation of the nonlinear static and dynamic behaviour of rectangular microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2016-11-16

    We present an investigation of the static and dynamic behavior of the nonlinear von-Karman plates when actuated by the nonlinear electrostatic forces. The investigation is based on a reduced order model developed using the Galerkin method, which rely on modeshapes and in-plane shape functions extracted using a finite element method. In this study, a fully clamped microplate is considered. We investigate the static behavior and the results are validated by comparison with the results calculated by a finite element model. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary resonance. The microplate shows a strong hardening behavior due to the cubic nonlinearity of mid-plane stretching. However, the behavior switches to softening as the DC load is increased.

  18. Characterisation of the Effects of Sleep Deprivation on the Electroencephalogram Using Permutation Lempel–Ziv Complexity, a Non-Linear Analysis Tool

    Directory of Open Access Journals (Sweden)

    Pinar Deniz Tosun

    2017-12-01

    Full Text Available Specific patterns of brain activity during sleep and waking are recorded in the electroencephalogram (EEG. Time-frequency analysis methods have been widely used to analyse the EEG and identified characteristic oscillations for each vigilance state (VS, i.e., wakefulness, rapid-eye movement (REM and non-rapid-eye movement (NREM sleep. However, other aspects such as change of patterns associated with brain dynamics may not be captured unless a non-linear-based analysis method is used. In this pilot study, Permutation Lempel–Ziv complexity (PLZC, a novel symbolic dynamics analysis method, was used to characterise the changes in the EEG in sleep and wakefulness during baseline and recovery from sleep deprivation (SD. The results obtained with PLZC were contrasted with a related non-linear method, Lempel–Ziv complexity (LZC. Both measure the emergence of new patterns. However, LZC is dependent on the absolute amplitude of the EEG, while PLZC is only dependent on the relative amplitude due to symbolisation procedure and thus, more resistant to noise. We showed that PLZC discriminates activated brain states associated with wakefulness and REM sleep, which both displayed higher complexity, compared to NREM sleep. Additionally, significantly lower PLZC values were measured in NREM sleep during the recovery period following SD compared to baseline, suggesting a reduced emergence of new activity patterns in the EEG. These findings were validated using PLZC on surrogate data. By contrast, LZC was merely reflecting changes in the spectral composition of the EEG. Overall, this study implies that PLZC is a robust non-linear complexity measure, which is not dependent on amplitude variations in the signal, and which may be useful to further assess EEG alterations induced by environmental or pharmacological manipulations.

  19. Nonlinear optical studies of curcumin metal derivatives with cw laser

    Energy Technology Data Exchange (ETDEWEB)

    Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain (Bahrain)

    2015-03-30

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.

  20. Nonlinear optical studies of curcumin metal derivatives with cw laser

    International Nuclear Information System (INIS)

    Henari, F. Z.; Cassidy, S.

    2015-01-01

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10 −7 cm 2 /W and negative nonlinear absorption of the order of 10 −6 cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated

  1. Strategic Information Processing from Behavioural Data in Iterated Games

    Directory of Open Access Journals (Sweden)

    Michael S. Harré

    2018-01-01

    Full Text Available Iterated games are an important framework of economic theory and application, at least since the original work of Axelrod’s computational tournaments of the early 80’s. Recent theoretical results have shown that games (the economic context and game theory (the decision-making process are both formally equivalent to computational logic gates. Here these results are extended to behavioural data obtained from an experiment in which rhesus monkeys sequentially played thousands of the “matching pennies” game, an empirical example similar to Axelrod’s tournaments in which algorithms played against one another. The results show that the monkeys exhibit a rich variety of behaviours, both between and within subjects when playing opponents of varying complexity. Despite earlier suggestions, there is no clear evidence that the win-stay, lose-switch strategy is used, however there is evidence of non-linear strategy-based interactions between the predictors of future choices. It is also shown that there is consistent evidence across protocols and across individuals that the monkeys extract non-markovian information, i.e., information from more than just the most recent state of the game. This work shows that the use of information theory in game theory can test important hypotheses that would otherwise be more difficult to extract using traditional statistical methods.

  2. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

  3. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    Science.gov (United States)

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

  4. Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios

    Science.gov (United States)

    Nicolsen, Brynne; Wang, Liang; Shabana, Ahmed

    2017-09-01

    The objective of this investigation is to develop a new total Lagrangian continuum-based liquid sloshing model that can be systematically integrated with multibody system (MBS) algorithms in order to allow for studying complex motion scenarios. The new approach allows for accurately capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and accelerating and braking scenarios. In these motion scenarios, the liquid experiences large displacements and significant changes in shape that can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this investigation to describe complex mesh geometries, to capture the change in inertia due to the change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model that includes a suspension system and Pacejka's brush tire model is developed. Specified motion trajectories are used to examine the vehicle dynamics in three different scenarios - deceleration during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the liquid sloshing changes the contact forces between the tires and the ground - increasing the forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.

  5. Nonlinear performance characterization in an eight-pole quasi-elliptic bandpass filter

    International Nuclear Information System (INIS)

    Mateu, J; Collado, C; Menendez, O; O'Callaghan, J M

    2004-01-01

    In this work we predict the nonlinear behaviour of an eight-pole quasi-elliptic bandpass high temperature superconducting (HTS) filter with an equivalent circuit extracted from intermodulation measurements performed at the centre of the filter passband. We present measurements that show that the equivalent circuit is able to predict the intermodulation products produced by the filter when driven by two in-band or out-of-band sinusoidal signals. Numerical techniques based on harmonic balance are used to extract the elements of the equivalent circuit and to simulate its nonlinear performance

  6. Investigations into the ratchetting behaviour of austenitic pipes

    International Nuclear Information System (INIS)

    Kraemer, D.; Krolop, S.; Scheffold, A.; Stegmeyer, R.

    1997-01-01

    In technical components subjected to cyclic loading, inelastic deformations cannot be excluded. In such cases, under certain conditions, small amounts of non-reversed plastic strain per cycle can accumulate to large strains, an effect commonly called ratchetting. The proof of ratchetting in complex structures is often possible by numerical methods only, e.g. the finite-element method. Describing cyclic plasticity and predicting ratchetting necessitate a suitable constitutive law. This paper describes the investigation of the ratchetting behaviour of thin-walled tubes under cyclic loading. Tests were performed and accompanied by finite-element computations using a non-linear kinematic hardening rule with superposed isotropic cyclic hardening. The constitutive law applied used a set of 13 material parameters. This paper discusses the requirements for uniaxial tests which meet the determination of a suitable set of parameters for describing ratchetting. To describe different kinds of isotropic hardening, an extension of the isotropic hardening rule is proposed. Under uniaxial conditions, continuous cyclic hardening is well reproduced with this extension. (orig.)

  7. Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals

    Science.gov (United States)

    Ducceschi, M.; Touzé, C.

    2015-05-01

    This paper presents a modal, time-domain scheme for the nonlinear vibrations of perfect and imperfect plates. The scheme can take into account a large number of degrees-of-freedom and is energy-conserving. The targeted application is the sound synthesis of cymbals and gong-like musical instruments, which are known for displaying a strongly nonlinear vibrating behaviour. This behaviour is typical of a wave turbulence regime, in which the wide-band spectrum of excited modes is observable in the form of an energy cascade. The modal method is selected for its versatility in handling complex damping laws that can be implemented easily by selecting appropriate damping values in each one of the modal equations. In the first part of the paper, the modal method is explained in its generality, and it will be seen that the method is valid for plates with arbitrary geometry and boundary conditions as long as the eigenmodes are known. Secondly, a time-integration, energy-conserving scheme for perfect and imperfect plates is presented, and implementation comments are given in order to treat efficiently the high-dimensionality of the resulting dynamical system. The scheme is run with appropriate parameters in order to produce sound samples. A simple impact law is considered for the excitation, whereas the flexibility of the method is highlighted by showing simulations for free-edge circular plates and simply-supported rectangular plates, together with various damping laws.

  8. Nonlinear dynamics non-integrable systems and chaotic dynamics

    CERN Document Server

    Borisov, Alexander

    2017-01-01

    This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.

  9. Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2011-01-01

    This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature......, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....

  10. Nonlinearity in structural and electronic materials

    International Nuclear Information System (INIS)

    Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ''Nonlinear Materials'' seminar series and international conferences including ''Fracture, Friction and Deformation,'' ''Nonequilibrium Phase Transitions,'' and ''Landscape Paradigms in Physics and Biology''; invited talks at international conference on ''Synthetic Metals,'' ''Quantum Phase Transitions,'' ''1996 CECAM Euroconference,'' and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors

  11. Asymptotic behaviour of unbounded trajectories for some non-autonomous systems in a Hilbert space

    International Nuclear Information System (INIS)

    Djafari Rouhani, B.

    1990-07-01

    The asymptotic behaviour of unbounded trajectories for non expansive mappings in a real Hilbert space and the extension to more general Banach spaces and to nonlinear contraction semi-group have been studied by many authors. In this paper we study the asymptotic behaviour of unbounded trajectories for a quasi non-autonomous dissipative systems. 26 refs

  12. Multistability and complex basins in a nonlinear duopoly with price competition and relative profit delegation

    Science.gov (United States)

    Fanti, Luciano; Gori, Luca; Mammana, Cristiana; Michetti, Elisabetta

    2016-09-01

    In this article, we investigate the local and global dynamics of a nonlinear duopoly model with price-setting firms and managerial delegation contracts (relative profits). Our study aims at clarifying the effects of the interaction between the degree of product differentiation and the weight of manager's bonus on long-term outcomes in two different states: managers behave more aggressively with the rival (competition) under product complementarity and less aggressively with the rival (cooperation) under product substitutability. We combine analytical tools and numerical techniques to reach interesting results such as synchronisation and on-off intermittency of the state variables (in the case of homogeneous attitude of managers) and the existence of chaotic attractors, complex basins of attraction, and multistability (in the case of heterogeneous attitudes of managers). We also give policy insights.

  13. Multistability and complex basins in a nonlinear duopoly with price competition and relative profit delegation.

    Science.gov (United States)

    Fanti, Luciano; Gori, Luca; Mammana, Cristiana; Michetti, Elisabetta

    2016-09-01

    In this article, we investigate the local and global dynamics of a nonlinear duopoly model with price-setting firms and managerial delegation contracts (relative profits). Our study aims at clarifying the effects of the interaction between the degree of product differentiation and the weight of manager's bonus on long-term outcomes in two different states: managers behave more aggressively with the rival (competition) under product complementarity and less aggressively with the rival (cooperation) under product substitutability. We combine analytical tools and numerical techniques to reach interesting results such as synchronisation and on-off intermittency of the state variables (in the case of homogeneous attitude of managers) and the existence of chaotic attractors, complex basins of attraction, and multistability (in the case of heterogeneous attitudes of managers). We also give policy insights.

  14. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network.

    Science.gov (United States)

    Waliszewski, P; Molski, M; Konarski, J

    1998-06-01

    A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self

  15. The influence of soil behaviour on the aseismic design of nuclear power plants

    International Nuclear Information System (INIS)

    Phillips, D.W.

    1980-11-01

    Extensive measurements of the dynamic mechanical properties of soils and rocks have indicated their essentially non-linear behaviour. A review is given of these properties and their relevance to aseismic design in the UK is discussed. In addition, current methods of modeling soil amplification and soil-structure interaction and ways in which these methods may be used to represent non-linear material effects are described. (author)

  16. Effect of Anisotropy on the Resilient Behaviour of a Granular Material in Low Traffic Pavement.

    Science.gov (United States)

    Jing, Peng; Nowamooz, Hossein; Chazallon, Cyrille

    2017-12-03

    Granular materials are often used in pavement structures. The influence of anisotropy on the mechanical behaviour of granular materials is very important. The coupled effects of water content and fine content usually lead to more complex anisotropic behaviour. With a repeated load triaxial test (RLTT), it is possible to measure the anisotropic deformation behaviour of granular materials. This article initially presents an experimental study of the resilient repeated load response of a compacted clayey natural sand with three fine contents and different water contents. Based on anisotropic behaviour, the non-linear resilient model (Boyce model) is improved by the radial anisotropy coefficient γ ₃ instead of the axial anisotropy coefficient γ ₁. The results from both approaches ( γ ₁ and γ ₃) are compared with the measured volumetric and deviatoric responses. These results confirm the capacity of the improved model to capture the general trend of the experiments. Finally, finite element calculations are performed with CAST3M in order to validate the improvement of the modified Boyce model (from γ ₁ to γ ₃). The modelling results indicate that the modified Boyce model with γ ₃ is more widely available in different water contents and different fine contents for this granular material. Besides, based on the results, the coupled effects of water content and fine content on the deflection of the structures can also be observed.

  17. On modulated complex non-linear dynamical systems

    International Nuclear Information System (INIS)

    Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.

    1999-01-01

    This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed

  18. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community

  19. Output controllability of nonlinear systems with bounded control

    International Nuclear Information System (INIS)

    Garcia, Rafael; D'Attellis, Carlos

    1990-01-01

    The control problem treated in this paper is the output controllability of a nonlinear system in the form: x = f(x) + g(x)u(t); y = h(x), using bounded controls. The approach to the problem consists of a modification in the system using dynamic feedback in such a way that the input/output behaviour of the closed loop matches the input/output behaviour of a completely output-controllable system with bounded controls. Sufficient conditions are also put forward on the system so that a compact set in the output space may be reached in finite time using uniformally bounded controls, and a result on output regulation in finite time with asymptotic state stabilization is obtained. (Author)

  20. Acoustic wave focusing in complex media using Nonlinear Time Reversal coded signal processing

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Dvořáková, Zuzana; Lints, M.; Kůs, V.; Salupere, A.; Převorovský, Zdeněk

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : ultrasonic testing (UT) * signal processing * TR- NEWS * nonlinear time reversal * NDT * nonlinear acoustics Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/590_DosSantos_Rev1.pdf

  1. Qualitative analysis of nonlinear incidence rate upon the behaviour of an epidemiological model

    International Nuclear Information System (INIS)

    Li Xiaogui.

    1988-12-01

    Two theorems concerning the solutions of the system of differential equations describing an epidemiological model with nonlinear incidence rate per infective individual are demonstrated. 2 refs, 1 fig

  2. Classical Mechanics as Nonlinear Quantum Mechanics

    International Nuclear Information System (INIS)

    Nikolic, Hrvoje

    2007-01-01

    All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics

  3. Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, Colin H.

    2005-01-01

    The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions

  4. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    of these for nonlinear problems is impossible or cumbersome, since Floquet theory is applicable for linear systems only. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applica-tions may demand effects of nonlinearity on structural response to be accounted for....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed......The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate...

  5. Studies on polymer electrolyte poly(vinyl) pyrrolidone (PVP) complexed with ionic liquid: Effect of complexation on thermal stability, conductivity and relaxation behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Saroj, A.L. [Department of Physics, Banaras Hindu University, Varanasi, 221005 (India); Singh, R.K., E-mail: rksingh_17@rediffmail.com [Department of Physics, Banaras Hindu University, Varanasi, 221005 (India); Chandra, S. [Department of Physics, Banaras Hindu University, Varanasi, 221005 (India)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer PVP + IL based polymer electrolyte films have been prepared and studied. Black-Right-Pointing-Pointer The complexation/interaction of PVP with IL has been confirmed by FT-IR analysis. Black-Right-Pointing-Pointer The conductivity and relaxation frequency increases with increasing IL content. Black-Right-Pointing-Pointer Two relaxation peaks for complexed and uncomplexed PVP with IL have been observed. - Abstract: Polymer electrolyte films of PVP + x wt% ionic liquid (IL) (1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF{sub 4}]) for x = 0, 5, 10, 15, 20, 25 wt% have been prepared using solution cast technique. These films were characterized by TGA, DSC, FT-IR and ac impedance spectroscopy techniques. From XRD studies it is found that the inclusion of IL increases the amorphocity of polymeric membranes. DSC thermograms show that the glass transition (T{sub g}) and melting temperatures (T{sub m}) of PVP shift upon complexation with IL. FT-IR analysis shows the complexation of PVP with IL. Thermogravimetric studies show that PVP decomposes in a single step while PVP/IL membranes exhibit two step decomposition; lower value of decomposition temperature corresponds to the decomposition of PVP/IL complex while the higher decomposition temperature has been attributed to the decomposition of PVP. The decomposition temperature of PVP/IL complex decreases with the increasing amount of IL in the PVP membrane. Temperature dependence of conductivity and dielectric relaxation frequencies have also been studied for PVP and PVP/IL membranes. Both show thermally activated Arrhenius behaviour.

  6. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β.

    Science.gov (United States)

    Ekmark-Lewén, Sara; Flygt, Johanna; Fridgeirsdottir, Gudrun A; Kiwanuka, Olivia; Hånell, Anders; Meyerson, Bengt J; Mir, Anis K; Gram, Hermann; Lewén, Anders; Clausen, Fredrik; Hillered, Lars; Marklund, Niklas

    2016-04-01

    Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Nonlinear Acoustic and Ultrasonic NDT of Aeronautical Components

    Science.gov (United States)

    Van Den Abeele, Koen; Katkowski, Tomasz; Mattei, Christophe

    2006-05-01

    In response to the demand for innovative microdamage inspection systems, with high sensitivity and undoubted accuracy, we are currently investigating the use and robustness of several acoustic and ultrasonic NDT techniques based on Nonlinear Elastic Wave Spectroscopy (NEWS) for the characterization of microdamage in aeronautical components. In this report, we illustrate the results of an amplitude dependent analysis of the resonance behaviour, both in time (signal reverberation) and in frequency (sweep) domain. The technique is applied to intact and damaged samples of Carbon Fiber Reinforced Plastics (CFRP) composites after thermal loading or mechanical fatigue. The method shows a considerable gain in sensitivity and an incontestable interpretation of the results for nonlinear signatures in comparison with the linear characteristics. For highly fatigued samples, slow dynamical effects are observed.

  8. Arbitrary Lagrangian-Eulerian method for non-linear problems of geomechanics

    International Nuclear Information System (INIS)

    Nazem, M; Carter, J P; Airey, D W

    2010-01-01

    In many geotechnical problems it is vital to consider the geometrical non-linearity caused by large deformation in order to capture a more realistic model of the true behaviour. The solutions so obtained should then be more accurate and reliable, which should ultimately lead to cheaper and safer design. The Arbitrary Lagrangian-Eulerian (ALE) method originated from fluid mechanics, but has now been well established for solving large deformation problems in geomechanics. This paper provides an overview of the ALE method and its challenges in tackling problems involving non-linearities due to material behaviour, large deformation, changing boundary conditions and time-dependency, including material rate effects and inertia effects in dynamic loading applications. Important aspects of ALE implementation into a finite element framework will also be discussed. This method is then employed to solve some interesting and challenging geotechnical problems such as the dynamic bearing capacity of footings on soft soils, consolidation of a soil layer under a footing, and the modelling of dynamic penetration of objects into soil layers.

  9. Improving Collaborative Behaviour Planning in Adult Auditory Rehabilitation: Development of the I-PLAN Intervention Using the Behaviour Change Wheel.

    Science.gov (United States)

    Barker, Fiona; Lusignan, Simon de; Deborah, Cooke

    2018-05-18

    The consequences of poorly managed hearing loss can be ameliorated with hearing aid use but rates of use are sub-optimal. The impact of audiologist behaviour on subsequent use, particularly over the long term, is unknown. This study aimed to describe the role of the behaviour change wheel in developing an intervention to introduce and embed particular clinical behaviours into adult hearing aid fitting consultations, within the framework of the Medical Research Council guidance on complex interventions. Following the steps of the behaviour change wheel, audiologist behaviours that might influence hearing aid use were identified based on a systematic review and qualitative work with audiologists. An analysis, using the COM-B model, identified potential drivers of the target behaviours. This was used to select intervention functions and behaviour change techniques likely to influence behaviour in this context. The target behaviours were as follows: giving information about the benefits of hearing aid use and the negative consequences of non-use, providing prompts for use and engaging in collaborative behavioural planning for use. The behavioural analysis suggested that psychological capability, opportunity and motivation were potential drivers of these behaviours. The intervention functions of education, coercion, training, environmental restructuring, modelling and enablement were selected and combined to develop a single complex intervention that seeks to address the target behaviours.

  10. Nonlinear and Complex Dynamics in Economics

    OpenAIRE

    William Barnett; Apostolos Serletis; Demitre Serletis

    2012-01-01

    This paper is an up-to-date survey of the state-of-the-art in dynamical systems theory relevant to high levels of dynamical complexity, characterizing chaos and near chaos, as commonly found in the physical sciences. The paper also surveys applications in economics and �finance. This survey does not include bifurcation analyses at lower levels of dynamical complexity, such as Hopf and transcritical bifurcations, which arise closer to the stable region of the parameter space. We discuss the...

  11. Extrinsic contribution to the non-linearity in a PZT disc

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Rafel [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Albareda, Alfons [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Garcia, Jose E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Tiana, Jordi [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Ringgaard, Erling [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark); Wolny, Wanda W [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark)

    2004-10-07

    Non-linear increases in elastic, piezoelectric (direct and reverse) and dielectric coefficients have been measured under a high electrical field or under high mechanical stress. The permittivity and reverse piezoelectric coefficient can be measured by applying a high voltage at a low frequency, while the elastic compliance and direct piezoelectric coefficient can be measured at the first radial resonance frequency in order to apply a high stress. The non-linear behaviour has been analysed at the radial resonance of a disc. In all the materials tested, the results show that there is a close relation between the non-linear increments of the different coefficients. An empirical model has been proposed in order to describe and understand these relations. It is assumed that either the strain or the electrical displacement is produced by intrinsic and extrinsic processes, but only the latter, which consist mainly in the motion of domain walls, contribute to the non-linearity. The model enables us to find the domain wall contribution to elastic, piezoelectric and dielectric non-linearities, and allows us to compare the amplitudes of the fields and stresses that produce the same displacement of domain walls.

  12. Experimental analysis of nonlinear oscillations in the undergraduate physics laboratory

    International Nuclear Information System (INIS)

    Moreno, R; Page, A; Riera, J; Hueso, J L

    2014-01-01

    In this paper, we present a simple experiment to introduce the nonlinear behaviour of oscillating systems in the undergraduate physics laboratory. The transverse oscillations of a spring allow reproduction of three totally different scenarios: linear oscillations, nonlinear oscillations reducible to linear for small displacements, and intrinsically nonlinear oscillations. The chosen approach consists of measuring the displacements using video photogrammetry and computing the velocities and the accelerations by means of a numerical differentiation algorithm. In this way, one can directly check the differential equation of the motion without having to integrate it, or perform an experimental study of the potential energy in each of the analysed scenarios. This experiment allows first year students to reflect on the consequences and the limits of the linearity assumption for small displacements that is so often made in technical studies. (paper)

  13. Scalable Nonlinear AUC Maximization Methods

    OpenAIRE

    Khalid, Majdi; Ray, Indrakshi; Chitsaz, Hamidreza

    2017-01-01

    The area under the ROC curve (AUC) is a measure of interest in various machine learning and data mining applications. It has been widely used to evaluate classification performance on heavily imbalanced data. The kernelized AUC maximization machines have established a superior generalization ability compared to linear AUC machines because of their capability in modeling the complex nonlinear structure underlying most real world-data. However, the high training complexity renders the kernelize...

  14. Non-linear dynamics in Parkinsonism

    Directory of Open Access Journals (Sweden)

    Olivier eDarbin

    2013-12-01

    Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.

  15. Nonlinear Dynamics: Integrability, Chaos and Patterns

    International Nuclear Information System (INIS)

    Grammaticos, B

    2004-01-01

    's staircase'. I do not quite grasp the usefulness of such project-like exercises. Projects must be assigned by the person who indeed teaches the course. There are things that I really like a lot in this book. For instance, the section on 'chaos in nonlinear electronic circuits' is particularly interesting. It offers a simple and rather inexpensive way to visualize chaos in the laboratory. The closing section of the book devoted to technological applications of nonlinear dynamics is also quite useful. The fact that the treatment remains rather elementary, based on review articles and monographs rather than research articles, adds to the intelligibility of the chapter, which will certainly prove stimulating to many a student. Of course, not everything can be perfect, and a 600-page book is bound to have some weak points. I find the treatment of quantum chaos rather sketchy and that of chaotic scattering even more so. Also, while the authors are aware of the importance of complex time in integrability, they do not attempt an explanation of the fundamental puzzle: 'why, while the physical time is par excellence real, do we need a complex time in order to study the long-time behaviour of dynamical systems?'. Also the book devotes just four pages to integrable discrete systems. Given the tremendous development of this domain over the past decade, this short presentation is not doing justice to the subject. (However as the present reviewer is editing Springer Lecture Notes in Physics on precisely 'Integrable Discrete Systems', to appear in early 2004, he would be the last one to complain about the absence of more details on the matter in the present book.) To sum it up, the monograph of Lakshmanan and Rajasekar is a book written by physicists and for physicists. It will be of interest to both the experienced practitioner and to the uninitiated. Its main quality resides in its thorough, pedagogical approach to the matter. Moreover the relaxed, not too formal, style makes for easy

  16. Nonlinear Dynamics: Integrability, Chaos and Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Grammaticos, B [GMPIB, Universite Paris VII, Tour 24--14, 5e etage, Case 7021, 75251 Paris (France)

    2004-02-06

    -locking and b) devil's staircase'. I do not quite grasp the usefulness of such project-like exercises. Projects must be assigned by the person who indeed teaches the course. There are things that I really like a lot in this book. For instance, the section on 'chaos in nonlinear electronic circuits' is particularly interesting. It offers a simple and rather inexpensive way to visualize chaos in the laboratory. The closing section of the book devoted to technological applications of nonlinear dynamics is also quite useful. The fact that the treatment remains rather elementary, based on review articles and monographs rather than research articles, adds to the intelligibility of the chapter, which will certainly prove stimulating to many a student. Of course, not everything can be perfect, and a 600-page book is bound to have some weak points. I find the treatment of quantum chaos rather sketchy and that of chaotic scattering even more so. Also, while the authors are aware of the importance of complex time in integrability, they do not attempt an explanation of the fundamental puzzle: 'why, while the physical time is par excellence real, do we need a complex time in order to study the long-time behaviour of dynamical systems?'. Also the book devotes just four pages to integrable discrete systems. Given the tremendous development of this domain over the past decade, this short presentation is not doing justice to the subject. (However as the present reviewer is editing Springer Lecture Notes in Physics on precisely 'Integrable Discrete Systems', to appear in early 2004, he would be the last one to complain about the absence of more details on the matter in the present book.) To sum it up, the monograph of Lakshmanan and Rajasekar is a book written by physicists and for physicists. It will be of interest to both the experienced practitioner and to the uninitiated. Its main quality resides in its thorough, pedagogical approach to the matter

  17. Information theory and stochastics for multiscale nonlinear systems

    CERN Document Server

    Majda, Andrew J; Grote, Marcus J

    2005-01-01

    This book introduces mathematicians to the fascinating emerging mathematical interplay between ideas from stochastics and information theory and important practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of com...

  18. Effect of temperature and pressure on non-linear conduction in GeTeSe chalcogenide glass

    International Nuclear Information System (INIS)

    El-Mansy, M.K.

    1998-01-01

    The I-V characteristic curves were studied in the temperature range 301-359 K and pressure range up to 7.15 x 10 9 Pa which illustrate a non-linear behaviour below (high-resistance region) and beyond (negative-resistance region) a breakdown point characterising Ge 27 Te 62 Se 11 chalcogenide glasses. The general behaviour is shifted towards lower voltage and higher current when the ambient temperature and/or the applied pressure were increased. The non-linear behaviour in the pre breakdown region is discussed according to the Poole-Frenkel field emission of electrons from deep traps located at a depth equal to 0.372eV. The analysis of the effect of field on the non-linear conduction in Ge 27 Te 62 Se 11 chalcogenide glass suggests a modification of the energy difference between filled and empty sites, where the effect of pressure suggests a reduction of the energy gap width. The analysis based on simple thermal effects in the region closer to the breakdown point implies the electrothermal process initiating the negative resistance region. The results of post breakdown region (negative-resistance region) imply the electron hopping between filled and empty localised states at Fermi level. The density of localised states is estimated which lies in the range 5.7 x 10 16 -1.84 x 10 18 cm -3 /eV

  19. Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity

    International Nuclear Information System (INIS)

    Lai, S K; Chow, K W

    2012-01-01

    Exact vibration modes of a nonlinear oscillator, which contains both quadratic friction and a mixed-parity restoring force, are derived analytically. Two families of exact solutions are obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behaviour of the system in response to changes in physical parameters that concern nonlinearity. The physical significance of the signs (i.e. attractive or repulsive nature) of the linear, quadratic and cubic restoring forces is discussed. A qualitative analysis is also conducted to provide valuable physical insight into the nature of the system. (paper)

  20. Dynamics and vibrations progress in nonlinear analysis

    CERN Document Server

    Kachapi, Seyed Habibollah Hashemi

    2014-01-01

    Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...

  1. Nonlinear optics of liquid crystalline materials

    International Nuclear Information System (INIS)

    Khoo, Iam Choon

    2009-01-01

    Liquid crystals occupy an important niche in nonlinear optics as a result of their unique physical and optical properties. Besides their broadband birefringence and transparency, abilities to self-assemble into various crystalline phases and to conform to various flexible forms and shapes, liquid crystals are compatible with almost all other optoelectronic materials and technology platforms. In both isotropic and ordered phases, liquid crystals possess extraordinarily large optical nonlinearities that stretch over multiple time scales. To date, almost all conceivable nonlinear optical phenomena have been observed in a very broad spectrum spanning the entire visible to infrared and beyond. In this review, we present a self-contained complete discussion of the optical nonlinearities of liquid crystals, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties. Starting with a brief historical account of the development of nonlinear optical studies of the mesophases of liquid crystals, we then review various liquid crystalline materials and structures, and their nonlinear optical properties. Emphasis is placed on the nematic phase, which best exemplifies the dual nature of liquid crystals, although frequent references to other phases are also made. We also delve into recent work on novel structures such as photonic crystals, metamaterials and nanostructures and their special characteristics and emergent properties. The mechanisms and complex nonlocal dynamics of optical nonlinearities associated with laser induced director axis reorientation, thermal, density, and order parameter fluctuations, space charge field formation and photorefractivity are critically reviewed as a foundation for the discussions of various nonlinear optical processes detailed in this paper

  2. A Design of Mechanical Frequency Converter Linear and Non-linear Spring Combination for Energy Harvesting

    International Nuclear Information System (INIS)

    Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F

    2014-01-01

    In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator

  3. Modelling the behaviour of steel fibre reinforced precast beam-to-column connection

    Science.gov (United States)

    Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.

    2017-11-01

    The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.

  4. Determining the magnetically nonlinear characteristics of a three phase core-type power transformer

    International Nuclear Information System (INIS)

    Dolinar, Matjaz; Stumberger, Gorazd; Polajzer, Bostjan; Dolinar, Drago

    2006-01-01

    This paper presents nonlinear iron core model of a three-phase, three-limb power transformer which is given by the current-dependant characteristics of flux linkages. The magnetically nonlinear characteristics are determined by controlled magnetic excitation of all three limbs which allows to take into account the variable magnetic-cross couplings between different coils placed on limbs, caused by saturation. The corresponding partial derivatives of measured flux linkage characteristics are used in the transformer circuit model as a magnetically nonlinear iron core model in order to analyze the behaviour of a nonsymmetrically excited transformer. Numerical results using transformer model with the determined iron core model agree very well with the measured results

  5. Multistate modelling extended by behavioural rules: An application to migration.

    Science.gov (United States)

    Klabunde, Anna; Zinn, Sabine; Willekens, Frans; Leuchter, Matthias

    2017-10-01

    We propose to extend demographic multistate models by adding a behavioural element: behavioural rules explain intentions and thus transitions. Our framework is inspired by the Theory of Planned Behaviour. We exemplify our approach with a model of migration from Senegal to France. Model parameters are determined using empirical data where available. Parameters for which no empirical correspondence exists are determined by calibration. Age- and period-specific migration rates are used for model validation. Our approach adds to the toolkit of demographic projection by allowing for shocks and social influence, which alter behaviour in non-linear ways, while sticking to the general framework of multistate modelling. Our simulations yield that higher income growth in Senegal leads to higher emigration rates in the medium term, while a decrease in fertility yields lower emigration rates.

  6. Nonlinear analysis on power reactor dynamics

    International Nuclear Information System (INIS)

    Konno, H.; Hayashi, K.

    1997-01-01

    We have shown that the origin of intermittent oscillation observed in a BWR can be ascribed to the couplings among the spatial modes starting from a non-linear center manifold equation with a delay-time and a spatial diffusion. We can reduce the problem to the stochastic coupled van der Pol oscillators with non-linear coupling term. This non-linear coupling term plays an important role to break the symmetry of the system and the non-linear damping of the system. The phenomenological generalization of van der Pol oscillator coupled by the linear diffusion term is not appropriate for describing the nuclear power reactors. However, one must start from the coupled partial differential equations by taking into account the two energy group neutrons, the thermo-hydraulic equations including two-phase flow. In this case, the diffusion constant must be a complex number as is demonstrated in a previous paper. The results will be reported in the near future. (J.P.N.)

  7. Complexity: a new paradigm for fracture mechanics

    Directory of Open Access Journals (Sweden)

    S. Puzzi

    2009-10-01

    Full Text Available The so-called Complexity Sciences are a topic of fast growing interest inside the scientific community. Actually, researchers did not come to a definition of complexity, since it manifests itself in so many different ways [1]. This field itself is not a single discipline, but rather a heterogeneous amalgam of different techniques of mathematics and science. In fact, under the label of Complexity Sciences we comprehend a large variety of approaches: nonlinear dynamics, deterministic chaos theory, nonequilibrium thermodynamics, fractal geometry, intermediate asymptotics, complete and incomplete similarity, renormalization group theory, catastrophe theory, self-organized criticality, neural networks, cellular automata, fuzzy logic, etc. Aim of this paper is at providing insight into the role of complexity in the field of Materials Science and Fracture Mechanics [2-3]. The presented examples will be concerned with the snap-back instabilities in the structural behaviour of composite structures (Carpinteri [4-6], the occurrence of fractal patterns and selfsimilarity in material damage and deformation of heterogeneous materials, and the apparent scaling on the nominal mechanical properties of disordered materials (Carpinteri [7,8]. Further examples will deal with criticality in the acoustic emissions of damaged structures and with scaling in the time-to-failure (Carpinteri et al. [9]. Eventually, results on the transition towards chaos in the dynamics of cracked beams will be reported (Carpinteri and Pugno [10,11].

  8. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity.

    Science.gov (United States)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-26

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  9. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    International Nuclear Information System (INIS)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-01-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current–voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling. (paper)

  10. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    Science.gov (United States)

    Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  11. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    Science.gov (United States)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  12. Wave modulation in a nonlinear dispersive medium

    International Nuclear Information System (INIS)

    Kim, Y.C.; Khadra, L.; Powers, E.J.

    1980-01-01

    A model describing the simultaneous amplitude and phase modulation of a carrier wave propagating in a nonlinear dispersive medium is developed in terms of nonlinear wave-wave interactions between the sidebands and a low frequency wave. It is also shown that the asymmetric distribution of sidebands is determined by the wavenumber dependence of the coupling coefficient. Digital complex demodulation techniques are used to study modulated waves in a weakly ionized plasma and the experimental results support the analytical model

  13. Quantum theory from a nonlinear perspective Riccati equations in fundamental physics

    CERN Document Server

    Schuch, Dieter

    2018-01-01

    This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in ...

  14. Modelling long term rockslide displacements with non-linear time-dependent relationships

    Science.gov (United States)

    De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico

    2015-04-01

    Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological

  15. Asymptotic analysis of a stochastic non-linear nuclear reactor model

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; Sancho, J.M.

    1986-01-01

    The asymptotic behaviour of a stochastic non-linear nuclear reactor modelled by a master equation is analysed in two different limits: the thermodynamic limit and the zero-neutron-source limit. In the first limit a finite steady neutron density is obtained. The second limit predicts the neutron extinction. The interplay between these two limits is studied for different situations. (author)

  16. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    Science.gov (United States)

    Schöll, Eckehard

    2005-08-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  17. Transient Behaviour of Interacting Extractive System

    International Nuclear Information System (INIS)

    El-Bialy, S.H.; Elsherbiny, A.E.

    2000-01-01

    The aim of this study is to investigate the dynamic behaviour of mixer-settler extractive system, which represents an interacting one. When a stimulus single is introduced to aqueous feed; the response of the aqueous phase of the first stage is considered as stimulus signals to both organic phase in the same stage and the aqueous phase of the second one. The response of the last phase represents-in turn- stimulus signals to both organic phase in the same stage and the aqueous phase in the next one. Mathematical model was derived for a system consisting of two stages in the cascade. The model assumed a continuous stirred tank reactor (CSTR) for mixer zone and variable holdups and flow rates of both aqueous and organic phases during operation. Non-linear equilibrium was considered. The obtained model-being non-linear- was linearized and Laplace transformation method was used to solve the model. The system constants are those corresponding to extraction of uranyl nitrate from 3 N nitric acid solution using Tbp dissolved in kerosene at 30% of the former. Stimulus-response test was carried out on the model by considering a step increase in solute concentration in aqueous feed stream. The system behaviour was tested at different values of operating parameters. First order behaviour for the first stage was observed and higher order for the rest of the system. A general relation for the difference in the power of the denominator and numerator of the transfer function of the i th stage was concluded for aqueous phase. The study showed that the system overdamp over the practical range of chosen parameters as explained from the values of transfer function roots

  18. Influence of forced respiration on nonlinear dynamics in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1997-01-01

    Although it is doubtful whether the normal sinus rhythm can be described as low-dimensional chaos, there is evidence for inherent nonlinear dynamics and determinism in time series of consecutive R-R intervals. However, the physiological origin for these nonlinearities is unknown. The aim...... with a metronome set to 12 min(-1). Nonlinear dynamics were measured as the correlation dimension and the nonlinear prediction error. Complexity expressed as correlation dimension was unchanged from normal respiration, 9.1 +/- 0.5, compared with forced respiration, 9.3 +/- 0.6. Also, nonlinear determinism...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...

  19. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  20. A collective variable approach and stabilization for dispersion-managed optical solitons in the quintic complex Ginzburg-Landau equation as perturbations of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Fewo, S I; Kenfack-Jiotsa, A; Kofane, T C

    2006-01-01

    With the help of the one-dimensional quintic complex Ginzburg-Landau equation (CGLE) as perturbations of the nonlinear Schroedinger equation (NLSE), we derive the equations of motion of pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre optic links. The equations obtained are investigated numerically in order to view the evolution of pulse parameters along the propagation distance, and also to analyse effects of initial amplitude and width on the propagating pulse. Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully numerical simulation of the one-dimensional quintic CGLE as perturbations of NLSE finally tests the results of the CV theory. A good agreement is observed between both methods

  1. Single-step digital backpropagation for nonlinearity mitigation

    DEFF Research Database (Denmark)

    Secondini, Marco; Rommel, Simon; Meloni, Gianluca

    2015-01-01

    Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier...... in the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for bulk dispersion compensation....

  2. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  3. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  4. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  5. Nonlinear analysis of pupillary dynamics.

    Science.gov (United States)

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  6. Anti-synchronization between different chaotic complex systems

    International Nuclear Information System (INIS)

    Liu Ping; Liu Shutang

    2011-01-01

    Many studies on the anti-synchronization of nonlinear real dynamic systems have been carried out, whereas the anti-synchronization of chaotic complex systems has not been studied extensively. In this work, the anti-synchronization between a new chaotic complex system and a complex Lorenz system and that between a new chaotic complex system and a complex Lue system were separately investigated by active control and nonlinear control methods, and explicit expressions were derived for the controllers that are used to achieve the anti-synchronization of chaotic complex systems. These expressions were tested numerically and excellent agreement was found. Concerning the new chaotic complex system, we discuss its dynamical properties including dissipation, chaotic behavior, fixed points, and their stability and invariance.

  7. A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei

    International Nuclear Information System (INIS)

    Volpe, M.C.

    1997-01-01

    Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for 208 Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author)

  8. The complexity paradigm in management reconceptualizing

    Directory of Open Access Journals (Sweden)

    Petrović Slavica P.

    2005-01-01

    Full Text Available Chaos and complexity theory is a special, functionalist systems approach to dealing with complex, dynamic, nonlinear systems. Through treating organizations as complex, with their environments coevolving, nonlinear systems, complexity theory is aimed at creative research of their erratic nature. When an organization is in a state of bounded instability, at the edge of chaos, order and disorder are intertwined, its behavior is irregular and unpredictable but has some pattern. According to the complexity paradigm organizations have to strive to avoid the equilibrium states of stability and instability. They have instead to strive to remain in a state of bounded instability, at the edge of chaos, where they are able to display their full potential for creativity and innovation.

  9. Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems

    Science.gov (United States)

    Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...

  10. Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE

    Science.gov (United States)

    Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.

    2005-03-01

    Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.

  11. Changing micronutrient intake through (voluntary) behaviour change

    DEFF Research Database (Denmark)

    Jensen, Birger Boutrup; Lähteenmäki, Liisa; Grunert, Klaus G

    2012-01-01

    change. The behaviours affecting folate intake were recognised and categorised. Behaviour change mechanisms from “rational model of man”, behavioural economics, health psychology and social psychology were identified and aligned against folate-related behaviours. The folate example demonstrated......The objective of this study was to relate behaviour change mechanisms to nutritionally relevant behaviour and demonstrate how the different mechanisms can affect attempts to change these behaviours. Folate was used as an example to illuminate the possibilities and challenges in inducing behaviour...... the complexity of mechanisms influencing possible behavioural changes, even though this only targets the intake of a single micronutrient. When considering possible options to promote folate intake, the feasibility of producing the desired outcome should be related to the mechanisms of required changes...

  12. Nonlinear metallogeny and the depths of the earth

    Science.gov (United States)

    Shcheglov, A. D.; Govorov, I. N.

    This book is concerned with the basic relations regarding a new approach in the field of knowledge of metallogenesis, taking into account the complex character of the mutual dependence between ore deposits, the structure of the earth's crust, and depth relations. The principles of nonlinear metallogeny are examined, giving attention to the development of the metallogenic science during the past few years, the formation of the concept 'nonlinear metallogeny', the main aspects of nonlinear metallogeny, the origin of the ore deposits and the characteristics of ore formations in the mantle, the parallel manifestation of ore-forming processes in the crust, sedimentary-hydrothermal ore formations and their place in nonlinear metallogeny, and various types of rock and ore formations. The structure, composition, and metalliferous characteristics found at various depth zones of the tectonosphere are discussed along with the geochemical and metallogenic heterogeneity in the mantle. General questions of nonlinear metallogeny are also investigated.

  13. Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor

    Directory of Open Access Journals (Sweden)

    Lin Ye

    2014-02-01

    Full Text Available Using the finite element method (FEM and particle swarm optimization (PSO, a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters’ effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from −60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from −60° to 60°.

  14. Parallel Nonlinear Optimization for Astrodynamic Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes the development of a new parallel nonlinear program (NLP) solver software package. NLPs allow the solution of complex optimization problems,...

  15. Creep behaviour of thin walled composite tubes

    International Nuclear Information System (INIS)

    Thiebaud, F.; Muzic, B.; Perreux, D.; Varchon, D.; Oytana, C.; Lebras, J.

    1993-01-01

    Fiber reinforced composites are more and more employed in high performance structure for nuclear power plant, mainly as water piping tubes. The increase of the use of composites is due to the advantages that they give : high stiffness, large ultimate strength, corrosion resistance. This last advantage is sought for the pieces in contact with water, and it's one of the reason why the composite can be preferred to metal. However the mechanical behaviour of composite is actually poorly known. The high anisotropy is the main difficulty to obtain a realistic model of behaviour. This problem implies that the safety factor used in the design of structure is often too large. In this article a general overview of the mechanical behaviour of tube made in glass epoxy material is proposed. We discuss especially the creep behaviour under biaxial loadings. The form of the proposed model presently allows predicting a nonlinearity of the behaviour and provides a good correlation with the experimental data of several tests not described in this paper. It accounts for the change of the Poisson ratio during creep and cyclic tests. However the complete identification requires long time testings and consequently the model must be corrected to take into account the damage which occurs in these cases

  16. New analytical solutions for nonlinear physical models of the ...

    Indian Academy of Sciences (India)

    In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of ...

  17. Relations between nonlinear Riccati equations and other equations in fundamental physics

    International Nuclear Information System (INIS)

    Schuch, Dieter

    2014-01-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown

  18. Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology.

    Science.gov (United States)

    Ezenwa, Vanessa O; Archie, Elizabeth A; Craft, Meggan E; Hawley, Dana M; Martin, Lynn B; Moore, Janice; White, Lauren

    2016-04-13

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour-disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour-parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour-parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained. © 2016 The Author(s).

  19. Nonlinear Squeeze Film Dampers without Centralized Springs

    Directory of Open Access Journals (Sweden)

    Zhu Changsheng

    2000-01-01

    Full Text Available In this paper, the bifurcation behavior of a flexible rotor supported on nonlinear squeeze film dampers without centralized springs is analyzed numerically by means of rotor trajectories, Poincar maps, bifurcation diagrams and power spectra, based on the short bearing and cavitated film assumptions. It is shown that there also exist two different operations (i.e., socalled bistable operations in some speed regions in the rotor system supported on the nonlinear squeeze film dampers without centralized springs. In the bistable operation speed regions, the rotor system exhibits synchronous, sub-synchronous, sub-super-synchronous and almost-periodic as well as nonperiodic motions. The periodic bifurcation behaviors of the rotor system supported on nonlinear squeeze film dampers without centralized springs are very complex and require further investigations.

  20. Nonlinearity and chaos in wireless network traffic

    International Nuclear Information System (INIS)

    Mukherjee, Somenath; Ray, Rajdeep; Samanta, Rajkumar; Khondekar, Mofazzal H.; Sanyal, Goutam

    2017-01-01

    The natural complexity of wireless mobile network traffic dynamics has been assessed in this article by tracing the presence of nonlinearity and chaos in the profile of daily peak hour call arrival and daily call drop of a sub-urban local mobile switching centre. The tools like Recurrence Plot and Recurrence Quantification Analysis (RQA) has been used to reveal the probable presence of non-stationarity, nonlinearity and chaosity in the network traffic. Information Entropy (IE) and 0–1 test have been employed to provide the quantitative support to the findings. Both the daily peak hour call arrival profile and the daily call drop profile exhibit non-stationarity, determinism and nonlinearity with the former one being more regular while the later one is chaotic.

  1. Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method

    International Nuclear Information System (INIS)

    Bekir Ahmet; Güner Özkan

    2013-01-01

    In this paper, we use the fractional complex transform and the (G′/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann—Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations

  2. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    Science.gov (United States)

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  3. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaixuan, E-mail: kaixuanxubjtu@yeah.net; Wang, Jun

    2017-02-26

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  4. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    International Nuclear Information System (INIS)

    Xu, Kaixuan; Wang, Jun

    2017-01-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  5. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2015-09-15

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  6. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta

    2015-01-01

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10 -5 cm 2 /W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  7. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  8. Nonlinear free vibration of single walled Carbone NanoTubes conveying fluid

    Directory of Open Access Journals (Sweden)

    Azrar A.

    2014-04-01

    Full Text Available Nonlinear free vibration of single-walled carbon nanotubes (CNTs conveying fluid are modeled and numerically simulated based on von Kármán geometric nonlinearity and Eringen’s nonlocal elasticity theory. The CNTs are modelled as nanobeams where the effects of transverse shear deformation and rotary inertia are considered within the framework of Timoshenko beam theory. The governing equations and boundary conditions are derived using the Hamilton’s principle and the nonlinear equation of motion is solved by the Galerkin’s method. The small scale parameter and the fluid-tube interaction effects on the dynamic behaviours of the CNT-fluid system as well as the instabilities induced by the fluid-velocity can be investigated. The critical fluid-velocity and frequency-amplitude relationships as well as the flutter and divergence instability types and the associated time responses are obtained based on the presented methodological approach.

  9. Steady-state behaviour of a solar array system with elastic stops

    NARCIS (Netherlands)

    Campen, D.H. van; Fey, R.H.B.; Liempt, F.P.H. van; Kraker, A. de

    1999-01-01

    In recent years a method was developed by the authors for efficient analysis of the long term behaviour of mechanical systems with local nonlinearities under periodic excita-tien. In this method the linear parts of the system are modelled using the finite element method. In order to keep the

  10. Iteration of some discretizations of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Ross, K.A.; Thompson, C.J.

    1986-01-01

    We consider several discretizations of the nonlinear Schroedinger equation which lead naturally to the study of some symmetric difference equations of the form PHIsub(n+1) + PHIsub(n-1) = f(PHIsub(n)). We find a variety of interesting and exotic behaviour from simple closed orbits to intricate patterns of orbits and loops in the (PHIsub(n+1),PHIsub(n)) phase-plane. Some analytical results for a special case are also presented. (orig.)

  11. Nonlinear Finite Element Analysis of Reinforced Concrete Shells

    Directory of Open Access Journals (Sweden)

    Mustafa K. Ahmed

    2013-05-01

    Full Text Available This investigation is to develop a numerical model suitable for nonlinear analysis of reinforced concrete shells. A nine-node Lagrangian element Figure (1 with enhanced shear interpolation will be used in this study. Table (1 describes shape functions and their derivatives of this element.An assumed transverse shear strain is used in the formulation of this element to overcome shear locking. Degenerated quadratic thick plate elements employing a layered discrelization through the thickness will be adopted. Different numbers of layers for different thickness can be used per element. A number of layers between (6 and 10 have proved to be appropriate to represent the nonlinear material behavior in structures. In this research 8 layers will be adequate. Material nonlinearities due to cracking of concrete, plastic flow or crushing of concrete in compression and yield condition of reinforcing steel are considered. The maximum tensile strength is used as a criterion for crack initiation. Attention is given to the tension stiffening phenomenon and the degrading effect of cracking on the compressive and shear strength of concrete. Perfect bond between concrete and steel is assumed. Attention is given also to geometric nonlinearities. An example have been chosen in order to demonstrate the suitability of the models by comparing the predicted behaviour with the experimental results for shell exhibiting various modes of failure.

  12. Nonlinear amplitude dynamics in flagellar beating.

    Science.gov (United States)

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  13. Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance

    Science.gov (United States)

    Muller, Viktor; Lindenberger, Ulman

    2012-01-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…

  14. International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    CSNDD 2012; CSNDD 2014

    2015-01-01

    This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics.  Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...

  15. A methodology for modelling energy-related human behaviour: Application to window opening behaviour in residential buildings

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano P.

    2013-01-01

    that affect the results accuracy. Above all, the real energy performance can be affected by the actual behaviour of the building occupants. Thus, there are great benefits to be derived from improving models that simulate the behaviour of human beings within the context of engineered complex systems...... for modelling the human behaviour related to the control of indoor environment. The procedure is applied at models of occupants’ interactions with windows (opening and closing behaviour). Models of occupants’ window opening behaviour were inferred based on measurements and implemented in a simulation program......An energy simulation of a building is a mathematical representation of its physical behaviour considering all the thermal, lighting, acoustics aspects. However, a simulation cannot precisely replicate a real construction because all the simulations are based on a number of key assumptions...

  16. Fusion, space and solar plasmas as complex systems

    International Nuclear Information System (INIS)

    Dendy, R O; Chapman, S C; Paczuski, M

    2007-01-01

    Complex systems science seeks to identify simple universal models that capture the key physics of extended macroscopic systems, whose behaviour is governed by multiple nonlinear coupled processes that operate across a wide range of spatiotemporal scales. In such systems, it is often the case that energy release occurs intermittently, in bursty events, and the phenomenology can exhibit scaling, that is a significant degree of self-similarity. Within plasma physics, such systems include Earth's magnetosphere, the solar corona and toroidal magnetic confinement experiments. Guided by broad understanding of the dominant plasma processes-for example, turbulent transport in tokamaks or reconnection in some space and solar contexts-one may construct minimalist complex systems models that yield relevant global behaviour. Examples considered here include the sandpile approach to tokamaks and the magnetosphere and a multiple loops model for the solar coronal magnetic carpet. Such models can address questions that are inaccessible to analytical treatment and are too demanding for contemporary computational resources; thus they potentially yield new insights, but risk being simplistic. Central to the utility of these models is their capacity to replicate distinctive aspects of observed global phenomenology, often strongly nonlinear, or of event statistics, for which no explanation can be obtained from first principles considerations such as the underlying equations. For example, a sandpile model, which embodies critical-gradient-triggered avalanching transport associated with nearest-neighbour mode coupling and simple boundary conditions (and little else), can be used to generate some of the distinctive observed elements of tokamak confinement phenomenology such as ELMing and edge pedestals. The same sandpile model can also generate distributions of energy-release events whose distinctive statistics resemble those observed in the auroral zone. Similarly, a multiple loops model

  17. Multifractal analysis of forest fires in complex regions

    Science.gov (United States)

    Vega Orozco, C. D.; Kanevski, M.; Golay, J.; Tonini, M.; Conedera, M.

    2012-04-01

    Forest fires can be studied as point processes where the ignition points represent the set of locations of the observed events in a defined study region. Their spatial and temporal patterns can be characterized by their fractal properties; which quantify the global aspect of the geometry of the support data. However, a monofractal dimension can not completely describe the pattern structure and related scaling properties. Enhancements in fractal theory had developed the multifractal concept which describes the measures from which interlinked fractal sets can be retrieved and characterized by their fractal dimension and singularity strength [1, 2]. The spatial variability of forest fires is conditioned by an intermixture of human, topographic, meteorological and vegetation factors. This heterogeneity makes fire patterns complex scale-invariant processes difficult to be depicted by a single scale. Therefore, this study proposes an exploratory data analysis through a multifractal formalism to characterize and quantify the multiscaling behaviour of the spatial distribution pattern of this phenomenon in a complex region like the Swiss Alps. The studied dataset is represented by 2,401 georeferenced forest fire ignition points in canton Ticino, Switzerland, in a 40-years period from 1969 to 2008. Three multifractal analyses are performed: one assesses the multiscaling behaviour of fire occurrence probability of the support data (raw data) and four random patterns simulated within three different support domains; second analysis studies the multifractal behavior of patterns from anthropogenic and natural ignited fires (arson-, accident- and lightning-caused fires); and third analysis aims at detecting scale-dependency of the size of burned area. To calculate the generalized dimensions, Dq, a generalization of the box counting methods is carried out based on the generalization of Rényi information of the qth order moment of the probability distribution. For q > 0, Dq

  18. Sine sweep and steady-state response of simplified solar array models with nonlinear elements

    NARCIS (Netherlands)

    Fey, R.H.B.; van Liempt, F.P.H.

    2002-01-01

    In this paper the nonlinear dynamic behaviour of two simplified solar array systems is investigated experimentally and numerically. A simplified beam model supported by one snubber (a bilinear spring which can only take compressive forces) is used to investigate the dynamics of the extension arm on

  19. Energy, the Environment and Behaviour Change: A survey of insights from behavioural economics

    OpenAIRE

    Baddeley, M.

    2011-01-01

    Evidence of climate change is largely undisputed but moderating the impacts not only of climate change but also of resource depletion is a complex, multi-faceted problem. Technical solutions will have a large role to play but engineering behaviour change within households and firms is essential to harnessing the potential for energy efficient consumption, production and investment. To inform debates about behavior change, this paper explores some insights from behavioural economics including ...

  20. Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride.

    Science.gov (United States)

    Santangelo, Andrea; Provensi, Gustavo; Costa, Alessia; Blandina, Patrizio; Ricca, Valdo; Crescimanno, Giuseppe; Casarrubea, Maurizio; Passani, M Beatrice

    2017-02-01

    Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nonlinear analysis of RC cylindrical tank and subsoil accounting for a low concrete strength

    Directory of Open Access Journals (Sweden)

    Lewiński Paweł M.

    2017-01-01

    Full Text Available The paper discusses deformational and incremental approaches to a nonlinear FE analysis of soil-structure interaction including the description of behaviour of the RC structure and the subsoil under short-term loading. Two kinds of constitutive models for ground and structure were adopted for a nonlinear interaction analysis of the RC cylindrical tank with subsoil. The constitutive laws for concrete and subsoil were developed in compliance with the deformational and flow theories of plasticity. Moreover, a non-linear elastic-brittle-plastic analysis of RC axi-symmetric structures using finite element iterative techniques is presented. The results of the two types of FE analysis of soil-structure interaction are compared taking into account a low concrete strength of tank structure.

  2. Complex terrain wind resource estimation with the wind-atlas method: Prediction errors using linearized and nonlinear CFD micro-scale models

    DEFF Research Database (Denmark)

    Troen, Ib; Bechmann, Andreas; Kelly, Mark C.

    2014-01-01

    Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...

  3. Flow assurance : complex phase behavior and complex work requires confidence and vigilance

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.D. [ConocoPhillips, Major Projects, Advanced Integrated Simulation, Houston, TX (United States)

    2008-07-01

    Petroleum exploration and development projects and operations increasingly rely on flow assurance definition. Flow assurance is an integrating discipline as it follows the fluid from the reservoir to the market. Flow assurance works across complex technical and non-technical interfaces, including the reservoir, well completions, operation processes, project management, physical/organic chemistry, fluid mechanics, chemical engineering, mechanical engineering and corrosion. The phase behaviour in real fluids also has complex interfaces. The understanding and management of flow assurance of complex phase behaviour must be well communicated in order to enable proper selection, execution, and operation of development concepts designed to manage successful production within the fluid's phase behaviour. Simulation tools facilitate the translation of science into engineering. Academic, industrial, and field research is the core of these tools. The author cautioned that vigilance is required to assist and identify the right time to move innovation into the core tools.

  4. Complex tasks force hand laterality and technological behaviour in naturalistically housed chimpanzees: inferences in hominin evolution.

    Science.gov (United States)

    Mosquera, M; Geribàs, N; Bargalló, A; Llorente, M; Riba, D

    2012-01-01

    Clear hand laterality patterns in humans are widely accepted. However, humans only elicit a significant hand laterality pattern when performing complementary role differentiation (CRD) tasks. Meanwhile, hand laterality in chimpanzees is weaker and controversial. Here we have reevaluated our results on hand laterality in chimpanzees housed in naturalistic environments at Fundació Mona (Spain) and Chimfunshi Wild Orphanage (Zambia). Our results show that the difference between hand laterality in humans and chimpanzees is not as great as once thought. Furthermore, we found a link between hand laterality and task complexity and also an even more interesting connection: CRD tasks elicited not only the hand laterality but also the use of tools. This paper aims to turn attention to the importance of this threefold connection in human evolution: the link between CRD tasks, hand laterality, and tool use, which has important evolutionary implications that may explain the development of complex behaviour in early hominins.

  5. Biological behaviour of plutonium inhaled by baboons as plutonium n-tributylphosphate complex. Comparison with ICRP models

    International Nuclear Information System (INIS)

    Metivier, H.; Duserre, C.; Rateau, G.; Legendre, N.; Masse, R.; Piechowski, J.; Menoux, B.

    1989-01-01

    In order to devise a model capable of calculating committed doses for workers contaminated by inhalation of plutonium tributylphosphate complex during reprocessing, we investigated the biokinetics of plutonium in baboons after inhalation of this chemical form. The animals were killed 0.6, 3, 15, 30, 90 and 365 days post inhalation. Urine and faeces were collected daily. After killing, the main organs were collected for chemical analysis. In order to improve our knowledge of the behaviour of systemic plutonium, three baboons were given an intravenous injection of Pu-TBP and were respectively killed 2, 30 and 365 days post injection. We observed that Pu-TBP could be classified as a W compound, with a half-time for lung clearance of 150 days. Urinary Pu excretion was 3 times higher than was expected from Durbin's model, suggesting that Pu introduced as Pu-TBP, is extremely mobile, and that the complex formed with blood proteins differs from the one formed after inhalation of plutonium nitrate. (author)

  6. Mechanical behaviour of wood T-joints. Experimental and numerical investigation

    Directory of Open Access Journals (Sweden)

    C.L. dos Santos

    2015-01-01

    Full Text Available Results of a double-shear single-dowel wood connection tested under monotonic quasi-static compression loading are presented and discussed in this paper. The wood used in this study was a pine wood, namely the Pinus pinaster species, which is one of the most important Portuguese species. Each connection (specimen consists of three wood members: a centre member, loaded in compression along the parallel-tograin direction and two simply supported side members, loaded along the perpendicular-to-grain direction (Tconnection. The load transfer between wood members was assured by means of a steel dowel, which is representative of the most common joining technique applied for structural details in wooden structures. The complete load-slip behaviour of the joint is obtained until failure. In particular, the values of the stiffness, the ultimate loads and the ductility were evaluated. Additionally, this investigation proposed non-linear 3D finite element models to simulate the T-joint behaviour. The interaction between the dowel and the wood members was simulated using contact finite elements. A plasticity model, based on Hill’s criterion, was used to simulate the joint ductility and cohesive damage modelling was applied to simulate the brittle failure modes (splitting observed in the side members of the joint. The simulation procedure allowed a satisfactory description of the non-linear behaviour of the T-joint including the collapse prediction.

  7. Non-linear Growth Models in Mplus and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  8. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J., E-mail: jarir.aktaa@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V. [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  9. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    International Nuclear Information System (INIS)

    Aktaa, J.; Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V.

    2014-01-01

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  10. A constructive nonlinear array (CNA) method for barely visible impact detection in composite materials

    Science.gov (United States)

    Malfense Fierro, Gian Piero; Meo, Michele

    2017-04-01

    Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).

  11. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  12. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Science.gov (United States)

    Olabarria, Celia; Gestoso, Ignacio; Lima, Fernando P; Vázquez, Elsa; Comeau, Luc A; Gomes, Filipa; Seabra, Rui; Babarro, José M F

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  13. Nonlinear viscoelastic behaviour of shells of revolution under arbitrary loading

    International Nuclear Information System (INIS)

    Leonard, J.W.; Arbabi-Kanjoori, F.

    1975-01-01

    A formulation and solution technique are presented for the creep analysis of shells of revolution subjected to arbitrary loads and temperature changes. Arbitrary creep laws are admitted in the formulation with specific attention given to the two common laws, i.e. strain hardening and time hardening. The governing equations for creep of shells of revolution are derived. The solution method requires the quasi-static linearization of the equations: linear incremental behaviour is assumed during each time step. The incremental equations are expanded in Fourier series and solved by a numerical integration technique. (Auth.)

  14. Post Critical Behaviour of a Simple Non-Linear System in a Cross Wind

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Pospíšil, Stanislav

    2011-01-01

    Roč. 18, 3/4 (2011), s. 193-201 ISSN 1802-1484 R&D Projects: GA AV ČR(CZ) IAA200710902; GA ČR(CZ) GA103/09/0094 Institutional research plan: CEZ:AV0Z20710524 Keywords : limit cycles * dynamic stability * post-critical effects * non-linear dynamics Subject RIV: JN - Civil Engineering

  15. Nonlinear interactions of counter-travelling waves

    International Nuclear Information System (INIS)

    Matsuuchi, Kazuo

    1980-01-01

    Nonlinear interactions between two waves travelling in opposite directions are investigated. When a nonlinear Klein-Gordon equation is adopted as a model equation, it is shown that such a wave system is governed by a simple set of equations for their complex amplitudes. Steady progressive waves governed by this set are investigated for various cases classified according to the signs of the coefficients. It is then found that one wave travelling in one direction appears from a certain point and the other travelling in the opposite direction has a constant amplitude from that point. This phenomenon may be regarded as a sort of reflection in spite of no rigid boundary. (author)

  16. Continuous nonlinear optimization for engineering applications in GAMS technology

    CERN Document Server

    Andrei, Neculai

    2017-01-01

    This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical opti...

  17. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    Science.gov (United States)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  18. Gap solitons under competing local and nonlocal nonlinearities

    International Nuclear Information System (INIS)

    Kuo, Kuan-Hsien; Lin Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.

    2011-01-01

    We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

  19. Advances in dynamic relaxation techniques for nonlinear finite element analysis

    International Nuclear Information System (INIS)

    Sauve, R.G.; Metzger, D.R.

    1995-01-01

    Traditionally, the finite element technique has been applied to static and steady-state problems using implicit methods. When nonlinearities exist, equilibrium iterations must be performed using Newton-Raphson or quasi-Newton techniques at each load level. In the presence of complex geometry, nonlinear material behavior, and large relative sliding of material interfaces, solutions using implicit methods often become intractable. A dynamic relaxation algorithm is developed for inclusion in finite element codes. The explicit nature of the method avoids large computer memory requirements and makes possible the solution of large-scale problems. The method described approaches the steady-state solution with no overshoot, a problem which has plagued researchers in the past. The method is included in a general nonlinear finite element code. A description of the method along with a number of new applications involving geometric and material nonlinearities are presented. They include: (1) nonlinear geometric cantilever plate; (2) moment-loaded nonlinear beam; and (3) creep of nuclear fuel channel assemblies

  20. 1989 lectures in complex systems

    International Nuclear Information System (INIS)

    Jen, E.

    1990-01-01

    This report contains papers on the following topics: Lectures on a Theory of Computation and Complexity over the Reals; Algorithmic Information Content, Church-Turing Thesis, Physical Entroph, and Maxwell's Demon; Physical Measures of Complexity; An Introduction to Chaos and Prediction; Hamiltonian Chaos in Nonlinear Polarized Optical Beam; Chemical Oscillators and Nonlinear Chemical Dynamics; Isotropic Navier-Stokes Turbulence. I. Qualitative Features and Basic Equations; Isotropic Navier-Stokes Turbulence. II. Statistical Approximation Methods; Lattice Gases; Data-Parallel Computation and the Connection Machine; Preimages and Forecasting for Cellular Automata; Lattice-Gas Models for Multiphase Flows and Magnetohydrodynamics; Probabilistic Cellular Automata: Some Statistical Mechanical Considerations; Complexity Due to Disorder and Frustration; Self-Organization by Simulated Evolution; Theoretical Immunology; Morphogenesis by Cell Intercalation; and Theoretical Physics Meets Experimental Neurobiology

  1. Periodic Solutions for Highly Nonlinear Oscillation Systems

    DEFF Research Database (Denmark)

    Ghadimi, M; Barari, Amin; Kaliji, H.D

    2012-01-01

    In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...

  2. Philosophy of complex systems

    CERN Document Server

    2011-01-01

    The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of comple...

  3. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    Science.gov (United States)

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  4. The popularisation of Positive Psychology as a defence against behavioural complexity in research and organisations

    Directory of Open Access Journals (Sweden)

    Frans Cilliers

    2010-12-01

    Research purpose: The aim of the study was to explore the systems psychodynamic nature of the manifesting defensive structures operating in Positive Psychology. Motivation for the study: The study investigated the popularity of Positive Psychology amongst academics, students and organisational consultants and the tendency to avoid the complexity of the relatedness between positive and negative as part of the human condition. Research design, approach and method: Qualitative research by means of a Listening Post was used, consisting of six psychologists in their roles as lecturers and organisational consultants. Thematic analyses led to the formulation of various working hypotheses, integrated into a research hypothesis. Main findings: Four themes manifested – namely, the manifesting defence mechanisms, a reluctance to relinquish positive psychology as an object of hope, a need to guard against being too hasty in breaking down positive psychology and a need for a psychology that can engage us in a conversation about integrating the complexities of the human condition. Practical/managerial implications: The findings were linked to Deo Strümpfer’s work, indicating that Positive Psychology originated in early 20th century psychology, which is indeed not about simplification, but is imbedded in the complexity of various behavioural continua. Contribution/value-add: Academics, students and organisational consultants are encouraged to revisit Strümpfer’s work to ensure that this psychology is appreciated for its depth and quality.

  5. BOOK REVIEW: Nonlinear Dynamics: Integrability, Chaos and Patterns

    Science.gov (United States)

    Grammaticos, B.

    2004-02-01

    's staircase'. I do not quite grasp the usefulness of such project-like exercises. Projects must be assigned by the person who indeed teaches the course. There are things that I really like a lot in this book. For instance, the section on `chaos in nonlinear electronic circuits' is particularly interesting. It offers a simple and rather inexpensive way to visualize chaos in the laboratory. The closing section of the book devoted to technological applications of nonlinear dynamics is also quite useful. The fact that the treatment remains rather elementary, based on review articles and monographs rather than research articles, adds to the intelligibility of the chapter, which will certainly prove stimulating to many a student. Of course, not everything can be perfect, and a 600-page book is bound to have some weak points. I find the treatment of quantum chaos rather sketchy and that of chaotic scattering even more so. Also, while the authors are aware of the importance of complex time in integrability, they do not attempt an explanation of the fundamental puzzle: `why, while the physical time is par excellence real, do we need a complex time in order to study the long-time behaviour of dynamical systems?'. Also the book devotes just four pages to integrable discrete systems. Given the tremendous development of this domain over the past decade, this short presentation is not doing justice to the subject. (However as the present reviewer is editing Springer Lecture Notes in Physics on precisely `Integrable Discrete Systems', to appear in early 2004, he would be the last one to complain about the absence of more details on the matter in the present book.) To sum it up, the monograph of Lakshmanan and Rajasekar is a book written by physicists and for physicists. It will be of interest to both the experienced practitioner and to the uninitiated. Its main quality resides in its thorough, pedagogical approach to the matter. Moreover the relaxed, not too formal, style makes for easy

  6. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  7. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    Science.gov (United States)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  8. On nonlinear dynamics and control of a robotic arm with chaos

    Directory of Open Access Journals (Sweden)

    Felix J. L. P.

    2014-01-01

    Full Text Available In this paper a robotic arm is modelled by a double pendulum excited in its base by a DC motor of limited power via crank mechanism and elastic connector. In the mathematical model, a chaotic motion was identified, for a wide range of parameters. Controlling of the chaotic behaviour of the system, were implemented using, two control techniques, the nonlinear saturation control (NSC and the optimal linear feedback control (OLFC. The actuator and sensor of the device are allowed in the pivot and joints of the double pendulum. The nonlinear saturation control (NSC is based in the order second differential equations and its action in the pivot/joint of the robotic arm is through of quadratic nonlinearities feedback signals. The optimal linear feedback control (OLFC involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system to a desired periodic orbit, and control a feedback control to bring the trajectory of the system to the desired orbit. Simulation results, including of uncertainties show the feasibility of the both methods, for chaos control of the considered system.

  9. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  10. Use of the dynamic stiffness method to interpret experimental data from a nonlinear system

    Science.gov (United States)

    Tang, Bin; Brennan, M. J.; Gatti, G.

    2018-05-01

    The interpretation of experimental data from nonlinear structures is challenging, primarily because of dependency on types and levels of excitation, and coupling issues with test equipment. In this paper, the use of the dynamic stiffness method, which is commonly used in the analysis of linear systems, is used to interpret the data from a vibration test of a controllable compressed beam structure coupled to a test shaker. For a single mode of the system, this method facilitates the separation of mass, stiffness and damping effects, including nonlinear stiffness effects. It also allows the separation of the dynamics of the shaker from the structure under test. The approach needs to be used with care, and is only suitable if the nonlinear system has a response that is predominantly at the excitation frequency. For the structure under test, the raw experimental data revealed little about the underlying causes of the dynamic behaviour. However, the dynamic stiffness approach allowed the effects due to the nonlinear stiffness to be easily determined.

  11. A nonlinear oscillator with parametric coloured noise: some analytical results

    International Nuclear Information System (INIS)

    Mallick, Kirone; Marcq, Philippe

    2005-01-01

    The asymptotic behaviour of a nonlinear oscillator subject to a multiplicative Ornstein-Uhlenbeck noise is investigated. When the dynamics is expressed in terms of energy-angle coordinates, it is observed that the angle is a fast variable as compared to the energy. Thus, an effective stochastic dynamics for the energy can be derived if the angular variable is averaged out. However, the standard elimination procedure, performed earlier for a Gaussian white noise, fails when the noise is coloured because of correlations between the noise and the fast angular variable. We develop here a specific averaging scheme that retains these correlations. This allows us to calculate the probability distribution function (PDF) of the system and to derive the behaviour of physical observables in the long time limit

  12. The Use of Nonlinear Constitutive Equations to Evaluate Draw Resistance and Filter Ventilation

    Directory of Open Access Journals (Sweden)

    Eitzinger B

    2014-12-01

    Full Text Available This study investigates by nonlinear constitutive equations the influence of tipping paper, cigarette paper, filter, and tobacco rod on the degree of filter ventilation and draw resistance. Starting from the laws of conservation, the path to the theory of fluid dynamics in porous media and Darcy's law is reviewed and, as an extension to Darcy's law, two different nonlinear pressure drop-flow relations are proposed. It is proven that these relations are valid constitutive equations and the partial differential equations for the stationary flow in an unlit cigarette covering anisotropic, inhomogeneous and nonlinear behaviour are derived. From these equations a system of ordinary differential equations for the one-dimensional flow in the cigarette is derived by averaging pressure and velocity over the cross section of the cigarette. By further integration, the concept of an electrical analog is reached and discussed in the light of nonlinear pressure drop-flow relations. By numerical calculations based on the system of ordinary differential equations, it is shown that the influence of nonlinearities cannot be neglected because variations in the degree of filter ventilation can reach up to 20% of its nominal value.

  13. Maintaining the stability of nonlinear differential equations by the enhancement of HPM

    International Nuclear Information System (INIS)

    Hosein Nia, S.H.; Ranjbar, A.N.; Ganji, D.D.; Soltani, H.; Ghasemi, J.

    2008-01-01

    Homotopy perturbation method is an effective method to find a solution of a nonlinear differential equation. In this method, a nonlinear complex differential equation is transformed to a series of linear and nonlinear parts, almost simpler differential equations. These sets of equations are then solved iteratively. Finally, a linear series of the solutions completes the answer if the convergence is maintained. In this Letter, the need for stability verification is shown through some examples. Consequently, HPM is enhanced by a preliminary assumption. The idea is to keep the inherent stability of nonlinear dynamic, even the selected linear part is not

  14. Internal Decoupling in Nonlinear Process Control

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1988-07-01

    Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.

  15. A nonlinear Cournot duopoly with advertising

    International Nuclear Information System (INIS)

    Gori, Luca; Sodini, Mauro; Fanti, Luciano

    2015-01-01

    This paper aims at studying local and global dynamics in a nonlinear duopoly with quantity-setting firms and non-cooperative advertising investments that affect the degree of (horizontally) differentiated products. It concentrates on persuasive advertising in a model where each firm has limited information and uses a behavioural rule to set the quantity for the subsequent period. By using some mathematical techniques and numerical simulations, our results show the existence of weak (à la Milnor) attractors, multistability and chaotic dynamics. In the long term, firms may continuously shift from states in which they invest in advertising to states in which advertising investment is absent.

  16. A Complex Interplay: Cognitive Behavioural Therapy for Severe Health Anxiety in Addison's Disease to Reduce Emergency Department Admissions.

    Science.gov (United States)

    Daniels, Jo; Sheils, Elizabeth

    2017-07-01

    Addison's disease (AD) is a rare chronic illness caused by adrenocortical insufficiency. Due to the pivotal role of the regulating hormone cortisol in AD, there is a common symptom overlap between the presentation of anxiety and adrenal crisis. Previous literature has identified the prevalence of anxiety in endocrinological disorders, however there is a paucity of research examining the complex interplay between AD and anxiety. This paper describes a single case study of a patient with severe health anxiety and co-morbid AD. The aims of the study were to establish if standard cognitive behavioural therapy for health anxiety in AD can lead to a reduction in psychological distress, and whether this approach is an effective intervention for the reduction of Emergency Department admissions. A single case design was used, with pre- and post-measures of health anxiety, general anxiety and depression. Data on Emergency Department admissions prior to and following treatment were used to assess change in this domain. Reliable and clinically significant reductions were seen across all measures, from severe to sub-clinical levels. There was a complete amelioration of Emergency Department admissions in the 12 months following completion of treatment. This preliminary study provides a sound rationale for further research into AD complicated by anxiety. Findings support the clinical utility of the cognitive behavioural therapy model for complex presentations of AD, offering a potential treatment option where anxiety is elevated and interfering with self-management and leading to high levels of health service use.

  17. Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems

    Czech Academy of Sciences Publication Activity Database

    Ameixa, Olga; Messelink, G. J.; Kindlmann, Pavel

    2013-01-01

    Roč. 8, č. 4 (2013), e62530-e62530 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GEVOL/11/E036 Institutional support: RVO:67179843 Keywords : nonlinear system * population density * population dynamics * predator * predator prey interaction * qualitative analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 3.534, year: 2013

  18. Nonlinear physics of shear Alfvén waves

    International Nuclear Information System (INIS)

    Zonca, Fulvio; Chen, Liu

    2014-01-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results

  19. Nonlinear physics of shear Alfvén waves

    Science.gov (United States)

    Zonca, Fulvio; Chen, Liu

    2014-02-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

  20. Stability of one-step methods in transient nonlinear heat conduction

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1977-01-01

    The purpose of the present work is to ascertain practical stability conditions for one-step methods commonly used in transient nonlinear heat conduction analyses. In this paper the concepts of stability, appropriate to the nonlinear problem, are thoroughly discussed. They of course reduce to the usual stability critierion for the linear, constant coefficient case. However, for nonlinear problems there are differences and theses ideas are of key importance in obtaining practical stability conditions. Of particular importance is a recent result which indicates that, in a sense, the trapezoidal and midpoint families are equivalent. Thus, stability results for one family may be translated into a result for the other. The main results obtained are: The stability behaviour of the explicit Euler method in the nonlinear regime is analogous to that for linear problems. In particular, an a priori step size restriction may be determined for each time step. The precise time step restriction on implicit conditionally stable members of the trapezoidal and midpoint families is shown not to be determinable a priori. Of considerable practical significance, unconditionally stable members of the trapezoidal and midpoint families are identified. All notions of stability employed are motivated and defined, and their interpretations in practical computing are indicated. (Auth.)