WorldWideScience

Sample records for complement inhibitor c4b-binding

  1. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    Science.gov (United States)

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  2. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  3. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  4. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival.

    Science.gov (United States)

    Caine, Jennifer A; Lin, Yi-Pin; Kessler, Julie R; Sato, Hiromi; Leong, John M; Coburn, Jenifer

    2017-12-01

    Borrelia burgdorferi (Bb) is the causative agent of Lyme disease in the United States, a disease that can result in carditis, and chronic and debilitating arthritis and/or neurologic symptoms if left untreated. Bb survives in the midgut of the Ixodes scapularis tick, or within tissues of immunocompetent hosts. In the early stages of infection, the bacteria are present in the bloodstream where they must resist clearance by the innate immune system of the host. We have found a novel role for outer surface protein C (OspC) from B. burgdorferi and B. garinii in interactions with the complement component C4b and bloodstream survival in vivo. Our data show that OspC inhibits the classical and lectin complement pathways and competes with complement protein C2 for C4b binding. Resistance to complement is important for maintenance of the lifecycle of Bb, enabling survival of the pathogen within the host as well as in the midgut of a feeding tick when ospC expression is induced. © 2017 John Wiley & Sons Ltd.

  5. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins

    DEFF Research Database (Denmark)

    Reid, K B M; Bentley, D R; Campbell, R D

    1986-01-01

    Recent cDNA sequencing data has allowed the prediction of the entire amino acid sequences of complement components factor B and C2, the complement control proteins factor H and C4b-binding protein and a partial sequence for the Cab/C4b receptor CR1. These proteins all contain internal repeating u...

  6. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing...... at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain...... of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively...

  7. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...

  8. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  9. Virulence of Group A Streptococci Is Enhanced by Human Complement Inhibitors

    DEFF Research Database (Denmark)

    Ermert, David; Shaughnessy, Jutamas; Joeris, Thorsten

    2015-01-01

    Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and c...... in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.......Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement...... and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being...

  10. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse

    2017-07-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.

  11. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface

    Science.gov (United States)

    Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.

    2017-01-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139

  12. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  13. Arterial Blood Pressure Induces Transient C4b-Binding Protein in Human Saphenous Vein Grafts.

    Science.gov (United States)

    Kupreishvili, Koba; Meischl, Christof; Vonk, Alexander B A; Stooker, Wim; Eijsman, Leon; Blom, Anna M; Quax, Paul H A; van Hinsbergh, Victor W M; Niessen, Hans W M; Krijnen, Paul A J

    2017-05-01

    Complement is an important mediator in arterial blood pressure-induced vein graft failure. Previously, we noted activation of cell protective mechanisms in human saphenous veins too. Here we have analyzed whether C4b-binding protein (C4bp), an endogenous complement inhibitor, is present in the vein wall. Human saphenous vein segments obtained from patients undergoing coronary artery bypass grafting (n = 55) were perfused in vitro at arterial blood pressure with either autologous blood for 1, 2, 4, or 6 hr or with autologous blood supplemented with reactive oxygen species scavenger N-acetylcysteine. The segments were subsequently analyzed quantitatively for presence of C4bp and complement activation product C3d using immunohistochemistry. Perfusion induced deposition of C3d and C4bp within the media of the vessel wall, which increased reproducibly and significantly over a period of 4 hr up to 3.8% for C3d and 81% for C4bp of the total vessel area. Remarkably after 6 hr of perfusion, the C3d-positive area decreased significantly to 1.3% and the C4bp-positive area to 19% of the total area of the vein. The areas positive for both C4bp and C3d were increased in the presence of N-acetylcysteine. Exposure to arterial blood pressure leads to a transient presence of C4bp in the vein wall. This may be part of a cell-protective mechanism to counteract arterial blood pressure-induced cellular stress and inflammation in grafted veins. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  15. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    Science.gov (United States)

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  16. Complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) cooperate in the binding of hydrolyzed complement factor 3 (C3i) to human B lymphocytes

    DEFF Research Database (Denmark)

    Leslie, Robert Graham Quinton; Prodinger, Wolfgang Maria; Nielsen, Claus Henrik

    2003-01-01

    The C3b-binding receptor, CR1/CD35, supports CR2/CD21-mediated activation of complement by human B lymphocytes, possibly by associating with CR2 to promote or stabilize the binding of hydrolyzed C3 (C3i), the primary component of the AP convertase, C3i-Bb. To evaluate this hypothesis, we examined...... the uptake kinetics and binding equilibria for C3i dimer interaction with human blood cells in the absence and presence of CR1- and CR2-blocking mAb. C3i displayed dual uptake kinetics to B lymphocytes, comprising of rapid binding to CR1 and slower binding to CR2. The forward rate constants (k(1)) for CR1...... and CR2, operating independently, differed ca. 9-fold (k(1)=193+/-9.4 and 22.2+/-6.0 x 10(3) M(-1)s(-1), respectively). Equilibrium binding of C3i to B lymphocytes was also complex, varying in strength by ca. 13-fold over the C3i concentration range examined. The maximum association constant (K(a, max...

  17. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    Science.gov (United States)

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  18. The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Vengadesan [Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Xu, Yuanyuan [Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Macon, Kevin [Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Volanakis, John E. [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Narayana, Sthanam V. L., E-mail: narayana@uab.edu [Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2009-03-01

    The crystal structure of C2b has been determined at 1.8 Å resolution, which reveals the arrangement of its three complement control protein (CCP) modules. A model for complement component C2 is presented and its conformational changes during the C3-convertase formation are also discussed. The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. The formation of these convertases requires the Mg{sup 2+}-dependent binding of C2 to C4b and the subsequent cleavage of C2 by C1s or MASP2, respectively. The crystal structure of full-length C2 is not yet available, although the structure of its C-terminal catalytic segment C2a has been determined. The crystal structure of the N-terminal segment C2b of C2 determined to 1.8 Å resolution presented here reveals the arrangement of its three CCP domains. The domains are arranged differently compared with most other CCP-domain assemblies, but their arrangement is similar to that found in the Ba part of the full-length factor B structure. The crystal structures of C2a, C2b and full-length factor B are used to generate a model for C2 and a discussion of the domain association and possible interactions with C4b during formation of the C4b–C2 complex is presented. The results of this study also suggest that upon cleavage by C1s, C2a domains undergo conformational rotation while bound to C4b and the released C2b domains may remain folded together similar to as observed in the intact protein.

  19. The structure of C2b, a fragment of complement component C2 produced during C3 convertase formation

    International Nuclear Information System (INIS)

    Krishnan, Vengadesan; Xu, Yuanyuan; Macon, Kevin; Volanakis, John E.; Narayana, Sthanam V. L.

    2009-01-01

    The crystal structure of C2b has been determined at 1.8 Å resolution, which reveals the arrangement of its three complement control protein (CCP) modules. A model for complement component C2 is presented and its conformational changes during the C3-convertase formation are also discussed. The second component of complement (C2) is a multi-domain serine protease that provides catalytic activity for the C3 and C5 convertases of the classical and lectin pathways of human complement. The formation of these convertases requires the Mg 2+ -dependent binding of C2 to C4b and the subsequent cleavage of C2 by C1s or MASP2, respectively. The crystal structure of full-length C2 is not yet available, although the structure of its C-terminal catalytic segment C2a has been determined. The crystal structure of the N-terminal segment C2b of C2 determined to 1.8 Å resolution presented here reveals the arrangement of its three CCP domains. The domains are arranged differently compared with most other CCP-domain assemblies, but their arrangement is similar to that found in the Ba part of the full-length factor B structure. The crystal structures of C2a, C2b and full-length factor B are used to generate a model for C2 and a discussion of the domain association and possible interactions with C4b during formation of the C4b–C2 complex is presented. The results of this study also suggest that upon cleavage by C1s, C2a domains undergo conformational rotation while bound to C4b and the released C2b domains may remain folded together similar to as observed in the intact protein

  20. Real-time PCR quantification of human complement C4A and C4B genes

    Directory of Open Access Journals (Sweden)

    Fust George

    2006-01-01

    Full Text Available Abstract Background The fourth component of human complement (C4, an essential factor of the innate immunity, is represented as two isoforms (C4A and C4B in the genome. Although these genes differ only in 5 nucleotides, the encoded C4A and C4B proteins are functionally different. Based on phenotypic determination, unbalanced production of C4A and C4B is associated with several diseases, such as systemic lupus erythematosus, type 1 diabetes, several autoimmune diseases, moreover with higher morbidity and mortality of myocardial infarction and increased susceptibility for bacterial infections. Despite of this major clinical relevance, only low throughput, time and labor intensive methods have been used so far for the quantification of C4A and C4B genes. Results A novel quantitative real-time PCR (qPCR technique was developed for rapid and accurate quantification of the C4A and C4B genes applying a duplex, TaqMan based methodology. The reliable, single-step analysis provides the determination of the copy number of the C4A and C4B genes applying a wide range of DNA template concentration (0.3–300 ng genomic DNA. The developed qPCR was applied to determine C4A and C4B gene dosages in a healthy Hungarian population (N = 118. The obtained data were compared to the results of an earlier study of the same population. Moreover a set of 33 samples were analyzed by two independent methods. No significant difference was observed between the gene dosages determined by the employed techniques demonstrating the reliability of the novel qPCR methodology. A Microsoft Excel worksheet and a DOS executable are also provided for simple and automated evaluation of the measured data. Conclusion This report describes a novel real-time PCR method for single-step quantification of C4A and C4B genes. The developed technique could facilitate studies investigating disease association of different C4 isotypes.

  1. A potent complement factor C3 specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement.

    Science.gov (United States)

    Jensen, Rasmus K; Pihl, Rasmus; Gadeberg, Trine A F; Jensen, Jan K; Andersen, Kasper R; Thiel, Steffen; Laursen, Nick S; Andersen, Gregers Rom

    2018-03-01

    The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds to multiple functional states of C3 with sub-nanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable to C3, and hC3Nb1 is shown to prevent both proconvertase assembly as well as binding of the C3 substrate to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b rationalizing its inhibition of factor I activity. Our results identify hC3Nb1 as a versatile, inexpensive, and powerful inhibitor of the alternative pathway in both human and murine in vitro model systems of complement activation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Surface-bound capsular polysaccharide of type Ia group B Streptococcus mediates C1 binding and activation of the classic complement pathway

    International Nuclear Information System (INIS)

    Levy, N.J.; Kasper, D.L.

    1986-01-01

    The role of surface-bound type Ia group B Streptococcus (GBS) capsular polysaccharide in anti-body-independent binding of C1 and activation of the classic component pathway was investigated. In a radiolabeled bacterial-polymorphonuclear leukocyte (PMN) association assay, a measure of bacterial opsonization, preincubation of 3 H-type Ia GBS with purified F(ab') 2 to the organism blocked the association of the bacteria with PMN', and the inhibitory effect was dose dependent. The specificity of F(ab') 2 blocking was shown after adsorption of F(ab') 2 with type Ia polysaccharide-sensitized erythrocytes. Polysaccharide-adsorbed F(ab') 2 had a 70% decrease in ability to block the association of bacteria with PMN. Neuraminidase digestion removed 80% of the terminal sialic acid residues from the native polysaccharide. These neuraminidase-digested organisms had a 72% decrease in binding and transfer of purified C1 compared with non-enzyme-treated organisms. Type Ia capsular polysaccharide bound to sheep erythrocytes promoted classic complement pathway-mediated hemolysis of the cells. The role of C1 inhibitor (INH) in modulation of C1 activation by the organisms was investigated. The possibility existed that the C1 INH could be bound by the bacteria, allowing C1 activation to occur in the fluid phase. The inhibitor was purified from human serum, and its activity was measured before and after incubation with type Ia GBS. The organisms had no effect on C1 INH activity. Thus surface-bound capsular polysacchardie of type Ia GBS mediates C1 binding and classic pathway activation, and this does not involve the C1 INH

  3. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation

    Directory of Open Access Journals (Sweden)

    Marcell Cserhalmi

    2017-09-01

    Full Text Available Factor H-related (FHR proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH. While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3, and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

  4. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion.

    Science.gov (United States)

    Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes

    2016-05-01

    Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.

  5. Peptide Inhibitor of Complement C1 (PIC1 Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1. In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

  6. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  7. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  8. Natural IgM antibodies that bind neoepitopes exposed as a result of spinal cord injury , drive secondary injury by activating complement.

    Science.gov (United States)

    Narang, Aarti; Qiao, Fei; Atkinson, Carl; Zhu, Hong; Yang, Xiaofeng; Kulik, Liudmila; Holers, V Michael; Tomlinson, Stephen

    2017-06-19

    Natural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, although how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown. Here, we investigated the role of two natural IgM monoclonal Abs (mAbs), B4 and C2, that recognize post-ischemic neoepitopes following ischemia and reperfusion in other tissues. Identification of post-SCI expressed neoepitopes was examined using previously characterized monoclonal Abs (B4 and C2 mAbs). The role of post-SCI neoepitopes and their recognition by natural IgM Abs in propagating secondary injury was examined in Ab-deficient Rag1-/- or wild type C57BL/6 mice using Ab reconstitution experiments and neoepitope-targeted therapeutic studies, respectively. Administration of B4 or C2 mAb following murine SCI increased lesion size and worsened functional outcome in otherwise protected Ab-deficient Rag1-/- mice. Injury correlated with colocalized deposition of IgM and C3d in injured spinal cords from both mAb reconstituted Rag1-/- mice and untreated wild-type mice. Depletion of peritoneal B1 B cells, a source of natural Abs, reduced circulating levels of IgM with B4 (annexin-IV) and C2 (subset of phospholipids) reactivity, reduced IgM and complement deposition in the spinal cord, and protected against SCI. We therefore investigated whether the B4 neoepitope represents a therapeutic target for complement inhibition. B4-Crry, a fusion protein consisting of a single-chain Ab derived from B4 mAb, linked to the complement inhibitor Crry, significantly protected against SCI. B4-Crry exhibited a dual function in that it inhibited both the binding of pathogenic IgM and blocked complement activation in the spinal cord. This study identifies important neoepitopes expressed within the spinal cord after injury. These neoepitopes are recognized by clonally specific natural IgM Abs that

  9. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B

    Directory of Open Access Journals (Sweden)

    Antonio F. Mendes-Sousa

    2017-08-01

    Full Text Available Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.

  10. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B.

    Science.gov (United States)

    Mendes-Sousa, Antonio F; do Vale, Vladimir Fazito; Silva, Naylene C S; Guimaraes-Costa, Anderson B; Pereira, Marcos H; Sant'Anna, Mauricio R V; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, José M C; Andersen, John F; Valenzuela, Jesus G; Araujo, Ricardo N

    2017-01-01

    Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni 2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.

  11. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B

    Science.gov (United States)

    Mendes-Sousa, Antonio F.; do Vale, Vladimir Fazito; Silva, Naylene C. S.; Guimaraes-Costa, Anderson B.; Pereira, Marcos H.; Sant’Anna, Mauricio R. V.; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, José M. C.; Andersen, John F.; Valenzuela, Jesus G.; Araujo, Ricardo N.

    2017-01-01

    Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system. PMID:28912782

  12. A Revised Mechanism for the Activation of Complement C3 to C3b

    Science.gov (United States)

    Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J.

    2015-01-01

    The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg102. In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg102–Glu1032 salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg102–Glu1032 salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg102-Glu1032 salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg102) and disease-linked C3F (Gly102) allotypes of C3b were experimentally explained for the first time. PMID:25488663

  13. Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy.

    Science.gov (United States)

    Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping

    2017-01-01

    As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin ( Ts -CRT), a Ca 2+ -binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts -CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts -CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts -CRT (r Ts -CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte-macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts -CRT on the surface of newborn larvae (NBL) of T. spiralis with anti- Ts -CRT antibody increased the C1q-mediated adherence of monocyte-macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis -expressed Ts -CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages.

  14. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis.

    Science.gov (United States)

    Ferreira, Viviana P; Fazito Vale, Vladimir; Pangburn, Michael K; Abdeladhim, Maha; Mendes-Sousa, Antonio Ferreira; Coutinho-Abreu, Iliano V; Rasouli, Manoochehr; Brandt, Elizabeth A; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Pereira, Marcos Horácio; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M C; Gontijo, Nelder F; Collin, Nicolas; Valenzuela, Jesus G

    2016-01-13

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

  15. Multiple activities of LigB potentiate virulence of Leptospira interrogans: inhibition of alternative and classical pathways of complement.

    Directory of Open Access Journals (Sweden)

    Henry A Choy

    Full Text Available Microbial pathogens acquire the immediate imperative to avoid or counteract the formidable defense of innate immunity as soon as they overcome the initial physical barriers of the host. Many have adopted the strategy of directly disrupting the complement system through the capture of its components, using proteins on the pathogen's surface. In leptospirosis, pathogenic Leptospira spp. are resistant to complement-mediated killing, in contrast to the highly vulnerable non-pathogenic strains. Pathogenic L. interrogans uses LenA/LfhA and LcpA to respectively sequester and commandeer the function of two regulators, factor H and C4BP, which in turn bind C3b or C4b to interrupt the alternative or classical pathways of complement activation. LigB, another surface-proximal protein originally characterized as an adhesin binding multiple host proteins, has other activities suggesting its importance early in infection, including binding extracellular matrix, plasma, and cutaneous repair proteins and inhibiting hemostasis. In this study, we used a recent model of ectopic expression of LigB in the saprophyte, L. biflexa, to test the hypothesis that LigB also interacts with complement proteins C3b and C4b to promote the virulence of L. interrogans. The surface expression of LigB partially rescued the non-pathogen from killing by 5% normal human serum, showing 1.3- to 48-fold greater survival 4 to 6 d following exposure to complement than cultures of the non-expressing parental strain. Recombinant LigB7'-12 comprising the LigB-specific immunoglobulin repeats binds directly to human complement proteins, C3b and C4b, with respective K(ds of 43±26 nM and 69±18 nM. Repeats 9 to 11, previously shown to contain the binding domain for fibronectin and fibrinogen, are also important in LigB-complement interactions, which interfere with the alternative and classical pathways measured by complement-mediated hemolysis of erythrocytes. Thus, LigB is an adaptable interface

  16. Pregnenolone biosynthesis in C6-2B glioma cell mitochondria: regulation by a mitochondrial diazepam binding inhibitor receptor.

    OpenAIRE

    Papadopoulos, V; Guarneri, P; Kreuger, K E; Guidotti, A; Costa, E

    1992-01-01

    The C6-2B glioma cell line, rich in mitochondrial receptors that bind with high affinity to benzodiazepines, imidazopyridines, and isoquinolinecarboxamides (previously called peripheral-type benzodiazepine receptors), was investigated as a model to study the significance of the polypeptide diazepam binding inhibitor (DBI) and the putative DBI processing products on mitochondrial receptor-regulated steroidogenesis. DBI and its naturally occurring fragments have been found to be present in high...

  17. Complement C4 phenotypes in dementia of the Alzheimer type

    NARCIS (Netherlands)

    Eikelenboom, P.; Goetz, J.; Pronk, J. C.; Hauptmann, G.

    1988-01-01

    Complement C4 phenotype distribution was studied in 64 patients with dementia of the Alzheimer type. In contrast to reported findings we failed to find a significant association between C4B2 gene frequency and Alzheimer's dementia

  18. A potent complement factor C3 specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement

    DEFF Research Database (Denmark)

    Jensen, Rasmus K; Pihl, Rasmus; Gadeberg, Trine A F

    2018-01-01

    The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds...... to multiple functional states of C3 with sub-nanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable to C3, and hC3Nb1 is shown to prevent both proconvertase assembly as well as binding of the C3 substrate...... to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b...

  19. The C-type lectin of the aggrecan G3 domain activates complement.

    Directory of Open Access Journals (Sweden)

    Camilla Melin Fürst

    Full Text Available Excessive complement activation contributes to joint diseases such as rheumatoid arthritis and osteoarthritis during which cartilage proteins are fragmented and released into the synovial fluid. Some of these proteins and fragments activate complement, which may sustain inflammation. The G3 domain of large cartilage proteoglycan aggrecan interacts with other extracellular matrix proteins, fibulins and tenascins, via its C-type lectin domain (CLD and has important functions in matrix organization. Fragments containing G3 domain are released during normal aggrecan turnover, but increasingly so in disease. We now show that the aggrecan CLD part of the G3 domain activates the classical and to a lesser extent the alternative pathway of complement, via binding of C1q and C3, respectively. The complement control protein (CCP domain adjacent to the CLD showed no effect on complement initiation. The binding of C1q to G3 depended on ionic interactions and was decreased in D2267N mutant G3. However, the observed complement activation was attenuated due to binding of complement inhibitor factor H to CLD and CCP domains. This was most apparent at the level of deposition of terminal complement components. Taken together our observations indicate aggrecan CLD as one factor involved in the sustained inflammation of the joint.

  20. Complement Evasion by Pathogenic Leptospira.

    Science.gov (United States)

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  1. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.

    Science.gov (United States)

    Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L

    2001-02-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.

  2. A simple two-step purification procedure for the iC3b binding collectin conglutinin

    DEFF Research Database (Denmark)

    Krogh-Meibom, Thomas; Ingvartsen, Klaus Lønne; Tornoe, Ida

    2010-01-01

    Bovine conglutinin is a serum protein involved in innate immunity. It binds calcium dependently to iC3b, a product of the complement component C3 deposited on cell surfaces, immune complexes or artificial surfaces after complement activation. We here present a simple and efficient two-step proced...

  3. Changes in blood levels of proteinase inhibitors, pregnancy zone protein, steroid carriers and complement factors induced by oral contraceptives

    DEFF Research Database (Denmark)

    Nielsen, C H; Poulsen, H K; Teisner, B

    1993-01-01

    levels of antithrombin III (AT III), alpha 2-macroglobulin (alpha 2M) alpha 1-antitrypsin (alpha 1at), complement factors (factor B, C3, C4), pregnancy zone protein (PZP), corticosteroid binding globulin (CBG), sex hormone binding globulin (SHBG) and albumin were measured before treatment and during...

  4. Surface complement C3 fragments and cellular binding of microparticles in patients with SLE

    DEFF Research Database (Denmark)

    Winberg, Line Kjær; Nielsen, Claus Henrik; Jacobsen, Søren

    2017-01-01

    Objectives: To examine microparticles (MPs) from patients with SLE and healthy controls (HCs) by determining the cellular origin of the MPs, quantifying attached fragments of complement component 3 (C3) and assessing the ability of MPs to bind to circulating phagocytes and erythrocytes. These fea......Objectives: To examine microparticles (MPs) from patients with SLE and healthy controls (HCs) by determining the cellular origin of the MPs, quantifying attached fragments of complement component 3 (C3) and assessing the ability of MPs to bind to circulating phagocytes and erythrocytes...

  5. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  6. Serum and plasma fibronectin binds to complement reacted immune complexes primarily via Clq

    DEFF Research Database (Denmark)

    Baatrup, G; Svehag, S E

    1986-01-01

    The binding of fibronectin to human Clq, C3b, and complement-reacted immune complexes (IC) was investigated by enzyme-linked immunosorbent assays. Microplates were coated with BSA followed by incubation with rabbit-anti-BSA IgG or F(ab')2 fragments of rabbit anti-BSA. Incubation of the solid phase...... with serum at 37 degrees C caused attachment of Clq and C3b. Addition of EDTA to the serum inhibited the binding of C3b, but not Clq, whereas substitution of the anti-BSA IgG on the solid phase with the F(ab')2 fragments abrogated the Clq, but not the C3b binding. Fibronectin binding was observed after...

  7. Comprehensive approach to study complement C4 in systemic lupus erythematosus: Gene polymorphisms, protein levels and functional activity.

    Science.gov (United States)

    Tsang-A-Sjoe, M W P; Bultink, I E M; Korswagen, L A; van der Horst, A; Rensink, I; de Boer, M; Hamann, D; Voskuyl, A E; Wouters, D

    2017-12-01

    Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls. Gene copy number (GCN) variation, silencing CT-insertion, and the retroviral HERV-K(C4) insertion) were analyzed with multiplex ligation-dependent probe amplification. Increased susceptibility to SLE was found for low GCN (≪2) of C4A. Serositis was the only clinical manifestation associated with low C4A GCN. One additional novel silencing mutation in the C4A gene was found by Sanger sequencing. This mutation causes a premature stop codon in exon 11. Protein concentrations of C4 isoforms C4A and C4B were determined with ELISA and were significantly lower in SLE patients compared to healthy controls. To study C4 isotypes on a functional level, a new C4 assay was developed, which distinguishes C4A from C4B by its binding capacity to amino or hydroxyl groups, respectively. This assay showed high correlation with ELISA and detected crossing over of Rodgers and Chido antigens in 3.2% (8/244) of individuals. The binding capacity of available C4 to its substrates was unaffected in SLE. Our study provides, for the first time, a complete overview of C4 in SLE from genetic variation to binding capacity using a novel test. As this test detects crossing over of Rodgers and Chido antigens, it will allow for more accurate measurement of C4 in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement.

    Science.gov (United States)

    Wagemakers, Alex; Coumou, Jeroen; Schuijt, Tim J; Oei, Anneke; Nijhof, Ard M; van 't Veer, Cornelis; van der Poll, Tom; Bins, Adriaan D; Hovius, Joppe W R

    2016-04-01

    We previously identified tick salivary lectin pathway inhibitor (TSLPI) in Ixodes scapularis, a vector for Borrelia burgdorferi sensu stricto (s.s.) in North America. TSLPI is a salivary protein facilitating B. burgdorferi s.s. transmission and acquisition by inhibiting the host lectin complement pathway through interference with mannose binding lectin (MBL) activity. Since Ixodes ricinus is the predominant vector for Lyme borreliosis in Europe and transmits several complement sensitive B. burgdorferi sensu lato (s.l.) strains, we aimed to identify, describe, and characterize the I. ricinus ortholog of TSLPI. We performed (q)PCRs on I. ricinus salivary gland cDNA to identify a TSLPI ortholog. Next, we generated recombinant (r)TSLPI in a Drosophila expression system and examined inhibition of the MBL complement pathway and complement-mediated killing of B. burgdorferi s.l. in vitro. We identified a TSLPI ortholog in I. ricinus salivary glands with 93% homology at the RNA and 89% at the protein level compared to I. scapularis TSLPI, which was upregulated during tick feeding. In silico analysis revealed that TSLPI appears to be part of a larger family of Ixodes salivary proteins among which I. persulcatus basic tail salivary proteins and I. scapularis TSLPI and Salp14. I. ricinus rTSLPI inhibited the MBL complement pathway and protected B. burgdorferi s.s. and Borrelia garinii from complement-mediated killing. We have identified a TSLPI ortholog, which protects B. burgdorferi s.l. from complement-mediated killing in I. ricinus, the major vector for tick-borne diseases in Europe.

  9. Inefficient binding of IgM immune complexes to erythrocyte C3b-C4b receptors (CR1) and weak incorporation of C3b-iC3b into the complexes

    DEFF Research Database (Denmark)

    Kávai, M; Rasmussen, J M; Baatrup, G

    1988-01-01

    , but the binding was low (2-3%) when compared to the binding of the corresponding IgG-IC (50-60%). Solid phase IC were prepared by coating microwells with heat-aggregated bovine serum albumin (BSA) followed by incubation with rabbit IgM anti-BSA antibody. The IC were reacted with human serum at 37 degrees C....... The binding of C3b-iC3b was determined by use of biotinylated F(ab')2 antibodies to C3b-C3c and avidin-coupled alkaline phosphatase. The incorporation of C3b-iC3b into solid-phase IgM-IC increased when increasing amounts of IgM antibody were reacted with the antigen. The binding reaction was slow, reaching...

  10. Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins.

    Science.gov (United States)

    Kozel, T R; Wilson, M A; Pfrommer, G S; Schlageter, A M

    1989-07-01

    Encapsulated Cryptococcus neoformans yeast cells are potent activators of the complement system. We examined the interaction of the yeast cells with an alternative complement pathway reconstituted from isolated factor D, factor B, factor H, factor I, C3, and properdin. Incubation of encapsulated cryptococci with the reconstituted pathway led to activation and binding of C3 fragments to the yeast cells that was quantitatively and qualitatively identical to that observed with normal human serum. Incubation with either normal serum or a mixture of isolated proteins led to binding of 4 x 10(7) to 5 x 10(7) C3 molecules to the yeast cells. The kinetics for activation and binding of C3 were identical, with maximum binding observed after a 20-min incubation. Immunoglobulin G was not needed for optimal activation kinetics. C3 fragments eluted from the yeast cells by treatment with hydroxylamine and subsequent analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the presence primarily of iC3b on yeast cells incubated with either normal serum or the reconstituted pathway. Ultrastructural examination of the opsonized yeast cells showed that the cryptococcal capsule was the site for binding of C3 activated from normal serum or the reconstituted pathway, with a dense accumulation of C3 at the periphery of the capsule. Thus, incubation of encapsulated cryptococci in the reconstituted pathway led to deposition of opsonic complement fragments at a site that was appropriate for interaction with phagocyte receptors. Cryptococci opsonized with the reconstituted pathway showed a markedly enhanced interaction with cultured human monocytes compared with unopsonized yeast cells, indicating that the alternative pathway alone is opsonic for yeast cells. However, the results indicate that additional serum factors are needed for optimal opsonization of yeast cells because a 35% reduction in the number of cryptococci bound to macrophages was observed with

  11. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  12. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitorB kinase activity and stabilization of the NF-κB inhibitorB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  13. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M

    2001-01-01

    of the CR1 binding site with the monoclonal antibody 3D9 also resulted in a minor reduction in MAC deposition, while FE8 and 3D9, in combination, markedly reduced deposition of both C3 fragments (91 +/- 5%) and C9 (95 +/- 3%). The kinetics of C3-fragment and MAC deposition, as well as the dependence of both......Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5...... convertase and consequent formation of membrane attack complexes (MAC). Deposition of C3 fragments and MAC was assessed on human peripheral B lymphocytes in the presence of 30% autologous serum containing 4.4 mM MgCl2/20 mM EGTA, which abrogates the classical pathway of complement without affecting...

  14. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    International Nuclear Information System (INIS)

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.; Spycher, M.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound 125 I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of 125 I-H; when fresh serum was chelated with 10 mM EDTA, 125 I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samples from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), 125 I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while 125 I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes

  15. A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism.

    Science.gov (United States)

    Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J

    2015-01-23

    The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg(102). In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg(102)-Glu(1032) salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg(102)-Glu(1032) salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg(102)-Glu(1032) salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg(102)) and disease-linked C3F (Gly(102)) allotypes of C3b were experimentally explained for the first time. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Zinc-induced Self-association of Complement C3b and Factor H

    Science.gov (United States)

    Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.

    2013-01-01

    The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701

  17. Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    Directory of Open Access Journals (Sweden)

    Zipfel Peter F

    2010-02-01

    Full Text Available Abstract Background B. burgdorferi sensu lato (sl is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH or Factor H-like protein1 (FHL-1 to Complement Regulator-Acquiring Surface Proteins (CRASPs. Results We demonstrate that B. garinii OspA serotype 4 (ST4 PBi resist complement-mediated killing by binding of FHL-1. To identify the primary ligands of FHL-1 four CspA orthologs from B. garinii ST4 PBi were cloned and tested for binding to human CFH and FHL-1. Orthologs BGA66 and BGA71 were found to be able to bind both complement regulators but with different intensities. In addition, all CspA orthologs were tested for binding to mammalian and avian CFH. Distinct orthologs were able to bind to CFH of different animal origins. Conclusions B. garinii ST4 PBi is able to evade complement killing and it can bind FHL-1 to membrane expressed proteins. Recombinant proteins BGA66 can bind FHL-1 and human CFH, while BGA71 can bind only FHL-1. All recombinant CspA orthologs from B. garinii ST4 PBi can bind CFH from different animal origins. This partly explains the wide variety of animals that can be infected by B. garinii.

  18. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    DEFF Research Database (Denmark)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor...... concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema...

  19. The meningococcal vaccine candidate neisserial surface protein A (NspA binds to factor H and enhances meningococcal resistance to complement.

    Directory of Open Access Journals (Sweden)

    Lisa A Lewis

    2010-07-01

    Full Text Available Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH to fH-binding protein (fHbp is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a approximately 17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA, a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep I chain of lipooligosaccharide (LOS, or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6-7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.

  20. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    Science.gov (United States)

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cell- and stage-specific chromatin structure across the Complement receptor 2 (CR2/CD21) promoter coincide with CBF1 and C/EBP-beta binding in B cells.

    Science.gov (United States)

    Cruickshank, Mark N; Fenwick, Emily; Karimi, Mahdad; Abraham, Lawrence J; Ulgiati, Daniela

    2009-08-01

    Stringent developmental transcription requires multiple transcription factor (TF) binding sites, cell-specific expression of signaling molecules, TFs and co-regulators and appropriate chromatin structure. During B-lymphopoiesis, human Complement receptor 2 (CR2/CD21) is detected on immature and mature B cells but not on B cell precursors and plasma cells. We examined cell- and stage-specific human CR2 gene regulation using cell lines modeling B-lymphopoiesis. Chromatin accessibility assays revealed a region between -409 and -262 with enhanced accessibility in mature B cells and pre-B cells, compared to either non-lymphoid or plasma cell-types, however, accessibility near the transcription start site (TSS) was elevated only in CR2-expressing B cells. A correlation between histone acetylation and CR2 expression was observed, while histone H3K4 dimethylation was enriched near the TSS in both CR2-expressing B cells and non-expressing pre-B cells. Candidate sites within the CR2 promoter were identified which could regulate chromatin, including a matrix attachment region associated with CDP, SATB1/BRIGHT and CEBP-beta sites as well as two CBF1 sites. ChIP assays verified that both CBF1 and C/EBP-beta bind the CR2 promoter in B cells raising the possibility that these factors facilitate or respond to alterations in chromatin structure to control the timing and/or level of CR2 transcription.

  2. Pasteurella pneumotropica evades the human complement system by acquisition of the complement regulators factor H and C4BP.

    Directory of Open Access Journals (Sweden)

    Alfredo Sahagún-Ruiz

    Full Text Available Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections.

  3. Type I CD20 Antibodies Recruit the B Cell Receptor for Complement-Dependent Lysis of Malignant B Cells

    NARCIS (Netherlands)

    Engelberts, Patrick J.; Voorhorst, Marleen; Schuurman, Janine; van Meerten, Tom; Bakker, Joost M.; Vink, Tom; Mackus, Wendy J. M.; Breij, Esther C. W.; Derer, Stefanie; Valerius, Thomas; van de Winkel, Jan G. J.; Parren, Paul W. H. I.; Beurskens, Frank J.

    2016-01-01

    Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20(+) B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab ')2 fragments, as well as C1q-binding-deficient IgG mutants,

  4. Acquisition of negative complement regulators by the saprophyte Leptospira biflexa expressing LigA or LigB confers enhanced survival in human serum.

    Science.gov (United States)

    Castiblanco-Valencia, Mónica M; Fraga, Tatiana R; Breda, Leandro C D; Vasconcellos, Sílvio A; Figueira, Cláudio P; Picardeau, Mathieu; Wunder, Elsio; Ko, Albert I; Barbosa, Angela S; Isaac, Lourdes

    2016-05-01

    Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum. Copyright © 2016 European Federation of Immunological Societies. All rights reserved.

  5. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  6. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases

    International Nuclear Information System (INIS)

    Rimoldi, M.T.; Sher, A.; Heiny, A.; Lituchy, A.; Hammer, C.H.; Joiner, K.

    1988-01-01

    The authors recently showed that culture-derived metacyclic trypomastigotes (CMT), but not epimastigotes (Epi), of the Miranda 99 strain of Trypanosoma cruzi evade lysis by the human alternative complement pathway because of inefficient binding of factor B to complement component C3b on the parasite surface. These results suggested that CMT and tissue-culture-derived trypomastigotes (TCT), which also activate the alternative pathway poorly, might produce a molecule capable of interfering with factor B binding to C3b. They now demonstrate that CMT and TCT lysates, as well as molecules spontaneously shed from CMT and TCT but not Epi, accelerate decay of 125 I-labeled factor Bb from the alternative-pathway C3 convertase (C3bBb) assembled on zymosan or Epi and also accelerate decay of the classical-pathway C3 convertase (C4b2a) on sheep erythrocytes. Parasites metabolically labeled with [ 35 S]methionine spontaneously shed a limited number of radioactive components, ranging in molecular mass from 86 to 155 kDa for trypomastigotes and 25 to 80 kDa for Epi. Decay-accelerating activity within supernatants is inactivated by papain and is coeluted with 35 S-containing polypeptides on FPLC anion-exchange chromatography, suggesting that the active constituents are protein molecules. Molecules with decay-accelerating activity may explain the developmentally regulated resistance to complement-mediated lysis in infective and vertebrate stages for T. cruzi life cycle

  7. A study of immunoglobulins and complements (C3 &C4 in alopecia areata

    Directory of Open Access Journals (Sweden)

    Sharma R

    1995-01-01

    Full Text Available Estimation of serum Immunoglobulins (IgG, IgM and IgA and complements (C3 and C4 was carried out in 100 cases of alopecia areata as per method described by Mancini (1965.[1] Clinically patients were divided in two groups, alopecia areata circumscribed (group I and severe alopecia areata (group II. Significant decrease in levels of one or more Immunoglobulins were observed in most of the patients. However, Serum complements (C3 and C4 were within range of normal control values

  8. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

    Science.gov (United States)

    Yan, Fangfang; Liu, Xinguo; Zhang, Shaolong; Su, Jing; Zhang, Qinggang; Chen, Jianzhong

    2017-11-06

    Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

  9. Potential of Murine IgG1 and Human IgG4 to Inhibit the Classical Complement and Fcγ Receptor Activation Pathways

    Directory of Open Access Journals (Sweden)

    Gina-Maria Lilienthal

    2018-05-01

    Full Text Available IgG antibodies (Abs mediate their effector functions through the interaction with Fcγ receptors (FcγRs and the complement factors. The main IgG-mediated complement activation pathway is induced through the binding of complement C1q to IgG Abs. This interaction is dependent on antigen-dependent hexamer formation of human IgG1 and IgG3 to increase the affinity for the six-headed C1q molecule. By contrast, human IgG4 fails to bind to C1q. Instead, it has been suggested that human IgG4 can block IgG1 and IgG3 hexamerization required for their binding to C1q and activating the complement. Here, we show that murine IgG1, which functionally resembles human IgG4 by not interacting with C1q, inhibits the binding of IgG2a, IgG2b, and IgG3 to C1q in vitro, and suppresses IgG2a-mediated complement activation in a hemolytic assay in an antigen-dependent and IgG subclass-specific manner. From this perspective, we discuss the potential of murine IgG1 and human IgG4 to block the complement activation as well as suppressive effects of sialylated IgG subclass Abs on FcγR-mediated immune cell activation. Accumulating evidence suggests that both mechanisms seem to be responsible for preventing uncontrolled IgG (autoAb-induced inflammation in mice and humans. Distinct IgG subclass distributions and functionally opposite IgG Fc glycosylation patterns might explain different outcomes of IgG-mediated immune responses and provide new therapeutic options through the induction, enrichment, or application of antigen-specific sialylated human IgG4 to prevent complement and FcγR activation as well.

  10. Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity.

    Science.gov (United States)

    Wen, Yurong; Ouyang, Zhenlin; Schoonooghe, Steve; Luo, Siyu; De Baetselier, Patrick; Lu, Wuyuan; Muyldermans, Serge; Raes, Geert; Zheng, Fang

    2017-06-01

    Vsig4 is a recently identified immune regulatory protein related to the B7 family with dual functionality: a negative regulator of T cell activation and a receptor for the complement components C3b and C3c. Here we present a structural evaluation of a nanobody, Nb119, against the extracellular IgV domain protein of both mouse and human recombinant Vsig4, which have a high degree of sequence identity. Although mouse and human Vsig4 bind to Nb119 with a 250 times difference in dissociation constants, the interaction results in a highly identical assembly with a RMSD of 0.4Å. The molecular determinants for Vsig4 recognition and cross reactivity unveiled by the atomic structure of Nb119 in complex with mVsig4 and hVsig4 afford new insights useful for the further optimization of the nanobody for potential use in humans. Additionally, structural analysis of the Vsig4-Nb119 complexes indicates that Nb119 occupies the interface on Vsig4 recognized by the macroglobulin-like domains MG4 and MG5 of C3b. Thus an affinity-improved Nb119 may have the potential to influence the activation of both T cells and complement. Copyright © 2016. Published by Elsevier GmbH.

  11. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel 'close, dock, lock and latch' mechanism for complement evasion.

    Science.gov (United States)

    Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan

    2017-05-04

    Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH 1206-1226 ), which binds SdrE N2 and N3 domains (SdrE N2N3 ) with high affinity, and determined the crystal structures of apo-SdrE N2N3 and the SdrE N2N3 -CFH 1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrE N2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).

  12. Complement C3a binding to its receptor as a negative modulator of Th2 response in liver injury in trichloroethylene-sensitized mice.

    Science.gov (United States)

    Wang, Feng; Zha, Wan-sheng; Zhang, Jia-xiang; Li, Shu-long; Wang, Hui; Ye, Liang-ping; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2014-08-17

    Trichloroethylene (TCE) is a major occupational health hazard and causes occupational medicamentosa-like dermatitis (OMLDT) and liver damage. Recent evidence suggests immune response as a distinct mode of action for TCE-induced liver damage. This study aimed to explore the role of the key complement activation product C3a and its receptor C3aR in TCE-induced immune liver injury. A mouse model of skin sensitization was induced by TCE in the presence and absence of the C3aR antagonist SB 290157. Liver function was evaluated by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in conjunction with histopathological characterizations. C3a and C3aR were detected by immunohistochemistry and C5b-9 was assessed by immunofluorescence. IFN-γ and IL4 expressions were determined by flow cytometry and ELISA. The total sensitization rate was 44.1%. TCE sensitization caused liver cell necrosis and inflammatory infiltration, elevated serum ALT and AST, expression of C3a and C3aR, and deposition of C5b-9 in the liver. IFN-γ and IL-4 expressions were up-regulated in spleen mononuclear cells and their serum levels were also increased. Pretreatment with SB 290157 resulted in more inflammatory infiltration in the liver, higher levels of AST, reduced C3aR expression on Kupffer cells, and decreased IL-4 levels while IFN-γ remained unchanged. These data demonstrate that blocking of C3a binding to C3aR reduces IL4, shifts IFN-γ and IL-4 balance, and aggravates TCE-sensitization induced liver damage. These findings reveal a novel mechanism whereby modulation of Th2 response by C3a binding to C3a receptor contributes to immune-mediated liver damage by TCE exposure. Copyright © 2014. Published by Elsevier Ireland Ltd.

  13. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice.

    Science.gov (United States)

    Cohen, Jessica I; Roychowdhury, Sanjoy; McMullen, Megan R; Stavitsky, Abram B; Nagy, Laura E

    2010-08-01

    Complement is involved in the development of alcoholic liver disease in mice; however, the mechanisms for complement activation during ethanol exposure have not been identified. C1q, the recognition subunit of the first complement component, binds to apoptotic cells, thereby activating the classical complement pathway. Because ethanol exposure increases hepatocellular apoptosis, we hypothesized that ethanol-induced apoptosis would lead to activation of complement via the classical pathway. Wild-type and C1qa-/- mice were allowed free access to ethanol-containing diets or pair-fed control diets for 4 or 25 days. Ethanol feeding for 4 days increased apoptosis of Kupffer cells in both wild-type and C1qa-/- mice. Ethanol-induced deposition of C1q and C3b/iC3b/C3c was colocalized with apoptotic Kupffer cells in wild-type, but not C1qa-/-, mice. Furthermore, ethanol-induced increases in tumor necrosis factor-alpha and interleukin-6 expression at this early time point were suppressed in C1q-deficient mice. Chronic ethanol feeding (25 days) increased steatosis, hepatocyte apoptosis, and activity of serum alanine and aspartate aminotransferases in wild-type mice. These markers of hepatocyte injury were attenuated in C1qa-/- mice. In contrast, chronic ethanol (25 days)-induced increases in cytochrome P450 2E1 expression and oxidative stress did not differ between wild-type and C1qa-/- mice. For the first time, these data indicate that ethanol activates the classical complement pathway via C1q binding to apoptotic cells in the liver and that C1q contributes to the pathogenesis of ethanol-induced liver injury. Copyright (c) 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways

    DEFF Research Database (Denmark)

    Nordmaj, Mie Anemone; Munthe-Fog, Lea; Hein, Estrid

    2015-01-01

    Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative......:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect...

  15. Breaking down the complement system: a review and update on novel therapies.

    Science.gov (United States)

    Reddy, Yuvaram N V; Siedlecki, Andrew M; Francis, Jean M

    2017-03-01

    The complement system represents one of the more primitive forms of innate immunity. It has increasingly been found to contribute to pathologies in the native and transplanted kidney. We provide a concise review of the physiology of the complement cascade, and discuss current and upcoming complement-based therapies. Current agents in clinical use either bind to complement components directly or prevent complement from binding to antibodies affixed to the endothelial surface. These include C1 esterase inhibitors, anti-C5 mAbs, anti-CD20 mAbs, and proteasome inhibitors. Treatment continues to show efficacy in the atypical hemolytic uremic syndrome and antibody-mediated rejection. Promising agents not currently available include CCX168, TP10, AMY-101, factor D inhibitors, coversin, and compstatin. Several new trials are targeting complement inhibition to treat antineutrophilic cystoplasmic antibody (ANCA)-associated vasculitis, C3 glomerulopathy, thrombotic microangiopathy, and IgA nephropathy. New agents for the treatment of the atypical hemolytic uremic syndrome are also in development. Complement-based therapies are being considered for targeted therapy in the atypical hemolytic uremic syndrome and antibody-mediated rejection, C3 glomerulopathy, and ANCA-associated vasculitis. A few agents are currently in use as orphan drugs. A number of other drugs are in clinical trials and, overall, are showing promising preliminary results.

  16. Electroluminescent TCC, C3dg and fB/Bb epitope assays for profiling complement cascade activation in vitro using an activated complement serum calibration standard.

    Science.gov (United States)

    van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M

    2014-01-15

    Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The role of complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment deposition and membrane attack complex formation on normal peripheral human B cells

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Pedersen, Morten Løbner; Marquart, Hanne Vibeke Hansen

    2002-01-01

    Normal human B lymphocytes are known to activate the alternative pathway (AP) of complement, leading to C3-fragment deposition and membrane attack complex (MAC) formation. The process is mediated via complement receptor type 2 (CR2, CD21), with complement receptor type 1 (CR1, CD35) playing...... a subsidiary role. In this study, we examine the relative contributions of CR1 and CR2 to the deposition of C3 fragments and MAC on B lymphocytes under circumstances where all complement pathways are operational. C3-fragment deposition and MAC formation were assessed on human peripheral B lymphocytes...... in the presence of 30% autologous serum. Blocking the CR2 ligand-binding site with monoclonal antibody (mAb) FE8 resulted in significant reduction (37.9+/-11.9%) in C3-fragment deposition, whereas MAC formation was only marginally affected (12.1+/-22.2% reduction). Blocking the CR1 binding-site resulted...

  18. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel ‘close, dock, lock and latch' mechanism for complement evasion

    Science.gov (United States)

    Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye

    2017-01-01

    Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine–aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE–CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206–1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3–CFH1206–1226 complex. Comparison of the structure of the CFH–SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a ‘close’ state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel ‘close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a ‘clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. PMID:28258151

  19. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    Science.gov (United States)

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia

    NARCIS (Netherlands)

    de Beer, F. M.; Aslami, H.; Hoeksma, J.; van Mierlo, G.; Wouters, D.; Zeerleder, S.; Roelofs, J. J. T. H.; Juffermans, N. P.; Schultz, M. J.; Lagrand, W. K.

    2014-01-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary

  1. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a

    Directory of Open Access Journals (Sweden)

    Rachel Vaivoda

    2015-01-01

    Full Text Available CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4. CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P < 0.01. This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies.

  2. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    Science.gov (United States)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  3. Complement activation in astrocytomas: deposition of C4d and patient outcome

    International Nuclear Information System (INIS)

    Mäkelä, Katri; Helén, Pauli; Haapasalo, Hannu; Paavonen, Timo

    2012-01-01

    C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement

  4. Effect of complement Factor H on anti-FHbp serum bactericidal antibody responses of infant rhesus macaques boosted with a licensed meningococcal serogroup B vaccine.

    Science.gov (United States)

    Giuntini, Serena; Beernink, Peter T; Granoff, Dan M

    2015-12-16

    FHbp is a major serogroup B meningococcal vaccine antigen. Binding of complement Factor H (FH) to FHbp is specific for human and some non-human primate FH. In previous studies, FH binding to FHbp vaccines impaired protective anti-FHbp antibody responses. In this study we investigated anti-FHbp antibody responses to a third dose of a licensed serogroup B vaccine (MenB-4C) in infant macaques vaccinated in a previous study with MenB-4C. Six macaques with high binding of FH to FHbp (FH(high)), and six with FH(low) baseline phenotypes, were immunized three months after dose 2. After dose 2, macaques with the FH(low) baseline phenotype had serum anti-FHbp antibodies that enhanced FH binding to FHbp (functionally converting them to a FH(high) phenotype). In this group, activation of the classical complement pathway (C4b deposition) by serum anti-FHbp antibody, and anti-FHbp serum bactericidal titers were lower after dose 3 than after dose 2 (pb deposition and bactericidal titers were similar after doses 2 and 3. Two macaques developed serum anti-FH autoantibodies after dose 2, which were not detected after dose 3. In conclusion, in macaques with the FH(low) baseline phenotype whose post-dose 2 serum anti-FHbp antibodies had converted them to FH(high), the anti-FHbp antibody repertoire to dose 3 was skewed to less protective epitopes than after dose 2. Mutant FHbp vaccines that eliminate FH binding may avoid eliciting anti-FHbp antibodies that enhance FH binding, and confer greater protection with less risk of inducing anti-FH autoantibodies than FHbp vaccines that bind FH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Complement-dependent transport of antigen into B cell follicles

    DEFF Research Database (Denmark)

    Gonzalez, Santiago F.; Lukacs-Kornek, Veronika; Kuligowski, Michael P.

    2010-01-01

    an additional novel pathway in which complement C3 and its receptors enhance humoral immunity through delivery of Ag to the B cell compartment. In this review, we discuss this pathway and highlight several novel exceptions recently found with a model influenza vaccine, such as mannose-binding lectin...... opsonization of influenza and uptake by macrophages, and the capture of virus by dendritic cells residing in the medullary compartment of peripheral lymph nodes....

  6. Endogenous Natural Complement Inhibitor Regulates Cardiac Development

    DEFF Research Database (Denmark)

    Mortensen, Simon A; Skov, Louise L; Kjaer-Sorensen, Kasper

    2017-01-01

    mechanisms during fetal development and adult homeostasis. In this article, we describe the function of an endogenous complement inhibitor, mannan-binding lectin (MBL)-associated protein (MAp)44, in regulating the composition of a serine protease-pattern recognition receptor complex, MBL-associated serine...... of MAp44 caused impaired cardiogenesis, lowered heart rate, and decreased cardiac output. These defects were associated with aberrant neural crest cell behavior. We found that MAp44 competed with MASP-3 for pattern recognition molecule interaction, and knockdown of endogenous MAp44 expression could...... be rescued by overexpression of wild-type MAp44. Our observations provide evidence that immune molecules are centrally involved in the orchestration of cardiac tissue development....

  7. Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach.

    Science.gov (United States)

    Sanusi, Z K; Govender, T; Maguire, G E M; Maseko, S B; Lin, J; Kruger, H G; Honarparvar, B

    2017-09-01

    Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?G bind ) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.

    Science.gov (United States)

    Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang

    2015-03-12

    c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.

  9. Complement activation on the surface of cell-derived microparticles during cardiac surgery with cardiopulmonary bypass - is retransfusion of pericardial blood harmful?

    Science.gov (United States)

    Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R

    2011-01-01

    To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.

  10. Relative Contribution of Cellular Complement Inhibitors CD59, CD46, and CD55 to Parainfluenza Virus 5 Inhibition of Complement-Mediated Neutralization

    Directory of Open Access Journals (Sweden)

    Yujia Li

    2018-04-01

    Full Text Available The complement system is a part of the innate immune system that viruses need to face during infections. Many viruses incorporate cellular regulators of complement activation (RCA to block complement pathways and our prior work has shown that Parainfluenza virus 5 (PIV5 incorporates CD55 and CD46 to delay complement-mediated neutralization. In this paper, we tested the role of a third individual RCA inhibitor CD59 in PIV5 interactions with complement pathways. Using a cell line engineered to express CD59, we show that small levels of functional CD59 are associated with progeny PIV5, which is capable of blocking assembly of the C5b-C9 membrane attack complex (MAC. PIV5 containing CD59 (PIV5-CD59 showed increased resistance to complement-mediated neutralization in vitro comparing to PIV5 lacking regulators. Infection of A549 cells with PIV5 and RSV upregulated CD59 expression. TGF-beta treatment of PIV5-infected cells also increased cell surface CD59 expression and progeny virions were more resistant to complement-mediated neutralization. A comparison of individual viruses containing only CD55, CD46, or CD59 showed a potency of inhibiting complement-mediated neutralization, which followed a pattern of CD55 > CD46 > CD59.

  11. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent.

    Science.gov (United States)

    Schuijt, Tim J; Coumou, Jeroen; Narasimhan, Sukanya; Dai, Jianfeng; Deponte, Kathleen; Wouters, Diana; Brouwer, Mieke; Oei, Anneke; Roelofs, Joris J T H; van Dam, Alje P; van der Poll, Tom; Van't Veer, Cornelis; Hovius, Joppe W; Fikrig, Erol

    2011-08-18

    The Lyme disease agent Borrelia burgdorferi is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8, which reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade, resulting in impaired neutrophil phagocytosis and chemotaxis and diminished Borrelia lysis. Therefore, P8 was renamed the tick salivary lectin pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks feeding on TSLPI-immunized, B. burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Schizophrenia risk from complex variation of complement component 4

    DEFF Research Database (Denmark)

    Sekar, Aswin; Bialas, Allison R; de Rivera, Heather

    2016-01-01

    to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia...

  13. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors

    Directory of Open Access Journals (Sweden)

    Mirza MU

    2015-03-01

    Full Text Available Muhammad Usman Mirza,1 Noor-Ul-Huda Ghori,2 Nazia Ikram,3 Abdur Rehman Adil,4 Sadia Manzoor3 1Centre for Research in Molecular Medicine (CRiMM, The University of Lahore, Lahore, 2Atta-ur-Rehman School of Applied Biosciences (ASAB, National University of Science and Technology, Islamabad, 3Institute of Molecular Biology and Biotechnology (IMBB, The University of Lahore, Lahore, Pakistan; 4Centre for Excellence in Molecular Biology (CEMB, The University of Punjab, Lahore, Pakistan Abstract: Hepatitis C virus (HCV is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties. Keywords: hepatitis C, NS5B inhibitors, molecular docking, Auto

  14. Characterization of the third component of complement (C3) after activation by cigarette smoke

    International Nuclear Information System (INIS)

    Kew, R.R.; Ghebrehiwet, B.; Janoff, A.

    1987-01-01

    Activation of lung complement by tobacco smoke may be an important pathogenetic factor in the development of pulmonary emphysema in smokers. We previously showed that cigarette smoke can modify C3 and activate the alternative pathway of complement in vitro. However, the mechanism of C3 activation was not fully delineated in these earlier studies. In the present report, we show that smoke-treated C3 induces cleavage of the alternative pathway protein, Factor B, when added to serum containing Mg-EGTA. This effect of cigarette smoke is specific for C3 since smoke-treated C4, when added to Mg-EGTA-treated serum, fails to activate the alternative pathway and fails to induce Factor B cleavage. Smoke-modified C3 no longer binds significant amounts of [ 14 C]methylamine (as does native C3), and relatively little [ 14 C]methylamine is incorporated into its alpha-chain. Thus, prior internal thiolester bond cleavage appears to have occurred in C3 activated by cigarette smoke. Cigarette smoke components also induce formation of noncovalently associated, soluble C3 multimers, with a Mr ranging from 1 to 10 million. However, prior cleavage of the thiolester bond in C3 with methylamine prevents the subsequent formation of these smoke-induced aggregates. These data indicate that cigarette smoke activates the alternative pathway of complement by specifically modifying C3 and that these modifications include cleavage of the thiolester bond in C3 and formation of noncovalently linked C3 multimers

  15. Two distinct binding modes define the interaction of Brox with the C-terminal tails of CHMP5 and CHMP4B.

    Science.gov (United States)

    Mu, Ruiling; Dussupt, Vincent; Jiang, Jiansheng; Sette, Paola; Rudd, Victoria; Chuenchor, Watchalee; Bello, Nana F; Bouamr, Fadila; Xiao, Tsan Sam

    2012-05-09

    Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic α helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an α helix, the CHMP5 C-terminal tail adopts a tandem β-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a β-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. New perspectives on mannan-binding lectin-mediated complement activation

    DEFF Research Database (Denmark)

    Degn, Søren Egedal; Thiel, Steffen; Jensenius, Jens Christian

    2007-01-01

    The complement system is an important part of the innate immune system, mediating several major effector functions and modulating adaptive immune responses. Three complement activation pathways exist: the classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP). The LP......, allowing C3 activation in the absence of components otherwise believed critical. The classical bypass pathways are dependent on C1 and components of the AP. A recent study has shown the existence also of a lectin bypass pathway dependent on mannan-binding lectin (MBL) and AP components. The emerging...

  17. Increased Autoreactivity of the Complement-Activating Molecule Mannan-Binding Lectin in a Type 1 Diabetes Model

    Directory of Open Access Journals (Sweden)

    Jakob Appel Østergaard

    2016-01-01

    Full Text Available Background. Diabetic kidney disease is the leading cause of end-stage renal failure despite intensive treatment of modifiable risk factors. Identification of new drug targets is therefore of paramount importance. The complement system is emerging as a potential new target. The lectin pathway of the complement system, initiated by the carbohydrate-recognition molecule mannan-binding lectin (MBL, is linked to poor kidney prognosis in diabetes. We hypothesized that MBL activates complement upon binding within the diabetic glomerulus. Methods. We investigated this by comparing complement deposition and activation in kidneys from streptozotocin-induced diabetic mice and healthy control mice. Results. After 20 weeks of diabetes, glomerular deposition of MBL was significantly increased. Diabetic animals had 2.0-fold higher (95% CI 1.6–2.5 immunofluorescence intensity from anti-MBL antibodies compared with controls (P<0.001. Diabetes and control groups did not differ in glomerular immunofluorescence intensity obtained by antibodies against complement factors C4, C3, and C9. However, the circulating complement activation product C3a was increased in diabetes as compared to control mice (P=0.04. Conclusion. 20 weeks of diabetes increased MBL autoreactivity in the kidney and circulating C3a concentration. Together with previous findings, these results indicate direct effects of MBL within the kidney in diabetes.

  18. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  19. Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis.

    Science.gov (United States)

    Mendes-Sousa, Antonio Ferreira; Vale, Vladimir Fazito; Queiroz, Daniel Costa; Pereira-Filho, Adalberto Alves; da Silva, Naylene Carvalho Sales; Koerich, Leonardo Barbosa; Moreira, Luciano Andrade; Pereira, Marcos Horácio; Sant'Anna, Maurício Roberto; Araújo, Ricardo Nascimento; Andersen, John; Valenzuela, Jesus Gilberto; Gontijo, Nelder Figueiredo

    2018-01-01

    Anopheline mosquitoes are vectors of malaria parasites. Their saliva contains anti-hemostatic and immune-modulator molecules that favor blood feeding and parasite transmission. In this study, we describe the inhibition of the alternative pathway of the complement system (AP) by Anopheles aquasalis salivary gland extracts (SGE). According to our results, the inhibitor present in SGE acts on the initial step of the AP blocking deposition of C3b on the activation surfaces. Properdin, which is a positive regulatory molecule of the AP, binds to SGE. When SGE was treated with an excess of properdin, it was unable to inhibit the AP. Through SDS-PAGE analysis, A. aquasalis presented a salivary protein with the same molecular weight as recombinant complement inhibitors belonging to the SG7 family described in the saliva of other anopheline species. At least some SG7 proteins bind to properdin and are AP inhibitors. Searching for SG7 proteins in the A. aquasalis genome, we retrieved a salivary protein that shared an 85% identity with albicin, which is the salivary alternative pathway inhibitor from A. albimanus. This A. aquasalis sequence was also very similar (81% ID) to the SG7 protein from A. darlingi, which is also an AP inhibitor. Our results suggest that the salivary complement inhibitor from A. aquasalis is an SG7 protein that can inhibit the AP by binding to properdin and abrogating its stabilizing activity. Albicin, which is the SG7 from A. albimanus, can directly inhibit AP convertase. Given the high similarity of SG7 proteins, the SG7 from A. aquasalis may also directly inhibit AP convertase in the absence of properdin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Conserved Patterns of Microbial Immune Escape: Pathogenic Microbes of Diverse Origin Target the Human Terminal Complement Inhibitor Vitronectin via a Single Common Motif.

    Directory of Open Access Journals (Sweden)

    Teresia Hallström

    Full Text Available Pathogenicity of many microbes relies on their capacity to resist innate immunity, and to survive and persist in an immunocompetent human host microbes have developed highly efficient and sophisticated complement evasion strategies. Here we show that different human pathogens including Gram-negative and Gram-positive bacteria, as well as the fungal pathogen Candida albicans, acquire the human terminal complement regulator vitronectin to their surface. By using truncated vitronectin fragments we found that all analyzed microbial pathogens (n = 13 bound human vitronectin via the same C-terminal heparin-binding domain (amino acids 352-374. This specific interaction leaves the terminal complement complex (TCC regulatory region of vitronectin accessible, allowing inhibition of C5b-7 membrane insertion and C9 polymerization. Vitronectin complexed with the various microbes and corresponding proteins was thus functionally active and inhibited complement-mediated C5b-9 deposition. Taken together, diverse microbial pathogens expressing different structurally unrelated vitronectin-binding molecules interact with host vitronectin via the same conserved region to allow versatile control of the host innate immune response.

  1. Interactions of the humoral pattern recognition molecule PTX3 with the complement system

    DEFF Research Database (Denmark)

    Doni, Andrea; Garlanda, Cecilia; Bottazzi, Barbara

    2012-01-01

    The innate immune system comprises a cellular and a humoral arm. The long pentraxin PTX3 is a fluid phase pattern recognition molecule, which acts as an essential component of the humoral arm of innate immunity. PTX3 has antibody-like properties including interactions with complement components....... PTX3 interacts with C1q, ficolin-1 and ficolin-2 as well as mannose-binding lectin, recognition molecules in the classical and lectin complement pathways. The formation of these heterocomplexes results in cooperative pathogen recognition and complement activation. Interactions with C4b binding protein...

  2. The solvent at antigen-binding site regulated C3d-CR2 interactions through the C-terminal tail of C3d at different ion strengths: insights from molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Yan; Guo, Jingjing; Li, Lanlan; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang

    2016-10-01

    The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d-CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d-CR2 interaction. Many studies have indicated C3d-CR2 interactions are ionic strength-dependent. To investigate the molecular mechanism of C3d-CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d-CR2 complex together with the energetic and structural analysis were performed. Our results revealed the increased interactions between charged protein and ions weaken C3d-CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths. Our results reveal the origins of the effects of ionic strengths on C3d-CR2 interactions are due to the changes of water, ion occupancies and distributions. This study uncovers the origin of the effect of ionic strength on C3d-CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state, while the truncated apo protein adopts an open conformation (active state. Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors.

  4. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Wallich, Reinhard; Kraiczy, Peter; Zipfel, Peter F.; Lea, Susan M.

    2013-01-01

    B. burgdorferi binds complement factor H using a dimeric surface protein, CspA (BbCRASP-1). Presented here is a new structure of CspA that suggests that there is a degree of flexibility between subunits which may have implications for complement regulator binding. Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators

  5. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    of the B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...

  6. Radioassays for quantitation of intact complement proteins C2 and B in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, T J; Ueda, A; Volanakis, J E

    1988-05-25

    Availability of polyclonal and monoclonal antibodies recognizing determinants on the major cleavage fragments of complement proteins C2 and B enabled development of sensitive radioassays which can be used to quantitate the intact proteins in human sera. Changes in C2 and B concentrations indicative of classical or alternative pathway activation, or both, were seen in normal serum after incubation with complement activators. The authors determined the normal range of C2 concentration to be 11-35 ..mu..g/ml in 32 healthy individuals, and that of protein B to be 74-286 ..mu..g/ml. Sera from patients with systemic lupus erythematosus (SLE), septic shock, infections, and following orthopedic surgery were then assayed. Mean protein B concentration was significantly higher in SLE sera and in the infected and post-operative sera, and the mean C2 concentration in the septic shock group was significantly lower than the mean of healthy individuals. Intact C2 was not detected in known C2-deficient individuals. These assays allow parallel quantitation of the structurally and functionally homologous proteins of the classical (C2) and alternative (B) pathways, which is of interest in patients with genetic and acquired hypocomplementemia. 22 refs.; 3 figs.

  7. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain u...

  8. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch

    2015-01-01

    ) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced...... to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4...

  9. CipA of Acinetobacter baumannii Is a Novel Plasminogen Binding and Complement Inhibitory Protein.

    Science.gov (United States)

    Koenigs, Arno; Stahl, Julia; Averhoff, Beate; Göttig, Stephan; Wichelhaus, Thomas A; Wallich, Reinhard; Zipfel, Peter F; Kraiczy, Peter

    2016-05-01

    Acinetobacter baumannii is an emerging opportunistic pathogen, responsible for up to 10% of gram-negative, nosocomial infections. The global increase of multidrug-resistant and pan-resistant Acinetobacter isolates presents clinicians with formidable challenges. To establish a persistent infection,A. baumannii must overcome the detrimental effects of complement as the first line of defense against invading microorganisms. However, the immune evasion principles underlying serum resistance inA. baumannii remain elusive. Here, we identified a novel plasminogen-binding protein, termed CipA. Bound plasminogen, upon conversion to active plasmin, degraded fibrinogen and complement C3b and contributed to serum resistance. Furthermore, CipA directly inhibited the alternative pathway of complement in vitro, irrespective of its ability to bind plasminogen. A CipA-deficient mutant was efficiently killed by human serum and showed a defect in the penetration of endothelial monolayers, demonstrating that CipA is a novel multifunctional protein that contributes to the pathogenesis ofA. baumannii. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Storage of the complement components C4, C3, and C 3-activator in the human liver as PAS-negative globular hyaline bodies.

    Science.gov (United States)

    Storch, W; Riedel, H; Trautmann, B; Justus, J; Hiemann, D

    1982-01-01

    Liver biopsies of a 58-year-old clinically healthy patient with a hepatomegaly and intracisternal PAS-negative globular hyaline bodies were immunofluorescent-optically examined for the content of the complement components C 1 q, C 4, C 9, C 1-inactivator, C 3-activator. Further examinations were performed for fibrinogen, IgG, IgA, IgM, IgD, IgE, L-chain (type chi and lambda), alpha 1-antitrypsin, alpha 1-fetoprotein, alpha 1- and alpha 2-glycoprotein, cholinesterase, ceruloplasmin, myoglobin, hemopexin, HBsAg and HBsAg. Th inclusion bodies reacted with antisera against the complement components C 4, C 3 and C 3-activator, as also identified by double immunofluorescence. Probably this is a disturbance of the protein metabolism of the liver cell with abnormal complement storage in the presence of normal total complement and normal complement components in the serum.

  11. Complement activation by ceramide transporter proteins.

    Science.gov (United States)

    Bode, Gerard H; Losen, Mario; Buurman, Wim A; Veerhuis, Robert; Molenaar, Peter C; Steinbusch, Harry W M; De Baets, Marc H; Daha, Mohamed R; Martinez-Martinez, Pilar

    2014-02-01

    C1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with extracellular matrix components, such as type IV collagen, and with the innate immune protein serum amyloid P. In this article, we report a novel function of CERT in the innate immune response. Both CERT isoforms, when immobilized, were found to bind the globular head region of C1q and to initiate the classical complement pathway, leading to activation of C4 and C3, as well as generation of the membrane attack complex C5b-9. In addition, C1q was shown to bind to endogenous CERTL on the surface of apoptotic cells. These results demonstrate the role of CERTs in innate immunity, especially in the clearance of apoptotic cells.

  12. Arthrogenicity of type II collagen monoclonal antibodies associated with complement activation and antigen affinity.

    Science.gov (United States)

    Koobkokkruad, Thongchai; Kadotani, Tatsuya; Hutamekalin, Pilaiwanwadee; Mizutani, Nobuaki; Yoshino, Shin

    2011-11-04

    The collagen antibody-induced arthritis (CAIA) model, which employs a cocktail of monoclonal antibodies (mAbs) to type II collagen (CII), has been widely used for studying the pathogenesis of autoimmune arthritis. In this model, not all mAbs to CII are capable of inducing arthritis because one of the initial events is the formation of collagen-antibody immune complexes on the cartilage surface or in the synovium, and subsequent activation of the complement by the complexes induces arthritis, suggesting that a combination of mAbs showing strong ability to bind mouse CII and activate the complement may effectively induce arthritis in mice. In the present study, we examined the relationship between the induction of arthritis by the combination of IgG2a (CII-6 and C2A-12), IgG2b (CII-3, C2B-14 and C2B-16) and IgM (CM-5) subclones of monoclonal antibodies (mAb) of anti-bovine or chicken CII and the ability of mAbs to activate complement and bind mouse CII. DBA/1J mice were injected with several combinations of mAbs followed by lipopolysaccharide. Furthermore, the ability of mAbs to activate the complement and bind mouse CII was examined by ELISA. First, DBA/1J mice were injected with the combined 4 mAbs (CII-3, CII-6, C2B-14, and CM-5) followed by lipopolysaccharide, resulting in moderate arthritis. Excluding one of the mAbs, i.e., using only CII-3, CII-6, and C2B-14, induced greater inflammation of the joints. Next, adding C2A-12 but not C2B-16 to these 3 mAbs produced more severe arthritis. A combination of five clones, consisting of all 5 mAbs, was less effective. Histologically, mice given the newly developed 4-clone cocktail had marked proliferation of synovial tissues, massive infiltration by inflammatory cells, and severe destruction of cartilage and bone. Furthermore, 4 of the 6 clones (CII-3, CII-6, C2B-14, and C2A-12) showed not only a strong cross-reaction with mouse CII but also marked activation of the complement in vitro. The combination of 4 mAbs showing

  13. Arthrogenicity of type II collagen monoclonal antibodies associated with complement activation and antigen affinity

    Directory of Open Access Journals (Sweden)

    Mizutani Nobuaki

    2011-11-01

    Full Text Available Abstract Background The collagen antibody-induced arthritis (CAIA model, which employs a cocktail of monoclonal antibodies (mAbs to type II collagen (CII, has been widely used for studying the pathogenesis of autoimmune arthritis. In this model, not all mAbs to CII are capable of inducing arthritis because one of the initial events is the formation of collagen-antibody immune complexes on the cartilage surface or in the synovium, and subsequent activation of the complement by the complexes induces arthritis, suggesting that a combination of mAbs showing strong ability to bind mouse CII and activate the complement may effectively induce arthritis in mice. In the present study, we examined the relationship between the induction of arthritis by the combination of IgG2a (CII-6 and C2A-12, IgG2b (CII-3, C2B-14 and C2B-16 and IgM (CM-5 subclones of monoclonal antibodies (mAb of anti-bovine or chicken CII and the ability of mAbs to activate complement and bind mouse CII. Methods DBA/1J mice were injected with several combinations of mAbs followed by lipopolysaccharide. Furthermore, the ability of mAbs to activate the complement and bind mouse CII was examined by ELISA. Results First, DBA/1J mice were injected with the combined 4 mAbs (CII-3, CII-6, C2B-14, and CM-5 followed by lipopolysaccharide, resulting in moderate arthritis. Excluding one of the mAbs, i.e., using only CII-3, CII-6, and C2B-14, induced greater inflammation of the joints. Next, adding C2A-12 but not C2B-16 to these 3 mAbs produced more severe arthritis. A combination of five clones, consisting of all 5 mAbs, was less effective. Histologically, mice given the newly developed 4-clone cocktail had marked proliferation of synovial tissues, massive infiltration by inflammatory cells, and severe destruction of cartilage and bone. Furthermore, 4 of the 6 clones (CII-3, CII-6, C2B-14, and C2A-12 showed not only a strong cross-reaction with mouse CII but also marked activation of the

  14. Mannan-binding lectin activates C3 and the

    DEFF Research Database (Denmark)

    Selander, B.; Martensson, U.; Weintraub, A.

    2006-01-01

    Lectin pathway activation of C3 is known to involve target recognition by mannan-binding lectin (MBL) or ficolins and generation of classical pathway C3 convertase via cleavage of C4 and C2 by MBL-associated serine protease 2 (MASP-2). We investigated C3 activation in C2-deficient human sera...... and in sera with other defined defects of complement to assess other mechanisms through which MBL might recruit complement. The capacity of serum to support C3 deposition was examined by ELISA using microtiter plates coated with O antigen-specific oligosaccharides derived from Salmonella typhimurium, S...

  15. Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9 H -pyrimido[4,5- b ]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yujun; Bai, Longchuan; Liu, Liu; McEachern, Donna; Stuckey, Jeanne A.; Meagher, Jennifer L.; Yang, Chao-Yie; Ran, Xu; Zhou, Bing; Hu, Yang; Li, Xiaoqin; Wen, Bo; Zhao, Ting; Li, Siwei; Sun, Duxin; Wang, Shaomeng (Michigan)

    2017-03-24

    We have designed and synthesized 9H-pyrimido[4,5-b]indole-containing compounds to obtain potent and orally bioavailable BET inhibitors. By incorporation of an indole or a quinoline moiety to the 9H-pyrimido[4,5-b]indole core, we identified a series of small molecules showing high binding affinities to BET proteins and low nanomolar potencies in inhibition of cell growth in acute leukemia cell lines. One such compound, 4-(6-methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (31) has excellent microsomal stability and good oral pharmacokinetics in rats and mice. Orally administered, 31 achieves significant antitumor activity in the MV4;11 leukemia and MDA-MB-231 triple-negative breast cancer xenograft models in mice. Determination of the cocrystal structure of 31 with BRD4 BD2 provides a structural basis for its high binding affinity to BET proteins. Testing its binding affinities against other bromodomain-containing proteins shows that 31 is a highly selective inhibitor of BET proteins. Our data show that 31 is a potent, selective, and orally active BET inhibitor.

  16. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen

    Directory of Open Access Journals (Sweden)

    Ngoc T. T. Nguyen

    2018-02-01

    Full Text Available The emerging relapsing fever spirochete Borrelia (B. miyamotoi is transmitted by ixodid ticks and causes the so-called hard tick-borne relapsing fever or B. miyamotoi disease (BMD. More recently, we identified a surface-exposed molecule, CbiA exhibiting complement binding and inhibitory capacity and rendering spirochetes resistant to complement-mediated lysis. To gain deeper insight into the molecular principles of B. miyamotoi-host interaction, we examined CbiA as a plasmin(ogen receptor that enables B. miyamotoi to interact with the serine protease plasmin(ogen. Recombinant CbiA was able to bind plasminogen in a dose-dependent fashion. Moreover, lysine residues appear to play a crucial role in the protein-protein interaction as binding of plasminogen was inhibited by the lysine analog tranexamic acid as well as increasing ionic strength. Of relevance, plasminogen bound to CbiA can be converted by urokinase-type plasminogen activator (uPa to active plasmin which cleaved both, the chromogenic substrate S-2251 and its physiologic substrate fibrinogen. Concerning the involvement of specific amino acids in the interaction with plasminogen, lysine residues located at the C-terminus are frequently involved in the binding as reported for various other plasminogen-interacting proteins of Lyme disease spirochetes. Lysine residues located within the C-terminal domain were substituted with alanine to generate single, double, triple, and quadruple point mutants. However, binding of plasminogen to the mutated CbiA proteins was not affected, suggesting that lysine residues distant from the C-terminus might be involved in the interaction.

  17. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    Science.gov (United States)

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  18. A novel antihuman C3d monoclonal antibody with specificity to the C3d complement split product

    DEFF Research Database (Denmark)

    Rasmussen, Karina Juhl; Skjødt, Mikkel-Ole; Vitved, Lars

    2017-01-01

    The complement component C3 and the cleavage products of C3b/iC3b, C3c and C3d are used as biomarkers in clinical diagnostics. Currently, no specific antibodies are able to differentiate C3d from other fragments, although such a distinction could be very valuable considering that they may reflect...... different pathophysiological mechanisms. We have developed a rat antihuman C3d monoclonal antibody with specificity to the end sequence of the N-terminal region of C3d. The antibody can therefore only bind to C3d when it manifests itself as the final end product of cleaved C3. We believe...

  19. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M

    2001-01-01

    the alternative pathway. Blockade of the CR2 ligand-binding site with the monoclonal antibody FE8 resulted in 56 +/- 13% and 71 +/- 9% inhibition of the C3-fragment and MAC deposition, respectively, whereas the monoclonal antibody HB135, directed against an irrelevant CR2 epitope, had no effect. Blockade......Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5...... processes on CR2, indicate that MAC formation is a consequence of alternative pathway activation....

  20. Controlling the complement system in inflammation.

    Science.gov (United States)

    Kirschfink, M

    1997-12-01

    Inappropriate or excessive activation of the complement system can lead to harmful, potentially life-threatening consequences due to severe inflammatory tissue destruction. These consequences are clinically manifested in various disorders, including septic shock, multiple organ failure and hyperacute graft rejection. Genetic complement deficiencies or complement depletion have been proven to be beneficial in reducing tissue injury in a number of animal models of severe complement-dependent inflammation. It is therefore believed that therapeutic inhibition of complement is likely to arrest the process of certain diseases. Attempts to efficiently inhibit complement include the application of endogenous soluble complement inhibitors (C1-inhibitor, recombinant soluble complement receptor 1- rsCR1), the administration of antibodies, either blocking key proteins of the cascade reaction (e.g. C3, C5), neutralizing the action of the complement-derived anaphylatoxin C5a, or interfering with complement receptor 3 (CR3, CD18/11b)-mediated adhesion of inflammatory cells to the vascular endothelium. In addition, incorporation of membrane-bound complement regulators (DAF-CD55, MCP-CD46, CD59) has become possible by transfection of the correspondent cDNA into xenogeneic cells. Thereby, protection against complement-mediated inflammatory tissue damage could be achieved in various animal models of sepsis, myocardial as well as intestinal ischemia/reperfusion injury, adult respiratory distress syndrome, nephritis and graft rejection. Supported by results from first clinical trials, complement inhibition appears to be a suitable therapeutic approach to control inflammation. Current strategies to specifically inhibit complement in inflammation have been discussed at a recent meeting on the 'Immune Consequences of Trauma, Shock and Sepsis', held from March 4-8, 1997, in Munich, Germany. The Congress (chairman: E. Faist, Munich, Germany), which was held in close cooperation with various

  1. Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex

    DEFF Research Database (Denmark)

    Laursen, Nick Stub; Andersen, Kasper Røjkjær; Braren, Ingke

    2011-01-01

    with a protease subunit (Bb or C2a). We determined the crystal structures of the C3b homologue cobra venom factor (CVF) in complex with C5, and in complex with C5 and the inhibitor SSL7 at 4.3 Å resolution. The structures reveal a parallel two-point attachment between C5 and CVF, where the presence of SSL7 only...... slightly affects the C5-CVF interface, explaining the IgA dependence for SSL7-mediated inhibition of C5 cleavage. CVF functions as a relatively rigid binding scaffold inducing a conformational change in C5, which positions its cleavage site in proximity to the serine protease Bb. A general model...

  2. Thrombin activatable fibrinolysis inhibitor (TAFI) - A possible link between coagulation and complement activation in the antiphospholipid syndrome (APS).

    Science.gov (United States)

    Grosso, Giorgia; Vikerfors, Anna; Woodhams, Barry; Adam, Mariette; Bremme, Katarina; Holmström, Margareta; Ågren, Anna; Eelde, Anna; Bruzelius, Maria; Svenungsson, Elisabet; Antovic, Aleksandra

    2017-10-01

    Thrombosis and complement activation are pathogenic features of antiphospholipid syndrome (APS). Their molecular link is Plasma carboxypeptidase-B, also known as thrombin activatable fibrinolysis inhibitor (TAFIa), which plays a dual role: anti-fibrinolytic, by cleaving carboxyl-terminal lysine residues from partially degraded fibrin, and anti-inflammatory, by downregulating complement anaphylatoxins C3a and C5a. To investigate the levels of TAFI (proenzyme) and TAFIa (active enzyme) in relation to complement activation, fibrin clot permeability and fibrinolytic function in clinical and immunological subsets of 52 APS patients and 15 controls. TAFI (pAPS patients compared to controls. Furthermore, TAFIa was increased (pAPS patients affected by arterial thrombosis compared to other APS-phenotypes. Positive associations were found between TAFI and age, fibrinogen and C5a, and between TAFIa and age, fibrinogen and thrombomodulin. TAFI and TAFIa levels were increased in patients with APS as a potential response to complement activation. Interestingly, TAFI activation was associated with arterial thrombotic APS manifestations. Thus, TAFIa may be considered a novel biomarker for arterial thrombosis in APS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    Science.gov (United States)

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  4. Molecular characterization of the alpha subunit of complement component C8 (GcC8alpha) in the nurse shark (Ginglymostoma cirratum).

    Science.gov (United States)

    Aybar, Lydia; Shin, Dong-Ho; Smith, Sylvia L

    2009-09-01

    Target cell lysis by complement is achieved by the assembly and insertion of the membrane attack complex (MAC) composed of glycoproteins C5b through C9. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. Mammalian C8 is composed of alpha, beta, and gamma subunits. The subunit structure of shark C8 is not known. This report describes a 2341 nucleotide sequence that translates into a polypeptide of 589 amino acid residues, orthologue to mammalian C8alpha and has the same modular architecture with conserved cysteines forming the peptide bond backbone. The C8gamma-binding cysteine is conserved in the perforin-like domain. Hydrophobicity profile indicates the presence of hydrophobic residues essential for membrane insertion. It shares 41.1% and 47.4% identity with human and Xenopus C8alpha respectively. Southern blot analysis showed GcC8alpha exists as a single copy gene expressed in most tissues except the spleen with the liver being the main site of synthesis. Phylogenetic analysis places it in a clade with C8alpha orthologs and as a sister taxa to the Xenopus. 2009 Elsevier Ltd.

  5. Shark complement: an assessment.

    Science.gov (United States)

    Smith, S L

    1998-12-01

    The classical (CCP) and alternative (ACP) pathways of complement activation have been established for the nurse shark (Ginglymostoma cirratum). The isolation of a cDNA clone encoding a mannan-binding protein-associated serine protease (MASP)-1-like protein from the Japanese dogfish (Triakis scyllia) suggests the presence of a lectin pathway. The CCP consists of six functionally distinct components: C1n, C2n, C3n, C4n, C8n and C9n, and is activated by immune complexes in the presence of Ca++ and Mg++ ions. The ACP is antibody independent, requiring Mg++ ions and a heat-labile 90 kDa factor B-like protein for activity. Proteins considered homologues of C1q, C3 and C4 (C2n) of the mammalian complement system have been isolated from nurse shark serum. Shark C1q is composed of at least two chain types each showing 50% identity to human C1q chains A and B. Partial sequence of the globular domain of one of the chains shows it to be C1q-like rather than like mannan-binding protein. N-terminal amino acid sequences of the alpha and beta chain of shark C3 and C4 molecules show significant identity with corresponding human C3 and C4 chains. A sequence representing shark C4 gamma chain, shows little similarity to human C4 gamma chain. The terminal shark components C8n and C9n are functional analogues of mammalian C8 and C9. Anaphylatoxin activity has been demonstrated in activated shark serum, and porcine C5a desArg induces shark leucocyte chemotaxis. The deduced amino acid sequence of a partial C3 cDNA clone from the nurse shark shows 50%, 30% and 24% homology with the corresponding region of mammalian C3, C4 and alpha 2-macroglobulin. Deduced amino acid sequence data from partial Bf/C2 cDNA clones, two from the nurse shark and one from the Japanese dogfish, suggest that at least one species of elasmobranch has two distinct Bf/C2 genes.

  6. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation*

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-01-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  7. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    Science.gov (United States)

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  8. Discovery of Dengue Virus NS4B Inhibitors

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  9. Structural analysis of human complement protein H: homology with C4b binding protein, beta 2-glycoprotein I, and the Ba fragment of B2

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Wetsel, R A; Tack, B F

    1986-01-01

    We report here a partial primary structure for human complement protein H. Tryptic peptides comprising 27% of the H molecule were isolated by conventional techniques and were sequenced (333 amino acid residues). Several mixed-sequence oligonucleotide probes were constructed, based on the peptide...... sequence data, and were used to screen a human liver cDNA library. The largest recombinant plasmid (pH1050), which hybridized with two probes, was further characterized. The cDNA insert of this plasmid contained coding sequence (672 bp) for 224 amino acids of H. The 3' end of this clone had...... a polyadenylated tail preceded by a polyadenylation recognition site (ATTAAA) and a 3'-untranslated region (229 bp). Four regions of internal homology, each about 60 amino acids in length, were observed in the derived protein sequence from this cDNA clone, and a further seven from the tryptic peptide sequences...

  10. Streptococcus pneumoniae PspC Subgroup Prevalence in Invasive Disease and Differences in Contribution to Complement Evasion.

    Science.gov (United States)

    van der Maten, Erika; van den Broek, Bryan; de Jonge, Marien I; Rensen, Kim J W; Eleveld, Marc J; Zomer, Aldert L; Cremers, Amelieke J H; Ferwerda, Gerben; de Groot, Ronald; Langereis, Jeroen D; van der Flier, Michiel

    2018-04-01

    The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition. Copyright © 2018 American Society for Microbiology.

  11. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  12. complement C3, Complement C4 and C-reactive protein

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... (IL-6), E-selectin and P-selectin (Perlstein and Lee,. 2006). Studies have ... of cigarette smoke causes complement activation which is in turn ..... are decreased by long term smoking cessation in male smokers. Prevent. Med.

  13. Meningococcal B Vaccine Failure With a Penicillin-Resistant Strain in a Young Adult on Long-Term Eculizumab.

    Science.gov (United States)

    Parikh, Sydel R; Lucidarme, Jay; Bingham, Coralie; Warwicker, Paul; Goodship, Tim; Borrow, Ray; Ladhani, Shamez N

    2017-09-01

    We describe a case of invasive meningococcal disease due to a vaccine-preventable and penicillin-resistant strain in a fully immunized young adult on long-term complement inhibitor therapy and daily penicillin chemoprophylaxis. Eculizumab is a humanized monoclonal antibody that binds human complement C5 protein and inhibits the terminal complement pathway. It is currently recommended for the treatment of complement-mediated thrombotic microangiopathies. An unwanted complication of inhibiting complement, however, is an increased risk of invasive meningococcal disease. Here, we report the first case of meningococcal group B vaccine failure in a young adult receiving eculizumab for atypical hemolytic uremic syndrome. She developed invasive meningococcal disease due to a vaccine-preventable and penicillin-resistant meningococcal group B strain 4 months after receiving 2 doses of meningococcal group B vaccine while on oral penicillin prophylaxis against meningococcal infection. Copyright © 2017 by the American Academy of Pediatrics.

  14. A potent inhibitor of SIK2, 3, 3', 7-trihydroxy-4'-methoxyflavon (4'-O-methylfisetin, promotes melanogenesis in B16F10 melanoma cells.

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    Full Text Available Flavonoids, which are plant polyphenols, are now widely used in supplements and cosmetics. Here, we report that 4'-methylflavonoids are potent inducers of melanogenesis in B16F10 melanoma cells and in mice. We recently identified salt inducible kinase 2 (SIK2 as an inhibitor of melanogenesis via the suppression of the cAMP-response element binding protein (CREB-specific coactivator 1 (TORC1. Using an in vitro kinase assay targeting SIK2, we identified fisetin as a candidate inhibitor, possibly being capable of promoting melanogenesis. However, fisetin neither inhibited the CREB-inhibitory activity of SIK2 nor promoted melanogenesis in B16F10 melanoma cells. Conversely, mono-methyl-flavonoids, such as diosmetin (4'-O-metlylluteolin, efficiently inhibited SIK2 and promoted melanogenesis in this cell line. The cAMP-CREB system is impaired in A(y/a mice and these mice have yellow hair as a result of pheomelanogenesis, while Sik2(+/-; A(y/a mice also have yellow hair, but activate eumelanogenesis when they are exposed to CREB stimulators. Feeding Sik2(+/-; A(y/a mice with diets supplemented with fisetin resulted in their hair color changing to brown, and metabolite analysis suggested the presence of mono-methylfisetin in their feces. Thus, we decided to synthesize 4'-O-methylfisetin (4'MF and found that 4'MF strongly induced melanogenesis in B16F10 melanoma cells, which was accompanied by the nuclear translocation of TORC1, and the 4'-O-methylfisetin-induced melanogenic programs were inhibited by the overexpression of dominant negative TORC1. In conclusion, compounds that modulate SIK2 cascades are helpful to regulate melanogenesis via TORC1 without affecting cAMP levels, and the combined analysis of Sik2(+/- mice and metabolites from these mice is an effective strategy to identify beneficial compounds to regulate CREB activity in vivo.

  15. Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp.

    Science.gov (United States)

    Souza, Natalie M; Vieira, Monica L; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2012-09-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coli BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K(D)) of 292 ± 24 nm and 157 ± 35 nm, respectively. Moreover, the Lsa30 is a plasminogen (PLG) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation.

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-06-05

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Generation of a C3c specific monoclonal antibody and assessment of C3c as a putative inflammatory marker derived from complement factor C3

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjodt, Karsten; Brandt, Jette

    2010-01-01

    complex (C5b-C9) and quantification of complement split products by precipitation-in-gel techniques (e.g. C3d). We have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C3c without interference from other products generated from the complement component C3. The C3c specific m....... The C3c mAb was confirmed to be C3c specific, as it showed no cross-reactivity with native (un-cleaved) C3, with C3b, iC3b, or with C3d. Also, no significant reaction was observed with C3 fragments in factor I deficient sera or plasma. This antibody forms the basis for the generation of a robust ELISA...... that allows for a quick and reliable evaluation of complement activation and consumption as a marker for inflammatory processes. We established the C3c plasma range in 100 healthy Danish blood donors with a mean of 3.47 μg/ml and a range of 2.12-4.92 μg/ml. We believe that such an antibody might...

  18. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  19. Functional analysis of Ficolin-3 mediated complement activation

    DEFF Research Database (Denmark)

    Hein, Estrid; Honoré, Christian Le Fèvre; Skjoedt, Mikkel-Ole

    2010-01-01

    assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition...... was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides...

  20. Characterization of guinea pig myocardial leukotriene C4 binding sites. Regulation by cations and sulfhydryl-directed reagents

    International Nuclear Information System (INIS)

    Hogaboom, G.K.; Mong, S.; Stadel, J.M.; Crooke, S.T.

    1985-01-01

    Using [ 3 H]leukotriene C4 (LTC4) and radioligand-binding techniques, specific leukotriene C4 binding sites have been identified in membranes derived from guinea pig ventricular myocardium. High performance liquid chromatography analyses indicated that, in the presence of the gamma-glutamyl transpeptidase inhibitor L-serine-borate (80 mM), less than 2% of membrane-bound [ 3 H]LTC4 was converted at 20 degrees to [ 3 H]leukotriene D4 or [ 3 H]leukotriene E4. The specific binding of 4 nM [ 3 H]LTC4, in the presence of 80 mM L-serine-borate, reached a stable steady state within 15 min at 20 degrees (pH 7.5). A monophasic Scatchard plot of saturation binding data yielded a dissociation constant (Kd) of 27.5 +/- 6.0 nM and a maximum number of binding sites (Bmax) of 19.9 +/- 5.2 pmol/mg of membrane protein. Competition binding studies of [ 3 H]LTC4 with synthetic leukotriene C4, leukotriene D4, and leukotriene E4 and the putative peptidoleukotriene antagonists FPL 55712, SKF 88046, and 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid revealed an order of potency of leukotriene C4 much greater than 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid greater than SKF 88046 greater than LTE4 greater than LTD4 greater than FPL 55712. The specific [ 3 H]LTC4 binding was stimulated by the divalent cations Ca2+, Mg2+, and Mn2+ and to a lesser degree by the monovalent cations Na+, K+, Li+, and NH4+. CaCl2 (3 mM) and NaCl (150 mM) stimulated the LTC4 binding by increasing the Bmax to 42.6 +/- 5.9 and 35.0 +/- 2.0 pmol/mg, respectively, but had minimal effects on Kd

  1. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  2. An assay for the mannan-binding lectin pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L

    2001-01-01

    activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt...

  3. Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.

    Science.gov (United States)

    Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar

    2011-08-09

    Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.

  4. Complement factors C4 and C3 are down regulated in response to short term overfeeding in healthy young men

    DEFF Research Database (Denmark)

    Foghmar, Caroline; Brøns, Charlotte; Pilely, Katrine

    2017-01-01

    individuals only, while both groups had the same degree of hepatic insulin resistance after HFO. Viewing all individuals circulating levels of C4, C3, C3bc, TCC and complement activation capacity decreased paradoxically along the development of insulin resistance after HFO (P = 0.0015, P ...Insulin resistance is associated with high circulating level of complement factor C3. Animal studies suggest that improper complement activation mediates high-fat-diet-induced insulin resistance. Individuals born with low birth weight (LBW) are at increased risk of developing insulin resistance. We...... hypothesized that high-fat overfeeding (HFO) increase circulating C3 and induce complement activation in a birth weight differential manner. Twenty LBW and 26 normal birth weight (NBW) young men were studied using a randomised crossover design. Insulin resistance was measured after a control-diet and after 5...

  5. (3H)leukotriene B4 binding to the guinea pig spleen membranes: a rich tissue source for a high affinity leukotriene B4 receptor site

    International Nuclear Information System (INIS)

    Cheng, J.B.; Kohi, F.; Townley, R.G.

    1986-01-01

    To select a tissue rich for the high affinity leukotriene (LT)B 4 receptor site, they compared binding of 1 nM ( 3 H)LTB 4 (180 Ci/mmol) to the crude membrane preparations of guinea pig spleen, thymus, lung, uterus, bladder, brain, adrenal gland, small intestine, liver, kidney and heart. They found that the membrane preparations from spleen contained the highest binding activity per mg protein. They characterized the LTB 4 binding to the spleen preparation in detail. LTB 4 binding was rapid, reversible, stereoselective and saturable. The data from equilibrium experiments showed a linear Scatchard plot with a K/sub d/ of 1.6 nM and a binding site density of 259 fmol/mg prot. The rank order of agents competing for spleen ( 3 H)LTB 4 binding at 25 0 C was: LTB 4 (K/sub i/ = 2.8 nM) > 20-OH-LTB 4 (23 nM) > LTA 4 (48 nM) > LTA 4 methyl ester (0.13 μM) > 20-COOH-LTB 4 (> 6.6 μM) ≥ arachidonic acid (0.15 mM) similarly ordered FPL-55,712 (0.11 mM). At 4 0 C, LTB 4 (2.3 nM) competed at least 10x more effectively than 20-OH-LTB 4 (29 nM) and 20-COOH-LTB 4 (> 6.6 μM). HPLC analysis indicated that incubation of 84 ng LTB 4 with the spleen membrane at 25 0 C did not result in the formation of 20-OH-LTB 4 ( 3 H)LTB 4 receptor binding sites

  6. Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

    Directory of Open Access Journals (Sweden)

    D. V. A. Khoa

    2015-09-01

    Full Text Available The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs in pigs of the breeds Hampshire (HS, Duroc (DU, Berlin miniature pig (BMP, German Landrace (LR, Pietrain (PIE, and Muong Khuong (Vietnamese potbelly pig. Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE show higher allele frequency of these SNPs than Vietnamese porcine breed (MK. Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9 as a candidate gene to improve general animal health in the future.

  7. CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood

    Science.gov (United States)

    Alves, Lívia A.; Nomura, Ryota; Mariano, Flávia S.; Harth-Chu, Erika N.; Stipp, Rafael N.; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization. PMID:27572331

  8. The Scl1 protein of M6-type group A Streptococcus binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement.

    Science.gov (United States)

    Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir

    2008-02-01

    Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.

  9. Heterocomplexes of mannose-binding lectin and the pentraxins PTX3 or SAP trigger cross-activation of the complement system

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Doni, Andrea; Skjødt, Mikkel-Ole

    2011-01-01

    The long pentraxin 3 (PTX3), serum amyloid P component (SAP) and C-reactive protein (CRP) belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via...... the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain, but not CRP. MBL:PTX3 complex formation resulted in recruitment of C......1q, but this was not seen for the MBL:SAP complex. However, both MBL:PTX3 and MBL:SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 lead to communication between the lectin and classical complement...

  10. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis

    OpenAIRE

    Viviana P. Ferreira; Vladimir Fazito Vale; Michael K. Pangburn; Maha Abdeladhim; Antonio Ferreira Mendes-Sousa; Iliano V. Coutinho-Abreu; Manoochehr Rasouli; Elizabeth A. Brandt; Claudio Meneses; Kolyvan Ferreira Lima; Ricardo Nascimento Araújo; Marcos Horácio Pereira; Michalis Kotsyfakis; Fabiano Oliveira; Shaden Kamhawi

    2016-01-01

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the sa...

  11. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  12. The salivary scavenger and agglutinin (SALSA binds MBL and regulates the lectin pathway of complement in solution and on surfaces

    Directory of Open Access Journals (Sweden)

    Martin eParnov Reichhardt

    2012-07-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR protein SALSA, also known as gp340, salivary agglutinin (SAG and deleted in malignant brain tumor 1 (DMBT1, is a 340 kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A (SP-D and SP-A and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan binding lectin (MBL as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit C. albicans-induced complement activation. Thus, SALSA has a dual complement regulatory function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid-phase. These activities are mediated via a direct interaction with MBL.

  13. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  14. Increase in complement iC3b is associated with anti-inflammatory cytokine expression during late pregnancy in mice.

    Directory of Open Access Journals (Sweden)

    Keigo Nakamura

    Full Text Available Immunological tolerance between fetal allograft and mother is crucial for pregnancy establishment and maintenance; however, these mechanisms particularly those during the latter part of pregnancy have not been definitively elucidated. The aim of this study was to examine the presence and potential function of innate immunity characteristic to the middle to late pregnancy. We first characterized up-regulated proteins in decidua from day 11 pregnant (P11 mice using 2D-PAGE, followed by MALDI-TOF/MS analysis. These analyses identified increased complement component 3 (C3 and its derivatives in P11 decidua. We then found that in the decidual tissues, C3 mRNA increased on P15 and remained high on P19. C3 is converted to C3b and then iC3b by complement component factor I (Cfi and complement receptor 1-like protein (Crry, both of which were present in P19 placentas. In addition, iC3b proteins and its receptor CR3 (Cd11b/Cd18 in decidual and placental tissues increased toward the latter phase of pregnancy. Moreover, CR3 subunit CD11b protein was predominantly localized to spongiotrophoblast layer in the P19 placenta. Because iC3b is known to induce anti-inflammatory cytokine production, the analysis was extended to examine changes in pro- and anti-inflammatory cytokines, Il12, Il10, and Tgfb1. Il12 expression decreased in P15 and P19 placenta, while high mRNA expression of Il10 and Tgfb1 was found in P19 placental tissues. Furthermore, placental Il10 and Tgfb1 mRNAs were down-regulated when pregnant mice were treated with an anti-C3 antibody, detecting C3, C3b and iC3b. These results indicated that C3 derivatives, in particular, iC3b and its receptor CR3 were up-regulated at the fetal-maternal interface, and suggest that iC3b may regulate the placental expression of anti-inflammatory cytokines, IL10 and TGFB1, during the latter phase of pregnancy.

  15. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach.

    Science.gov (United States)

    Musso, Loana; Mazzini, Stefania; Rossini, Anna; Castagnoli, Lorenzo; Scaglioni, Leonardo; Artali, Roberto; Di Nicola, Massimo; Zunino, Franco; Dallavalle, Sabrina

    2018-03-01

    Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Solid-phase classical complement activation by C-reactive protein (CRP) is inhibited by fluid-phase CRP-C1q interaction

    International Nuclear Information System (INIS)

    Sjoewall, Christopher; Wetteroe, Jonas; Bengtsson, Torbjoern; Askendal, Agneta; Almroth, Gunnel; Skogh, Thomas; Tengvall, Pentti

    2007-01-01

    C-reactive protein (CRP) interacts with phosphorylcholine (PC), Fcγ receptors, complement factor C1q and cell nuclear constituents, yet its biological roles are insufficiently understood. The aim was to characterize CRP-induced complement activation by ellipsometry. PC conjugated with keyhole limpet hemocyanin (PC-KLH) was immobilized to cross-linked fibrinogen. A low-CRP serum with different amounts of added CRP was exposed to the PC-surfaces. The total serum protein deposition was quantified and deposition of IgG, C1q, C3c, C4, factor H, and CRP detected with polyclonal antibodies. The binding of serum CRP to PC-KLH dose-dependently triggered activation of the classical pathway. Unexpectedly, the activation was efficiently down-regulated at CRP levels >150 mg/L. Using radial immunodiffusion, CRP-C1q interaction was observed in serum samples with high CRP concentrations. We propose that the underlying mechanism depends on fluid-phase interaction between C1q and CRP. This might constitute another level of complement regulation, which has implications for systemic lupus erythematosus where CRP is often low despite flare-ups

  17. An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement

    NARCIS (Netherlands)

    Wagemakers, Alex; Coumou, Jeroen; Schuijt, Tim J.; Oei, Anneke; Nijhof, Ard M.; van 't Veer, Cornelis; van der Poll, Tom; Bins, Adriaan D.; Hovius, Joppe W. R.

    2016-01-01

    We previously identified tick salivary lectin pathway inhibitor (TSLPI) in Ixodes scapularis, a vector for Borrelia burgdorferi sensu stricto (s.s.) in North America. TSLPI is a salivary protein facilitating B. burgdorferi s.s. transmission and acquisition by inhibiting the host lectin complement

  18. Trp[superscript 2313]-His[superscript 2315] of Factor VIII C2 Domain Is Involved in Membrane Binding Structure of a Complex Between the C[subscript 2] Domain and an Inhibitor of Membrane Binding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhuo; Lin, Lin; Yuan, Cai; Nicolaes, Gerry A.F.; Chen, Liqing; Meehan, Edward J.; Furie, Bruce; Furie, Barbara; Huang, Mingdong (Harvard-Med); (UAH); (Maastricht); (Chinese Aca. Sci.)

    2010-11-03

    Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 {angstrom}) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed {beta}-strand of the C2 domain, Trp{sup 2313}-His{sup 2315}. This result indicates that the Trp{sup 2313}-His{sup 2315} segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.

  19. Complementing the sugar code: role of GAGs and sialic acid in complement regulation

    Directory of Open Access Journals (Sweden)

    Alex eLangford-Smith

    2015-02-01

    Full Text Available Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence and modulate host immunity and inflammatory responses. The complement cascade, as part of a host’s innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney and eye. This review will cover recent studies that have provided important new insights into the role of glycosaminoglycans and sialic acid in complement regulation and how sugar recognition may be compromised in disease

  20. Crystal structures of the Erp protein family members ErpP and ErpC from Borrelia burgdorferi reveal the reason for different affinities for complement regulator factor H.

    Science.gov (United States)

    Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Akopjana, Inara; Tars, Kaspars

    2015-05-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing. B. burgdorferi B31 contains three proteins that belong to the Erp (OspE/F-related) protein family and are capable of binding CFH and some CFHRs, namely ErpA, ErpC and ErpP. We have determined the crystal structure of ErpP at 2.53Å resolution and the crystal structure of ErpC at 2.15Å resolution. Recently, the crystal structure of the Erp family member OspE from B. burgdorferi N40 was determined in complex with CFH domains 19-20, revealing the residues involved in the complex formation. Despite the high sequence conservation between ErpA, ErpC, ErpP and the homologous protein OspE (78-80%), the affinity for CFH and CFHRs differs markedly among the Erp family members, suggesting that ErpC may bind only CFHRs but not CFH. A comparison of the binding site in OspE with those of ErpC and ErpP revealed that the extended loop region, which is only observed in the potential binding site of ErpC, plays an important role by preventing the binding of CFH. These results can explain the inability of ErpC to bind CFH, whereas ErpP and ErpA still possess the ability to bind CFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA.

    Science.gov (United States)

    Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F

    2015-08-01

    Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. © 2015 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc.

  2. Classical Complement Pathway Activation in the Kidneys of Women With Preeclampsia.

    Science.gov (United States)

    Penning, Marlies; Chua, Jamie S; van Kooten, Cees; Zandbergen, Malu; Buurma, Aletta; Schutte, Joke; Bruijn, Jan Anthonie; Khankin, Eliyahu V; Bloemenkamp, Kitty; Karumanchi, S Ananth; Baelde, Hans

    2015-07-01

    A growing body of evidence suggests that complement dysregulation plays a role in the pathogenesis of preeclampsia. The kidney is one of the major organs affected in preeclampsia. Because the kidney is highly susceptible to complement activation, we hypothesized that preeclampsia is associated with renal complement activation. We performed a nationwide search for renal autopsy material in the Netherlands using a computerized database (PALGA). Renal tissue was obtained from 11 women with preeclampsia, 25 pregnant controls, and 14 nonpregnant controls with hypertension. The samples were immunostained for C4d, C1q, mannose-binding lectin, properdin, C3d, C5b-9, IgA, IgG, and IgM. Preeclampsia was significantly associated with renal C4d-a stable marker of complement activation-and the classical pathway marker C1q. In addition, the prevalence of IgM was significantly higher in the kidneys of the preeclamptic women. No other complement markers studied differed between the groups. Our findings in human samples were validated using a soluble fms-like tyrosine kinase 1 mouse model of preeclampsia. The kidneys in the soluble fms-like tyrosine kinase 1-injected mice had significantly more C4 deposits than the control mice. The association between preeclampsia and renal C4d, C1q, and IgM levels suggests that the classical complement pathway is involved in the renal injury in preeclampsia. Moreover, our finding that soluble fms-like tyrosine kinase 1-injected mice develop excess C4 deposits indicates that angiogenic dysregulation may play a role in complement activation within the kidney. We suggest that inhibiting complement activation may be beneficial for preventing the renal manifestations of preeclampsia. © 2015 American Heart Association, Inc.

  3. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c......DNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  4. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J; Chavan, Tanmay S; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I; Nussinov, Ruth; Gaponenko, Vadim

    2015-04-10

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Interface interaction in the B4C/(Fe-B-C) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wetting behavior in the B 4 C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B 4 C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B 4 C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations

  6. Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Horikoshi Satoshi

    2010-12-01

    Full Text Available Abstract Background The complement system is vital for innate immunity and is implicated in the pathogenesis of inflammatory diseases and the mechanism of host defense. Complement deficiencies occasionally cause life-threatening diseases. In hemodialysis (HD patients, profiles on complement functional activity and deficiency are still obscure. The objectives of the present study were to measure the functional complement activities of the classical pathway (CP, lectin pathway (LP and alternative pathway (AP using a novel method and consequently to elucidate the rates of deficiencies among HD patients. Methods In the present study, 244 HD patients at one dialysis center and 204 healthy controls were enrolled. Functional complement activities were measured simultaneously using the Wielisa®-kit. The combination of the results of these three pathway activities allows us to speculate which candidate complement is deficient; subsequently, the deficient complement was determined. Results All three functional complement activities were significantly higher in the HD patients than in the control group (P ®-kit, 16 sera (8.8% with mannose-binding lectin (MBL deficiency, 1 serum (0.4% with C4 deficiency, 1 serum (0.4% with C9 deficiency, and 1 serum (0.4% with B deficiency were observed in the HD group, and 18 sera (8.8% with MBL deficiency and 1 serum (0.5% with B deficiency were observed in the control group. There were no significant differences in the 5-year mortality rate between each complement-deficient group and the complement-sufficient group among the HD patients. Conclusion This is the first report that profiles complement deficiencies by simultaneous measurement of functional activities of the three complement pathways in HD patients. Hemodialysis patients frequently suffer from infections or malignancies, but functional complement deficiencies do not confer additional risk of mortality.

  7. The Future of HCV Therapy: NS4B as an Antiviral Target

    Directory of Open Access Journals (Sweden)

    Hadas Dvory-Sobol

    2010-11-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a major worldwide cause of liver disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 170 million individuals are infected with HCV, with three to four million new cases each year. The current standard of care, combination treatment with interferon and ribavirin, eradicates the virus in only about 50% of chronically infected patients. Notably, neither of these drugs directly target HCV. Many new antiviral therapies that specifically target hepatitis C (e.g. NS3 protease or NS5B polymerase inhibitors are therefore in development, with a significant number having advanced into clinical trials. The nonstructural 4B (NS4B protein, is among the least characterized of the HCV structural and nonstructural proteins and has been subjected to few pharmacological studies. NS4B is an integral membrane protein with at least four predicted transmembrane (TM domains. A variety of functions have been postulated for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. This review summarizes potential targets within the nonstructural protein NS4B, with a focus on novel classes of NS4B inhibitors.

  8. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin.

    Directory of Open Access Journals (Sweden)

    Gry Aune Westergaard Hansen

    Full Text Available Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection.

  9. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    Science.gov (United States)

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Potentiation of C1-esterase inhibitor by heparin and interactions with C1s protease as assessed by surface plasmon resonance.

    Science.gov (United States)

    Rajabi, Mohsen; Struble, Evi; Zhou, Zhaohua; Karnaukhova, Elena

    2012-01-01

    Human C1-esterase inhibitor (C1-INH) is a multifunctional plasma protein with a wide range of inhibitory and non-inhibitory properties, mainly recognized as a key down-regulator of the complement and contact cascades. The potentiation of C1-INH by heparin and other glycosaminoglycans (GAGs) regulates a broad spectrum of C1-INH activities in vivo both in normal and disease states. SCOPE OF RESEARCH: We have studied the potentiation of human C1-INH by heparin using Surface Plasmon Resonance (SPR), circular dichroism (CD) and a functional assay. To advance a SPR for multiple-unit interaction studies of C1-INH we have developed a novel (consecutive double capture) approach exploring different immobilization and layout. Our SPR experiments conducted in three different design versions showed marked acceleration in C1-INH interactions with complement protease C1s as a result of potentiation of C1-INH by heparin (from 5- to 11-fold increase of the association rate). Far-UV CD studies suggested that heparin binding did not alter C1-INH secondary structure. Functional assay using chromogenic substrate confirmed that heparin does not affect the amidolytic activity of C1s, but does accelerate its consumption due to C1-INH potentiation. This is the first report that directly demonstrates a significant acceleration of the C1-INH interactions with C1s due to heparin by using a consecutive double capture SPR approach. The results of this study may be useful for further C-INH therapeutic development, ultimately for the enhancement of current C1-INH replacement therapies. Published by Elsevier B.V.

  11. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients

    OpenAIRE

    Englund, Emelie; Reitsma, Bart; King, Ben C.; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G.; Jirström, Karin; Blom, Anna M.

    2015-01-01

    Background: The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. \\ud \\ud Methods: Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. \\ud \\ud Result...

  12. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly evident...

  13. Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    Science.gov (United States)

    Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M

    2006-05-01

    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.

  14. Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens.

    Directory of Open Access Journals (Sweden)

    B David Persson

    2010-09-01

    Full Text Available The human membrane cofactor protein (MCP, CD46 is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6, Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4 that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system.

  15. Directional crystallization of B4C-NbB2 and B4C-MoB2 eutectic compositions

    International Nuclear Information System (INIS)

    Paderno, Varvara; Paderno, Y.B.; Filippov, Vladimir; Liashchenko, Alfred

    2004-01-01

    We studied the directional crystallization of different compositions in B 4 C-NbB 2 and B 4 C-MoB 2 systems. The eutectic compositions for both systems are evaluated. It is shown that in the first system the rod-like eutectic structure is formed, in second, the 'Chinese hieroglyphics'. In both cases high hardness and high microplasticity are observed, which are much more than for individual component phases. These compositions may be considered as a new kind of self-strengthening composite materials

  16. Renal AA amyloidosis in a patient with hereditary complete complement C4 deficiency

    Directory of Open Access Journals (Sweden)

    Imed Helal

    2011-01-01

    Full Text Available Hereditary complete C4 deficiency has until now been reported in 30 cases only. A disturbed clearance of immune- complexes probably predisposes these individuals to systemic lupus erythematosus, other immune- complex diseases and recurrent microbial infections. We present here a 20- year- old female with hereditary complete C4 deficiency. Renal biopsy demonstrated renal AA amyloidosis. This unique case further substantiates that deficiency of classical pathway components predisposes to the development of recurrent microbial infections and that the patients may develop AA amyloidosis. Furthermore, in clinical practice, the nephrotic syndrome occurring in a patient with hereditary complete complement C4 deficiency should lead to the suspicion of renal AA amyloidosis.

  17. Crystallization and X-ray diffraction analysis of the complement component-3 (C3) inhibitory domain of Efb from Staphylococcus aureus

    International Nuclear Information System (INIS)

    Hammel, Michal; Ramyar, Kasra X.; Spencer, Charles T.; Geisbrecht, Brian V.

    2006-01-01

    The crystallization and results of multiwavelength anomalous diffraction studies of a recombinant C3-inhibitory fragment of Efb from S. aureus are reported. The extracellular fibrinogen-binding protein (Efb) of Staphylococcus aureus is a multifunctional virulence factor capable of potent inhibition of complement component-3 (C3) activity in addition to its previously described fibrinogen-binding properties. A truncated recombinant form of Efb (Efb-C) that binds C3 has been overexpressed and purified and has been crystallized using the hanging-drop vapor-diffusion technique. Crystals of native Efb-C grew in the tetragonal space group P4 3 (unit-cell parameters a = b = 59.53, c = 46.63 Å) with two molecules in the asymmetric unit and diffracted well beyond 1.25 Å limiting Bragg spacing. To facilitate de novo phasing of the Efb-C crystals, two independent site-directed mutants were engineered in which either residue Ile112 or Val140 was replaced with methionine and crystals isomorphous to those of native Efb-C were reproduced using a seleno-l-methionine-labeled form of each mutant protein. Multiwavelength anomalous diffraction (MAD) data were collected on both mutants and analyzed for their phasing power toward solution and refinement of a high-resolution Efb-C crystal structure

  18. Interface interaction in the B{sub 4}C/(Fe-B-C) system

    Energy Technology Data Exchange (ETDEWEB)

    Aizenshtein, M. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); Frage, N. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)], E-mail: nfrage@bgu.ac.il

    2008-11-15

    The wetting behavior in the B{sub 4}C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B{sub 4}C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B{sub 4}C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations.

  19. Soluble IgM links apoptosis to complement activation in early alcoholic liver disease in mice.

    Science.gov (United States)

    Smathers, Rebecca L; Chiang, Dian J; McMullen, Megan R; Feldstein, Ariel E; Roychowdhury, Sanjoy; Nagy, Laura E

    2016-04-01

    Ethanol feeding in mice activates complement via C1q binding to apoptotic cells in the liver; complement contributes to ethanol-induced inflammation and injury. Despite the critical role of C1q in ethanol-induced injury, the mechanism by which ethanol activates C1q remains poorly understood. Secretory IgM (sIgM), traditionally considered to act as an anti-microbial, also has critical housekeeping functions, facilitating clearance of apoptotic cells, at least in part through activation of C1q. Therefore, we hypothesized that (1) ethanol-induced apoptosis in the liver recruits sIgM, facilitating the activation of C1q and complement and (2) C1INH (C1 esterase inhibitor), which inhibits C1 functional activity, prevents complement activation and decreases ethanol-induced liver injury. Female C57BL/6 wild-type, C1qa(-/-), BID(-/-) and sIgM(-/-) mice were fed ethanol containing liquid diets or pair-fed control diets. C1INH or vehicle was given via tail vein injection to ethanol- or pair-fed wild-type mice at 24 and 48h prior to euthanasia. Ethanol exposure increased apoptosis in the liver, as well as the accumulation of IgM in the liver. In the early stages of ethanol feeding, C1q co-localized with IgM in the peri-sinusoidal space of the liver and accumulation of IgM and C3b was dependent on ethanol-induced BID-dependent apoptosis. sIgM(-/-) mice were protected from both ethanol-induced activation of complement and early ethanol-induced liver injury when compared to wild-type mice. Treatment with C1INH also decreased hepatic C3b deposition and ethanol-induced injury. These data indicate that sIgM contributes to activation of complement and ethanol-induced increases in inflammatory cytokine expression and hepatocyte injury in the early stages of ethanol-induced liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. CryoEM and Molecular Dynamics of the Circadian KaiB-KaiC Complex Indicates That KaiB Monomers Interact with KaiC and Block ATP Binding Clefts

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, Seth A.; Pattanayek, Rekha; Williams, Dewight R.; Mori, Tetsuya; Qin, Ximing; Johnson, Carl H.; Egli, Martin; Stewart, Phoebe L. [Case Western; (Vanderbilt); (Vanderbilt-MED)

    2014-10-02

    The circadian control of cellular processes in cyanobacteria is regulated by a posttranslational oscillator formed by three Kai proteins. During the oscillator cycle, KaiA serves to promote autophosphorylation of KaiC while KaiB counteracts this effect. Here, we present a crystallographic structure of the wild-type Synechococcus elongatus KaiB and a cryo-electron microscopy (cryoEM) structure of a KaiBC complex. The crystal structure shows the expected dimer core structure and significant conformational variations of the KaiB C-terminal region, which is functionally important in maintaining rhythmicity. The KaiBC sample was formed with a C-terminally truncated form of KaiC, KaiC-Δ489, which is persistently phosphorylated. The KaiB–KaiC-Δ489 structure reveals that the KaiC hexamer can bind six monomers of KaiB, which form a continuous ring of density in the KaiBC complex. We performed cryoEM-guided molecular dynamics flexible fitting simulations with crystal structures of KaiB and KaiC to probe the KaiBC protein–protein interface. This analysis indicated a favorable binding mode for the KaiB monomer on the CII end of KaiC, involving two adjacent KaiC subunits and spanning an ATP binding cleft. A KaiC mutation, R468C, which has been shown to affect the affinity of KaiB for KaiC and lengthen the period in a bioluminescence rhythm assay, is found within the middle of the predicted KaiBC interface. The proposed KaiB binding mode blocks access to the ATP binding cleft in the CII ring of KaiC, which provides insight into how KaiB might influence the phosphorylation status of KaiC.

  1. The Crystal Structure of Cobra Venom Factor, a Cofactor for C3- and C5-Convertase CVFBb

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Vengadesan; Ponnuraj, Karthe; Xu, Yuanyuan; Macon, Kevin; Volanakis, John E.; Narayana, Sthanam V.L.; (Madras); (UAB)

    2009-05-26

    Cobra venom factor (CVF) is a functional analog of human complement component C3b, the active fragment of C3. Similar to C3b, in human and mammalian serum, CVF binds factor B, which is then cleaved by factor D, giving rise to the CVFBb complex that targets the same scissile bond in C3 as the authentic complement convertases C4bC2a and C3bBb. Unlike the latter, CVFBb is a stable complex and an efficient C5 convertase. We solved the crystal structure of CVF, isolated from Naja naja kouthia venom, at 2.6 {angstrom} resolution. The CVF crystal structure, an intermediate between C3b and C3c, lacks the TED domain and has the CUB domain in an identical position to that seen in C3b. The similarly positioned CUB and slightly displaced C345c domains of CVF could play a vital role in the formation of C3 convertases by providing important primary binding sites for factor B.

  2. Elevated levels of the complement activation product C4d in bronchial fluids for the diagnosis of lung cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Ajona

    Full Text Available Molecular markers in bronchial fluids may contribute to the diagnosis of lung cancer. We previously observed a significant increase of C4d-containing complement degradation fragments in bronchoalveolar lavage (BAL supernatants from lung cancer patients in a cohort of 50 cases and 22 controls (CUN cohort. The present study was designed to determine the diagnostic performance of these complement fragments (hereinafter jointly referred as C4d in bronchial fluids. C4d levels were determined in BAL supernatants from two independent cohorts: the CU cohort (25 cases and 26 controls and the HUVR cohort (60 cases and 98 controls. A series of spontaneous sputum samples from 68 patients with lung cancer and 10 controls was also used (LCCCIO cohort. Total protein content, complement C4, complement C5a, and CYFRA 21-1 were also measured in all cohorts. C4d levels were significantly increased in BAL samples from lung cancer patients. The area under the ROC curve was 0.82 (95%CI = 0.71-0.94 and 0.67 (95%CI = 0.58-0.76 for the CU and HUVR cohorts, respectively. In addition, unlike the other markers, C4d levels in BAL samples were highly consistent across the CUN, CU and HUVR cohorts. Interestingly, C4d test markedly increased the sensitivity of bronchoscopy in the two cohorts in which cytological data were available (CUN and HUVR cohorts. Finally, in the LCCCIO cohort, C4d levels were higher in sputum supernatants from patients with lung cancer (area under the ROC curve: 0.7; 95%CI = 0.56-0.83. In conclusion, C4d is consistently elevated in bronchial fluids from lung cancer patients and may be used to improve the diagnosis of the disease.

  3. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade.

    Science.gov (United States)

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2015-02-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it's plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it's current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation. We discuss our findings in the context of tick feeding physiology.

  4. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood

    DEFF Research Database (Denmark)

    Brekke, O. L.; Hellerud, B. C.; Christiansen, D.

    2011-01-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant...... antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding...... and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had...

  5. Complement fixation test to C burnetii

    Science.gov (United States)

    ... complement fixation test; Coxiella burnetii - complement fixation test; C burnetii - complement fixation test ... a specific foreign substance ( antigen ), in this case, C burnetii . Antibodies defend the body against bacteria, viruses, ...

  6. Low capacity of erythrocytes to bind with immune complexes via C3b receptor in patients with systemic lupus erythematosus: correlation with pathological proteinuria

    International Nuclear Information System (INIS)

    Nojima, Y.; Terai, C.; Minota, S.; Takano, K.; Miyakawa, Y.; Takaku, F.

    1985-01-01

    Erythrocytes from 51 patients with systemic lupus erythematosus and 75 controls were tested for the capacity to bind aggregated human gamma-globulin labeled with radioiodine in the presence of complement. Both in patients and controls, a trimodal distribution of binding capacity was observed. Low (less than 9% of the added radioactivity), intermediate (9-17%), and high binding (more than 17%) were observed in 13, 58, and 29% in controls and in 49, 43 and 8% in lupus patients. The low binding capacity of erythrocytes persisted even after patients entered remission following steroid therapy. A genetic control of binding capacity was supported by familial surveys. Prevalence of pathological proteinuria was significantly higher in patients with low binding capacity than those with intermediate or high binding capacity (16/25 vs 7/26, P less than 0.01). These results indicate that an impaired physiological disposal of immune complexes via the erythrocyte C3b receptor in lupus patients may contribute to the development of renal involvement

  7. Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma.

    Science.gov (United States)

    Manning, Michael L; Williams, Simon A; Jelinek, Christine A; Kostova, Maya B; Denmeade, Samuel R

    2013-03-15

    Prostate-specific Ag (PSA) is a serine protease that is expressed exclusively by normal and malignant prostate epithelial cells. The continued high-level expression of PSA by the majority of men with both high- and low-grade prostate cancer throughout the course of disease progression, even in the androgen-ablated state, suggests that PSA has a role in the pathogenesis of disease. Current experimental and clinical evidence suggests that chronic inflammation, regardless of the cause, may predispose men to prostate cancer. The responsibility of the immune system in immune surveillance and eventually tumor progression is well appreciated but not completely understood. In this study, we used a mass spectrometry-based evaluation of prostatic fluid obtained from diseased prostates after removal by radical prostatectomy to identify potential immunoregulatory proteins. This analysis revealed the presence of Igs and the complement system proteins C3, factor B, and clusterin. Verification of these findings by Western blot confirmed the high-level expression of C3 in the prostatic fluid and the presence of a previously uncharacterized C-terminal C3 cleavage product. Biochemical analysis of this C3 cleavage fragment revealed a putative PSA cleavage site after tyrosine-1348. Purified PSA was able to cleave iC3b and the related complement protein C5. These results suggest a previously uncharacterized function of PSA as an immunoregulatory protease that could help to create an environment hospitable to malignancy through proteolysis of the complement system.

  8. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice.

    Science.gov (United States)

    Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2016-02-01

    We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Substrate- and Cofactor-independent Inhibition of Histone Demethylase KDM4C

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Rand, Kasper Dyrberg

    2014-01-01

    Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging as the active sites of KDM1A-B and KDM-4A-D histone demethylases, respectively, are highly conserved. Most...... inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide...... sequence, or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation...

  10. Structural insight into the recognition of complement C3 activation products by integrin receptors

    DEFF Research Database (Denmark)

    Bajic, Goran

    2015-01-01

    fragment C3a called anaphylatoxin. Complement leads to opsonization as the proteolytic fragment C3b becomes covalently linked to the activator surface through a reactive thioester. Self-surfaces are protected by complement regulators, whereas complement activation vividly amplifies on pathogens...... and their clearance by dendritic cells is mediated by αMβ2. The central molecule in my project, αMβ2 integrin, recognizes many diverse ligands including iC3b, but the molecular basis for such recognition was lacking. During my PhD I have obtained a major breakthrough in the dissection of iC3b interaction with αMβ2. I...

  11. Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors.

    Science.gov (United States)

    Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha

    2013-08-01

    Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Complement inhibitors for age-related macular degeneration.

    Science.gov (United States)

    Williams, Michael A; McKay, Gareth J; Chakravarthy, Usha

    2014-01-15

    Given the relatively high prevalence of age-related macular degeneration (AMD) and the increased incidence of AMD as populations age, the results of trials of novel treatments are awaited with much anticipation. The complement cascade describes a series of proteolytic reactions occurring throughout the body that generate proteins with a variety of roles including the initiation and promotion of immune reactions against foreign materials or micro-organisms. The complement cascade is normally tightly regulated, but much evidence implicates complement overactivity in AMD and so it is a logical therapeutic target in the treatment of AMD. To assess the effects and safety of complement inhibitors in the prevention or treatment of advanced AMD. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 11), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2013), EMBASE (January 1980 to November 2013), Allied and Complementary Medicine Database (AMED) (January 1985 to November 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to November 2013), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/), Web of Science Conference Proceedings Citation Index - Science (CPCI-S) (January 1990 to November 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 21 November 2013. We also performed handsearching of proceedings, from 2012 onwards, of meetings and conferences of specific professional organisations. We planned to include randomised controlled trials (RCTs) with

  13. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which

  14. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.

    Directory of Open Access Journals (Sweden)

    Yuko Ono

    Full Text Available Circulating lipopolysaccharide (LPS concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis.C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL; TAK-242 (1 μM, a specific inhibitor of Toll-like receptor 4 (TLR4 signaling; and a tumor necrosis factor (TNF-α neutralizing antibody (5 μg/mL. Expression of a skeletal muscle differentiation marker (myosin heavy chain II, two essential myogenic regulatory factors (myogenin and MyoD, and a muscle negative regulatory factor (myostatin was analyzed by western blotting. Nuclear factor-κB (NF-κB DNA-binding activity was measured using an enzyme-linked immunosorbent assay.LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis.Our data suggest that LPS inhibits myogenic differentiation via a TLR4-NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways

  15. Eculizumab treatment: stochastic occurrence of C3 binding to individual PNH erythrocytes

    Directory of Open Access Journals (Sweden)

    Michela Sica

    2017-06-01

    Full Text Available Abstract Background C5 blockade by eculizumab prevents complement-mediated intravascular hemolysis in paroxysmal nocturnal hemoglobinuria (PNH. However, C3-bound PNH red blood cells (RBCs, arising in almost all treated patients, may undergo extravascular hemolysis reducing clinical benefits. Despite the uniform deficiency of CD55 and of CD59, there are always two distinct populations of PNH RBCs, with (C3+ and without (C3− C3 binding. Methods To investigate this paradox, the phenomenon has been modeled in vitro by incubating RBCs from eculizumab untreated PNH patients with compatible sera containing eculizumab, and by assessing the C3 binding after activation of complement alternative pathway. Results When RBCs from untreated patients were exposed in vitro to activated complement in the context of C5-blockade, there was the prompt appearance of a distinct C3+ PNH RBC population whose size increased with time and also with the rate of complement activation. Eventually, all PNH RBCs become C3+ to the same extent, without differences between old and young (reticulocytes PNH RBCs. Conclusions This study indicates that the distinct (C3+ and C3− PNH RBC populations are not intrinsically different; rather, they result from a stochastic all-or-nothing phenomenon linked to the time-dependent cumulative probability of each individual PNH red cell to be exposed to levels of complement activation able to trigger C3 binding. These findings may envision novel approaches to reduce C3 opsonization and the subsequent extravascular hemolysis in PNH patients on eculizumab.

  16. Subnanomolar indazole-5-carboxamide inhibitors of monoamine oxidase B (MAO-B) continued: indications of iron binding, experimental evidence for optimised solubility and brain penetration.

    Science.gov (United States)

    Tzvetkov, Nikolay T; Antonov, Liudmil

    2017-12-01

    Pharmacological and physicochemical studies of N-unsubstituted indazole-5-carboxamides (subclass I) and their structurally optimised N1-methylated analogues (subclass II), initially developed as drug and radioligand candidates for the treatment and diagnosis of Parkinson's disease (PD), are presented. The compounds are highly brain permeable, selective, reversible, and competitive monoamine oxidase B (MAO-B) inhibitors with improved water-solubility and subnanomolar potency (pIC 50  >8.8). Using a well-validated, combined X-ray/modelling technology platform, we performed a semi-quantitative analysis of the binding modes of all compounds and investigated the role of the indazole N1 position for their MAO-B inhibitory activity. Moreover, compounds NTZ-1006, 1032, and 1441 were investigated for their ability to bind Fe 2+ and Fe 3+ ions using UV-visible spectroscopy.

  17. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  18. Complement and thrombosis in the antiphospholipid syndrome.

    Science.gov (United States)

    Oku, Kenji; Nakamura, Hiroyuki; Kono, Michihiro; Ohmura, Kazumasa; Kato, Masaru; Bohgaki, Toshiyuki; Horita, Tetsuya; Yasuda, Shinsuke; Amengual, Olga; Atsumi, Tatsuya

    2016-10-01

    The involvement of complement activation in the pathophysiology of antiphospholipid syndrome (APS) was first reported in murine models of antiphospholipid antibody (aPL)-related pregnancy morbidities. We previously reported that complement activation is prevalent and may function as a source of procoagulant cell activation in the sera of APS patients. Recently, autoantibodies against C1q, a component of complement 1, were reported to be correlated with complement activation in systemic lupus erythematosus. These antibodies target neoepitopes of deformed C1q bound to various molecules (i.e., anionic phospholipids) and induce accelerated complement activation. We found that anti-C1q antibodies are more frequently detected in primary APS patients than in control patients and in refractory APS patients with repeated thrombotic events. The titer of anti-C1q antibodies was significantly higher in refractory APS patients than in APS patients without flare. The binding of C1q to anionic phospholipids may be associated with the surge in complement activation in patients with anti-C1q antibodies when triggered by 'second-hit' biological stressors such as infection. Such stressors will induce overexpression of anionic phospholipids, with subsequent increases in deformed C1q that is targeted by anti-C1q antibodies. Copyright © 2016. Published by Elsevier B.V.

  19. Human keratinocytes produce the complement inhibitor factor H: synthesis is regulated by interferon-gamma

    NARCIS (Netherlands)

    Timár, Krisztina K.; Pasch, Marcel C.; van den Bosch, Norbert H. A.; Jarva, Hanna; Junnikkala, Sami; Meri, Seppo; Bos, Jan D.; Asghar, Syed S.

    2006-01-01

    Locally synthesized complement is believed to play an important role in host defense and inflammation at organ level. In the epidermis, keratinocytes have so far been shown to synthesize two complement components, C3 and factor B. Here, we studied the synthesis of factor H by human keratinocytes. We

  20. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B.

    Science.gov (United States)

    Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong

    2017-08-18

    Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Chemical interaction of B4C, B, and C with Mo/Si layered structures

    International Nuclear Information System (INIS)

    Rooij-Lohmann, V. I. T. A. de; Veldhuizen, L. W.; Zoethout, E.; Yakshin, A. E.; Kruijs, R. W. E. van de; Thijsse, B. J.; Gorgoi, M.; Schaefers, F.; Bijkerk, F.

    2010-01-01

    To enhance the thermal stability, B 4 C diffusion barrier layers are often added to Mo/Si multilayer structures for extreme ultraviolet optics. Knowledge about the chemical interaction between B 4 C and Mo or Si, however is largely lacking. Therefore, the chemical processes during annealing up to 600 deg. C of a Mo/B 4 C/Si layered structure have been investigated in situ with hard x-ray photoelectron spectroscopy and ex situ with depth profiling x-ray photoelectron spectroscopy. Mo/B/Si and Mo/C/Si structures have also been analyzed as reference systems. The chemical processes in these systems have been identified, with two stages being distinguished. In the first stage, B and C diffuse and react predominantly with Mo. MoSi x forms in the second stage. If the diffusion barrier consists of C or B 4 C, a compound forms that is stable up to the maximum probed temperature and annealing time. We suggest that the diffusion barrier function of B 4 C interlayers as reported in literature can be caused by the stability of the formed compound, rather than by the stability of B 4 C itself.

  2. Comparative studies on the human serum albumin binding of the clinically approved EGFR inhibitors gefitinib, erlotinib, afatinib, osimertinib and the investigational inhibitor KP2187.

    Science.gov (United States)

    Dömötör, Orsolya; Pelivan, Karla; Borics, Attila; Keppler, Bernhard K; Kowol, Christian R; Enyedy, Éva A

    2018-05-30

    Binding interactions between human serum albumin (HSA) and four approved epidermal growth factor receptor (EGFR) inhibitors gefitinib (GEF), erlotinib (ERL), afatinib (AFA), osimertinib (OSI), as well as the experimental drug KP2187, were investigated by means of spectrofluorometric and molecular modelling methods. Steady-state and time resolved spectrofluorometric techniques were carried out, including direct quenching of protein fluorescence and site marker displacement measurements. Proton dissociation processes and solvent dependent fluorescence properties were investigated as well. The EGFR inhibitors were predominantly presented in their single protonated form (HL + ) at physiological pH except ERL, which is charge-neutral. Significant solvent dependent fluorescence properties were found for GEF, ERL and KP2187, namely their emission spectra show strong dependence on the polarity and the hydrogen bonding ability of the solvents. The inhibitors proved to be bound at site I of HSA (in subdomain IIA) in a weak-to-moderate fashion (logK' 3.9-4.9) using spectrofluorometry. OSI (logK' 4.3) and KP2187 can additionally bind in site II (in subdomain IIIA), while GEF, ERL and AFA clearly show no interaction here. Docking methods qualitatively confirmed binding site preferences of compounds GEF and KP2187, and indicated that they probably bind to HSA in their neutral forms. Binding constants calculated on the basis of the various experimental data indicate a weak-to-moderate binding on HSA, only OSI exhibits somewhat higher affinity towards this protein. However, model calculations performed at physiological blood concentrations of HSA resulted in high (ca. 90%) bound fractions for the inhibitors, highlighting the importance of plasma protein binding. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. 3,5-Dioxopyrazolidines, Novel Inhibitors of UDP-N- Acetylenolpyruvylglucosamine Reductase (MurB) with Activity against Gram-Positive Bacteria

    Science.gov (United States)

    Yang, Youjun; Severin, Anatoly; Chopra, Rajiv; Krishnamurthy, Girija; Singh, Guy; Hu, William; Keeney, David; Svenson, Kristine; Petersen, Peter J.; Labthavikul, Pornpen; Shlaes, David M.; Rasmussen, Beth A.; Failli, Amedeo A.; Shumsky, Jay S.; Kutterer, Kristina M. K.; Gilbert, Adam; Mansour, Tarek S.

    2006-01-01

    A series of 3,5-dioxopyrazolidines was identified as novel inhibitors of UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Compounds 1 to 3, which are 1,2-bis(4-chlorophenyl)-3,5-dioxopyrazolidine-4-carboxamides, inhibited Escherichia coli MurB, Staphyloccocus aureus MurB, and E. coli MurA with 50% inhibitory concentrations (IC50s) in the range of 4.1 to 6.8 μM, 4.3 to 10.3 μM, and 6.8 to 29.4 μM, respectively. Compound 4, a C-4-unsubstituted 1,2-bis(3,4-dichlorophenyl)-3,5-dioxopyrazolidine, showed moderate inhibitory activity against E. coli MurB, S. aureus MurB, and E. coli MurC (IC50s, 24.5 to 35 μM). A fluorescence-binding assay indicated tight binding of compound 3 with E. coli MurB, giving a dissociation constant of 260 nM. Structural characterization of E. coli MurB was undertaken, and the crystal structure of a complex with compound 4 was obtained at 2.4 Å resolution. The crystal structure indicated the binding of a compound at the active site of MurB and specific interactions with active-site residues and the bound flavin adenine dinucleotide cofactor. Peptidoglycan biosynthesis studies using a strain of Staphylococcus epidermidis revealed reduced peptidoglycan biosynthesis upon incubation with 3,5-dioxopyrazolidines, with IC50s of 0.39 to 11.1 μM. Antibacterial activity was observed for compounds 1 to 3 (MICs, 0.25 to 16 μg/ml) and 4 (MICs, 4 to 8 μg/ml) against gram-positive bacteria including methicillin-resistant S. aureus, vancomycin-resistant Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae. PMID:16436710

  4. Tautomerism of N-(3,4-dichlorophenyl)-1H-indazole-5-carboxamide - A new selective, highly potent and reversible MAO-B inhibitor

    Science.gov (United States)

    Tzvetkov, Nikolay T.; Stammler, Hans-Georg; Antonov, Liudmil

    2017-12-01

    The tautomeric properties of an N-(3,4-dichlorophenyl)-1H-indazole-5-carboxamide (NTZ-1006, 2) derivative, developed as highly potent, reversible and selective MAO-B inhibitor useful for the treatment of Parkinson's disease (PD) and other neurological disorders, have been studied both experimentally and theoretically. The theoretical data (M06-2X, B3LYP and MP2-4 quantum chemical calculations) have shown that due to aromaticity reasons the 1H tautomer strongly dominates over the 2H form. There are no substantial spectral changes by changing the solvent and the concentration, which leads to a conclusion that compound 2 exists in solution as 1H tautomer and its tautomerism is not influenced by the solvents and the concentration. The results are in line with the understanding for the tautomerism of 1H-indazole and shows that substitution at the C5 position in the indazole unit does not influence the tautomeric state. The isolated crystal structure of 2 is in an excellent agreement with the computation in respect of the most stable tautomer. Combined single X-ray/molecular modeling studies including HYdrogen-DEsolvation (HYDE) analysis provided not only insights into the enzyme-inhibitor interaction within the binding site of the human MAO-B isoform, but also a valuable information regarding the most stable 1H-indazole tautomeric form of NTZ-1006 that contributes to its high potency against hMAO-B enzyme (IC50 0.586 nm) and selectivity (>17000-fold) over the hMAO-A isoenzyme.

  5. Structure-based prediction of free energy changes of binding of PTP1B inhibitors

    Science.gov (United States)

    Wang, Jing; Ling Chan, Shek; Ramnarayan, Kal

    2003-08-01

    The goals were (1) to understand the driving forces in the binding of small molecule inhibitors to the active site of PTP1B and (2) to develop a molecular mechanics-based empirical free energy function for compound potency prediction. A set of compounds with known activities was docked onto the active site. The related energy components and molecular surface areas were calculated. The bridging water molecules were identified and their contributions were considered. Linear relationships were explored between the above terms and the binding free energies of compounds derived based on experimental inhibition constants. We found that minimally three terms are required to give rise to a good correlation (0.86) with predictive power in five-group cross-validation test (q2 = 0.70). The dominant terms are the electrostatic energy and non-electrostatic energy stemming from the intra- and intermolecular interactions of solutes and from those of bridging water molecules in complexes.

  6. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.

    Science.gov (United States)

    Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin

    2016-01-01

    Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.

  7. CFH Y402H polymorphism and the complement activation product C5a: effects on NF-κB activation and inflammasome gene regulation.

    Science.gov (United States)

    Cao, Sijia; Wang, Jay Ching Chieh; Gao, Jiangyuan; Wong, Matthew; To, Elliott; White, Valerie A; Cui, Jing Z; Matsubara, Joanne A

    2016-05-01

    The Y402H polymorphism in the complement factor H (CFH) gene is an important risk factor for age-related macular degeneration (AMD). Complement activation products and proinflammatory cytokines are associated with this polymorphism at the systemic level, but less is known of the associations in the outer retina of the genotyped eye. Here we investigate complement activation products and their role in nuclear factor (NF)-κB activation and gene expression of the NLRP3 inflammasome pathway. Postmortem donor eyes were genotyped for the CFH Y402H polymorphism and assessed for complement C3a, C5a, interleukin (IL)-18 and tumour necrosis factor (TNF)-α. ARPE19 cells were stimulated basolaterally with C5a or TNF-α in polarised cultures. NF-κB activation was assessed with a reporter cell line. Gene expression of inflammasome-related (NLRP3, caspase-1, IL-1β and IL-18) and classic inflammatory (IL-6 and IL-8) genes was studied. The distribution of inflammasome products, IL-1β and IL-18, was studied in postmortem donor eyes with AMD pathologies. Eyes with the homozygous at-risk variant demonstrated higher levels of C5a, IL-18 and TNF-α in Bruch's membrane and choroid. C5a promoted NF-κB activation and upregulation of IL-18 in polarised ARPE19. TNF-α promoted NF-κB activation and gene expression of caspase-1, IL-1β, IL-18, IL-6 and IL-8, but downregulated NLRP3. In eyes with geographic atrophy, strong immunoreactivity was observed for inflammasome products IL-1β and IL-18 compared with age-matched controls. The at-risk polymorphism of the CFH Y402H may contribute to AMD disease process through increased complement and NF-κB activation, and the upregulation of IL-18, a product of inflammasome activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats.

    Science.gov (United States)

    Itoh, Tetsuji; Tokumura, Miwa; Abe, Kohji

    2004-09-13

    The brain cAMP regulating system and its downstream elements play a pivotal role in the therapeutic effects of antidepressants. We previously reported the increase in activities of phosphodiesterase 4, a major phosphodiesterase isozyme hydrolyzing cAMP, in the frontal cortex and hippocampus of learned helplessness rats, an animal model for depression. The present study was undertaken to examine the combination of effects of rolipram, a phosphodiesterase 4 inhibitor, with imipramine, a typical tricyclic antidepressant, on depressive behavior in learned helplessness rats. Concurrently, cAMP-response element (CRE)-binding activity and brain-derived neurotrophic factor (BDNF) levels related to the therapeutic effects of antidepressants were determined. Repeated administration of imipramine (1.25-10 mg/kg, i.p.) or rolipram (1.25 mg/kg, i.p.) reduced the number of escape failures in learned helplessness rats. Imipramine could not completely ameliorate the escape behavior to a level similar to that of non-stressed rats even at 10 mg/kg. However, repeated coadministration of rolipram with imipramine (1.25 and 2.5 mg/kg, respectively) almost completely eliminated the escape failures in learned helplessness rats. The reduction of CRE-binding activities and BDNF levels in the frontal cortex or hippocampus in learned helplessness rats were ameliorated by treatment with imipramine or rolipram alone. CRE-binding activities and/or BDNF levels of the frontal cortex and hippocampus were significantly increased by treatment with a combination of rolipram and imipramine compared to those in imipramine-treated rats. These results indicated that coadministration of phosphodiesterase type 4 inhibitors with antidepressants may be more effective for depression therapy and suggest that elevation of the cAMP signal transduction pathway is involved in the antidepressive effects.

  9. Identification and characterization of small molecule inhibitors of the calcium-dependent S100B-p53 tumor suppressor interaction.

    Science.gov (United States)

    Markowitz, Joseph; Chen, Ijen; Gitti, Rossi; Baldisseri, Donna M; Pan, Yongping; Udan, Ryan; Carrier, France; MacKerell, Alexander D; Weber, David J

    2004-10-07

    The binding of S100B to p53 down-regulates wild-type p53 tumor suppressor activity in cancer cells such as malignant melanoma, so a search for small molecules that bind S100B and prevent S100B-p53 complex formation was undertaken. Chemical databases were computationally searched for potential inhibitors of S100B, and 60 compounds were selected for testing on the basis of energy scoring, commercial availability, and chemical similarity clustering. Seven of these compounds bound to S100B as determined by steady state fluorescence spectroscopy (1.0 microM model of one such inhibitor, pentamidine, bound to Ca(2+)-loaded S100B was calculated using intermolecular NOE data between S100B and the drug, and indicates that pentamidine binds into the p53 binding site on S100B defined by helices 3 and 4 and loop 2 (termed the hinge region).

  10. Human Properdin Opsonizes Nanoparticles and Triggers a Potent Pro-inflammatory Response by Macrophages without Involving Complement Activation

    Science.gov (United States)

    Kouser, Lubna; Paudyal, Basudev; Kaur, Anuvinder; Stenbeck, Gudrun; Jones, Lucy A.; Abozaid, Suhair M.; Stover, Cordula M.; Flahaut, Emmanuel; Sim, Robert B.; Kishore, Uday

    2018-01-01

    Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation. PMID:29483907

  11. Complement activation and liver impairment in trichloroethylene-sensitized BALB/c mice.

    Science.gov (United States)

    Zhang, Jiaxiang; Zha, Wansheng; Wang, Feng; Jiang, Tao; Xu, Shuhai; Yu, Junfeng; Zhou, Chengfan; Shen, Tong; Wu, Changhao; Zhu, Qixing

    2013-01-01

    Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription-polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.

  12. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components

    Science.gov (United States)

    Otto, Robert B.D.; Burkin, Karena; Amir, Saba Erum; Crane, Dennis T.; Bolgiano, Barbara

    2015-01-01

    The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP–Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates. PMID:26194164

  13. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site.

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-11-27

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Inhibitor scaffold for the histone lysine demethylase KDM4C (JMJD2C)

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Clausen, Rasmus P; Kristensen, Jesper L

    2012-01-01

    The human histone demethylases of the KDM4 (JMJD2) family have been associated to diseases such as prostate and breast cancer, as well as X-linked mental retardation. Therefore, these enzymes are considered oncogenes and their selective inhibition might be a possible therapeutic approach to treat...... cancer. Here we describe a heterocyclic ring system library screened against the histone demethylase KDM4C (JMJD2C) in the search for novel inhibitory scaffolds. A 4-hydroxypyrazole scaffold was identified as an inhibitor of KDM4C; this scaffold could be employed in the further development of novel...... therapeutics, as well as for the elucidation of the biological roles of KDM4C on epigenetic regulation....

  15. Pharmacological modulation of human platelet leukotriene C4-synthase.

    Science.gov (United States)

    Sala, A; Folco, G; Henson, P M; Murphy, R C

    1997-03-21

    The aim of this study was to test if human platelet leukotriene C4-synthase (LTC4-S) is pharmacologically different from cloned and expressed LTC4-S and, in light of the significant homologies between 5-lipoxygenase activating protein (FLAP) and LTC4-S, if different potencies of leukotriene synthesis inhibitors acting through binding with FLAP (FLAP inhibitors) reflect in different potencies as LTC4-S inhibitors. Leukotriene C4 (LTC4) synthesis by washed human platelets supplemented with synthetic leukotriene A4 (LTA4) was studied in the absence and presence of two different, structurally unrelated FLAP inhibitors (MK-886 and BAY-X1005) as well as a direct 5-lipoxygenase inhibitor (zileuton). LTC4 production was analyzed by RP-HPLC coupled to diode array detection. We report that human platelet LTC4-S was inhibited by MK-886 and BAY-X1005 (IC50 of 4.7 microM and 91.2 microM, respectively), but not by zileuton (inactive up to 300 microM); all 3 compounds were able to inhibit 5-lipoxygenase metabolite biosynthesis in intact human polymorphonuclear leukocytes (IC50 of 0.044 microM, 0.85 microM, and 1.5 microM, respectively). Platelet LTC4-S does not appear pharmacologically different from expression cloned LTC4-S. LTC4-S inhibition by FLAP inhibitors is in agreement with the significant homology reported for expression-cloned LTC4-S with FLAP, Furthermore, functional homology of the binding sites for inhibitors on LTC4-S and FLAP is suggested by the conservation of the relative potencies of MK-886 and BAY-X1005 vs FLAP-dependent 5-lipoxygenase activity and LTC4-S inhibition: MK-886 was 19.3-fold more potent than BAY-X1005 as FLAP inhibitor and 19.6-fold more potent than BAY-X1005 as LTC4-S inhibitor.

  16. Hot pressing of B4C/SiC composites

    International Nuclear Information System (INIS)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O.

    2005-01-01

    B 4 C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B 4 C/SiC composite samples were lower than monolithic B 4 C in all experimental conditions. (authors)

  17. Systemic complement activation in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Hendrik P N Scholl

    Full Text Available Dysregulation of the alternative pathway (AP of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD, the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112 and controls (n = 67. Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH, factor B-C2 (BF-C2 and complement C3 (C3 genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001, were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  18. Tritium-labelled leukotriene B4 binding to the guinea-pig spleen membrane preparation: a rich tissue source for a high-affinity leukotriene B4 receptor site

    International Nuclear Information System (INIS)

    Cheng, J.B.; Cheng, E.I.; Kohi, F.; Townley, R.G.

    1986-01-01

    Intact human granulocytes contain a leukotriene (LT) B4 receptor binding site, but the limited supply of these cells could adversely affect further progress of the study of this receptor. To select a tissue homogenate rich for this site, we have characterized the binding of highly specific [ 3 H]LTB4 to guinea-pig spleen membranes and we have determined the ability of LTB4 to compete with [ 3 H]LTB4 for binding sites in the membranes of 10 nonspleen tissues. In the spleen membrane, MgCl2 and CaCl2 enhanced [ 3 H]LTB4 binding, but NaCl and KCl decreased it. Spleen [ 3 H] LTB4 binding was a function of protein concentration and was rapid, reversible, stereoselective and saturable. Kinetic analyses showed that the rate constant for association and dissociation at 25 0 C was 0.47 nM-1 min-1 and 0.099 min-1, respectively. A Scatchard plot of the data of the equilibrium experiment resulted a straight line with a dissociation constant of 1.8 nM and a density of 274 fmol/mg of protein. Moreover, the LTB4/[ 3 H]LTB4 competition study performed at 4 or 25 0 C revealed the inhibitory constant (Ki) of LTB4 to be in the nanomolar range. The rank order of agents competing for spleen [ 3 H]LTB4 binding was: LTB4 (Ki = 2.8 nM) greater than 20-hydroxy-LTB4 (23 nM) greater than LTA4 (48 nM) greater than LTA4 methyl ester (0.13 microM) greater than 20-carboxy-LTB4 (greater than 6.6 microM) greater than or equal to arachidonic acid (0.15mM) = FPL-55,712 and FPL-57,231 (0.1-0.2 mM). Competition studies further indicated that felodipine, a 1,4-dihyropyridine Ca++ channel blocker, exhibited micromolar inhibition of spleen [ 3 H]LTB4 binding

  19. Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin.

    Science.gov (United States)

    Tabernero, L; Chang, C Y; Ohringer, S L; Lau, W F; Iwanowicz, E J; Han, W C; Wang, T C; Seiler, S M; Roberts, D G; Sack, J S

    1995-02-10

    The crystallographic structure of the ternary complex between human alpha-thrombin, hirugen and the peptidyl inhibitor Phe-alloThr-Phe-O-CH3, which is acylated at its N terminus with 4-guanidino butanoic acid (BMS-183507), has been determined at 2.6 A resolution. The structure reveals a unique "retro-binding" mode for this tripeptide active site inhibitor. The inhibitor binds with its alkyl-guanidine moiety in the primary specificity pocket and its two phenyl rings occupying the hydrophobic proximal and distal pockets of the thrombin active site. In this arrangement the backbone of the tripeptide forms a parallel beta-strand to the thrombin main-chain at the binding site. This is opposite to the orientation of the natural substrate, fibrinogen, and all the small active site-directed thrombin inhibitors whose bound structures have been previously reported. BMS-183507 is the first synthetic inhibitor proved to bind in a retro-binding fashion to thrombin, in a fashion similar to that of the N-terminal residues of the natural inhibitor hirudin. Furthermore, this new potent thrombin inhibitor (Ki = 17.2 nM) is selective for thrombin over other serine proteases tested and may be a template to be considered in designing hirudin-based thrombin inhibitors with interactions at the specificity pocket.

  20. Deposition of mannose-binding lectin and ficolins and activation of the lectin pathway of complement on the surface of polyurethane tubing used for cardiopulmonary bypass.

    Science.gov (United States)

    Eppa, Łukasz; Pągowska-Klimek, Izabela; Świerzko, Anna S; Moll, Maciej; Krajewski, Wojciech R; Cedzyński, Maciej

    2018-04-01

    The artificial surface used for cardiopulmonary bypass (CPB) is a crucial factor activating the complement system and thus contributing to the generation of a systemic inflammatory response. The activation of classical and alternative pathways on this artificial surface is well known. In contrast, lectin pathway (LP) activation has not been fully investigated, although noted during CPB in several studies. Moreover, we have recently proved the contribution of the LP to the generation of the systemic inflammatory response syndrome after pediatric cardiac surgery. The aim of this study was to assess LP-mediated complement activation on the surface of polyurethane CPB circuit tubing (noncoated Chalice ® ), used for CPB procedures in children with congenital heart disease. We found deposition of mannose-binding lectin, ficolin-1, -2, and -3 on the surface of unused tubing and on tubing used for CPB from a small minority of patients. Furthermore, we observed deposition of complement C4 activation products on tubing used for CPB and previously unused tubing after incubation with normal serum. The latter finding indicates LP activation in vitro on the polyurethane surface. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1202-1208, 2018. © 2017 Wiley Periodicals, Inc.

  1. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity.

    Science.gov (United States)

    Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding

    2017-11-07

    The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.

  2. Binding of the Inhibitor Protein IF1 to Bovine F1-ATPase

    Science.gov (United States)

    Bason, John V.; Runswick, Michael J.; Fearnley, Ian M.; Walker, John E.

    2011-01-01

    In the structure of bovine F1-ATPase inhibited with residues 1–60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme. PMID:21192948

  3. Comprehensive approach to study complement C4 in systemic lupus erythematosus: Gene polymorphisms, protein levels and functional activity

    NARCIS (Netherlands)

    Tsang-A-Sjoe, M. W. P.; Bultink, I. E. M.; Korswagen, L. A.; van der Horst, A. [=Anneke; Rensink, I.; de Boer, M.; Hamann, D.; Voskuyl, A. E.; Wouters, D.

    2017-01-01

    Genetic variation of the genes encoding complement component C4 is strongly associated with systemic lupus erythematosus (SLE), a chronic multi-organ auto-immune disease. This study examined C4 and its isotypes on a genetic, protein, and functional level in 140 SLE patients and 104 healthy controls.

  4. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes.

    Science.gov (United States)

    Xu, Qi; Luo, Jiao; Wu, Ning; Zhang, Renshuai; Shi, Dayong

    2018-01-01

    Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ion-Regulated Allosteric Binding of Fullerenes (C-60 and C-70) by Tetrathiafulvalene-Calix[4]pyrroles

    DEFF Research Database (Denmark)

    Davis, C. M.; Lim, J. M.; Larsen, K. R.

    2014-01-01

    of the C4P in a ball-and-socket binding mode. The interactions between the TTF-C4P receptors and the fullerene guests are highly influenced by both the nature of halide anions and their counter tetraalkylammonium cations. Three halides (F-, Cl-, and Br-) were studied. All three potentiate the binding...

  6. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  7. CORRELATION BETWEEN ANGIOTENSIN-CONVERTING ENZYME INHIBITORS LIPOPHILICITY AND PROTEIN BINDING DATA

    Directory of Open Access Journals (Sweden)

    Jasna Trbojević-Stanković

    2012-01-01

    Full Text Available Angiotensin-converting enzyme (ACE inhibitors represent a significant group of drugs primarily used in the treatment of hypertension and congestive heart failure. In this research, seven ACE inhibitors (enalapril, quinapril, fosinopril, lisinopril, cilazapril, ramipril, benazepril were studied to evaluate the relationship between their protein binding and calculated (logP values or ultra-high performance liquid chromatographytandem mass spectrometry (UHPLC-MS and reversed-phase thin-layer chromatography (RP-TLC lipophilicity data (ϕ0, CHI or C0 parameters, respectively. Their protein binding data varied from negligible (lisinopril to 99% (fosinopril, while calculated logPKOWWINvalues ranged from -0.94 (lisinopril to 6.61 (fosinopril. The good correlations were established between protein binding values and logPKOWWIN data (R2=0.7520 as well as between protein binding and chromatographic hydrophobicity data, ϕ0, CHI or C0parameters (R2 were 0.6160, 0.6242 and 0.6547, respectively. The possible application of hydrophobicity data in drugs protein binding evaluation can be of great importance in drug bioavailability.

  8. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components.

    Science.gov (United States)

    Otto, Robert B D; Burkin, Karena; Amir, Saba Erum; Crane, Dennis T; Bolgiano, Barbara

    2015-09-01

    The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP-Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Binding proteins for the regulatory subunit (RII-B) of brain cAMP-dependent protein kinase II: isolation and initial characterization of cDNA clones

    International Nuclear Information System (INIS)

    Bregman, D.B.; Hu, E.; Rubin, C.S.

    1987-01-01

    In mammalian brain several proteins bind RII-B with high affinity. An example is P75, which co-purifies with RII-B and also complexes Ca 2+ -calmodulin. Thus, RII-B binding proteins (RBPs) might play a role in integrating the Ca 2+ and cAMP signalling pathways in the CNS. In order to study the structure and function of these polypeptides they have isolated cloned cDNAs for RBPs by screening brain λgt11 expression libraries using a functional assay: the binding of 32 P-labeled RII to fusion proteins produced by recombinants expressing RII binding domains. Inserts from rat brain recombinant clones λ7B and λ10B both hybridize to a brain mRNA of 7000 nucleotides. Northern gel analyses indicate that the putative RBP mRNA is also expressed in lung, but not in several other tissues. The λ7B insert was subcloned into the expression plasmid pINIA. A 50 kDa high affinity RII-B binding polypeptide accumulated in E. coli transformed with pINIA-7B. Two RBP cDNAs (λ77, λ100A) have been retrieved from a bovine λgt 11 library using a monoclonal antibody directed against P75 and the binding assay respectively. On Southern blots the insert from λ100A hybridizes to the cDNA insert from clones λ77, suggesting that λ 77 cDNA might contain sequences coding for both an RII binding domain and a P75 epitope. The bovine λ100A insert also hybridizes with the rat λ7B clone indicating that an RII binding domain is conserved in the two species

  10. Specific, sensitive, precise, and rapid functional chromogenic assay of activated first complement component (C1) in plasma

    DEFF Research Database (Denmark)

    Munkvad, S; Jespersen, J; Sidelmann, Johannes Jakobsen

    1990-01-01

    We present a new functional assay for the first complement component (C1) in plasma, based on its activation by inhibition of the C1-esterase inhibitor (C1-inh) when monospecific antiserum to C1-inh is added to the plasma. After maximal activation, we can determine the concentration of activated ...

  11. Modification, biological evaluation and 3D QSAR studies of novel 2-(1,3-diaryl- 4,5-dihydro-1H-pyrazol-5-ylphenol derivatives as inhibitors of B-Raf kinase.

    Directory of Open Access Journals (Sweden)

    Yu-Shun Yang

    Full Text Available A series of novel 2-(1,3-diaryl- 4,5-dihydro-1H-pyrazol-5-ylphenol derivatives (C1-C24 have been synthesized. The B-Raf inhibitory activity and anti-proliferation activity of these compounds have been tested. Compound C6 displayed the most potent biological activity against B-RafV600E (IC50 = 0.15 µM and WM266.4 human melanoma cell line (GI50 = 1.75 µM, being comparable with the positive control (Vemurafenib and Erlotinib and more potent than our previous best compounds. The docking simulation was performed to analyze the probable binding models and poses while the QSAR model was built to check the previous work as well as to introduce new directions. This work aimed at seeking more potent inhibitors as well as discussing some previous findings. As a result, the introduction of ortho-hydroxyl group on 4,5-dihydro-1H-pyrazole skeleton did reinforce the anti-tumor activity while enlarging the group on N-1 of pyrazoline was also helpful.

  12. X-linked inheritance of Fanconi anemia complementation group B.

    NARCIS (Netherlands)

    Meetei, AR; Levitus, M.; Xue, Y; Medhurst, A.L. dr.; Zwaan, M.; Ling, C; Rooimans, M.A.; Bier, P; Hoatlin, M.; Pals, G.; Winter, de J.P.; Joenje, H.

    2004-01-01

    Fanconi anemia is an autosomal recessive syndrome characterized by diverse clinical symptoms, hypersensitivity to DNA crosslinking agents, chromosomal instability and susceptibility to cancer. Fanconi anemia has at least 11 complementation groups (A, B, C, D1, D2, E, F, G, I, J, L); the genes

  13. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria.

    NARCIS (Netherlands)

    Hillmen, P.; Young, N.S.; Schubert, J.; Brodsky, R.A.; Socie, G.; Muus, P.; Roth, A.; Szer, J.; Elebute, M.O.; Nakamura, R.; Browne, P.; Risitano, A.M.; Hill, A.; Schrezenmeier, H.; Fu, C.L.; Maciejewski, J; Rollins, S.A.; Mojcik, C.F.; Rother, R.P.; Luzzatto, L.

    2006-01-01

    BACKGROUND: We tested the safety and efficacy of eculizumab, a humanized monoclonal antibody against terminal complement protein C5 that inhibits terminal complement activation, in patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS: We conducted a double-blind, randomized,

  14. Isolation and initial characterisation of complement components C3 and C4 of the nurse shark and the channel catfish.

    Science.gov (United States)

    Dodds, A W; Smith, S L; Levine, R P; Willis, A C

    1998-01-01

    Complement components C3 and C4 have been isolated from the serum of the nurse shark (Ginglymostoma cirratum) and of the channel catfish (Ictalurus punctatus). As in the higher vertebrates, the fish C4 proteins have three-chain structures while the C3 proteins have two-chain structures. All four proteins have intra-chain thioesters located within their highest molecular mass polypeptides. N-terminal sequence analysis of the polypeptides has confirmed the identity of the proteins. In all cases except the catfish C3 alpha-chain, which appears to have a blocked N-terminus, sequence similarities are apparent in comparisons with the chains of C3 and C4 from higher vertebrates. We have confirmed that the activity/protein previously designated C2n is the nurse shark analogue of mammalian C4. This is the first report of structural evidence for C4 in both the bony and cartilaginous fish.

  15. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003

    Science.gov (United States)

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.

    2017-01-01

    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  16. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    Science.gov (United States)

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis.

  17. Inhibition of Cyclic Adenosine Monophosphate (cAMP-response Element-binding Protein (CREB-binding Protein (CBP/β-Catenin Reduces Liver Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Yosuke Osawa

    2015-11-01

    Full Text Available Wnt/β-catenin is involved in every aspect of embryonic development and in the pathogenesis of many human diseases, and is also implicated in organ fibrosis. However, the role of β-catenin-mediated signaling on liver fibrosis remains unclear. To explore this issue, the effects of PRI-724, a selective inhibitor of the cAMP-response element-binding protein-binding protein (CBP/β-catenin interaction, on liver fibrosis were examined using carbon tetrachloride (CCl4- or bile duct ligation (BDL-induced mouse liver fibrosis models. Following repetitive CCl4 administrations, the nuclear translocation of β-catenin was observed only in the non-parenchymal cells in the liver. PRI-724 treatment reduced the fibrosis induced by CCl4 or BDL. C-82, an active form of PRI-724, inhibited the activation of isolated primary mouse quiescent hepatic stellate cells (HSCs and promoted cell death in culture-activated HSCs. During the fibrosis resolution period, an increase in F4/80+ CD11b+ and Ly6Clow CD11b+ macrophages was induced by CCl4 and was sustained for two weeks thereafter, even after having stopped CCl4 treatment. PRI-724 accelerated the resolution of CCl4-induced liver fibrosis, and this was accompanied by increased matrix metalloproteinase (MMP-9, MMP-2, and MMP-8 expression in intrahepatic leukocytes. In conclusion, targeting the CBP/β-catenin interaction may become a new therapeutic strategy in treating liver fibrosis.

  18. Reference distributions for complement proteins C3 and C4: a practical, simple and clinically relevant approach in a large cohort.

    Science.gov (United States)

    Ritchie, Robert F; Palomaki, Glenn E; Neveux, Louis M; Navolotskaia, Olga; Ledue, Thomas B; Craig, Wendy Y

    2004-01-01

    The two serum proteins of the complement cascade in the highest concentrations, C3 and C4, respond to various conditions in much the same manner as do other positive acute-phase proteins. A major difference is that they are relatively sluggish in response to cytokine drive, requiring several days rather than hours to be detectably elevated by serial measurements. As with other acute-phase proteins, there are many processes that up- or down-regulate synthesis, including infection or inflammation, hepatic failure, and immune-complex formation. Clinicians may find it difficult to distinguish among these processes, because they often occur simultaneously. The situation is further complicated by genetic polymorphism, with rare instances of markedly reduced synthesis and circulating levels, and consequent vulnerability to infection. C3 and C4 are measured for clinical purposes to help define certain rheumatic and immunologically mediated renal diseases. Interpreting the measured blood levels of these two components requires one to consider the intensity of the inflammatory drive, the timing of the suspected clinical process, the production of complement-consuming immune complexes, and the possible existence of benign circumstances. In this fifth article in a series, reference ranges for serum levels of two complement proteins (C3 and C4) are examined. The study is based on a cohort of over 55,000 Caucasian individuals from northern New England, who were tested in our laboratory in 1994-1999. Measurements were standardized against certified reference material (CRM) 470/reference preparation for proteins in human serum (RPPHS), and analyzed using a previously described statistical approach. Individuals with unequivocal laboratory evidence of inflammation (C-reactive protein of 10 mg/L or higher) were excluded. Our results show that the levels of C3 and C4 change little during life and between the sexes, except that they increase slightly and then fall after age 20 in males

  19. Hot pressing of B{sub 4}C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O. [Ystanbul Technical University, Faculty of Chemistry and Metallurgy, Materials and Metallurgical Engineering Dept., Maslak-Ystanbul (Turkey)

    2005-07-01

    B{sub 4}C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B{sub 4}C/SiC composite samples were lower than monolithic B{sub 4}C in all experimental conditions. (authors)

  20. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    Science.gov (United States)

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  1. Design and synthesis of N-(4-aminopyridin-2-yl)amides as B-Raf(V600E) inhibitors.

    Science.gov (United States)

    Li, Xiaokai; Shen, Jiayi; Tan, Li; Zhang, Zhang; Gao, Donglin; Luo, Jinfeng; Cheng, Huimin; Zhou, Xiaoping; Ma, Jie; Ding, Ke; Lu, Xiaoyun

    2016-06-15

    B-Raf(V600E) was an effective target for the treatment of human cancers. Based on a pan-Raf inhibitor TAK-632, a series of N-(4-aminopyridin-2-yl)amide derivatives were designed as novel B-Raf(V600E) inhibitors. Detailed structure-activity studies of the compounds revealed that most of the compounds displayed potent enzymatic activity against B-Raf(V600E), and good selectivity over B-Raf(WT). One of the most promising compound 4l exhibited potent inhibitory activity with an IC50 value of 38nM for B-raf(V600E), and displayed antiproliferative activities against colo205 and HT29 cells with IC50 values of 0.136 and 0.094μM, respectively. It also displayed good selectivity on both enzymatic and cellular assays over B-Raf(WT). These inhibitors may serve as lead compounds for further developing novel B-Raf(V600E) inhibitors as anticancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A novel small molecule inhibitor of hepatitis C virus entry.

    Directory of Open Access Journals (Sweden)

    Carl J Baldick

    Full Text Available Small molecule inhibitors of hepatitis C virus (HCV are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc, blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.

  3. Structure and function of complement protein C1q and its role in the development of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Katarzyna Smykał-Jankowiak

    2009-09-01

    Full Text Available Complement plays an important role in the immune system. Three different pathways of complement activation are known: the classical, alternative, and lectin dependent. They involve more than 30 serum peptides. C1q is the first subcomponent of the classical pathway of complement activation. It is composed of three types of chains, A, B, and C, which form a molecule containing 18 peptides. Each of the chains has a short amino-terminal region followed by a collagen-like region (playing a role in the activation of C1r2C1s2 and a carboxy-terminal head, which binds to immune complexes. Recent studies have shown a great number of ligands for C1q, including aggregated IgG, IgM, human T-cell lymphotropic virus-I (HTLV-I, gp21 peptide, human immunodeficiency virus-1 (HIV-1 gp21 peptide, β-amyloid, fragments of bacterial walls, apoptotic cells, and many others. However, the role of C1q is not only associated with complement activation. It also helps in the removal of immune complexes and necrotic cells, stimulates the production of some cytokines, and modulates the function of lymphocytes. Complete C1q deficiency is a rare genetic disorder. The C1q gene is located on the short arm of chromosome 1. So far, only a few mutations in C1q gene have been reported. The presence of these mutations is strongly associated with recurrent bacterial infections and the development of systemic lupus erythematosus (SLE. Recent clinical studies point to the significance of anti-C1q antibodies in the diagnosis and assessment of lupus nephritis activity.

  4. The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis.

    Science.gov (United States)

    Nimgaonkar, V L; Prasad, K M; Chowdari, K V; Severance, E G; Yolken, R H

    2017-11-01

    The pathogenesis of schizophrenia is considered to be multi-factorial, with likely gene-environment interactions (GEI). Genetic and environmental risk factors are being identified with increasing frequency, yet their very number vastly increases the scope of possible GEI, making it difficult to identify them with certainty. Accumulating evidence suggests a dysregulated complement pathway among the pathogenic processes of schizophrenia. The complement pathway mediates innate and acquired immunity, and its activation drives the removal of damaged cells, autoantigens and environmentally derived antigens. Abnormalities in complement functions occur in many infectious and autoimmune disorders that have been linked to schizophrenia. Many older reports indicate altered serum complement activity in schizophrenia, though the data are inconclusive. Compellingly, recent genome-wide association studies suggest repeat polymorphisms incorporating the complement 4A (C4A) and 4B (C4B) genes as risk factors for schizophrenia. The C4A/C4B genetic associations have re-ignited interest not only in inflammation-related models for schizophrenia pathogenesis, but also in neurodevelopmental theories, because rodent models indicate a role for complement proteins in synaptic pruning and neurodevelopment. Thus, the complement system could be used as one of the 'staging posts' for a variety of focused studies of schizophrenia pathogenesis. They include GEI studies of the C4A/C4B repeat polymorphisms in relation to inflammation-related or infectious processes, animal model studies and tests of hypotheses linked to autoimmune diseases that can co-segregate with schizophrenia. If they can be replicated, such studies would vastly improve our understanding of pathogenic processes in schizophrenia through GEI analyses and open new avenues for therapy.

  5. Rivaroxaban limits complement activation compared with warfarin in antiphospholipid syndrome patients with venous thromboembolism.

    Science.gov (United States)

    Arachchillage, D R J; Mackie, I J; Efthymiou, M; Chitolie, A; Hunt, B J; Isenberg, D A; Khamashta, M; Machin, S J; Cohen, H

    2016-11-01

    Essentials Complement activation has a pathogenic role in thrombotic antiphospholipid syndrome (APS). Coagulation proteases such as factor Xa can activate complement proteins. Complement activation markers were elevated in anticoagulated thrombotic APS patients. Complement activation decreased in APS patients switching from warfarin to rivaroxaban. Background Complement activation may play a major role in the pathogenesis of thrombotic antiphospholipid syndrome (APS). Coagulation proteases such as factor Xa can activate complement proteins. Aims To establish whether rivaroxaban, a direct factor Xa inhibitor, limits complement activation compared with warfarin in APS patients with previous venous thromboembolism (VTE). Methods A total of 111 APS patients with previous VTE, on warfarin target INR 2.5, had blood samples taken at baseline and at day 42 after randomization in the RAPS (Rivaroxaban in Antiphospholipid Syndrome) trial. Fifty-six patients remained on warfarin and 55 switched to rivaroxaban. Fifty-five normal controls (NC) were also studied. Markers of complement activation (C3a, C5a, terminal complement complex [SC5b-9] and Bb fragment) were assessed. Results APS patients had significantly higher complement activation markers compared with NC at both time-points irrespective of the anticoagulant. There were no differences between the two patient groups at baseline, or patients remaining on warfarin at day 42. In 55 patients randomized to rivaroxaban, C3a, C5a and SC5b-9 were lower at day 42 (median (ng mL -1 ) [confidence interval] 64 [29-125] vs. 83 [35-147], 9 [2-15] vs. 12 [4-18] and 171 [56-245] vs. 201 [66-350], respectively) but levels of Bb fragment were unchanged. There were no correlations between rivaroxaban levels and complement activation markers. Conclusions APS patients with previous VTE on warfarin exhibit increased complement activation, which is likely to occur via the classical pathway and is decreased by rivaroxaban administration

  6. Isolation of lymphocyte membrane complement receptor type two (the C3d receptor) and preparation of receptor-specific antibody.

    OpenAIRE

    Lambris, J D; Dobson, N J; Ross, G D

    1981-01-01

    A glycoprotein binding complement component C3d was isolated from media used for culture of Raji human lymphoblastoid cells. Analysis by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and gas/liquid chromatography indicated that the C3d-binding glycoprotein consisted of a single polypeptide chain with extensive intrachain disulfide bonds, a molecular weight of 72,000, and several different bound carbohydrates. Several lines of evidence indicated that this medium-derived C3d-binding...

  7. Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4

    NARCIS (Netherlands)

    van Burgel, Nathalie D.; Kraiczy, Peter; Schuijt, Tim J.; Zipfel, Peter F.; van Dam, Alje P.

    2010-01-01

    B. burgdorferi sensu lato (sl) is the etiological agent of Lyme borreliosis in humans. Spirochetes have adapted themselves to the human immune system in many distinct ways. One important immune escape mechanism for evading complement activation is the binding of complement regulators Factor H (CFH)

  8. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Huiding Xie

    2015-11-01

    Full Text Available In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD simulation and binding free energy (ΔGbind calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA, and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  9. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure in Indian patients.

    Science.gov (United States)

    Neogi, Ujjwal; Rao, Shwetha D; Bontell, Irene; Verheyen, Jens; Rao, Vasudev R; Gore, Sagar C; Soni, Neelesh; Shet, Anita; Schülter, Eugen; Ekstrand, Maria L; Wondwossen, Amogne; Kaiser, Rolf; Madhusudhan, Mallur S; Prasad, Vinayaka R; Sonnerborg, Anders

    2014-09-24

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region, which appeared in protease inhibitor failure Indian HIV-1C sequences (odds ratio=17.1, P < 0.001) but was naturally present in half of untreated Ethiopian HIV-1C sequences. The insertion is predicted to restore ALIX-mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of the insertion needs to be evaluated in HIV-1C dominating regions wherein the use of protease inhibitor drugs are being scaled up.

  10. Human factor H-related protein 2 (CFHR2 regulates complement activation.

    Directory of Open Access Journals (Sweden)

    Hannes U Eberhardt

    Full Text Available Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs. Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.

  11. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Haahr-Pedersen, Sune; Bjerre, Mette; Flyvbjerg, Allan

    2009-01-01

    BACKGROUND: The positive effect of reperfusion after ST-elevation myocardial infarction (STEMI) can be reduced by ischemic/reperfusion (I/R) injury.Mannose-binding-lectin (MBL) and soluble C5b-9 (membrane-attack-complex) are involved in complement-driven cell lysis and may play a role in human...... with increased risk of cardiac dysfunction in STEMI patients treated with pPCI, probably due to increased complement activity during the ischemic and reperfusion process. The predictive value of low peripheral plasma sC5b-9 may be explained by an accumulation and activation of sC5b-9 in the infarcted myocardium....

  12. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface.

    Directory of Open Access Journals (Sweden)

    Ya-Ping Ko

    Full Text Available Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a 'capsule'-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.

  13. Low copy numbers of complement C4 and homozygous deficiency of C4A may predispose to severe disease and earlier disease onset in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Jüptner, M; Flachsbart, F; Caliebe, A; Lieb, W; Schreiber, S; Zeuner, R; Franke, A; Schröder, J O

    2018-04-01

    Objectives Low copy numbers and deletion of complement C4 genes are potent risk factors for systemic lupus erythematosus (SLE). However, it is not known whether this genetic association affects the clinical outcome. We investigated C4 copy number variation and its relationship to clinical and serological features in a Northern European lupus cohort. Methods We genotyped the C4 gene locus using polymerase chain reaction (PCR)-based TaqMan assays in 169 patients with SLE classified according to the 1997 revised American College of Rheumatology (ACR) criteria and in 520 matched controls. In the patient group the mean C4 serum protein concentrations nephelometrically measured during a 12-month period prior to genetic analysis were compared to C4 gene copy numbers. Severity of disease was classified according to the intensity of the immunosuppressive regimens applied and compared to C4 gene copy numbers, too. In addition, we performed a TaqMan based analysis of three lupus-associated single-nucleotide polymorphisms (SNPs) located inside the major histocompatibility complex (MHC) to investigate the independence of complement C4 in association with SLE. Results Homozygous deficiency of the C4A isotype was identified as the strongest risk factor for SLE (odds ratio (OR) = 5.329; p = 7.7 × 10 -3 ) in the case-control comparison. Moreover, two copies of total C4 were associated with SLE (OR = 3.699; p = 6.8 × 10 -3 ). C4 serum levels were strongly related to C4 gene copy numbers in patients, the mean concentration ranging from 0.110 g/l (two copies) to 0.256 g/l (five to six copies; p = 4.9 × 10 -6 ). Two copies of total C4 and homozygous deletion of C4A were associated with a disease course requiring cyclophosphamide therapy (OR = 4.044; p = 0.040 and OR = 5.798; p = 0.034, respectively). Homozygous deletion of C4A was associated with earlier onset of SLE (median 24 vs. 34 years; p = 0.019) but not significant after

  14. Francisella tularensis Confronts the Complement System

    Directory of Open Access Journals (Sweden)

    Susan R. Brock

    2017-12-01

    Full Text Available Francisella tularensis has developed a number of effective evasion strategies to counteract host immune defenses, not the least of which is its ability to interact with the complement system to its own advantage. Following exposure of the bacterium to fresh human serum, complement is activated and C3b and iC3b can be found covalently attached to the bacterial surface. However, the lipopolysaccharide and capsule of the F. tularensis cell wall prevent complement-mediated lysis and endow the bacterium with serum resistance. Opsonization of F. tularensis with C3 greatly increases its uptake by human neutrophils, dendritic cells and macrophages. Uptake occurs by an unusual looping morphology in human macrophages. Complement receptor 3 is thought to play an important role in opsonophagocytosis by human macrophages, and signaling through this receptor can antagonize Toll-like receptor 2-initiated macrophage activation. Complement C3 also determines the survival of infected human macrophages and perhaps other cell types. C3-opsonization of F. tularensis subsp. tularensis strain SCHU S4 results in greatly increased death of infected human macrophages, which requires more than complement receptor engagement and is independent of the intracellular replication by the pathogen. Given its entry into the cytosol of host cells, F. tularensis has the potential for a number of other complement-mediated interactions. Studies on the uptake C3-opsonized adenovirus have suggested the existence of a C3 sensing system that initiates cellular responses to cytosolic C3b present on invading microbes. Here we propose that C3 peptides enter the cytosol of human macrophages following phagosome escape of F. tularensis and are recognized as intruding molecular patterns that signal host cell death. With the discovery of new roles for intracellular C3, a better understanding of tularemia pathogenesis is likely to emerge.

  15. Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex

    DEFF Research Database (Denmark)

    Laursen, Nick Stub; Andersen, Kasper Røjkjær; Braren, Ingke

    2011-01-01

    with a protease subunit (Bb or C2a). We determined the crystal structures of the C3b homologue cobra venom factor (CVF) in complex with C5, and in complex with C5 and the inhibitor SSL7 at 4.3 Å resolution. The structures reveal a parallel two-point attachment between C5 and CVF, where the presence of SSL7 only...

  16. Combustion of Na2B4O7 + Mg + C to synthesis B4C powders

    International Nuclear Information System (INIS)

    Jiang Guojian; Xu Jiayue; Zhuang Hanrui; Li Wenlan

    2009-01-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2 B 4 O 7 ), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2 B 4 O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2 B 4 O 7 than stoichiometric ratio in Na 2 B 4 O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  17. Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors

    Directory of Open Access Journals (Sweden)

    Yuliang Liu

    2011-01-01

    Full Text Available Virus-host interactions play key roles in promoting efficient egress of many RNA viruses, including Ebola virus (EBOV or “e” and Marburg virus (MARV or “m”. Late- (L- domains conserved in viral matrix proteins recruit specific host proteins, such as Tsg101 and Nedd4, to facilitate the budding process. These interactions serve as attractive targets for the development of broad-spectrum budding inhibitors. A major gap still exists in our understanding of the mechanism of filovirus budding due to the difficulty in detecting virus-host complexes and mapping their trafficking patterns in the natural environment of the cell. To address this gap, we used a bimolecular complementation (BiMC approach to detect, localize, and follow the trafficking patterns of eVP40-Tsg101 complexes in live mammalian cells. In addition, we used the BiMC approach along with a VLP budding assay to test small molecule inhibitors identified by in silico screening for their ability to block eVP40 PTAP-mediated interactions with Tsg101 and subsequent budding of eVP40 VLPs. We demonstrated the potential broad spectrum activity of a lead candidate inhibitor by demonstrating its ability to block PTAP-dependent binding of HIV-1 Gag to Tsg101 and subsequent egress of HIV-1 Gag VLPs.

  18. Generation of Anaphylatoxins by Human β-Tryptase from C3, C4, and C51

    Science.gov (United States)

    Fukuoka, Yoshihiro; Xia, Han-Zhang; Sanchez-Muñoz, Laura B.; Dellinger, Anthony L.; Escribano, Luis; Schwartz, Lawrence B.

    2009-01-01

    Both mast cells and complement participate in innate and acquired immunity. The current study examines whether β-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of β-tryptase, and the β-tryptase-activating polyanion. The B12 mAb was used to stabilize β-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric β-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by β-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by β-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both β-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by β-tryptase in releasates of activated skin mast cells. Of further biologic interest, β-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest β-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of β-tryptase and complement anaphylatoxins are detected. PMID:18424754

  19. The synthetic epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis and inhibit REL (human c-Rel) DNA binding in an IkappaBalpha-deficient diffuse large B-cell lymphoma cell line.

    Science.gov (United States)

    Liang, Mei-Chih; Bardhan, Sujata; Porco, John A; Gilmore, Thomas D

    2006-09-08

    The NF-kappaB transcription factor signaling pathway is constitutively active in many human cancers, and inhibition of this pathway can often kill cancer cells by inducing apoptosis. In this study, we show that two synthetic epoxyquinoids, jesterone dimer (JD) and epoxyquinone A monomer (EqM), are equally effective at inhibiting the growth of two human lymphoma cell lines that have constitutively nuclear REL (human c-Rel) DNA-binding complexes, but either express (SUDHL-4 cells) or do not express (RC-K8 cells) the NF-kappaB inhibitor IkappaBalpha. Furthermore, in these cells, both JD and EqM dose-dependently induced apoptosis, inhibited REL DNA-binding activity, and converted REL to a high molecular weight form. In A293 cells, JD and EqM inhibited the DNA-binding activity of overexpressed REL, but not p50. Replacement of Cys-27 with Ser in REL reduced JD- and EqM-mediated inhibition of REL DNA-binding activity. These results suggest that JD and EqM can induce apoptosis in IkappaBalpha-deficient lymphoma cells through a mechanism involving direct inhibition of transcription factor REL.

  20. Discovery of amido-benzisoxazoles as potent c-Kit inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Roxanne K.; Rumfelt, Shannon; Chen, Ning; Zhang, Dawei; Tasker, Andrew S.; Bürli, Roland; Hungate, Randall; Yu, Violeta; Nguyen, Yen; Whittington, Douglas A.; Meagher, Kristin L.; Plant, Matthew; Tudor, Yanyan; Schrag, Michael; Xu, Yang; Ng, Gordon Y.; Hu, Essa (Amgen)

    2010-01-12

    Deregulation of the receptor tyrosine kinase c-Kit is associated with an increasing number of human diseases, including certain cancers and mast cell diseases. Interference of c-Kit signaling with multi-kinase inhibitors has been shown clinically to successfully treat gastrointestinal stromal tumors and mastocytosis. Targeted therapy of c-Kit activity may provide therapeutic advantages against off-target effects for non-oncology applications. A new structural class of c-Kit inhibitors is described, including in vitro c-Kit potency, kinase selectivity, and the observed binding mode.

  1. Discovery of a Hepatitis C Virus NS5B Replicase Palm Site Allosteric Inhibitor (BMS-929075) Advanced to Phase 1 Clinical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Kap-Sun; Beno, Brett R.; Parcella, Kyle; Bender, John A.; Grant-Young, Katherine A.; Nickel, Andrew; Gunaga, Prashantha; Anjanappa, Prakash; Bora, Rajesh Onkardas; Selvakumar, Kumaravel; Rigat, Karen; Wang, Ying-Kai; Liu, Mengping; Lemm, Julie; Mosure, Kathy; Sheriff, Steven; Wan, Changhong; Witmer, Mark; Kish, Kevin; Hanumegowda, Umesh; Zhuo, Xiaoliang; Shu, Yue-Zhong; Parker, Dawn; Haskell, Roy; Ng, Alicia; Gao, Qi; Colston, Elizabeth; Raybon, Joseph; Grasela, Dennis M.; Santone, Kenneth; Gao, Min; Meanwell, Nicholas A.; Sinz, Michael; Soars, Matthew G.; Knipe, Jay O.; Roberts, Susan B.; Kadow, John F.

    2017-05-04

    The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.

  2. Interactions between the Hepatitis C Virus Nonstructural 2 Protein and Host Adaptor Proteins 1 and 4 Orchestrate Virus Release

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    2018-03-01

    Full Text Available Hepatitis C virus (HCV spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the μ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2 protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.

  3. New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) structural development and promising activities to restore memory impairment.

    Science.gov (United States)

    Brullo, Chiara; Ricciarelli, Roberta; Prickaerts, Jos; Arancio, Ottavio; Massa, Matteo; Rotolo, Chiara; Romussi, Alessia; Rebosio, Claudia; Marengo, Barbara; Pronzato, Maria Adelaide; van Hagen, Britt T J; van Goethem, Nick P; D'Ursi, Pasqualina; Orro, Alessandro; Milanesi, Luciano; Guariento, Sara; Cichero, Elena; Fossa, Paola; Fedele, Ernesto; Bruno, Olga

    2016-11-29

    Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Self-association and domain rearrangements between complement C3 and C3u provide insight into the activation mechanism of C3.

    Science.gov (United States)

    Li, Keying; Gor, Jayesh; Perkins, Stephen J

    2010-10-01

    Component C3 is the central protein of the complement system. During complement activation, the thioester group in C3 is slowly hydrolysed to form C3u, then the presence of C3u enables the rapid conversion of C3 into functionally active C3b. C3u shows functional similarities to C3b. To clarify this mechanism, the self-association properties and solution structures of C3 and C3u were determined using analytical ultracentrifugation and X-ray scattering. Sedimentation coefficients identified two different dimerization events in both proteins. A fast dimerization was observed in 50 mM NaCl but not in 137 mM NaCl. Low amounts of a slow dimerization was observed for C3u and C3 in both buffers. The X-ray radius of gyration RG values were unchanged for both C3 and C3u in 137 mM NaCl, but depend on concentration in 50 mM NaCl. The C3 crystal structure gave good X-ray fits for C3 in 137 mM NaCl. By randomization of the TED (thioester-containing domain)/CUB (for complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains in the C3b crystal structure, X-ray fits showed that the TED/CUB domains in C3u are extended and differ from the more compact arrangement of C3b. This TED/CUB conformation is intermediate between those of C3 and C3b. The greater exposure of the TED domain in C3u (which possesses the hydrolysed reactive thioester) accounts for the greater self-association of C3u in low-salt conditions. This conformational variability of the TED/CUB domains would facilitate their interactions with a broad range of antigenic surfaces. The second dimerization of C3 and C3u may correspond to a dimer observed in one of the crystal structures of C3b.

  5. DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    Full Text Available BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb has only one subunit of HU coded by ORF Rv2986c (hupB gene. One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb and another which expresses only the N terminal region (first 95 amino acid of hupB (HupB(MtbN. Gel retardation assays revealed that HupB(MtbN is almost like E. coli HU (heat stable nucleoid protein in terms of its DNA binding, with a binding constant (K(d for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region of HupB(Mtb imparts greater specificity in DNA binding. HupB(Mtb protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role.

  6. The discovery and the structural basis of an imidazo[4,5-b]pyridine-based p21-activated kinase 4 inhibitor.

    Science.gov (United States)

    Park, Jeung Kuk; Kim, Sunmin; Han, Yu Jin; Kim, Seong Hwan; Kang, Nam Sook; Lee, Hyuk; Park, SangYoun

    2016-06-01

    p21-Activated kinases (PAKs) which belong to the family of ste20 serine/threonine protein kinases regulate cytoskeletal reorganization, cell motility, cell proliferation, and oncogenic transformation which are all related to the cellular functions during cancer induction and metastasis. The fact that PAK mutations are detected in multiple tumor tissues makes PAKs a novel therapeutic drug target. In this study, an imidazo[4,5-b]pyridine-based PAK4 inhibitor, KY-04045 (6-Bromo-2-(3-isopropyl-1-methyl-1H-pyrazol-4-yl)-1H-imidazo[4,5-b]pyridine), was discovered using a virtual site-directed fragment-based drug design and was validated using an inhibition assay. Although PAK4 affinity to KY-04045 seems much weaker than that of the reported PAK4 inhibitors, the location of KY-04045 is clearly defined in the structure of PAK4 co-crystallized with KY-04045. The crystal structure illustrates that the pyrazole and imidazopyridine rings of KY-04045 are sufficient for mediating PAK4 hinge loop interaction. Hence, we believe that KY-04045 can be exploited as a basic building block in designing novel imidazo[4,5-b]pyridine-based PAK4 inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Entamoeba histolytica and E. dispar trophozoites in the liver of hamsters: in vivo binding of antibodies and complement

    Directory of Open Access Journals (Sweden)

    Gomes Maria A

    2010-03-01

    Full Text Available Abstract Background Human amoebiasis is caused by the parasitic protozoan Entamoeba histolytica that lives in the large intestine of hosts, where can produce asymptomatic colonization until severe invasive infections with blood diarrhea and spreading to other organs. The amoebic abscesses in liver are the most frequent form of amoebiasis outside intestine and still there are doubts about the pathogenic mechanisms involved in their formation. In this study we evaluated the in situ binding of antibodies, C3 and C9 complement components on trophozoites, in livers of hamsters infected with E. histolytica or E. dispar. These parameters were correlated with the extension of the hepatic lesions observed in these animals and with trophozoites survivor. Methods Hamsters were inoculated intra-hepatically with 100,000 trophozoites of E. histolytica or E. dispar strain and necropsied 12, 24, 48, 72, 144 and 192 h after inoculation. Antibodies, C3 and C9 binding to trophozoites were detected by immunohistochemistry. The estimation of the necrosis area and the number of labeled trophozoites was performed using digital morphometry analysis. Results In the liver sections of animals inoculated with the amoebas, the binding of antibodies to E. histolytica trophozoites was significantly lower than to E. dispar trophozoites. Trophozoites of E. dispar were also more frequently vacuolated and high labeled cellular debris observed in the lesions. Positive diffuse reaction to C3 complement component was more intense in livers of animals inoculated with E. histolytica after 24 and 72 h of infection. C3(+ and C9(+ trophozoites were detected in the vascular lumen, granulomas and inside and in the border of necrotic areas of both infected group animals. C3(+ and C9(+ trophozoite debris immunostaining was higher in livers of E. dispar than in livers of E. histolytica. A positive correlation between necrotic areas and number of C9(+ trophozoites was observed in animals

  8. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    Science.gov (United States)

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α′

    Directory of Open Access Journals (Sweden)

    Jennifer Hochscherf

    2017-12-01

    Full Text Available Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM is 5-isopropyl-4-(3-methylbut-2-enyl-oxy-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p. Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.

  10. Triatoma infestans Calreticulin: Gene Cloning and Expression of a Main Domain That Interacts with the Host Complement System.

    Science.gov (United States)

    Weinberger, Katherine; Collazo, Norberto; Aguillón, Juan Carlos; Molina, María Carmen; Rosas, Carlos; Peña, Jaime; Pizarro, Javier; Maldonado, Ismael; Cattan, Pedro E; Apt, Werner; Ferreira, Arturo

    2017-02-08

    Triatoma infestans is an important hematophagous vector of Chagas disease, a neglected chronic illness affecting approximately 6 million people in Latin America. Hematophagous insects possess several molecules in their saliva that counteract host defensive responses. Calreticulin (CRT), a multifunctional protein secreted in saliva, contributes to the feeding process in some insects. Human CRT (HuCRT) and Trypanosoma cruzi CRT (TcCRT) inhibit the classical pathway of complement activation, mainly by interacting through their central S domain with complement component C1. In previous studies, we have detected CRT in salivary gland extracts from T. infestans We have called this molecule TiCRT. Given that the S domain is responsible for C1 binding, we have tested its role in the classical pathway of complement activation in vertebrate blood. We have cloned and characterized the complete nucleotide sequence of CRT from T. infestans , and expressed its S domain. As expected, this S domain binds to human C1 and, as a consequence, it inhibits the classical pathway of complement, at its earliest stage of activation, namely the generation of C4b. Possibly, the presence of TiCRT in the salivary gland represents an evolutionary adaptation in hematophagous insects to control a potential activation of complement proteins, present in the massive blood meal that they ingest, with deleterious consequences at least on the anterior digestive tract of these insects. © The American Society of Tropical Medicine and Hygiene.

  11. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region.

    Science.gov (United States)

    Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E

    2015-08-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.

  12. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity.

    Science.gov (United States)

    Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter

    2016-04-01

    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.

  13. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  14. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    Science.gov (United States)

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  15. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    Science.gov (United States)

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections.

    Science.gov (United States)

    Deore, R R; Chern, J-W

    2010-01-01

    Hepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ≈50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.

  17. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Directory of Open Access Journals (Sweden)

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  18. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  19. Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques

    International Nuclear Information System (INIS)

    Mazaheri, Y.; Meratian, M.; Emadi, R.; Najarian, A.R.

    2013-01-01

    In the present work, production of Al–10%TiC, Al–10% B 4 C, Al–5%TiC–5%B 4 C (volume fraction) composites by casting techniques were studied. However, casting techniques suffers from poor incorporation and distribution of the reinforcement particles in the matrix. These problems become especially significant as the reinforcement size decreases due to greater agglomeration tendency and reduced wettability of the particles with the melt. Microstructure characterization of the composite samples was investigated by using scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD).The results showed heat treatment of B 4 C particles and addition of TiC particles with the flux improved the wettability and incorporation of reinforcement particles into melt. Mechanical characterization of samples showed that maximum hardness had belonged to Al–5%TiC–5%B 4 C composite, maximum yield and tensile strength had belonged to Al–10%B 4 C composite and maximum elongation had belonged to Al–10%TiC composite. Furthermore, wear properties of composites revealed the better behavior for Al–B 4 C composite.

  20. Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin

    DEFF Research Database (Denmark)

    Pilely, Katrine; Rosbjerg, Anne; Genster, Ninette

    2016-01-01

    Cholesterol crystals (CC) play an essential role in the formation of atherosclerotic plaques. CC activate the classical and the alternative complement pathways, but the role of the lectin pathway is unknown. We hypothesized that the pattern recognition molecules (PRMs) from the lectin pathway bind...... CC and function as an upstream innate inflammatory signal in the pathophysiology of atherosclerosis. We investigated the binding of the PRMs mannose-binding lectin (MBL), ficolin-1, ficolin-2, and ficolin-3, the associated serine proteases, and complement activation products to CC in vitro using...... recognize CC and provides evidence for an important role for this pathway in the inflammatory response induced by CC in the pathophysiology of atherosclerosis....

  1. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.

    Science.gov (United States)

    Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas

    2016-04-01

    Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The Role of Properdin in Zymosan- and Escherichia coli-Induced Complement Activation

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Lindstad, Julie K

    2012-01-01

    Properdin is well known as an enhancer of the alternative complement amplification loop when C3 is activated, whereas its role as a recognition molecule of exogenous pathogen-associated molecular patterns and initiator of complement activation is less understood. We therefore studied the role...... of properdin in activation of complement in normal human serum by zymosan and various Escherichia coli strains. In ELISA, microtiter plates coated with zymosan induced efficient complement activation with deposition of C4b and terminal complement complex on the solid phase. Virtually no deposition of C4b...... cytometry was used to further explore whether properdin acts as an initial recognition molecule reacting directly with zymosan and three E. coli strains. Experiments reported by other authors were made with EGTA Mg(2+) buffer, permitting autoactivation of C3. We found inhibition by compstatin...

  3. ErpC, a member of the complement regulator-acquiring family of surface proteins from Borrelia burgdorferi, possesses an architecture previously unseen in this protein family

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Johnson, Steven; Kraiczy, Peter; Lea, Susan M.

    2013-01-01

    The structure of ErpC, a member of the complement regulator-acquiring surface protein family from B. burgdorferi, has been solved, providing insights into the strategies of complement evasion by this zoonotic bacterium and suggesting a common architecture for other members of this protein family. Borrelia burgdorferi is a spirochete responsible for Lyme disease, the most commonly occurring vector-borne disease in Europe and North America. The bacterium utilizes a set of proteins, termed complement regulator-acquiring surface proteins (CRASPs), to aid evasion of the human complement system by recruiting and presenting complement regulator factor H on its surface in a manner that mimics host cells. Presented here is the atomic resolution structure of a member of this protein family, ErpC. The structure provides new insights into the mechanism of recruitment of factor H and other factor H-related proteins by acting as a molecular mimic of host glycosaminoglycans. It also describes the architecture of other CRASP proteins belonging to the OspE/F-related paralogous protein family and suggests that they have evolved to bind specific complement proteins, aiding survival of the bacterium in different hosts

  4. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    Science.gov (United States)

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  5. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    International Nuclear Information System (INIS)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-01-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4. (paper)

  6. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    Science.gov (United States)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-10-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.

  7. Effect of the Ti/B4C mole ratio on the reaction products and reaction mechanism in an Al–Ti–B4C powder mixture

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun

    2014-01-01

    The effect of the Ti/B 4 C mole ratio on the fabrication behavior of Al composites is investigated using Al–Ti–B 4 C powder mixtures as reactants. The quick spontaneous infiltration (QSI) process combined with the combustion reaction and DTA analysis were used. According to the thermodynamic predictions, which are verified in the experimental results, TiB 2 is formed in all the samples whereas TiC is only formed in reactants with a Ti/B 4 C mole ratio of more than two. The C atoms from the reacted B 4 C do not move into TiC but instead they move into Al 3 BC or Al 4 C 3 when the Ti/B 4 C mole ratio is less than two. In addition, the reaction mechanism with a Ti/B 4 C mole ratio of 0.75 is investigated extensively. - Highlights: • The critical role of the Ti/B 4 C mole ratio on the reaction products of Al–Ti–B 4 C was studied using experiments. • The experimental results are also supported by thermodynamic calculations presented in this paper. • The reaction mechanism with a Ti/B 4 C mole ratio of 0.75 is investigated extensively

  8. Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4.

    Directory of Open Access Journals (Sweden)

    Harish Chander

    Full Text Available We previously reported that the degradation of prohibitin by the SCF(Skp2B ubiquitin ligase results in a defect in the activity of p53. We also reported that MMTV-Skp2B transgenic mice develop mammary gland tumors that are characterized by an increased proteolytic cleavage of the insulin-like growth factor binding protein 4 (IGFBP-4, an inhibitor of IGF signaling. However, whether a link exists between a defect in p53 activity and proteolysis of IGFBP-4 was not established.We analyzed the levels of pregnancy-associated plasma protein A (PAPP-A, the protease of IGFBP-4, in MMTV-Skp2B transgenic mice and found that PAPP-A levels are elevated. Further, we found a p53 binding site in intron 1 of the PAPP-A gene and that both wild type and mutant p53 bind to this site. However, binding of wild type p53 results in the transcriptional repression of PAPP-A, while binding of mutant p53 results in the transcriptional activation of PAPP-A. Since MMTV-Skp2B mice express wild type p53 and yet show elevated levels of PAPP-A, at first, these observations appeared contradictory. However, further analysis revealed that the defect in p53 activity in Skp2B overexpressing cells does not only abolish the activity of wild type of p53 but actually mimics that of mutant p53. Our results suggest that in absence of prohibitin, the half-life of p53 is increased and like mutant p53, the conformation of p53 is denatured.These observations revealed a novel function of prohibitin as a chaperone of p53. Further, they suggest that binding of denatured p53 in intron 1 causes an enhancer effect and increases the transcription of PAPP-A. Therefore, these findings indicate that the defect in p53 function and the increased proteolysis of IGFBP-4, we had observed, represent two components of the same pathway, which contributes to the oncogenic function of Skp2B.

  9. Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice

    Directory of Open Access Journals (Sweden)

    Holers V Michael

    2007-05-01

    Full Text Available Abstract Background The posttraumatic response to traumatic brain injury (TBI is characterized, in part, by activation of the innate immune response, including the complement system. We have recently shown that mice devoid of a functional alternative pathway of complement activation (factor B-/- mice are protected from complement-mediated neuroinflammation and neuropathology after TBI. In the present study, we extrapolated this knowledge from studies in genetically engineered mice to a pharmacological approach using a monoclonal anti-factor B antibody. This neutralizing antibody represents a specific and potent inhibitor of the alternative complement pathway in mice. Methods A focal trauma was applied to the left hemisphere of C57BL/6 mice (n = 89 using a standardized electric weight-drop model. Animals were randomly assigned to two treatment groups: (1 Systemic injection of 1 mg monoclonal anti-factor B antibody (mAb 1379 in 400 μl phosphate-buffered saline (PBS at 1 hour and 24 hours after trauma; (2 Systemic injection of vehicle only (400 μl PBS, as placebo control, at identical time-points after trauma. Sham-operated and untreated mice served as additional negative controls. Evaluation of neurological scores and analysis of brain tissue specimens and serum samples was performed at defined time-points for up to 1 week. Complement activation in serum was assessed by zymosan assay and by murine C5a ELISA. Brain samples were analyzed by immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL histochemistry, and real-time RT-PCR. Results The mAb 1379 leads to a significant inhibition of alternative pathway complement activity and to significantly attenuated C5a levels in serum, as compared to head-injured placebo-treated control mice. TBI induced histomorphological signs of neuroinflammation and neuronal apoptosis in the injured brain hemisphere of placebo-treated control mice for up to 7 days. In contrast, the

  10. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  11. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting

    International Nuclear Information System (INIS)

    Yang Yafeng; Wang Huiyuan; Liang Yunhong; Zhao Ruyi; Jiang Qichuan

    2007-01-01

    Steel matrix composites locally reinforced with different molar ratios of in situ TiC/TiB 2 particulates (2:1, 1:1 and 1:2, respectively) have been fabricated successfully utilizing the self-propagating high-temperature synthesis (SHS) reactions of Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems during casting. Differential thermal analysis (DTA) and X-ray diffraction (XRD) results reveal that the exothermic reactions of the Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems proceed in such a way that Ni initially reacts with B 4 C and Ti to form Ni 2 B and Ti 2 Ni compounds, respectively, with heat evolution at 1037 deg. C; Subsequently, the external heat and the evolved heat from these exothermic reactions promote the reactions forming TiC and TiB 2 at 1133 deg. C. In the composites reinforced with 1:2 molar ratio of TiC/TiB 2 , almost all TiB 2 grains have clubbed structures, while TiC grains exhibit near-spherical morphologies. Furthermore, TiB 2 grain sizes decrease, with the increase of TiC content. In particular, in the composites reinforced with 2:1 molar ratio of TiC/TiB 2 , it is difficult to find the clubbed TiB 2 grains. Macro-pores and blowholes are absent in the local reinforcing region of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 , while a few macro-pores can be observed in the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . Moreover, the densities of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 are higher than that of the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . The composite reinforced with 1:2 molar ratio of TiC/TiB 2 has the highest hardness and the best wear resistance

  12. Activation of the classical pathway of complement by tobacco glycoprotein (TGP).

    Science.gov (United States)

    Koethe, S M; Nelson, K E; Becker, C G

    1995-07-15

    Tobacco glycoprotein (TGP), a polyphenol-rich glycoprotein isolated from tobacco leaves, activates the classical complement pathway through a mechanism that appears to involve direct interaction with C1q. A binding site on C1q for TGP can be localized by competitive inhibition with DNA to a region located in the junction between the collagen-like and globular regions of the molecule. A protein with activity similar to TGP has also been isolated from cigarette smoke condensate (TGP-S); it shares a binding site on C1q with TGP and has similar functional activity, with the exception that complement activation does not proceed to formation of a C3 cleaving enzyme. The ability of TGP and TGP-S to activate complement can be partially duplicated using polyphenols associated with tobacco leaf and smoke, i.e., chlorogenic acid and rutin. These polyphenols also compete with TGP for a binding site on immobilized C1q, suggesting that the polyphenol portion of TGP is critical for activation of complement. These results provide an additional mechanism for complement activation by cigarette products that, in vivo, could result in a localized complement depletion, generation of biologically active complement cleavage products, and initiation of an inflammatory response.

  13. conformational complexity of complement component C3

    NARCIS (Netherlands)

    Janssen, B.J.C.

    2007-01-01

    The complement system is an important part of the immune system and critical for the elimination of pathogens. In mammals the complement system consists of an intricate set of about 35 soluble and cell-surface plasma proteins. Central to complement is component C3, a large protein of 1,641 residues.

  14. Assembly and Regulation of the Membrane Attack Complex Based on Structures of C5b6 and sC5b9

    Directory of Open Access Journals (Sweden)

    Michael A. Hadders

    2012-03-01

    Full Text Available Activation of the complement system results in formation of membrane attack complexes (MACs, pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.

  15. Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop

    Energy Technology Data Exchange (ETDEWEB)

    González-Páez, Gonzalo E.; Wolan, Dennis W. (Scripps)

    2012-09-05

    Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50} values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.

  16. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4 through interaction with HCV NS5B and alteration of lipid droplet formation.

    Directory of Open Access Journals (Sweden)

    In-Woo Park

    Full Text Available Hepatitis C virus (HCV RNA replication involves complex interactions among the 3'x RNA element within the HCV 3' untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3' X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4, a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.

  17. Microinjection of Escherichia coli UvrA, B, C and D proteins into fibroblasts of xeroderma pigmentosum complementation groups A and C does not result in restoration of UV-induced DNA synthesis.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; A.P. Barbeiro; W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1986-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured human fibroblasts of repair-deficient xeroderma pigmentosum complementation groups A and C was assayed after injection of identical activities of either Uvr excinuclease (UvrA, B, C and D) from Escherichia coli or endonuclease V

  18. Detection of potential AcrAB-TolC multidrug efflux pump inhibitor in calyces extract of Hibiscus sabdariffa

    Directory of Open Access Journals (Sweden)

    Nehaya Al-Karablieh

    2017-12-01

    Full Text Available Aim: The aim of this study is to investigate occurrence of potential efflux pump inhibitor (EPI against AcrAB-TolC efflux pump in the methanol extract of H. sabdariffa. Materials and Methods: Calyces of H. sabdariffa were purchased from the local market in April 2014, methanol extract of H. sabdariffa was subjected to agar plate diffusion against Escherichia coli TG1 and its ∆acrB-∆tolC and thin layer chromatography (TLC bioassay. The corresponding EPI fraction was eluted by methanol. The synergistic effect of antimicrobials and EPI fraction was measured by minimum inhibitory concentration (MIC determination for E. coli and Erwinia amylovora strains, and the ability of EPI fraction to enhance EtBr accumulation was conducted. Results: E. coli TG1 was more sensitive to the methanol extracts of H. sabdariffa than E. coli ∆acrB-∆tolC, and inhibition zone corresponding to flavones on TLC bioassay plate has been formed which might be related to the fraction of potential EPI. The MIC values revealed that EPI fraction enhanced the activity of the used antimicrobials by 4 to 8 folds in E. coli TG1 and by 4 to 10 folds in E. amylovora 1189. Addition of EPI fraction in a dose-dependent manner increased the intercellular accumulation of Ethidium Bromide (EtBr in the wild type stains of E. coli TG1 and E. amylovora 1189. Conclusion: EPI fraction behaves like a multidrug efflux pump inhibitor and further investigation should be conducted for determination of the chemical structure of EPI fraction. [J Complement Med Res 2017; 6(4.000: 357-363

  19. A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer

    Science.gov (United States)

    Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl

    2012-01-01

    Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351

  20. Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening

    Science.gov (United States)

    Hu, Xin; Legler, Patricia M.; Southall, Noel; Maloney, David J.; Simeonov, Anton; Jadhav, Ajit

    2014-07-01

    Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hotspots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication.

  1. Identification of halosalicylamide derivatives as a novel class of allosteric inhibitors of HCV NS5B polymerase.

    Science.gov (United States)

    Liu, Yaya; Donner, Pamela L; Pratt, John K; Jiang, Wen W; Ng, Teresa; Gracias, Vijaya; Baumeister, Steve; Wiedeman, Paul E; Traphagen, Linda; Warrior, Usha; Maring, Clarence; Kati, Warren M; Djuric, Stevan W; Molla, Akhteruzzaman

    2008-06-01

    Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.

  2. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    International Nuclear Information System (INIS)

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta; Durden, Donald L.

    2014-01-01

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN fl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3

  3. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Alok R. [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Peirce, Susan K. [Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (United States); Joshi, Shweta [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Durden, Donald L., E-mail: ddurden@ucsd.edu [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Division of Pediatric Hematology-Oncology, UCSD Rady Children' s Hospital, La Jolla, CA (United States)

    2014-09-10

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI

  4. Characterization of the PB2 Cap Binding Domain Accelerates Inhibitor Design

    Directory of Open Access Journals (Sweden)

    Amanda E. Constantinides

    2018-01-01

    Full Text Available X-ray crystallographic structural determinations of the PB2 cap binding domain (PB2cap have improved the conformational characterization of the RNA-dependent RNA polymerase machinery (PA, PB2, and PB1 of the influenza virus. Geometrically, the catalytic PB1 subunit resembles the palm of a human hand. PA lies near the thumb region, and PB2 lies near the finger region. PB2 binds the cap moiety in the pre-mRNA of the host cell, while the endonuclease of PA cleaves the pre-mRNA 10–13 nucleotides downstream. The truncated RNA piece performs as a primer for PB1 to synthesize the viral mRNA. Precisely targeting PB2cap with a small molecule inhibitor will halt viral proliferation via interference of the cap-snatching activity. Wild-type and mutant PB2cap from A/California/07/2009 H1N1 were expressed in Escherichia coli, purified by nickel affinity and size exclusion chromatography, crystallized, and subjected to X-ray diffraction experiments. The crystal of mutant PB2cap liganded with m7GTP was prepared by co-crystallization. Structures were solved by the molecular replacement method, refined, and deposited in the Protein Data Bank (PDB. Structural determination and comparative analyses of these structures revealed the functions of Glu361, Lys376, His357, Phe404, Phe323, Lys339, His432, Asn429, Gln406, and Met401 in PB2cap, and the dissociation of the influenza A PB2cap C-terminal subdomain (residues 446–479 upon ligand binding. Understanding the role of these residues will aid in the ultimate development of a small-molecule inhibitor that binds both Influenza A and B virus PB2cap.

  5. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice.

    Science.gov (United States)

    Rossi, Raffaella; Granoff, Dan M; Beernink, Peter T

    2013-11-04

    Factor H-binding protein (fHbp) is a component of a meningococcal vaccine recently licensed in Europe for prevention of serogroup B disease, and a second vaccine in clinical development. The protein specifically binds human factor H (fH), which down-regulates complement activation and enhances resistance to bactericidal activity. There are conflicting data from studies in human fH transgenic mice on whether binding of human fH to fHbp vaccines decreases immunogenicity, and whether mutant fHbp vaccines with decreased fH binding have enhanced immunogenicity. fHbp can be classified into two sub-families based on sequence divergence and immunologic cross-reactivity. Previous studies of mutant fHbp vaccines with low fH binding were from sub-family B, which account for approximately 60% of serogroup B case isolates. In the present study, we evaluated the immunogenicity of two mutant sub-family A fHbp vaccines containing single substitutions, T221A or D211A, which resulted in 15- or 30-fold lower affinity for human fH, respectively, than the corresponding control wild-type fHbp vaccine. In transgenic mice with high serum concentrations of human fH, both mutant vaccines elicited significantly higher IgG titers and higher serum bactericidal antibody responses than the control fHbp vaccine that bound human fH. Thus, mutations introduced into a sub-family A fHbp antigen to decrease fH binding can increase protective antibody responses in human fH transgenic mice. Collectively the data suggest that mutant fHbp antigens with decreased fH binding will result in superior vaccines in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The influence of gamma radiation upon the biological activity of the third serum complement component (C3)

    International Nuclear Information System (INIS)

    Steuhl, K.P.; Dierich, M.P.; Mainz Univ.

    1981-01-01

    For investigation of interaction between C3 and C3-binding cells the third complement component is to be labelled with radiotracer. After labelling C3 with high specific activity (0,2 μCi 125 l/μg C3) binding of C3 to Raji-cells was increased up to the twentyfold nine days after labelling. This effect was not to be reproduced with external gamma radiation using doses of 10, 200 and 1000 rad. The rosette inhibition test could demonstrate that with radiation doses of 200 and 1000 rad the radiated C3 lost its ability of specific binding to C3 receptors in Raji-cells. This functional alteration corresponded to amino acid analysis with relative increase of asparagine, glutamic acid and proline and relative decrease of cystine and phenylalanine in the C3 molecule. (orig.) [de

  7. Benzoquinones and terphenyl compounds as phosphodiesterase-4B inhibitors from a fungus of the order Chaetothyriales (MSX 47445).

    Science.gov (United States)

    El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-03-22

    Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.

  8. Studies of H3K4me3 demethylation by KDM5B/Jarid1B/PLU1 reveals strong substrate recognition in vitro and identifies 2,4-pyridine-dicarboxylic acid as an in vitro and in cell inhibitor

    DEFF Research Database (Denmark)

    Kristensen, Line Hyltoft; Nielsen, Anders Laerke; Helgstrand, Charlotte

    2012-01-01

    Dynamic methylations and demethylations of histone lysine residues are important for gene regulation and are facilitated by histone methyltransferases and histone demethylases (HDMs). KDM5B/Jarid1B/PLU1 is an H3K4me3/me2 specific lysine demethylase belonging to the family of JmjC domain containing...... lysine specific HDMs (JHDMs). Several studies have linked KDM5B to breast, prostate and skin cancer, highlighting its potential as a drug target. However, most inhibitor studies have focused on other JHDMs, and inhibitors for KDM5B remain to be explored. Here, we report the expression, purification...... and characterization of the catalytic core of recombinant KDM5B (residues 1-769, ccKDM5B). We show that ccKDM5B, recombinantly expressed in insect cells, demethylates H3K4me3 and H3K4me2 in vitro. The kinetic characterization showed that ccKDM5B has a K(m) (app) value of 0.5 µM for its tri-methylated substrate H3...

  9. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  10. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure

    Science.gov (United States)

    Neogi, Ujjwal; RAO, Shwetha D; BONTELL, Irene; VERHEYEN, Jens; RAO, Vasudev R; GORE, Sagar C; SONI, Neelesh; SHET, Anita; SCHÜLTER, Eugen; EKSTRAND, Maria L.; WONDWOSSEN, Amogne; KAISER, Rolf; MADHUSUDHAN, Mallur S.; PRASAD, Vinayaka R; SONNERBORG, Anders

    2014-01-01

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region which is appears in protease inhibitor (PI) failure Indian HIV-1C sequences (Odds Ratio 17.1, p<0.001) but naturally present in half of untreated Ethiopian sequences. The insertion will probably restore the ALIX mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of such insertion need to be evaluated in HIV-1C dominating regions were PI-drugs are being scaled up as second line treatment options. PMID:25102091

  11. Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r

    International Nuclear Information System (INIS)

    Tosi, M.; Duponchel, C.; Meo, T.; Julier, C.

    1987-01-01

    Overlapping molecular clones encoding the complement subcomponent C1s were isolated from a human liver cDNA library. The nucleotide sequence reconstructed from these clones spans about 85% of the length of the liver C1s messenger RNAs, which occur in three distinct size classes around 3 kilobases in length. Comparisons with the sequence of C1r, the other enzymatic subcomponent of C1, reveal 40% amino acid identity and conservation of all the cysteine residues. Beside the serine protease domain, the following sequence motifs, previously described in C1r, were also found in C1s: (a) two repeats of the type found in the Ba fragment of complement factor B and in several other complement but also noncomplement proteins, (b) a cysteine-rich segment homologous to the repeats of epidermal growth factor precursor, and (c) a duplicated segment found only in C1r and C1s. Differences in each of these structural motifs provide significant clues for the interpretation of the functional divergence of these interacting serine protease zymogens. Hybridizations of C1r and C1s probes to restriction endonuclease fragments of genomic DNA demonstrate close physical linkage of the corresponding genes. The implications of this finding are discussed with respect to the evolution of C1r and C1s after their origin by tandem gene duplication and to the previously observed combined hereditary deficiencies of Clr and Cls

  12. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.

    Science.gov (United States)

    Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J

    1995-08-01

    A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.

  13. Mechanistic Inferences from the Binding of Ligands to LpxC, A Metal-Dependent Deacetylase

    International Nuclear Information System (INIS)

    Gennadios, H.; Whittington, D.; Li, X.; Fierke, C.; Christianson, D.

    2006-01-01

    The metal-dependent deacetylase LpxC catalyzes the first committed step of lipid A biosynthesis in Gram-negative bacteria. Accordingly, LpxC is an attractive target for the development of inhibitors that may serve as potential new antibiotics for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 Angstroms resolution X-ray crystal structure of LpxC complexed with the substrate analogue inhibitor TU-514 and the 2.0 Angstroms resolution structure of LpxC complexed with imidazole. The X-ray crystal structure of LpxC complexed with TU-514 allows for a detailed examination of the coordination geometry of the catalytic zinc ion and other enzyme-inhibitor interactions in the active site. The hydroxamate group of TU-514 forms a bidentate chelate complex with the zinc ion and makes hydrogen bond interactions with conserved active site residues E78, H265, and T191. The inhibitor C-4 hydroxyl group makes direct hydrogen bond interactions with E197 and H58. Finally, the C-3 myristate moiety of the inhibitor binds in the hydrophobic tunnel of the active site. These intermolecular interactions provide a foundation for understanding structural aspects of enzyme-substrate and enzyme-inhibitor affinity. Comparison of the TU-514 complex with cacodylate and imidazole complexes suggests a possible substrate diphosphate binding site and highlights residues that may stabilize the tetrahedral intermediate and its flanking transition states in catalysis. Evidence of a catalytic zinc ion in the native zinc enzyme coordinated by H79, H238, D242, and two water molecules with square pyramidal geometry is also presented. These results suggest that the native state of this metallohydrolase may contain a pentacoordinate zinc ion, which contrasts with the native states of archetypical zinc hydrolases such as thermolysin and carboxypeptidase A

  14. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors.

    Science.gov (United States)

    Khoobi, Mehdi; Alipour, Masoumeh; Sakhteman, Amirhossein; Nadri, Hamid; Moradi, Alireza; Ghandi, Mehdi; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas

    2013-10-01

    A series of fused coumarins namely 5-oxo-4,5-dihydropyrano[3,2-c]chromenes linked to N-benzylpyridinium scaffold were synthesized and evaluated as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The 1-(4-fluorobenzyl)pyridinium derivative 6g showed the most potent anti-AChE activity (IC50 value=0.038 μM) and the highest AChE/BuChE selectivity (SI>48). The docking study permitted us to rationalize the observed structure-affinity relationships and to detect possible binding modes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Synthesis, biological evaluation and in silico studies of 5-(3-methoxybenzylidene)thiazolidine-2,4-dione analogues as PTP1B inhibitors.

    Science.gov (United States)

    Mahapatra, Manoj Kumar; Kumar, Rajnish; Kumar, Manoj

    2017-04-01

    PTP1B (protein tyrosine phosphatase 1B) dephosphorylates the insulin receptor substrate and thus acts as a negative regulator of the insulin and leptin signalling pathway. Recently, it has been considered as a new therapeutic target of intervention for the treatment of type2 diabetes. A series of aryl/alkylsulfonyloxy-5-(3-methoxybenzylidene)thiazolidine-2,4-dione derivatives were synthesized, screened in vitro for their PTP1B inhibitory activity and in vivo for anti-hyperglycaemic activity. Docking results further helped in understanding the nature of interactions governing the binding mode of ligands inside the active site of PTP1B. Among the synthesized compounds, 13 and 16 were found to be potent PTP1B inhibitors having IC 50 of 7.31 and 8.73μM respectively. Significant lowering of blood glucose level was observed in some of the synthesized compounds in in vivo study. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of the binding of 3H-norzimeldine, a 5-HT uptake inhibitor, to rat brain homogenates

    International Nuclear Information System (INIS)

    Hall, H.

    1984-01-01

    The binding of radiolabelled norzimeldine, a potent selective 5-HT reuptake inhibitor, to rat brain homogenates is described. 3 H-Norzimeldine binds to a site with high affinity (Ksub(D) = 10.5 nM) in a saturable manner (Bsub(max) = 15.4 pmol/g wet weight in the cerebral cortex). The number of binding sites in the various regions of the brain parallels the capacity of the 5-HT reuptake mechanism. Drugs that inhibit the reuptake of 5-HT are also potent inhibitors of the 3 H-norzimeldine binding, as are the tricyclic antidepressants, which are non-specific inhibitors of the noradrenaline and the 5-HT reuptake. Lesioning experiments using DSP4 (a NA neurotoxin) and p-chloroamphetamine (a 5-HT neurotoxin) suggest that the binding site is located on the presynaptic 5-HT nerve terminal, although a small component of the binding may be to noradrenergic uptake sites as well.(author)

  17. Defining the complement biomarker profile of c3 glomerulopathy

    DEFF Research Database (Denmark)

    Zhang, Yuzhou; Nester, Carla M; Martin, Bertha

    2014-01-01

    BACKGROUND AND OBJECTIVES: C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway......, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. DESIGN, SETTING, PARTICIPANTS......, & MEASUREMENTS: This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed...

  18. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study.

    Science.gov (United States)

    Bekker, Pirow; Dairaghi, Daniel; Seitz, Lisa; Leleti, Manmohan; Wang, Yu; Ertl, Linda; Baumgart, Trageen; Shugarts, Sarah; Lohr, Lisa; Dang, Ton; Miao, Shichang; Zeng, Yibin; Fan, Pingchen; Zhang, Penglie; Johnson, Daniel; Powers, Jay; Jaen, Juan; Charo, Israel; Schall, Thomas J

    2016-01-01

    The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.

  19. The flexible loop L1 of the H3K4 demethylase JARID1B ARID domain has a crucial role in DNA-binding activity

    International Nuclear Information System (INIS)

    Yao, Wenming; Peng, Yu; Lin, Donghai

    2010-01-01

    JARID1B, a member of the JmjC demethylase family, has a crucial role in H3K4me3 demethylation. The ARID domain is a potential DNA-binding domain of JARID1B. Previous studies indicate that a GC-rich DNA motif is the specific target of the ARID domain. However, the details of the interaction between the ARID domain and duplex DNA require further study. Here, we utilized NMR spectroscopy to assign the backbone amino acids and mapped the DNA-binding sites of the human JARID1B ARID domain. Perturbations to 1 H- 15 N correlation spectra revealed that the flexible loop L1 of ARID was the main DNA-binding interface. EMSA and intrinsic fluorescence experiments demonstrated that mutations on loop L1 strongly reduced the DNA-binding activity of JARID1B ARID. Furthermore, transfection of mutant forms resulted in a distinct loss of intrinsic H3K4 demethylase activity, implying that the flexible loop L1 made a major contribution to sustaining the DNA-binding ability of JARID1B ARID domain.

  20. Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2.

    Science.gov (United States)

    Van Huffel, S; Delaei, F; Heyninck, K; De Valck, D; Beyaert, R

    2001-08-10

    The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20.

  1. Complement, a target for therapy in inflammatory and degenerative diseases.

    Science.gov (United States)

    Morgan, B Paul; Harris, Claire L

    2015-12-01

    The complement system is a key innate immune defence against infection and an important driver of inflammation; however, these very properties can also cause harm. Inappropriate or uncontrolled activation of complement can cause local and/or systemic inflammation, tissue damage and disease. Complement provides numerous options for drug development as it is a proteolytic cascade that involves nine specific proteases, unique multimolecular activation and lytic complexes, an arsenal of natural inhibitors, and numerous receptors that bind to activation fragments. Drug design is facilitated by the increasingly detailed structural understanding of the molecules involved in the complement system. Only two anti-complement drugs are currently on the market, but many more are being developed for diseases that include infectious, inflammatory, degenerative, traumatic and neoplastic disorders. In this Review, we describe the history, current landscape and future directions for anti-complement therapies.

  2. Structural insights into the binding mechanism of IDO1 with hydroxylamidine based inhibitor INCB14943

    International Nuclear Information System (INIS)

    Wu, You; Xu, Tingting; Liu, Jinsong; Ding, Ke; Xu, Jinxin

    2017-01-01

    IDO1 (indoleamine 2, 3-dioxygenase 1), a well characterized immunosuppressive enzyme, has attracted growing attention as a potential target for cancer immunotherapy. Hydroxylamidine compounds INCB024360 and INCB14943 (INCB024360 analogue) are highly effective IDO1 inhibitors. INCB024360 is undergoing clinical trials for treatment of various types of human cancer. Here, we determined the co-crystal structure of IDO1 and INCB14943, and elucidate the detailed binding mode. INCB14943 binds to heme iron in IDO1 protein through the oxime nitrogen. Further analysis also reveals that a halogen bonding interaction between the chlorine atom (3-Cl) of INCB14943 and the sulphur atom of C129 significantly improves the inhibition activity against IDO1. Comparing with the other reported inhibitors, the oxime nitrogen and halogen bond interaction are identified as the unique features of INCB14943 among the IDO1 inhibitors. Thus, our study provides novel insights into the interaction between a small molecule inhibitor INCB14943 and IDO1 protein. The structural information will facilitate future IDO1 inhibitor design. - Highlights: • This is the first co-crystal structure of IDO1 with hydroxylamidine compound. • INCB14943 binds to heme iron through oxime nitrogen instead of imidazole nitrogen. • Halogen bond interaction with C129 is another unique feature of INCB14943.

  3. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Science.gov (United States)

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the

  4. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  5. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.

  6. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology

    Directory of Open Access Journals (Sweden)

    John Paul Maurice Finberg

    2016-10-01

    Full Text Available Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines (cheese effect. A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson’s disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme’s binding site structure should lead to future developments with these drugs.

  7. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology.

    Science.gov (United States)

    Finberg, John P M; Rabey, Jose M

    2016-01-01

    Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines ("cheese effect"). A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson's disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme's binding site structure should lead to future developments with these drugs.

  8. Disulfide-mediated stabilization of the IκB kinase binding domain of NF-κB essential modulator (NEMO).

    Science.gov (United States)

    Zhou, Li; Yeo, Alan T; Ballarano, Carmine; Weber, Urs; Allen, Karen N; Gilmore, Thomas D; Whitty, Adrian

    2014-12-23

    Human NEMO (NF-κB essential modulator) is a 419 residue scaffolding protein that, together with catalytic subunits IKKα and IKKβ, forms the IκB kinase (IKK) complex, a key regulator of NF-κB pathway signaling. NEMO is an elongated homodimer comprising mostly α-helix. It has been shown that a NEMO fragment spanning residues 44-111, which contains the IKKα/β binding site, is structurally disordered in the absence of bound IKKβ. Herein we show that enforcing dimerization of NEMO1-120 or NEMO44-111 constructs through introduction of one or two interchain disulfide bonds, through oxidation of the native Cys54 residue and/or at position 107 through a Leu107Cys mutation, induces a stable α-helical coiled-coil structure that is preorganized to bind IKKβ with high affinity. Chemical and thermal denaturation studies showed that, in the context of a covalent dimer, the ordered structure was stabilized relative to the denatured state by up to 3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers upon treatment of mammalian cells with H2O2. Furthermore, NEMO-L107C bound endogenous IKKβ in A293T cells, reconstituted TNF-induced NF-κB signaling in NEMO-deficient cells, and interacted with TRAF6. Our results indicate that the IKKβ binding domain of NEMO possesses an ordered structure in the unbound state, provided that it is constrained within a dimer as is the case in the constitutively dimeric full-length NEMO protein. The stability of the NEMO coiled coil is maintained by strong interhelix interactions in the region centered on residue 54. The disulfide-linked constructs we describe herein may be useful for crystallization of NEMO's IKKβ binding domain in the absence of bound IKKβ, thereby facilitating the structural characterization of small-molecule inhibitors.

  9. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress

    DEFF Research Database (Denmark)

    Weismann, David; Hartvigsen, Karsten; Lauer, Nadine

    2011-01-01

    peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH...... polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy...

  10. Complement Factor H-Related Protein 4A Is the Dominant Circulating Splice Variant of CFHR4

    Directory of Open Access Journals (Sweden)

    Richard B. Pouw

    2018-04-01

    Full Text Available Recent research has elucidated circulating levels of almost all factor H-related (FHR proteins. Some of these proteins are hypothesized to act as antagonists of the important complement regulator factor H (FH, fine-tuning complement regulation on human surfaces. For the CFHR4 splice variants FHR-4A and FHR-4B, the individual circulating levels are unknown, with only total levels being described. Specific reagents for FHR-4A or FHR-4B are lacking due to the fact that the unique domains in FHR-4A show high sequence similarity with FHR-4B, making it challenging to distinguish them. We developed an assay that specifically measures FHR-4A using novel, well-characterized monoclonal antibodies (mAbs that target unique domains in FHR-4A only. Using various FHR-4A/FHR-4B-specific mAbs, no FHR-4B was identified in any of the serum samples tested. The results demonstrate that FHR-4A is the dominant splice variant of CFHR4 in the circulation, while casting doubt on the presence of FHR-4B. FHR-4A levels (avg. 2.55 ± 1.46 µg/mL were within the range of most of the previously reported levels for all other FHRs. FHR-4A was found to be highly variable among the population, suggesting a strong genetic regulation. These results shed light on the physiological relevance of the previously proposed role of FHR-4A and FHR-4B as antagonists of FH in the circulation.

  11. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Keith P Romano

    Full Text Available Hepatitis C virus (HCV infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors--telaprevir, danoprevir, vaniprevir and MK-5172--in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.

  12. Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C

    Science.gov (United States)

    Sajan, Mini P.; Nimal, Sonali; Mastorides, Stephen; Acevedo-Duncan, Mildred; Kahn, C. Ronald; Fields, Alan P.; Braun, Ursula; Leitges, Michael; Farese, Robert V.

    2013-01-01

    Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapidly reversed or markedly improved most if not all metabolic abnormalities. Here, we examined effects of 2 newly developed small-molecule PKC-ι/λ inhibitors. We used the mouse model of heterozygous muscle-specific knockout of PKC-λ, in which partial deficiency of muscle PKC-λ impairs glucose transport in muscle and thereby causes glucose intolerance and hyperinsulinemia, which, via hepatic aPKC activation, leads to abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. One inhibitor, 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)], binds to the substrate-binding site of PKC-λ/ι, but not other PKCs. The other inhibitor, aurothiomalate, binds to cysteine residues in the PBl-binding domains of aPKC-λ/ι/ζ and inhibits scaffolding. Treatment with either inhibitor for 7 days inhibited aPKC, but not Akt, in liver and concomitantly improved insulin signaling to Akt and aPKC in muscle and adipocytes. Moreover, both inhibitors diminished excessive expression of hepatic, aPKC-dependent lipogenic, proinflammatory, and gluconeogenic factors; and this was accompanied by reversal or marked improvements in hyperglycemia, hyperinsulinemia, abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. Our findings highlight the pathogenetic importance of insulin signaling to hepatic PKC-ι in obesity, the metabolic syndrome, and type 2 diabetes mellitus and suggest that 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)] and aurothiomalate or similar agents that

  13. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4

    International Nuclear Information System (INIS)

    Zhao Qian; Ma Liying; Jiang Shibo; Lu Hong; Liu Shuwen; He Yuxian; Strick, Nathan; Neamati, Nouri; Debnath, Asim Kumar

    2005-01-01

    We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors

  14. Anthranilate phosphoribosyltransferase: Binding determinants for 5'-phospho-alpha-d-ribosyl-1'-pyrophosphate (PRPP) and the implications for inhibitor design.

    Science.gov (United States)

    Evans, Genevieve L; Furkert, Daniel P; Abermil, Nacim; Kundu, Preeti; de Lange, Katrina M; Parker, Emily J; Brimble, Margaret A; Baker, Edward N; Lott, J Shaun

    2018-02-01

    Phosphoribosyltransferases (PRTs) bind 5'-phospho-α-d-ribosyl-1'-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a "bianthranilate"-like moiety are inhibitors with IC 50 values of 10-60μM, and K i values of 1.3-15μM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    Science.gov (United States)

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  16. Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements.

    Science.gov (United States)

    Liu, Shu; Bolger, Joshua K; Kirkland, Lindsay O; Premnath, Padmavathy N; McInnes, Campbell

    2010-12-17

    An alternative strategy for inhibition of the cyclin dependent kinases (CDKs) in antitumor drug discovery is afforded through the substrate recruitment site on the cyclin positive regulatory subunit. Critical CDK substrates such as the Rb and E2F families must undergo cyclin groove binding before phosphorylation, and hence inhibitors of this interaction also block substrate specific kinase activity. This approach offers the potential to generate highly selective and cell cycle specific CDK inhibitors and to reduce the inhibition of transcription mediated through CDK7 and 9, commonly observed with ATP competitive compounds. While highly potent peptide and small molecule inhibitors of CDK2/cyclin A, E substrate recruitment have been reported, little information has been generated on the determinants of inhibitor binding to the cyclin groove of the CDK4/cyclin D1 complex. CDK4/cyclin D is a validated anticancer drug target and continues to be widely pursued in the development of new therapeutics based on cell cycle blockade. We have therefore investigated the structural basis for peptide binding to its cyclin groove and have examined the features contributing to potency and selectivity of inhibitors. Peptidic inhibitors of CDK4/cyclin D of pRb phosphorylation have been synthesized, and their complexes with CDK4/cyclin D1 crystal structures have been generated. Based on available structural information, comparisons of the cyclin grooves of cyclin A2 and D1 are presented and provide insights into the determinants for peptide binding and the basis for differential binding and inhibition. In addition, a complex structure has been generated in order to model the interactions of the CDKI, p27(KIP)¹, with cyclin D1. This information has been used to shed light onto the endogenous inhibition of CDK4 and also to identify unique aspects of cyclin D1 that can be exploited in the design of cyclin groove based CDK inhibitors. Peptidic and nonpeptidic compounds have been

  17. Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced rhodobacter capsulatus cytochrome c(2) to the cytochrome bc(1) complex mediated by the conformation of the rieske iron-sulfur protein

    International Nuclear Information System (INIS)

    Devanathan, S.; Salamon, Z.; Tollin, G.; Fitch, J.C.; Meyer, T.E.; Berry, E.A.; Cusanovich, M.A.

    2007-01-01

    The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 M) but binds much more weakly to the oxidized form (Kd = 3.1 M). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 M. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 M) and reduced cytochrome c2 binds less strongly (Kd = 0.11 M) but ∼30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c

  18. Effect of the Ti/B{sub 4}C mole ratio on the reaction products and reaction mechanism in an Al–Ti–B{sub 4}C powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingjing [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250100 (China); Light Metal Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Light Metal Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Cho, Young-Hee; Kim, Su-Hyeon [Light Metal Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Yu, Huashun [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250100 (China)

    2014-10-15

    The effect of the Ti/B{sub 4}C mole ratio on the fabrication behavior of Al composites is investigated using Al–Ti–B{sub 4}C powder mixtures as reactants. The quick spontaneous infiltration (QSI) process combined with the combustion reaction and DTA analysis were used. According to the thermodynamic predictions, which are verified in the experimental results, TiB{sub 2} is formed in all the samples whereas TiC is only formed in reactants with a Ti/B{sub 4}C mole ratio of more than two. The C atoms from the reacted B{sub 4}C do not move into TiC but instead they move into Al{sub 3}BC or Al{sub 4}C{sub 3} when the Ti/B{sub 4}C mole ratio is less than two. In addition, the reaction mechanism with a Ti/B{sub 4}C mole ratio of 0.75 is investigated extensively. - Highlights: • The critical role of the Ti/B{sub 4}C mole ratio on the reaction products of Al–Ti–B{sub 4}C was studied using experiments. • The experimental results are also supported by thermodynamic calculations presented in this paper. • The reaction mechanism with a Ti/B{sub 4}C mole ratio of 0.75 is investigated extensively.

  19. In Vitro Evaluation of Novel Inhibitors against the NS2B-NS3 Protease of Dengue Fever Virus Type 4

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2013-12-01

    Full Text Available The discovery of potent therapeutic compounds against dengue virus is urgently needed. The NS2B-NS3 protease (NS2B-NS3pro of dengue fever virus carries out all enzymatic activities needed for polyprotein processing and is considered to be amenable to antiviral inhibition by analogy. Virtual screening of 300,000 compounds using Autodock 3 on the GVSS platform was conducted to identify novel inhibitors against the NS2B-NS3pro. Thirty-six compounds were selected for in vitro assay against NS2B-NS3pro expressed in Pichia pastoris. Seven novel compounds were identified as inhibitors with IC50 values of 3.9 ± 0.6–86.7 ± 3.6 μM. Three strong NS2B-NS3pro inhibitors were further confirmed as competitive inhibitors with Ki values of 4.0 ± 0.4, 4.9 ± 0.3, and 3.4 ± 0.1 μM, respectively. Hydrophobic and hydrogen bond interactions between amino acid residues in the NS3pro active site with inhibition compounds were also identified.

  20. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms.We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings.AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric strings. Our findings provide one possible molecular mechanism for clinical

  1. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening.

    Science.gov (United States)

    Hussain, Waqar; Qaddir, Iqra; Mahmood, Sajid; Rasool, Nouman

    2018-06-01

    Dengue fever is one of the most prevalent disease in tropical and sub-tropical regions of the world. According to the World Health Organisation (WHO), approximately 3.5 billion people have been affected with dengue fever. Four serotypes of dengue virus (DENV) i.e. DENV1, DENV2, DENV3 and DENV4 have up to 65% genetic variations among themselves. dengue virus 4 (DENV4) was first reported from Amazonas, Brazil and is spreading perilously due to lack of awareness of preventive measures, as it is the least targeted serotype. In this study, non-structural protein 4B of dengue virus 4 (DENV4-NS4B) is computationally characterised and simulations are performed including solvation, energy minimizations and neutralisation for the refinement of predicted model of the protein. The spiropyrazolopyridone is considered as an effective drug against NS4B of DENV2, therefore, a total of 91 different analogues of spiropyrazolopyridone are used to analyse their inhibitory action against DENV4-NS4B. These compounds are docked at the binding site with various binding affinities, representing their efficacy to block the binding pocket of the protein. Pharmacological and pharmacokinetic assessment performed on these inhibitors shows that these are suitable candidates to be used as a drug against the dengue fever. Among all these 91 compounds, Analogue-I and Analogue-II are analysed to be the most effective inhibitor having potential to be used as drugs against dengue virus.

  2. Increased complement C1q level marks active disease in human tuberculosis.

    Directory of Open Access Journals (Sweden)

    Yi Cai

    Full Text Available BACKGROUND: Complement functions as an important host defense system and complement C5 and C7 have been implicated in immunopathology of tuberculosis. However, little is known about the role of other complement components in tuberculosis. METHODS: Complement gene expression in peripheral blood mononuclear cells of tuberculosis patients and controls were determined using whole genome transcriptional microarray assays. The mRNA and protein levels of three C1q components, C1qA, C1qB, and C1qC, were further validated by qRT-PCR and enzyme-linked immunosorbent assay, respectively. The percentages of C1q expression in CD14 positive cells were determined by flow cytometry. Finally, C1qC protein level was quantified in the pleural fluid of tuberculosis and non-tuberculosis pleurisy. RESULTS: C1q expression increases significantly in the peripheral blood of patients with active tuberculosis compared to healthy controls and individuals with latent TB infection. The percentage of C1q-expressing CD14 positive cells is significantly increased in active TB patients. C1q expression in the peripheral blood correlates with sputum smear positivity in tuberculosis patients and is reduced after anti-tuberculosis chemotherapy. Notably, receiver operating characteristic analysis showed that C1qC mRNA levels in peripheral blood efficiently discriminate active from latent tuberculosis infection and healthy controls. Additionally, C1qC protein level in pleural effusion shows improved power in discriminating tuberculosis from non-tuberculosis pleurisy when compared to other inflammatory markers, such as IL-6 and TNF-α. CONCLUSIONS: C1q expression correlates with active disease in human tuberculosis. C1q could be a potential diagnostic marker to discriminate active tuberculosis from latent tuberculosis infection as well as tuberculosis pleurisy from non-tuberculosis pleurisy.

  3. Characterization of the binding of /sup 3/H-norzimeldine, a 5-HT uptake inhibitor, to rat brain homogenates

    Energy Technology Data Exchange (ETDEWEB)

    Hall, H. (Department of Biochemical Neuropharmacology, Research and Development Laboratories, Astra Laekemedel, Soedertaelje, Sweden)

    1984-01-01

    The binding of radiolabelled norzimeldine, a potent selective 5-HT reuptake inhibitor, to rat brain homogenates is described. /sup 3/H-Norzimeldine binds to a site with high affinity (Ksub(D) = 10.5 nM) in a saturable manner (Bsub(max) = 15.4 pmol/g wet weight in the cerebral cortex). The number of binding sites in the various regions of the brain parallels the capacity of the 5-HT reuptake mechanism. Drugs that inhibit the reuptake of 5-HT are also potent inhibitors of the /sup 3/H-norzimeldine binding, as are the tricyclic antidepressants, which are non-specific inhibitors of the noradrenaline and the 5-HT reuptake. Lesioning experiments using DSP4 (a NA neurotoxin) and p-chloroamphetamine (a 5-HT neurotoxin) suggest that the binding site is located on the presynaptic 5-HT nerve terminal, although a small component of the binding may be to noradrenergic uptake sites as well.

  4. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates

    International Nuclear Information System (INIS)

    Zereshkian, Arman; Leyton, Jeffrey V.; Cai, Zhongli; Bergstrom, Dane; Weinfeld, Michael; Reilly, Raymond M.

    2014-01-01

    Introduction: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111 In-NLS-7G3, which recognizes the CD123 + /CD131 - phenotype uniquely displayed by LSCs. Methods: The surviving fraction (SF) of CD123 + /CD131 - AML-5 cells exposed to 111 In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111 In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111 In-NLS-7G3 measured by cell fractionation. Results: Binding of 111 In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123 + /CD131 - epitope. 111 In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111 In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to

  5. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  6. In vitro covalent binding of 3-[14C]methylindole metabolites in goat tissues

    International Nuclear Information System (INIS)

    Bray, T.M.; Carlson, J.R.; Nocerini, M.R.

    1984-01-01

    Covalent binding of 3-[ 14 C]methylindole (3[ 14 C]MI) in crude microsomal preparations of goat lung, liver, and kidney was measured to determine if a reactive intermediate was formed during the in vitro metabolism of 3-methylindole (3MI). The bound radioactivity was highest in lung compared to liver and kidney. The amount of bound radioactivity per nanomole of cytochrome P-450 was approximately 10 times higher in the lung compared to the liver. No detectable bound radioactivity was found when 3-[ 3 H]methyloxindole was used as the substrate. Cofactor requirements and the effects of inhibitors indicate that a mixed function oxidase (MFO) system is involved in formation of a reactive intermediate. Inhibitors and conjugating agents that are known to reduce the severity of 3MI-induced lung injury such as piperonyl butoxide (MFO inhibitor) and glutathione (conjugating agent) significantly decreased the in vitro binding of 3[ 14 C]MI. The results indicate that a reactive intermediate is produced during the metabolism of 3MI by the MFO system. The organ specificity in binding suggests that covalent binding by lung microsomes may be related to the mechanism of 3MI-induced lung injury

  7. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling.

    Science.gov (United States)

    Kumar, Raj; Son, Minky; Bavi, Rohit; Lee, Yuno; Park, Chanin; Arulalapperumal, Venkatesh; Cao, Guang Ping; Kim, Hyong-ha; Suh, Jung-keun; Kim, Yong-seong; Kwon, Yong Jung; Lee, Keun Woo

    2015-08-01

    Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors.

  8. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  9. B700, a murine melanoma-specific antigen, binds Vitamin D3; conservation of binding among albuminoid molecules

    International Nuclear Information System (INIS)

    Farzaneh, N.K.; Walden, T.L. Jr.; Hearing, V.J.; Gersten, D.M.

    1990-01-01

    B700, a murine melanoma-specific antigen, is a member of the serum albumin protein family. Other members of this family include serum albumin (SMA), a-fetoprotein (AFP), vitamin D binding protein (DBP), and C700. The primary structure and biochemical functions of B700, as well as its in vivo metabolic fate are largely unknown. The authors examined the functional characteristics of MSA, AFP, and DBP, and for their ability to specifically bind [ 3 H]-1,25-dihydroxy-vitamin D 3 . Scatchard analysis revealed a single binding site for B700 with a Kd of 51,000 M and a Bmax of 4.51 x 10 -7 . There is no significant difference between the Kd and Bmax values among the albuminoid proteins. However, differences in the binding sites could be distinguished by competition of the 1,25-dihydroxy vitamin D 3 with other steroids. 2nM of vitamin D 3 , vitamin D 2 , or estrogen competed for the specific binding of 1,25-dihydroxy vitamin D 3 by B700 but not by DBP. The MSA binding site for 1,25 dihydroxy vitamin D 3 more closely resembles that of DBP than B700. These data indicate that the binding function of the albuminoid proteins has been conserved in the B700 melanoma antigen

  10. C2 Arylated Benzo[b]thiophene Derivatives as Staphylococcus aureus NorA Efflux Pump Inhibitors.

    Science.gov (United States)

    Liger, François; Bouhours, Pascale; Ganem-Elbaz, Carine; Jolivalt, Claude; Pellet-Rostaing, Stéphane; Popowycz, Florence; Paris, Jean-Marc; Lemaire, Marc

    2016-02-04

    An innovative and straightforward synthesis of second-generation 2-arylbenzo[b]thiophenes as structural analogues of INF55 and the first generation of our laboratory-made molecules was developed. The synthesis of C2-arylated benzo[b]thiophene derivatives was achieved through a method involving direct arylation, followed by simple structural modifications. Among the 34 compounds tested, two of them were potent NorA pump inhibitors, which led to a 16-fold decrease in the ciprofloxacin minimum inhibitory concentration (MIC) against the SA-1199B strain at concentrations of 0.25 and 0.5 μg mL(-1) (1 and 1.5 μm, respectively). This is a promising result relative to that obtained for reserpine (MIC=20 μg mL(-1)), a reference compound amongst NorA pump inhibitors. These molecules thus represent promising candidates to be used in combination with ciprofloxacin against fluoroquinolone-resistant strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of influence content of TiB2 by reaction in situ B4C and TiC in mechanical properties on B4C ceramics

    International Nuclear Information System (INIS)

    Coelho, M.L. Ramos; Bressiani, J.C.; Gomide, R.G.; Andrade, F.A. de

    2012-01-01

    The low density of ceramic materials promoted a change in research lines in the defense field. Research efforts and development directed to obtaining products of high density sintered of Al2O3, SiC and B4C, using different routes, both traditional as innovative, led to promising initial results, which justify the convergence of skills for the consolidation of research lines and the nationalization that sintered components of B4C with characteristics and properties compatible with the technical requirements established for the ballistic application. The low density of boron carbide (2.52 g/cm 3 ) gives in the final product a weight approximately 30% lower than armor made of alumina (3.96 g/cm 3 ). (author)

  12. Effects of obesity, total fasting and re-alimentation on L-thyroxine (T4), 3,5,3'-L-triiodothyronine (T3), 3,3',5'-L-triiodothyronine (rT3), thyroxine binding globulin (TBG), cortisol, thyrotrophin, cortisol binding globulin (CBG), transferrin, alpha 2-haptoglobin and complement C'3 in serum.

    Science.gov (United States)

    Scriba, P C; Bauer, M; Emmert, D; Fateh-Moghadam, A; Hofmann, G G; Horn, K; Pickardt, C R

    1979-08-01

    The effects of total fasting for 31 +/- 10 days followed by re-alimentation with an 800 calorie diet on thyroid function, i.e. T4,T3,rT3,RT3U (resin T3 uptake), and TSH, and on TBG levels in serum were studied sequentially in obese hospitalized patients (N=18). Additionally, cortisol, growth hormone, prolactin, parathyrin and free fatty acids were followed as hormonal and metabolic parameters, respectively. Further, CBG, transferrin, alpha 2-haptoglobin and complement C'3 were measured as representatives of other serum proteins. Results before fasting: T4, T3, TBG, cortisol, CBG, alpha 2-haptoglobin and complement C'3 of the obese patients were elevated when compared with healthy normal weight controls, whereas rT3, T4/TBG ratio, T3/TBG ratio, TSH, coritsol/cbg ratio, growth hormone, prolactin, parathyrin and transferrin of the obese group were normal. RT3U and fT4 index were decreased in the obese patients. Results during fasting: Significant decreases were observed during fasting for the following parameters -- T3, TBG, T3/TBG ratio, transferrin, alpha 2-haptoglobin complement C'3. rT3, T4/TBG ratio, RT3U, fT4 index and FFA increased. T4, tsh response to TRH stimulation, cortisol, CBG, cortisol/cbg ratio, parathyrin, growth hormone and prolactin did not change. Results during re-alimentation: T3, TBG, T3/TBG ratio, TSH response to TRH, transferrin, alpha 2-haptoglobin and complement C'3 increased. Conversely, fT3, RT3U, FFA, cortisol and cortisol/cbg ratio decreased whereas the other parameters did not change. 1) There is no evidence for primary hypothyroidism in obese patients during prolonged fasting and re-alimentation. 2) The rapid decrease of T3 and increase of RT3U after initiation of fasting are not fully explained by the observed slower decreases in TBG. 3) The alterations of T3, rT3 and RT3U resemble in their kinetics the changes in FFA levels. 4) Fasting reduced the levels of only certain serum proteins, interestingly TBG, transferrin, alpha 2

  13. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase.

    Science.gov (United States)

    Rowley, David C; Hansen, Mark S T; Rhodes, Denise; Sotriffer, Christoph A; Ni, Haihong; McCammon, J Andrew; Bushman, Frederic D; Fenical, William

    2002-11-01

    Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.

  14. Susceptibility to invasive meningococcal disease: polymorphism of complement system genes and Neisseria meningitidis factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Declan T Bradley

    Full Text Available Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH is associated with altered risk of invasive meningococcal disease (IMD. We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP affected the risk association.We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.Rs12085435 A in C8B was associated with odds ratio (OR of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction. A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10⁻⁴. There was no bacterial load (CtrA cycle threshold difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025.The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become

  15. Heat release from B4C oxidation in steam and air

    International Nuclear Information System (INIS)

    Belovsky, L.

    1996-01-01

    BWR and some PWR cores contain boron carbide (B 4 C) as neutron absorber. During a severe accident, the B 4 C can potentially react with steam under release of heat and hydrogen. Although models for B 4 C oxidation already exist in MELCOR and SCDAP/RELAP5, a development of a new model for another computer code seems to be difficult due to a missing comprehensive description of the current modelling methodology and scarce experimental data. The aim of this paper is to highlight the key points of the B 4 C oxidation using the existing available experimental data and to perform a simple heat balance analysis of the B 4 C/steam and B 4 C/air chemical reactions. The analysis of literature data shows that the B 4 C oxidation phenomenon is qualitatively well described below 1000 deg. C. However, no reliable data exist for the reaction kinetics especially above this temperature. It was found that the experimental results strongly depend on the experimental arrangement. The reaction heats, calculated in this study, indicate that the B 4 C oxidation is an exothermic reaction, releasing more heat in air than in steam. The formation of boric acids from the boron oxide increases the heat release from B 4 C by ∼ 10%, in the worst case. Although the total heat, released in a PWR core from the B 4 C oxidation, is probably much smaller than the heat released from the Zr/steam reaction, it is not excluded that the B 4 C oxidation can locally contribute to the damage of the control elements due to local overheating. Modelling of these phenomena is, however, very difficult due to the complex geometry of the liquefied control elements and due to absence of suitable data on the reaction kinetics. (author). 25 refs, 2 figs, 3 tabs

  16. Discovery and study of novel protein tyrosine phosphatase 1B inhibitors

    Science.gov (United States)

    Zhang, Qian; Chen, Xi; Feng, Changgen

    2017-10-01

    Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.

  17. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement

    International Nuclear Information System (INIS)

    Medof, M.E.; Lublin, D.M.; Holers, V.M.; Ayers, D.J.; Getty, R.R.; Leykam, J.F.; Atkinson, J.P.; Tykocinski, M.L.

    1987-01-01

    cDNAs encoding the complement decay-accelerating factor (DAF) were isolated from HeLa and differentiated HL-60 λgt cDNA libraries by screening with a codon preference oligonucleotide corresponding to DAF NH 2 -terminal amino acids 3-14. The composite cDNA sequence showed a 347-amino acid protein preceded by an NH 2 -terminal leader peptide sequence. The translated sequence beginning at the DAF NH 2 terminus encodes four contiguous ≅ 61-amino acid long repetitive units of internal homology. The repetitive regions contain four conserved cysteines, one proline, one glycine, one glycine/alanine, four leucines/isoleucines/valines, one serine, three tyrosines/phenylalanines, and on tryptophan and show striking homology to similar regions previously identified in factor B, C2, C4 binding protein, factor H, C1r, factor XIII, interleukin 2 receptor, and serum β 2 -glycoprotein I. The consensus repeats are attached to a 70-amino acid long segment rich in serine and threonine (potential O-glycosylation sites), which is in turn followed by a stretch of hydrophobic amino acids. RNA blot analysis of HeLa and HL-60 RNA revealed three DAF mRNA species of 3.1, 2.7, and 2.0 kilobases. The results indicate that portions of the DAF gene may have evolved from a DNA element common to the above proteins, that DAF cDNA predicts a COOH-terminal anchoring polypeptide, and that distinct species of DAF message are elaborated in cells

  18. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4(+) T cells in healthy individuals

    DEFF Research Database (Denmark)

    Nielsen, C H; Leslie, R G; Jepsen, B S

    2001-01-01

    of complement receptor types 1 (CR1, CD35) and 2 (CR2, CD21). T cell responsiveness to Tg was examined in a preparation of peripheral blood mononuclear cells (PBMC) cultured in the presence of autologous serum. A subset of CD4(+) T cells exhibited a dose-dependent proliferative response to Tg, which...... cells are prerequisites for the proliferation of Tg-reactive CD4(+) T cells, suggesting a novel role for natural autoantibodies and complement in the regulation of autoreactivity under physiological conditions....... was strongly inhibited by complement inactivation and by immunoabsorption of Tg-reactive antibodies. Furthermore, this T cell response was abrogated by depletion of B cells from the PBMC culture. These data imply that uptake of complement-opsonized Tg / anti-Tg complexes and subsequent presentation of Tg by B...

  19. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Bregenholt, S; Nording, J A

    1998-01-01

    We have previously shown that activated C1s complement and activated T cells cleave beta2-microglobulin (beta2m) in vitro leading to the formation of desLys58 beta2m. This process can specifically be inhibited by C1-esterase inhibitor (C1-inh). Furthermore we showed that exogenously added desLys58...

  20. Binding characteristics of thrombin-activatable fibrinolysis inhibitor to streptococcal surface collagen-like proteins A and B

    NARCIS (Netherlands)

    Seron, Mercedes Valls; Plug, Tom; Marquart, J. Arnoud; Marx, Pauline F.; Herwald, Heiko; de Groot, Philip G.; Meijers, Joost C. M.

    2011-01-01

    Streptococcus pyogenes is the causative agent in a wide range of diseases in humans. Thrombin-activatable fibrinolysis inhibitor (TAFI) binds to collagen-like proteins ScIA and ScIB at the surface of S. pyogenes. Activation of TAFI at this surface redirects inflammation from a transient to chronic

  1. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study.

    Directory of Open Access Journals (Sweden)

    Pirow Bekker

    Full Text Available The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan, an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.

  2. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation

    DEFF Research Database (Denmark)

    van den Bremer, E. T. J.; Beurskens, F. J.; Voorhorst, M.

    2015-01-01

    Human IgG is produced with C-terminal lysines that are cleaved off in circulation. The function of this modification was unknown and generally thought not to affect antibody function. We recently reported that efficient C1q binding and complement-dependent cytotoxicity (CDC) requires IgG hexameri...

  3. Nido-Carborane building-block reagents. 2. Bulky-substituent (alkyl)2C2B4H6 derivatives and (C6H5)2C2B4H6: synthesis and properties

    International Nuclear Information System (INIS)

    Boyter, H.A. Jr.; Grimes, R.N.

    1988-01-01

    The preparation and chemistry of nido-2,3-R 2 C 2 C 2 B 4 H 6 carboranes in which R is n-butyl, isopentyl, n-hexyl, and phenyl was investigated in order to further assess the steric and electronic influence of the R groups on the properties of the nido-C 2 B 4 cage, especially with respect to metal complexation at the C 2 B 3 face and metal-promoted oxidative fusion. The three dialkyl derivatives were prepared from the corresponding dialkylacetylenes via reaction with B 5 H 9 and triethylamine, but the diphenyl compound could not be prepared in this manner and was obtained instead in a thermal reaction of B 5 H 9 with diphenylacetylene in the absence of amine. All four carboranes are readily bridge-deprotonated by NaH in THF, and the anions of the dialkyl species, on treatment with FeCl 2 and air oxidation, generate the respective R 4 C 4 B 8 H 8 carborane fusion products were R = n-C 4 H 9 , i-C 5 H 11 or n-C 6 H 13 . The diphenylcarborane anion Ph 2 C 2 B 4 H 5 - did not form detectable metal complexes with Fe 2+ , Co 2+ , or Ni 2+ , and no evidence of a Ph 4 C 4 B 8 H 8 fusion product has been found. Treatment of Ph 2 C 2 B 4 H 6 with Cr(CO) 6 did not lead to metal coordination of the phenyl rings, unlike (PhCH 2 ) 2 C 2 B 4 H 6 , which had previously been shown to form mono- and bis(tricarbonylchromium) complexes. However, the reaction of Ph 2 C 2 B 4 H 5 - , CoCl 2 , and (PhPCH 2 ) 2 did give 1,1-(Ph 2 PCH 2 ) 2 -1-Cl-1,2,3-Co(Ph 2 C 2 B 4 H 4 ), the only case in which metal complexation of the diphenylcarborane was observed. 14 references, 3 figures, 3 tables

  4. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE)

    DEFF Research Database (Denmark)

    Marquart, H V; Svendsen, A; Rasmussen, J M

    1995-01-01

    It has previously been reported that the expression of the complement receptors, CR1 on erythrocytes and blood leucocytes and CR2 on B cells, is reduced in patients with SLE, and that the reduced expression of CR1 on erythrocytes is related to disease activity. We have earlier demonstrated...... that normal B cells are capable of activating the alternative pathway (AP) of complement in a CR2-dependent fashion. In this study we have investigated whether disturbances in this activity may be related to the altered phenotype of SLE B cells. Flow cytometry was used to measure expression of complement...

  5. Anopheles Midgut Epithelium Evades Human Complement Activity by Capturing Factor H from the Blood Meal

    Science.gov (United States)

    Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo

    2015-01-01

    Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788

  6. Anopheles midgut epithelium evades human complement activity by capturing factor H from the blood meal.

    Directory of Open Access Journals (Sweden)

    Ayman Khattab

    2015-02-01

    Full Text Available Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood.

  7. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    Science.gov (United States)

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  8. Synthesis, DNA binding and cytotoxic activity of pyrimido[4',5':4,5]thieno(2,3-b)quinoline with 9-hydroxy-4-(3-diethylaminopropylamino) and 8-methoxy-4-(3-diethylaminopropylamino) substitutions.

    Science.gov (United States)

    KiranKumar, Hulihalli N; RohitKumar, Heggodu G; Advirao, Gopal M

    2018-01-01

    Two new derivatives of pyrimido[4',5';4,5]thieno(2,3-b)quinoline (PTQ), 9-hydroxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Hydroxy-DPTQ) and 8-methoxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Methoxy-DPTQ) were synthesized and their DNA binding ability was analyzed using spectroscopy (UV-visible, fluorescence and circular dichroism), ethidium bromide dye displacement assay, melting temperature (T m ) analysis and computational docking studies. The hypochromism in UV-visible spectrum and increased fluorescence emission of Hydroxy-DPTQ and Methoxy-DPTQ in the presence of DNA suggested the molecule-DNA interaction. The association constants calculated from UV-visible and spectral titrations were of the order 10 4 to 10 6 M -1 . Circular dichroism studies corroborated the induced conformational changes in DNA upon addition of molecules. The change in the ellipticity was observed both in negative and positive peak of DNA, thus, suggesting the intercalation of molecules. The observed displacement of ethidium bromide from the DNA and increased T m , upon addition of DNA confirmed the intercalative mode of binding. This was further validated by computational docking, which showed clear intercalation of molecules into the d(GpC)-d(CpG) site of the receptor DNA. Anticancer activities of these molecules are evaluated by using MTT assay. Both molecules showed antiproliferative activity against all the three cancer cells studied, with Hydroxy-DPTQ being more potential molecule among the two. IC 50 value of Hydroxy-DPTQ and Methoxy-DPTQ were in the range of 3-5μM and 130-250μM, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of B4C control rod degradation under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si-Won; Park, Sang-Gil; Han, Sang-Ku [Atomic Creative Technology Co., Daejeon (Korea, Republic of)

    2016-10-15

    Boron carbide (B4C) is widely used as absorber material in western boiling water reactor (BWR), some PWR, EPR and Russian RBMK and VVERs. B4C oxidation is one of the important phenomena of in-vessel. In the present paper, the main results and knowledge gained regarding the B4C control rod degradation from above mentioned experiments are reviewed and arranged to inform its significance on the severe accident consequences. In this paper, the role of B4C control rod oxidation and the subsequent degradation on the severe accident consequences is reviewed with available literature and report of previous experimental program regarding the B4C oxidation. From this review, it seems that the contribution of this B4C oxidation on the accident progression to the further severe accident situation is not negligible. For the future work, the extensive experimental data interpretation will be performed to assess quantitatively the effect of B4C oxidation and degradation on the various postulated severe accident conditions.

  10. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    Science.gov (United States)

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. © 2016 Federation of European Biochemical Societies.

  11. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains.

    Science.gov (United States)

    Rich, Megan C; Keene, Chesleigh N; Neher, Miriam D; Johnson, Krista; Yu, Zhao-Xue; Ganivet, Antoine; Holers, V Michael; Stahel, Philip F

    2016-03-23

    Intracerebral complement activation after severe traumatic brain injury (TBI) leads to a cascade of neuroinflammatory pathological sequelae that propagate host-mediated secondary brain injury and adverse outcomes. There are currently no specific pharmacological agents on the market to prevent or mitigate the development of secondary cerebral insults after TBI. A novel chimeric CR2-fH compound (mTT30) provides targeted inhibition of the alternative complement pathway at the site of tissue injury. This experimental study was designed to test the neuroprotective effects of mTT30 in a mouse model of closed head injury. The administration of 500 μg mTT30 i.v. at 1 h, 4 h and 24 h after head injury attenuated complement C3 deposition in injured brains, reduced the extent of neuronal cell death, and decreased post-injury microglial activation, compared to vehicle-injected placebo controls. These data imply that site-targeted alternative pathway complement inhibition may represent a new promising therapeutic avenue for the future management of severe TBI. Copyright © 2016. Published by Elsevier Ireland Ltd.

  12. Impact of Mannose-Binding Lectin Deficiency on Radiocontrast-Induced Renal Dysfunction

    Directory of Open Access Journals (Sweden)

    Michael Osthoff

    2013-01-01

    Full Text Available Contrast-induced nephropathy (CIN is the third leading cause of acute renal failure in hospitalized patients. Endothelial dysfunction, renal medullary ischemia, and tubular toxicity are regarded as the most important factors in the pathogenesis of CIN. Mannose-binding lectin (MBL, a pattern recognition protein of the lectin pathway of complement, has been found to aggravate and mediate tissue damage during experimental renal ischemia/reperfusion (I/R injury which was alleviated by inhibition with C1 inhibitor, a potent MBL, and lectin pathway inhibitor. In this paper, we highlight the potential role of MBL in the pathogenesis of human CIN. In experimental I/R models, MBL was previously found to induce tubular cell death independent of the complement system. In addition, after binding to vascular endothelial cells, MBL and its associated serine proteases were able to trigger a proinflammatory reaction and contribute to endothelial dysfunction. In humans, urinary MBL was increased after administration of contrast media and in individuals with CIN. Moreover, individuals with normal/high MBL levels were at increased risk to develop radiocontrast-induced renal dysfunction. Hence, MBL and the lectin pathway seem to be a promising target given that a licensed, powerful, human recombinant inhibitor exits to be added to the scarce armamentarium currently available for prophylaxis of CIN.

  13. A specific assay for quantification of human C4c by use of an anti-C4c monoclonal antibody

    DEFF Research Database (Denmark)

    Pilely, Katrine; Skjoedt, Mikkel-Ole; Nielsen, Christian

    2014-01-01

    a mouse monoclonal antibody (mAb) that is able to detect fluid phase C4c without interference from other products generated from the complement component C4. The C4c specific mAb was tested in different enzyme-linked immunosorbent assay (ELISA) combinations with various types of in vitro activated sera...

  14. Susceptibility of Meningococcal Strains Responsible for Two Serogroup B Outbreaks on U.S. University Campuses to Serum Bactericidal Activity Elicited by the MenB-4C Vaccine.

    Science.gov (United States)

    Rossi, Raffaella; Beernink, Peter T; Giuntini, Serena; Granoff, Dan M

    2015-12-01

    In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors.

    Science.gov (United States)

    Hammuda, Arwa; Shalaby, Raed; Rovida, Stefano; Edmondson, Dale E; Binda, Claudia; Khalil, Ashraf

    2016-05-23

    A novel series of substituted chalcones were designed and synthesized to be evaluated as selective human MAO-B inhibitors. A combination of either methylsulfonyl or trifluoromethyl substituents on the aromatic ketone moiety with a benzodioxol ring on the other end of the chalcone scaffold was investigated. The compounds were tested for their inhibitory activities on both human MAO-A and B. All compounds appeared to be selective MAO-B inhibitors with Ki values in the micromolar to submicromolar range. Molecular modeling studies have been performed to get insight into the binding mode of the synthesized compounds to human MAO-B active site. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains.

    Science.gov (United States)

    Walker, Sarah E; Zhou, Fujun; Mitchell, Sarah F; Larson, Victoria S; Valasek, Leos; Hinnebusch, Alan G; Lorsch, Jon R

    2013-02-01

    Eukaryotic translation initiation factor (eIF)4B stimulates recruitment of mRNA to the 43S ribosomal pre-initiation complex (PIC). Yeast eIF4B (yeIF4B), shown previously to bind single-stranded (ss) RNA, consists of an N-terminal domain (NTD), predicted to be unstructured in solution; an RNA-recognition motif (RRM); an unusual domain comprised of seven imperfect repeats of 26 amino acids; and a C-terminal domain. Although the mechanism of yeIF4B action has remained obscure, most models have suggested central roles for its RRM and ssRNA-binding activity. We have dissected the functions of yeIF4B's domains and show that the RRM and its ssRNA-binding activity are dispensable in vitro and in vivo. Instead, our data indicate that the 7-repeats and NTD are the most critical domains, which mediate binding of yeIF4B to the head of the 40S ribosomal subunit via interaction with Rps20. This interaction induces structural changes in the ribosome's mRNA entry channel that could facilitate mRNA loading. We also show that yeIF4B strongly promotes productive interaction of eIF4A with the 43S•mRNA PIC in a manner required for efficient mRNA recruitment.

  17. C5a binding to human polymorphonuclear leukocyte plasma membrane (PMNLM) receptors

    International Nuclear Information System (INIS)

    Conway, R.G.; Mollison, K.W.; Carter, G.W.; Lane, B.

    1986-01-01

    Previous investigations of the C5a receptor have been performed using intact human PMNL. To circumvent some of the potential problems with such whole cell assays (e.g. internalization or metabolism of radioligand) the authors have developed a PMNLM binding assay. Human PMNLM were prepared by nitrogen cavitation and Percoll gradient centrifugation. Specific binding of [ 125 I]C5a to PMNLM was: high affinity, K/sub D/ = 0.6 nM; saturable, B/sub max/ = 8.7 pmol/mg protein; and reversible. Kinetic measurements agree with the K/sub D/ value obtained by Scatchard analysis. Furthermore, the binding activity of C5a correlates with biological activity as measured by myeloperoxidase release from human PMNL. Human serum C5a and recombinant C5a bind with similar affinities when measured by competition or direct binding and label the same number of sites in human PMNLM. The nonhydrolyzable GTP analog, GppNHp, induces a low affinity state of the C5a receptor (4-6 fold shift in K/sub D/) with little effect on B/sub max/. In summary, the criteria have been satisfied for identification of a biologically relevant C5a binding site in human PMNLM. Regulation of the C5a receptor and its membrane transduction mechanism(s) appears to involve guanyl nucleotides, as has been found for other chemoattractant receptors

  18. B{sub 4}C thin films for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  19. Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine Derivatives

    Directory of Open Access Journals (Sweden)

    Malwina Krause

    2017-03-01

    Full Text Available The structural resemblance between the fused imidazopyridine heterocyclic ring system and purines has prompted biological investigations to assess their potential therapeutic significance. They are known to play a crucial role in numerous disease conditions. The discovery of their first bioactivity as GABAA receptor positive allosteric modulators divulged their medicinal potential. Proton pump inhibitors, aromatase inhibitors, and NSAIDs were also found in this chemical group. Imidazopyridines have the ability to influence many cellular pathways necessary for the proper functioning of cancerous cells, pathogens, components of the immune system, enzymes involved in carbohydrate metabolism, etc. The collective results of biochemical and biophysical properties foregrounded their medicinal significance in central nervous system, digestive system, cancer, inflammation, etc. In recent years, new preparative methods for the synthesis of imidazopyridines using various catalysts have been described. The present manuscript to the best of our knowledge is the complete compilation on the synthesis and medicinal aspects of imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines reported from the year 2000 to date, including structure–activity relationships.

  20. Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine Derivatives.

    Science.gov (United States)

    Krause, Malwina; Foks, Henryk; Gobis, Katarzyna

    2017-03-04

    The structural resemblance between the fused imidazopyridine heterocyclic ring system and purines has prompted biological investigations to assess their potential therapeutic significance. They are known to play a crucial role in numerous disease conditions. The discovery of their first bioactivity as GABA A receptor positive allosteric modulators divulged their medicinal potential. Proton pump inhibitors, aromatase inhibitors, and NSAIDs were also found in this chemical group. Imidazopyridines have the ability to influence many cellular pathways necessary for the proper functioning of cancerous cells, pathogens, components of the immune system, enzymes involved in carbohydrate metabolism, etc. The collective results of biochemical and biophysical properties foregrounded their medicinal significance in central nervous system, digestive system, cancer, inflammation, etc. In recent years, new preparative methods for the synthesis of imidazopyridines using various catalysts have been described. The present manuscript to the best of our knowledge is the complete compilation on the synthesis and medicinal aspects of imidazo[4,5- b ]pyridines and imidazo[4,5- c ]pyridines reported from the year 2000 to date, including structure-activity relationships.

  1. The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter.

    Science.gov (United States)

    Frank, Henrique Oliveira; Sanchez, Danilo Garcia; de Freitas Oliveira, Lucas; Kobarg, Jörg; Monesi, Nadia

    2017-11-01

    The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida. © 2017 Wiley Periodicals, Inc.

  2. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics.

    Directory of Open Access Journals (Sweden)

    Andreas Schweizer

    2008-07-01

    Full Text Available Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

  3. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous mod...... have molecularly cloned and characterized the ACBP/DBI gene family in rat. The rat ACBP/DBI gene family comprises one expressed gene and four processed pseudogenes of which one was shown to exist in two allelic forms. The expressed gene is organized into four exons and three introns...

  4. Complement is activated in progressive multiple sclerosis cortical grey matter lesions.

    Science.gov (United States)

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W

    2016-06-22

    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the

  5. Mechanistic Characterization of GS-9190 (Tegobuvir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase▿

    Science.gov (United States)

    Shih, I-hung; Vliegen, Inge; Peng, Betty; Yang, Huiling; Hebner, Christy; Paeshuyse, Jan; Pürstinger, Gerhard; Fenaux, Martijn; Tian, Yang; Mabery, Eric; Qi, Xiaoping; Bahador, Gina; Paulson, Matthew; Lehman, Laura S.; Bondy, Steven; Tse, Winston; Reiser, Hans; Lee, William A.; Schmitz, Uli; Neyts, Johan; Zhong, Weidong

    2011-01-01

    GS-9190 (Tegobuvir) is a novel imidazopyridine inhibitor of hepatitis C virus (HCV) RNA replication in vitro and has demonstrated potent antiviral activity in patients chronically infected with genotype 1 (GT1) HCV. GS-9190 exhibits reduced activity against GT2a (JFH1) subgenomic replicons and GT2a (J6/JFH1) infectious virus, suggesting that the compound's mechanism of action involves a genotype-specific viral component. To further investigate the GS-9190 mechanism of action, we utilized the susceptibility differences between GT1b and GT2a by constructing a series of replicon chimeras where combinations of 1b and 2a nonstructural proteins were encoded within the same replicon. The antiviral activities of GS-9190 against the chimeric replicons were reduced to levels comparable to that of the wild-type GT2a replicon in chimeras expressing GT2a NS5B. GT1b replicons in which the β-hairpin region (amino acids 435 to 455) was replaced by the corresponding sequence of GT2a were markedly less susceptible to GS-9190, indicating the importance of the thumb subdomain of the polymerase in this effect. Resistance selection in GT1b replicon cells identified several mutations in NS5B (C316Y, Y448H, Y452H, and C445F) that contributed to the drug resistance phenotype. Reintroduction of these mutations into wild-type replicons conferred resistance to GS-9190, with the number of NS5B mutations correlating with the degree of resistance. Analysis of GS-9190 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of GS-9190 is different from other nonnucleoside inhibitors. Collectively, these data demonstrate that GS-9190 represents a novel class of nonnucleoside polymerase inhibitors that interact with NS5B likely through involvement of the β-hairpin in the thumb subdomain. PMID:21746939

  6. The Anticomplementary Activity of ’Fusobacterium polymorphum’ in Normal and C-4 Deficient Sources of Guinea Pig Complement.

    Science.gov (United States)

    1977-01-12

    A complement consumption assay was used to show that the anticomplementary activity of a cell wall preparation from F. polymorphum in guinea pig complement...tests with C𔃾-deficient guinea pig sera confirmed that F. polymorphum cell walls were capable of generating alternate complement pathway activity in guinea pig sera.

  7. Gennemgang af en ny type hereditært angioødem med normal komplement C1-inhibitor

    DEFF Research Database (Denmark)

    Okholm-Hansen, Maria Bach; Winther, Anna Hillert; Fagerberg, Christina

    2018-01-01

    Hereditary angio-oedema (HAE) is a rare, potentially fatal disease characterized by recurrent swelling of skin and mucosa. Besides HAE with quantitative (type I) or qualitative (type II) deficiency of complement C1-inhibitor (C1-INH), a new subtype of HAE is now described with normal levels of C1...

  8. Potent radiolabeled human renin inhibitor, [3H]SR42128: enzymatic, kinetic, and binding studies to renin and other aspartic proteases

    International Nuclear Information System (INIS)

    Cumin, F.; Nisato, D.; Gagnol, J.P.; Corvol, P.

    1987-01-01

    The in vitro binding of [ 3 H]SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a K/sub i/ of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of [ 3 H]SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the K/sub D/ was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of [ 3 H]SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, [ 3 H]SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with [ 3 H]SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems. The study as a whole indicates that pH plays a major role in the binding of [ 3 H]SR42128 to aspartic proteases and that the nature of the inhibitor residue reacting with the renin S 2 subsites is of critical importance for the specificity of the renin-inhibitor interaction

  9. Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.; Kesteren, A.C. van; Bussmann, C.J.M.; Zeeland, A.A. van; Natarajan, A.T.

    1984-01-01

    The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimer-specific endonuclease V of bacteriophage T 4 . The results suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts the authors observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in regions of the genome. (Auth.)

  10. Leptospira Immunoglobulin-Like Protein B (LigB Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    Directory of Open Access Journals (Sweden)

    Ching-Lin Hsieh

    2016-09-01

    Full Text Available The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII. The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12, a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC. In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8. The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12 and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12. Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis.

  11. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    Science.gov (United States)

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis.

  12. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  13. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer

    International Nuclear Information System (INIS)

    Sharma, Pankaj; Chinaranagari, Swathi; Patel, Divya; Carey, Jason; Chaudhary, Jaideep

    2012-01-01

    The inhibitor of DNA-binding (Id) proteins, Id1–4 are negative regulators of basic helix-loop-helix (bHLH) transcription factors. As key regulators of cell cycle and differentiation, expression of Id proteins are increasingly observed in many cancers and associated with aggressiveness of the disease. Of all the four Id proteins, the expression of Id1, Id2, and to a lesser extent, Id3 in prostate cancer and the underlying molecular mechanism is relatively well known. On the contrary, our previous results demonstrated that Id4 acts as a potential tumor suppressor in prostate cancer. In the present study, we extend these observations and demonstrate that Id4 is down-regulated in prostate cancer due to promoter hypermethylation. We used prostate cancer tissue microarrays to investigate Id4 expression. Methylation specific PCR on bisulfite treated DNA was used to determine methylation status of Id4 promoter in laser capture micro-dissected normal, stroma and prostate cancer regions. High Id4 expression was observed in the normal prostate epithelial cells. In prostate cancer, a stage-dependent decrease in Id4 expression was observed with majority of high grade cancers showing no Id4 expression. Furthermore, Id4 expression progressively decreased in prostate cancer cell line LNCaP and with no expression in androgen-insensitive LNCaP-C81 cell line. Conversely, Id4 promoter hypermethylation increased in LNCaP-C81 cells suggesting epigenetic silencing. In prostate cancer samples, loss of Id4 expression was also associated with promoter hypermethylation. Our results demonstrate loss of Id4 expression in prostate cancer due to promoter hypermethylation. The data strongly support the role of Id4 as a tumor suppressor

  14. Nanomedicine and the complement paradigm.

    Science.gov (United States)

    Moghimi, S Moein; Farhangrazi, Z Shadi

    2013-05-01

    The role of complement in idiosyncratic reactions to nanopharmaceutical infusion is receiving increasing attention. We discuss this in relation to nanopharmaceutical development and the possible use of complement inhibitors to prevent related adverse reactions. We further call on initiation of genetic association studies to unravel the genetic basis of nanomedicine infusion-related adverse responses, since most of the polymorphic genes in the genome belong to the immune system. In this paper, idiosyncratic reactions based on complement activation are discussed in the context of newly available complement inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    Science.gov (United States)

    2012-05-01

    compounds. For example, numerous classes of acetyl- cholinesterase inhibitors have been developed, m any with fe mtomolar binding affinities (7). This...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...CONTRACT NUMBER Inhibitors of Fatty Acid Synthase for Prostate Cancer 5b. GRANT NUMBER W81XWH-09-1-0204 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  16. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  17. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  18. Endostatin competes with bFGF for binding to heparin-like glycosaminoglycans

    International Nuclear Information System (INIS)

    Reis, Renata C.M.; Schuppan, Detlef; Barreto, Aline C.; Bauer, Michael; Bork, Jens P.; Hassler, Gerda; Coelho-Sampaio, Tatiana

    2005-01-01

    Endostatin is a potent inhibitor of angiogenesis and tumor growth. Here, we used human endothelial cells from lung capillaries to investigate if endostatin competes with the proangiogenic growth factors, bFGF and VEGF, for binding to costimulatory heparan sulfate molecules. Endostatin inhibited 79% and 95% of the increase in proliferation induced by bFGF and VEGF 165 , respectively. The stimulatory effect of VEGF 165 was not affected by the presence of exogenous heparin, while that of bFGF was further enhanced in the presence of up to 0.1 μg/ml heparin. The heparin-binding protein protamine completely blocked bFGF-stimulated proliferation, while it did not affect the response to VEGF 165 . Simultaneous addition of endostatin and protamine led to additive effects both in inhibition of proliferation and induction of apoptosis. Although bFGF was found to bind more strongly to heparin-Sepharose than endostatin, the latter, but not the former, displaced protamine from heparin in solution, which supports the notion that endostatin can compete with bFGF for binding to heparan sulfate in vivo. Taken as a whole, our results demonstrate that there is a direct connection between the dependence of endostatin activity on heparin-like glycosaminoglycans and its ability to antagonize bFGF

  19. Modulatory Role of Surface Coating of Superparamagnetic Iron Oxide Nanoworms in Complement Opsonization and Leukocyte Uptake

    DEFF Research Database (Denmark)

    Inturi, Swetha; Wang, Guankui; Chen, Fangfang

    2015-01-01

    demonstrated that neutrophils, monocytes, lymphocytes and eosinophils took up SPIO NWs, and the uptake was prevented by EDTA (a general complement inhibitor) and by antiproperdin antibody (an inhibitor of the alternative pathway of the complement system). Cross-linking and hydrogelation of SPIO NWs surface...... by epichlorohydrin decreased C3 opsonization in mouse serum, and consequently reduced the uptake by mouse leukocytes by more than 70% in vivo. Remarkably, the cross-linked particles did not show a decrease in C3 opsonization in human serum, but showed a significant decrease (over 60%) of the uptake by human...... leukocytes. The residual uptake of cross-linked nanoparticles was completely blocked by EDTA. These findings demonstrate species differences in complement-mediated nanoparticle recognition and uptake by leukocytes, and further show that human hemocompatibility could be improved by inhibitors of complement...

  20. Crystal structure of papain-E64-c complex. Binding diversity of E64-c to papain S2 and S3 subsites.

    OpenAIRE

    Kim, M J; Yamamoto, D; Matsumoto, K; Inoue, M; Ishida, T; Mizuno, H; Sumiya, S; Kitamura, K

    1992-01-01

    In order to investigate the binding mode of E64-c (a synthetic cysteine proteinase inhibitor) to papain at the atomic level, the crystal structure of the complex was analysed by X-ray diffraction at 1.9 A (1 A is expressed in SI units as 0.1 nm) resolution. The crystal has a space group P2(1)2(1)2(1) with a = 43.37, b = 102.34 and c = 49.95 A. A total of 21,135 observed reflections were collected from the same crystal, and 14811 unique reflections of up to 1.9 A resolution [Fo > 3 sigma(Fo)] ...

  1. Discovery and optimization of antibacterial AccC inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cliff C.; Shipps, Jr., Gerald W.; Yang, Zhiwei; Sun, Binyuan; Kawahata, Noriyuki; Soucy, Kyle A.; Soriano, Aileen; Orth, Peter; Xiao, Li; Mann, Paul; Black, Todd; (SPRI)

    2010-09-17

    The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS). The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC{sub 50} of 20 nM and a MIC of 0.8 {micro}g/mL against a sensitized strain of Escherichia coli (HS294 E. coli).

  2. Production and characterization of AA6061-B4C stir cast composite

    International Nuclear Information System (INIS)

    Kalaiselvan, K.; Murugan, N.; Parameswaran, Siva

    2011-01-01

    Highlights: → Stir casting of AA6061-B 4 C Composite. Color metallographic of composites → Enhanced wetting of B 4 C particles by K 2 TiF 6 flux. → Effect of B 4 C particles on mechanical properties of AA6061. -- Abstract: This work focuses on the fabrication of aluminum (6061-T6) matrix composites (AMCs) reinforced with various weight percentage of B 4 C particulates by modified stir casting route. The wettability of B 4 C particles in the matrix has been improved by adding K 2 TiF 6 flux into the melt. The microstructure and mechanical properties of the fabricated AMCs are analyzed. The optical microstructure and scanning electron microscope (SEM) images reveal the homogeneous dispersion of B 4 C particles in the matrix. The reinforcement dispersion has also been identified with X-ray diffraction (XRD). The mechanical properties like hardness and tensile strength have improved with the increase in weight percentage of B 4 C particulates in the aluminum matrix.

  3. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells.

    OpenAIRE

    Matthew, E; Laskin, J D; Zimmerman, E A; Weinstein, I B; Hsu, K C; Engelhardt, D L

    1981-01-01

    We found that two markers of differentiation, tyrosinase (monophenol, dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) activity and melanin synthesis, are induced by diazepam in B16/C3 mouse melanoma cells. We also demonstrated high-affinity binding sites for [3H]diazepam in these cells by radioreceptor assay, and we visualized binding to the cell surface by fluorescence microscopy with a benzodiazepine analog conjugated to a fluorescein-labeled protein. Our studies also showed tha...

  4. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients

    International Nuclear Information System (INIS)

    Englund, Emelie; Reitsma, Bart; King, Ben C.; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G.; Jirström, Karin; Blom, Anna M.

    2015-01-01

    The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. Tissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients. Our findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients

  5. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients.

    Science.gov (United States)

    Englund, Emelie; Reitsma, Bart; King, Ben C; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G; Jirström, Karin; Blom, Anna M

    2015-10-19

    The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. Tissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients. Our findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients.

  6. Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB.

    Science.gov (United States)

    Hutchinson, Catherine L; Lowe, Peter N; McLaughlin, Stephen H; Mott, Helen R; Owen, Darerca

    2013-11-12

    Protein kinase C-related kinases (PRKs) are members of the protein kinase C superfamily of serine-threonine kinases and can be activated by binding to members of the Rho family of GTPases via a Rho-binding motif known as an HR1 domain. Three tandem HR1 domains reside at the N-terminus of the PRKs. We have assessed the ability of the HR1a and HR1b domains from the three PRK isoforms (PRK1, PRK2, and PRK3) to interact with the three Rho isoforms (RhoA, RhoB, and RhoC). The affinities of RhoA and RhoC for a construct encompassing both PRK1 HR1 domains were similar to those for the HR1a domain alone, suggesting that these interactions are mediated solely by the HR1a domain. The affinities of RhoB for both the PRK1 HR1a domain and the HR1ab didomain were higher than those of RhoA or RhoC. RhoB also bound more tightly to the didomain than to the HR1a domain alone, implicating the HR1b domain in the interaction. As compared with PRK1 HR1 domains, PRK2 and PRK3 domains bind less well to all Rho isoforms. Uniquely, however, the PRK3 domains display a specificity for RhoB that requires both the C-terminus of RhoB and the PRK3 HR1b domain. The thermal stability of the HR1a and HR1b domains was also investigated. The PRK2 HR1a domain was found to be the most thermally stable, while PRK2 HR1b, PRK3 HR1a, and PRK3 HR1b domains all exhibited lower melting temperatures, similar to that of the PRK1 HR1a domain. The lower thermal stability of the PRK2 and PRK3 HR1b domains may impart greater flexibility, driving their ability to interact with Rho isoforms.

  7. Binding of the respiratory chain inhibitor ametoctradin to the mitochondrial bc1 complex.

    Science.gov (United States)

    Fehr, Marcus; Wolf, Antje; Stammler, Gerd

    2016-03-01

    Ametoctradin is an agricultural fungicide that inhibits the mitochondrial bc1 complex of oomycetes. The bc1 complex has two quinone binding sites that can be addressed by inhibitors. Depending on their binding sites and binding modes, the inhibitors show different degrees of cross-resistance that need to be considered when designing spray programmes for agricultural fungicides. The binding site of ametoctradin was unknown. Cross-resistance analyses, the reduction of isolated Pythium sp. bc1 complex in the presence of different inhibitors and molecular modelling studies were used to analyse the binding site and binding mode of ametoctradin. All three approaches provide data supporting the argument that ametoctradin binds to the Pythium bc1 complex similarly to stigmatellin. The binding mode of ametoctradin differs from other agricultural fungicides such as cyazofamid and the strobilurins. This explains the lack of cross-resistance with strobilurins and related inhibitors, where resistance is mainly caused by G143A amino acid exchange. Accordingly, mixtures or alternating applications of these fungicides and ametoctradin can help to minimise the risk of the emergence of new resistant isolates. © 2015 Society of Chemical Industry.

  8. Role of serum amyloid P component in immune clearance

    International Nuclear Information System (INIS)

    Bristow, D.L.

    1986-01-01

    In order to clarify the mechanism of interaction of serum amyloid P component (SAP) with complement, the interaction of SAP with Clq was studied. It is known that SAP binds Sepharose 4B in the presence of calcium. 125 I-Clq was retained on the Sepharose when purified 125 I-Clq was incubated with SAP prior to affinity chromatography on Sepharose. In the absence of SAP, the 125 I-Clq was not retained. To further examine the interaction of SAP with Clq, SAP was incubated at varying ratios with Clq. These mixtures were examined via crossed immunoelectro-immunoelectrophoresis against goat anti-SAP. A change in the electrophoretic behavior of SAP was observed in the presence of Clq. It was found that SAP interacted with the collagen-like stem of Clq. In these studies, 125 I-SAP was incubated with pepsin digests of Clq in a microtitre solid-phase binding assay. In addition, a microtitre solid-phase binding assay was utilized in order to investigate the possible binding of SAP with IgG. The ability of SAP activate complement as detected by C3 conversion was studied. It was found that SAP activated complement to a limited extent in normal human serum but caused extensive C3 conversion when serum from an individual with decreased levels of Cl inhibitor was used. Furthermore, the action of the complement pathway by SAP in the latter serum was reversed by the addition of exogenous Cl inhibitor, indicating that SAP has the ability to play a role in the regulation of complement via the classical pathway

  9. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  10. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter

    International Nuclear Information System (INIS)

    Ahn, Jiwon; Choi, Jeong-Hae; Won, Misun; Kang, Chang-Mo; Gyun, Mi-Rang; Park, Hee-Moon; Kim, Chun-Ho; Chung, Kyung-Sook

    2011-01-01

    Highlights: → Regulation of transcriptional activation of RhoB is still unclear. → We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. → We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. → c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. → The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly induced in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.

  11. Resistance Patterns Associated with HCV NS5A Inhibitors Provide Limited Insight into Drug Binding

    Directory of Open Access Journals (Sweden)

    Moheshwarnath Issur

    2014-11-01

    Full Text Available Direct-acting antivirals (DAAs have significantly improved the treatment of infection with the hepatitis C virus. A promising class of novel antiviral agents targets the HCV NS5A protein. The high potency and broad genotypic coverage are favorable properties. NS5A inhibitors are currently assessed in advanced clinical trials in combination with viral polymerase inhibitors and/or viral protease inhibitors. However, the clinical use of NS5A inhibitors is also associated with new challenges. HCV variants with decreased susceptibility to these drugs can emerge and compromise therapy. In this review, we discuss resistance patterns in NS5A with focus prevalence and implications for inhibitor binding.

  12. Von Neumann algebras as complemented subspaces of B(H)

    DEFF Research Database (Denmark)

    Christensen, Erik; Wang, Liguang

    2014-01-01

    Let M be a von Neumann algebra of type II1 which is also a complemented subspace of B( H). We establish an algebraic criterion, which ensures that M is an injective von Neumann algebra. As a corollary we show that if M is a complemented factor of type II1 on a Hilbert space H, then M is injective...

  13. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    Science.gov (United States)

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Molecular and expression analysis of complement component C5 in the nurse shark (Ginglymostoma cirratum) and its predicted functional role.

    Science.gov (United States)

    Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L

    2009-07-01

    We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5' and 3' UTRs of 35 bp and 79 bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences shows that GcC5

  15. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells.

    Science.gov (United States)

    Minshall, R D; Tan, F; Nakamura, F; Rabito, S F; Becker, R P; Marcic, B; Erdös, E G

    1997-11-01

    Part of the beneficial effects of angiotensin I-converting enzyme (ACE) inhibitors are due to augmenting the actions of bradykinin (BK). We studied this effect of enalaprilat on the binding of [3H]BK to Chinese hamster ovary (CHO) cells stably transfected to express the human BK B2 receptor alone (CHO-3B) or in combination with ACE (CHO-15AB). In CHO-15AB cells, enalaprilat (1 mumol/L) increased the total number of low-affinity [3H]BK binding sites on the cells at 37 degrees C, but not at 4 degrees C, from 18.4 +/- 4.3 to 40.3 +/- 11.9 fmol/10(6) cells (P potentiated the release of [3H]arachidonic acid and the liberation of inositol 1,4,5-trisphosphate (IP3) induced by BK and [Hyp3-Tyr(Me)8]BK. Moreover, enalaprilat (1 mumol/L) completely and immediately restored the response of the B2 receptor, desensitized by the agonist (1 mumol/L [Hyp3-Tyr(Me)8]BK); this effect was blocked by the antagonist, HOE 140. Finally, enalaprilat, but not the prodrug enalapril, decreased internalization of the receptor from 70 +/- 9% to 45 +/- 9% (P desensitization, and decrease internalization, thereby potentiating BK beyond blocking its hydrolysis.

  16. Interaction of complement-solubilized immune complexes with CR1 receptors on human erythrocytes. The binding reaction

    DEFF Research Database (Denmark)

    Jepsen, H H; Svehag, S E; Jarlbaek, L

    1986-01-01

    showed no binding. IC solubilized in 50% human serum in the presence of autologous RBC bound rapidly to RBC-CR1, with maximal binding within less than 1 min at 37 degrees C. Release of CR1-bound IC under these conditions occurred slowly, requiring more than 30 min. Only binding of 'partially' solubilized...... of an intact classical pathway in preparing the IC for binding to RBC-CR1. C-solubilized IC could be absorbed to solid-phase conglutinin or antibody to C3c and C4c, and these ligands were able to inhibit the binding of solubilized IC to RBC. Heparin also exerted a marked, dose-dependent inhibitory effect...

  17. Probing the aglycon binding site of a b-glucosidase: a collection of C-1-modified 2,5-dideoxy-2,5-imino-D-mannitol derivatives and their structure-activity relationships as competitive inhibitors

    DEFF Research Database (Denmark)

    Wrodnigg, Tanja; Diness, Frederik; Gruber, Christoph

    2004-01-01

    A range of new C-1 modified derivatives of the powerful glucosidase inhibitor 2,5-dideoxy-2,5-imino-D-mannitol has been synthesised and their biological activities probed with the b-glucosidase from Agrobacterium sp. Ki values are compared with those of previously prepared close relatives. Findings...

  18. The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Report of seven patients.

    Science.gov (United States)

    Fronhoffs, S; Luyken, J; Steuer, K; Hansis, M; Vetter, H; Walger, P

    2000-10-01

    To evaluate the effect of adjunctive C1-esterase inhibitor substitution therapy on clinical characteristics and outcome of patients with streptococcal toxic shock syndrome (TSS). Observational. Medizinische Poliklinik, University of Bonn, Germany. Seven patients with direct or indirect evidence of streptococcal TSS. In addition to conventional and supportive therapy, all patients received 2-3 single doses of C1-esterase inhibitor totaling 6,000-10,000 U within the first 24 h after admission. All patients developed fulminant septic shock, multiorgan failure and/or capillary leak syndrome and necrotizing fasciitis within 10-72 h following the onset of first symptoms. Between 1 and 4 days following administration of C1-esterase inhibitor, a marked shift of fluid from extravascular to intravascular compartments took place in all but one patient, accompanied by a transient intra-alveolar lung edema and rapidly decreasing need for adrenergic agents. Six of seven patients survived. These clinical observations in a small series of patients and the favorable outcome point towards a positive effect of early and high-dose administration of C1-esterase inhibitor as adjunctive therapy in streptococcal TSS. The possible mechanism involved may be the attenuation of capillary leak syndrome (CLS) via early inactivation of complement and contact systems. Controlled studies are needed to establish an improvement of the survival rates of patients with streptococcal TSS following administration of C1-esterase inhibitor.

  19. Adapted J6/JFH1-based Hepatitis C virus recombinants with genotype-specific NS4A show similar efficacies against lead protease inhibitors, alpha interferon, and a putative NS4A inhibitor

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Serre, Stéphanie B N

    2013-01-01

    To facilitate studies of hepatitis C virus (HCV) NS4A, we aimed at developing J6/JFH1-based recombinants with genotype 1- to 7-specific NS4A proteins. We developed efficient culture systems expressing NS4A proteins of genotypes (isolates) 1a (H77 and TN), 1b (J4), 2a (J6), 4a (ED43), 5a (SA13), 6a...... (HK6a), and 7a (QC69), with peak infectivity titers of ∼3.5 to 4.5 log10 focus-forming units per ml. Except for genotype 2a (J6), growth depended on adaptive mutations identified in long-term culture. Genotype 1a, 1b, and 4a recombinants were adapted by amino acid substitutions F772S (p7) and V1663A...... (NS4A), while 5a, 6a, and 7a recombinants required additional substitutions in the NS3 protease and/or NS4A. We demonstrated applicability of the developed recombinants for study of antivirals. Genotype 1 to 7 NS4A recombinants showed similar responses to the protease inhibitors telaprevir (VX-950...

  20. Effect of Complement Factor B Gene Polymorphisms on Age-Related Macular Degeneration in North-East of Iran Population

    Directory of Open Access Journals (Sweden)

    N. Roshani Pour

    2017-09-01

    Full Text Available Aims: Age-related macular degeneration (AMD is the most prevalent cause of irreversible blindness and debilitating in old stages, in developed and developing countries that engage the central part of the retina or macula. The aim of this study was to evaluate the relationship of the rs4151667 position of the complement factor B gene polymorphism with AMD (dry type with geographic atrophy phenotype in the North East of Iran population. ­Materials & Methods:­ In this descriptive cross-sectional study in 2015-2016, 44 AMD patients (dry type with geographic atrophy phenotype were randomly selected from Gonabad City, Iran, health centers as the patient group. 50 healthy individuals from the same society that have no relative relations with each other or the patients, but were adapted by age and sex to the patient group, were selected as the control group. The ­­polymorphism of rs4151667 (c.26T>A­ position of the complement factor B gene was determined for all samples by Restriction Fragment Length Polymorphism (RFLP. Data was analyzed the Chi-square test in 2x2.Contingency software. Findings: The frequency of TT genotype in AMD patients (95.5% was significantly (p=0.048 more than the control group (88.0%, but the frequency of AT genotype in AMD patients (4.5% was significantly (p=0.025 less than the control group (12.0%. Conclusion: The polymorphism of rs4151667 (c.26T>A position of complement factor B is effective on the development of AMD in North East of Iran population.

  1. Role of the A+ helix in heparin binding to protein C inhibitor

    NARCIS (Netherlands)

    Elisen, M. G.; Maseland, M. H.; Church, F. C.; Bouma, B. N.; Meijers, J. C.

    1996-01-01

    Interactions between proteins and heparin(-like) structures involve electrostatic forces and structural features. Based on charge distributions in the linear sequence of protein C inhibitor (PCI), two positively charged regions of PCI were proposed as possible candidates for this interaction. The

  2. C3b/iC3b deposition on Streptococcus pneumoniae is not affected by HIV infection.

    Directory of Open Access Journals (Sweden)

    Catherine Hyams

    2010-01-01

    Full Text Available Streptococcus pneumoniae is a common cause of infection in both HIV positive patients and those with complement deficiencies. We hypothesised that HIV positive individuals might exhibit reduced opsonisation of pneumococcus with complement due to reduced levels of S. pneumoniae specific IgG. We discovered no difference in C3 deposition on S. pneumoniae between HIV positive or negative individuals, and furthermore C3 deposition remained unchanged as HIV progressed towards AIDS. We found no correlation between C3 deposition on S. pneumoniae and CD4 cell count in HIV infected individuals. Hence we have demonstrated no failure of complement immunity in HIV positive patients.

  3. Up-regulation of granzyme B and perforin by staphylococcal enterotoxin C2 mutant induces enhanced cytotoxicity in Hepa1–6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guojun [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Mingkai, E-mail: mkxu@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Zhang, Huiwen [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Song, Yubo [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Jian; Zhang, Chenggang [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China)

    2016-12-15

    Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulation and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis

  4. Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

    Science.gov (United States)

    Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li

    2018-03-01

    A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.

  5. Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2014-03-21

    The RNA motifs that bind guanidinylated kanamycin A (G Kan A) and guanidinylated neomycin B (G Neo B) were identified via two-dimensional combinatorial screening (2DCS). The results of these studies enabled the "bottom-up" design of a small molecule inhibitor of oncogenic microRNA-10b.

  6. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    Science.gov (United States)

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  7. [{sup 11}C]S.L.(25.1188), a new radioligand to study the monoamine oxidase type B with PET: preclinical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Saba, W.; Valette, H.; Peyronneau, M.A.; Bramoulle, Y.; Coulon, C.; Dolle, F.; Bottlaender, M. [Service Hospitalier Frederic Joliot, IIBM/DSV, 91 - Orsay (France); Curet, O.; George, P. [Sanofi-Aventis, 92 - Bagneux (France)

    2008-02-15

    Introduction. - Monoamine oxidase (M.A.O.) is a flavin containing enzyme, that catalyzes the oxidative deamination of various amines and neurotransmitters. Two isoforms exist, M.A.O.-A and M.A.O.-B. Variations in M.A.O. activity may be associated to human disease such as Parkinson and Alzheimer disease. Few radiotracers have been developed for M.A.O. PET studies such as [{sup 11}C]deprenyl, an irreversible M.A.O.-B inhibitor. Recently an oxazolidinone derivative, S.L.- 25.1188 ((S)-5-methoxy-methyl-3-[6-(4,4,4-tri-fluoro butoxy)- benzo[d]isoxazol-3-yl]-oxazolidin-2-one), belonging to a new generation of selective and reversible M.A.O.-B inhibitors was developed and showed in vitro a high selectivity for M.A.O.B. [1]. The aim of this study was to characterize [{sup 11}C]S.L.- 25.1188 as radioligand for in vivo PET examination of M.A.O.-B. Materials and methods. - PET studies of the brain distribution were carried out in male Papio anubis baboons. Selectivity and reversibility of [{sup 11}C]S.L.-25.1188 binding for M.A.O.-B was assessed by pre-treatment or displacement experiments (30 min before and after tracer injection, respectively) using reference ligands for M.A.O.-B (deprenyl: 2 mg/kg i.v. and lazabemide: 0.5 mg/kg i.v.) or by displacement experiments using unlabelled S.L.-25.1188 (1 mg/kg, i.v., 30 min after tracer injection). Distribution volume (D.V.) was calculated using 2-tissue-compartment model. The saturable binding following pre-treatment with deprenyl was considered as the specific binding. Results. - After injection, [1{sup 1C}]S.L.-25.1188 presents a rapid phase of distribution in blood (about 5 min), followed by a elimination with T1/2 of 75 min. The Blood to plasma concentration ratio was constant during the experimentation (0.9 {+-} .04) consistent with a similar kinetic of [{sup 11}C]S.L.- 25.1188 in both blood and plasma. Metabolism analysis showed that [{sup 11}C]S.L.-25.1188 is stable in vivo. In the brain, uptake in different areas was

  8. Low C4 gene copy numbers are associated with superior graft survival in patients transplanted with a deceased donor kidney

    DEFF Research Database (Denmark)

    Bay, Jakob T; Schejbel, Lone; Madsen, Hans O

    2013-01-01

    rejection, but a relationship between graft survival and serum C4 concentration as well as C4 genetic variation has not been established. We evaluated this using a prospective study design of 676 kidney transplant patients and 211 healthy individuals as controls. Increasing C4 gene copy numbers......Complement C4 is a central component of the classical and the lectin pathways of the complement system. The C4 protein exists as two isotypes C4A and C4B encoded by the C4A and C4B genes, both of which are found with varying copy numbers. Deposition of C4 has been implicated in kidney graft...... significantly correlated with the C4 serum concentration in both patients and controls. Patients with less than four total copies of C4 genes transplanted with a deceased donor kidney experienced a superior 5-year graft survival (hazard ratio 0.46, 95% confidence interval: 0.25-0.84). No significant association...

  9. Incident microalbuminuria and complement factor mannan-binding lectin-associated protein 19 in people with newly diagnosed type 1 diabetes

    DEFF Research Database (Denmark)

    Ostergaard, J A; Thiel, S; Hoffmann-Petersen, I T

    2017-01-01

    BACKGROUND: Evidence links the lectin pathway of complement activation to diabetic kidney disease. Upon carbohydrate-recognition by pattern-recognition molecules, e.g., mannan-binding lectin (MBL), the MBL-associated serine protease (MASP-2) is activated and initiates the complement cascade. The ...

  10. Llama Antibody Fragments Recognizing Various Epitopes of the CD4bs Neutralize a Broad Range of HIV-1 Subtypes A, B and C

    Science.gov (United States)

    Aasa-Chapman, Marlèn; Gorlani, Andrea; Forsman Quigley, Anna; Hulsik, David Lutje; Chen, Lei; Weiss, Robin; de Haard, Hans; Verrips, Theo

    2012-01-01

    Many of the neutralising antibodies, isolated to date, display limited activities against the globally most prevalent HIV-1 subtypes A and C. Therefore, those subtypes are considered to be an important target for antibody-based therapy. Variable domains of llama heavy chain antibodies (VHH) have some superior properties compared with classical antibodies. Therefore we describe the application of trimeric forms of envelope proteins (Env), derived from HIV-1 of subtype A and B/C, for a prolonged immunization of two llamas. A panel of VHH, which interfere with CD4 binding to HIV-1 Env were selected with use of panning. The results of binding and competition assays to various Env, including a variant with a stabilized CD4-binding state (gp120Ds2), cross-competition experiments, maturation analysis and neutralisation assays, enabled us to classify the selected VHH into three groups. The VHH of group I were efficient mainly against viruses of subtype A, C and B′/C. The VHH of group II resemble the broadly neutralising antibody (bnmAb) b12, neutralizing mainly subtype B and C viruses, however some had a broader neutralisation profile. A representative of the third group, 2E7, had an even higher neutralization breadth, neutralizing 21 out of the 26 tested strains belonging to the A, A/G, B, B/C and C subtypes. To evaluate the contribution of certain amino acids to the potency of the VHH a small set of the mutants were constructed. Surprisingly this yielded one mutant with slightly improved neutralisation potency against 92UG37.A9 (subtype A) and 96ZM651.02 (subtype C). These findings and the well-known stability of VHH indicate the potential application of these VHH as anti-HIV-1 microbicides. PMID:22438910

  11. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  12. Arcing at B4C-covered limiters exposed to a SOL-plasma

    International Nuclear Information System (INIS)

    Laux, M.; Schneider, W.; Wienhold, P.; Juettner, B.; Huber, A.; Balden, M.; Linke, J.; Kostial, H.; Mayer, M.; Rubel, M.; Herrmann, A.; Pospieszczyk, A.; Jachmich, S.; Schweer, B.; Hildebrandt, D.; Bolt, H.

    2003-01-01

    Plasma sprayed B 4 C-layers considered as wall coatings for the W7X stellarator have been studied during and after exposure to TEXTOR and after arcing experiments in vacuum. Arcing through the B 4 C layer occurred favoured by high power fluxes and not restricted to less stable phases. But this arcing implies an especially noisy scrape-off layer (SOL). Instead of moving retrograde in the external magnetic field, the arc spot on the B 4 C-layer sticks to the same location for its whole lifetime. Consequently, the arc erodes the entire B 4 C layer, finally burning down to the Cu substrate. In the neighbourhood of craters the surface contains Cu originating from those craters. This material, hauled to the surface by the arc, is subject to subsequent erosion, transport, and redeposition by the SOL-plasma. The behaviour of arcs on B 4 C is most probably caused by the peculiar temperature dependences of the electrical and heat conductivity of B 4 C

  13. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.

    Science.gov (United States)

    Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F

    2007-07-01

    The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.

  14. Fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75 interact with the CREC proteins, calumenin and reticulocalbin

    DEFF Research Database (Denmark)

    Hansen, Gry Aune Westergaard; Ludvigsen, Maja; Jacobsen, Christian

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify...... the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted...

  15. GLUCOCORTICOSTEROIDS' EFFECT UPON THE COMPLEMENT LEVEL

    Directory of Open Access Journals (Sweden)

    Voja Pavlovic

    2001-03-01

    Full Text Available The effect of high doses of cortisol upon the level of the overall complements'hemolytic activity and particular complements' components is studies. The experimentsinvolved guinea pigs of male sex of the body mass from 300 to 400 g, namelythose that have not been treated by anything so far. The doses of hydrocortisone(Hemofarm DD were also used for the experiment. The overall complements'activity was determined by testing the capabilities of a series of various solutions ofthe guinea pigs' serum to separate sheep erythrocytes that were made sensitive byrabbit anti-erythrocyte antibodies. The determination of the C1, C2, C3 and C4complements' components was done by the method of the quantitative diffusion ofthe radial type by using the Partigen blocks Behringwerke AG. The series comprised25 guinea pigs of male sex. The low cortisol level rapidly increase the overallhemolytic activity of the complements of the C1 est erase concentration. Along withthe cortisol dose increase the overall hemolytic complements' activity is dropping aswell as that of the C1, C2, C3 and C4 complements' components.

  16. Formalin-inactivated EV71 vaccine candidate induced cross-neutralizing antibody against subgenotypes B1, B4, B5 and C4A in adult volunteers.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16.Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses.The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had 4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8 against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16.EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials.ClinicalTrials.gov NCT01268787.

  17. Rapid emergence of hepatitis C virus protease inhibitor resistance is expected

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Approximately 170 million people worldwide are infected with hepatitis C virus (HCV). Current therapy, consisting of pegylated interferon (PEG-IFN) and ribavirin (RBV), leads to sustained viral elimination in only about 45% of patients treated. Telaprevir (VX-950), a novel HCV NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients with chronic hepatitis C genotype 1 infection. However, some patients experience viral breakthrough during dosing, with drug resistant variants being 5%-20% of the virus population as early as day 2 after treatment initiation. Why viral variants appear such a short time after the start of dosing is unclear, especially since this has not been seen with monotherapy for either human immunodeficiency virus or hepatitis B virus. Here, using a viral dynamic model, we explain why such rapid emergence of drug resistant variants is expected when potent HCV protease inhibitors are used as monotherapy. Surprisingly, our model also shows that such rapid emergence need not be the case with some potent HCV NS5B polymerase inhibitors. Examining the case of telaprevir therapy in detail, we show the model fits observed dynamics of both wild-type and drug-resistant variants during treatment, and supports combination therapy of direct antiviral drugs with PEG-IFN and/or RBV for hepatitis C.

  18. Lactoferrin binding protein B - a bi-functional bacterial receptor protein.

    Directory of Open Access Journals (Sweden)

    Nicholas K H Ostan

    2017-03-01

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB, there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.

  19. Specificity of EIA immunoassay for complement factor Bb testing.

    Science.gov (United States)

    Pavlov, Igor Y; De Forest, Nikol; Delgado, Julio C

    2011-01-01

    During the alternative complement pathway activation, factor B is cleaved in two fragments, Ba and Bb. Concentration of those fragments is about 2 logs lower than of factor B present in the blood, which makes fragment detection challenging because of potential cross-reactivity. Lack of information on Bb assay cross-reactivity stimulated the authors to investigate this issue. We ran 109 healthy donor EDTA plasmas and 80 sera samples with both factor B immunodiffusion (The Binding Site) and Quidel Bb EIA assays. During the study it was shown that physiological concentrations of gently purified factor B demonstrated approximately 0.15% cross-reactivity in the Quidel Bb EIA assay. We also observed that Bb concentration in serum is higher than in plasma due to complement activation during clot formation which let us use sera as samples representing complement activated state. Our study demonstrated that despite the potential 0.15% cross-reactivity between endogenous factor B and cleaved Bb molecule, measuring plasma concentrations of factor Bb is adequate to evaluate the activation of the alternative complement pathway.

  20. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Miyuki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Ito, Jumpei [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Japan Society for the Promotion of Science, Tokyo, 102-0083 (Japan); Koyama, Riko [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Iijima, Masumi; Yoshimoto, Nobuo [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Niimi, Tomoaki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Kuroda, Shun' ichi [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Maturana, Andrés D., E-mail: maturana@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan)

    2016-05-27

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the first step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.

  1. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    Science.gov (United States)

    Shimshoni, Jakob A; Winkler, Ilan; Golan, Ezekiel; Nutt, David

    2017-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT 2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT 2a,b,c and NE α2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT 2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT 2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC 50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT 2a,c receptors as compared to MDMA.

  2. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Matthew Brecher

    2017-05-01

    Full Text Available The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2 in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV, West Nile virus (WNV, and Yellow fever virus (YFV on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and

  3. Corruption of human follicular B-lymphocyte trafficking by a B-cell superantigen.

    Science.gov (United States)

    Borhis, Gwenoline; Viau, Muriel; Badr, Gamal; Richard, Yolande; Zouali, Moncef

    2012-05-09

    Protein A (SpA) of Staphylococcus aureus is known to target the paratope of immunoglobulins expressing V(H)3 genes, and to delete marginal zone B cells and B-1a in vivo. We have discovered that SpA endows S. aureus with the potential to subvert B-cell trafficking in the host. We found that SpA, whose Fc-binding site has been inactivated, binds essentially to naïve B cells and induces a long-lasting decrease in CXCR4 expression and in B-cell chemotaxis to CXCL12. Competition experiments indicated that SpA does not interfere with binding of CXCR4 ligands and does not directly bind to CXCR4. This conclusion is strongly supported by the inability of SpA to modulate clathrin-mediated CXCR4 internalization, which contrasts with the potent effect of anti-immunoglobin M (IgM) antibodies. Microscopy and biochemical experiments confirmed that SpA binds to the surface IgM/IgD complex and induces its clathrin-dependent internalization. Concomitantly, the SpA-induced signaling leads to protein kinase C-dependent CXCR4 downmodulation, suggesting that SpA impairs the recycling of CXCR4, a postclathrin process that leads to either degradation into lysozomes or de novo expression at the cell surface. In addition to providing novel insight into disruption of B-cell trafficking by an infectious agent, our findings may have therapeutic implications. Because CXCR4 has been associated with cancer metastasis and with certain autoimmune diseases, SpA behaves as an evolutionary tailored highly specific, chemokine receptor inhibitor that may have value in addition to conventional cytotoxic therapy in patients with various malignancies and immune-mediated diseases.

  4. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    Science.gov (United States)

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  5. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Li, Jun [Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China); Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: pengfeitu@vip.163.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China)

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  6. Complementation pattern of lexB and recA mutations in Escherichia coli K12; mapping of tif-1, lexB and recA mutations

    International Nuclear Information System (INIS)

    Morand, P.; Goze, A.; Devoret, R.

    1977-01-01

    Three lexB mutations, whose phenotypes have been previously characterized, are studied here in relation to a few recA mutations as to their complementation pattern and relative location. The restoration of resistance to UV-light and to X-rays in the hetero-allelic diploid bacteria was used as a test for dominance and complementation. The wild type allele was always dominant over the mutant allele. Only partial complementation was found between lexB and two rexA alleles. There was no complementation between the recA alleles. All the data taken together strongly suggest that the complementations found are intragenic: lexB and recA mutations are in one gene. Mapping of lexB, recA and tif-1 mutations in relation to srl-1 and cysC by phage P1 transduction shows that lexB and the tif-1 mutations form a cluster proximal to srl-1 whereas recA mutations are located at the other extremity of the gene. Variability with temperature of cotransduction frequencies as well as their extended range of values prevent a meaningful calculation of the length of the recA gene. Our hypothesis is that the recA protein has two functional regions called A and B respectively defined at the genetical level by recA and lexB mutations and that it is, in vivo, an oligomeric protein forming a complex with the lexA protein. This complex is postulated to be multifunctional: recombination and control of exonuclease V are effected by the A region while the B region and lexA protein effect induced DNA repair and lysogenic induction. (orig.) [de

  7. Complement System in the Pathogenesis of Benign Lymphoepithelial Lesions of the Lacrimal Gland.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available We aimed to examine the potential involvement of local complement system gene expression in the pathogenesis of benign lymphoepithelial lesions (BLEL of the lacrimal gland.We collected data from 9 consecutive pathologically confirmed patients with BLEL of the lacrimal gland and 9 cases with orbital cavernous hemangioma as a control group, and adopted whole genome microarray to screen complement system-related differential genes, followed by RT-PCR verification and in-depth enrichment analysis (Gene Ontology analysis of the gene sets.The expression of 14 complement system-related genes in the pathologic tissue, including C2, C3, ITGB2, CR2, C1QB, CR1, ITGAX, CFP, C1QA, C4B|C4A, FANCA, C1QC, C3AR1 and CFHR4, were significantly upregulated while 7 other complement system-related genes, C5, CFI, CFHR1|CFH, CFH, CD55, CR1L and CFD were significantly downregulated in the lacrimal glands of BLEL patients. The microarray results were consistent with RT-PCR analysis results. Immunohistochemistry analysis of C3c and C1q complement component proteins in the resected tissue were positive in BLEL patients, while the control group had negative expression of these proteins. Gene ontology (GO analysis revealed that activation of the genes of complement system-mediated signaling pathways were the most enriched differential gene group in BLEL patients.Local expression of complement components is prominently abnormal in BLEL, and may well play a role in its pathogenesis.

  8. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes.

    Science.gov (United States)

    Sun, Wenlong; Zhang, Bowei; Zheng, Haizhou; Zhuang, Chunlin; Li, Xia; Lu, Xinhua; Quan, Chunshan; Dong, Yuesheng; Zheng, Zhihui; Xiu, Zhilong

    2017-01-15

    To screen a potential PTP1b inhibitor from the microbial origin-based compound library and to investigate the potential anti-diabetic effects of the inhibitor in vivo and determine its primary anti-diabetic mechanism in vitro and in silico. PTP1b inhibitory activity was measured using recombination protein as the enzyme and p-NPP as the substrate. The binding of the inhibitor to PTP1b was analysed by docking in silico and confirmed by ITC experiments. The intracellular signalling pathway was detected by Western blot analysis in HepG2 cells. The anti-diabetic effects were evaluated using a diabetic mice model in vivo. Among 545 microbial origin-based pure compounds tested, trivaric acid, a tridepside, was selected as a PTP1B inhibitor exhibiting strong inhibitory activity with an IC 50 of 173nM. Docking and ITC studies showed that trivaric acid was able to spontaneously bind to PTP1b and may inhibit PTP1b by blocking the catalytic domain of the phosphatase. Trivaric acid also enhanced the ability of insulin to stimulate the IR/IRS/Akt/GLUT2 pathway and increase the glucose consumption in HepG2 cells. In diabetic mice, trivaric acid that had been encapsulated into Eudrgit L100-5.5 showed significant anti-diabetic effects, improving insulin resistance, leptin resistance and lipid profile and weight control at doses of 5mg/kg and 50mg/kg. Trivaric acid is a potential lead compound in the search for anti-diabetic agents targeting PTP1b. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Surviving mousepox infection requires the complement system.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Moulton

    2008-12-01

    Full Text Available Poxviruses subvert the host immune response by producing immunomodulatory proteins, including a complement regulatory protein. Ectromelia virus provides a mouse model for smallpox where the virus and the host's immune response have co-evolved. Using this model, our study investigated the role of the complement system during a poxvirus infection. By multiple inoculation routes, ectromelia virus caused increased mortality by 7 to 10 days post-infection in C57BL/6 mice that lack C3, the central component of the complement cascade. In C3(-/- mice, ectromelia virus disseminated earlier to target organs and generated higher peak titers compared to the congenic controls. Also, increased hepatic inflammation and necrosis correlated with these higher tissue titers and likely contributed to the morbidity in the C3(-/- mice. In vitro, the complement system in naïve C57BL/6 mouse sera neutralized ectromelia virus, primarily through the recognition of the virion by natural antibody and activation of the classical and alternative pathways. Sera deficient in classical or alternative pathway components or antibody had reduced ability to neutralize viral particles, which likely contributed to increased viral dissemination and disease severity in vivo. The increased mortality of C4(-/- or Factor B(-/- mice also indicates that these two pathways of complement activation are required for survival. In summary, the complement system acts in the first few minutes, hours, and days to control this poxviral infection until the adaptive immune response can react, and loss of this system results in lethal infection.

  10. Novel human topoisomerase I inhibitors, topopyrones A, B, C and D. I. Producing strain, fermentation, isolation, physico-chemical properties and biological activity.

    Science.gov (United States)

    Kanai, Y; Ishiyama, D; Senda, H; Iwatani, W; Takahashi, H; Konno, H; Tokumasu, S; Kanazawa, S

    2000-09-01

    In the course of a screening program for specific inhibitors of human topoisomerase I using a recombinant yeast, we have discovered four new active compounds. All four compounds were isolated from the culture broth of a fungus, Phoma sp. BAUA2861, and two of them were isolated from the culture broth of a fungus, Penicillium sp. BAUA4206. We designated these compounds as topopyrones A, B, C and D. Topopyrones A, B, C and D selectively inhibited recombinant yeast growth dependent on expression of human topoisomerase I with IC50 values of 1.22, 0.15, 4.88 and 19.63 ng/ml, respectively. The activity and selectivity of topopyrone B were comparable to those of camptothecin. The relaxation of supercoiled pBR322 DNA by human DNA topoisomerase I was inhibited by these compounds, however they did not inhibit human DNA topoisomerase II. Topopyrones A, B, C and D were cytotoxic to all tumor cell lines when tested in vitro. Topopyrone B has potent inhibitory activity against herpesvirus, especially varicella zoster virus (VZV). It inhibited VZV growth with EC50 value of 0.038 microg/ml, which is 24-fold stronger than that of acyclovir (0.9 microg/ml). Topopyrones A, B, and C were inhibitory to Gram-positive bacteria.

  11. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    Science.gov (United States)

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  12. Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors

    Directory of Open Access Journals (Sweden)

    Maithili P. Dalvi

    2017-05-01

    Full Text Available Although non-small cell lung cancer (NSCLC patients benefit from standard taxane-platin chemotherapy, many relapse, developing drug resistance. We established preclinical taxane-platin-chemoresistance models and identified a 35-gene resistance signature, which was associated with poor recurrence-free survival in neoadjuvant-treated NSCLC patients and included upregulation of the JumonjiC lysine demethylase KDM3B. In fact, multi-drug-resistant cells progressively increased the expression of many JumonjiC demethylases, had altered histone methylation, and, importantly, showed hypersensitivity to JumonjiC inhibitors in vitro and in vivo. Increasing taxane-platin resistance in progressive cell line series was accompanied by progressive sensitization to JIB-04 and GSK-J4. These JumonjiC inhibitors partly reversed deregulated transcriptional programs, prevented the emergence of drug-tolerant colonies from chemo-naive cells, and synergized with standard chemotherapy in vitro and in vivo. Our findings reveal JumonjiC inhibitors as promising therapies for targeting taxane-platin-chemoresistant NSCLCs.

  13. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B ( 1 ) contains an additional phenolic hydroxy function at C-6 and exhibits an IC 50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin ( 2 ) did not show any inhibition of this enzymatic activity. Asperentin B ( 1 ) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  14. Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins.

    Science.gov (United States)

    Culurgioni, Simone; Muñoz, Inés G; Moreno, Alberto; Palacios, Alicia; Villate, Maider; Palmero, Ignacio; Montoya, Guillermo; Blanco, Francisco J

    2012-03-30

    The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.

  15. The Type IV Pilus Assembly ATPase PilB of Myxococcus xanthus Interacts with the Inner Membrane Platform Protein PilC and the Nucleotide-binding Protein PilM.

    Science.gov (United States)

    Bischof, Lisa Franziska; Friedrich, Carmen; Harms, Andrea; Søgaard-Andersen, Lotte; van der Does, Chris

    2016-03-25

    Type IV pili (T4P) are ubiquitous bacterial cell surface structures, involved in processes such as twitching motility, biofilm formation, bacteriophage infection, surface attachment, virulence, and natural transformation. T4P are assembled by machinery that can be divided into the outer membrane pore complex, the alignment complex that connects components in the inner and outer membrane, and the motor complex in the inner membrane and cytoplasm. Here, we characterize the inner membrane platform protein PilC, the cytosolic assembly ATPase PilB of the motor complex, and the cytosolic nucleotide-binding protein PilM of the alignment complex of the T4P machinery ofMyxococcus xanthus PilC was purified as a dimer and reconstituted into liposomes. PilB was isolated as a monomer and bound ATP in a non-cooperative manner, but PilB fused to Hcp1 ofPseudomonas aeruginosaformed a hexamer and bound ATP in a cooperative manner. Hexameric but not monomeric PilB bound to PilC reconstituted in liposomes, and this binding stimulated PilB ATPase activity. PilM could only be purified when it was stabilized by a fusion with a peptide corresponding to the first 16 amino acids of PilN, supporting an interaction between PilM and PilN(1-16). PilM-N(1-16) was isolated as a monomer that bound but did not hydrolyze ATP. PilM interacted directly with PilB, but only with PilC in the presence of PilB, suggesting an indirect interaction. We propose that PilB interacts with PilC and with PilM, thus establishing the connection between the alignment and the motor complex. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Structural and Biochemical Characterization of Organotin and Organolead Compounds Binding to the Organomercurial Lyase MerB Provide New Insights into Its Mechanism of Carbon–Metal Bond Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Haytham M. [Département; Faculty; Stevenson, Michael J. [Department; Mansour, Ahmed [Département; Sygusch, Jurgen [Département; Wilcox, Dean E. [Department; Omichinski, James G. [Département

    2017-01-03

    The organomercurial lyase MerB has the unique ability to cleave carbon–Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon–Hg bond cleavage. However, the role of each residue in carbon–metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding is to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.

  17. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  18. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    International Nuclear Information System (INIS)

    Cheng, Xiaofei; Deng, Ping; Cui, Hongguang; Wang, Aiming

    2015-01-01

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  19. Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease.

    Science.gov (United States)

    Rajagopalan, Ravi; Pan, Lin; Schaefer, Caralee; Nicholas, John; Lim, Sharlene; Misialek, Shawn; Stevens, Sarah; Hooi, Lisa; Aleskovski, Natalia; Ruhrmund, Donald; Kossen, Karl; Huang, Lea; Yap, Sophia; Beigelman, Leonid; Serebryany, Vladimir; Liu, Jyanwei; Sastry, Srikonda; Seiwert, Scott; Buckman, Brad

    2017-01-01

    The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection. Copyright © 2016 American Society for Microbiology.

  20. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism.

    Science.gov (United States)

    Tan, Xue Fei; Uddin, Zia; Park, Chanin; Song, Yeong Hun; Son, Minky; Lee, Keun Woo; Park, Ki Hun

    2017-04-15

    Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC 50 s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC 50 =70.25µM) and methylbutenyl 8 (IC 50 >200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC 50 =0.47µM) showed 30-fold more potency than ursolic acid (IC 50 =15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with K m , V max and K ik /K iv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k 5 =0.0751µM - 1 S - 1 , k 6 =0.0249µM - 1 S - 1 and K i app =0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Functional relevance of AcrB Trimerization in pump assembly and substrate binding.

    Directory of Open Access Journals (Sweden)

    Wei Lu

    Full Text Available AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB.

  2. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  3. Photoelectron spectroscopy of B4O4−: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    International Nuclear Information System (INIS)

    Tian, Wen-Juan; Chen, Qiang; Ou, Ting; Li, Si-Dian; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin

    2015-01-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B 4 O 4 0/− clusters. The measured PES spectra of B 4 O 4 − exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of C s B 4 O 4 − ( 2 A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D 2h B 4 O 4 − ( 2 B 2g ) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B 2 O 2 core bonded with terminal BO and/or BO 2 groups. The same Y-shaped and rhombic structures are also located for the B 4 O 4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B 4 O 4 0/− clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B 4 O 4 0/− clusters. This work is the first experimental study on a molecular system with an o-bond

  4. C-Reactive Protein Binds to Cholesterol Crystals and Co-Localizes with the Terminal Complement Complex in Human Atherosclerotic Plaques

    DEFF Research Database (Denmark)

    Pilely, Katrine; Fumagalli, Stefano; Rosbjerg, Anne

    2017-01-01

    Inflammation is a part of the initial process leading to atherosclerosis and cholesterol crystals (CC), found in atherosclerotic plaques, which are known to induce complement activation. The pentraxins C-reactive protein (CRP), long pentraxin 3 (PTX3), and serum amyloid P component (SAP) are seru...

  5. Deletion of Crry and DAF on murine platelets stimulates thrombopoiesis and increases factor H-dependent resistance of peripheral platelets to complement attack.

    Science.gov (United States)

    Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao

    2013-03-15

    Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.

  6. ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice.

    Science.gov (United States)

    Kurdi, Ammar; Cleenewerck, Matthias; Vangestel, Christel; Lyssens, Sophie; Declercq, Wim; Timmermans, Jean-Pierre; Stroobants, Sigrid; Augustyns, Koen; De Meyer, Guido R Y; Van Der Veken, Pieter; Martinet, Wim

    2017-08-15

    Autophagy is a cell survival mechanism hijacked by advanced tumors to endure a rough microenvironment. Late autophagy inhibitors such as (hydroxy)chloroquine have been used clinically to halt tumor progression with modest success. However, given the toxic nature of these compounds and their lack of specificity, novel targets should be considered. We recently identified a benzotropolone derivative that significantly inhibited the essential autophagy protein ATG4B. Therefore, we synthesized and tested additional benzotropolone compounds to identify a promising ATG4B inhibitor that impairs autophagy both in vitro and in vivo. A compound library containing 27 molecules with a benzotropolone backbone was synthesized and screened for inhibition of recombinant ATG4B. Depending on the benzotropolone compound, inhibition of recombinant ATG4B ranged from 3 to 82%. Active compounds were evaluated in cellular assays to confirm inhibition of ATG4B and suppression of autophagy. Seven compounds inhibited processing of the autophagy protein LC3 and autophagosome formation. Compound UAMC-2526 was selected for further in vivo use because of its fair plasma stability. This compound abolished autophagy both in nutrient-deprived GFP-LC3 mice and in CD1 -/- Foxn1nu mice bearing HT29 colorectal tumor xenografts. Moreover, addition of UAMC-2526 to the chemotherapy drug oxaliplatin significantly improved inhibition of tumor growth. Our data indicate that suppression of autophagy via ATG4B inhibition is a feasible strategy to augment existing chemotherapy efficacy and to halt tumor progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Synthesis of 11-14C-quetiapine, 11-14C-isoclotiapine and 10-(4-methylpiperazin-1-yl)pyrido[4,3-b][1,4]benzothiazepine[10-14C

    International Nuclear Information System (INIS)

    Naghi Saadatjoo; Mohsen Javaheri; Nuclear Science and Technology Research Institute, Tehran; Nader Saemian; Mohsen Amini

    2016-01-01

    Quetiapine is one of the most widely used antipsychotic drug which acts as an antagonist for multiple neurotransmitter receptor sites. 2-[2-(4-(Dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)ethoxy]ethanol (quetiapine) labeled with carbon-14 in 11-position has been synthesized as part of a 5-step sequence from anthranilic acid-[carboxy- 14 C]. We have presented a convenient synthetic pathway for labeling of quetiapine with carbon-14 by using one-pot procedures from a key thiazepin-11(10H)-one-[11- 14 C] by good radiochemical yield. And also isoclotiapine[11- 14 C], and 10-(4-methylpiperazin-1-yl)pyrido[4,3-b][1,4]benzothiazepine[10- 14 C], synthesized according to this route. (author)

  8. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluating Andrographolide as a Potent Inhibitor of NS3-4A Protease and Its Drug-Resistant Mutants Using In Silico Approaches

    Directory of Open Access Journals (Sweden)

    Vivek Chandramohan

    2015-01-01

    Full Text Available Current combination therapy of PEG-INF and ribavirin against the Hepatitis C Virus (HCV genotype-1 infections is ineffective in maintaining sustained viral response in 50% of the infection cases. New compounds in the form of protease inhibitors can complement the combination therapy. Asunaprevir is new to the drug regiment as the NS3-4A protease inhibitor, but it is susceptible to two mutations, namely, R155K and D168A in the protein. Thus, in our study, we sought to evaluate Andrographolide, a labdane-diterpenoid from the Andrographis paniculata plant as an effective compound for inhibiting the NS3-4A protease as well as its concomitant drug-resistant mutants by using molecular docking and dynamic simulations. Our study shows that Andrographolide has best docking scores of −15.0862, −15.2322, and −13.9072 compared to those of Asunaprevir −3.7159, −2.6431, and −5.4149 with wild-type R155K and D168A mutants, respectively. Also, as shown in the MD simulations, the compound was good in binding the target proteins and maintains strong bonds causing very less to negligible perturbation in the protein backbone structures. Our results validate the susceptibility of Asunaprevir to protein variants as seen from our docking studies and trajectory period analysis. Therefore, from our study, we hope to add one more option in the drug regiment to tackle drug resistance in HCV infections.

  10. Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase†

    Science.gov (United States)

    Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2009-01-01

    Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161

  11. Design and synthesis of 4'-((5-benzylidene-2,4-dioxothiazolidin-3-yl)methyl)biphenyl-2-carbonitrile analogs as bacterial peptide deformylase inhibitors.

    Science.gov (United States)

    Khan, Firoz A Kalam; Patil, Rajendra H; Shinde, Devanand B; Sangshetti, Jaiprakash N

    2016-12-01

    Herein, we report the synthesis and screening of 4'-((5-benzylidene-2,4-dioxothiazolidin-3-yl)methyl)biphenyl-2-carbonitrile analogs 11(a-j) as bacterial peptide deformylase (PDF) enzyme inhibitors. The compounds 11b (IC 50 value = 139.28 μm), 11g (IC 50 value = 136.18 μm), and 11h (IC 50 value = 131.65 μm) had shown good PDF inhibition activity. The compounds 11b (MIC range = 103.36-167.26 μg/mL), 11g (MIC range = 93.75-145.67 μg/mL), and 11h (MIC range = 63.61-126.63 μg/mL) had also shown potent antibacterial activity when compared with standard ampicillin (MIC range = 100.00-250.00 μg/mL). Thus, the active derivatives were not only PDF inhibitors but also efficient antibacterial agents. To gain more insight on the binding mode of the compounds with PDF enzyme, the synthesized compounds 11(a-j) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. The results suggest that this class of compounds has potential for development and use in future as antibacterial drugs. © 2016 John Wiley & Sons A/S.

  12. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  13. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  14. The Exosporium of B.cereus Contains a Binding Site for gC1qR/p33: Implication in Spore Attachment and/or Entry.

    Energy Technology Data Exchange (ETDEWEB)

    GHEBREHIWET,B.; TANTRAL, L.; TITMUS, M.A.; PANESSA-WARREN, B.J.; TORTORA, G.T.; WONG, S.S.; WARREN, J.B.

    2008-01-01

    B. cereus, is a member of a genus of aerobic, gram-positive, spore-forming rod-like bacilli, which includes the deadly, B. anthracis. Preliminary experiments have shown that gC1qR binds to B.cereus spores that have been attached to microtiter plates. The present studies were therefore undertaken, to examine if cell surface gC1qR plays a role in B.cereus spore attachment and/or entry. Monolayers of human colon carcinoma (Caco-2) and lung cells were grown to confluency on 6 mm coverslips in shell vials with gentle swirling in a shaker incubator. Then, 2 {micro}l of a suspension of strain SB460 B.cereus spores (3x10{sup 8}/ml, in sterile water), were added and incubated (1-4 h; 36{sup 0} C) in the presence or absence of anti-gC1qR mAb-carbon nanoloops. Examination of these cells by EM revealed that: (1) When B. cereus endospores contacted the apical Caco-2 cell surface, or lung cells, gClqR was simultaneously detectable, indicating upregulation of the molecule. (2) In areas showing spore contact with the cell surface, gClqR expression was often adjacent to the spores in association with microvilli (Caco-2 cells) or cytoskeletal projections (lung cells). (3) Furthermore, the exosporia of the activated and germinating spores were often decorated with mAb-nanoloops. These observations were further corroborated by experiments in which B.cereus spores were readily taken up by monocytes and neutrophils, and this uptake was partially inhibited by mAb 60.11, which recognizes the C1q binding site on gC1qR. Taken together, the data suggest a role, for gC1qR at least in the initial stages of spore attachment and/or entry.

  15. Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study

    Directory of Open Access Journals (Sweden)

    Conant Stephanie B

    2006-10-01

    Full Text Available Abstract Background Inflammatory processes are increased in the Parkinson's disease (PD brain. The long-term use of nonsteroidal anti-inflammatory drugs has been associated, in retrospective studies, with decreased risk for PD, suggesting that inflammation may contribute to development of this disorder. The objective of this study was to determine the extent of complement activation, a major inflammatory mechanism, in PD. Methods Substantia nigra specimens from young normal subjects (n = 11–13, aged normal subjects (n = 24–28, and subjects with PD (n = 19–20, Alzheimer's disease (AD; n = 12–13, and dementia with Lewy bodies (DLB; n = 9 were stained for iC3b and C9, representing early- and late-stage complement activation, respectively. Numbers of iC3b+, C9+, and total melanized neurons in each section were counted in a blinded fashion. Nonparametric analyses were used to evaluate differences between groups and to evaluate correlations between complement staining, numbers of melanized neurons, and the duration of PD. Results Lewy bodies in both PD and DLB specimens stained for iC3b and C9. Staining was also prominent on melanized neurons. The percentage of iC3b+ neurons was significantly increased in PD vs. aged normal and AD specimens, and in young normal vs. aged normal specimens. C9 immunoreactivity was significantly increased in PD vs. AD specimens, but unlike iC3b, the increased C9 staining in PD and young normal specimens did not achieve statistical significance vs. aged normal specimens. iC3b and C9 staining in PD specimens was not correlated with the numbers of remaining melanized neurons, nor with the duration of PD. Conclusion Complement activation occurs on Lewy bodies and melanized neurons in the PD substantia nigra. Early complement activation (iC3b is increased on melanized neurons in PD vs. aged normal specimens, and late-stage complement activation (C9 also tends to increase. This latter finding suggests that complement

  16. Wear behaviour of plasma-sprayed AlSi/B4C composite coatings

    International Nuclear Information System (INIS)

    Sarikaya, Ozkan; Anik, Selahaddin; Celik, Erdal; Okumus, S. Cem; Aslanlar, Salim

    2007-01-01

    This paper describes the wear behaviour of AlSi/B 4 C composite coatings with 0-25 wt% B 4 C particles for diesel engine motors. These coatings were successfully fabricated on AlSi substrates using an atmospheric plasma spray technique. The produced samples were characterized by means of an optical microscope, scanning electron microscope and microhardness tester. The obtained results pointed out that an increase of B 4 C particles in AlSi coatings was caused on the rising of the microhardness values and the decrease of the thermal expansion coefficient of the coatings. The friction and wear experiments were performed under dry conditions using a ball-on-dics configuration against WC/Co counter material for different loads. It was concluded that wear resistance of the coatings produced using B 4 C powders is greatly improved compared with the substrate material. The highest wear resistance of the coatings were also determined in the 20% B 4 C coating

  17. Scaffold-hopping from xanthines to tricyclic guanines: A case study of dipeptidyl peptidase 4 (DPP4) inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pissarnitski, Dmitri A.; Zhao, Zhiqiang; Cole, David; Wu, Wen-Lian; Domalski, Martin; Clader, John W.; Scapin, Giovanna; Voigt, Johannes; Soriano, Aileen; Kelly, Theresa; Powles, Mary Ann; Yao, Zuliang; Burnett, Duane A. (Merck)

    2016-11-01

    Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.

  18. Ordering effects in benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6- dione polymers with >7% solar cell efficiency

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; El Labban, Abdulrahman; Hansen, Michael Ryan; Tassone, Christopher J.; Toney, Michael F.; Beaujuge, Pierre

    2014-01-01

    Benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6-dione (PBDFTPD) polymers prepared by microwave-assisted synthesis can achieve power conversion efficiencies (PCEs) >7% in bulk-heterojunction solar cells with phenyl-C61/71-butyric acid methyl

  19. Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5 M H2SO4 solution

    International Nuclear Information System (INIS)

    Obot, I.B.; Obi-Egbedi, N.O.

    2010-01-01

    Indeno-1-one [2,3-b] quinoxaline (INQUI), synthesized in our laboratory, was tested as inhibitor for the corrosion of mild steel in 0.5 M H 2 SO 4 using gravimetric method at 30 o C. The inhibitor (INQUI) showed about 81% inhibition efficiency (E (%)) at an optimum concentration of 10 x 10 -6 M. The inhibition efficiency increases with increase in inhibitor concentration but decreases with increase in immersion time. The adsorption of the inhibitor on the mild steel in the acid solution was found to accord with Temkin's adsorption isotherm. The calculated value of the free energy for the adsorption process, ΔG ads , reveals a strong chemisorbed bond between the inhibitor and mild steel surface and a spontaneous adsorption of the inhibitor on the mild steel surface. Density functional theory (DFT) proves that INQUI molecule is adsorbed on the mild steel surface by the most negatively charged nitrogen and oxygen atoms.

  20. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  2. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene.

    Science.gov (United States)

    Fujita, Yosuke; Morinobu, Shigeru; Takei, Shiro; Fuchikami, Manabu; Matsumoto, Tomoya; Yamamoto, Shigeto; Yamawaki, Shigeto

    2012-05-01

    Histone acetylation, which alters the compact chromatin structure and changes the accessibility of DNA to regulatory proteins, is emerging as a fundamental mechanism for regulating gene expression. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance fear extinction. In this study, we examined whether vorinostat, an HDAC inhibitor, facilitates fear extinction, using a contextual fear conditioning (FC) paradigm, in Sprague-Dawley rats. We found that vorinostat facilitated fear extinction. Next, the levels of global acetylated histone H3 and H4 were measured by Western blotting. We also assessed the effect of vorinostat on the hippocampal levels of NMDA receptor mRNA by real-time quantitative PCR (RT-PCR) and protein by Western blotting. 2 h after vorinostat administration, the levels acetylated histones and NR2B mRNA, but not NR1 or NR2A mRNA, were elevated in the hippocampus. The NR2B protein level was elevated 4 h after vorinostat administration. Last, we investigated the levels of acetylated histones and phospho-CREB (p-CREB) binding at the promoter of the NR2B gene using the chromatin immunoprecipitation (ChIP) assay followed by RT-PCR. The ChIP assay revealed increases in the levels of acetylated histones and they were accompanied by enhanced binding of p-CREB to its binding site at the promoter of the NR2B gene 2 h after vorinostat administration. These findings suggest that vorinostat increases the expression of NR2B in the hippocampus by enhancing histone acetylation, and this process may be implicated in fear extinction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Granulocyte and monocyte CD11b expression during plasma separation is dependent on complement factor 5 (C5) - an ex vivo study with blood from a C5-deficient individual.

    Science.gov (United States)

    Hardersen, Randolf; Enebakk, Terje; Christiansen, Dorte; Bergseth, Grethe; Brekke, Ole-Lars; Mollnes, Tom Eirik; Lappegård, Knut Tore; Hovland, Anders

    2018-04-01

    The aim of the study was to investigate the role of complement factor 5 (C5) in reactions elicited by plasma separation using blood from a C5-deficient (C5D) individual, comparing it to C5-deficient blood reconstituted with C5 (C5DR) and blood from healthy donors. Blood was circulated through an ex vivo plasma separation model. Leukocyte CD11b expression and leukocyte-platelet conjugates were measured by flow cytometry during a 30-min period. Other markers were assessed during a 240-min period. Granulocyte and monocyte CD11b expression did not increase in C5D blood during plasma separation. In C5DR samples granulocytes CD11b expression, measured by mean fluorescence intensity (MFI), increased from 10481 ± 6022 (SD) to 62703 ± 4936, and monocytes CD11b expression changed from 13837 ± 7047 to 40063 ± 713. Granulocyte-platelet conjugates showed a 2.5-fold increase in the C5DR sample compared to the C5D sample. Monocyte-platelet conjugates increased independently of C5. In the C5D samples, platelet count decreased from 210 × 10 9 /L (201-219) (median and range) to 51 × 10 9 /L (50-51), and C3bc increased from 14 CAU/mL (21-7) to 198 CAU/mL (127-269), whereas TCC formation was blocked during plasma separation. In conclusion, up-regulation of granulocyte and monocyte CD11b during plasma separation was C5-dependent. The results also indicate C5 dependency in granulocyte-platelet conjugates formation. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  4. The Role of Complement Inhibition in Thrombotic Angiopathies and Antiphospholipid Syndrome

    Science.gov (United States)

    Erkan, Doruk; Salmon, Jane E.

    2016-01-01

    Antiphospholipid syndrome (APS) is characterized by thrombosis (arterial, venous, small vessel) and/or pregnancy morbidity occurring in patients with persistently positive antiphospholipid antibodies (aPL). Catastrophic APS is the most severe form of the disease, characterized by multiple organ thromboses occurring in a short period and commonly associated with thrombotic microangiopathy (TMA). Similar to patients with complement regulatory gene mutations developing TMA, increased complement activation on endothelial cells plays a role in hypercoagulability in aPL-positive patients. In mouse models of APS, activation of the complement is required and interaction of complement (C) 5a with its receptor C5aR leads to aPL-induced inflammation, placental insufficiency, and thrombosis. Anti-C5 antibody and C5aR antagonist peptides prevent aPL-mediated pregnancy loss and thrombosis in these experimental models. Clinical studies of anti-C5 monoclonal antibody in aPL-positive patients are limited to a small number of case reports. Ongoing and future clinical studies of complement inhibitors will help determine the role of complement inhibition in the management of aPL-positive patients. PMID:27020721

  5. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding.

    Science.gov (United States)

    Pierard, Valérie; Guiguen, Allan; Colin, Laurence; Wijmeersch, Gaëlle; Vanhulle, Caroline; Van Driessche, Benoît; Dekoninck, Ann; Blazkova, Jana; Cardona, Christelle; Merimi, Makram; Vierendeel, Valérie; Calomme, Claire; Nguyên, Thi Liên-Anh; Nuttinck, Michèle; Twizere, Jean-Claude; Kettmann, Richard; Portetelle, Daniel; Burny, Arsène; Hirsch, Ivan; Rohr, Olivier; Van Lint, Carine

    2010-06-18

    Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator Tax(BLV) decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267(LTaxSN) 5'-LTR compared with the L267 5'-LTR. Interestingly, DNA methylation inhibitors and Tax(BLV) synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the -154 or -129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at -129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5'-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.

  6. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  7. A zebrafish model for uremic toxicity: role of the complement pathway.

    Science.gov (United States)

    Berman, Nathaniel; Lectura, Melisa; Thurman, Josh; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H

    2013-01-01

    Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p 50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. Copyright © 2013 S. Karger AG, Basel.

  8. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity.

    Science.gov (United States)

    Alves, Livia A; Harth-Chu, Erika N; Palma, Thais H; Stipp, Rafael N; Mariano, Flávia S; Höfling, José F; Abranches, Jacqueline; Mattos-Graner, Renata O

    2017-10-01

    Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRK Sm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRK Sm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicK Sm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (Pmutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRK Sm. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl-N-(5-cyclopropyl-1H-pyrazol-3-yl-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity

    Directory of Open Access Journals (Sweden)

    Tianxiao Wu

    2018-02-01

    Full Text Available A series of novel 2,4-diaminoquinazoline derivatives were designed, synthesized, and evaluated as p21-activated kinase 4 (PAK4 inhibitors. All compounds showed significant inhibitory activity against PAK4 (half-maximal inhibitory concentration IC50 < 1 μM. Among them, compounds 8d and 9c demonstrated the most potent inhibitory activity against PAK4 (IC50 = 0.060 μM and 0.068 μM, respectively. Furthermore, we observed that compounds 8d and 9c displayed potent antiproliferative activity against the A549 cell line and inhibited cell cycle distribution, migration, and invasion of this cell line. In addition, molecular docking analysis was performed to predict the possible binding mode of compound 8d. This series of compounds has the potential for further development as PAK4 inhibitors for anticancer activity.

  10. P-I Snake Venom Metalloproteinase Is Able to Activate the Complement System by Direct Cleavage of Central Components of the Cascade

    Science.gov (United States)

    Pidde-Queiroz, Giselle; Magnoli, Fábio Carlos; Portaro, Fernanda C. V.; Serrano, Solange M. T.; Lopes, Aline Soriano; Paes Leme, Adriana Franco; van den Berg, Carmen W.; Tambourgi, Denise V.

    2013-01-01

    Background Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. Results Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. Conclusion We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation. PMID:24205428

  11. Different effects of histone deacetylase inhibitors nicotinamide and trichostatin A (TSA) in C17.2 neural stem cells.

    Science.gov (United States)

    Wang, Haifeng; Cheng, Hua; Wang, Kai; Wen, Tieqiao

    2012-11-01

    Histone deacetylase inhibitors are involved in proliferation, apoptosis, cell cycle, mRNA transcription, and protein expression in various cells. However, the molecular mechanism underlying such functions is still not fully clear. In this study, we used C17.2 neural stem cell (NSC) line as a model to evaluate the effects of nicotinamide and trichostatin A (TSA) on cell characteristics. Results show that nicotinamide and TSA greatly inhibit cell growth, lead to cell morphology changes, and effectively induce cell apoptosis in a dose-dependent manner. Western blot analyses confirmed that nicotinamide significantly decreases the expression of bcl-2 and p38. Further insight into the molecular mechanisms shows the suppression of phosphorylation in eukaryotic initiation factor 4E-binding protein 1 (4EBP1) by nicotinamide, whereas, an increased expression of bcl-2 and p38 and phosphorylation of 4EBP1 by TSA. However, both nicotinamide and TSA significantly increase the expression of cytochrome c (cyt c). These results strongly suggest that bcl-2, p38, cyt c, and p-4EBP1 could suppress proliferation and induce apoptosis of C17.2 NSCs mediated by histone deacetylase inhibitors, nicotinamide and TSA, involving different molecular mechanisms.

  12. Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain - A fragment based approach.

    Science.gov (United States)

    Upadhyay, Anup K; Judge, Russell A; Li, Leiming; Pithawalla, Ron; Simanis, Justin; Bodelle, Pierre M; Marin, Violeta L; Henry, Rodger F; Petros, Andrew M; Sun, Chaohong

    2018-06-01

    The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Tribological properties of B{sub 4}C-TiB{sub 2}-TiC-Ni cermet coating produced by HVOF

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, Mahdi [Islamic Azad Univ., Najafabad (Iran, Islamic Republic of). Dept. of Materials Engineering; Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Depr. of Materials Engineering; Shamanian, Morteza; Salehi, Mehdi [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Depr. of Materials Engineering; Mostaan, Hossein [Arak Univ., Arak (Iran, Islamic Republic of). Dept. of Materials and Metallurgical Engineering

    2017-08-15

    In this study, B{sub 4}C-TiB{sub 2}-TiC-Ni coating was sprayed on the surface of 4130 steel by high velocity oxy-fuel torch. The tribological behavior of samples was studied by ball on disk wear testing. Structural evolution of the coating was analyzed by X-ray diffractometry. The microstructure of the coating, wear track and Al{sub 2}O{sub 3} ball was investigated by scanning electron microscopy, field emission scanning electron microscopy and optical microscopy. Elemental analysis of the wear track was done by energy dispersive X-ray spectroscopy. It was found that a cermet coating containing B{sub 4}C, TiB{sub 2}, TiC and Ni phases with good bonding to the 4130 steel substrate with no sign of any cracking or pores was formed. The wear mechanism of the composite coating was delamination. The friction coefficient of samples was decreased with increasing load because of higher frictional heat and creation of more oxide islands.

  14. Correlation of systemic lupus erythematosus disease activity with classical complement (CH50 function and related protein levels

    Directory of Open Access Journals (Sweden)

    Salesi M

    2008-09-01

    Full Text Available "nBackground: The components of the classical complement pathway play an important role in the pathogenesis of systemic lupus erythematosus (SLE and are reportedly useful biomarkers of disease activity. In this study, we evaluate disease activity, complement function (total hemolytic complement, CH50 and complement protein levels (C3, C4, C3d, C4d, SC5b-9, comparing the results of patients with active disease versus those with inactive disease."n"nMethods: This cross-sectional study included 78 hospitalized women with SLE, 24 of whom were in the active group, with SLE disease activity indexes (SLEDAI.2K of >6, and 54 in the inactive group, with SLEDAI.2K of ≤6. Serum CH50 was measured using a red blood cell hemolytic assay. C3 and C4 levels were determined by nephlometry and plasma levels of C3d, C4d, SC5b-9 by ELISA. The data were statistically analyzed using SPSS."n"nResults: The mean (±standard error C4d levels of the inactive group were significantly higher than those of the active group (23.39±1.1µg/ml and 16.9±1.6µg/ml, respectively; p=0.003. There was also a significant correlation between C3 and C4 levels (p=0.807. The mean values of the other proteins (C3, C4, CH50, SC5b-9, and C3d circulating immune complex concentrations were not significantly different between the inactive group vs. the active group: 89.35±6.8 vs. 85.54±7.6mg/dl, 18.33±2.3 vs. 20.45±2.4mg/dl, 149.03±4.3 vs. 157±4.3U, 1414.4±114.94 vs. 1471.1±216.9ng/ml, 9.43±0.96 vs. 13.31±3.16µgEq/ml, respectively (p>0.05."n"nConclusions: According to our results, C4d levels may be used as a biomarker of disease activity. The significant correlation between C3 and C4 may confirm the activity of the classical pathway in SLE patients."n"nKeywords: Systemic lupus erythematosus, CH50, C3, C4, C3d, C4d, SC5b-9, inactive, flare.

  15. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors?

    Science.gov (United States)

    Supuran, Claudiu T

    2018-12-01

    A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH 2 , CONHNH 2 , CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO 3 H, SO 2 NH 2 , SO 2 NHNH 2 , SO 2 NHOH, SO 2 NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.

  16. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.

    Science.gov (United States)

    Tajwar, Razia; Shahid, Saher; Zafar, Rehan; Akhtar, Muhammad Waheed

    2017-11-01

    Xylanase XynB of the hyperthermophile Thermotoga maritima, which belongs to glycoside hydrolase family 10 (GH10), does not have an associated carbohydrate binding module (CBM) in the native state. CBM6 and CBM22 from a thermophile Clostridium thermocellum were fused to the catalytic domain of XynB (XynB-C) to determine the effects on activity and other properties. XynB-B22C and XynB-CB22, produced by fusing CBM22 to the N- and C-terminal of XynB-C, showed 1.7- and 3.24-fold increase in activity against the insoluble birchwood xylan, respectively. Similarly, CBM6 when attached to the C-terminal of XynB-C resulted in 2.0-fold increase in activity, whereas its attachment to the N-terminal did not show any increase of activity. XynB-B22C and XynB-CB22 retained all the activity, whereas XynB-B6C and XynB-CB6 lost 17 and 11% of activity, respectively, at 60°C for 4h. Thermostability data and the secondary structure contents obtained by molecular modelling are in agreement with the data from circular dichroism analysis. Molecular modelling analysis showed that the active site residues of the catalytic domain and the binding residues of CBM6 and CBM22 were located on the surface of molecule, except XynB-B6C, where the binding residues were found somewhat buried. In the case of XynB-CB22, the catalytic and the binding residues seem to be located favorably adjacent to each other, thus showing higher increase in activity. This study shows that the active site residues of the catalytic domain and the binding residues of the CBM are arranged in a unique fashion, not reported before. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Photoelectron spectroscopy of B4O4 (-): Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters.

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-07

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.

  18. Synthesis of Sulochrin-125I and Its Binding Affinity as α-Glucosidase Inhibitor using Radioligand Binding Assay (RBA Method

    Directory of Open Access Journals (Sweden)

    W. Lestari

    2014-04-01

    Full Text Available Most of diabetics patients have type 2 diabetes mellitus or non insulin dependent diabetes mellitus. Treatment type 2 diabetes mellitus can be done by inhibiting α-glucosidase enzyme which converts carbohydrates into glucose. Sulochrin is one of the potential compounds which can inhibit the function of α-glucosidase enzyme. This study was carried out to obtain data of sulochrin binding with α-glucosidase enzyme as α-glucosidase inhibitor using Radioligand Binding Assay (RBA method. Primary reagent required in RBA method is labeled radioactive ligand (radioligand. In this study, the radioligand was sulochrin-125I and prior to sulochrin-125I synthesis, the sulochrin-I was synthesized. Sulochrin-I and sulochrin-125I were synthesized and their bindings were studied using Radioligand Binding Assay method. Sulochrin-I was synthesized with molecular formula C17H15O7I and molecular weight 457.9940. Sulochrin-125I was synthesized from sulochrin-I by isotope exchange method. From the RBA method, dissociation constant (Kd and maximum binding (Bmax were obtained 26.316 nM and Bmax 9.302 nM respectively. This low Kd indicated that sulochrin was can bind to α-glucosidase

  19. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Csomor, Eszter; Bajtay, Zsuzsa; Sándor, Noémi

    2007-01-01

    Maturation of dendritic cells (DCs) is known to be induced by several stimuli, including microbial products, inflammatory cytokines and immobilized IgG, as demonstrated recently. Since immune complexes formed in vivo also contain C1q, moreover apoptotic cells and several pathogens fix C1q...... activity of the cells was assessed by measuring cytokine secretion and their ability to activate allogeneic T lymphocytes. Cytokine production by T cells co-cultured with C1q-matured DCs was also investigated. C1q, but not the structurally related mannose-binding lectin was found to bind to imMDC in a dose......-dependent manner and induced NF-kappaB translocation to the nucleus. Immobilized C1q induced maturation of MDCs and enhanced secretion of IL-12 and TNF-alpha, moreover, elevated their T-cell stimulating capacity. As IFN-gamma levels were increased in supernatants of MDC-T cell co-cultures, our data suggest that C1...

  20. Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Haijun Ma

    2018-06-01

    Full Text Available Lupus nephritis (LN is one of the most severe complications of systemic lupus erythematosus (SLE caused by uncontrolled activation of the complement system. Mesenchymal stem cells (MSCs exhibit clinical efficacy for severe LN in our previous studies, but the underlying mechanisms of MSCs regulating complement activation remain largely unknown. Here we show that significantly elevated C5a and C5b-9 were found in patients with LN, which were notably correlated with proteinuria and different renal pathological indexes of LN. MSCs suppressed systemic and intrarenal activation of C5, increased the plasma levels of factor H (FH, and ameliorated renal disease in lupus mice. Importantly, MSCs transplantation up-regulated the decreased FH in patients with LN. Mechanistically, interferon-α enhanced the secretion of FH by MSCs. These data demonstrate that MSCs inhibit the activation of pathogenic C5 via up-regulation of FH, which improves our understanding of the immunomodulatory mechanisms of MSCs in the treatment of lupus nephritis. Keywords: Lupus nephritis, C5, MSCs, FH