WorldWideScience

Sample records for compact supermassive binary

  1. Busting Up Binaries: Encounters Between Compact Binaries and a Supermassive Black Hole

    CERN Document Server

    Addison, Eric; Larson, Shane

    2015-01-01

    Given the stellar density near the galactic center, close encounters between compact object binaries and the supermassive black hole are a plausible occurrence. We present results from a numerical study of close to 13 million such encounters. Consistent with previous studies, we corroborate that, for binary systems tidally disrupted by the black hole, the component of the binary remaining bound to the hole has eccentricity ~ 0.97 and circularizes dramatically by the time it enters the classical LISA band. Our results also show that the population of surviving binaries merits attention. These binary systems experience perturbations to their internal orbital parameters with potentially interesting observational consequences. We investigated the regions of parameter space for survival and estimated the distribution of orbital parameters post-encounter. We found that surviving binaries harden and their eccentricity increases, thus accelerating their merger due gravitational radiation emission and increasing the p...

  2. Compact Symmetric Objects and Supermassive Binary Black Holes in the VLBA Imaging and Polarimetry Survey

    CERN Document Server

    Tremblay, S E; Ortiz, A A; Tremblay, C D; Helmboldt, J F; Romani, R W

    2016-01-01

    We present multi-frequency Very Long Baseline Array (VLBA) follow-up observations of VLBA Imaging and Polarimetry Survey sources identified as likely compact symmetric objects (CSOs) or super-massive binary black holes (SBBHs). We also present new spectroscopic redshifts for 11 sources observed with the Hobby-Eberly Telescope. While no new SBBHs can be confirmed from these observations, we have identified 24 CSOs in the sample, 15 of which are newly designated, and refuted 52 candidates leaving 33 unconfirmed candidates. This is the first large uniform sample of CSOs which can be used to elicit some of the general properties of these sources, including morphological evolution and environmental interaction. We have detected polarised emission from two of these CSOs the properties of which are consistent with Active Galactic Nuclei unification schemes.

  3. Close supermassive binary black holes

    Science.gov (United States)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  4. Observational Signatures of Binary Supermassive Black Holes

    CERN Document Server

    Roedig, Constanze; Miller, M Coleman

    2014-01-01

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary AGN. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength $\\lambda_n$ at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches $\\propto \\lambda_n^{16/3}$; longer wavelength searches are therefore strongly favored. A sec...

  5. Modeling AGN outbursts from supermassive black hole binaries

    Directory of Open Access Journals (Sweden)

    Tanaka T.

    2012-12-01

    Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

  6. Modified evolution of stellar binaries from supermassive black hole binaries

    Science.gov (United States)

    Liu, Bin; Wang, Yi-Han; Yuan, Ye-Fei

    2017-04-01

    The evolution of main-sequence binaries resided in the galactic centre is influenced a lot by the central supermassive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic centre, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai (LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ∼70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ∼10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (≥40°) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.

  7. Binary pairs of supermassive black holes - Formation in merging galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Valtaoja, L.; Valtonen, M.J.; Byrd, G.G. (Turku Univ. (Finland); Alabama Univ., Tuscaloosa (USA))

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.

  8. Galaxy Rotation and Rapid Supermassive Black Hole Binary Coalescence

    CERN Document Server

    Holley-Bockelmann, Kelly

    2015-01-01

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. However it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N larger than 500K, we find that the evolution of the SMBH binary is convergent, and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co...

  9. Formation of discs around super-massive black hole binaries

    Science.gov (United States)

    Goicovic, Felipe G.; Cuadra, Jorge; Sesana, Alberto

    2016-02-01

    We model numerically the evolution of 104 M ⊙ turbulent molecular clouds in near-radial infall onto 106 M ⊙, equal-mass supermassive black hole binaries, using a modified version of the SPH code gadget-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  10. Formation of discs around super-massive black hole binaries

    CERN Document Server

    Goicovic, Felipe G; Sesana, Alberto

    2015-01-01

    We model numerically the evolution of $10^4M_\\odot$ turbulent molecular clouds in near-radial infall onto $10^6M_\\odot$, equal-mass super-massive black hole binaries, using a modified version of the SPH code GADGET-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  11. Evolution Of Binary Supermassive Black Holes In Rotating Nuclei

    CERN Document Server

    Rasskazov, Alexander

    2016-01-01

    Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary's orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary's orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binary's orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binar...

  12. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  13. Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes

    Science.gov (United States)

    Komossa, S.; Baker, J. G.; Liu, F. K.

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.

  14. Growth of supermassive black holes, galaxy mergers and supermassive binary black holes

    CERN Document Server

    Komossa, S; Liu, F K

    2016-01-01

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift universe.

  15. A Compact Supermassive Binary Black Hole System

    Science.gov (United States)

    2006-04-03

    Low Resolution Spectrograph (LRS; Hill et al. 1998). Two 600s exposures were taken, using the G3 VPH Grism, a Schott OG 515 blocking filter and a 1.5...weighted 2005 VLBA images of 0402+379 at 0.3 and 5 GHz. Contours are drawn beginning at 3σ and increase by factors of 2 thereafter. The peak flux...15, 22 and 43 GHz. Contours are drawn beginning at 3σ and increase by factors of 2 thereafter. The peak flux density and rms noise for each frequency

  16. Tidal disruption events from supermassive black hole binaries

    CERN Document Server

    Coughlin, Eric R; Nixon, Chris; Begelman, Mitchell C

    2016-01-01

    We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries ($10^6M_{\\odot}$), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially-unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall mor...

  17. Alignment of supermassive black hole binary orbits and spins

    CERN Document Server

    Miller, M Coleman

    2013-01-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to 0.001 - 0.01 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m_1/m_2)^{1/2}>1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignm...

  18. Capture of compact objects by supermassive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Filloux, Charline [Dpt. CASSIOPEE, Observatoire de la Cote d' Azur, BP 429 06304 Nice (France); Pacheco, Jose A de Freitas [Dpt. CASSIOPEE, Observatoire de la Cote d' Azur, BP 429 06304 Nice (France); Regimbau, Tania [Dpt. ARTEMIS, Observatoire de la Cote d' Azur, BP 429 06304 Nice (France)

    2007-05-15

    Capture rates of compact objects were calculated using a recent solution of the Fokker-Planck equation in energy-space, including two-body resonant effects. The present study indicates that capture rates scale as {proportional_to} M{sub bh}{sup -1.048} consequence of the fact that dwarf galaxies have central regions denser than luminous objects. If the mass distribution of supermassive black holes has a lower cutoff at {approx}1.4 x 10{sup 6} M{sub o-dot} (corresponding to the lowest supermassive black hole mass), then 9 inspiral events are expected to be seen by LISA (7-8 corresponding to white dwarf captures and 1-2 to neutron star or stellar black hole captures) after 1 yr of operation. However, if the mass distribution extends down to {approx}2 x 10{sup 5}M{sub o-dot}, then the number of expected events increases up to 579 (corresponding to {approx}274 stellar black hole captures, {approx}194 neutron star captures and {approx}111 white dwarf captures)

  19. Galaxy rotation and supermassive black hole binary evolution

    Science.gov (United States)

    Mirza, M. A.; Tahir, A.; Khan, F. M.; Holley-Bockelmann, H.; Baig, A. M.; Berczik, P.; Chishtie, F.

    2017-09-01

    Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, Laser Interferometer Space Antenna, an ESA/NASA mission currently set to launch by 2034.

  20. Tidal disruption events from supermassive black hole binaries

    Science.gov (United States)

    Coughlin, Eric R.; Armitage, Philip J.; Nixon, Chris; Begelman, Mitchell C.

    2017-03-01

    We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries (106 M⊙), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces a significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall morphology of the debris is greatly altered by the presence of the second black hole, and the accretion rate histories display a wide range of behaviours, including order of magnitude dips and excesses relative to control simulations that include only one black hole. Complex evolution typically persists for many orbital periods of the binary. We find evidence for power in the accretion curves on time-scales related to the binary orbital period, though there is no exact periodicity. We discuss our results in the context of future wide-field surveys, and comment on the prospects of identifying and characterizing the subset of events occurring in nuclei with binary SMBHs.

  1. Gravitational waves from binary supermassive black holes in galactic nuclei

    Science.gov (United States)

    Merritt, David

    2017-01-01

    Pulsar timing arrays (PTAs) will eventually detect the gravitational wave (GW) background produced by a cosmological population of binary supermassive black hole (SBHs). In this talk, I review the ways in which the formation and evolution of the binary population determine the amplitude and form of the GW spectrum. A major source of systematic uncertainty is the mass function of SBHs; in the past, SBH masses have often been overestimated, and the number of SBHs with trustworthy mass estimates is still very small. The presence of gas and stars around the binaries accelerates the evolution at large separations, reducing the amplitude of the GW spectrum at low frequencies. I will highlight two recent developments in our theoretical understanding of binary evolution. (1) Slight departures from axi-symmetry in a galaxy imply a sustained supply of stars to the very center, thus overcoming the “final-parsec problem”. (2) In the generic case of a rotating nucleus, the plane of the binary’s orbit evolves predictably toward alignment with the symmetry plane of the nucleus; the binary’s eccentricity also evolves in tandem with the orientation, sometimes reaching values close to one. These processes should leave distinct imprints on the stochastic GW spectrum, and have important implications for the likelihood of GW detection in the near future.

  2. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  3. Hypervelocity intracluster stars ejected by supermassive black hole binaries

    CERN Document Server

    Holley-Bockelmann, K; Mihos, J C; Feldmeier, J J; Ciardullo, R; McBride, C; Holley-Bockelmann, Kelly; Sigurdsson, Steinn; Feldmeier, John J.; Ciardullo, Robin; Bride, Cameron Mc

    2005-01-01

    Hypervelocity stars have been recently discovered in the outskirts of galaxies, such as the unbound star in the Milky Way halo, or the three anomalously fast intracluster planetary nebulae (ICPNe) in the Virgo Cluster. These may have been ejected by close 3-body interactions with a binary supermassive black hole (SMBBH), where a star which passes within the semimajor axis of the SMBBH can receive enough energy to eject it from the system. Stars ejected by SMBBHs may form a significant sub-population with very different kinematics and mean metallicity than the bulk of the intracluster stars. The number, kinematics, and orientation of the ejected stars may constrain the mass ratio, semimajor axis, and even the orbital plane of the SMBBH. We investigate the evolution of the ejected debris from a SMBBH within a clumpy and time-dependent cluster potential using a high resolution, self-consistent cosmological N-body simulation of a galaxy cluster. We show that the predicted number and kinematic signature of the fas...

  4. Supermassive binary black holes - possible observational effects in the x-ray emission

    Directory of Open Access Journals (Sweden)

    Jovanović Predrag

    2014-01-01

    Full Text Available Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe Kα line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe i br. 176001: Astrophysical Spectroscopy of Extragalactic Objects

  5. Constraints on Individual Supermassive Black Hole Binaries from Pulsar Timing Array Limits on Continuous Gravitational Waves

    CERN Document Server

    Schutz, Katelin

    2015-01-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent measurements of the dynamical masses $M_{\\rm bh}$ of supermassive black holes in specific galaxies at known distances and leverage this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of $M_{\\rm bh}$ in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves can already constrain the mass ratios of hypothetical black hole binaries in a...

  6. Searching for Binary Supermassive Black Holes via Variable Broad Emission Line Shifts: Low Binary Fraction

    Science.gov (United States)

    Wang, Lile; Greene, Jenny E.; Ju, Wenhua; Rafikov, Roman R.; Ruan, John J.; Schneider, Donald P.

    2017-01-01

    Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg ii emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al., using Sloan Digital Sky Survey spectra with an additional epoch of data that lengthens the typical baseline to ∼10 yr. We find variations in the line of sight velocity shifts over 10 yr that are comparable to the shifts observed over 1–2 yr, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with eight-year median time baselines, from which we would expect to see velocity shifts >1000 {km} {{{s}}}-1 from sub-parsec binaries. We find only one object with an outlying velocity of 448 {km} {{{s}}}-1, indicating—based on our modeling—that ≲1% (the value varies with different assumptions) of SMBHs that are active as quasars reside in binaries with ∼0.1 pc separations. Binaries either sweep rapidly through these small separations or stall at larger radii.

  7. Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse.

    Science.gov (United States)

    Reisswig, C; Ott, C D; Abdikamalov, E; Haas, R; Mösta, P; Schnetter, E

    2013-10-11

    We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z is approximately equal or > to 10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10(4)-10(6)M[symbol: see text]. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ~10% of the initial mass.

  8. Searching for Binary Supermassive Black Holes via Variable Broad Emission Line Shifts: Low Binary Fraction

    CERN Document Server

    Wang, Lile; Ju, Wenhua; Rafikov, Roman R; Ruan, John J; Schneider, Donald P

    2016-01-01

    Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the Universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg II emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al. (2013), using SDSS spectra with an additional epoch of data that lengthens the typical baseline to ~10 yr. We find variations in the line-of-sight velocity shifts over 10 years that are comparable to the shifts observed over 1-2 years, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with 8 yr median time baselines, from which we would expect to see velocity shifts >1000 km/s from sub-pc binaries. We find only one object with an outlying velocity of 448 km/s, indicating, based on our mod...

  9. A close-pair binary in a distant triple supermassive black hole system.

    Science.gov (United States)

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  10. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.

    Science.gov (United States)

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-21

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  11. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    Science.gov (United States)

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  12. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    CERN Document Server

    Hayasaki, Kimitake

    2015-01-01

    Galaxy mergers produce binaries of supermassive black holes, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  13. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  14. Line Shapes Emitted from Spiral Structures around Symmetric Orbits of Supermassive Binary Black Holes

    Indian Academy of Sciences (India)

    M. Smailagić; E. Bon

    2015-12-01

    Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shape variations are induced by supermassive binary black hole systems (SMBBH). We assume that the accreting gas inside the circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.

  15. Line Shapes Emitted from Spiral Structures around Symmetric Orbits of Supermassive Binary Black Holes

    CERN Document Server

    Smailagić, Marijana

    2016-01-01

    Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shapes variation are induced by supermassive binary black hole systems (SMBBH). We assume that accreting gas inside of circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.

  16. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  17. The Evolution of Compact Binary Star Systems.

    Science.gov (United States)

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  18. A close-pair binary in a distant triple supermassive black-hole system

    CERN Document Server

    Deane, R P; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H -R; Grainge, K; Rumsey, C

    2014-01-01

    Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $\\sim$10$^9$ M$_\\odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $\\sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs ar...

  19. Accretion and Orbital Inspiral in Gas-Assisted Supermassive Black Hole Binary Mergers

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant $\\dot M$ accretion disk solution. Suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semi-major axis, the binary can merge in less than its mass-doubling time due to accretion. T...

  20. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    Science.gov (United States)

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  1. Constraining the Orbits of the Supermassive Binary Blackhole Pair 0402+379

    Science.gov (United States)

    Holland, Ben; Peck, Alison B.; Taylor, Gregory B.; Zavala, Robert T.; Romani, Roger W.

    2015-01-01

    Galaxy mergers are a relatively common occurrence in the Universe. Given that most large galaxies harbor supermassive black holes in their centers, it should follow that two supermassive black holes could be found in the centers of galaxies that have recently undergone a merger event. Supermassive black hole binaries (SMBHB) with small separation (referred to as "tight binaries"), however, are quite rare, implying that the mergers happen less often than we think, or that the binary black hole merger happens much more quickly than expected from simulations. We present observations of one of the best candidates for a tight SMBHB, 0402+379, made in 2003, 2005, and 2009 using the VLBA at 3 frequencies, and report on their apparent relative component motions over this time frame. Additionally, these results are compared to earlier observations of 0402+379 which can help establish a long time baseline. This information, although still preliminary, can be used to provide constraints on the orbits of this binary system which in turn may yield insight as to why these binary systems are not significantly more commonly detected in, for example, ULIRGs in the late stages of merger.

  2. Detecting compact binary coalescences with seedless clustering

    Science.gov (United States)

    Coughlin, M.; Thrane, E.; Christensen, N.

    2014-10-01

    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors. Although matched filtering is the optimal search method for well-modeled systems, alternative detection strategies can be used to guard against theoretical errors (e.g., involving new physics and/or assumptions about spin or eccentricity) while providing a measure of redundancy. In a previous paper, we showed how "seedless clustering" can be used to detect long-lived gravitational-wave transients in both targeted and all-sky searches. In this paper, we apply seedless clustering to the problem of low-mass (Mtotal≤10M⊙) compact binary coalescences for both spinning and eccentric systems. We show that seedless clustering provides a robust and computationally efficient method for detecting low-mass compact binaries.

  3. Supermassive Black Hole Binaries: Environment and Galaxy Host Properties of PTA and eLISA sources

    CERN Document Server

    Palafox, Eva Martínez; Colín, Pedro; Gottlöber, Stefan

    2014-01-01

    Supermassive black hole (BH) binaries would comprise the strongest sources of gravitational waves (GW) once they reach <<1 pc separations, for both pulsar timing arrays (PTAs) and space based (SB) detectors. While BH binaries coalescences constitute a natural outcome of the cosmological standard model and galaxy mergers, their dynamical evolution is still poorly understood and therefore their abundances at different stages. We use a dynamical model for the decay of BH binaries coupled with a cosmological simulation and semi-empirical approaches to the occupation of haloes by galaxies and BHs, in order to follow the evolution of the properties distribution of galaxies hosting BH binaries candidates to decay due to GWs emission. Our models allow us to relax simplifying hypothesis about the binaries occupation in galaxies and their mass, as well as redshift evolution. Following previously proposed electromagnetic (EM) signatures of binaries in the subpc regime, that include spectral features and variabilit...

  4. A supermassive black hole in an ultra-compact dwarf galaxy.

    Science.gov (United States)

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  5. Compact Binary Mergers as Multimessenger Sources of Gravitational Waves

    Science.gov (United States)

    Shapiro, Stuart

    2015-04-01

    On the centennial anniversary of Einstein's theory of general relativity, we are on the verge of directly detecting one of its most remarkable predictions - gravitational waves (GWs). The inspiral and merger of compact binaries - binaries with black hole, neutron star or white dwarf companions - are among the most promising sources of GWs. Many of these sources are likely to generate observable electromagnetic (EM) and/or neutrino counterparts to the GWs, constituting a major advance in multimessenger astronomy. By way of illustration, we describe recent magnetohydrodynamic simulations in general relativity (GRMHD) that show how black hole-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short-hard gamma-ray bursts. We also discuss other recent GRMHD simulations that show how an inspiraling, supermassive binary black hole in a galaxy core stirs and accretes magnetized plasma that orbits the holes in a circumbinary disk. This process can generate ``precursor'' and ``aftermath'' EM radiation with respect to the peak GW emission at merger. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grant PHY-1300903 and NASA Grant NNX13AH44G at the University of Illinois at Urbana-Champaign.

  6. Electromagnetic signatures of supermassive black hole binaries resolved by PTAs

    CERN Document Server

    Tanaka, Takamitsu L

    2013-01-01

    Pulsar timing arrays (PTAs) may eventually be able to detect not only the stochastic gravitational-wave (GW) background of SMBH binaries, but also individual, particularly massive binaries whose signals stick out above the background. In this contribution, we discuss the possibility of identifying and studying such `resolved' binaries through their electromagnetic emission. The host galaxies of such binaries are themselves expected to be also very massive and rare, so that out to redshifts z~2 a unique massive galaxy may be identified as the host. At higher redshifts, the PTA error boxes are larger and may contain as many as several hundred massive-galaxy interlopers. In this case, the true counterpart may be identified, if it is accreting gas efficiently, as an active galactic nucleus (AGN) with a peculiar spectrum and variable emission features. Specifically, the binary's tidal torques expel the gas from the inner part of the accretion disk, making it unusually dim in X-ray and UV bands and in broad optical...

  7. Strong lensing interferometry for compact binaries

    NARCIS (Netherlands)

    Pen, U.L.; Yang, I.S.

    2015-01-01

    We propose a possibility to improve the current precision measurements on compact binaries. When the orbital axis is almost perpendicular to our line of sight, a pulsar behind its companion can form two strong lensing images. These images cannot be resolved, but we can use multiwavelength interferom

  8. Rapid Compact Binary Coalescence Parameter Estimation

    Science.gov (United States)

    Pankow, Chris; Brady, Patrick; O'Shaughnessy, Richard; Ochsner, Evan; Qi, Hong

    2016-03-01

    The first observation run with second generation gravitational-wave observatories will conclude at the beginning of 2016. Given their unprecedented and growing sensitivity, the benefit of prompt and accurate estimation of the orientation and physical parameters of binary coalescences is obvious in its coupling to electromagnetic astrophysics and observations. Popular Bayesian schemes to measure properties of compact object binaries use Markovian sampling to compute the posterior. While very successful, in some cases, convergence is delayed until well after the electromagnetic fluence has subsided thus diminishing the potential science return. With this in mind, we have developed a scheme which is also Bayesian and simply parallelizable across all available computing resources, drastically decreasing convergence time to a few tens of minutes. In this talk, I will emphasize the complementary use of results from low latency gravitational-wave searches to improve computational efficiency and demonstrate the capabilities of our parameter estimation framework with a simulated set of binary compact object coalescences.

  9. Detecting eccentric supermassive black hole binaries with pulsar timing arrays: Resolvable source strategies

    CERN Document Server

    Taylor, S R; Gair, J R; McWilliams, S T

    2015-01-01

    The couplings between supermassive black-hole binaries and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational-waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system's gravitational-wave signal enters the pulsar-timing array band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric supermassive black-hole bi...

  10. High-energy signatures of binary systems of supermassive black holes

    CERN Document Server

    Romero, Gustavo E; Pérez, Daniela

    2016-01-01

    Context. Binary systems of supermassive black holes are expected to be strong sources of long gravitational waves prior to merging. These systems are good candidates to be observed with forthcoming space-borne detectors. Only a few of these systems, however, have been firmly identified to date. Aims. We aim at providing a criterion for the identification of some supermassive black hole binaries based on the characteristics of the high-energy emission of a putative relativistic jet launched from the most massive of the two black holes. Methods. We study supermassive black hole binaries where the less massive black hole has carved an annular gap in the circumbinary disk, but nevertheless there is a steady mass flow across its orbit. Such a perturbed disk is hotter and more luminous than a standard thin disk in some regions. Assuming that the jet contains relativistic electrons, we calculate its broadband spectral energy distribution focusing on the inverse Compton up-scattering of the disk photons. We also comp...

  11. The Effect of Supermassive Black Hole Binary Environments on Time to Detection for the Stochastic Background

    Science.gov (United States)

    Vigeland, Sarah; Siemens, Xavier

    2017-01-01

    Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection.

  12. The Effect of Supermassive Black Hole Binary Environments on Time to Detection for the Stochastic Background

    Science.gov (United States)

    Vigeland, Sarah; Siemens, Xavier

    2017-01-01

    Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection. National Science Foundation PIRE program.

  13. Supermassive Black Hole Binary Evolution in Axisymmetric Galaxies: the final parsec problem is not a problem

    CERN Document Server

    Khan, Fazeel

    2013-01-01

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the the SMBH evolution is indep...

  14. Evolution of binary supermassive black holes and the final-parsec problem

    CERN Document Server

    Vasiliev, Eugene

    2014-01-01

    I review the evolution of binary supermassive black holes and focus on the stellar-dynamical mechanisms that may help to overcome the final-parsec problem - the possible stalling of the binary at a separation much larger than is required for an efficient gravitational wave emission. Recent N-body simulations have suggested that a departure from spherical symmetry in the nucleus of the galaxy may keep the rate of interaction of stars with the binary at a high enough level so that the binary continues to shrink rather rapidly. However, a major problem of all these simulations is that they do not probe the regime where collisionless effects are dominant - in other words, the number of particles in the simulation is still not sufficient to reach the asymptotic behaviour of the system. I present a novel Monte Carlo method for simulating both collisional and collisionless evolution of non-spherical stellar systems, and apply it for the problem of binary supermassive black hole evolution. I show that in triaxial gal...

  15. Spin supplementary conditions for spinning compact binaries

    CERN Document Server

    Mikóczi, Balázs

    2016-01-01

    We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.

  16. Winds from disks in compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  17. Double-double radio galaxies: remnants of merger of supermassive binary black holes

    CERN Document Server

    Liu, F K; Cao, S L; Wu, Xue-Bing

    2003-01-01

    The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applie...

  18. Accretion-powered Compact Binaries

    Science.gov (United States)

    Mauche, Christopher W.

    2003-12-01

    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  19. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Marziani, P. [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Shapovalova, A. I. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Borka Jovanovic, V.; Borka, D. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Sulentic, J. [Instituto de Astrofisica de Andalucia, CSIC, Apdo. 3004, E-18080 Granada (Spain)

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  20. Binary compact object inspiral: Detection expectations

    Indian Academy of Sciences (India)

    Vassiliki Kalogera

    2004-10-01

    We review the current estimates of binary compact object inspiral rates in particular in view of the recently discovered highly relativistic binary pulsar J0737-3039. One of the robust results is that, because of this discovery, the rate estimates for binary neutron stars have increased by a factor of 6-7 independent of any uncertainties related to the pulsar population properties. This rate increase has dramatic implications for gravitational wave detectors. For initial LIGO, the most probable detection rates for double neutron star (DNS) inspirals is 1 event/(5{250) yr; at 95% confidence we obtain rates up to 1/1.5 yr. For advanced LIGO, the most probable rates are 20-1000 events/yr. These predictions, for the first time, bring the expectations for DNS detections by initial LIGO to the astrophysically relevant regime. We also use our models to predict that the large-scale Parkes multibeam pulsar survey with acceleration searches could detect an average of three to four binary pulsars similar to those known at present. In comparison, rate estimates for binaries with black holes are derived based on binary evolution calculation, and based on the optimistic ends of the ranges, remain an important candidate for inspiral detection in the next few years. We also consider another aspect of the detectability of binary inspiral: the effect of precession on the detection efficiency of astrophysically relevant binaries. Based on our current astrophysical expectations, large tilt angles are not favored. As a result the decrease in detection rate varies rather slowly with black hole spin magnitude and is within 20-30% of the maximum possible values.

  1. Likelihood for detection of sub-parsec supermassive black hole binaries in spectroscopic surveys

    Science.gov (United States)

    Pflueger, Bryan James; Bogdanovic, Tamara; Eracleous, Michael; Runnoe, Jessie C.; Sigurdsson, Steinn

    2017-01-01

    Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a semi-analytic model to determine the likelihood for detection of SBHBs by ongoing spectroscopic surveys. The model combines theoretical expectations for the rate of orbital evolution of SBHBs in circumbinary disks and takes into account the selection effects of spectroscopic surveys. It returns a multivariate probability density for SBHB detection in terms of the binary mass, orbital separation, mass ratio, and mass accretion rate through the circumbinary disk. This approach allows us to infer the most likely orbital parameters for observed SBHB candidates and can be used to provide constraints on the rate of orbital evolution of SBHBs, if observed candidates are shown to be genuine binaries.

  2. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.

  3. Gravitational waves from binary supermassive black holes missing in pulsar observations

    CERN Document Server

    Shannon, R M; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J -B; Wen, L; Wyithe, J S B; Zhu, X -J

    2015-01-01

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{\\rm c,yr}$, to be < $1.0\\times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{\\rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.

  4. Formation of Nuclear Disks and Supermassive Black Hole Binaries in Multi-Scale Hydrodynamical Galaxy Mergers

    CERN Document Server

    Mayer, Lucio; Escala, Andres

    2008-01-01

    (Abridged) We review the results of the first multi-scale, hydrodynamical simulations of mergers between galaxies with central supermassive black holes (SMBHs) to investigate the formation of SMBH binaries in galactic nuclei. We demonstrate that strong gas inflows produce nuclear disks at the centers of merger remnants whose properties depend sensitively on the details of gas thermodynamics. In numerical simulations with parsec-scale spatial resolution in the gas component and an effective equation of state appropriate for a starburst galaxy, we show that a SMBH binary forms very rapidly, less than a million years after the merger of the two galaxies. Binary formation is significantly suppressed in the presence of a strong heating source such as radiative feedback by the accreting SMBHs. We also present preliminary results of numerical simulations with ultra-high spatial resolution of 0.1 pc in the gas component. These simulations resolve the internal structure of the resulting nuclear disk down to parsec sca...

  5. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    Science.gov (United States)

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.

  6. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, L.; /Zurich U. /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park; Madau, P.; /UC, Santa Cruz /Garching, Max Planck Inst.; Colpi, M.; /Milan Bicocca U.; Quinn, T.; /Washington U., Seattle; Wadsley, J.; /McMaster U.

    2008-03-24

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.

  7. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    Science.gov (United States)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  8. Using Pulsar Timing observations to understand the formation and evolution of supermassive black hole binaries

    Science.gov (United States)

    Cornish, Neil; Sampson, Laura; McWilliams, Sean

    2015-04-01

    The astrophysical processes that form and harden supermassive black hole binaries impart distinct features that may be observed in the gravitational-wave spectrum within the sensitive frequency range of Pulsar Timing Arrays (PTA). We investigate how well the various formation and hardening mechanisms can be constrained by applying Bayesian inference to simulated PTA data sets. We find that even without strong priors on the merger rate, any detection of the signal will place interesting constraints on the astrophysical models. Folding in priors on the merger rate allows us to place interesting constraints on the astrophysical models even before a detection is made.

  9. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    Science.gov (United States)

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  10. Supermassive Black Hole Binary Evolution in Axisymmetric Galaxies: The Final Parsec Problem is Not a Problem

    Science.gov (United States)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter; Just, Andreas

    2013-08-01

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone—this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.

  11. SUPERMASSIVE BLACK HOLE BINARY EVOLUTION IN AXISYMMETRIC GALAXIES: THE FINAL PARSEC PROBLEM IS NOT A PROBLEM

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fazeel Mahmood [Department of Space Science, Institute of Space Technology, P.O. Box 2750 Islamabad (Pakistan); Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Berczik, Peter; Just, Andreas, E-mail: khan@ari.uni-heidelberg.de, E-mail: just@ari.uni-heidelberg.de, E-mail: berczik@ari.uni-heidelberg.de, E-mail: k.holley@vanderbilt.edu [Astronomisches Rechen-Institut, Zentrum fuer Astronomie, University of Heidelberg, Moenchhof-Strasse 12-14, D-69120 Heidelberg (Germany)

    2013-08-20

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone-this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.

  12. A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates

    CERN Document Server

    Charisi, M; Haiman, Z; Price-Whelan, A M; Graham, M J; Bellm, E C; Laher, R R; Marka, S

    2016-01-01

    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circumbinary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35,383 spectroscopically confirmed quasars in the photometric database of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modeling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PT...

  13. Dynamical friction and the evolution of Supermassive Black hole Binaries: the final hundred-parsec problem

    CERN Document Server

    Dosopoulou, Fani

    2016-01-01

    The massive black holes originally in the nuclei of two merging galaxies will form a binary in the core of the merger remnant. The early evolution of the massive binary is driven by dynamical friction before the binary becomes "hard" and eventually reaches coalescence through the emission of gravitational wave radiation. We use analytical models and $N$-body integrations to study the evolution of supermassive black hole binaries due to dynamical friction. In our treatment we include the frictional force from stars moving faster than the massive body which is neglected in the standard Chandrasekhar's treatment. We show that the eccentricity of a massive binary increases due to dynamical friction if the density profile of the surrounding stellar cusp rises less steeply than $\\rho\\propto r^{-2}$. For cusps shallower than $\\rho\\propto r^{-1}$ the dynamical fiction timescale can become very long due to the deficit of stars moving slower than the secondary hole. Although adding the contribution of the fast stars in...

  14. The Electromagnetic Signals of Compact Binary Mergers

    CERN Document Server

    Piran, T; Rosswog, S

    2012-01-01

    Compact binary mergers are prime sources of gravitational waves (GWs), targeted by current and next generation detectors. The question "what is the observable electromagnetic (EM) signature of a compact binary merger?" is an intriguing one with crucial consequences to the quest for gravitational waves. We present a large set of numerical simulations that focus on the electromagnetic signals that emerge from the dynamically ejected sub-relativistic material. These outflows produce on a time scale of a day macronovae - short-lived optical/UV signals powered by radioactive decay. In addition, the outflow interaction with the surrounding matter inevitably leads to a long-lasting radio emission. We calculate the expected radio signals from these outflows on time scales longer than a year, when the sub-relativistic ejecta dominate the emission. We discuss their detectability in 1.4 GHz and 150 MHz and compare it with an updated estimate of the detectability of short GRBs' orphan afterglows. We find that mergers wit...

  15. Compact Stellar Systems in the Fornax Cluster Super-massive Star Clusters or Extremely Compact Dwarf Galaxies?

    CERN Document Server

    Drinkwater, M J; Gregg, M D; Phillipps, S

    2000-01-01

    We describe a population of compact objects in the centre of the Fornax Cluster which were discovered as part of our 2dF Fornax Spectroscopic Survey. These objects have spectra typical of old stellar systems, but are unresolved on photographic sky survey plates. They have absolute magnitudes -13compact dwarf galaxies. These objects are all within 30 arcminutes of the central galaxy of the cluster, NGC 1399, but are distributed over larger radii than the globular cluster system of that galaxy. We suggest that these objects are either super-massive star clusters (intra-cluster globular clusters or tidally stripped nuclei of dwarf galaxies) or a new type of low-luminosity compact elliptical dwarf (M32-type) galaxy. The best way to test these hypotheses will be to obtain high resolution imaging and high-dispersion spectroscopy to determine their structures and mass-to-light ratios. This will allow us ...

  16. Tidal Disruption of Stellar Objects by Hard Supermassive Black Hole Binaries

    CERN Document Server

    Chen, Xian; Magorrian, John

    2007-01-01

    Supermassive black hole binaries (SMBHBs) are expected by the hierarchical galaxy formation model in $\\Lambda$CDM cosmology. There is some evidence in the literature for SMBHBs in AGNs, but there are few observational constraints on the evolution of SMBHBs in inactive galaxies and gas-poor mergers. On the theoretical front, it is unclear how long is needed for a SMBHB in a typical galaxy to coalesce. In this paper we investigate the tidal interaction between stars and binary BHs and calculate the tidal disruption rates of stellar objects by the BH components of binary. We derive the interaction cross sections between SMBHBs and stars from intensive numerical scattering experiments with particle number $\\sim10^7$ and calculate the tidal disruption rates by both single and binary BHs for a sample of realistic galaxy models, taking into account the general relativistic effect and the loss cone refilling because of two-body interaction. We estimate the frequency of tidal flares for different types of galaxies usi...

  17. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    Science.gov (United States)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  18. Formation and Hardening of Supermassive Black Hole Binaries in Minor Mergers of Disk Galaxies

    CERN Document Server

    Khan, Fazeel Mahmood; Berczik, Peter; Just, Andreas; Mayer, Lucio; Nitadori, Keigo; Callegari, Simone

    2012-01-01

    We model for the first time the complete orbital evolution of a pair of Supermassive Black Holes (SMBHs) in a 1:10 galaxy merger of two disk dominated gas-rich galaxies, from the stage prior to the formation of the binary up to the onset of gravitational wave emission when the binary separation has shrunk to 1 milli parsec. The high-resolution smoothed particle hydrodynamics (SPH) simulations used for the first phase of the evolution include star formation, accretion onto the SMBHs as well as feedback from supernovae explosions and radiative heating from the SMBHs themselves. Using the direct N-body code \\phi-GPU we evolve the system further without including the effect of gas, which has been mostly consumed by star formation in the meantime. We start at the time when the separation between two SMBHs is ~ 700 pc and the two black holes are still embedded in their galaxy cusps. We use 3 million particles to study the formation and evolution of the SMBH binary till it becomes hard. After a hard binary is formed...

  19. Gravitational Radiation from Compact Binary Pulsars

    CERN Document Server

    Antoniadis, John

    2014-01-01

    An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have enabled a series of precise mass measurements in such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.

  20. Two Improved Access Methods on Compact Binary (CB) Trees.

    Science.gov (United States)

    Shishibori, Masami; Koyama, Masafumi; Okada, Makoto; Aoe, Jun-ichi

    2000-01-01

    Discusses information retrieval and the use of binary trees as a fast access method for search strategies such as hashing. Proposes new methods based on compact binary trees that provide faster access and more compact storage, explains the theoretical basis, and confirms the validity of the methods through empirical observations. (LRW)

  1. Parameter estimation of gravitational wave compact binary coalescences

    Science.gov (United States)

    Haster, Carl-Johan; LIGO Scientific Collaboration Collaboration

    2017-01-01

    The first detections of gravitational waves from coalescing binary black holes have allowed unprecedented inference on the astrophysical parameters of such binaries. Given recent updates in detector capabilities, gravitational wave model templates and data analysis techniques, in this talk I will describe the prospects of parameter estimation of compact binary coalescences during the second observation run of the LIGO-Virgo collaboration.

  2. A population of short-period variable quasars from PTF as supermassive black hole binary candidates

    Science.gov (United States)

    Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A. M.; Graham, M. J.; Bellm, E. C.; Laher, R. R.; Márka, S.

    2016-12-01

    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circum-binary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35 383 spectroscopically confirmed quasars in the photometric data base of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modelling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PTF and the Catalina Real-Time Transient Survey. Assuming that the observed periods correspond to the redshifted orbital periods of SMBHBs, we conclude that our findings are consistent with a population of unequal-mass SMBHBs, with a typical mass ratio as low as q ≡ M2/M1 ≈ 0.01.

  3. On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs

    Science.gov (United States)

    Tang, Yike; MacFadyen, Andrew; Haiman, Zoltán

    2017-08-01

    Gaseous circumbinary accretion discs provide a promising mechanism to facilitate the mergers of supermassive black holes (SMBHs) in galactic nuclei. We measure the torques exerted on accreting SMBH binaries, using 2D, isothermal, moving-mesh, viscous hydrodynamical simulations of circumbinary accretion discs. Our computational domain includes the entire inner region of the circumbinary disc, with the individual black holes (BHs) treated as point masses on the grid. A sink prescription is used to account for accretion on to each BH through well-resolved minidiscs. We explore a range of mass-removal rates for the sinks. We find that the torque exerted on the binary is primarily gravitational, and dominated by the gas orbiting close behind and ahead of the individual BHs. The torques are sensitive to the sink prescription: slower sinks result in more gas accumulating near the BHs and more negative torques, driving more rapid binary merger. For faster sinks, the torques are less negative, and eventually turn positive (for unphysically fast sinks). When the minidiscs are modelled as standard α discs, our results are insensitive to the chosen sink radius. When scaled to \\dot{M}/\\dot{M}_Edd=0.3, the implied residence time-scale is ≈3 × 106 yr, independent of the SMBH masses and orbital separation. For binaries with total mass ≲ 107 M⊙, this is shorter than the inspiral time due to gravitational wave (GW) emission alone, implying that gas discs will have a significant impact on the SMBH binary population and can affect the GW signal for pulsar timing arrays.

  4. Model-independent inference on compact-binary observations

    Science.gov (United States)

    Mandel, Ilya; Farr, Will M.; Colonna, Andrea; Stevenson, Simon; Tiňo, Peter; Veitch, John

    2017-03-01

    The recent advanced LIGO detections of gravitational waves from merging binary black holes enhance the prospect of exploring binary evolution via gravitational-wave observations of a population of compact-object binaries. In the face of uncertainty about binary formation models, model-independent inference provides an appealing alternative to comparisons between observed and modelled populations. We describe a procedure for clustering in the multidimensional parameter space of observations that are subject to significant measurement errors. We apply this procedure to a mock data set of population-synthesis predictions for the masses of merging compact binaries convolved with realistic measurement uncertainties, and demonstrate that we can accurately distinguish subpopulations of binary neutron stars, binary black holes, and mixed neutron star-black hole binaries with tens of observations.

  5. Model-independent inference on compact-binary observations

    CERN Document Server

    Mandel, Ilya; Colonna, Andrea; Stevenson, Simon; Tiňo, Peter; Veitch, John

    2016-01-01

    The recent advanced LIGO detections of gravitational waves from merging binary black holes enhance the prospect of exploring binary evolution via gravitational-wave observations of a population of compact-object binaries. In the face of uncertainty about binary formation models, model-independent inference provides an appealing alternative to comparisons between observed and modelled populations. We describe a procedure for clustering in the multi-dimensional parameter space of observations that are subject to significant measurement errors. We apply this procedure to a mock data set of population-synthesis predictions for the masses of merging compact binaries convolved with realistic measurement uncertainties, and demonstrate that we can accurately distinguish subpopulations of binary neutron stars, binary black holes, and mixed black hole -- neutron star binaries.

  6. Model-independent inference on compact-binary observations

    OpenAIRE

    Mandel, Ilya; Farr, Will M.; Colonna, Andrea; Stevenson, Simon; Tiňo, Peter; Veitch, John

    2016-01-01

    The recent advanced LIGO detections of gravitational waves from merging binary black holes enhance the prospect of exploring binary evolution via gravitational-wave observations of a population of compact-object binaries. In the face of uncertainty about binary formation models, model-independent inference provides an appealing alternative to comparisons between observed and modelled populations. We describe a procedure for clustering in the multi-dimensional parameter space of observations t...

  7. Recurring flares from supermassive black hole binaries: implications for tidal disruption candidates and OJ 287

    CERN Document Server

    Tanaka, Takamitsu L

    2013-01-01

    I discuss the possibility that accreting, supermassive black hole (SMBH) binaries with sub-parsec separations produce luminous, periodically recurring outbursts that interrupt periods of relative quiescence. This hypothesis is motivated by two characteristics found in simulations of binaries embedded in prograde accretion discs: (i) the formation of a central, low-density cavity, and (ii) the leakage of circumbinary gas into this cavity, occurring once per orbit, via discrete streams on nearly radial trajectories. The first feature will diminish the emergent optical/UV flux of the system relative to active galactic nuclei (AGN) powered by single SMBHs, while the second is likely to trigger periodic fluctuations in the emergent flux. I propose a simple toy model in which a leaked stream crosses its own orbit and shocks, converting its bulk kinetic energy to heat. The result is a hot, optically thick flow that is quickly accreted and produces a flare with an AGN-like spectrum that peaks in the UV and ranges fro...

  8. Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies

    Science.gov (United States)

    Sobolenko, M.; Berczik, P.; Spurzem, R.; Kupi, G.

    2017-01-01

    We present the results of theoretical modeling of supermassive black hole binary (SMBHB) mergers using direct 2-body simulations with a Hermite integration scheme. The BH's gravitational interaction is described based on the post-Newtonian (PN terms) approximation up to the 3.5PN terms. We carry out a large set of runs using a parametric description of SMBHB orbits. The final time of the SMBHs gravitational coalescence is parametrized as a function of initial eccentricity e_{0} and mass ratio q of the binary. We carry out detailed tests of our coding. We tested our PN terms against the analytic prescription described in te{Peters1963, Peters1964}. The gravitational radiation polarization amplitudes h_{+} and h_× from the SMBHBs merging process are also analyzed. Based on our numerical work we estimate the expected merging time for a list of selected potential SDSS SMBHBs. Our results show that the merging time is a strong function of the assumed initial eccentricities and fall within the range of thousands years.

  9. Synthetic model of the gravitational wave background from evolving binary compact objects

    Science.gov (United States)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2016-11-01

    Modeling the stochastic gravitational wave background from various astrophysical sources is a key objective in view of upcoming observations with ground- and space-based gravitational wave observatories such as Advanced LIGO, VIRGO, eLISA, and the pulsar timing array. We develop a synthetic model framework that follows the evolution of single and binary compact objects in an astrophysical context. We describe the formation and merger rates of binaries, the evolution of their orbital parameters with time, and the spectrum of emitted gravitational waves at different stages of binary evolution. Our approach is modular and allows us to test and constrain different ingredients of the model, including stellar evolution, black hole formation scenarios, and the properties of binary systems. We use this framework in the context of a particularly well-motivated astrophysical setup to calculate the gravitational wave background from several types of sources, including inspiraling stellar-mass binary black holes that have not merged during a Hubble time. We find that this signal, albeit weak, has a characteristic shape that can help constrain the properties of binary black holes in a way complementary to observations of the background from merger events. We discuss possible applications of our framework in the context of other gravitational wave sources, such as supermassive black holes.

  10. Galaxies with Supermassive Binary Black Holes: (III) The Roche Lobes and Jiang-Yeh Lobe in a Core System

    CERN Document Server

    Yeh, Li-Chin

    2016-01-01

    Three-dimensional equi-potential surfaces of a galactic system with supermassive binary black holes are discussed herein. The conditions of topological transitions for the important surfaces, i.e. Roche Lobes and Jiang-Yeh Lobe, are studied in this paper. In addition, the mathematical properties of the Jacobi surfaces are investigated analytically. Finally, a numerical procedure for determining the regions of the Roche Lobes and Jiang-Yeh Lobe is suggested.

  11. Hans A. Bethe Prize: Mergers of Binary Compact Objects

    Science.gov (United States)

    Kalogera, Vassiliki

    2016-03-01

    The inspiral and eventual merger of two compact objects in binary systems are important in astrophysics across the electromagnetic spectrum and as potential gravitational-wave sources. In this talk I will select a few topics of current interest to highlight compact-object mergers, including in the context of multi-messenger astrophysics.

  12. Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array

    CERN Document Server

    Rosado, Pablo A

    2013-01-01

    This paper presents a technique to search for supermassive black hole binaries (MBHBs) in the Sloan Digital Sky Survey (SDSS). The search is based on the peculiar properties of merging galaxies that are found in a mock galaxy catalog from the Millennium Simulation. MBHBs are expected to be the main gravitational wave (GW) sources for pulsar timing arrays (PTAs); however, it is still unclear if the observed GW signal will be produced by a few single MBHBs, or if it will have the properties of a stochastic background. The goal of this work is to produce a map of the sky in which each galaxy is assigned a probability of having suffered a recent merger, and of hosting a MBHB that could be detected by PTAs. This constitutes a step forward in the understanding of the expected PTA signal: the skymap can be used to investigate the clustering properties of PTA sources and the spatial distribution of the observable GW signal power; moreover, galaxies with the highest probabilities could be used as inputs in targeted se...

  13. Pulsar timing array based search for supermassive black hole binaries in the SKA era

    CERN Document Server

    Wang, Yan

    2016-01-01

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a Pulsar Timing Array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing $10^3$ pulsars. We find that an all-sky search will be able to confidently detect non-evolving sources with redshifted chirp mass of $10^{10}$ $M_\\odot$ out to a redshift of about $28$. The detection of GW signals from optically identified SMBHB candidates similar to PSO J334+01 is assured. If no SMBHB detections occur, ...

  14. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era.

    Science.gov (United States)

    Wang, Yan; Mohanty, Soumya D

    2017-04-14

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 10^{3} pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 10^{10}  M_{⊙} out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4×10^{8}  M_{⊙}). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.

  15. NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits

    CERN Document Server

    Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S J; Chatterjee, S; Cordes, J M; Demorest, P B; Deng, X; Dolch, T; Ellis, J A; Ferdman, R D; Finn, L S; Garver-Daniels, N; Jenet, F; Jones, G; Kaspi, V M; Koop, M; Lam, M; Lazio, T J W; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D R; McLaughlin, M; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Sesana, A; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W W

    2014-01-01

    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of $h_0\\lesssim 3.8\\times 10^{-14}$ at a frequency of 10 nHz. Furthermore, we place 95% ...

  16. A probable Milli-Parsec Supermassive Binary Black Hole in the Nearest Quasar Mrk 231

    CERN Document Server

    Yan, Chang-Shuo; Dai, Xinyu; Yu, Qingjuan

    2015-01-01

    Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observational evidence for BBHs remains elusive and ambiguous, which is difficult to reconcile with theoretical expectations. In this paper, we show that the distinct optical-to-UV spectrum of Mrk 231 can be well interpreted as emission from accretion flows onto a BBH, with a semimajor axis of ~590AU and an orbital period of ~1.2 year. The flat optical and UV continua are mainly emitted from a circumbinary disk and a mini-disk around the secondary black hole (BH), respectively; and the observed sharp drop off and flux deficit at wavelength lambda ~ 4000-2500 Angstrom is due to a gap (or hole) opened by the secondary BH migrating within the circumbinary disk. If confirmed by future observations, this BBH will provide a unique laboratory to study the interplay between BBHs an...

  17. A possible close supermassive black-hole binary in a quasar with optical periodicity

    CERN Document Server

    Graham, Matthew J; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-01-01

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic, can be due to a variety of physical mechanisms, and is well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report on the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 $\\pm$ 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of $\\sim9$ years. While the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can pro...

  18. European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries

    CERN Document Server

    Babak, Stanislav; Sesana, Alberto; Brem, Patrick; Rosado, Pablo A; Taylor, Stephen R; Lassus, Antoine; Hessels, Jason W T; Bassa, Cees G; Burgay, Marta; Caballero, R Nicolas; Champion, David J; Cognard, Ismael; Desvignes, Gregory; Gair, Jonathan R; Guillemot, Lucas; Janssen, Gemma H; Karuppusamy, Ramesh; Kramer, Michael; Lazarus, Patrick; Lee, K J; Lentati, Lindley; Liu, Kuo; Mingarelli, Chiara M F; Oslowsky, Stefan; Perrodin, Delphine; Possenti, Andrea; Purver, Mark B; Sanidas, Sotiris; Smits, Roy; Stappers, Ben; Theureau, Gilles; Tiburzi, Caterina; van Haasteren, Rutger; Vecchio, Alberto; Verbiest, Joris P W

    2015-01-01

    We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest EPTA dataset, which consists of ultra-precise timing data on 41 millisecond pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95\\% upper limit on the sky-averaged strain amplitude lies in the range $6\\times 10^{-15}10^9$M$_\\odot$ out to a distance of about 25Mpc, and with $\\cal{M}_c>10^{10}$M$_\\odot$ out to a distance of about 1Gpc ($z\\approx0.2$). We show that state-of-the-art SMBHB population models predict $<1\\%$ probability of detecting a CGW with the current EPTA dataset, consistent with the reported non-detection. We stress, however, that PTA lim...

  19. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    Science.gov (United States)

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  20. Gas squeezing during the merger of a supermassive black hole binary

    CERN Document Server

    Cerioli, Alice; Price, Daniel J

    2016-01-01

    We study accretion rates during the gravitational wave-driven merger of a binary supermassive black hole embedded in an accretion disc, formed by gas driven to the centre of the galaxy. We use 3D simulations performed with PHANTOM, a Smoothed Particle Hydrodynamics code. Contrary to previous investigations, we show that there is evidence of a "squeezing phenomenon", caused by the compression of the inner disc gas when the secondary black hole spirals towards the primary. This causes an increase in the accretion rates that always exceed the Eddington rate. We have studied the main features of the phenomenon for a mass ratio $q = 10^{-3}$ between the black holes, including the effects of numerical resolution, the secondary accretion radius and the disc thickness. With our disc model with a low aspect ratio, we show that the mass expelled from the orbit of the secondary is negligible ($< 5\\%$ of the initial disc mass), different to the findings of previous 2D simulations with thicker discs. The increase in th...

  1. Mergers of Supermassive Black Hole Binaries in Gas-rich Environments: Models of Event Rates and Electromagnetic Signatures

    Science.gov (United States)

    Tanaka, Takamitsu

    2011-12-01

    Supermassive black holes permeate the observable Universe, residing in the nuclei of all or nearly all nearby massive galaxies and powering luminous quasars as far as ten billion light years away. These monstrous objects must grow through a combination of gas accretion and mergers of less massive black holes. The direct detection of the mergers by future gravitational-wave detectors will be a momentous scientific achievement, providing tests of general relativity and revealing the cosmic evolution of supermassive black holes. An additional --- and arguably equally rewarding --- challenge is the concomitant observation of merging supermassive black holes with both gravitational and electromagneticwaves. Such synergistic, "multi-messenger" studies can probe the expansion history of the Universe and shed light on the details of accretion astrophysics. This thesis examines the mergers of supermassive black hole binaries and the observable signatures of these events. First, we consider the formation scenarios for the earliest supermassive black holes. This investigation is motivated by the Sloan Digital Sky Survey observation of a quasar that appears to be powered by a supermassive black hole with a mass of billions of solar masses, already in place one billion years after the Big Bang. Second, we develop semianalytic, time-dependent-models for the thermal emission from circumbinary gas disks around merging black holes. Our calculations corroborate the qualitative conclusion of a previous study that for black hole mergers detectable by a space-based gravitational-wave observatory, a gas disk near the merger remnant may exhibit a dramatic brightening of soft X-rays on timescales of several years. Our results suggest that this "afterglow" may become detectable more quickly after the merger than previously estimated. Third, we investigate whether these afterglow episodes could be observed serendipitously by forthcoming wide-field, high-cadence electromagnetic surveys

  2. Supermassive black hole binaries and transient radio events: studies in pulsar astronomy

    Science.gov (United States)

    Burke-Spolaor, S.

    2011-06-01

    The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We considered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent much less than 1% of a randomly selected galactic nucleus sample). This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the 'stalling radii' at which binary inspiral evolution may stall indefinitely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Baseline Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for 'stalling', and the relationship of radio activity in nuclei to mergers. Our analysis suggested that binary pair evolution of SMBHs (both of masses >108M circled bullet) spends less than 500Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for SMBH pairs, giving no evidence for an excess of stalled binary systems at small separations. Circumstantial evidence showed that the relative state

  3. The Quest for the Largest Depleted Galaxy Core: Supermassive Black Hole Binaries and Stalled Infalling Satellites

    Science.gov (United States)

    Bonfini, Paolo; Graham, Alister W.

    2016-10-01

    Partially depleted cores are practically ubiquitous in luminous early-type galaxies (M B ≲ -20.5 mag) and are typically smaller than 1 kpc. In one popular scenario, supermassive black hole (SMBH) binaries—established during dry (i.e., gas-poor) galaxy mergers—kick out the stars from a galaxy’s central region via three-body interactions. Here, this “binary black hole scouring scenario” is probed at its extremes by investigating the two galaxies reported to have the largest partially depleted cores found to date: 2MASX J09194427+5622012 and 2MASX J17222717+3207571 (the brightest galaxy in Abell 2261). We have fit these galaxy’s two-dimensional light distribution using the core-Sérsic model and found that the former galaxy has a core-Sérsic break radius {R}b,{cS}=0.55 {{kpc}}, which is three times smaller than the published value. We use this galaxy to caution that other reportedly large break radii may too have been overestimated if they were derived using the “sharp-transition” (inner core)-to-(outer Sérsic) model. In the case of 2MASX J17222717+3207571, we obtain R b,cS = 3.6 kpc. While we confirm that this is the biggest known partially depleted core of any galaxy, we stress that it is larger than expected from the evolution of SMBH binaries—unless one invokes substantial gravitational-wave-induced (black hole-)recoil events. Given the presence of multiple nuclei located (in projection) within the core radius of this galaxy, we explored and found support for the alternative “stalled infalling perturber” core-formation scenario, in which this galaxy’s core could have been excavated by the action of an infalling massive perturber.

  4. The Post-Newtonian Approximation for Relativistic Compact Binaries

    Directory of Open Access Journals (Sweden)

    Futamase Toshifumi

    2007-03-01

    Full Text Available We discuss various aspects of the post-Newtonian approximation in general relativity. After presenting the foundation based on the Newtonian limit, we show a method to derive post-Newtonian equations of motion for relativistic compact binaries based on a surface integral approach and the strong field point particle limit. As an application we derive third post-Newtonian equations of motion for relativistic compact binaries which respect the Lorentz invariance in the post-Newtonian perturbative sense, admit a conserved energy, and are free from any ambiguity.

  5. A complete waveform model for compact binaries on eccentric orbits

    Science.gov (United States)

    Huerta, Eliu; Agarwal, Bhanu; George, Daniel; Kumar, Prayush

    2016-03-01

    The detection of compact binaries with significant eccentricity in the sensitivity band of gravitational wave detectors will provide critical insights on the dynamics and formation channels of these events. In order to search for these systems and place constraints on their rates, we present an inspiral-merger-ringdown time domain waveform model that describes the GW emission from compact binaries on orbits with low to moderate values of eccentricity. We use this model to explore the detectability of these events in the context of advanced LIGO.

  6. Compact Stars in low-mass X-ray binaries

    OpenAIRE

    Hossein, Sk. Monowar; Molla, Sajahan; Jafry, Md. Abdul Kayum; Kalam, Mehedi

    2014-01-01

    We propose a model for compact stars in low-mass X-ray binaries(LMXBs) namely KS 1731-260, EXO 1745-248 and 4U 1608-52. Here we investigate the physical phenomena of a compact star in the LMXBs. Using our model, we have calculated central density, surface density, mass(M) and red-shift for the above mentioned compact stars, which is very much consistent with the reported data. We also obtain the possible equation of state(EOS) of the stars which is physically acceptable.

  7. Expected Bounds on Compact Binary Coalescence Rates from LIGO Observations

    Science.gov (United States)

    Sampson, Laura; LIGO Scientific Collaboration Collaboration

    2016-03-01

    The Advanced LIGO detectors have recently completed their first observing run, with a sensitive spacetime volume over 27 times larger than the initial LIGO configuration. In this talk we will examine the expected bounds on compact binary coalescence rates from O1 observations, and discuss the corresponding impact on astrophysical models.

  8. A systematic search for close supermassive black hole binaries in the Catalina Real-Time Transient Survey

    CERN Document Server

    Graham, Matthew J; Stern, Daniel; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Glikman, Eilat; Larsen, Steve; Christensen, Eric

    2015-01-01

    Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2 year periodic signal in the quasar PG 1302-102 (Graham et al. 2015), we present a novel analysis of the optical variability of 243,500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (< 0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accreti...

  9. Estimating gravitational radiation from super-emitting compact binary systems

    CERN Document Server

    Hanna, Chad; Lehner, Luis

    2016-01-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the pre-merger orbital energy and angular momentum. A non-vacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model can capture the merger of neutron stars, but it can also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  10. Detectability of compact binary merger macronovae

    CERN Document Server

    Rosswog, S; Korobkin, O; Wu, M -R; Sollerman, J; Goobar, A; Martinez-Pinedo, G

    2016-01-01

    We study the optical and near-infrared luminosities and detectability of radioactively powered electromagnetic transients ('macronovae') occuring in the aftermath of binary neutron star and neutron star black hole mergers. We explore the transients that result from the dynamic ejecta and those from different types of wind outflows. Based on full nuclear network simulations we calculate the resulting light curves in different wavelength bands. We scrutinize the robustness of the results by comparing a) two different nuclear reaction networks and b) two macronova models. We explore in particular how sensitive the results are to the production of alpha-decaying trans-lead nuclei. We compare two frequently used mass models: the Finite-Range Droplet Model (FRDM) and the nuclear mass model of Duflo and Zuker (DZ31). We find that the abundance of alpha-decaying trans-lead nuclei has a significant impact on the observability of the resulting macronovae. For example, the DZ31 model yields considerably larger abundance...

  11. Gravitational waves from cosmological compact binaries

    CERN Document Server

    Schneider, R; Matarrese, S; Zwart, S F P; Schneider, Raffaella; Ferrari, Valeria; Matarrese, Sabino; Zwart, Simon F. Portegies

    2000-01-01

    We consider gravitational waves emitted by various populations of compactbinaries at cosmological distances. We use population synthesis models tocharacterize the properties of double neutron stars, double black holes anddouble white dwarf binaries as well as white dwarf-neutron star, whitedwarf-black hole and black hole-neutron star systems. We use theobservationally determined cosmic star formation history to reconstruct theredshift distribution of these sources and their merging rate evolution. Thegravitational signals emitted by each source during its early-inspiral phaseadd randomly to produce a stochastic background in the low frequency band withspectral strain amplitude between 10^{-18} Hz^{-1/2} and 5 10^{-17} Hz^{-1/2} at frequencies in the interval [5 10^{-6}-5 10^{-5}] Hz.The overall signal which, at frequencies above 10^{-4}Hz, is largely dominatedby double white dwarf systems, might be detectable with LISA in the frequencyrange [1-10] mHz and acts like a confusion limited noise component which mi...

  12. Compact Binary Progenitors of Short Gamma-Ray Bursts

    Science.gov (United States)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  13. Diagnostic Power of Broad Emission Line Profiles in Searches for Binary Supermassive Black Holes: Comparison of Models with Observations

    Science.gov (United States)

    Nguyen, Khai; Bogdanovic, Tamara; Eracleous, Michael; Runnoe, Jessie C.; Sigurdsson, Steinn

    2017-01-01

    Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a semi-analytic model to describe the spectral emission line signatures of these systems. We are particularly interested in modeling the profiles of the broad emission lines, which have been used as a tool to search for SBHBs. The goal of this work is to test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this context, we model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk that forms a common envelope about a gravitationally bound binary. Our first generation model shows that emission line profiles tend to have different statistical properties depending on the semi-major axis, mass ratio, eccentricity of the binary, and the alignment of the triple-disk system, and can in principle be used to constrain the statistical distribution of these parameters. We present the results of a second generation model, which improves upon the treatment of radiative transfer by taking into account the effect of line-driven winds on the properties of the model emission line profiles. This improvement allows a preliminary comparison of the model profiles with the observed SBHB candidates and AGN population in general.

  14. Infalling clouds onto super-massive black hole binaries - I. Formation of discs, accretion and gas dynamics

    CERN Document Server

    Goicovic, F G; Sesana, A; Stasyszyn, F; Amaro-Seoane, P; Tanaka, T L

    2015-01-01

    There is compelling evidence that most -if not all- galaxies harbour a super-massive black hole (SMBH) at their nucleus, hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall toward and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall onto equal-mass SMBH binaries, using a modified version of the SPH code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that t...

  15. Constraining sub-Parsec Binary Supermassive Black Holes in Quasars with Multi-Epoch Spectroscopy. I. The General Quasar Population

    CERN Document Server

    Shen, Yue; Loeb, Abraham; Tremaine, Scott

    2013-01-01

    We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad line quasars at z<0.8, using multi-epoch SDSS spectroscopy of the broad Hbeta line. Our working model is that: only one of the two BHs in the binary is active, and dynamically dominates its own broad line region (BLR); the inactive companion BH is orbiting at a distance of a few R_BLR, where R_BLR~0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar restframe. Out of ~700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1-sigma error~40 km/s), we detect 28 systems with significant velocity shifts in broad Hbeta, among which seven are the best candidates for the hypothesized binaries. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on t...

  16. Dynamics of spinning compact binaries in general relativity

    Science.gov (United States)

    Hartl, Michael David

    This thesis investigates the dynamics of binary systems composed of spinning compact objects in the context of general relativity. Compact binaries are promising sources of gravitational radiation for both ground- and space-based gravitational-wave detectors. If the dynamics of these systems were chaotic, the number of waveform templates needed to match a given gravitational-wave signal would grow exponentially with increasing detection sensitivity, rendering the preferred matched filter detection method computationally impractical. It is therefore urgent to understand whether the binary dynamics can be chaotic, and, if so, how prevalent this chaos is. We first consider the dynamics of a spinning compact object orbiting a much more massive rotating black hole, as modeled by the Papapetrou equations in Kerr spacetime. We find that many initial conditions lead to positive Lyapunov exponents, indicating chaotic dynamics. Despite the formal existence of chaotic solutions, we find that chaos occurs only for physically unrealistic values of the small body's spin. As a result, chaos will not affect theoretical templates in the extreme mass-ratio limit for which the Papapetrou equations are valid. We next consider the dynamics of spinning black-hole binaries, as modeled by the post-Newtonian (PN) equations, which are valid for orbital velocities much smaller than the speed of light. We study thoroughly the special case of quasi-circular orbits with comparable mass ratios. Our survey shows that chaos occurs in a negligible fraction of possible configurations, and only for such small radii that the PN approximation is likely to be invalid. As a result, at least in the case of comparable mass black-hole binaries, theoretical templates will not be significantly affected by chaos. In a final, self-contained chapter, we discuss various methods for the calculation of Lyapunov exponents in systems of ordinary differential equations. We introduce several new techniques applicable

  17. The effects of host galaxy properties on merging compact binaries detectable by LIGO

    Science.gov (United States)

    O'Shaughnessy, R.; Bellovary, J. M.; Brooks, A.; Shen, S.; Governato, F.; Christensen, C. R.

    2017-01-01

    Cosmological simulations of galaxy formation can produce present-day galaxies with a large range of assembly and star formation histories. A detailed study of the metallicity evolution and star formation history of such simulations can assist in predicting Laser Interferometer Gravitational-Wave Observatory (LIGO)-detectable compact object binary mergers. Recent simulations of compact binary evolution suggest that the compact object merger rate depends sensitively on the progenitor's metallicity. Rare low-metallicity star formation during galaxy assembly can produce more detected compact binaries than typical star formation. Using detailed simulations of galaxy and chemical evolution, we determine how sensitively the compact binary populations of galaxies with a similar present-day appearance depend on the details of their assembly. We also demonstrate by concrete example the extent to which dwarf galaxies overabundantly produce compact binary mergers, particularly binary black holes, relative to more massive galaxies. We discuss the implications for transient multimessenger astronomy with compact binary sources.

  18. Stochastic Background of Gravitational Waves Generated by Compact Binary Systems

    CERN Document Server

    Evangelista, E F D

    2015-01-01

    Binary Systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of Statistical Mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance sinc...

  19. A complete waveform model for compact binaries on eccentric orbits

    CERN Document Server

    Huerta, E A; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P; Chu, Tony; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela

    2016-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to non-linear memory. This framework reduces to the post-Newtonian approximant $\\texttt{TaylorT4}$ at third post-Newtonian order in the zero eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasi-circular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a c...

  20. Accurate and efficient waveforms for compact binaries on eccentric orbits

    CERN Document Server

    Huerta, E A; McWilliams, Sean T; O'Shaughnessy, Richard; Yunes, Nicolas

    2014-01-01

    Compact binaries that emit gravitational waves in the sensitivity band of ground-based detectors can have non-negligible eccentricities just prior to merger, depending on the formation scenario. We develop a purely analytic, frequency-domain model for gravitational waves emitted by compact binaries on orbits with small eccentricity, which reduces to the quasi-circular post-Newtonian approximant TaylorF2 at zero eccentricity and to the post-circular approximation of Yunes et al. (2009) at small eccentricity. Our model uses a spectral approximation to the (post-Newtonian) Kepler problem to model the orbital phase as a function of frequency, accounting for eccentricity effects up to ${\\cal{O}}(e^8)$ at each post-Newtonian order. Our approach accurately reproduces an alternative time-domain eccentric waveform model for eccentricities $e\\in [0, 0.4]$ and binaries with total mass less than 12 solar masses. As an application, we evaluate the signal amplitude that eccentric binaries produce in different networks of e...

  1. Gravitational radiation from compact binaries in scalar-tensor gravity

    CERN Document Server

    Lang, Ryan N

    2014-01-01

    General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO and eLISA will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present progress in the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar-tensor theories. The waveforms are constructed using a standard GR method known as "direct integration of the relaxed Einstein equations," appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, binary black hole systems, we find that the waveform is indistingu...

  2. Binary sdB Stars with Massive Compact Companions

    CERN Document Server

    Geier, S; Edelmann, H; Heber, U; Napiwotzki, R

    2008-01-01

    The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. Based on high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. In the distribution of projected rotational velocities signs of tidal locking with the companions are visible. By detecting ellipsoidal variations in the lightcurve of an sdB binary we were able to show that subdwarf binaries with orbital periods up to 0.6 d are most likely synchronized. In this case, the inclination angles and companion masses of the binaries can be tightly constrained. Five invisible companions have masses that ar...

  3. Supermassive black hole binary environments: Effects on the scaling laws and time to detection for the stochastic background

    Science.gov (United States)

    Vigeland, S. J.; Siemens, X.

    2016-12-01

    One of the primary gravitational wave (GW) sources for pulsar timing arrays (PTAs) is the stochastic background formed by supermassive black holes binaries (SMBHBs). In this paper, we investigate how the environments of SMBHBs effect the sensitivity of PTAs by deriving scaling laws for the signal-to-noise ratio (SNR) of the optimal cross-correlation statistic. The presence of gas and stars around SMBHBs accelerates the merger at large distances, depleting the GW stochastic background at low frequencies. We show that environmental interactions may delay detection by a few years or more, depending on the PTA configuration and the frequency at which the dynamical evolution transitions from being dominated by environmental effects to GW dominated.

  4. Supermassive Black Hole Binary Environments: Effects on the Scaling Laws and Time to Detection for the Stochastic Background

    CERN Document Server

    Vigeland, Sarah J

    2016-01-01

    One of the primary gravitational wave (GW) sources for pulsar timing arrays (PTAs) is the stochastic background formed by supermassive black holes binaries (SMBHBs). In this paper, we investigate how the environments of SMBHBs will effect the sensitivity of PTAs by deriving scaling laws for the signal-to-noise ratio (SNR) of the optimal cross-correlation statistic. The presence of gas and stars around SMBHBs will accelerate the merger at large distances, depleting the GW stochastic background at low frequencies. We show that environmental interactions may delay detection by a few years or more, depending on the PTA configuration and the frequency at which the dynamical evolution transitions from being dominated by environmental effects to GW-dominated.

  5. Emission Signatures from Sub-parsec Binary Supermassive Black Holes I: Diagnostic Power of Broad Emission Lines

    CERN Document Server

    Nguyen, Khai

    2016-01-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years we develop a semi-analytic model to describe spectral emission line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as...

  6. Near-Infrared Observations of Compact Binary Systems

    Science.gov (United States)

    Khargharia, Juthika

    Low mass X-ray binaries (LMXBs) are a subset of compact binary systems in which a main-sequence or slightly evolved star fills its Roche lobe and donates mass to a neutron star or a black hole (BH) via an accretion disk. Robust estimates of compact object masses in these systems are required to enhance our current understanding of the physics of compact object formation, accretion disks and jets. Compact object masses are typically determined at near-infrared (NIR) wavelengths when the system is in quiescence and the donor star is the dominant source of flux. Previous studies have assumed that any non-stellar contribution at these wavelengths is minimal. However, this assumption is rarely true. By performing NIR spectroscopy, we determined the fractional donor star contribution to the NIR flux and the compact object masses in two LMXBs: V404 Cyg and Cen X-4. In our analysis, it was assumed that the light curve morphology remains consistent throughout quiescence. It has now been shown in several systems that veiling measurements from non-stellar sources are meaningful only if acquired contemporaneously with light curve measurements. We accounted for this in the measurement of the BH mass in the LMXB, XTE J1118+480. LMXBs are also considered to be the most likely candidates responsible for the formation of milli-second pulsars (MSP). Here, I present the unique case of PSR J1903+0327 that challenges this currently accepted theory of MSP formation and is a potential candidate for testing General Relativity. Observations in the NIR come with their own set of challenges. NIR detector arrays used in these observations generally have high dark current and readout noise. In an effort to lower the read noise in NICFPS at APO, we present a study done on the Hawaii-1RG engineering grade chip that served as a test bed for reducing the read noise in NICFPS.

  7. Searching for Gravitational Waves from Compact Binaries with Precessing Spins

    CERN Document Server

    Harry, Ian; Bohé, Alejandro; Buonanno, Alessandra

    2016-01-01

    Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or anti-aligned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron-star--black-hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have a factor of ten to twenty more templates than the aligned-spin banks, we find an overall improvement in signal recovery at fixed false-alarm rate for systems with high-mass ratio and highly precessing spins ---up to 60\\% for neutron-star--black-hole mergers. This gain in se...

  8. Emission Signatures from Sub-parsec Binary Supermassive Black Holes. I. Diagnostic Power of Broad Emission Lines

    Science.gov (United States)

    Nguyen, Khai; Bogdanović, Tamara

    2016-09-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  9. Finding compact hot subdwarf binaries in the Galactic disc

    CERN Document Server

    Kupfer, T; McLeod, A Faye; Groot, P J; Verbeek, K; Schaenroth, V; Heber, U; Heuser, C; Ziegerer, E; Østensen, R; Nemeth, P; Dhillon, V S; Butterley, T; Littlefair, S P; Wilson, R W; Telting, J H; Shporer, A; Fulton, B J

    2013-01-01

    We started a new project which aims to find compact hot subdwarf binaries at low Galactic latitudes. Targets are selected from several photometric surveys and a spectroscopic follow-up campaign to find radial velocity variations on timescales as short as tens of minutes has been started. Once radial variations are detected phase-resolved spectroscopy is obtained to measure the radial velocity curve and the mass function of the system. The observing strategy is described and the discovery of two short period hot subdwarf binaries is presented. UVEXJ032855.25+503529.8 contains a hot subdwarf B star (sdB) orbited by a cool M-dwarf in a P=0.11017 days orbit. The lightcurve shows a strong reflection effect but no eclipses are visible. HS 1741+2133 is a short period (P=0.20 days) sdB most likely with a white dwarf (WD) companion.

  10. Dynamical Tides in Compact White Dwarf Binaries: Influence of Rotation

    CERN Document Server

    Fuller, Jim

    2014-01-01

    Tidal interactions play an important role in the evolution and ultimate fate of compact white dwarf (WD) binaries. Not only do tides affect the pre-merger state (such as temperature and rotation rate) of the WDs, but they may also determine which systems merge and which undergo stable mass transfer. In this paper, we attempt to quantify the effects of rotation on tidal angular momentum transport in binary stars, with specific calculations applied to WD stellar models. We incorporate the effect of rotation using the traditional approximation, in which the dynamically excited gravity waves within the WDs are transformed into gravito-inertial Hough waves. The Coriolis force has only a minor effect on prograde gravity waves, and previous results predicting the tidal spin-up and heating of inspiraling WDs are not significantly modified. However, rotation strongly alters retrograde gravity waves and inertial waves, with important consequences for the tidal spin-down of accreting WDs. We identify new dynamical tidal...

  11. Analytic gravitational waveforms for generic precessing compact binaries

    CERN Document Server

    Chatziioannou, Katerina; Cornish, Neil; Yunes, Nicolas

    2016-01-01

    Binary systems of two compact objects circularize and spiral toward each other via the emission of gravitational waves. The coupling of the spins of each object with the orbital angular momentum causes the orbital plane to precess, which leads to modulation of the gravitational wave signal. Until now, generating frequency-domain waveforms for fully precessing systems for use in gravitational wave data analysis meant numerically integrating the equations of motion, then Fourier transforming the result, which is very computationally intensive for systems that complete hundreds or thousands of cycles in the sensitive band of a detector. Previously, analytic solutions were only available for certain special cases or for simplified models. Here we describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals.

  12. Spin effects on the dynamics of compact binaries

    CERN Document Server

    Steinhoff, Jan

    2015-01-01

    Compact binaries are the most promising source for the advanced gravitational wave detectors, which will start operating this year. The influence of spin on the binary evolution is an important consequence of general relativity and can be large. It is argued that the spin supplementary condition, which is related to the observer dependence of the center, gives rise to a gauge symmetry in the action principle of spinning point-particles. These spinning point-particles serve as an analytic model for extended bodies. The internal structure can be modelled by augmenting the point-particle with higher-order multipole moments. Consequences of the recently discovered universal (equation of state independent) relations between the multipole moments of neutron stars are discussed.

  13. The quest for the largest depleted galaxy core: supermassive black hole binaries and stalled in-falling satellites

    CERN Document Server

    Bonfini, Paolo

    2016-01-01

    Partially-depleted cores are practically ubiquitous in luminous early-type galaxies (M$_{B}\\lesssim-$20.5 mag), and typically smaller than 1 kpc. In one popular scenario, supermassive black hole binaries --- established during dry (i.e. gas-poor) galaxy mergers --- kick out the stars from a galaxy's central region via three-body interactions. Here, this "binary black hole scouring scenario" is probed at its extremes by investigating the two galaxies reported to have the largest partially-depleted cores found to date: 2MASX~J09194427+5622012 and 2MASX~J17222717+3207571 (the brightest galaxy in Abell~2261). We have fit these galaxy's two-dimensional light distribution using the core-S\\'{e}rsic model, and found that the former galaxy has a core-S\\'{e}rsic break radius $R_{b,cS}=0.55$~kpc, three times smaller than the published value. We use this galaxy to caution that other reportedly large break radii may too have been over-estimated if they were derived using the "sharp-transition" (inner core)-to-(outer S\\'{e...

  14. Spectroscopic Evidence for a Centi-parsec Supermassive Black Hole Binary in the Galactic Center of NGC 5548

    CERN Document Server

    Li, Yan-Rong; Ho, Luis C; Lu, Kai-Xing; Qiu, Jie; Du, Pu; Hu, Chen; Huang, Ying-Ke; Zhang, Zhi-Xiang; Wang, Kai; Bai, Jin-Ming

    2016-01-01

    As a natural consequence of cosmological hierarchical structure formation, sub-parsec supermassive black hole binaries (SMBHBs) should be common in galaxies but thus far have eluded spectroscopic identification. Based on four decades of optical spectroscopic monitoring, we report that a SMBHB resides in the center of NGC 5548, a nearby Seyfert galaxy long suspected to have experienced a major merger about one billion years ago. The optical continuum and broad Hbeta emission line exhibit long-term variability with a period of ~14 years. Remarkably, the double-peaked profile of Hbeta shows systematic velocity changes with a similar period. The complex, secular variations in the line profiles are consistent with orbital motion of a binary with equal mass and a semi-major axis of ~22 light-days (corresponding to ~18 milli-parsec). At a distance of 75 Mpc, NGC 5548 is one of the nearest sub-parsec SMBHB candidates that offers an ideal laboratory for gravitational wave detection.

  15. The effects of host galaxy properties on merging compact binaries detectable by LIGO

    CERN Document Server

    O'Shaughnessy, Richard; Brooks, Alyson; Shen, Sijing; Governato, Fabio; Christensen, Charlotte

    2016-01-01

    Cosmological simulations of galaxy formation can produce present-day galaxies with a large range of assembly and star formation histories. A detailed study of the metallicity evolution and star formation history of such simulations can assist in predicting LIGO-detectable compact object binary mergers. Recent simulations of compact binary evolution suggest the compact object merger rate depends sensitively on the progenitor's metallicity. Rare low-metallicity star formation during galaxy assembly can produce more detected compact binaries than typical star formation. Using detailed simulations of galaxy and chemical evolution, we determine how sensitively the compact binary populations of galaxies with similar present-day appearance depend on the details of their assembly. We also demonstrate by concrete example the extent to which dwarf galaxies overabundantly produce compact binary mergers, particularly binary black holes, relative to more massive galaxies. We discuss the implications for transient multimes...

  16. Mergers of Unequal Mass Galaxies: Supermassive Black Hole Binary Evolution and Structure of Merger Remnants

    CERN Document Server

    Khan, Fazeel Mahmood; Berczik, Peter; Berentzen, Ingo; Just, Andreas; Spurzem, Rainer

    2012-01-01

    Galaxy centers are residing places for Super Massive Black Holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves for the Laser Interferometer Space Antenna (LISA). In spherical galaxy models, SMBH binaries stall at a separation of approximately one parsec, leading to the "final parsec problem" (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the...

  17. Resolving multiple supermassive black hole binaries with pulsar timing arrays II: genetic algorithm implementation

    CERN Document Server

    Petiteau, Antoine; Sesana, Alberto; de Araujo, Mariana

    2012-01-01

    Pulsar timing arrays (PTAs) might detect gravitational waves (GWs) from massive black hole (MBH) binaries within this decade. The signal is expected to be an incoherent superposition of several nearly-monochromatic waves of different strength. The brightest sources might be individually resolved, and the overall deconvolved, at least partially, in its individual components. In this paper we extend the maximum-likelihood based method developed in Babak & Sesana 2012, to search for individual MBH binaries in PTA data. We model the signal as a collection of circular monochromatic binaries, each characterized by three free parameters: two angles defining the sky location, and the frequency. We marginalize over all other source parameters and we apply an efficient multi-search genetic algorithm to maximize the likelihood function and look for sources in synthetic datasets. On datasets characterized by white Gaussian noise plus few injected sources with signal-to-noise ratio (SNR) in the range 10-60, our search...

  18. Supermassive recoil velocities for binary black-hole mergers with antialigned spins.

    Science.gov (United States)

    González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha

    2007-06-08

    Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies.

  19. Chaos in Compact Binaries with Frequency Map Analysis

    Institute of Scientific and Technical Information of China (English)

    Yi Xie; Tian-Yi Huang

    2006-01-01

    The dynamics of compact binaries is very complicated because of spin-orbit coupling and spin-spin coupling. With Laskar's frequency map analysis (FMA) and frequency diffusion as an indicator, we found that misalignment of the spins and orbital angular momentum has a great effect on the dynamics, and for systems with different mass ratios β≡ m2/m1 chaos occurs at different spin-orbit configurations. For equal-mass binaries (β = 1), chaos occurs when the spins nearly cancel each other out. For some other systems (for exampleβ~1/2), the binaries are irregular, even chaotic, when the spins are perpendicular to the orbital angular momentum. For the case where gravitational radiation is taken into account, we give an analytic estimation for the frequency diffusion based on the decay of the orbit, which is roughly consistent with our simulations. This means the FMA is not suitable as a chaos indicator for weak chaotic cases with dissipative terms.

  20. X-shaped radio galaxies as observational evidence for the interaction of supermassive binary black holes and accretion disk at pc scale

    CERN Document Server

    Liu, F K

    2004-01-01

    A supermassive black hole binary may form during galaxy mergering. we investigate the interaction of the supermassive binary black holes (SMBBHs) and an accretion disk and show that the detected X-shaped structure in some FRII radio galaxies may be due to the interaction-realignment of inclined binary and accretion disk occurred within the pc scale of the galaxy center. We compare in detail the model and observations and show that the configuration is consistent very well with the observations of X-shaped radio sources. X-shaped radio feature form only in FRII radio sources due to the strong interaction between the binary and a standard disk, while the absence of X-shaped FRI radio galaxies is due to that the interaction between the binary and the radiatively inefficient accretion flow in FRI radio sources is negligible. It is suggested that the binary would keep misaligned with the outer disk for most of the life time of FRII radio galaxies and the orientation of jet in most FRII radio galaxies distributes r...

  1. Supermassive black holes pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    CERN Document Server

    Tamburello, Valentina; Mayer, Lucio; Bellovary, Jillian M; Wadsley, James

    2016-01-01

    Massive gas-rich galaxy discs at $z \\sim 1-3$ host massive star-forming clumps with typical baryonic masses in the range $10^7-10^8$ M$_{\\odot}$ which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. We use a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, in order to study the interaction between massive clumps and a BH pair at kpc scales, during the early phase of the orbital decay, before the formation of a bound BH binary. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole Gyr around a separation of 1-2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularised in the disc midplane. In runs with larger eccentr...

  2. X-ray Detection of the Proto Supermassive Binary Black Hole at the Centre of Abell 400

    CERN Document Server

    Hudson, D S; Reiprich, T H; Sarazin, C L; Clarke, Tracy E.; Hudson, Daniel S.; Reiprich, Thomas H.; Sarazin, Craig L.

    2006-01-01

    We report the first X-ray detection of a proto-supermassive binary black hole at the centre of Abell 400. Using the Chandra ACIS, we are able to clearly resolve the two active galactic nuclei in 3C 75, the well known double radio source at the centre of Abell 400. Through analysis of the new Chandra observation of Abell 400 along with 4.5 GHz and 330 MHz VLA radio data, we will show new evidence that the Active Galactic Nuclei in 3C 75 are a bound system. Methods. Using the high quality X-ray data, we map the temperature, pressure, density, and entropy of the inner regions as well as the cluster profile properties out to ~18'. We compare features in the X-ray and radio images to determine the interaction between the intra-cluster medium and extended radio emission. The Chandra image shows an elongation of the cluster gas along the northeast-southwest axis; aligned with the initial bending of 3C 75's jets. Additionally, the temperature profile shows no cooling core, consistent with a merging system. There is a...

  3. Fossil Gas and the Electromagnetic Precursor of Supermassive Binary Black Hole Mergers

    CERN Document Server

    Chang, P; Menou, K; Quataert, E

    2009-01-01

    Using a one-dimensional height integrated model, we calculate the evolution of an unequal mass binary black hole with a coplanar gas disk that contains a gap due to the presence of the secondary black hole. Viscous evolution of the outer circumbinary disk initially hardens the binary, while the inner disk drains onto the primary (central) black hole. As long as the inner disk remains cool and thin at low $\\dot{M}_{\\rm ext}$ (rather than becoming hot and geometrically thick), the mass of the inner disk reaches an asymptotic mass typically $\\sim 10^{-3}-10^{-4}\\Msun$. Once the semimajor axis shrinks below a critical value, angular momentum losses from gravitational waves dominate over viscous transport in hardening the binary. The inner disk then no longer responds viscously to the inspiraling black holes. Instead, tidal interactions with the secondary rapidly drive the inner disk into the primary. Tidal and viscous dissipation in the inner disk lead to a late time brightening in luminosity $L\\propto t_{\\rm min...

  4. Second post-Newtonian Lagrangian dynamics of spinning compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Wu, Xin [Nanchang University, Department of Physics and Institute of Astronomy, Nanchang (China); Ma, DaZhu [Hubei University for Nationalities, School of Science, Enshi (China)

    2016-09-15

    The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim. (orig.)

  5. A Massive Pulsar in a Compact Relativistic Binary

    CERN Document Server

    Antoniadis, John; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G; 10.1126/science.1233232

    2013-01-01

    Many physically motivated extensions to general relativity (GR) predict significant deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 +/- 0.04 solar mass pulsar in a 2.46-hr orbit with a 0.172 +/- 0.003 solar mass white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  6. Kilonova/Macronova Emission from Compact Binary Mergers

    Directory of Open Access Journals (Sweden)

    Masaomi Tanaka

    2016-01-01

    Full Text Available We review current understanding of kilonova/macronova emission from compact binary mergers (mergers of two neutron stars or a neutron star and a black hole. Kilonova/macronova is emission powered by radioactive decays of r-process nuclei and it is one of the most promising electromagnetic counterparts of gravitational wave sources. Emission from the dynamical ejecta of ~0.01M⊙ is likely to have a luminosity of ~1040–1041 erg s−1 with a characteristic timescale of about 1 week. The spectral peak is located in red optical or near-infrared wavelengths. A subsequent accretion disk wind may provide an additional luminosity or an earlier/bluer emission if it is not absorbed by the precedent dynamical ejecta. The detection of near-infrared excess in short GRB 130603B and possible optical excess in GRB 060614 supports the concept of the kilonova/macronova scenario. At 200 Mpc distance, a typical peak brightness of kilonova/macronova with 0.01M⊙ ejecta is about 22 mag and the emission rapidly fades to >24 mag within ~10 days. Kilonova/macronova candidates can be distinguished from supernovae by (1 the faster time evolution, (2 fainter absolute magnitudes, and (3 redder colors. Since the high expansion velocity (v~0.1–0.2c is a robust outcome of compact binary mergers, the detection of smooth spectra will be the smoking gun to conclusively identify the gravitational wave source.

  7. Population synthesis of ultra-compact X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Zhu; Guo-Liang Lü; Zhao-Jun Wang

    2012-01-01

    Ultra-compact X-ray binaries (UCXBs) are very interesting and important objects.By taking the population synthesis approach to the evolution of binaries,we carry out a detailed study of UCXBs.We estimate that there are ~ 5000-10000 UCXBs in the Galaxy,and their birthrates are ~ 2.6-7.5 × 10-4 yr-1.Most UCXBs are transient X-ray sources,but their X-ray luminosities are much lower than those of persistent sources.Therefore,the majority of observed UCXBs should be persistent sources.About 40%-70% of neutron stars (NSs) in UCXBs form via an accretion-induced collapse from an accreting ONe white dwarf (WD),1%-10% of NSs in UCXBs form via core-collapse supernovae and others form via the evolution-induced collapse of a naked helium star.About 50%-80% of UCXBs have naked helium star donors,5%-10% of UCXBs have HeWD donors,15%-40% of UCXBs have COWD donors and UCXBs with ONeWD donors are negligible.Our investigation indicates that the uncertainty mainly comes from evolution of the common-envelope which develops in these systems.

  8. Eccentric binaries of compact objects in strong-field gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman

    2011-09-27

    In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on

  9. Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    Science.gov (United States)

    Tamburello, Valentina; Capelo, Pedro R.; Mayer, Lucio; Bellovary, Jillian M.; Wadsley, James W.

    2016-10-01

    Massive gas-rich galaxy discs at z ˜ 1 - 3 host massive star-forming clumps with typical baryonic masses in the range 107 - 108 M⊙ which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kpc scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole Gyr around a separation of 1-2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularised in the disc midplane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.

  10. Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    Science.gov (United States)

    Tamburello, Valentina; Capelo, Pedro R.; Mayer, Lucio; Bellovary, Jillian M.; Wadsley, James W.

    2017-01-01

    Massive gas-rich galaxy discs at z ˜ 1-3 host massive star-forming clumps with typical baryonic masses in the range 107-108 M⊙ which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kiloparsec scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole gigayear around a separation of 1-2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularized in the disc mid-plane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.

  11. Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using LALInference

    CERN Document Server

    Veitch, John; Farr, Benjamin; Farr, Will M; Graff, Philip; Vitale, Salvatore; Aylott, Ben; Blackburn, Kent; Christensen, Nelson; Coughlin, Michael; Del Pozzo, Walter; Feroz, Farhan; Gair, Jonathan; Haster, Carl-Johan; Kalogera, Vicky; Littenberg, Tyson; Mandel, Ilya; O'Shaughnessy, Richard; Pitkin, Matthew; Rodriguez, Carl; Röver, Christian; Sidery, Trevor; Smith, Rory; Van Der Sluys, Marc; Vecchio, Alberto; Vousden, Will; Wade, Leslie

    2014-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary coalescence (CBC) signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We are able to show using three independent sampling algorithms that our implementation consistently converges on the same results, giving confidence in the parameter estimates thus obtained. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star-black hole binary and a bin...

  12. The third post-Newtonian gravitational waveforms for compact binary systems in general orbits: instantaneous terms

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2015-01-01

    We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian order. We further extend these results for compact binaries in quasi-elliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current type multipole moments, we compute the spin weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasi-elliptical orbits.

  13. Kilonova/Macronova Emission from Compact Binary Mergers

    CERN Document Server

    Tanaka, Masaomi

    2016-01-01

    We review current understanding of kilonova/macronova emission from compact binary mergers (mergers of two neutron stars or a neutron star and a black hole). Kilonova/macronova is optical and near-infrared emission powered by radioactive decays of r-process nuclei. Emission from the dynamical ejecta with ~0.01 Msun is likely to have a luminosity of ~10^{40}-10^{41} erg s^{-1} with a characteristic timescale of about 1 week. The spectral peak is located in red optical or near-infrared wavelengths. A subsequent accretion disk wind may provide an additional luminosity, or an earlier/bluer emission if it is not absorbed by the precedent dynamical ejecta. The detection of near-infrared excess in the afterglow of short GRB 130603B and possible optical excess in GRB 060614 supports the concept of the kilonova/macronova scenario. At 200 Mpc distance, a typical brightness of kilonova/macronova with 0.01 Msun ejecta is expected to be about 22 mag and the emission rapidly fades to >24 mag within ~10 days after the merge...

  14. A compact binary merger model for GRB 050509b

    CERN Document Server

    Lee, W H; Granot, J; Lee, William H.; Ramirez-Ruiz, Enrico; Granot, Jonathan

    2005-01-01

    The first X-ray afterglow for a short (30 ms), hard gamma-ray burst was detected by Swift on 9 May 2005 (GRB 050509b). No optical or radio counterpart was identified in follow--up observations. The tentative association of the GRB with a nearby giant elliptical galaxy at redshift z=0.2248 would imply the progenitor had traveled several tens of kpc from its point of origin, in agreement with expectations linking these events to the final merger of compact binaries driven by gravitational wave emission. We model the dynamical merger of such a system and the time--dependent evolution of the accretion tori thus created. The resulting energetics, variability, and expected durations are consistent with GRB 050509b originating from the tidal disruption of a neutron star by a stellar mass black hole, or of the merger of two neutron stars followed by prompt gravitational collapse of the massive remnant. We discuss how the available gamma-ray and X-ray data provides a probe for the nature of the relativistic ejecta and...

  15. Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers

    CERN Document Server

    Mandel, Ilya; Dominik, Michal; Belczynsk, Krzysztof

    2015-01-01

    We analyze the distinguishability of populations of coalescing binary neutron stars, neutron-star black-hole binaries, and binary black holes, whose gravitational-wave signatures are expected to be observed by the advanced network of ground-based interferometers LIGO and Virgo. We consider population-synthesis predictions for plausible merging binary distributions in mass space, along with measurement accuracy estimates from the main gravitational-wave parameter-estimation pipeline. We find that for our model compact-object binary mass distribution, we can always distinguish binary neutron stars and black-hole--neutron-star binaries, but not necessarily black-hole--neutron-star binaries and binary black holes; however, with a few tens of detections, we can accurately identify the three subpopulations and measure their respective rates.

  16. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Halpern, Jules P. [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Eracleous, Michael [Department of Astronomy and Institute for Gravitation and The Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  17. A Periodically Varying Luminous Quasar at z=2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime

    CERN Document Server

    Liu, Tingting; Heinis, Sebastien; Magnier, Eugene A; Burgett, William S; Chambers, Kenneth; Flewelling, Heather; Huber, Mark; Hodapp, Klaus W; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Tonry, John L; Wainscoat, Richard J; Waters, Christopher

    2015-01-01

    Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers, and the strongest sirens of gravitational waves (GWs) in the cosmos. And yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of a SMBHB in the time domain: periodic variability caused by a mass accretion rate that is modulated by the binary's orbital motion. We report our first significant periodically varying quasar detection from the systematic search in the Pan-STARRS1 (PS1) Medium Deep Survey. Our SMBHB candidate, PSO J334.2028+01.4075, is a luminous radio-loud quasar at $z=2.060$, with extended baseline photometry from the Catalina Real-Time Transient Survey, as well as archival spectroscopy from the FIRST Bright Quasar Survey. The observed period ($542 \\pm 15$ days) and estimated black hole mass ($\\log (M_{\\rm BH}/M_\\odot) = 9.97 \\p...

  18. Status and Future of Deep Searches for Compact Binary Mergers

    Science.gov (United States)

    Nitz, Alexander` Harvey; LIGO Scientific Collaboration

    2016-06-01

    Deep offline searches for gravitational waves from binary black hole, binary neutron star, and neutron star- black hole mergers were conducted during the first Advanced LIGO observing run, and recently Advanced LIGO announced the first detection of gravitational waves from a binary black hole merger. We discuss the recent results, the methodology of the high latency searches, along with improvements for the upcoming observing runs.

  19. The detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors

    CERN Document Server

    Coughlin, Michael; Thrane, Eric; Luo, Jialun; Christensen, Nelson

    2014-01-01

    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. While most binaries are expected to possess circular orbits, some may be eccentric, for example, if they are formed through dynamical capture. Eccentric orbits can create difficulty for matched filtering searches due to the challenges of creating effective template banks to detect these signals. In previous work, we showed how seedless clustering can be used to detect low-mass ($M_\\text{total}\\leq10M_\\odot$) compact binary coalescences for both spinning and eccentric systems, assuming a circular post-Newtonian expansion. Here, we describe a parameterization that is designed to maximize sensitivity to low-eccentricity ($0\\leq\\epsilon\\leq0.6$) systems, derived from the analytic equations. We show that this parameterization provides a robust and computationally efficient method for detecting eccentric low-mass compact binaries. Base...

  20. Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference

    Science.gov (United States)

    Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.

    2015-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.

  1. Secular evolution of compact binaries near massive black holes: Gravitational wave sources and other exotica

    CERN Document Server

    Antonini, Fabio

    2012-01-01

    The environment near super massive black holes (SMBHs) in galactic nuclei contain a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits in respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai-cycles). During periapsis approach, at the highest eccentricities during the Kozai-cycles, gravitational wave emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries which do not reside near a SMBH. The close environment of SMBHs could therefore serve as catalyst for the inspiral and coalescence of binaries, and strongly affect their...

  2. Fast and Accurate Inference on Gravitational Waves from Precessing Compact Binaries

    CERN Document Server

    Smith, Rory; Blackburn, Kent; Haster, Carl-Johan; Pürrer, Michael; Raymond, Vivien; Schmidt, Patricia

    2016-01-01

    Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper we construct the first reduced order models of gravitational-wave signals that include the effects of spin-precession, inspiral, merger, and ringdown in compact object binaries, and which are valid for component masses describing binary neutron star, binary black hole and mixed binary systems. This work utilizes the waveform model known as "IMRPhenomPv2". Our ROM enables the use of a fast \\textit{reduced order quadrature} (ROQ) integration rule...

  3. Supermassive cosmic string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon, E-mail: josejuan.blanco@ehu.es, E-mail: borja.reina@ehu.es, E-mail: kepa.sousa@ehu.es, E-mail: jon.urrestilla@ehu.es [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain)

    2014-06-01

    The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.

  4. Supermassive Cosmic String Compactifications

    CERN Document Server

    Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon

    2014-01-01

    The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4D Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N=1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.

  5. The ``Uberbank'': A search for compact binary coalescences in the first Observing run of Advanced LIGO

    Science.gov (United States)

    Capano, Collin; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Modeled searches for gravitational waves from compact binary coalescence (CBC) use a ``bank'' of template waveforms to search the wide range of parameters that binaries may have. Recent advances in waveform modeling and template placement techniques have opened up the possibility to efficiently search for systems with non-precessing spin, using waveforms that model the inspiral, merger, and ringdown of coalescing binaries. I discuss how these advances were combined to produce the template bank used to search for CBCs in the first observing run of Advanced LIGO. This bank covered the full range of plausible masses and non-precessing spins of binary neutron stars, stellar-mass binary black holes, and binaries consisting of a neutron star and a stellar-mass black hole.

  6. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Directory of Open Access Journals (Sweden)

    Luc Blanchet

    2014-02-01

    Full Text Available To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc. and by the future detectors in space (eLISA, etc., inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins, and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.

  7. Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors

    Science.gov (United States)

    Coughlin, M.; Meyers, P.; Thrane, E.; Luo, J.; Christensen, N.

    2015-03-01

    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. While most binaries are expected to possess circular orbits, some may be eccentric, for example, if they are formed through dynamical capture. Eccentric orbits can create difficulty for matched filtering searches due to the challenges of creating effective template banks to detect these signals. In previous work, we showed how seedless clustering can be used to detect low-mass (Mtotal≤10 M⊙) compact binary coalescences for both spinning and eccentric systems, assuming a circular post-Newtonian expansion. Here, we describe a parametrization that is designed to maximize sensitivity to low-eccentricity (0 ≤ɛ ≤0.6 ) systems, derived from the analytic equations. We show that this parametrization provides a robust and computationally efficient method for detecting eccentric low-mass compact binaries. Based on these results, we conclude that advanced detectors will have a chance of detecting eccentric binaries if optimistic models prove true. However, a null observation is unlikely to firmly rule out models of eccentric binary populations.

  8. Evidence for compact binary systems around Kepler red giants

    DEFF Research Database (Denmark)

    Colman, Isabel L.; Huber, Daniel; Bedding, Timothy R.

    2017-01-01

    We present an analysis of 168 oscillating red giants from NASA's Kepler mission that exhibit anomalous peaks in their Fourier amplitude spectra. These peaks result from ellipsoidal variations that are indicative of binary star systems, at frequencies such that the orbit of any stellar companion w...

  9. Hot subdwarf binaries - Masses and nature of their heavy compact companions

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Stephan; Heber, Uli; Edelmann, Heinz; Kupfer, Thomas [Dr. Remeis-Sternwarte, Institute for Astronomy, University Erlangen-Nuernberg, Sternwartstr. 7, 96049 Bamberg (Germany); Napiwotzki, Ralf [Centre of Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Podsiadlowski, Philipp, E-mail: geier@sternwarte.uni-erlangen.d [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2009-06-01

    Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 31 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models, at least 5% of the observed subdwarfs must have very massive companions: unusually heavy white dwarfs, neutron stars and, in some cases, even black holes. We present evolutionary models which show that such binaries can indeed form if the system has evolved through two common-envelope phases. This new connection between hot subdwarfs, which are numerous in the Galaxy, and massive compact objects may lead to a tremendous increase in the number of known neutron stars and black holes and shed some light on this dark population and its evolutionary link to the X-ray binary population.

  10. Hot subdwarf binaries - Masses and nature of their heavy compact companions

    CERN Document Server

    Geier, Stephan; Edelmann, Heinz; Kupfer, Thomas; Napiwotzki, Ralf; Podsiadlowski, Philipp

    2009-01-01

    Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 32 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models...

  11. Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order

    CERN Document Server

    Moore, Blake; Arun, K G; Mishra, Chandra Kant

    2016-01-01

    [abridged] Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but nonnegligible orbital eccentricities when they enter the low-frequency bands of ground and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary. Gravitational-wave search templates typically rely on the quasi-circular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. The quasi-Keplerian formalism provides an elegant but complex description of the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit the non-periodic contribution to the gravitational-wave phasing can be ex...

  12. A synthetic model of the gravitational wave background from evolving binary compact objects

    CERN Document Server

    Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph

    2016-01-01

    Modeling the stochastic gravitational wave background from various astrophysical sources is a key objective in view of upcoming observations with ground- and space-based gravitational wave observatories such as Advanced LIGO, VIRGO, eLISA and PTA. We develop a synthetic model framework that follows the evolution of single and binary compact objects in an astrophysical context. We describe the formation and merger rates of binaries, the evolution of their orbital parameters with time and the spectrum of emitted gravitational waves at different stages of binary evolution. Our approach is modular and allows us to test and constrain different ingredients of the model, including stellar evolution, black hole formation scenarios and the properties of binary systems. We use this framework in the context of a particularly well-motivated astrophysical setup to calculate the gravitational wave background from several types of sources, including inspiraling stellar-mass binary black holes that have not merged during a H...

  13. Binary compact object mergers in Einstein-Maxwell-Dilaton theories

    Science.gov (United States)

    Hirschmann, Eric; Lehner, Luis; Liebling, Steve; Palenzuela, Carlos

    2017-01-01

    We present work on the dynamics and gravitational wae emission of binary black holes in a modified theory of gravity. Our particular model is inspired by low energy string theory and includes additional matter fields, such as a dilaton, not necessarily present in vacuum general relativity. We consider deviations from standard predictions for gravitational wave signatures and examine alternative scalar and electromagnetic channels for emission.

  14. Detecting gravitational waves from highly eccentric compact binaries

    CERN Document Server

    Tai, Kai Sheng; Pretorius, Frans

    2014-01-01

    In dense stellar regions, highly eccentric binaries of black holes and neutron stars can form through various n-body interactions. Such a binary could emit a significant fraction of its binding energy in a sequence of largely isolated gravitational wave bursts prior to merger. Given expected black hole and neutron star masses, many such systems will emit these repeated bursts at frequencies within the sensitive band of contemporary ground-based gravitational wave detectors. Unfortunately, existing gravitational wave searches are ill-suited to detect these signals. In this work, we adapt a "power stacking" method to the detection of gravitational wave signals from highly eccentric binaries. We implement this method as an extension of the Q-transform, a projection onto a multiresolution basis of windowed complex exponentials that has previously been used to analyze data from the network of LIGO/Virgo detectors. Our method searches for excess power over an ensemble of time-frequency tiles. We characterize the pe...

  15. Evidence for compact binary systems around Kepler red giants

    Science.gov (United States)

    Colman, Isabel L.; Huber, Daniel; Bedding, Timothy R.; Kuszlewicz, James S.; Yu, Jie; Beck, Paul G.; Elsworth, Yvonne; García, Rafael A.; Kawaler, Steven D.; Mathur, Savita; Stello, Dennis; White, Timothy R.

    2017-08-01

    We present an analysis of 168 oscillating red giants from NASA's Kepler mission that exhibit anomalous peaks in their Fourier amplitude spectra. These peaks result from ellipsoidal variations that are indicative of binary star systems, at frequencies such that the orbit of any stellar companion would be within the convective envelope of the red giant. Alternatively, the observed phenomenon may be due to a close binary orbiting a red giant in a triple system, or chance alignments of foreground or background binary systems contaminating the target pixel aperture. We identify 87 stars in the sample as chance alignments using a combination of pixel Fourier analysis and difference imaging. We find that in the remaining 81 cases, the anomalous peaks are indistinguishable from the target star to within 4 arcsec, suggesting a physical association. We examine a galaxia model of the Kepler field of view to estimate background star counts and find that it is highly unlikely that all targets can be explained by chance alignments. From this, we conclude that these stars may comprise a population of physically associated systems.

  16. Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations

    CERN Document Server

    Galley, Chad R

    2016-01-01

    We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is $v^5 \

  17. Use of gravitational waves to measure alignment of spins in compact binaries

    CERN Document Server

    Vitale, Salvatore; Graff, Philip; Sturani, Riccardo

    2015-01-01

    Coalescences of compact objects, neutron star and black holes, in binary systems are very promising sources of gravitational waves for the ground based detectors Advanced LIGO and Virgo. Much about compact binaries is still uncertain, including how often they are formed in the Universe, and some key details about their formation channels. One of the key open questions about compact binary coalescences is whether or not common envelope evolution is highly efficient in aligning spins with the orbital angular momentum. In this paper we show how gravitational waves detected by Advanced LIGO and Virgo can be used to verify if spins are preferentially aligned with the orbital angular momentum in compact binaries made of two black holes or a neutron star and a black hole. We first assume that all sources have either nearly aligned or non-aligned spins and use Bayesian model selection to calculate a cumulative odds ratio to compare the aligned and non-aligned models. We see that the correct model is typically preferr...

  18. The Distribution of Coalescing Compact Binaries in the Local Universe: Prospects for Gravitational-Wave Observations

    CERN Document Server

    Kelley, Luke Zoltan; Zemp, Marcel; Diemand, Jürg; Mandel, Ilya

    2010-01-01

    Merging compact binaries are the most viable and best studied candidates for gravitational wave (GW) detection by the fully operational network of ground-based observatories. In anticipation of the first detections, the expected distribution of GW sources in the local universe is of considerable interest. Here we investigate the full phase space distribution of coalescing compact binaries at $z = 0$ using dark matter simulations of structure formation. The fact that these binary systems acquire large barycentric velocities at birth (``kicks") results in merger site distributions that are more diffusely distributed with respect to their putative hosts, with mergers occurring out to distances of a few Mpc from the host halo. Redshift estimates based solely on the nearest galaxy in projection can, as a result, be inaccurate. On the other hand, large offsets from the host galaxy could aid the detection of faint optical counterparts and should be considered when designing strategies for follow-up observations. The...

  19. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    CERN Document Server

    Blanchet, Luc

    2013-01-01

    To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc.) and by the future detectors in space (LISA, etc.), inspiralling compact binaries --- binary star systems composed of neutron stars and/or black holes in their late stage of evolution --- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source) and inspiralling compact binaries. We describe the post-Newtonian equations of motion, pay attention to the self-field regularizations at work, discuss several notions of innermost circular orbits, estimate the accuracy of the approximation and make a comparison with num...

  20. Inspiral waveforms for spinning compact binaries in a new precessing convention

    CERN Document Server

    Gupta, Anuradha

    2016-01-01

    It is customary to use a precessing convention, based on Newtonian orbital angular momentum ${\\bf L}_{\\rm N}$, to model inspiral gravitational waves from generic spinning compact binaries. A key feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a post-Newtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum ${\\bf L}$, to evolve the ${\\bf L}_{\\rm N}$-based precessing source frame. This motivated us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly use ${\\bf L}$ to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the orbital phase and frequency evolution equations with respect to the usual ${\\bf L}_{\\rm N}$-based implementation of the precessing convention. The implications of these additional terms are explored by computing the match between in...

  1. Post-newtonian analysis of precessing convention for spinning compact binaries

    CERN Document Server

    Gupta, Anuradha

    2015-01-01

    A precessing source frame, constructed using the Newtonian orbital angular momentum ${\\bf L_{\\rm N}}$, can be invoked to model inspiral gravitational waves from generic spinning compact binaries. An attractive feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a post-Newtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum ${\\bf L}$, to evolve the ${\\bf L_{\\rm N}}$-based precessing source frame. This influenced us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly employ ${\\bf L}$ to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the evolution equations for the orbital phase and frequency with respect to the usual ${\\bf L_{\\rm N}}$-based implementation of the precessing convention. We examine the practical implications of these additional term...

  2. Spectroscopic Analysis of subluminous B Stars in Binaries with compact Companions

    CERN Document Server

    Geier, S; Edelmann, H; Heber, U; Napiwotzki, R

    2006-01-01

    The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. Based on high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. The assumption of orbital synchronization makes it possible to constrain inclination angle and companion mass of the binaries. Five invisible companions have masses that are compatible with that of normal white dwarfs or late type main sequence stars. But four sdBs have very massive companions like heavy white dwarfs > 1 Mo, neutron stars or even black holes. Such a high fraction of massive compact companions is not expected from cu...

  3. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  4. Eccentric first post-Newtonian waveforms for compact binaries in frequency domain with Hansen coefficients

    CERN Document Server

    Mikóczi, Balázs; Vasúth, Mátyás

    2015-01-01

    The inspiral and merger of supermassive black hole binary systems with high orbital eccentricity are among the promising sources of the advanced gravitational wave observatories. In this paper we derive analytic ready-to-use first post-Newtonian eccentric waveform in Fourier domain with the use of Hansen coefficients. Introducing generic perturbations of celestial mechanics we have generalized the Hansen expansion to the first post-Newtonian order which are then used to express the waveforms. Taking into account the high eccentricity of the orbit leads to the appearance of secular terms in the waveform which are eliminated with the introduction of a phase shift. The waveforms have a systematic structure and as our main result these are expressed in a tabular form.

  5. A geometric approach to the precession of compact binaries

    CERN Document Server

    Boyle, Michael; Pfeiffer, Harald P

    2011-01-01

    We propose a geometrical method to define a preferred reference frame for precessing binary systems. This minimal-rotation frame is aligned with the angular-momentum axis and fixes the rotation about that axis up to a constant angle, resulting in an essentially invariant frame. Gravitational waveforms decomposed in this frame are similarly invariant under rotations of the inertial frame and exhibit relatively smoothly varying phase. By contrast, earlier prescriptions for radiation-aligned frames induce extraneous features in the gravitational-wave phase which depend on the orientation of the inertial frame, which leads to fluctuations in the frequency and may compound to many gravitational-wave cycles. We suggest that the minimal-rotation frame provides a simplified framework for post-Newtonian approximations of precessing systems and describe the construction of analytical/numerical hybrid waveforms for such systems.

  6. Non-conformally flat initial data for binary compact objects

    CERN Document Server

    Uryu, Koji; Friedman, John L; Gourgoulhon, Eric; Shibata, Masaru

    2009-01-01

    A new method is described for constructing initial data for a binary neutron-star (BNS) system in quasi-equilibrium circular orbit. Two formulations for non-conformally flat data, waveless (WL) and near-zone helically symmetric (NHS), are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all the metric components including the spatially non-conformally flat part, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational BNSs with matter approximated by a parametrized equations of state that uses a few segments of polytropic equations of state. WL/NHS formulations correct the results from the conformally flat -- Isenberg-Wilson-Mathews (IWM) -- formulation. Binding energy or total angular momentum of solution sequences computed within the IWM formulation are...

  7. Probability distribution function for inclinations of merging compact binaries detected by gravitational wave interferometers

    CERN Document Server

    Seto, Naoki

    2014-01-01

    We analytically discuss probability distribution function (PDF) for inclinations of merging compact binaries whose gravitational waves are coherently detected by a network of ground based interferometers. The PDF would be useful for studying prospects of (1) simultaneously detecting electromagnetic signals (such as gamma-ray-bursts) associated with binary mergers and (2) statistically constraining the related theoretical models from the actual observational data of multi-messenger astronomy. Our approach is similar to Schutz (2011), but we explicitly include the dependence of the polarization angles of the binaries, based on the concise formulation given in Cutler and Flanagan (1994). We find that the overall profiles of the PDFs are similar for any networks composed by the second generation detectors (Advanced-LIGO, Advanced-Virgo, KAGRA, LIGO-India). For example, 5.1% of detected binaries would have inclination angle less than 10 degree with at most 0.1% differences between the potential networks. A perturb...

  8. The exotic remnants of compact object binary mergers

    Science.gov (United States)

    Duez, Matthew

    2017-01-01

    The collision and merger of a neutron star with a black hole or another neutron star is a strong source of gravitational waves and a promising setup for the creation of bright infrared (kilonova) and gamma ray (gamma ray burst) transients. These violent events can be modeled by numerical simulations incorporating general relativity, fluid dynamics, and nuclear physics. In this talk, I will explain the findings of some of these simulations. Depending on the properties of the binary, the merger leaves a black hole, a black hole accreting matter from a torus at an incredible rate, or a massive spinning neutron star. The latter two cases are characterized by the importance of differential rotation, magnetohydrodynamic processes, and neutrino radiation. To understand these systems, I will focus on what we know of their dynamical and thermal equilibrium structure, what we know of the dynamical instabilities to which they might be prone, and what we can tentatively say about their subsequent secular evolution from outflow, magnetic, radiative, and other effects. Computer simulations are becoming ever more impressive but remain unequal to the problem at hand, so I will address the challenges still posed by small-scale magnetohydrodynamic effects and by radiation transport. The author is a member of the SXS Collaboration and acknowledges support from NSF.

  9. Fast and accurate inference on gravitational waves from precessing compact binaries

    Science.gov (United States)

    Smith, Rory; Field, Scott E.; Blackburn, Kent; Haster, Carl-Johan; Pürrer, Michael; Raymond, Vivien; Schmidt, Patricia

    2016-08-01

    Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments, we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced-order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper, we construct the first reduced-order models of gravitational-wave signals that include the effects of spin precession, inspiral, merger, and ringdown in compact object binaries and that are valid for component masses describing binary neutron star, binary black hole, and mixed binary systems. This work utilizes the waveform model known as "IMRPhenomPv2." Our ROM enables the use of a fast reduced-order quadrature (ROQ) integration rule which allows us to approximate Bayesian probability density functions at a greatly reduced computational cost. We find that the ROQ rule can be used to speed-up inference by factors as high as 300 without introducing systematic bias. This corresponds to a reduction in computational time from around half a year to half a day for the longest duration and lowest mass signals. The ROM and ROQ rules are available with the main inference library of the LIGO Scientific Collaboration, LALInference.

  10. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Directory of Open Access Journals (Sweden)

    Blanchet Luc

    2002-01-01

    Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part aaa of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part bbb of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.

  11. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Directory of Open Access Journals (Sweden)

    Blanchet Luc

    2006-06-01

    Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.

  12. Tidal invariants for compact binaries on quasi-circular orbits

    CERN Document Server

    Dolan, Sam R; Ottewill, Adrian C; Warburton, Niels; Wardell, Barry

    2014-01-01

    We extend the gravitational self-force approach to encompass `self-interaction' tidal effects for a compact body of mass $\\mu$ on a quasi-circular orbit around a black hole of mass $M \\gg \\mu$. Specifically, we define and calculate at $O(\\mu)$ (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at $O(\\mu)$. We present accurate numerical results for the Schwarzschild case for orbital radii up to the light-ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our r...

  13. Performance comparison of multi-detector detection statistics in targeted compact binary coalescence GW search

    CERN Document Server

    Haris, K

    2016-01-01

    Global network of advanced Interferometric gravitational wave (GW) detectors are expected to be on-line soon. Coherent observation of GW from a distant compact binary coalescence (CBC) with a network of interferometers located in different continents give crucial information about the source such as source location and polarization information. In this paper we compare different multi-detector network detection statistics for CBC search. In maximum likelihood ratio (MLR) based detection approaches, the likelihood ratio is optimized to obtain the best model parameters and the best likelihood ratio value is used as statistic to make decision on the presence of signal. However, an alternative Bayesian approach involves marginalization of the likelihood ratio over the parameters to obtain the average likelihood ratio. We obtain an analytical expression for the Bayesian statistic using the two effective synthetic data streams for targeted search of non-spinning compact binary systems with an uninformative prior on...

  14. Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence

    OpenAIRE

    Cannon, K.; Cariou, R.; Chapman, A.; Crispin-Ortuzar, M.; Fotopoulos, N.; Frei, M.; Hanna, C.; Kara, E.; Keppel, D.; Liao, L; Privitera, S.; A Searle; Singer, L.; Weinstein, A.

    2012-01-01

    Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from (CBC). We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.

  15. Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data

    CERN Document Server

    Slutsky, J; Brown, D A; Cadonati, L; Cain, J; Cavaglià, M; Chatterji, S; Christensen, N; Coughlin, M; Desai, S; González, G; Isogai, T; Katsavounidis, E; Rankins, B; Reed, T; Riles, K; Shawhan, P; Smith, J R; Zotov, N; Zweizig, J

    2010-01-01

    The LIGO detectors are sensitive to a variety of noise transients of non-astrophysical origin. Instrumental glitches and environmental disturbances increase the false alarm rate in the searches for gravitational waves. Using times already identified when the interferometers produced data of questionable quality, or when the channels that monitor the interferometer indicated non-stationarity, we have developed techniques to safely and effectively veto false triggers from the compact binary coalescences (CBCs) search pipeline.

  16. Methods for reducing false alarms in searches for compact binary coalescences in LIGO data

    Energy Technology Data Exchange (ETDEWEB)

    Slutsky, J; Gonzalez, G [Louisiana State University, Baton Rouge, LA 70803 (United States); Blackburn, L; Katsavounidis, E [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Brown, D A; Smith, J R [Syracuse University, Syracuse, NY 13244-1130 (United States); Cadonati, L [University of Massachusetts-Amherst, Amherst, MA 01003 (United States); Cain, J; Cavaglia, M; Rankins, B [University of Mississippi, University, MS 38677 (United States); Chatterji, S; Zweizig, J [California Institute of Technology, Pasedena, CA 91125 (United States); Christensen, N; Coughlin, M; Isogai, T [Carleton College, Northfield, MN 55057 (United States); Desai, S [NCSA at University of Illinois, Urbana-Champaign, IL 61801 (United States); Reed, T; Zotov, N [Louisiana Tech University, Ruston, LA 71272 (United States); Riles, K [University of Michigan, Ann Arbor, MI 48109 (United States); Shawhan, P, E-mail: jsluts@tigers.lsu.ed [University of Maryland, College Park, MD 20742 (United States)

    2010-08-21

    The LIGO detectors are sensitive to a variety of noise transients of non-astrophysical origin. Instrumental glitches and environmental disturbances increase the false alarm rate in the searches for gravitational waves. Using times already identified when the interferometers produced data of questionable quality, or when the channels that monitor the interferometer indicated non-stationarity, we have developed techniques to safely and effectively veto false triggers from the compact binary coalescences search pipeline.

  17. Detection of gravitational waves from inspiraling compact binaries using non-restricted post-Newtonian approximations

    CERN Document Server

    Sintes, A M

    2000-01-01

    The set up of matched filters for the detection of gravitational waves from in-spiraling compact binaries is usually carried out using the restricted post-Newtonian approximation: the filter phase is modelled including post-Newtonian corrections, whereas the amplitude is retained at the Newtonian order. Here we investigate the effects of the introduction of post-Newtonian corrections also to the amplitude and we discuss some of the implications for signal detection and parameter estimation.

  18. Are the most super-massive dark compact objects harbored at the center of dark matter halos?

    CERN Document Server

    Argüelles, Carlos R

    2014-01-01

    Essay selected for Honorable mention 2014 by the Gravity Research Foundation. We study an isothermal system of semi-degenerate self-gravitating fermions in General Relativity (GR). The most general solutions present mass density profiles with a central degenerate compact core governed by quantum statistics followed by an extended plateau, and ending in a power law behaviour $r^{-2}$. By fixing the fermion mass $m$ in the keV regime, the different solutions depending on the free parameters of the model: the degeneracy and temperature parameters at the center, are systematically constructed along the one-parameter sequences of equilibrium configurations up to the critical point, which is represented by the maximum in a central density ($\\rho_0$) Vs. core mass ($M_c$) diagram. We show that for fully degenerate cores, the Oppenheimer-Volkoff (OV) mass limit $M_{c}^{cr}\\propto M_{pl}^3/m^2$ is obtained, while instead for low degenerate cores, the critical core mass increases showing the temperature effects in a no...

  19. Feeding compact bulges and supermassive black holes with low angular-momentum cosmic gas at high redshift

    CERN Document Server

    Dubois, Yohan; Haehnelt, Martin; Kimm, Taysun; Slyz, Adrianne; Devriendt, Julien; Pogosyan, Dmitry

    2011-01-01

    We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive halos falls nearly radially to their very centre on extremely short timescales. This process results in the formation of very compact bulges with specific angular momentum a factor 5-30$smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates both from segregation and effective cancellation when the gas flows to the centre of the halo along well defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely d...

  20. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves

    CERN Document Server

    Farr, Benjamin; Farr, Will M; O'Shaughnessy, Richard

    2014-01-01

    Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that by adopting analysis parameters that naturally characterize this 'picture', the physical parameters of the system can be extracted more efficiently from the gravitational wave data, and interpreted more easily. We assess the performance of MCMC parameter estimation in this physically intuitive coordinate system, defined by (a) a frame anchored on the binary's spins and orbital angular momentum and (b) a time at which the detectors are most sensitive to the binary's gravitational wave emission. Using anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find that this careful choice of reference frame and reference time significantly improves parameter estimation efficiency for BNS, NS-BH, and BBH signals.

  1. Accuracy in measuring the neutron star mass in gravitational wave parameter estimates for nonspinning compact binaries

    Science.gov (United States)

    Cho, Hee-Suk

    2015-09-01

    In gravitational wave (GW) data analysis, the parameter estimate is performed to find the physical parameters of GW sources. The result of the parameter estimate is given by a posterior probability density function, and the measurement errors can be computed by using the Fisher matrix method. Using this method, we investigate the accuracy in estimates of neutron star (NS) masses ( M NS) for GWs emitted from merging compact binaries. As GW sources, we consider nonspinning binaries in which the primary component is assumed to be a NS and the companion is assumed to be a NS or a stellar-mass black hole (BH). Adopting GW signals with a signal-to-noise ratio of 10 for Advanced LIGO (Laser Interferometer Gravitational wave Observatory) sensitivity, we calculate measurement errors (σ) of M NS. We find that the errors strongly depend on the mass ratio of the companion mass ( M com) to the NS mass ( M NS). For NS-NS binaries, the fractional errors (σ/ M NS) are larger than 10% only in the symmetric mass region. For BH-NS binaries, the fractional errors tend to decrease with increasing mass ratio ( M com/ M NS), and the measurement accuracies are better than those for NS-NS binaries. In this case, the errors are always smaller than ~ 3%.

  2. Measuring the dimensionality of compact extra dimensions with inspiral gravitational waves from black-hole binaries

    Science.gov (United States)

    Qiang, Li-E.; Zhao, Shu Hong; Xu, Peng

    2016-12-01

    Gravitational waves from coalescing black-hole binaries (BHBs) were recently observed by the advanced LIGO detectors. Based on the perturbation analysis, for general Kaluza-Klein theories with compact extra dimensions, we find a 1st-order post-Newtonian correction to the inspiral gravitational waveforms of black-hole binaries, that comes from the variations of the volume of the extra dimensions in near source zones. Such correction depends on a new parameter χ=\\frac{n}{2+n} with n the dimensionality of the extra space and it is irrelevant to the particular choice of the topology of the extra space. For the ideal case of a black-hole binary system following nearly circular orbital motion with almost equal or intermediate mass ratio, such higher-dimensional corrections to the chirping amplitude are worked out. Giving the power of tracing inspiral waves from coalescing massive BHBs with high signal-to-noise ratios, the planned space-borne antennas such as the eLISA and DECIGO may give us a measurement of the parameter χ in the near future and may serve us as new probes in the searching for the evidence of the hidden compact dimensions.

  3. The coupled effect of tides and stellar winds on the evolution of compact binaries

    CERN Document Server

    Repetto, Serena

    2014-01-01

    We follow the evolution of compact binaries under the coupled effect of tides and stellar winds until the onset of Roche-lobe overflow. These binaries contain a compact object (either a black-hole, a neutron-star, or a planet) and a stellar component. We integrate the full set of tidal equations, which are based on Hut's model for tidal evolution, and we couple them with the angular momentum loss in a stellar wind. Our aim is twofold. Firstly, we wish to highlight some interesting evolutionary outcomes of the coupling. When tides are coupled with a non-massive stellar wind, one interesting outcome is that in certain types of binaries, the stellar spin tends to reach a quasi-equilibrium state, where the effect of tides and wind are counteracting each other. When tides are coupled with a massive wind, we parametrize the evolution in terms of the decoupling radius, at which the wind decouples from the star. Even for small decoupling radii this \\emph{wind braking} can drive systems on the main sequence to Roche-l...

  4. Use of gravitational waves to probe the formation channels of compact binaries

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Sturani, Riccardo; Graff, Philip

    2017-02-01

    With the discovery of the binary black hole coalescences GW150914 and GW151226, the era of gravitational-wave astrophysics has started. Gravitational-wave signals emitted by compact binary coalescences will be detected in large number by LIGO and Virgo in the coming months and years. Much about compact binaries is still uncertain, including some key details about their formation channels. The two scenarios which are typically considered, common envelope evolution and dynamical capture, result in different distributions for the orientation of the black hole spins. In particular, common envelope evolution is expected to be highly efficient in aligning spins with the orbital angular momentum. In this paper we simulate catalogs of gravitational-wave signals in which a given fraction of events comes from common envelope evolution, and has spins nearly aligned with the orbital angular momentum. We show how the fraction of aligned systems can be accurately estimated using Bayesian parameter estimation, with 1 σ uncertainties of the order of 10% after 100–200 sources are detected.

  5. A spinning supermassive black hole binary revealed by VLBI data on the jet of S5 1928+738

    CERN Document Server

    Kun, E; Karouzos, M; Britzen, S; Gergely, L Á

    2014-01-01

    Very Long Baseline Interferometry (VLBI) allows for high-resolution and high-sensitivity observations of relativistic jets, that can reveal periodicities of several years in their structure. We perform an analysis of long term VLBI data on the quasar S5 1928+738, confronting it with a geometric model of a helical structure projected on to the plane of the sky. We monitor the direction of the jet axis through its inclination and position angles. We decompose the variation of the inclination of the inner 2 milliarcsecond part of the jet of S5 1928+738 into a periodic term with an amplitude of ~0.89 deg and a linear decreasing trend with rate of ~0.05 deg/yr. We also decompose the variation of the position angle into a periodic term with amplitude of ~3.39 deg and a linear increasing trend with rate of ~0.24 deg/yr. We interpret the periodic components as arising from the orbital motion of a binary black hole inspiraling at the jet base. Corrected values of the mass ratio and separation are derived from the accu...

  6. Dynamics around supermassive black holes

    CERN Document Server

    Gualandris, Alessia

    2007-01-01

    The dynamics of galactic nuclei reflects the presence of supermassive black holes (SBHs) in many ways. Single SBHs act as sinks, destroying a mass in stars equal to their own mass in roughly one relaxation time and forcing nuclei to expand. Formation of binary SBHs displaces a mass in stars roughly equal to the binary mass, creating low-density cores and ejecting hyper-velocity stars. Gravitational radiation recoil can eject coalescing binary SBHs from nuclei, resulting in offset SBHs and lopsided cores. We review recent work on these mechanisms and discuss the observable consequences.

  7. The PyCBC search for compact binary mergers in the second run of Advanced LIGO

    Science.gov (United States)

    Dal Canton, Tito; PyCBC Team

    2017-01-01

    The PyCBC software implements a matched-filter search for gravitational-wave signals associated with mergers of compact binaries. During the first observing run of Advanced LIGO, it played a fundamental role in the discovery of the binary-black-hole merger signals GW150914, GW151226 and LVT151012. In preparation for Advanced LIGO's second run, PyCBC has been modified with the goal of increasing the sensitivity of the search, reducing its computational cost and expanding the explored parameter space. The ability to report signals with a latency of tens of seconds and to perform inference on the parameters of the detected signals has also been introduced. I will give an overview of PyCBC and present the new features and their impact.

  8. Hereditary Effects in Eccentric Compact Binary Inspirals to Third Post-Newtonian Order

    CERN Document Server

    Loutrel, Nicholas

    2016-01-01

    While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than $10^{-3}$ relative to post-Newtonian numerica...

  9. XMM-Newton observations of the ultra-compact binary RX J1914+24

    CERN Document Server

    Ramsay, G; Wu, K; Cropper, M; Mason, K O; Cordova, F A; Priedhorsky, W; Ramsay, Gavin; Hakala, Pasi; Wu, Kinwah; Cropper, Mark

    2004-01-01

    We present XMM-Newton observations of the 569 sec period system RX J1914+24 (V407 Vul). This period is believed to represent the binary orbital period making it an ultra-compact binary system. By comparing the phase of the rise to maximum X-ray flux at various epochs (this includes observations made using ROSAT, ASCA and Chandra) we find that the system is spinning up at a rate of 3.17+/-0.07x10^{-12} s/s. We find that the spectra softens as the X-ray flux declines towards the off-phase of the 569 sec period. Further, the spectra are best fitted by an absorbed blackbody component together with a broad emission feature around 0.59keV. This emission feature is most prominent at the peak of the on-phase. We speculate on its origin.

  10. Compact object detection in self-lensing binary systems with a main-sequence star

    CERN Document Server

    Rahvar, S; Dominik, M

    2010-01-01

    Detecting compact objects by means of their gravitational lensing effect on an observed companion in a binary system has already been suggested almost four decades ago. However, these predictions were made even before the first observations of gravitational lensing, whereas nowadays gravitational microlensing surveys towards the Galactic bulge yield almost 1000 events per year where one star magnifies the light of a more distant one. With a specific view on those experiments, we therefore carry out simulations to assess the prospects for detection of the transient periodic magnification of the companion star, which lasts typically only a few hours binaries involving a main-sequence star. We find that detectability is given by the achievability of dense monitoring with the required photometric accuracy. In sharp contrast to earlier expectations by other authors, we find that main-sequence stars are not substantially less favourable targets to observe this effect than white dwarfs. The requirement of an almost ...

  11. Frequency and time domain inspiral templates for comparable mass compact binaries in eccentric orbits

    CERN Document Server

    Tanay, Sashwat; Gopakumar, Achamveedu

    2016-01-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the post-circular scheme of Yunes {\\it et al.} [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasi-circular time-domain {\\texttt{TaylorT4}} approximant at 2PN o...

  12. Tuning gravitational-wave detector networks to measure compact binary mergers

    Science.gov (United States)

    Hughes, Scott A.

    2002-11-01

    Gravitational waves generated by the final merger of compact binary systems depend on the structure of the binary's members. If the binary contains neutron stars, measuring such waves can teach us about the properties of matter at extreme densities. Unfortunately, these waves are typically at high frequency where the sensitivity of broadband detectors is not good. Learning about dense matter from these waves will require networks of broadband detectors combined with narrowband detectors that have good sensitivity at high frequencies. This paper presents an algorithm by which a network can be ``tuned,'' in accordance with the best available information, in order to most effectively measure merger waves. The algorithm is presented in the context of a toy model that captures the qualitative features of narrowband detectors and of certain binary neutron star merger wave models. By using what is learned from a sequence of merger measurements, the network can be gradually tuned in order to accurately measure the waves. The number of measurements needed to reach this stage depends upon the waves' signal strength, the number of narrowband detectors available for the measurement, and the detailed characteristics of the waves that carry the merger information. Future studies will go beyond this toy model, encompassing a more realistic description of both the detectors and the gravitational waves.

  13. Tuning gravitational-wave detector networks to measure compact binary mergers

    CERN Document Server

    Hughes, S A

    2002-01-01

    Gravitational waves generated by the final merger of compact binary systems depend on the structure of the binary's members. If the binary contains neutron stars, measuring such waves can teach us about the properties of matter at extreme densities. Unfortunately, these waves are typically at high frequency where the sensitivity of broad-band detectors is not good. Learning about dense matter from these waves will require networks of broad-band detectors combined with narrow-band detectors that have good sensitivity at high frequencies. This paper presents an algorithm by which a network can be ``tuned'', in accordance with the best available information, in order to most effectively measure merger waves. The algorithm is presented in the context of a toy model that captures the qualitative features of narrow-band detectors and of certain binary neutron star merger wave models. By using what is learned from a sequence of merger measurements, the network can be gradually tuned in order to accurately measure th...

  14. Study of statistical properties of hybrid statistic in coherent multidetector compact binary coalescences search

    Science.gov (United States)

    Haris, K.; Pai, Archana

    2016-05-01

    In this article, we revisit the coherent gravitational wave search problem of compact binary coalescences with multidetector network consisting of advanced interferometers like LIGO-Virgo. Based on the loss of the optimal multidetector signal-to-noise ratio (SNR), we construct a hybrid statistic as a best of maximum-likelihood-ratio (MLR) statistic tuned for face-on and face-off binaries. The statistical properties of the hybrid statistic is studied. The performance of this hybrid statistic is compared with that of the coherent MLR statistic for generic inclination angles. Owing to the single synthetic data stream, the hybrid statistic gives few false alarms compared to the multidetector MLR statistic and small fractional loss in the optimum SNR for a large range of binary inclinations. We demonstrate that, for a LIGO-Virgo network and binary inclination ɛ 11 0 ° , the hybrid statistic captures more than 98% of the network optimum matched filter SNR with a low false alarm rate. The Monte Carlo exercise with two distributions of incoming inclination angles—namely, U [cos ɛ ] and a more realistic distribution proposed by B. F. Schutz [Classical Quantum Gravity 28, 125023 (2011)]—are performed with the hybrid statistic and give approximately 5% and 7% higher detection probabilities, respectively, compared to the two stream multidetector MLR statistic for a fixed false alarm probability of 1 0-5.

  15. The PyCBC search for gravitational waves from compact binary coalescence

    Science.gov (United States)

    Usman, Samantha A.; Nitz, Alexander H.; Harry, Ian W.; Biwer, Christopher M.; Brown, Duncan A.; Cabero, Miriam; Capano, Collin D.; Dal Canton, Tito; Dent, Thomas; Fairhurst, Stephen; Kehl, Marcel S.; Keppel, Drew; Krishnan, Badri; Lenon, Amber; Lundgren, Andrew; Nielsen, Alex B.; Pekowsky, Larne P.; Pfeiffer, Harald P.; Saulson, Peter R.; West, Matthew; Willis, Joshua L.

    2016-11-01

    We describe the PyCBC search for gravitational waves from compact-object binary coalescences in advanced gravitational-wave detector data. The search was used in the first Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) observing run and unambiguously identified two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC search performs a matched-filter search for binary merger signals using a bank of gravitational-wave template waveforms. We provide a complete description of the search pipeline including the steps used to mitigate the effects of noise transients in the data, identify candidate events and measure their statistical significance. The analysis is able to measure false-alarm rates as low as one per million years, required for confident detection of signals. Using data from initial LIGO's sixth science run, we show that the new analysis reduces the background noise in the search, giving a 30 % increase in sensitive volume for binary neutron star systems over previous searches.

  16. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    CERN Document Server

    Madau, Piero

    2016-01-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct HeI photoionizations are the main source of IGM ...

  17. Binary Neutron Stars with Generic Spin, Eccentricity, Mass ratio, and Compactness - Quasi-equilibrium Sequences and First Evolutions

    CERN Document Server

    Dietrich, Tim; Johnson-McDaniel, Nathan K; Bernuzzi, Sebastiano; Markakis, Charalampos M; Bruegmann, Bernd; Tichy, Wolfgang

    2015-01-01

    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasi-equilibrium configurations and dynamical evolutions. In this article, we construct quasi-equilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the SGRID code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity reduced data; we present the possibility of computing data for significantly unequal-mass binaries; and we create equal-mass binaries with individual compactness up to 0.23. As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a $q=2.06$ mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. ...

  18. Gravitational-radiation damping of compact binary systems to second post-newtonian order

    CERN Document Server

    Blanchet, L; Iyer, B R; Will, C M; Wiseman, A G; Blanchet, Luc; Damour, Thibault; Iyer, Bala R; Will, Clifford M; Wiseman, Alan G

    1995-01-01

    The rate of gravitational-wave energy loss from inspiralling binary systems of compact objects of arbitrary mass is derived through second post-Newtonian (2PN) order O[(Gm/rc^2)^2] beyond the quadrupole approximation. The result has been derived by two independent calculations of the (source) multipole moments. The 2PN terms, and in particular the finite mass contribution therein (which cannot be obtained in perturbation calculations of black hole spacetimes), are shown to make a significant contribution to the accumulated phase of theoretical templates to be used in matched filtering of the data from future gravitational-wave detectors.

  19. MG13 proceedings: On the validity of the adiabatic approximation in compact binary inspirals

    CERN Document Server

    Maselli, Andrea; Pannarale, Francesco; Ferrari, Valeria

    2013-01-01

    We use the post-Newtonian-Affine model to assess the validity of the adiabatic approximation in modeling tidal effects in the phase evolution of compact binary systems. We compute the dynamical evolution of the tidal tensor, which we estimate at the 2 PN order, and of the quadrupole tensor, finding that their ratio, i.e. the tidal deformability, increases in the last phases of the inspiral. We derive the gravitational wave phase corrections due to this phenomenon and quantify how they affect gravitational wave detectability.

  20. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    CERN Document Server

    Shrader, Chris; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of parameters - the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than $4.2M_\\odot$ thus clearly indicative of a black hole and as such resolving a long-standing issue. The full range of uncertainty in our analysis and from using a ran...

  1. Recent achievements in the Hamiltonian treatment of the dynamics and motion of compact binaries in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Schäfer, Gerhard [Friedrich-Schiller-Universität Jena, Theoretisch-Physikalisches Institut, Max-Wien-Pl. 1, D-07743 Jena, EU (Germany)

    2014-01-14

    The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.

  2. Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order

    Science.gov (United States)

    Moore, Blake; Favata, Marc; Arun, K. G.; Mishra, Chandra Kant

    2016-06-01

    Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but non-negligible orbital eccentricities when they enter the low-frequency bands of ground- and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary [M. Favata, Phys. Rev. Lett. 112, 101101 (2014)]. Gravitational-wave search templates typically rely on the quasicircular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. Damour, Gopakumar, Iyer, and others have developed an elegant but complex quasi-Keplerian formalism for describing the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here, we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit, the nonperiodic contribution to the gravitational-wave phasing can be expressed explicitly as simple functions of frequency or time, with little additional complexity beyond the well-known formulas for circular binaries. These eccentric phase corrections are computed to 3PN order and to leading order in the eccentricity for the standard PN approximants. For a variety of systems, these eccentricity corrections cause significant corrections to the number of gravitational-wave cycles that sweep through a detector's frequency band. This is evaluated using several measures, including a modification of the useful cycles. By comparing to numerical solutions valid for any eccentricity, we find that our analytic solutions are valid up to e0≲0.1 for comparable-mass systems, where e0 is the eccentricity when the source enters the detector band. We also evaluate the role of periodic terms that enter the phasing and discuss how they can be incorporated into some of

  3. Topics in the Detection of Gravitational Waves from Compact Binary Inspirals

    Science.gov (United States)

    Kapadia, Shasvath Jagat

    Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The

  4. Evolution of Compact Binary Populations in Globular Clusters: A Boltzmann Study. II. Introducing Stochasticity

    Science.gov (United States)

    Banerjee, Sambaran; Ghosh, Pranab

    2008-06-01

    We continue the exploration that we began in Paper I of using the Boltzmann scheme to study the evolution of compact binary populations of globular clusters, introducing in this paper our method of handling the stochasticity inherent in the dynamical processes of binary formation, destruction, and hardening in globular clusters. We describe these stochastic processes as "Wiener processes," whereupon the Boltzmann equation becomes a stochastic partial differential equation, the solution of which involves the use of "Itō calculus" (this use being the first, to our knowledge, in this subject), in addition to ordinary calculus. As in Paper I, we focus on the evolution of (1) the number of X-ray binaries NXB in globular clusters and (2) the orbital period distribution of these binaries. We show that, although the details of the fluctuations in the above quantities differ from one "realization" to another of the stochastic processes, the general trends follow those found in the continuous-limit study of Paper I, and the average result over many such realizations is very close to the continuous-limit result. We investigate the dependence of NXB found by these calculations on two essential globular cluster properties, namely, the star-star and star-binary encounter rate parameters Γ and γ, for which we coined the name "Verbunt parameters" in Paper I. We compare our computed results with those from Chandra observations of Galactic globular clusters, showing that the expected scalings of NXB with the Verbunt parameters are in good agreement with those observed. We indicate additional features that can be incorporated into the scheme in the future, as well as how more elaborate problems can be tackled.

  5. Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order

    CERN Document Server

    Levi, Michele

    2016-01-01

    In this work we complete the spin dependent conservative dynamics of inspiralling compact binaries at the fourth post-Newtonian order, and in particular the recent derivation of the next-to-next-to-leading order spin-squared interaction potential. We derive the physical equations of motion of the position and the spin from a direct variation of the action. Further, we derive the quadratic in spin Hamiltonians, as well as their expressions in the center of mass frame. We construct the conserved integrals of motion, which form the Poincare algebra. This construction provided a consistency check for the validity of our result, which is crucial in particular in the current absence of another independent derivation of the next-to-next-to-leading order spin-squared interaction. Finally, we provide here the complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to the fourth post-Newtonian order. These hi...

  6. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    Science.gov (United States)

    Yu, Hao; Gu, Bao-Min; Huang, Fa Peng; Wang, Yong-Qiang; Meng, Xin-He; Liu, Yu-Xiao

    2017-02-01

    The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of the curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.

  7. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  8. Gravitational waves from spinning compact object binaries: New post-Newtonian results

    CERN Document Server

    Marsat, Sylvain; Bohe, Alejandro; Faye, Guillaume

    2013-01-01

    We report on recent results obtained in the post-Newtonian framework for the modelling of the gravitational waves emitted by binary systems of spinning compact objects (black holes and/or neutron stars). These new results are obtained at the spin-orbit (linear-in-spin) level and solving Einstein's field equations iteratively in harmonic coordinates as well as the multipolar post-Newtonian formalism. The dynamics of the binary was tackled at the next-to-next-to-leading order, corresponding to the 3.5 post-Newtonian (PN) order for maximally spinning objects, and the result is found to be consistent with a previously obtained reduced Hamiltonian in the ADM approach. The corresponding contribution to the energy flux emitted by the binary was obtained at the 3.5PN order, as well as the next-to-leading 4PN tail contribution to this flux, an imprint of the non-linearity in the propagation of the wave. These new terms can be used to build more accurate PN templates for the next generation of gravitational wave detect...

  9. A template bank to search for gravitational waves from inspiralling compact binaries: II. Phenomenological model

    CERN Document Server

    Cokelaer, Thomas

    2007-01-01

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from ground-based interferometers. One of the key aspects of the detection process is the deployment of a set of templates, also called a template bank, to cover the astrophysically interesting region of the parameter space. In a companion paper, we described the template-bank algorithm used in the analysis of LIGO data to search for signals from non-spinning binaries made of neutron star and/or stellar-mass black holes; this template bank is based upon physical template families. In this paper, we describe the phenomenological template bank that was used to search for gravitational waves from non-spinning black hole binaries (from stellar mass formation) in the second, third and fourth LIGO science runs. We briefly explain the design of the bank, whose templates are based on a phenomenological detection template family. We show that this template bank gives matches greater than 95% with the physical t...

  10. On the use of higher order waveforms in the search for gravitational waves emitted by compact binary coalescences

    CERN Document Server

    McKechan, D J A

    2011-01-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order waveform models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms; we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter esti...

  11. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    Science.gov (United States)

    Huang, Li; Wu, Xin; Mei, Li-Jie; Huang, Guo-Qing

    2017-09-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically.

  12. First correlation between compact object and circumstellar disk in the Be/X-ray binaries

    CERN Document Server

    Zamanov, R K

    2000-01-01

    A remarkable correlation between the H-alpha emission line and the radio behaviour of LSI+61 303 (V615 Cas, GT 0236+610) over its 4 yr modulation is discovered. The radio outburst peak is shifted by a quarter of the 4 yr modulation period (about 400 days) with respect to the equivalent width of the H-alpha emission line variability. The onset of the LSI+61 303 radio outbursts varies in phase with the changes of the H-alpha emission line, at least during the increase of H-alpha equivalent width. This is the first clear correlation between the emission associated to the compact object and the Be circumstellar disk in a Be/X-ray binary system.

  13. A novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences

    CERN Document Server

    Pankow, C; Ochsner, E; O'Shaughnessy, R

    2015-01-01

    We introduce a highly-parallelizable architecture for estimating parameters of compact binary coalescence using gravitational-wave data and waveform models. Using a spherical harmonic mode decomposition, the waveform is expressed as a sum over modes that depend on the intrinsic parameters (e.g. masses) with coefficients that depend on the observer dependent extrinsic parameters (e.g. distance, sky position). The data is then prefiltered against those modes, at fixed intrinsic parameters, enabling efficiently evaluation of the likelihood for generic source positions and orientations, independent of waveform length or generation time. We efficiently parallelize our intrinsic space calculation by integrating over all extrinsic parameters using a Monte Carlo integration strategy. Since the waveform generation and prefiltering happens only once, the cost of integration dominates the procedure. Also, we operate hierarchically, using information from existing gravitational-wave searches to identify the regions of pa...

  14. Fokker action of non-spinning compact binaries at the fourth post-Newtonian approximation

    CERN Document Server

    Bernard, Laura; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2015-01-01

    The Fokker action governing the motion of compact binary systems without spins is derived in harmonic coordinates at the fourth post-Newtonian approximation (4PN) of general relativity. Dimensional regularization is used for treating the local UV divergences associated with point particles, followed by a renormalization of the poles into a redefinition of the trajectories of the point masses. Effects at the 4PN order associated with wave tails propagating at infinity are included consistently at the level of the action. A finite part procedure based on analytic continuation deals with the IR divergencies at spatial infinity, which are shown to be fully consistent with the presence of near zone tails. Our end result at 4PN order satisfies all expected physical requirements. However, we find that it disagrees with the recently published result derived within the ADM Hamiltonian formulation of general relativity.

  15. Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era

    CERN Document Server

    Adams, T; Germain, V; Guidi, G M; Marion, F; Montani, M; Mours, B; Piergiovanni, F; Wang, G

    2015-01-01

    The Multi-Band Template Analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences (CBCs). MBTA runs with a low computational cost, and can identify candidate GW events online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic (EM) follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring.

  16. Periodic X-ray Modulation and its relation with orbital elements in Compact Binaries

    CERN Document Server

    Ghosh, Arindam

    2014-01-01

    Stellar companion of a black hole orbiting in an eccentric orbit will experience modulating tidal force with a periodicity same as that of the orbital period. This, in turn, would modulate accretion rates, and the seed photon flux which are inverse Comptonized to produce harder X-rays. By analyzing complete all sky monitor (ASM) data (1.5-12 keV) of RXTE and all sky survey data (15-50 keV) of Swift/BAT we discover this periodicity in several objects. We also estimate eccentricities from the RMS power of the peak around quasi-orbital periods (QOP). Our method provides an independent way to obtain time periods and eccentricities of such compact binaries.

  17. Canonical center and relative coordinates for compact binary systems through second post-Newtonian order

    CERN Document Server

    Georg, Ira

    2015-01-01

    Based on a recent paper by Rothe and Sch\\"afer on compact binary systems, explicit expressions for canonical center and relative coordinates in terms of standard canonical coordinates are derived for spinless objects up to second post-Newtonian approximation of Einstein's theory of gravity. The inverse relations, i.e. the dependence of the standard canonical coordinates on the canonical center and relative coordinates, are also given up to the second post-Newtonian approximation. The famous Pythagorean-theorem-type Lorentz-invariant relation between the system's total energy or Hamiltonian squared, the rest energy or mass squared - solely depending on relative coordinates -, and the total linear momentum squared are explicitly shown through second post-Newtonian approximation.

  18. Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops

    CERN Document Server

    Tápai, Márton; Gergely, László Árpád

    2016-01-01

    We derive the conservative secular evolution of precessing compact binaries to second post-Newtonian order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. The emerging closed system of first-order differential equations evolves the pairs of polar and azimuthal angles of the spin and orbital angular momentum vectors together with the periastron angle. In contrast with the instantaneous dynamics, the secular dynamics is autonomous. This secular dynamics reliably characterizes the system over timescales starting from a few times the radial period to several precessional periods, but less than the radiation reaction timescale. We numerically compare the instantaneous and secular evolutions and estimate the number of periods for which dissipation has no significant effect, e.g. the conservative timescale. We apply the analytic equations to study the spin flip-flop effect, recently found by numerical relativity methods. Our investigations show that the effect ...

  19. A coherent triggered search for single-spin compact binary coalescences in gravitational wave data

    Energy Technology Data Exchange (ETDEWEB)

    Harry, I W; Fairhurst, S, E-mail: ian.harry@astro.cf.ac.uk, E-mail: Stephen.Fairhurst@astro.cf.ac.uk [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom)

    2011-07-07

    In this paper, we present a method for conducting a coherent search for single-spin compact binary coalescences in gravitational wave data and compare this search to the existing coincidence method for single-spin searches. We propose a method to characterize the regions of the parameter space where the single-spin search, both coincident and coherent, will increase detection efficiency over the existing non-precessing search. We also show example results of the coherent search on a stretch of data from Laser Interferometer Gravitational-wave Observatory's fourth science run, but note that a set of signal-based vetoes will be needed before this search can be run to try to make detections.

  20. Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation

    CERN Document Server

    Mitra, S; Finn, L S

    2005-01-01

    Inspiraling compact binaries are promising sources of gravitational waves for ground and space-based laser interferometric detectors. The time-dependent signature of these sources in the detectors is a well-characterized function of a relatively small number of parameters; thus, the favored analysis technique makes use of matched filtering and maximum likelihood methods. Current analysis methodology samples the matched filter output at parameter values chosen so that the correlation between successive samples is 97% for which the filtered output is closely correlated. Here we describe a straightforward and practical way of using interpolation to take advantage of the correlation between the matched filter output associated with nearby points in the parameter space to significantly reduce the number of matched filter evaluations without sacrificing the efficiency with which real signals are recognized. Because the computational cost of the analysis is driven almost exclusively by the matched filter evaluations...

  1. Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era

    Science.gov (United States)

    Adams, T.; Buskulic, D.; Germain, V.; Guidi, G. M.; Marion, F.; Montani, M.; Mours, B.; Piergiovanni, F.; Wang, G.

    2016-09-01

    The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW events online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring.

  2. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    CERN Document Server

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adams, T; Addesso, P; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Ast, S; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Bao, Y; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bhadbade, T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bond, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; Dent, T; Dergachev, V; DeRosa, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doravari, S; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endröczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Farr, B F; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gáspár, M E; Gelencser, G; Gemme, G; Genin, E; Gennai, A; Gergely, L Á; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haster, C -J; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Keitel, D; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Lam, P K; Landry, M; Langley, A; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Roux, A Le; Leaci, P; Lee, C H; Lee, H K; Lee, H M; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Lhuillier, V; Li, J; Li, T G F; Lindquist, P E; Litvine, V; Liu, Y; Liu, Z; Lockerbie, N A; Lodhia, D; Logue, J; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meadors, G D; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mori, T; Morriss, S R; Mosca, S; Mossavi, K; Mours, B; Mow--Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nash, T; Naticchioni, L; Necula, V; Nelson, J; Neri, I; Newton, G; Nguyen, T; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Oldenberg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pihlaja, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Pöld, J; Postiglione, F; Poux, C; Prato, M; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, M; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sankar, S; Sannibale, V; Santamaría, L; Santiago-Prieto, I; Santostasi, G; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R L; Schilling, R; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Somiya, K; Sorazu, B; Speirits, F C; Sperandio, L; Stefszky, M; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S E; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Taffarello, L; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Vahlbruch, H; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vitale, S; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Wallace, L; Wan, Y; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2013-01-01

    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection" wher...

  3. Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity

    CERN Document Server

    Alsing, Justin; Will, Clifford; Zaglauer, Helmut

    2011-01-01

    We derive the equations of motion, the periastron shift, and the gravitational radiation damping for quasicircular compact binaries in a massive variant of the Brans-Dicke theory of gravity. We also study the Shapiro time delay and the Nordtvedt effect in this theory. By comparing with recent observational data, we put bounds on the two parameters of the theory: the Brans-Dicke coupling parameter \\omega_{BD} and the scalar mass m_s. We find that the most stringent bounds come from Cassini measurements of the Shapiro time delay in the Solar System, that yield a lower bound \\omega_{BD}>40000 for scalar masses m_s1000 for m_s1250 for m_s<10^{-20} eV. A first estimate suggests that bounds comparable to the Shapiro time delay may come from observations of radiation damping in the eccentric white dwarf-neutron star binary PSR J1141-6545, but a quantitative prediction requires the extension of our work to eccentric orbits.

  4. Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals

    CERN Document Server

    Cokelaer, Thomas

    2007-01-01

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is over-efficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars and stellar mass black hol...

  5. Dynamical Tides in Compact White Dwarf Binaries: Tidal Synchronization and Dissipation

    CERN Document Server

    Fuller, Jim

    2011-01-01

    In compact white dwarf (WD) binary systems (with periods ranging from minutes to hours), dynamical tides involving the excitation and dissipation of gravity waves play a dominant role in determining the physical conditions of the WDs prior to mass transfer or binary merger. We calculate the amplitude of the tidally excited gravity waves as a function of the tidal forcing frequency \\omega=2(\\Omega-\\Omega_s) (where \\Omega is the orbital frequency and \\Omega_s is the spin frequency) for several realistic carbon-oxygen WD models, assuming that the waves are efficiently dissipated in the outer layer of the star by nonlinear effects or radiative damping. The mechanism of wave excitation in WDs is complex due to the sharp features associated with composition changes inside the WD, and in our WD models gravity waves are launched just below the helium-carbon boundary. We find that the tidal torque on the WD and the related tidal energy transfer rate, \\dot E_{\\rm tide}, depend on \\omega in an erratic way. On average, \\...

  6. Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations

    Science.gov (United States)

    Galley, Chad R.; Rothstein, Ira Z.

    2017-05-01

    We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.

  7. Comparison of LIGO/Virgo upper limits with predicted compact binary merger rates

    CERN Document Server

    Belczynski, K; Holz, D; O'Shaughnessy, R; Bulik, T; Berti, E; Fryer, C; Dominik, M

    2015-01-01

    We compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH-BH systems, indicating that a modest increase in observational sensitivity (by a factor of 2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH-BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z=2 with templates including inspiral, merger, and ringdown. Normal stars (<150 Msun) can produce such mergers with total redshifted mass up to 400 Msun. (iv) High black hole natal kicks can severely limit the formation of massive BH-BH systems (both in isolated binary and in dynamical dense...

  8. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    Science.gov (United States)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.

    2013-09-01

    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M⊙-25M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.

  9. Classification of compact binaries: an X-ray analog to the HR diagram

    Science.gov (United States)

    Dil Vrtilek, Saeqa; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke

    2016-06-01

    X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.

  10. Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Capano, C. D.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Ely, G.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. P.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.

    2009-08-01

    We report on a search for gravitational waves from coalescing compact binaries, of total mass between 2 and 35M⊙, using LIGO observations between November 14, 2006 and May 18, 2007. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. The LIGO cumulative 90%-confidence rate upper limits of the binary coalescence of neutron stars, black holes and black hole-neutron star systems are 1.4×10-2, 7.3×10-4 and 3.6×10-3yr-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity.

  11. Gravitational Radiation Damping and Evolution of the Orbit of Compact Binary Stars (Solution by the Second Perturbation Method)

    Indian Academy of Sciences (India)

    Lin-Sen Li

    2014-06-01

    The influence of the gravitational radiation damping on the evolution of the orbital elements of compact binary stars is examined by using the method of perturbation. The perturbation equations with the true anomaly as an independent variable are given. This effect results in both the secular and periodic variation of the semi-major axis, the eccentricity, the mean longitude at the epoch and the mean longitude. However, the longitude of periastron exhibits no secular variation, but only periodic variation. The effect of secular variation of the orbit would lead to collapse of the system of binary stars. The deduced formulae are applied to the calculation of secular variation of the orbital elements for three compact binary stars: PSR 1913+16, PSR J0737-3039 and M33X-7. The results obtained are discussed.

  12. Is there a compact companion orbiting the late O-type binary star HD 164816?

    Science.gov (United States)

    Trepl, L.; Hambaryan, V. V.; Pribulla, T.; Tetzlaff, N.; Chini, R.; Neuhäuser, R.; Popov, S. B.; Stahl, O.; Walter, F. M.; Hohle, M. M.

    2012-12-01

    We present a multi-wavelength (X-ray, γ-ray, optical and radio) study of HD 164816, a late O-type X-ray detected spectroscopic binary. X-ray spectra are analysed and the X-ray photon arrival times are checked for pulsation. In addition, newly obtained optical spectroscopic monitoring data on HD 164816 are presented. They are complemented by available radio data from several large-scale surveys as well as the Fermi γ-ray data from its Large Area Telescope. We report the detection of a low energy excess in the X-ray spectrum that can be described by a simple absorbed blackbody model with a temperature of ˜50 eV as well as a 9.78 s pulsation of the X-ray source. The soft X-ray excess, the X-ray pulsation and the kinematical age would all be consistent with a compact object like a neutron star as companion to HD 164816. The size of the soft X-ray excess emitting area is consistent with a circular region with a radius of about 7 km, typical for neutron stars, while the emission measure (EM) of the remaining harder emission is typical for late O-type single or binary stars. If HD 164816 includes a neutron star born in a supernova, this supernova should have been very recent and should have given the system a kick, which is consistent with the observation that the star HD 164816 has a significantly different radial velocity than the cluster mean. In addition we confirm the binarity of HD 164816 itself by obtaining an orbital period of 3.82 d, projected masses m1sin3i = 2.355(69) M⊙, m2sin3i = 2.103(62) M⊙ apparently seen at low inclination angle, determined from high-resolution optical spectra.

  13. Evolution of low-mass X-ray binaries: dependence on the mass of the compact object

    Institute of Scientific and Technical Information of China (English)

    Qian Xu; Tao Li; Xiang-Dong Li

    2012-01-01

    We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems.For the accreting compact object we consider the initial mass of 1.4,10,20,100,200,500 and 1000 M☉,corresponding to neutron stars (NSs),stellarmass black holes (BHs) and intermediate-mass BHs.Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation.For the different systems,we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones,and show that Pbif changes from ~ 1 d to (≥)3 d for a 1 M☉ donor star,with increasing initial accretor mass from 1.4 to 1000 M☉.This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation.As an illustration we compare the evolution of binaries consisting of a secondary star of 1 M☉ at a fixed initial period of 2 d.In the case of the NS or stellar-mass BH accretor,the system evolves to a well-detached He white dwarf-neutron star/black hole pair,but it evolves to an ultracompact binary if the compact object is an intermediate-mass BH.Thus the binary evolution heavily depends upon the mass of the compact object.However,we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star,even if it is an intermediate-mass BH.

  14. Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Ceron, E. Amador; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Camp, J. B.; Cannizzo, J.

    2010-01-01

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.

  15. TOPICAL REVIEW: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Beker, M. G.; Belczynski, K.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Blomberg, A.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Corda, C.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dari, A.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.

    2010-09-01

    We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr-1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr-1 MWEG-1 to 1000 Myr-1 MWEG-1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 × 10-4 and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.

  16. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.

    2010-11-01

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10-3yr-1L10-1, 2.2×10-3yr-1L10-1, and 4.4×10-4yr-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.

  17. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

    OpenAIRE

    Abadie, J.; Abbott, B.; Abbott, R.; Abernathy, M; Accadia, T; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; G. Allen; Amador Ceron, E.; Amin, R.; Anderson, S.; Anderson, W.

    2010-01-01

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M_⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits o...

  18. Results of the GstLAL Search for Compact Binary Mergers in Advanced LIGO's First Observing Run

    Science.gov (United States)

    Lang, Ryan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration

    2017-01-01

    Advanced LIGO's first observing period ended in January 2016. We discuss the GstLAL matched-filter search over this data set for gravitational waves from compact binary objects with total mass up to 100 solar masses. In particular, we discuss the recovery of the unambiguous gravitational wave signals GW150914 and GW151226, as well as the possible third signal LVT151012. Additionally, we discuss the constraints we can place on binary-neutron-star and neutron-star-black-hole system merger rates.

  19. Gravitational Waves From Supermassive Black Holes

    Science.gov (United States)

    di Girolamo, Tristano

    2016-10-01

    In this talk, I will present the first direct detections of gravitational waves from binary stellar-mass black hole mergers during the first observing run of the two detectors of the Advanced Laser Interferometer Gravitational-wave Observatory, which opened the field of gravitational-wave astronomy, and then discuss prospects for observing gravitational waves from supermassive black holes with future detectors.

  20. Explicit Symplectic-like Integrators with Midpoint Permutations for Spinning Compact Binaries

    Science.gov (United States)

    Luo, Junjie; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2017-01-01

    We refine the recently developed fourth-order extended phase space explicit symplectic-like methods for inseparable Hamiltonians using Yoshida’s triple product combined with a midpoint permuted map. The midpoint between the original variables and their corresponding extended variables at every integration step is readjusted as the initial values of the original variables and their corresponding extended ones at the next step integration. The triple-product construction is apparently superior to the composition of two triple products in computational efficiency. Above all, the new midpoint permutations are more effective in restraining the equality of the original variables and their corresponding extended ones at each integration step than the existing sequent permutations of momenta and coordinates. As a result, our new construction shares the benefit of implicit symplectic integrators in the conservation of the second post-Newtonian Hamiltonian of spinning compact binaries. Especially for the chaotic case, it can work well, but the existing sequent permuted algorithm cannot. When dissipative effects from the gravitational radiation reaction are included, the new symplectic-like method has a secular drift in the energy error of the dissipative system for the orbits that are regular in the absence of radiation, as an implicit symplectic integrator does. In spite of this, it is superior to the same-order implicit symplectic integrator in accuracy and efficiency. The new method is particularly useful in discussing the long-term evolution of inseparable Hamiltonian problems.

  1. An improved pipeline to search for gravitational waves from compact binary coalescence

    CERN Document Server

    Usman, Samantha A; Nitz, Alexander H; Harry, Ian W; Brown, Duncan A; Capano, Collin D; Dent, Thomas; Fairhurst, Stephen; Pfeiffer, Harald P; Biwer, Christopher M; Canton, Tito Dal; Keppel, Drew; Saulson, Peter R; West, Matthew; Willis, Joshua L

    2015-01-01

    The second generation of ground-based gravitational-wave detectors will begin taking data in September 2015. Sensitive and computationally-efficient data analysis methods will be required to maximize what we learn from their observations. We describe improvements made to the offline analysis pipeline searching for gravitational waves from stellar-mass compact binary coalescences, and assess how these improvements affect search sensitivity. Starting with the two-stage ihope pipeline used in S5, S6 and VSR1-3 and using two weeks of S6/VSR3 data as test periods, we first demonstrate a pipeline with a simpler workflow. This single-stage pipeline performs matched filtering and coincidence testing only once. This simplification allows us to reach much lower false-alarm rates for loud candidate events. We then describe an optimized chi-squared test which minimizes computational cost. Next, we compare methods of generating template banks, demonstrating that a fixed bank may be used for extended stretches of time. Fix...

  2. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    CERN Document Server

    Ghosh, Arindam

    2016-01-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. By the time the flow reaches the inner edge, the variation in X-rays needs not reflect the true variation of the rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale also to spread around a mean value. In HMXBs, the size of the viscous Keplerian disk is smaller & thus such a spread could be lower as compared to the LMXBs. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a full knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales when there is an ellipticity in the orbit. We study a few compact binaries using long term RXTE/ASM(1.5-12 keV) & Swift/BAT(15-50keV) data to look for such effects & to infer what the...

  3. A method to estimate the significance of coincident gravitational-wave observations from compact binary coalescence

    CERN Document Server

    Cannon, Kipp; Keppel, Drew

    2012-01-01

    Coalescing compact binary systems consisting of neutron stars and/or black holes should be detectable with upcoming advanced gravitational-wave detectors such as LIGO, Virgo, GEO and {KAGRA}. Gravitational-wave experiments to date have been riddled with non-Gaussian, non-stationary noise that makes it challenging to ascertain the significance of an event. A popular method to estimate significance is to time shift the events collected between detectors in order to establish a false coincidence rate. Here we propose a method for estimating the false alarm probability of events using variables commonly available to search candidates that does not rely on explicitly time shifting the events while still capturing the non-Gaussianity of the data. We present a method for establishing a statistical detection of events in the case where several silver-plated (3--5$\\sigma$) events exist but not necessarily any gold-plated ($>5\\sigma$) events. We use LIGO data and a simulated, realistic, blind signal population to test ...

  4. Low-{\\Gamma} jets from Compact Binary Mergers as Candidate Electromagnetic Counterparts to Gravitational Wave Sources

    CERN Document Server

    Lamb, Gavin P

    2016-01-01

    Compact binary mergers, with neutron stars or neutron star and black-hole components, are thought to produce various electromagnetic counterparts: short gamma-ray bursts (GRBs) from ultra-relativistic jets followed by broadband afterglow; semi-isotropic kilonova from radioactive decay of r-process elements; and late time radio flares; etc. If the jets from such mergers follow a similar power-law distribution of Lorentz factors as other astrophysical jets then the population of merger jets will be dominated by low-{\\Gamma} values. The prompt gamma-rays associated with short GRBs would be suppressed for a low-{\\Gamma} jet and the jet energy will be released as X-ray/optical/radio transients when a shock forms in the ambient medium. Using Monte Carlo simulations, we study the properties of such transients as candidate electromagnetic counterparts to gravitational wave sources detectable by LIGO/Virgo. Approximately 78% of merger-jets result in failed GRB with optical peaks 14-22 magnitude and an all-sky rate of ...

  5. Is there a compact companion orbiting the late O-type binary star HD 164816?

    CERN Document Server

    Trepl, L; Pribulla, T; Tetzlaff, N; Chini, R; Neuhäuser, R; Popov, S B; Stahl, O; Walter, F M; Hohle, M M

    2012-01-01

    We present a multi-wavelength (X-ray, $\\gamma$-ray, optical and radio) study of HD 194816, a late O-type X-ray detected spectroscopic binary. X-ray spectra are analyzed and the X-ray photon arrival times are checked for pulsation. In addition, newly obtained optical spectroscopic monitoring data on HD 164816 are presented. They are complemented by available radio data from several large scale surveys as well as the \\emph{FERMI} $\\gamma$-ray data from its \\emph{Large Area Telescope}. We report the detection of a low energy excess in the X-ray spectrum that can be described by a simple absorbed blackbody model with a temperature of $\\sim$ 50 eV as well as a 9.78 s pulsation of the X-ray source. The soft X-ray excess, the X-ray pulsation, and the kinematical age would all be consistent with a compact object like a neutron star as companion to HD 164816. The size of the soft X-ray excess emitting area is consistent with a circular region with a radius of about 7 km, typical for neutron stars, while the emission m...

  6. On the validity of the adiabatic approximation in compact binary inspirals

    CERN Document Server

    Maselli, A; Pannarale, F; Ferrari, V

    2012-01-01

    Using a semi-analytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the so called "adiabatic approximation", our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semi-analytical expression for the Love number, which...

  7. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    CERN Document Server

    Yu, Hao; Huang, Fa Peng; Wang, Yong-Qiang; Meng, Xin-He; Liu, Yu-Xiao

    2016-01-01

    The gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along the null geodesics in our four-dimensional space-time. But when one considers that there exists the fifth dimension and only the GW can propagate freely in the bulk, the causal propagations of the GW and electromagnetic wave (EMW) are in general different. In this paper, we compute the null geodesics of the GW and EMW in a five-dimensional anti-de Sitter space-time and our four-dimensional universe in the present of the curvature of universe $k$, respectively. We show that for general cases the horizon radius of the GW is longer than the EMW within the equal time. Taking the GW 150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the X-ray event detected by the Fermi Gamma-ray Burst Mo...

  8. Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors

    CERN Document Server

    Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Ajith, P; Allen, B; Allen, G; Allwine, E; Ceron, E Amador; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Arun, K G; Aso, Y; Aston, S; Astone, P; Atkinson, D E; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M G; Belczynski, K; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Blomberg, A; Boccara, C; Bock, O; Bodiya, T P; Bondarescu, R; Bondu, F; Bonelli, L; Bork, R; Born, M; Bose, S; Bosi, L; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Buckleitner, D; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Costa, C A; Coulon, J -P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Das, K; Dattilo, V; Daudert, B; Davier, M; Davies, G; Davis, A; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Degallaix, J; del Prete, M; Dergachev, V; DeRosa, R; DeSalvo, R; Devanka, P; Dhurandhar, S; Di Cintio, A; Di Fiore, L; Di Lieto, A; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dueck, J; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Flasch, K; Foley, S; Forrest, C; Forsi, E; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gammaitoni, L; Garofoli, J A; Garufi, F; Gemme, G; Genin, E; Gennai, A; Gholami, I; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E A; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gustafson, E K; Gustafson, R; Hage, B; Hall, P; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Howell, E; Hoyland, D; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh--Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jackson, B; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, H; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krause, T; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kullman, J; Kumar, R; Kwee, P; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Lin, H; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lucianetti, A; Lück, H; Lundgren, A; Machenschalk, B; MacInnis, M; Mackowski, J M; Mageswaran, M; Mailand, K; Majorana, E; Mak, C; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIvor, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; MowLowry, C; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Nolting, D; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Pardi, S; Pareja, M; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radke, T; Radkins, H; Raffai, P; Rakhmanov, M; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Röver, C; Rogstad, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shafer, D; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Speirits, F C; Stein, A J; Stein, L C; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Tseng, K; Tucker, R S; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zimmermann, P J Z; Zotov, N; Zucker, M E; Zweizig, J

    2010-01-01

    We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters, and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our Galaxy. These yield a likely coalescence rate of 100 per Myr per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 per Myr per MWEG to 1000 per Myr per MWEG. We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our Advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial L...

  9. Effect of squeezing on parameter estimation of gravitational waves emitted by compact binary systems

    Science.gov (United States)

    Lynch, Ryan; Vitale, Salvatore; Barsotti, Lisa; Dwyer, Sheila; Evans, Matthew

    2015-02-01

    The LIGO gravitational wave (GW) detectors will begin collecting data in 2015, with Virgo following shortly after. These detectors are expected to reach design sensitivity before the end of the decade, and yield the first direct detection of GWs before then. The use of squeezing has been proposed as a way to reduce the quantum noise without increasing the laser power, and has been successfully tested at one of the LIGO sites and at GEO in Germany. When used in Advanced LIGO without a filter cavity, the squeezer improves the performances of detectors above ˜100 Hz , at the cost of a higher noise floor in the low-frequency regime. Frequency-dependent squeezing, on the other hand, will lower the noise floor throughout the entire band. Squeezing technology will have a twofold impact: it will change the number of expected detections and it will impact the quality of parameter estimation for the detected signals. In this work we consider three different GW detector networks, each utilizing a different type of squeezer—all corresponding to plausible implementations. Using LALInference, a powerful Monte Carlo parameter estimation algorithm, we study how each of these networks estimates the parameters of GW signals emitted by compact binary systems, and compare the results with a baseline advanced LIGO-Virgo network. We find that, even in its simplest implementation, squeezing has a large positive impact: the sky error area of detected signals will shrink by ˜30 % on average, increasing the chances of finding an electromagnetic counterpart to the GW detection. Similarly, we find that the measurability of tidal deformability parameters for neutron stars in binaries increases by ˜30 % , which could aid in determining the equation of state of neutron stars. The degradation in the measurement of the chirp mass, as a result of the higher low-frequency noise, is shown to be negligible when compared to systematic errors. Implementations of a quantum squeezer coupled with a

  10. Supermassive black hole spin-flip during the inspiral

    Energy Technology Data Exchange (ETDEWEB)

    Gergely, Laszlo A [Department of Theoretical Physics, University of Szeged (Hungary); Biermann, Peter L [MPI for Radioastronomy, Bonn (Germany); Caramete, Laurentiu I, E-mail: gergely@physx.u-szeged.h, E-mail: plbiermann@mpifr-bonn.mpg.d, E-mail: lcaramete@gmail.co [Institute for Space Sciences, Bucharest (Romania)

    2010-10-07

    During post-Newtonian evolution of a compact binary, a mass ratio {nu} different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in {nu} of the mass ratios at their encounter. In the mass ratio range {nu} in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios {nu} in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios {nu} in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.

  11. Supermassive black hole spin-flip during the inspiral

    CERN Document Server

    Gergely, László Á; Caramete, Laurenţiu I

    2010-01-01

    During post-Newtonian evolution of a compact binary, a mass ratio different from one provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, then to establish a logarithmically even probability of the mass ratios at their encounter. In the mass ratio range (1/30,1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40%, with mass ratios (1/30,1/1000) a spin-flip never happens, while in the remaining 20% of mergers with mass ratios (1/3,1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as function of the mass ratio and original ...

  12. The scenario of two families of compact stars. Pt. 1. Equations of state, mass-radius relations and binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Drago, Alessandro; Pagliara, Giuseppe [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Ferrara (Italy); Lavagno, Andrea; Pigato, Daniele [Politecnico di Torino (Italy). Dept. of Applied Science and Technology; INFN, Torino (Italy)

    2016-02-15

    We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well-known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range 40 < L < 62 MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton-rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state, which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to 2.75M {sub CircleDot} as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density. (orig.)

  13. EXPLORING X-RAY BINARY POPULATIONS IN COMPACT GROUP GALAXIES WITH CHANDRA

    Energy Technology Data Exchange (ETDEWEB)

    Tzanavaris, P.; Hornschemeier, A. E. [Laboratory for X-ray Astrophysics, NASA/Goddard Spaceflight Center, Mail Code 662, Greenbelt, MD 20771 (United States); Gallagher, S. C.; Lenkić, L. [Department of Physics and Astronomy and Centre for Planetary and Space Exploration, The University of Western Ontario, London, ON N6A 3K7 (Canada); Desjardins, T. D. [Department of Physics and Astronomy, 177 Chem.-Phys. Building, University of Kentucky, 505 Rose Street, Lexington KY 40506-0055202 (United States); Walker, L. M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Mulchaey, J. S. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States)

    2016-02-01

    We obtain total galaxy X-ray luminosities, L{sub X}, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the ±1σ scatter of the Mineo et al. L{sub X}–star formation rate (SFR) correlation or have higher L{sub X} than predicted by this correlation for their SFR. We discuss how these “excesses” may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. L{sub X}–stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme L{sub X} values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high L{sub X} values can be observed due to strong XRB variability.

  14. CONSOLIDATION AND COMPACTION OF POWDER MIXTURES .3. BINARY-MIXTURES OF DIFFERENT PARTICLE-SIZE FRACTIONS OF DIFFERENT TYPES OF CRYSTALLINE LACTOSE

    NARCIS (Netherlands)

    RIEPMA, KA; ZUURMAN, K; BOLHUIS, GK; DEBOER, AH; LERK, CF

    1992-01-01

    Tablets were compacted from a coarse fraction (250-315 mum), a fine fraction (32-45 mum) and from binary blends of a coarse and a fine fraction of different types of crystalline lactose. The results showed differences in consolidation and compaction between the granular lactose types, i.e., roller-d

  15. Modulated Gamma-ray emission from compact millisecond pulsar binary systems

    CERN Document Server

    Bednarek, W

    2013-01-01

    A significant amount of the millisecond pulsars has been discovered within binary systems. In several such binary systems the masses of the companion stars have been derived allowing to distinguish two classes of objects, called the Black Widow and the Redback binaries. Pulsars in these binary systems are expected to produce winds which, colliding with stellar winds, create conditions for acceleration of electrons. These electrons should interact with the anisotropic radiation from the companion stars producing gamma-ray emission modulated with the orbital period of the binary system. We consider the interaction of a millisecond pulsar (MSP) wind with a very inhomogeneous stellar wind from the companion star within binary systems of the Black Widow and Redback types. It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and also strong radiation from the companion star producing ...

  16. Cataclysmic Variables and Other Compact Binaries in the Globular Cluster NGC 362: Candidates from Chandra and HST

    CERN Document Server

    Margon, Bruce; Homer, L; Pooley, D; Bassa, C G; Anderson, S F; Lewin, W H G; Verbunt, F; Kong, A K H; Plotkin, R M

    2010-01-01

    Highly sensitive and precise X-ray imaging from Chandra, combined with the superb spatial resolution of HST optical images, dramatically enhances our empirical understanding of compact binaries such as cataclysmic variables and low mass X-ray binaries, their progeny, and other stellar X-ray source populations deep into the cores of globular clusters. Our Chandra X-ray images of the globular cluster NGC 362 reveal 100 X-ray sources, the bulk of which are likely cluster members. Using HST color-magnitude and color-color diagrams, we quantitatively consider the optical content of the NGC 362 Chandra X-ray error circles, especially to assess and identify the compact binary population in this condensed-core globular cluster. Despite residual significant crowding in both X-rays and optical, we identify an excess population of H{\\alpha}-emitting objects that is statistically associated with the Chandra X-ray sources. The X-ray and optical characteristics suggest that these are mainly cataclysmic variables, but we al...

  17. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.

    2012-04-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  18. Massive Stars and Their Compact Remnants in High-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Kaper, L.; van der Meer, A.

    2007-01-01

    In a high-mass X-ray binary (HMXB) a massive star interacts with a neutron-star or black-hole companion in various ways. The gravitational interaction enables the measurement of fundamental parameters such as the mass of both binary components, providing important constraints on the evolutionary his

  19. Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins

    CERN Document Server

    Ajith, P

    2011-01-01

    This paper presents a post-Newtonian (PN) template family of gravitational waveforms from inspiralling compact binaries with non-precessing spins, where the spin effects are described by a single "reduced-spin" parameter. This template family, which reparametrizes all the spin-dependent PN terms in terms of the leading-order (1.5PN) spin-orbit coupling term in an approximate way, has very high overlaps (fitting factor > 0.99) with non-precessing binaries with arbitrary mass ratios and spins. We also show that this template family is "effectual" towards a significant fraction of generic spinning binaries in the comparable-mass regime (m_2/m_1 < 10), providing an attractive and feasible way of searching for gravitational waves (GWs) from spinning low-mass binaries. We also show that the secular (non-oscillatory) spin-dependent effects in the phase evolution (which are taken into account by the non-precessing templates) are more important than the oscillatory effects of precession in the comparable-mass (m_1 ...

  20. New code for equilibriums and quasiequilibrium initial data of compact objects. II. Convergence tests and comparisons of binary black hole initial data

    CERN Document Server

    Uryu, Koji; Grandclement, Philippe

    2012-01-01

    COCAL is a code for computing equilibriums or quasiequilibrium initial data of single or binary compact objects based on finite difference methods. We present the results of supplementary convergence tests of COCAL code using time symmetric binary black hole data (Brill-Lindquist solution). Then, we compare the initial data of binary black holes on the conformally flat spatial slice obtained from COCAL and KADATH, where KADATH is a library for solving a wide class of problems in theoretical physics including relativistic compact objects with spectral methods. Data calculated from the two codes converge nicely towards each other, for close as well as largely separated circular orbits of binary black holes. Finally, as an example, a sequence of equal mass binary black hole initial data with corotating spins is calculated and compared with data in the literature.

  1. Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order

    CERN Document Server

    Itoh, Y

    2004-01-01

    An equation of motion for relativistic compact binaries is derived through the third post-Newtonian (3 PN) approximation of general relativity. The strong field point particle limit and multipole expansion of the stars are used to solve iteratively the harmonically relaxed Einstein equations. We take into account the Lorentz contraction on the multipole moments defined in our previous works. We then derive a 3 PN acceleration of the binary orbital motion of the two spherical compact stars based on a surface integral approach which is a direct consequence of local energy momentum conservation. Our resulting equation of motion admits a conserved energy (neglecting the 2.5 PN radiation reaction effect), is Lorentz invariant and is unambiguous: there exist no undetermined parameter reported in the previous works. We shall show that our 3 PN equation of motion agrees physically with the Blanchet and Faye 3 PN equation of motion if $\\lambda = - 1987/3080$, where $\\lambda$ is the parameter which is undetermined with...

  2. Evolution of supermassive black holes

    CERN Document Server

    Volonteri, M

    2006-01-01

    Supermassive black holes (SMBHs) are nowadays believed to reside in most local galaxies, and the available data show an empirical correlation between bulge luminosity - or stellar velocity dispersion - and black hole mass, suggesting a single mechanism for assembling black holes and forming spheroids in galaxy halos. The evidence is therefore in favour of a co-evolution between galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass subgalactic systems form first to merge later into larger and larger structures. In this paradigm galaxy halos experience multiple mergers during their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a local galaxy has been made up by multiple mergers, then a black hole binary is a natural evolutionary stage. The evolution of the supermassive black hole population clearly has to be investigated taking into account both the cosmological framework and the dynamical evolution of SMBHs and their hosts. The seeds of SMBHs have to be looked ...

  3. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. III. Transition from inspiral to plunge

    Science.gov (United States)

    Kidder, Lawrence E.; Will, Clifford M.; Wiseman, Alan G.

    1993-04-01

    Late in its evolution, a binary system of compact objects will undergo a transition from an adiabatic inspiral induced by gravitational radiation damping to an unstable plunge, induced by strong spacetime curvature. This transition from inspiral to plunge is studied in detail using higher-order post-Newtonian methods. First, we study the innermost stable circular orbits of binary systems of nonrotating, compact objects of arbitrary mass ratio in the absence of gravitational radiation reaction. The method uses ``hybrid'' two-body equations of motion that are valid through (post)2-Newtonian order [order (Gm/rc2)2 ], but that also include the test-body limit in the Schwarzschild geometry exactly. Using a critical-point analysis, we show that circular orbits inside this innermost orbit are unstable to plunge. The separation of the innermost stable orbit (in harmonic, or de Donder coordinates) is found to vary with mass ratio, from the test-body value of 5m to about 6m for equal masses, where m is the total mass of the system. The orbital energy, angular momentum, and frequency of the innermost stable orbit are also determined as a function of the ratio of the two masses. We study the sensitivity of these values to higher-order post-Newtonian corrections. Incorporating gravitational radiation reaction in the hybrid equations of motion, we evaluate such variables as radial velocity, angular velocity, energy, and angular momentum for a coalescing binary at the corresponding innermost stable orbit, as a function of mass ratio. These variables could be used as initial conditions for numerical calculations of the ensuing coalescence.

  4. Post-Newtonian corrections to the gravitational-wave memory for quasi-circular, inspiralling compact binaries

    CERN Document Server

    Favata, Marc

    2008-01-01

    The Christodoulou memory is a nonlinear contribution to the gravitational-wave field that is sourced by the gravitational-wave stress-energy tensor. For quasi-circular, inspiralling binaries, the Christodoulou memory produces a growing, non-oscillatory change in the gravitational-wave "plus" polarization, resulting in the permanent displacement of a pair of freely-falling test masses after the wave has passed. In addition to its non-oscillatory behavior, the Christodoulou memory is interesting because even though it originates from 2.5 post-Newtonian (PN) order multipole interactions, it affects the waveform at leading-(Newtonian)-order. The memory is also potentially detectable in binary black hole mergers. While the oscillatory pieces of the gravitational-wave polarizations for quasi-circular, inspiralling compact binaries have been computed to 3PN order, the memory contribution to the polarizations has only been calculated to leading-order (the next-to-leading order 0.5PN term has previously been shown to ...

  5. Prediction of mechanical properties of compacted binary mixtures containing high-dose poorly compressible drug.

    Science.gov (United States)

    Patel, Sarsvatkumar; Bansal, Arvind Kumar

    2011-01-17

    The aim of the study was to develop, compare and validate predictive model for mechanical property of binary systems. The mechanical properties of binary mixtures of ibuprofen (IBN) a poorly compressible high dose drug, were studied in presence of different excipients. The tensile strength of tablets of individual components viz. IBN, microcrystalline cellulose (MCC), and dicalcium phosphate dihydrate (DCP) and binary mixtures of IBN with excipients was measured at various relative densities. Prediction of the mechanical property of binary mixtures, from that of single components, was attempted using Ryshkewitch-Duckworth (R-D) and Percolation theory, by assuming a linear mixing rule or a power law mixing rule. The models were compared, and the best model was proposed based on the distribution of residuals and the Akaike's information criterion. Good predictions were obtained with the power law combined with linear mixing rule, using R-D and Percolation models. The results indicated that the proposed model can well predict the mechanical properties of binary system containing predominantly poorly compressible drug candidate. The predictions of these models and conclusions can be systematically generalized to other pharmaceutical powders.

  6. Formation of the First Supermassive Black Holes

    CERN Document Server

    Bromm, V; Bromm, Volker; Loeb, Abraham

    2003-01-01

    We consider the physical conditions under which supermassive black holes could have formed inside the first galaxies. Our SPH simulations indicate that metal-free galaxies with a virial temperature ~10^4 K and with suppressed H2 formation (due to an intergalactic UV background) tend to form a binary black hole system which contains a substantial fraction (>10%) of the total baryonic mass of the host galaxy. Fragmentation into stars is suppressed without substantial H2 cooling. Our simulations follow the condensation of ~5x10^6 M_sun around the two centers of the binary down to a scale of 10 that would be detectable by LISA.

  7. The Mass of the Compact Object in the Low-Mass X-ray Binary 2S 0921-630

    CERN Document Server

    Abubekerov, M K; Cherepashchuk, A M; Shimanskii, V V

    2012-01-01

    We interpret the observed radial-velocity curve of the optical star in the low-mass X-ray binary 2S 0921-630 using a Roche model, taking into account the X-ray heating of the optical star and screening of X-rays coming from the relativistic object by the accretion disk. Consequences of possible anisotropy of the X-ray radiation are considered.We obtain relations between the masses of the optical and compact (X-ray) components, mv and mx, for orbital inclinations i=60, 75, 90 degrees. Including X-ray heating enabled us to reduce the compact object's mass by near 0.5-1Msun, compared to the case with no heating. Based on the K0III spectral type of the optical component (with a probable mass of mv=2.9Msun, we concluded that mx=2.45-2.55Msun (for i=75-90 degrees). If the K0III star has lost a substantial part of its mass as a result of mass exchange, as in the V404 Cyg and GRS 1905+105 systems, and its mass is $m_v=0.65-0.75Msun, the compact object's mass is close to the standard mass of a neutron star, mx=1.4Msun...

  8. Internal shocks driven by accretion flow variability in the compact jet of the black hole binary GX 339-4

    CERN Document Server

    Drappeau, S; Belmont, J; Gandhi, P; Corbel, S

    2014-01-01

    In recent years, compact jets have been playing a growing role in the understanding of accreting black hole engines. In the case of X-ray binary systems, compact jets are usually associated with the hard state phase of a source outburst. Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with its compact jet. In the model used in this study, we assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. Taking the PSD of the jet Lorentz factor fluctuations to be identical to the observed X-ray PSD, our study finds that t...

  9. Analysis Framework for the Prompt Discovery of Compact Binary Mergers in Gravitational-wave Data

    CERN Document Server

    Messick, Cody; Brady, Patrick; Brockill, Patrick; Cannon, Kipp; Caudill, Sarah; Chamberlin, Sydney J; Creighton, Jolien D E; Everett, Ryan; Hanna, Chad; Lang, Ryan N; Li, Tjonnie G F; Meacher, Duncan; Pankow, Chris; Privitera, Stephen; Qi, Hong; Sachdev, Surabhi; Sadeghian, Laleh; Sathyaprakash, B; Singer, Leo; Thomas, E Gareth; Wade, Leslie; Wade, Madeline; Weinstein, Alan

    2016-01-01

    We describe a stream-based analysis pipeline to detect gravitational waves from the merger of binary neutron stars, binary black holes, and neutron-star-black-hole binaries within ~ 1 minute of the arrival of the merger signal at Earth. Such low-latency detection is crucial for the prompt response by electromagnetic facilities in order to observe any fading electromagnetic counterparts that might be produced by mergers involving at least one neutron star. Even for systems expected not to produce counterparts, analysis of the data in low-latency for their GW signals is useful for deciding when not to point telescopes, and as feedback to observatory operations. The pipeline also operates in an offline mode, in which it incorporates more refined information about data quality and employs acausal methods that are inapplicable to the online mode.

  10. General relativistic simulations of compact binary mergers as engines of short gamma-ray bursts

    CERN Document Server

    Paschalidis, Vasileios

    2016-01-01

    Black hole - neutron star (BHNS) and neutron star - neutron star (NSNS) binaries are among the favored candidates for the progenitors of the black hole - disk systems that may be the engines powering short-hard gamma ray bursts. After almost two decades of simulations of binary NSNSs and BHNSs in full general relativity we are now beginning to understand the ingredients that may be necessary for these systems to launch incipient jets. Here, we review our current understanding, and summarize the surprises and lessons learned from state-of-the-art (magnetohydrodynamic) simulations in full general relativity of BHNS and NSNS mergers as jet engines for short-hard gamma-ray bursts.

  11. Using electromagnetic observations to aid gravitational-wave parameter estimation of compact binaries observed with LISA

    CERN Document Server

    Shah, Sweta; Nelemans, Gijs

    2012-01-01

    We present a first-stage study of the effect of using knowledge from electromagnetic (EM) observations in the gravitational wave (GW) data analysis of Galactic binaries that are predicted to be observed by the new \\textit{Laser Interferometer Space Antenna} in the low-frequency range, $10^{-4} \\mathrm{Hz}binaries and whether some of these parameters are also available from EM observations. We used verification binaries, which are known as the guaranteed sources for \\emph{eLISA} and will test the functioning of the instrument. We find that of the seven parameters that characterise such a binary, only a few are correlated. The most useful result is the strong correlation between amplitude and inclination, which can be used to constrain the parameter...

  12. Gemini Spectroscopy of the Ultra-compact Binary Candidate V407 Vul

    NARCIS (Netherlands)

    Steeghs, D.; Marsh, T.R.; Barros, S.C.C.; Nelemans, G.; Groot, P.J.; Roelofs, G.H.A.; Ramsay, G.; Cropper, M.

    2006-01-01

    We present time-resolved spectroscopy of the optical counterpart to the proposed ultracompact binary system V407 Vul (=RX J1914.4+2456). Our Gemini spectra resolve the 9.48 minute periodicity that has previously been reported for this source. We find that the optical counterpart is dominated by a re

  13. Testing general relativity with compact coalescing binaries: comparing exact and predictive methods to compute the Bayes factor

    CERN Document Server

    Del Pozzo, Walter; Mandel, Ilya; Vecchio, Alberto

    2014-01-01

    The second generation of gravitational-wave detectors is scheduled to start operations in 2015. Gravitational-wave signatures of compact binary coalescences could be used to accurately test the strong-field dynamical predictions of general relativity. Computationally expensive data analysis pipelines, including TIGER, have been developed to carry out such tests. As a means to cheaply assess whether a particular deviation from general relativity can be detected, Cornish et al. and Vallisneri recently proposed an approximate scheme to compute the Bayes factor between a general-relativity gravitational-wave model and a model representing a class of alternative theories of gravity parametrised by one additional parameter. This approximate scheme is based on only two easy-to-compute quantities: the signal-to-noise ratio of the signal and the fitting factor between the signal and the manifold of possible waveforms within general relativity. In this work, we compare the prediction from the approximate formula agains...

  14. Numerical relativity reaching into post-Newtonian territory: a compact-object binary simulation spanning 350 gravitational-wave cycles

    CERN Document Server

    Szilagyi, Bela; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-01-01

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as $45.5\\,M_\\odot$. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  15. Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison

    CERN Document Server

    Sidery, Trevor; Christensen, Nelson; Farr, Ben; Farr, Will; Feroz, Farhan; Gair, Jonathan; Grover, Katherine; Graff, Philip; Hanna, Chad; Kalogera, Vassiliki; Mandel, Ilya; O'Shaughnessy, Richard; Pitkin, Matthew; Price, Larry; Raymond, Vivien; Roever, Christian; Singer, Leo; Van der Sluys, Marc; Smith, Rory J E; Vecchio, Alberto; Veitch, John; Vitale, Salvatore

    2013-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localisation have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high-latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyse methods for assessing the self-consi...

  16. A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise

    CERN Document Server

    Bose, S

    2002-01-01

    The robust statistic proposed by Creighton (Creighton J D E 1999 Phys. Rev. D 60 021101) and Allen et al (Allen et al 2001 Preprint gr-gc/010500) for the detection of stationary non-Gaussian noise is briefly reviewed. We compute the robust statistic for generic weak gravitational-wave signals in the mixture-Gaussian noise model to an accuracy higher than in those analyses, and reinterpret its role. Specifically, we obtain the coherent statistic for detecting gravitational-wave signals from inspiralling compact binaries with an arbitrary network of earth-based interferometers. Finally, we show that excess computational costs incurred owing to non-Gaussianity is negligible compared to the cost of detection in Gaussian noise.

  17. Electromagnetic transients as triggers in searches for gravitational waves from compact binary mergers

    CERN Document Server

    Kelley, Luke Zoltan; Ramirez-Ruiz, Enrico

    2013-01-01

    The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms, and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short GRBs to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multi-messenger observations in the Advanced detector era, and find that searches triggered on short GRBs --- with current high-energy instruments, such as Fermi --- and nucleosynthetic `kilonov...

  18. Radio Counterparts of Compact Binary Mergers detectable in Gravitational Waves: A Simulation for an Optimized Survey

    CERN Document Server

    Hotokezaka, Kenta; Hallinan, Gregg; Lazio, T Joseph W; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation of accelerated electrons in shocks formed with the circum-merger medium. We explore the detectability of these synchrotron generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produces radio remnants on timescales of a few years and the latter produces $\\gamma$-ray bursts in the direction of the jet and orphan radio afterglows extending over wider angles on timescales of a week to a month. The intensity and duration of these radio counterparts depend on the kinetic energies of the outflows and on circum-merger densities. We estimate the detectability of the radio counterparts ...

  19. First law of compact binary mechanics with gravitational-wave tails

    Science.gov (United States)

    Blanchet, Luc; Le Tiec, Alexandre

    2017-08-01

    We derive the first law of binary point-particle mechanics for generic bound (i.e. eccentric) orbits at the fourth post-Newtonian (4PN) order, accounting for the non-locality in time of the dynamics due to the occurence of a gravitational-wave tail effect at that order. Using this first law, we show how the periastron advance of the binary system can be related to the averaged redshift of one of the two bodies for a slightly non-circular orbit, in the limit where the eccentricity vanishes. Combining this expression with existing analytical self-force results for the averaged redshift, we recover the known 4PN expression for the circular-orbit periastron advance, to linear order in the mass ratio.

  20. General relativistic simulations of compact binary mergers as engines for short gamma-ray bursts

    Science.gov (United States)

    Paschalidis, Vasileios

    2017-04-01

    Black hole—neutron star (BHNS) and neutron star—neutron star (NSNS) binaries are among the favored candidates for the progenitors of the black hole—disk systems that may be the engines powering short-hard gamma ray bursts. After almost two decades of simulations of binary NSNSs and BHNSs in full general relativity we are now beginning to understand the ingredients that may be necessary for these systems to launch incipient jets. Here, we review our current understanding, and summarize the surprises and lessons learned from state-of-the-art (magnetohydrodynamic) simulations in full general relativity of BHNS and NSNS mergers as jet engines for short-hard gamma-ray bursts. We also propose a new approach to probing the nuclear equation of state by virtue of multimessenger observations.

  1. Electromagnetic chirp of a compact binary black hole: A phase template for the gravitational wave inspiral

    Science.gov (United States)

    Haiman, Zoltán

    2017-07-01

    The gravitational waves (GWs) from a binary black hole (BBH) with masses 104≲M ≲107 M⊙ can be detected with the Laser Interferometer Space Antenna (LISA) once their orbital frequency exceeds 10-4- 10-5 Hz . The binary separation at this stage is a =O (100 )Rg (gravitational radius), and the orbital speed is v /c =O (0.1 ). We argue that at this stage, the binary will be producing bright electromagnetic (EM) radiation via gas bound to the individual BHs. Both BHs will have their own photospheres in x-ray and possibly also in optical bands. Relativistic Doppler modulations and lensing effects will inevitably imprint periodic variability in the EM light curve, tracking the phase of the orbital motion, and serving as a template for the GW inspiral waveform. Advanced localization of the source by LISA weeks to months prior to merger will enable a measurement of this EM chirp by wide-field x-ray or optical instruments. A comparison of the phases of the GW and EM chirp signals will help break degeneracies between system parameters, and probe a fractional difference Δ v in the propagation speed of photons and gravitons as low as Δ v /c ≈10-17.

  2. Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

    Science.gov (United States)

    Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Roever, C.; Singer, L.; vanderSluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.

    2014-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.

  3. Prospects for early localization of gravitational-wave signals from compact binary coalescences with advanced detectors

    OpenAIRE

    Manzotti, Alessandro; Dietz, Alexander

    2012-01-01

    A leading candidate source of detectable gravitational waves is the inspiral and merger of pairs of stellar-mass compact objects. The advanced LIGO and advanced Virgo detectors will allow scientists to detect inspiral signals from more massive systems and at earlier times in the detector band, than with first generation detectors. The signal from a coalescence of two neutron stars is expected to stay in the sensitive band of advanced detectors for several minutes, thus allowing detection befo...

  4. Hans A. Bethe Prize: Cosmic Collisions Online - Compact Binary Mergers, Gravitational Waves and Gamma-Ray Bursts

    Science.gov (United States)

    Shapiro, Stuart

    2017-01-01

    Hans A. Bethe elucidated our understanding of the fundamental forces of Nature by exploring and explaining countless phenomena occurring in nuclear laboratories and in stars. With the dawn of gravitational wave astronomy we now can probe compact binary mergers - Nature's cosmic collision experiments - to deepen our understanding, especially where strong-field gravitation is involved. In addition to gravitational waves, some mergers are likely to generate observable electromagnetic and/or neutrino radiation, heralding a new era of multimessenger astronomy. Robust numerical algorithms now allow us to simulate these events in full general relativity on supercomputers. We will describe some recent magnetohydrodynamic simulations that show how binary black hole-neutron star and neutron star-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short gamma-ray bursts. We will also show how the magnetorotational collapse of very massive stars to spinning black holes immersed in magnetized accretion disks can launch jets as well, reinforcing the belief that such ``collapsars'' are the progenitors of long gamma-ray bursts. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grants 1300903 and 1602536 and NASA Grant NNX13AH44G.

  5. Systematic errors in measuring parameters of non-spinning compact binary coalescences with post-Newtonian templates

    CERN Document Server

    Bose, Sukanta; Parameswaran, Ajith

    2012-01-01

    We study the astrophysical impact of inaccurate and incomplete modeling of the gravitational waveforms from compact binary coalescences (CBCs). We do so by the matched filtering of complete inspiral-merger-ringdown (IMR) signals with a bank of inspiral-phase templates modeled after the 3.5 post-Newtonian TaylorT1 approximant. The rationale for the choice of the templates is threefold: (1) The inspiral phase of the Phenomenological signals, which are an example of complete IMR signals, is modeled on the same TaylorT1 approximant. (2) In the low-mass limit, where the merger and ringdown phases last much shorter than the inspiral phase, the errors should tend to vanishingly small values and, thus, provide an important check on the numerical aspects of our simulations. (3) Since the binary black hole (BBH) signals are not yet known for mass-ratios above ten and since signals from CBCs involving neutron stars are affected by uncertainties in the knowledge of their equation of state, inspiral templates are still in...

  6. Supermassive Seeds for Supermassive Black Holes

    CERN Document Server

    Johnson, Jarrett L; Li, Hui; Holz, Daniel E

    2012-01-01

    Recent observations of quasars powered by supermassive black holes (SMBHs) out to z > 7 allow to constrain both the initial seed masses and the growth of the most massive black holes (BHs) in the early universe. The combination of the limited role of mergers in growing seed BHs as inferred from recent cosmological simulations, the sub-Eddington accretion rates of BHs expected at the earliest times, and the large radiative efficiencies of the most massive BHs inferred from observations of active galactic nuclei at high redshift, all suggest that the initial BH seeds may have been as massive as > 10^5 solar masses. This is consistent with the prediction of the direct collapse scenario of SMBH seed formation, in which a supermassive primordial star forms in a region of the universe with a high molecule-dissociating background radiation field, and collapses directly into a 10^4 --10^6 solar mass seed BH. This also corroborates the results of recent cosmological simulations which suggest that these massive BHs wer...

  7. Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy. II. The population with kinematically offset broad Balmer emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Bian, Fuyan [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Loeb, Abraham [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tremaine, Scott, E-mail: xinliu@astro.ucla.edu [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2014-07-10

    A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s{sup –1}) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (∼sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selected a sample of 399 quasars with kinematically offset broad Hβ lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad Hβ lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10{sup 3} km s{sup –1}), we explore the parameter space with smaller (a few hundred km s{sup –1}) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad Hβ lines in 24 of the 50 objects, of ∼10-200 km s{sup –1} yr{sup –1} with a median measurement uncertainty of ∼10 km s{sup –1} yr{sup –1}, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either Hα or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the

  8. Equation of motion for relativistic compact binaries with the strong field point particle limit the second and half post-Newtonian order

    CERN Document Server

    Itoh, Y; Asada, H; Itoh, Yousuke; Futamase, Toshifumi; Asada, Hideki

    2001-01-01

    We study the equation of motion appropriate to an inspiralling binary star system whose constituent stars have strong internal gravity. We use the post-Newtonian approximation with the strong field point particle limit by which we can introduce into general relativity a notion of a point-like particle with strong internal gravity without using Dirac delta distribution. Besides this limit, to deal with strong internal gravity we express the equation of motion in surface integral forms and calculate these integrals explicitly. As a result we obtain the equation of motion for a binary of compact bodies accurate through the second and half post-Newtonian (2.5 PN) order. This equation is derived in the harmonic coordinate. Our resulting equation perfectly agrees with Damour and Deruelle 2.5 PN equation of motion. Hence it is found that the 2.5 PN equation of motion is applicable to a relativistic compact binary.

  9. Interaction of Supermassive Black Holes with their Stellar and Dark Matter Environments

    OpenAIRE

    Merritt, David

    2004-01-01

    A review of recent theoretical work on the interactions of supermassive single and binary black holes with their nuclear environments, highlighting ways in which the observed structure of nuclei can be used to constrain the formation history of black holes.

  10. VLT Phase Resolved Optical Spectroscopy of the Ultra-Compact Binary HM Cnc

    CERN Document Server

    Mason, Elena; Dall'Osso, S; Stella, L; Munari, U; Marconi, G; O'Brian, K; Covino, S; Fugazza, D

    2010-01-01

    A 321.5 s modulation was discovered in 1999 in the X-ray light curve of HM Cnc. In 2001 and 2002, optical photometric and spectroscopic observations revealed that HM Cnc is a very blue object with no intrinsic absorptions but broad (FWHM 1500 km s^-1) low equivalent width emission lines (EW 1-6A), which were first identified with the HeII Pickering series. The combination of X-ray and optical observations pictures HM Cnc as a double degenerate binary hosting two white dwarfs, and possibly being the shortest orbital period binary discovered so far. The present work is aimed at studying the orbital motion of the two components by following the variations of the shape, centroid and intensity of the emission lines through the orbit. In February 2007, we carried out the first phase resolved optical spectroscopic study with the VLT/FORS2 in the High Time Resolution (HIT) mode, yielding five phase bins in the 321 s modulation. Despite the low SNR, the data show that the intensity of the three most prominent emission...

  11. Swift Observations of MAXI J1659-152: A Compact Binary with a Black Hole Accretor

    CERN Document Server

    Kennea, J A; Mangano, V; Beardmore, A P; Evans, P A; Curran, P A; Krimm, H A; Markwardt, C B; Yamaoka, K

    2011-01-01

    We report on the detection and follow-up high cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black-hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and MAXI on 2010 Sept 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of ~0.5 Crab by the Swift XRT, UVOT, and BAT. We present temporal and spectral analysis of the Swift observations. The broadband light-curves show variability characteristic of black-hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black-hole binaries, transitioning from its initial detection in the Hard State, to the Steep Power-Law State, followed by a slow evolution towards the Thermal State, signified by an in...

  12. Can percolation model describe the evolution of mechanical properties of compacts of binary systems?

    Science.gov (United States)

    Evesque, Pierre; Busignies, Virginie; Porion, Patrice; Leclerc, Bernard; Tchoreloff, Pierre

    2009-06-01

    In pharmaceutical field, the percolation theory is used to describe the change of tablet's properties with the relative density. It defines critical tablet densities from which the mechanical properties start to change. The exponent in the law is expected to be universal for a mechanical property and numerical values are proposed in the literature. In this work, the percolation model was applied to the tensile strength and the reduced modulus of elasticity of three compacted pharmaceutical excipients. This work showed that the exponent seems not universal and that the model must be used carefully.

  13. Gravitational waves from compact objects

    Institute of Scientific and Technical Information of China (English)

    José Antonio de Freitas Pacheco

    2010-01-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and,consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a "pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  14. Gravitational waves from inspiralling compact binaries a post-newtonian approach

    CERN Document Server

    Will, C M

    1994-01-01

    Inspiralling binary systems of neutron stars or black holes are promising sources of gravitational radiation detectable by large-scale laser interferometric gravitational observatories, such as the US LIGO and Italian-French VIRGO projects. Accurate theoretical gravitational-waveform templates will be needed to carry out matched filtering data analysis of the detectors' output once they are on the air by the end of this decade. For all but the final, strongly general relativistic coalescence of the two bodies, high-order post-Newtonian methods are playing a major role in the theorists' efforts to develop the needed templates. This paper discusses the foundations of this method, and provides a compendium of useful formulae and results. Figures available upon request. (Invited talk given at the 8th Nishinomiya-Yukawa Memorial Symposium, October 28, 1993.)

  15. Light scalar field constraints from gravitational-wave observations of compact binaries

    CERN Document Server

    Berti, Emanuele; Horbatsch, Michael; Alsing, Justin

    2012-01-01

    Scalar-tensor theories are among the simplest extensions of general relativity. In theories with light scalars, deviations from Einstein's theory of gravity are determined by the scalar mass m_s and by a Brans-Dicke-like coupling parameter \\omega_{BD}. We show that gravitational-wave observations of nonspinning neutron star-black hole binary inspirals can be used to set upper bounds on the combination m_s/\\sqrt{\\omega_{BD}}. We estimate via a Fisher matrix analysis that individual observations with signal-to-noise ratio \\rho would yield (m_s/\\sqrt{\\omega_{\\rm BD}})(\\rho/10)\\lesssim 10^{-15}, 10^{-16} and 10^{-19} eV for Advanced LIGO, ET and eLISA, respectively. A statistical combination of multiple observations may further improve this bound.

  16. Tidal interaction in compact binaries: a post-Newtonian affine framework

    CERN Document Server

    Ferrari, V; Maselli, A

    2011-01-01

    We develop a semi-analytical approach, based on the post-Newtonian expansion and on the affine approximation, to model the tidal deformation of neutron stars in the coalescence of black hole-neutron star or neutron star-neutron star binaries. Our equations describe, in a unified framework, both the system orbital evolution, and the neutron star deformations. These are driven by the tidal tensor, which we expand at 1/c^3 post-Newtonian order, including spin terms. We test the theoretical framework by simulating black hole-neutron star coalescence up to the onset of mass shedding, which we determine by comparing the shape of the star with the Roche lobe. We validate our approach by comparing our results with those of fully relativistic, numerical simulations.

  17. Radio Counterparts of Compact Binary Mergers Detectable in Gravitational Waves: A Simulation for an Optimized Survey

    Science.gov (United States)

    Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.

    2016-11-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.

  18. Towards mitigating the effect of sine-Gaussian noise transients on searches for gravitational waves from compact binary coalescences

    Science.gov (United States)

    Bose, Sukanta; Dhurandhar, Sanjeev; Gupta, Anuradha; Lundgren, Andrew

    2016-12-01

    Gravitational wave signals were recently detected directly by LIGO from the coalescences of two stellar mass black hole pairs. These detections have strengthened our long held belief that compact binary coalescences (CBCs) are the most promising gravitational wave detection prospects accessible to ground-based interferometric detectors. For detecting CBC signals, it is of vital importance to characterize and identify non-Gaussian and nonstationary noise in these detectors. In this work, we model two important classes of transient artifacts that contribute to this noise and adversely affect the detector sensitivity to CBC signals. One of them is the sine-Gaussian "glitch," characterized by a central frequency f0 and a quality factor Q and the other is the chirping sine-Gaussian glitch, which is characterized by f0, Q as well as a chirp parameter. We study the response that a bank of compact binary inspiral templates has to these two families of glitches when they are used to match filter data containing any of these glitches. Two important characteristics of this response are the distributions of the signal-to-noise ratio and the time lag (i.e., how long after the occurrence of a glitch the signal-to-noise ratio of a trigger arises from its matched filtering by a template peaks) of individual templates. We show how these distributions differ from those when the detector data has a real CBC signal instead of a glitch. We argue that these distinctions can be utilized to develop useful signal-artifact discriminators that add negligibly to the computational cost of a CBC search. Specifically, we show how the central frequency of a glitch can be used to set adaptive time windows around it so that any template trigger occurring in that window can be quarantined for further vetting of its supposed astrophysical nature. Second, we recommend focusing efforts on reducing the incidence of glitches with low central-frequency values because they create CBC triggers with the

  19. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors

    CERN Document Server

    Buonanno, Alessandra; Ochsner, Evan; Pan, Yi; Sathyaprakash, B S

    2009-01-01

    The two-body dynamics in general relativity has been solved perturbatively using the post-Newtonian (PN) approximation. The evolution of the orbital phase and the emitted gravitational radiation are now known to a rather high order up to O(v^8), v being the characteristic velocity of the binary. The orbital evolution, however, cannot be specified uniquely due to the inherent freedom in the choice of parameter used in the PN expansion as well as the method pursued in solving the relevant differential equations. The goal of this paper is to determine the (dis)agreement between different PN waveform families in the context of initial and advanced gravitational-wave detectors. The waveforms employed in our analysis are those that are currently used by Initial LIGO/Virgo, that is the time-domain PN models TaylorT1, TaylorT2, TaylorT3, TaylorT4 and TaylorEt, the effective one-body (EOB) model, and the Fourier-domain representation TaylorF2. We examine the overlaps of these models with one another and with the proto...

  20. Time-resolved ultraviolet spectroscopy of the compact interacting binary QU Car

    CERN Document Server

    Hartley, L E; Long, K S

    2002-01-01

    We present HST/STIS (1160--1700A) echelle spectra of the cataclysmic variable (CV) star, QU Car, observed in time-tag mode at three epochs. In catalogues this binary is classified as a nova-like variable. We find evidence of a high-state non-magnetic CV at low inclination, with unusually high ionisation. We observed narrow absorption lines (few hundred km/s wide) in N V1240, O V1371 and Si IV1398, as well as broader (HWZI ~1000km/s) emission in C III1176, C IV1549 and He II1640, all with a superposed absorption component. High ionisation is indicated by the unusually string He II emission and the relative strength of the O V absorption line. The dereddened UV SED of, on average, -2.3 suggests that disc accretion dominates the spectral energy distribution. In two observations velocity shifting is noted in the absorption lines on a timescale long enough not to repeat within the ~2600-sec exposures. The absorption superposed on the C IV emission line moves coherently with the N V and Si IV absorption, suggesting...

  1. Constraining the propagation speed of gravitational waves with compact binaries at cosmological distances

    CERN Document Server

    Nishizawa, Atsushi

    2016-01-01

    In testing gravity a model-independent way, one of crucial tests is measuring the propagation speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light, while in the alternative theories of gravity the propagation speed could deviate from the speed of light due to the modification of gravity or spacetime structure at a quantum level. Previously we proposed the method measuring the GW speed by directly comparing the arrival times between a GW and a photon from the binary merger of neutron stars or neutron star and black hole, assuming that it is associated with a short gamma-ray burst. The sensitivity is limited by the intrinsic time delay between a GW and a photon at the source. In this paper, we extend the method to distinguish the intrinsic time delay from the true signal caused by anomalous GW speed with multiple events at cosmological distances, also considering the redshift distribution of GW sources, redshift-dependent GW propagation speed, and the statistics of ...

  2. Relativistic mergers of compact binaries in clusters: The fingerprint of the spin

    CERN Document Server

    Brem, Patrick; Spurzem, Rainer

    2013-01-01

    Dense stellar systems such as globular clusters and dense nuclear clusters are the breeding ground of sources of gravitational waves for the advanced detectors LIGO and Virgo. These systems deserve a close study to estimate rates and parameter distribution. This is not an easy task, since the evolution of a dense stellar cluster involves the integration of $N$ bodies with high resolution in time and space and including hard binaries and their encounters and, in the case of gravitational waves (GWs), one needs to take into account important relativistic corrections. In this work we present the first implementation of the effect of spin in mergers in a direct-summation code, NBODY6. We employ non-spinning post-Newtonian corrections to the Newtonian accelerations up to 3.5 post-Newtonian (PN) order as well as the spin-orbit coupling up to next-to-lowest order and the lowest order spin-spin coupling. We integrate spin precession and add a consistent treatment of mergers. We analyse the implementation by running a...

  3. Multiwavelength observations of V479 Andromedae: a close compact binary with an identity crisis

    CERN Document Server

    Gonzalez-Buitrago, Diego; Zharikov, Sergey; Yungelson, Lev; Miyaji, Takamitsu; Echevarria, Juan; Aviles, Andres; Valyavin, Gennady

    2013-01-01

    We conducted a multi-wavelength study to unveil the properties of the extremely long-period cataclysmic variable V479 And. We performed series of observations, including moderate to high spectral resolution optical spectrophotometry, X-ray observations with Swift, linear polarimetry and near-IR photometry. This binary system is a low-inclination ~ 17^o system with a 0.594093(4) day orbital period. The absorption line complex in the spectra indicate a G8--K0 spectral type for the donor star, which has departed from the zero-age main sequence. This implies a distance to the object of about 4 kpc. The primary is probably a massive 1.1-1.4 Msun magnetic white dwarf, accreting matter at a rate M(dot) > 10^-10 Msun/ yr. This rate can be achieved if the donor star fills its corresponding Roche lobe, but there is little observational evidence for a mass-transfer stream in this system. An alternative explanation is a stellar wind from the donor star, although such a high rate mass loss is not anticipated from a subgia...

  4. First order post-Newtonian gravitational waveforms of binaries on eccentric orbits with Hansen coefficients

    Science.gov (United States)

    Mikóczi, Balázs; Forgács, Péter; Vasúth, Mátyás

    2015-08-01

    The inspiral and merger of supermassive black hole binary systems with high orbital eccentricity are among the promising sources of the advanced gravitational wave observatories. In this paper we compute gravitational waveforms in the frequency domain to the first post-Newtonian order, emitted by compact binary systems with arbitrary eccentricity. Our results are fully analytic, ready-to-use expressions of the waveforms in terms of a suitable generalization of Hansen coefficients known from celestial mechanics. Secular terms induced by the eccentricity are eliminated by introducing a suitable phase shift. The obtained waveforms have a rather simple structure, greatly facilitating their use in applications.

  5. Resonant Excitation of White Dwarf Oscillations in Compact Object Binaries: 1. The No Back Reaction Approximation

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Y.

    2004-06-14

    We consider the evolution of white dwarfs with compact object companions (specifically black holes with masses up to {approx} 10{sup 6} M{sub {circle_dot}}, neutron stars, and other white dwarfs). We suppose that the orbits are initially quite elliptical and then shrink and circularize under the action of gravitational radiation. During this evolution, the white dwarfs will pass through resonances when harmonics of the orbital frequency match the stellar oscillation eigenfrequencies. As a star passes through these resonances, the associated modes will be excited and can be driven to amplitudes that are so large that there is a back reaction on the orbit which, in turn, limits the growth of the modes. A formalism is presented for describing this dynamical interaction for a non-rotating star in the linear approximation when the orbit can be treated as non-relativistic. A semi-analytical expression is found for computing the resonant energy transfer as a function of stellar and orbital parameters for the regime where back reaction may be neglected. This is used to calculate the results of passage through a sequence of resonances for several hypothetical systems. It is found that the amplitude of the {ell} = m = 2 f-mode can be driven into the non-linear regime for appropriate initial conditions. We also discuss where the no back reaction approximation is expected to fail, and the qualitative effects of back reaction.

  6. Gravitational Waves and Inspiraling Compact Binaries in Alternative Theories of Gravity

    CERN Document Server

    Mirshekari, Saeed

    2013-01-01

    This dissertation consists of four parts. In Part I, we briefly review fundamental theories of gravity, performed experimental tests, and gravitational waves. The framework and the methods that we use in our calculations are discussed in Part II. This part includes reviewing the methods of the Parametrized Post-Newtonian (PPN) framework, Direct Integration of Relaxed Einstein Equations (DIRE), and Matched Filtering. In Part III, we calculate the explicit equations of motion for non-spinning compact objects (neutron stars or black holes) to 2.5 post-Newtonian order, or $O(v/c)^5$ beyond Newtonian gravity, in a general class of alternative theories to general relativity known as scalar-tensor theories. For the conservative part of the motion, we obtain the two-body Lagrangian and conserved energy and momentum through second post-Newtonian order. We find the contributions to gravitational radiation reaction to 1.5 post-Newtonian and 2.5 post-Newtonian orders, the former corresponding to the effects of dipole gra...

  7. Systematic errors in measuring parameters of non-spinning compact binary coalescences with post-Newtonian templates

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sukanta; Ghosh, Shaon [Department of Physics and Astronomy, Washington State University, 1245 Webster, Pullman, WA 99164-2814 (United States); Ajith, P, E-mail: sukanta@wsu.ed, E-mail: shaonghosh@mail.wsu.ed, E-mail: ajith@caltech.ed [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-06-07

    We study the astrophysical impact of inaccurate and incomplete modeling of the gravitational waveforms from compact binary coalescences (CBCs). We do so by the matched filtering of phenomenological inspiral-merger-ringdown (IMR) signals with a bank of inspiral-phase templates modeled on the 3.5 post-Newtonian TaylorT1 approximant. The rationale for the choice of the templates is threefold. (1) The inspiral phase of the phenomenological IMR signals, which are an example of complete IMR signals, is modeled on the same TaylorT1 approximant. (2) In the low-mass limit, where the merger and ringdown phases are much shorter than the inspiral phase, the errors should tend to vanishingly small values and, thus, provide an important check on the numerical aspects of our simulations. (3) Since the binary black hole signals are not yet known for mass ratios above ten and since signals from CBCs involving neutron stars are affected by uncertainties in the knowledge of their equation of state, inspiral templates are still in use in searches for those signals. The results from our numerical simulations are compared with analytical calculations of the systematic errors using the Fisher matrix on the template parameter space. We find that the loss in signal-to-noise ratio (SNR) can be as large as 45% even for binary black holes with component masses m{sub 1} = 10 M{sub o-dot} and m{sub 2} = 40 M{sub o-dot}. Also the estimated total mass for the same pair can be off by as much as 20%. Both of these are worse for some higher mass combinations. Even the estimation of the symmetric mass ratio {eta} suffers a nearly 20% error for this example and can be worse than 50% for the mass ranges studied here. These errors significantly dominate their statistical counterparts (at a nominal SNR of 10). It may, however, be possible to mitigate the loss in SNR by allowing for templates with unphysical values of {eta}.

  8. Cosmic String Loops as the Seeds of Super-Massive Black Holes

    CERN Document Server

    Bramberger, Sebastian F; Jreidini, Paul; Quintin, Jerome

    2015-01-01

    Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard Lambda CDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.

  9. Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order

    CERN Document Server

    Bernard, Laura; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2016-01-01

    In this paper, we complete our preceding work on the Fokker Lagrangian describing the dynamics of compact binary systems at the fourth post-Newtonian (4PN) order in harmonic coordinates. We clarify the impact of the non-local character of the Fokker Lagrangian or the associated Hamiltonian on both the conserved energy and the relativistic periastron precession for circular orbits. We show that the non-locality of the action, due to the presence of the tail effect at the 4PN order, gives rise to an extra contribution to the conserved integral of energy with respect to the Hamiltonian computed on shell, which was not taken into account in our previous work. We also provide a direct derivation of the periastron advance by taking carefully into account this non-locality. We then argue that the infra-red (IR) divergences in the calculation of the gravitational part of the action are problematic, which motivates us to introduce a second ambiguity parameter, in addition to the one already assumed previously. After f...

  10. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Roberts, Luke F. [TAPIR, California Institute of Technology, Pasadena, California 91125 (United States); Lee, William H.; Saladino-Rosas, Martha I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico)

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  11. Derivation of the local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries

    CERN Document Server

    Jaranowski, Piotr

    2015-01-01

    The paper gives full details of the computation within the canonical formalism of Arnowitt, Deser, and Misner of the local-in-time part of the fourth post-Newtonian, i.e. of power eight in one over speed of light, conservative Hamiltonian of spinless compact binary systems. The Hamiltonian depends only on the bodies positions and momenta. Dirac delta distributions are taken as source functions. Their full control is furnished by dimensional continuation, by means of which the occurring ultra-violet (UV) divergences are uniquely regularized. The applied near-zone expansion of the time-symmetric Green function leads to infra-red (IR) divergences. Their analytic regularization results in one single ambiguity parameter. Unique fixation of it was successfully performed in T.Damour, P.Jaranowski, and G.Sch\\"afer, Phys. Rev. D 89, 064058 (2014) through far-zone matching. Technically as well as conceptually (back-scatter binding energy), the level of the Lamb shift in quantum electrodynamics is reached. In a first ru...

  12. Next-to-next-to-leading order spin-orbit effects in the equations of motion of compact binary systems

    CERN Document Server

    Marsat, Sylvain; Faye, Guillaume; Blanchet, Luc

    2012-01-01

    We compute next-to-next-to-leading order spin contributions to the post-Newtonian equations of motion for binaries of compact objects, such as black holes or neutron stars. For maximally spinning black holes, those contributions are of third-and-a-half post-Newtonian (3.5PN) order, improving our knowledge of the equations of motion, already known for non-spinning objects up to this order. Building on previous work, we represent the rotation of the two bodies using a pole-dipole matter stress-energy tensor, and iterate Einstein's field equations for a set of potentials parametrizing the metric in harmonic coordinates. Checks of the result include the existence of a conserved energy, the approximate global Lorentz invariance of the equations of motion in harmonic coordinates, and the recovery of the motion of a spinning object on a Kerr background in the test-mass limit. We verified the existence of a contact transformation, together with a redefinition of the spin variables that makes our result equivalent to ...

  13. X-ray reflection in oxygen-rich accretion discs of ultra-compact X-ray binaries

    CERN Document Server

    Madej, O K; Jonker, P G; Parker, M L; Ross, R; Fabian, A C; Chenevez, J

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultra-compact X-ray binaries: 4U~0614+091 and 4U~1543$-$624. We confirm the presence of a broad O VIII Ly$\\alpha$ reflection line (at $\\approx18\\ \\AA$) using {\\it XMM-Newton} and {\\it Chandra} observations obtained in 2012 and 2013. The donor star in these sources is carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O VIII Ly$\\alpha$ line particularly strong. We also confirm the presence of a strong absorption edge at $\\approx14$ \\AA\\ so far interpreted in the literature as due to absorption by neutral neon in the circumstellar and interstellar medium. However, the abundance required to obtain a good fit to this edge is $\\approx3-4$ times solar, posing a problem for this interpretation. Furthermore, modeling the X-ray reflection off a carbon and oxygen enriched, hydrogen and helium poor disc with models assuming solar composition likely biases several of the best-fit parameters. In order to...

  14. Gravitational radiation from compact binary systems gravitational waveforms and energy loss to second post-Newtonian order

    CERN Document Server

    Will, C M; Will, Clifford M.; Wiseman, Alan G.

    1996-01-01

    We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order ($O[(v/c)^4] \\sim O[(Gm/rc^2)^2]$) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evaluated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radiation is also shown to propagate toward the observer a...

  15. Polarimetric and spectroscopic optical observations of the ultra-compact X-ray binary 4U 0614+091

    CERN Document Server

    Baglio, M C; D'Avanzo, P; Campana, S; Covino, S; Russell, D M; Shahbaz, T

    2014-01-01

    Aims: We present a polarimetric and spectroscopic study of the persistent ultra compact X-ray binary 4U 0614+091 aimed at searching for the emission of a relativistic particle jet and at unveiling the orbital period of the system. Methods: We obtained r-band polarimetric observations with the Telescopio Nazionale Galileo (TNG) equipped with the PAOLO polarimeter and with the Nordic Optical Telescope (NOT) equipped with the ALFOSC instrument, covering ~ 2 hours and ~ 0.5 hours observations, respectively. We carried out low resolution spectroscopy of the system using the ESO Very Large Telescope equipped with FORS1 for ~ 1.5 hours (16 spectra covering the range 430-800 nm). Results: The polarimetric analysis performed starting from the TNG dataset revealed a polarisation degree in the r-band of 3 % +/- 1 %. From the NOT dataset, due to the lower S/N ratio, we could obtain only a 3 sigma upper limit of 3.4 %. From the joining of a spectroscopic and photometric analysis, through the study of the equivalent width ...

  16. Phenomenology of amplitude-corrected post-Newtonian gravitational waveforms for compact binary inspiral. I. Signal-to-noise ratios

    CERN Document Server

    Van den Broeck, C; Broeck, Chris Van Den; Sengupta, Anand S.

    2006-01-01

    We study the phenomenological consequences of amplitude-corrected post-Newtonian (PN) gravitational waveforms, as opposed to the more commonly used restricted PN waveforms, for the quasi-circular, adiabatic inspiral of compact binary objects. In the case of initial detectors it has been shown that the use of amplitude-corrected waveforms for detection templates would lead to significantly lower signal-to-noise ratios (SNRs) than those suggested by simulations based exclusively on restricted waveforms. We further elucidate the origin of the effect by an in-depth analytic treatment. The discussion is extended to advanced detectors, where new features emerge. Non-restricted waveforms are linear combinations of harmonics in the orbital phase, and in the frequency domain the $k$th harmonic is cut off at $k f_{LSO}$, with $f_{LSO}$ the orbital frequency at the last stable orbit. As a result, with non-restricted templates it is possible to achieve sizeable signal-to-noise ratios in cases where the dominant harmonic ...

  17. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S G

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  18. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    CERN Document Server

    Migliari, S; Gallo, E; Maccarone, T J; Nelemans, G; Russell, D M; Tomsick, J A

    2006-01-01

    Spitzer observations of the neutron star (ultra-compact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of non-thermal origin in the range 3.5-8 um. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is F_nu \\propto nu^(alpha)). Given the ultra-compact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These observations represent the first spectral evidence for a compact jet in a low-luminosity neutron star XRB and furthermore of the presence, already observed in two black hole (BH) XRBs, of a `break' in the synchrotron spectrum of such compact jets. We can derive a firm upper limit on the break frequency of the spectrum of nu_thin=3.7x10^(13) Hz, which is lower than that observed in BH XRBs by at least a factor of 10. Assuming a high-energy cooling cutoff at ~1 keV, we estimate a total (integrated up to X-rays...

  19. Observing stellar mass and supermassive black holes

    Science.gov (United States)

    Cherepashchuk, A. M.

    2016-07-01

    During the last 50 years, great progress has been made in observing stellar-mass black holes (BHs) in binary systems and supermassive BHs in galactic nuclei. In 1964, Zeldovich and Salpeter showed that in the case of nonspherical accretion of matter onto a BH, huge energy releases occur. The theory of disk accretion of matter onto BHs was developed in 1972-1973 by Shakura and Sunyaev, Pringle and Rees, and Novikov and Thorne. Up to now, 100 years after the creation of Albert Einstein's General Theory of Relativity, which predicts the existence of BHs, the masses of tens of stellar-mass BHs ( M_BH=(4-35) M_⊙) and many hundreds of supermassive BHs ( M_BH=(10^6-1010) M_⊙) have been determined. A new field of astrophysics, so-called BH demography, is developing. The recent discovery of gravitational waves from BH mergers in binary systems opens a new era in BH studies.

  20. VLBA Reveals Closest Pair of Supermassive Black Holes

    Science.gov (United States)

    2006-05-01

    black holes," Taylor said. The VLBA is a continent-wide system of ten radio-telescope antennas. It provides the greatest ability to see fine detail, called resolving power, of any telescope in astronomy. "Astronomers have thought for a long time that close pairs of black holes should result from galaxy collisions," Rodriguez said. Still, finding them has proven difficult. Until now, the closest confirmed pairs of supermassive black holes were at least 4,500 light-years apart. Pairs of smaller black holes, each only a few times the mass of the Sun, have been found in our own Milky Way Galaxy, but 0402+379 harbors the pair of supermassive black holes that are the closest to each other yet found. Galactic collisions are common throughout the Universe, and astronomers think that the binary pairs of supermassive black holes that result can have important effects on the subsequent evolution of the galaxies. In a number of predicted scenarios, such giant pairs of black holes will themselves collide, sending gravitational waves out through the Universe. Such gravitational waves could be detected with a proposed joint space mission between NASA and the European Space Agency, the Laser Interferometer Space Antenna. "Such black-hole collisions undoubtedly are important processes, and we need to understand them. Finding ever-closer pairs of supermassive black holes is the first step in that process. Even finding one such system has dramatically changed our expectations, and informed us about what to look for," Taylor said. Taylor and his collaborators are currently using the VLBA to carry out the largest survey of compact radio-emitting objects ever undertaken, in the hope of finding more such pairs. Rodriguez and Taylor worked with Robert Zavala of the U.S. Naval Observatory, Allison Peck of the SubMillimeter Array of the Harvard- Smithsonian Center for Astrophysics, Lindsey Pollack of the University of California at Santa Cruz, and Roger Romani of Stanford University. Their

  1. Searching for gravitational-waves from compact binary coalescences while dealing with challenges of real data and simulated waveforms

    Science.gov (United States)

    Dayanga, Waduthanthree Thilina

    Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of

  2. A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sukanta; Dayanga, Thilina; Ghosh, Shaon; Talukder, Dipongkar, E-mail: sukanta@wsu.edu, E-mail: wdayanga@wsu.edu, E-mail: shaonghosh@mail.wsu.edu, E-mail: talukder_d@wsu.edu [Department of Physics and Astronomy, Washington State University, 1245 Webster, Pullman, WA 99164-2814 (United States)

    2011-07-07

    We describe a hierarchical data analysis pipeline for coherently searching for gravitational-wave signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. This search assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed 'blind'. The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise. More importantly, it allows for the computation of a suite of alternative multi-detector coherent search statistics and signal-based discriminators that can improve the performance of CBC searches in real data, which can be both non-stationary and non-Gaussian. Also, unlike the coincident multi-detector search statistics that have been employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. Since the computation of coherent statistics entails searching in the sky, it is more expensive than that of the coincident statistics that do not require it. To reduce computational costs, the first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. Here, we compare the performances of this hierarchical pipeline with and without the second (or coherent) stage in Gaussian noise. Although introducing hierarchy can be expected to cause some degradation in the detection efficiency compared to that of a single-stage coherent pipeline, nevertheless it improves the computational speed of the search considerably. The two main results of this work are as follows: (1) the performance of the hierarchical coherent pipeline on

  3. Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit

    CERN Document Server

    Itoh, Yousuke

    2009-01-01

    We report our rederivation of the equations of motion for relativistic compact binaries through the third-and-a-half post-Newtonian (3.5 PN) order approximation to general relativity using the strong field point particle limit to describe self-gravitating stars instead of the Dirac delta functional. The computation is done in harmonic coordinates. Our equations of motion describe the orbital motion of the binary consisting of spherically symmetric non-rotating stars. The resulting equations of motion fully agree with the 3.5 PN equations of motion derived in the previous works. We also show that the locally defined energy of the star has a simple relation with its mass up to the 3.5 PN order.

  4. Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits

    CERN Document Server

    Arun, K G; Iyer, Bala R; Sinha, Siddhartha

    2009-01-01

    The angular momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to non-linear memory. We average the angular momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular momentum flux provides the final input needed for gravitational wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order $e^2$. This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-New...

  5. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  6. A Circumbinary Disk Scenario for the Negative Orbital-period Derivative of the Ultra-compact X-Ray Binary 4U 1820-303

    Science.gov (United States)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2017-03-01

    It is generally thought that an ultra-compact X-ray Binary is composed of a neutron star and a helium white dwarf donor star. As one of the most compact binaries, 4U 1820-303 in globular cluster NGC 6624 was predicted to have an orbital period of \\dot{P}/P∼ 1.1× {10}-7 yr‑1 if the mass transfer is fully driven by gravitational radiation. However, recent analysis of 16 year data from Rossi X-ray Timing Explorer and other historical records has yielded a negative orbital-period derivative in the past 35 years. In this work, we propose an evolutionary circumbinary (CB) disk model to account for this anomalous orbital-period derivative. 4U 1820-30 is known to undergo superburst events caused by runaway thermal nuclear burning on the neutron star. We assume that, for a small fraction of the superbursts, part of the ejected material may form a CB disk around the binary. If the recurrence time of such superbursts is ∼10,000 year and ∼10% of the ejected mass feeds a CB disk, the abrupt angular-momentum loss causes a temporary orbital shrink, and the donor’s radius and its Roche lobe radius do not keep in step. Driven by mass transfer and angular-momentum loss, the binary would adjust its orbital parameters to recover a new stable stage. Based on theoretical analysis and numerical simulation, we find that the required feed mass at the CB disk is approximately ∼10‑8 M ⊙.

  7. Witnessing the birth of a supermassive protostar

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.; Hartwig, T.

    2016-05-01

    The detection of z > 6 quasars reveals the existence of supermassive black holes of a few 109 M⊙. One of the potential pathways to explain their formation in the infant universe is the so-called direct collapse model which provides massive seeds of 105-106 M⊙. An isothermal direct collapse mandates that haloes should be of a primordial composition and the formation of molecular hydrogen remains suppressed in the presence of a strong Lyman Werner flux. In this study, we perform high resolution cosmological simulations for two massive primordial haloes employing a detailed chemical model which includes H- cooling as well as realistic opacities for both the bound-free H- emission and the Rayleigh scattering of hydrogen atoms. We are able to resolve the collapse up to unprecedentedly high densities of ˜10-3 g cm-3 and to scales of about 10-4 au. Our results show that the gas cools down to ˜5000 K in the presence of H- cooling, and induces fragmentation at scales of about 8000 au in one of the two simulated haloes, which may lead to the formation of a binary. In addition, fragmentation also occurs on the au scale in one of the haloes but the clumps are expected to merge on short time-scales. Our results confirm that H- cooling does not prevent the formation of a supermassive star and the trapping of cooling radiation stabilizes the collapse on small scales.

  8. Understanding the fate of merging supermassive black holes

    CERN Document Server

    Campanelli, M

    2004-01-01

    Understanding the fate of merging supermassive black holes in galactic mergers, and the gravitational wave emission from this process, are important LISA science goals. To this end, we present results from numerical relativity simulations of binary black hole mergers using the so-called Lazarus approach to model gravitational radiation from these events. In particular, we focus here on some recent calculations of the final spin and recoil velocity of the remnant hole formed at the end of a binary black hole merger process, which may constraint the growth history of massive black holes at the core of galaxies and globular clusters.

  9. Towards low-latency mitigation of the effect of sine-Gaussian noise transients on searches for gravitational waves from compact binary coalescences

    CERN Document Server

    Bose, Sukanta; Gupta, Anuradha; Lundgren, Andrew

    2016-01-01

    Gravitational wave (GW) signals were recently detected directly by LIGO from the coalescences of two stellar mass black hole pairs. These detections have strengthened our long held belief that compact binary coalescences (CBCs) are the most promising GW detection prospects accessible to ground-based interferometric detectors. For detecting CBC signals it is of vital importance to characterize and identify non-Gaussian and non-stationary noise in these detectors. In this work we model two important classes of transient artifacts that contribute to this noise and adversely affect the detector sensitivity to CBC signals. One of them is the sine-Gaussian "glitch", characterized by a central frequency $f_0$ and a quality factor $Q$ and the other is the chirping sine-Gaussian glitch, which is characterized by $f_0$, $Q$ as well as a chirp parameter. We study the response a bank of compact binary inspiral templates has to these two families of glitches when they are used to match-filter data containing any of these ...

  10. Estimating effective higher order terms in the post-Newtonian binding energy and gravitational-wave flux: Non-spinning compact binary inspiral

    CERN Document Server

    Kapadia, Shasvath J; Ajith, Parameswaran

    2016-01-01

    In the adiabatic post-Newtonian (PN) approximation, the phase evolution of gravitational waves (GWs) from inspiralling compact binaries in quasicircular orbits is computed by equating the change in binding energy with the GW flux. This energy balance equation can be solved in different ways, which result in multiple approximants of the PN waveforms. Due to the poor convergence of the PN expansion, these approximants tend to differ from each other during the late inspiral. Which of these approximants should be chosen as templates for detection and parameter estimation of GWs from inspiraling compact binaries is not obvious. In this paper, we present estimates of the effective higher order (beyond the currently available 4PN and 3.5PN) non-spinning terms in the PN expansion of the binding energy and the GW flux that minimize the difference of multiple PN approximants (TaylorT1, TaylorT2, TaylorT4, TaylorF2) with effective one body waveforms calibrated to numerical relativity (EOBNR). We show that PN approximant...

  11. Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order

    CERN Document Server

    Faye, Guillaume; Iyer, Bala R

    2014-01-01

    This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents: (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits to complete the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. At this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.

  12. Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order

    Science.gov (United States)

    Faye, Guillaume; Blanchet, Luc; Iyer, Bala R.

    2015-02-01

    This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits completion of the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. On this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.

  13. The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    CERN Document Server

    Blanchet, Luc; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) To provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) To provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contribut...

  14. Spitzer Reveals Infrared Optically Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    Science.gov (United States)

    Migliari, S.; Tomsick, J. A.; Maccarone, T. J.; Gallo, E.; Fender, R. P.; Nelemans, G.; Russell, D. M.

    2006-05-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 μm. The mid-infrared spectrum is well fit by a power law with spectral index of α=-0.57+/-0.04 (where the flux density is Fν~να). Given the ultracompact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These observations represent the first spectral evidence for a compact jet in a low-luminosity neutron star XRB and furthermore of the presence, already observed in two black hole (BH) XRBs, of a ``break'' in the synchrotron spectrum of such compact jets. We can derive a firm upper limit on the break frequency of the spectrum of νthin=3.7×1013 Hz, which is lower than that observed in BH XRBs by at least a factor of 10. Assuming a high-energy cooling cutoff at ~1 keV, we estimate a total (integrated up to X-rays) jet power to X-ray bolometric luminosity ratio of ~5%, much lower than that inferred in BHs.

  15. Near-Infrared Spectroscopy of Low Mass X-ray Binaries : Accretion Disk Contamination and Compact Object Mass Determination in V404 Cyg and Cen X-4

    CERN Document Server

    Khargharia, Juthika; Robinson, Edward L

    2010-01-01

    We present near-infrared (NIR) broadband (0.80--2.42 $\\mu$m) spectroscopy of two low mass X-ray binaries: V404 Cyg and Cen X-4. One important parameter required in the determination of the mass of the compact objects in these systems is the binary inclination. We can determine the inclination by modeling the ellipsoidal modulations of the Roche-lobe filling donor star, but the contamination of the donor star light from other components of the binary, particularly the accretion disk, must be taken into account. To this end, we determined the donor star contribution to the infrared flux by comparing the spectra of V404 Cyg and Cen X-4 to those of various field K-stars of known spectral type. For V404 Cyg, we determined that the donor star has a spectral type of K3 III. We determined the fractional donor contribution to the NIR flux in the H- and K-bands as $0.98 \\pm .05$ and $0.97 \\pm .09$, respectively. We remodeled the H-band light curve from \\citet{sanwal1996} after correcting for the donor star contribution...

  16. On the observed mass distribution of compact stellar remnants in close binary systems and possible interpretations proposed for the time being

    Science.gov (United States)

    Sokolov, V. V.

    2016-06-01

    It turns out that accumulation of data during 40-years observational studies just emphasized a contrast between pulsars and black hole (BH) candidates in Galactic close binary stellar systems: (1) the mass spectrum of these degenerate stellar objects (or collapsars) shows an evident absence of objects with masses within the interval from 2M_(Sun) (with a first peak at about 1.4M_(Sun)) to approximately 6M_(Sun), (2) and in close binary stellar systems with a low-massive (about 0.6M_(Sun)) optical companion the most probable mass value (the peak in the mass distribution of BH candidates) turned out to be close to 6.7M_(Sun). This puzzle of discrete mass spectra of collapsars in close binary systems demands some solution and explanation in stellar evolution scenarios in connection with the core-collapse supernovae explosion mechanism and in context of a relation between supernovae and gamma-ray bursts. The collapsar strong field - an analogue of BH in General Relativity - is investigated in a totally non-metric, dynamical model of gravitational interaction theory, in which extremely compact objects of the masses M_Q approx.= 6.7M_(Sun) with a quark-gluon plasma bag of radius r^* = GM_Q/c^2 approx.= 10 km exist.

  17. Time-domain analysis of a dynamically tuned signal recycled interferometer for the detection of chirp gravitational waves from coalescing compact binaries

    CERN Document Server

    Simakov, D A

    2013-01-01

    In this article we study a particular method of detection of chirp signals from coalescing compact binary stars -- the so-called dynamical tuning, i.e. amplification of the signal via tracking of its instantaneous frequency by the tuning of the signal-recycled detector. A time-domain consideration developed for signal-recycled interferometers, in particular GEO\\,600, describes the signal and noise evolution in the non-stationary detector. Its non-stationarity is caused by motion of the signal recycling mirror, whose position defines the tuning of the detector. We prove that the shot noise from the dark port and optical losses remains white. The analysis of the transient effects shows that during the perfect tracking of the chirp frequency only transients from amplitude changes arise. The signal-to-noise-ratio gain, calculated in this paper, is $\\sim 16$ for a shot-noise limited detector and $\\sim 4$ for a detector with thermal noise.

  18. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    Science.gov (United States)

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  19. The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks

    Science.gov (United States)

    Repetto, Serena; Igoshev, Andrei P.; Nelemans, Gijs

    2017-01-01

    The aim of this work is to study the imprints that different models for black hole (BH) and neutron star (NS) formation have on the Galactic distribution of X-ray binaries (XRBs) which contain these objects. We find that the root mean square of the height above the Galactic plane of BH- and NS-XRBs is a powerful proxy to discriminate among different formation scenarios, and that binary evolution following the BH/NS formation does not significantly affect the Galactic distributions of the binaries. We find that a population model in which at least some BHs receive a (relatively) high natal kick fits the observed BH-XRBs best. For the NS case, we find that a high NK distribution, consistent with the one derived from the measurement of pulsar proper motion, is the most preferable. We also analyse the simple method we previously used to estimate the minimal peculiar velocity of an individual BH-XRB at birth. We find that this method may be less reliable in the bulge of the Galaxy for certain models of the Galactic potential, but that our estimate is excellent for most of the BH-XRBs.

  20. Advanced LIGO's ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections

    Science.gov (United States)

    Wade, Madeline; Creighton, Jolien D. E.; Ochsner, Evan; Nielsen, Alex B.

    2013-10-01

    We study the ability of the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem. The cosmic censorship conjecture, which is believed to be true in the theory of general relativity, limits the spin-to-mass-squared ratio of a Kerr black hole, χ≡j/m2≤1. The no-hair theorem, which is also believed to be true in the theory of general relativity, suggests a particular value for the tidal Love number of a nonrotating black hole (k2=0). Using the Fisher matrix formalism, we examine the measurability of the spin and tidal deformability of compact binary systems involving at least one putative black hole. Using parameter measurement errors and correlations obtained from the Fisher matrix, we determine the smallest detectable violation of bounds implied by the cosmic censorship conjecture and the no-hair theorem. We examine the effect of excluding unphysical areas of parameter space when determining the smallest detectable apparent violations, and we examine the effect of different post-Newtonian corrections to the amplitude of the compact binary coalescence gravitational waveform, as given in Arun et al. [Phys. Rev. D 79, 104023 (2009)]. In addition, we perform a brief study of how the recently calculated 3.0 pN and 3.5 pN spin-orbit corrections to the phase [Marsat et al., Classical Quantum Gravity 30, 055007 (2013)] affect spin and mass parameter measurability. We find that physical priors on the symmetric mass ratio and higher harmonics in the gravitational waveform could significantly affect the ability of aLIGO to investigate cosmic censorship and the no-hair theorem for certain systems.

  1. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    CERN Document Server

    Brorby, Matthew; Feng, Hua

    2015-01-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high mass X-ray binary (HMXB), with a luminosity of 1.3-23x10^38 erg s^-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7x10^40 erg s^-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high flux state are hard, best described by a disk plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes (StMBH) accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate mass black hole. Determining the spectral properties of HMXBs in BCDs has important im...

  2. Searching for gravitational-wave signals emitted by eccentric compact binaries using a non-eccentric template bank: implications for ground-based detectors

    CERN Document Server

    Cokelaer, T

    2009-01-01

    Most of the inspiralling compact binaries are expected to be circularized by the time their gravitational-wave signals enter the frequency band of ground-based detectors such as LIGO or VIRGO. However, it is not excluded that some of these binaries might still possess a significant eccentricity at a few tens of hertz. Despite this possibility, current search pipelines based on matched filtering techniques consider only non-eccentric templates. The effect of such an approximation on the loss of signal-to-noise ratio (SNR) has been investigated by Martel and Poisson (1999 Phys. Rev. D 60 124008) in the context of initial LIGO detector. They ascertained that non-eccentric templates will be successful at detecting eccentric signals. We revisit their work by incorporating current and future ground-based detectors and precisely quantify the exact loss of SNR. In order to be more faithful to an actual search, we maximized the SNR over a template bank, whose minimal match is set to 95%. PACS numbers: 02.70.-c, 07.05....

  3. Triplets of supermassive black holes: Astrophysics, Gravitational Waves and Detection

    CERN Document Server

    Amaro-Seoane, Pau; Hoffman, Loren; Benacquista, Matthew; Eichhorn, Christoph; Makino, Junichiro; Spurzem, Rainer

    2009-01-01

    Supermassive black holes (SMBHs) found in the centers of many galaxies have been recognized to play a fundamental active role in the cosmological structure formation process. In hierarchical formation scenarios, SMBHs are expected to form binaries following the merger of their host galaxies. If these binaries do not coalesce before the merger with a third galaxy, the formation of a black hole triple system is possible. Numerical simulations of the dynamics of triples within galaxy cores exhibit phases of very high eccentricity (as high as $e \\sim 0.99$). During these phases, intense bursts of gravitational radiation can be emitted at orbital periapsis. This produces a gravitational wave signal at frequencies substantially higher than the orbital frequency. The likelihood of detection of these bursts with pulsar timing and the Laser Interferometer Space Antenna ({\\it LISA}) is estimated using several population models of SMBHs with masses $\\gtrsim 10^7 {\\rm M_\\odot}$. Assuming a fraction of binaries $\\ge 0.1$ ...

  4. A relativistically broadened O VIII Lyalpha line in the ultra-compact X-ray binary 4U 0614+091

    CERN Document Server

    Madej, O K; Fabian, A C; Pinto, C; Verbunt, F; de Plaa, J

    2010-01-01

    Ultra-compact X-ray binaries consist of a neutron star or black hole that accretes material from a white dwarf-donor star. The ultra-compact nature is expressed in very short orbital periods of less than 1 hour. In the case of 4U 0614+091 oxygen-rich material from a CO or ONe white dwarf is flowing to the neutron star. This oxygen-rich disc can reflect X-rays emitted by the neutron star giving a characteristic emission spectrum. We have analyzed high-resolution RGS and broad band EPIC spectra of 4U 0614+091 obtained by the XMM-Newton satellite. We detect a broad emission feature at ~0.7 keV in both instruments, which cannot be explained by unusual abundances of oxygen and neon in the line of sight, as proposed before in the literature. We interpret this feature as O VIII Lyalpha emission caused by reflection of X-rays off highly ionized oxygen, in the strong gravitational field close to the neutron star.

  5. An Evolving Compact Jet in the Black Hole X-Ray Binary MAXI J1836-194

    OpenAIRE

    Russell, D.M.; et al; Markoff, S.; Homan, J.; Altamirano, D.

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the ...

  6. 1RXS J180408.9-342058: an ultra compact X-ray binary candidate with a transient jet

    CERN Document Server

    Baglio, M C; Campana, S; Goldoni, P; Masetti, N; Munoz-Darias, T; Patino-Alvarez, V; Chavushyan, V

    2016-01-01

    We present a detailed NIR/optical/UV study of the transient low mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, aimed at determining the nature of its companion star. We obtained three optical spectra at the 2.1 m San Pedro Martir Observatory telescope (Mexico). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source by using the EFOSC2 instrument mounted on the NTT. The optical spectrum of the source is almost featureless since the hydrogen and He I emissions lines, typically observed in LMXBs, are not detected. Similarly, carbon and oxygen lines are neither observed. We marginally detect the He II 4686 AA emission line, suggesting the presence of helium in the accretion disc. No significant optical polarisation level was observed. The lack of hydrogen and He I emission lines in the spe...

  7. An evolving compact jet in the black hole X-ray binary MAXI J1836-194

    CERN Document Server

    Russell, D M; Miller-Jones, J C A; O'Brien, K; Soria, R; Sivakoff, G R; Slaven-Blair, T; Lewis, F; Markoff, S; Homan, J; Altamirano, D; Curran, P A; Rupen, M P; Belloni, T M; Bel, M Cadolle; Casella, P; Corbel, S; Dhawan, V; Fender, R P; Gallo, E; Gandhi, P; Heinz, S; Koerding, E G; Krimm, H A; Maitra, D; Migliari, S; Remillard, R A; Sarazin, C L; Shahbaz, T; Tudose, V

    2013-01-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from ~ 10^11 to ~ 4 x 10^13 Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high energy cooling break, which is not seen directly), even though ...

  8. A search for kilonova emission associated with GRB 130603B: the smoking gun signature of a compact binary merger event

    CERN Document Server

    Tanvir, N R; Fruchter, A S; Hjorth, J; Wiersema, K; Tunnicliffe, R; Postigo, A de Ugarte

    2013-01-01

    The nature of short duration gamma-ray bursts (S-GRBs) represents one of the great unsolved mysteries of astrophysics today. While a favoured model for their origin is the merger of two compact objects (e.g., neutron stars) this lacks a smoking gun signature to date. However, these mergers are expected to create radioactive species, including heavy r-process elements, which should result in a faint, fast transient in the days following the burst, a so-called kilonova. Recent calculations suggest much energy comes out in the near-infrared in the days following the initial burst. Here we report a search for such an event accompanying GRB 130603B, the first S-GRB to have a firm redshift established directly from the afterglow. At z=0.36 the faint transient is expected to peak a few days after the burst at an H-band magnitude of ~25. Observing with the Hubble Space Telescope (HST) nine days post-burst, we indeed find a source at the location of the burst, with these properties, although we cannot yet say whether ...

  9. An Evolving Compact Jet in the Black Hole X-Ray Binary MAXI J1836-194

    Science.gov (United States)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; O'Brien, K.; Soria, R.; Sivakoff, G. R.; Slaven-Blair, T.; Lewis, F.; Markoff, S.; Homan, J.; Altamirano, D.; Curran, P. A.; Rupen, M. P.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Dhawan, V.; Fender, R. P.; Gallo, E.; Gandhi, P.; Heinz, S.; Körding, E. G.; Krimm, H. A.; Maitra, D.; Migliari, S.; Remillard, R. A.; Sarazin, C. L.; Shahbaz, T.; Tudose, V.

    2013-05-01

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from ~1011 to ~4 × 1013 Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process. Based on observations collected at the European Southern Observatory, Chile, under ESO Program IDs 087.D-0914 and 089.D-0970.

  10. AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836-194

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D. M. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Russell, T. D.; Miller-Jones, J. C. A.; Soria, R.; Slaven-Blair, T.; Curran, P. A. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); O' Brien, K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Sivakoff, G. R. [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1 (Canada); Lewis, F. [Faulkes Telescope Project, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); Markoff, S.; Altamirano, D. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Rupen, M. P.; Dhawan, V. [NRAO Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Belloni, T. M. [INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Cadolle Bel, M. [European Space Agency, European Space Astronomy Centre, ISOC, Villanueva de la Canada, Madrid (Spain); Casella, P. [INAF - Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Corbel, S. [Laboratoire AIM, UMR 7158, CEA/DSM, CNRS, Universite Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Fender, R. P. [School of Physics and Astronomy, University of Southampton, Southampton, Hampshire SO17 1BJ (United Kingdom); Gallo, E., E-mail: russell@iac.es [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); and others

    2013-05-10

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from {approx}10{sup 11} to {approx}4 Multiplication-Sign 10{sup 13} Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  11. Soft X-ray Extended Emissions of Short Gamma-Ray Bursts as Electromagnetic Counterparts of Compact Binary Mergers; Possible Origin and Detectability

    CERN Document Server

    Nakamura, Takashi; Nakauchi, Daisuke; Suwa, Yudai; Sakamoto, Takanori; Kawai, Nobuyuki

    2013-01-01

    We investigate the possible origin of extended emissions (EE) of short gamma-ray bursts (SGRBs) with an isotropic energy of $\\sim 10^{50\\mbox{-}51} \\ \\rm erg$ and a duration of $\\sim 100 \\ \\rm s$, based on the compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass $\\sim 0.1 \\ M_\\odot$ around BHs formed after the mergers, and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to $\\sim 10^{53} \\ \\rm erg$ can be extracted with a time scale of $\\sim 100 \\ \\rm s$ with a disk viscosity parameter of $\\alpha \\sim 0.01$. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass $M \\sim 10^{-(2\\mbox{-}4)} \\ M_\\odot$, and form a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in soft X-ray band ($1\\mbox{-}10 \\ \\rm keV$) for $M \\sim 10^{-2} M_\\odot$ p...

  12. TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries

    CERN Document Server

    Agathos, Michalis; Li, Tjonnie G F; Broeck, Chris Van Den; Veitch, John; Vitale, Salvatore

    2013-01-01

    The direct detection of gravitational waves with upcoming second-generation gravitational wave detectors such as Advanced LIGO and Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We present a data analysis pipeline called TIGER (Test Infrastructure for GEneral Relativity), which is designed to utilize detections of compact binary coalescences to test GR in this regime. TIGER is a model-independent test of GR itself, in that it is not necessary to compare with any specific alternative theory. It performs Bayesian inference on two hypotheses: the GR hypothesis $\\mathcal{H}_{\\rm GR}$, and $\\mathcal{H}_{\\rm modGR}$, which states that one or more of the post-Newtonian coefficients in the waveform are not as predicted by GR. By the use of multiple sub-hypotheses of $\\mathcal{H}_{\\rm modGR}$, in each of which a different number of parameterized deformations of the GR phase are allowed, an arbitrarily large number of 'testing parameters' can be used with...

  13. Detection of a 1258 Hz high-amplitude kilohertz quasi-periodic oscillation in the ultra-compact X-ray binary 1A 1246-588

    CERN Document Server

    Jonker, P G; Méndez, M; Van der Klis, M

    2007-01-01

    We have observed the ultra-compact low-mass X-ray binary (LMXB) 1A 1246-588 with the Rossi X-ray Timing Explorer (RXTE). In this manuscript we report the discovery of a kilohertz quasi-periodic oscillation (QPO) in 1A 1246-588. The kilohertz QPO was only detected when the source was in a soft high-flux state reminiscent of the lower banana branch in atoll sources. Only one kilohertz QPO peak is detected at a relatively high frequency of 1258+-2 Hz and at a single trial significance of more than 7 sigma. Kilohertz QPOs with a higher frequency have only been found on two occasions in 4U 0614+09. Furthermore, the frequency is higher than that found for the lower kilohertz QPO in any source, strongly suggesting that the QPO is the upper of the kilohertz QPO pair often found in LMXBs. The full-width at half maximum is 25+-4 Hz, making the coherence the highest found for an upper kilohertz QPO. From a distance estimate of ~6 kpc from a radius expansion burst we derive that 1A 1246-588 is at a persistent flux of ~0....

  14. Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors

    CERN Document Server

    Luan, Jing; Wen, Linqing; Chen, Yanbei

    2011-01-01

    Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation before the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, ou...

  15. Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The non-spinning case

    CERN Document Server

    Arun, K G; Sathyaprakash, B S; Sundararajan, P A; Iyer, Bala R; Sundararajan, Pranesh A

    2004-01-01

    (Abridged) We revisit the problem of parameter estimation of gravitational-wave chirp signals from inspiralling non-spinning compact binaries in the light of the recent extension of the post-Newtonian (PN) phasing formula to order $(v/c)^7$ beyond the leading Newtonian order. We study in detail the implications of higher post-Newtonian orders from 1PN up to 3.5PN in steps of 0.5PN ($\\sim v/c$), and examine their convergence. In both initial and advanced detectors the estimation of the chirp mass (${\\cal M}$) and symmetric mass ratio ($\\eta$) improve at higher PN orders but oscillate with every half-a-PN order. We compare parameter estimation in different detectors and assess their relative performance in two different ways: at a {\\it fixed SNR,} with the aim of understanding how the bandwidth improves parameter estimation, and for a {\\it fixed source}, to gauge the importance of sensitivity. Errors in parameter estimation at a fixed SNR are smaller for VIRGO than for both initial and advanced LIGO. However, f...

  16. Discovery of a broad O VIII Ly alpha line in the ultra-compact X-ray binary 4U 1543-624

    CERN Document Server

    Madej, O K

    2010-01-01

    We report the discovery of a broad emission feature at ~0.7 keV in the spectra of the ultra-compact X-ray binary 4U 1543-624, obtained with the high-resolution spectrographs of the XMM-Newton and Chandra satellites. We confirm the presence of the feature in the broad band MOS2 spectrum of the source. As suggested before in the literature, the donor star in this source is a CO or ONe white dwarf, which transfers oxygen-rich material to the accretor, conceivably a neutron star. The X-rays reprocessed in this oxygen-rich accretion disc could give a reflection spectrum with O VIII Ly alpha as the most prominent emission line. Apart from the feature at ~0.7 keV we confirm the possible presence of a weak emission feature at ~6.6 keV, which was reported in the literature for this data set. We interpret the feature at ~0.7 keV and ~6.6 keV as O VIII Ly alpha and Fe K alpha emission respectively, caused by X-rays reflected off the accretion disc in the strong gravitational field close to the accretor.

  17. Advanced LIGO's ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections

    CERN Document Server

    Wade, Madeline; Ochsner, Evan; Nielsen, Alex B

    2013-01-01

    We study the ability of the advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem. The cosmic censorship conjecture, which is believed to be true in the theory of general relativity, limits the spin-to-mass-squared ratio of a Kerr black hole. The no-hair theorem, which is also believed to be true in the theory of general relativity, suggests a particular value for the tidal Love number of a non-rotating black hole. Using the Fisher matrix formalism, we examine the measurability of the spin and tidal deformability of compact binary systems involving at least one putative black hole. Using parameter measurement errors and correlations obtained from the Fisher matrix, we determine the smallest detectable violation of bounds implied by the cosmic censorship conjecture and the no-hair theorem. We examine the effect of excluding unphysical areas of parameter space when determining the smallest detectable apparen...

  18. Can Superconducting Cosmic Strings Piercing Seed Black Holes Generate Supermassive Black Holes in the Early Universe?

    CERN Document Server

    Lake, Matthew J

    2015-01-01

    The discovery of a large number of supermassive black holes at redshifts $z> 6$, when the Universe was only nine hundred million years old, has raised the fundamental question of how such massive compact objects could form in a (cosmologically) short time interval. Each of the proposed standard scenarios for black hole formation, involving rapid accretion of seed black holes, or black hole mergers, faces severe theoretical difficulties in explaining the short time formation of supermassive objects. In the present Letter, we propose an alternative scenario for the formation of supermassive black holes in the early Universe in which energy transfer from superconducting cosmic strings, piercing small seed black holes, is the main physical process leading to rapid mass increase. The increase in mass of a primordial seed black hole pierced by two antipodal strings is estimated and it is shown that this increases linearly in time. Due to the high energy transfer rate from the cosmic strings, we find that supermassi...

  19. A Nearly Naked Supermassive Black Hole

    Science.gov (United States)

    Condon, J. J.; Darling, Jeremy; Kovalev, Y. Y.; Petrov, L.

    2017-01-01

    During a systematic search for supermassive black holes (SMBHs) not in galactic nuclei, we identified the compact, symmetric radio source B3 1715+425 with an emission-line galaxy offset ≈ 8.5 {kpc} from the nucleus of the brightest cluster galaxy (BCG) in the redshift z = 0.1754 cluster ZwCl 8193. B3 1715+425 is too bright (brightness temperature {T}{{b}}∼ 3× {10}10 {{K}} at observing frequency ν =7.6 {GHz}) and too luminous (1.4 GHz luminosity {L}1.4{GHz}∼ {10}25 {{W}} {{Hz}}-1) to be powered by anything but an SMBH, but its host galaxy is much smaller (∼ 0.9 {kpc}× 0.6 {kpc} full width between half-maximum points) and optically fainter (R-band absolute magnitude {M}{{r}}≈ -18.2) than any other radio galaxy. Its high radial velocity {v}{{r}}≈ 1860 {km} {{{s}}}-1 relative to the BCG, continuous ionized wake extending back to the BCG nucleus, and surrounding debris indicate that the radio galaxy was tidally shredded passing through the BCG core, leaving a nearly naked SMBH fleeing from the BCG with space velocity v≳ 2000 {km} {{{s}}}-1. The radio galaxy has mass M≲ 6× {10}9 {M}ȯ and infrared luminosity {L}{IR}∼ 3× {10}11 {L}ȯ close to its dust Eddington limit, so it is vulnerable to further mass loss from radiative feedback.

  20. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    CERN Document Server

    Giacomazzo, Bruno; Miller, M Coleman; Reynolds, Christopher S; van Meter, James R

    2012-01-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe a total amplification of the magnetic field of ~2 orders of magnitude which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10^4 larger than comparable calculations don...

  1. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    Science.gov (United States)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-06-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  2. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    Science.gov (United States)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  3. Tidal disruption of asteroids by supermassive black holes

    Directory of Open Access Journals (Sweden)

    Gomboc A.

    2012-12-01

    Full Text Available The compact radio source Sgr A* at the centre of our Galaxy harbours a super-massive black hole, and is therefore the nearest laboratory for testing the super-massive black hole astrophysics and environment. Since it is not an active galactic nucleus, it also offers the possibility of observing the capture of low-mass objects, such as comets or asteroids, that may orbit the central black hole. In this paper we discuss conditions for tidal disruption of low-mass objects and predictions of the appearance and light curve of such events, as well as their relevance for the X-ray and infra-red flares detected in Sgr A*. The modelled light curves of such tidal disruption events bear marks of the strong gravitational field: tidal squeezing and elongation of the object, gravitational lensing, aberration of light, and Doppler effects. Finally, we show that this model is able to reproduce and fit X-ray flares.

  4. Multiple supermassive black hole systems: SKA's future leading role

    CERN Document Server

    Deane, Roger; Jarvis, Matt; Coriat, Mickäel; Bernardi, Gianni; Frey, Sandor; Heywood, Ian; Klöckner, Hans-Rainer

    2015-01-01

    Galaxies and supermassive black holes (SMBHs) are believed to evolve through a process of hierarchical merging and accretion. Through this paradigm, multiple SMBH systems are expected to be relatively common in the Universe. However, to date there are poor observational constraints on multiple SMBHs systems with separations comparable to a SMBH gravitational sphere of influence (<< 1 kpc). In this chapter, we discuss how deep continuum observations with the SKA will make leading contributions towards understanding how multiple black hole systems impact galaxy evolution. In addition, these observations will provide constraints on and an understanding of stochastic gravitational wave background detections in the pulsar timing array sensitivity band (nanoHz -microHz). We also discuss how targets for pointed gravitational wave experiments (that cannot be resolved by VLBI) could potentially be found using the large-scale radio-jet morphology, which can be modulated by the presence of a close-pair binary SMBH...

  5. Supermassive Black Holes in BCGs

    CERN Document Server

    Bontá, E D; Miralda-Escudé, J; Coccato, L; Corsini, E M; Pizzella, A

    2006-01-01

    We observed a sample of three Brightest Cluster Galaxies (BCGs), Abell 1836-BCG, Abell 2052-BCG, and Abell 3565-BCG, with the Advanced Camera for Surveys (ACS) and the Imaging Spectrograph (STIS) on board the Space Telescope. For each target galaxy we obtained high-resolution spectroscopy of the Halpha and [NII]lambda6583 emission lines at three slit positions, to measure the central ionized-gas kinematics. ACS images in three different filters (F435W, F625W, and FR656N) have been used to determine the optical depth of the dust, stellar mass distribution near the nucleus, and intensity map. We present supermassive black hole (SBH) mass estimates for two galaxies which show regular rotation curves and strong central velocity gradients, and an upper limit on the SBH mass of the third one. For the SBHs of Abell 1836-BCG and Abell 3565-BCG, we derived M_bh=4.8(-0.7,+0.8)10**9 M_sun and M_bh=1.3(-0.4,+0.3)10**9 M_sun at 1 sigma confidence level, respectively. For the SBH of Abell 2052-BCG, we found M_bh < 7.3 1...

  6. Supermassive dark-matter Q-balls in galactic centers?

    Energy Technology Data Exchange (ETDEWEB)

    Troitsky, Sergey [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation)

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs were seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.

  7. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  8. Supermassive screwed cosmic string in dilaton gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, V B [Departamento de Fisica, Universidade Federal da ParaIba, 58059-970, Joao Pessoa, PB (Brazil); Ferreira, Cristine N [Nucleo de Fisica, Centro Federal de Educacao Tecnologica de Campos, Rua Dr Siqueira, 273-Parque Dom Bosco, 28030-130, Campos dos Goytacazes, RJ (Brazil); Cuesta, H J Mosquera [Instituto de Cosmologia, Relatividade e AstrofIsica (ICRA-BR), Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Urca 22290-180, Rio de Janeiro, RJ (Brazil)

    2006-06-21

    The early universe might have undergone phase transitions at energy scales much higher than the one corresponding to the grand unified theories (GUT) scales. At these higher energy scales, the transition at which gravity separated from all other interactions, the so-called Planck era, more massive strings called supermassive cosmic strings could have been produced, with energy of about 10{sup 19} GeV. The dynamics of strings formed with this energy scale cannot be described by means of the weak-field approximation, as in the standard procedure for ordinary GUT cosmic strings. As suggested by string theories, at this extreme energy, gravity may be transmitted by some kind of scalar field (usually called the dilaton) in addition to the tensor field of Einstein's theory of gravity. It is then permissible to tackle the issue regarding the dynamics of supermassive cosmic strings within this framework. With this aim, we obtain the gravitational field of a supermassive screwed cosmic string in a scalar-tensor theory of gravity. We show that for the supermassive configuration, exact solutions of scalar-tensor screwed cosmic strings can be found in connection with the Bogomol'nyi limit. We show that the generalization of Bogomol'nyi arguments to the Brans-Dicke theory is possible when torsion is present and we obtain an exact solution in this supermassive regime, with the dilaton solution obtained by consistency with internal constraints.

  9. The formation of galaxy stellar cores by the hierarchical merging of supermassive black holes

    CERN Document Server

    Volonteri, M; Haardt, F; Volonteri, Marta; Madau, Piero

    2003-01-01

    We investigate a hierarchical structure formation scenario in which galaxy stellar cores are created from the binding energy liberated by shrinking supermassive black hole (SMBH) binaries. The binary orbital decay heats the surrounding stars, eroding a preexisting 1/r^2 stellar cusp. We follow the merger history of dark matter halos and associated SMBHs via cosmological Monte Carlo realizations of the merger hierarchy from early times to the present in a LCDM cosmology. Massive black holes get incorporated through a series of mergers into larger and larger halos, sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, and form a binary system. Stellar dynamical processes drive the binary to harden and eventually coalesce. A simple scheme is applied in which the loss cone is constantly refilled and a constant density core forms due to the ejection of stellar mass. We find that a model in which the effect of the hierarchy of SMBH interactions i...

  10. Super-Massive Neutron Stars

    CERN Document Server

    Freire, Paulo C C

    2007-01-01

    We present here the results of Arecibo timing of PSR B1516+02B, a 7.95-ms pulsar in a binary system with a ~0.17 solar mass companion and an orbital period of 6.85 days located in the globular cluster M5. The eccentricity of the orbit (e = 0.14) has allowed a measurement of the rate of advance of periastron: (0.0136 +/- 0.0007) degrees per year. It is very likely that the periastron advance is due to the effects of general relativity; the total mass of the binary system is (2.14 +/-0.16) solar masses. The small measured mass function implies, in a statistical sense, that a very large fraction of this total mass is contained in the pulsar: (1.94+0.17 -0.19) solar masses (1-sigma); there is a 5% probability that the mass of this object is below 1.59 solar masses. With the possible exception of PSR J1748-2021B, this is the largest neutron star mass measured to date. When combined with similar measurements made previously for Terzan 5 I and J, we can exclude, in a statistical sense, the ``soft'' equations of stat...

  11. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    OpenAIRE

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R. P.; Nelemans, G; Russell, D. M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is Fnu~nualpha). Given the ultracompact nature of the binary system, we exclude the possibility that either the companion star or the accretion disk can be the origin of the observed emission. These ...

  12. Supermassive Black Holes and Galaxy Formation

    OpenAIRE

    Silk, Joseph

    2001-01-01

    The formation of supermassive black holes (SMBH) is intimately related to galaxy formation, although precisely how remains a mystery. I speculate that formation of, and feedback from, SMBH may alleviate problems that have arisen in our understanding of the cores of dark halos of galaxies.

  13. Making Supermassive Black Holes Spin

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    Where does the angular momentum come from that causes supermassive black holes (SMBHs) to spin on their axes and launch powerful jets? A new study of nearby SMBHs may help to answer this question.High-mass SMBHs are thought to form when two galaxies collide and the SMBHs at their centers merge. [NASA/Hubble Heritage Team (STScI)]High- vs. Low-Mass MonstersObservational evidence suggests a dichotomy between low-mass SMBHs (those with 106-7 M) and high-mass ones (those with 108-10 M). High-mass SMBHs are thought to form via the merger of two smaller black holes, and the final black hole is likely spun up by the rotational dynamics of the merger. But what spins up low-mass SMBHs, which are thought to build up very gradually via accretion?A team of scientists led by Jing Wang (National Astronomical Observatories, Chinese Academy of Sciences) have attempted to address this puzzle by examining the properties of the galaxies hosting low-mass SMBHs.A Sample of Neighboring SMBHsWang and collaborators began by constructing a sample of radio-selected nearby Seyfert 2 galaxies: those galaxies in which the stellar population and morphology of the host galaxy are visible to us, instead of being overwhelmed by continuum emission from the galaxys active nucleus.An example of a galaxy with a concentrated, classical bulge (M87; top) and a one with a disk-like pseudo bulge (Triangulum Galaxy; bottom). The authors find that for galaxies hosting low-mass SMBHs, those with more disk-like bulges appear to have more powerful radio jets. [Top: NASA/Hubble Heritage Team (STScI), Bottom: Hewholooks]From this sample, the authors then selected 31 galaxies that have low-mass SMBHs at their centers, as measured using the surrounding stellar dynamics. Wang and collaborators cataloged radio information revealing properties of the powerful jets launched by the SMBHs, and they analyzed the host galaxies properties by modeling their brightness profiles.Spin-Up From Accreting GasBy examining this

  14. Evolution of Supermassive Black Holes

    Science.gov (United States)

    Filloux, Charline; de Freitas Pacheco, J. A.; Durier, Fabrice; Silk, Joseph

    2010-05-01

    Cosmological simulations describing both the evolution of supermassive black holes and their host galaxies were performed by using the tree PM-SPH code GADGET-2 (Springel 2005). Physical mechanisms affecting the dynamics and the physical conditions of the gas (ionization and cooling processes, local heating by stars, injection of mechanical energy by supernovae, chemical enrichment) were introduced in the present version of the code (Filloux 2009). Black holes in a state of accretion (AGNs) also inject mechanical energy in the surrounding medium, contributing for quenching the star formation activity. In all simulations a ΛCDM cosmology was adopted (h = 0.7, ΩΛ=0.7, Ωm=0.3, Ωb=0.046 and σ8=0.9). Simulations were performed in a volume with a side of 50h-1 Mpc, starting at z = 50 and through the present time (z = 0). For low and intermediate resolution runs, the initial gas mass particles are respectively 5.35× 108 M⊙ and 3.09×108 M⊙. Black holes (BHs) are represented by collisionless particles and seeds of 100 M⊙ were introduced in density peaks at z = 15, growing either by accretion or coalescence. The accretion rate from the “disk mode” is based on a turbulent viscous thin disk model whereas in the “spherical mode” the rate is given by the Bondi-Hoyle formula. When accreting matter, jets, modeled by conical regions perpendicular to the disk plane, inject kinetic energy into the surrounding medium. Two models were tested: in the first, the injected energy rate is about 10% of the gravitational energy rate released in the accretion process while in the second, the injected energy rate is based on the Blandford & Znajek (1977) mechanism. All simulations give, at z = 0, similar black hole mass function but they overestimate slightly the BH density for masses above ~ 108 M⊙. The resulting BH density in this mass range is affected by feedback processes since they control the amount of gas available for accretion. The present simulations are not

  15. CONSOLIDATION AND COMPACTION OF POWDER MIXTURES .1. BINARY-MIXTURES OF SAME PARTICLE-SIZE FRACTIONS OF DIFFERENT TYPES OF CRYSTALLINE LACTOSE

    NARCIS (Netherlands)

    RIEPMA, KA; LERK, CF; DEBOER, AH; BOLHUIS, GK; KUSSENDRAGER, KD

    1990-01-01

    Binary powder mixtures of four different types of crystalline lactose: alpha-lactose monohydrate, anhydrous alpha-lactose, roller-dried beta-lactose and crystalline beta-lactose, were compressed into tablets. The results showed a proportional intercorrelation of the crushing strength and internal sp

  16. Spitzer Reveals Infrared Optically-Thin Synchrotron Emission from the Compact Jet of the Neutron Star X-Ray Binary 4U 0614+091

    NARCIS (Netherlands)

    Migliari, S.; Tomsick, J.A.; Maccarone, T.J.; Gallo, E.; Fender, R.P.; Nelemans, G.; Russell, D.M.

    2006-01-01

    Spitzer observations of the neutron star (ultracompact) X-ray binary (XRB) 4U 0614+091 with the Infrared Array Camera reveal emission of nonthermal origin in the range 3.5-8 mum. The mid-infrared spectrum is well fit by a power law with spectral index of alpha=-0.57+/-0.04 (where the flux density is

  17. Merging a Pair of Supermassive Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2016-10-01

    When galaxies merge, the supermassive black holes (SMBHs) at the galaxies centers are thought to coalesce, forming a new, larger black hole. But can this merger process take place on timescales short enough that we could actually observe it? Results from a new simulation suggests that it can!When Galaxies CollideThese stills demonstrate the time evolution of the galaxy merger after the beginning of the authors simulation (starting from z=3.6). The red and blue dots mark the positions of the SMBHs. [Adapted from Khan et al. 2016]At present, its not well understood how the merger of two SMBHs proceeds from the merger of their host galaxies. Whats more, there are concerns about whether the SMBHs can coalesce on reasonable timescales; in many simulations and models, the inspiral of these behemoths stalls out when they are about a parsec apart, in whats known as the final parsec problem.Why are these mergers poorly understood? Modeling them from the initial interactions of the host galaxies all the way down to the final coalescence of their SMBHs in a burst of gravitational waves is notoriously complicated, due to the enormous range of scales and different processes that must be accounted for.But in a recent study, a team of scientists led by Fazeel Khan (Institute of Space Technology in Pakistan) has presented a simulation that successfully manages to track the entire merger making it the first multi-scale simulation to model the complete evolution of an SMBH binary that forms within a cosmological galaxy merger.Stages of aSimulationKhan and collaborators tackled the challenges of this simulation by using a multi-tiered approach.Beginning with the output of a cosmological hydrodynamical simulation, the authors select a merger of two typical massive galaxies at z=3.6 and use this as the starting point for their simulation. They increase the resolution and add in two supermassive black holes, one at the center of each galaxy.They then continue to evolve the galaxies

  18. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  19. Discovery of a 2 Kpc Binary Quasar

    OpenAIRE

    Shields, G. A.; Junkkarinen, V.; Beaver, E. A.; Burbidge, E. M.; Cohen, R. D.; Hamann, F.; Lyons, R. W.

    2001-01-01

    LBQS 0103$-$2753 is a binary quasar with a separation of only 0.3 arcsec. The projected spacing of 2.3 kpc at the distance of the source (z = 0.848) is much smaller than that of any other known binary QSO. The binary nature is demonstrated by the very different spectra of the two components and the low probability of a chance pairing. LBQS 0103$-$2753 presumably is a galaxy merger with a small physical separation between the two supermassive black holes. Such objects may provide important con...

  20. Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Coles, W A; Hobbs, G; Keith, M J; Manchester, R N; Wyithe, J S B; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Khoo, J; Levin, Y; Osłowski, S; Sarkissian, J M; van Straten, W; Verbiest, J P W; Wang, J-B

    2013-10-18

    The formation and growth processes of supermassive black holes (SMBHs) are not well constrained. SMBH population models, however, provide specific predictions for the properties of the gravitational-wave background (GWB) from binary SMBHs in merging galaxies throughout the universe. Using observations from the Parkes Pulsar Timing Array, we constrain the fractional GWB energy density (Ω(GW)) with 95% confidence to be Ω(GW)(H0/73 kilometers per second per megaparsec)(2) formation model implemented in the Millennium Simulation Project is inconsistent with our limit with 50% probability.

  1. Evolution of Binaries in Dense Stellar Systems

    CERN Document Server

    Ivanova, Natalia

    2011-01-01

    In contrast to the field, the binaries in dense stellar systems are frequently not primordial, and could be either dynamically formed or significantly altered from their primordial states. Destruction and formation of binaries occur in parallel all the time. The destruction, which constantly removes soft binaries from a binary pool, works as an energy sink and could be a reason for cluster entering the binary-burning phase. The true binary fraction is greater than observed, as a result, the observable binary fraction evolves differently from the predictions. Combined measurements of binary fractions in globular clusters suggest that most of the clusters are still core-contracting. The formation, on other hand, affects most the more evolutionary advanced stars, which significantly enhances the population of X-ray sources in globular clusters. The formation of binaries with a compact objects proceeds mainly through physical collisions, binary-binary and single-binary encounters; however, it is the dynamical for...

  2. Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays

    CERN Document Server

    Ravi, V; Shannon, R M; Hobbs, G

    2014-01-01

    [Abridged] Large-area sky surveys show that massive galaxies undergo at least one major merger in a Hubble time. If all massive galaxies host central supermassive black holes (SMBHs), as is inferred from observations in the local Universe, it is likely that there is a population of binary SMBHs at the centres of galaxy merger remnants. Numerous authors have proposed pulsar timing array (PTA) experiments to measure the gravitational wave (GW) emission from binary SMBHs. In this paper, using the latest observational estimates for a range of galaxy properties and scaling relations, we predict the amplitude of the GW background generated by the binary SMBH population. We also predict counts of individual binary SMBH GW sources. We assume that all binary SMBHs are in circular orbits evolving under GW emission alone, which is likely to be correct for binaries emitting GWs at frequencies >~10^-8 Hz. Our fiducial model results in a characteristic strain amplitude of the GW background of A_yr=1.2(+0.6-0.3)*10^-15 at a...

  3. Hunting for Infrared Signatures of Supermassive Black Hole Activity in Dwarf Galaxies

    Science.gov (United States)

    Hainline, Kevin; Reines, Amy; Greene, Jenny; Stern, Daniel

    2016-08-01

    In order to explore the origin of the relationship between the growth of a galaxy and its central supermassive black hole, evidence must be found for black holes in galaxies at a wide range in masses. Searching for supermassive black holes in dwarf galaxies is especially important as these objects have less complicated merger histories, and they may host black holes that are similar to early proposed ``seed'' black holes. However, this selection is complicated by the fact that star formation in these dwarf galaxies can often mask the optical signatures of supermassive black hole growth and active galactic nucleus (AGN) activity in these objects. The all-sky infrared coverage offered by the Wide-field Infrared Survey Explorer (WISE) has been used to great success to select AGNs in more massive galaxies, but great care must be used when using infrared selection techniques on samples of dwarf galaxies. In particular, compact, highly star-forming dwarf galaxies can have infrared colors that may lead them to be erroneously selected as AGNs. In this talk, I will discuss recent work exploring infrared selection of AGN candidates in dwarf galaxies, and present a set of potential IR dwarf-galaxy AGN candidates. I will also outline the importance in these results with respect to future selection of AGNs in low-metallicity galaxies at high-redshift.

  4. The general relativistic instability supernova of a supermassive population III star

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung; Woosley, Stan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Heger, Alexander [Monash Centre for Astrophysics, Monash University, Victoria 3800 (Australia); Almgren, Ann [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Whalen, Daniel J. [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johnson, Jarrett L., E-mail: kchen@ucolick.org [XTD-PRI, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-08-01

    The formation of supermassive Population III stars with masses ≳10,000 M{sub ☉} in primeval galaxies in strong ultraviolet backgrounds at z ∼ 15 may be the most viable pathway to the formation of supermassive black holes by z ∼ 7. Most of these stars are expected to live for short times and then directly collapse to black holes, with little or no mass loss over their lives. However, we have now discovered that non-rotating primordial stars with masses close to 55,000 M{sub ☉} can instead die as highly energetic thermonuclear supernovae powered by explosive helium burning, releasing up to 10{sup 55} erg, or about 10,000 times the energy of a Type Ia supernova. The explosion is triggered by the general relativistic contribution of thermal photons to gravity in the core of the star, which causes the core to contract and explosively burn. The energy release completely unbinds the star, leaving no compact remnant, and about half of the mass of the star is ejected into the early cosmos in the form of heavy elements. The explosion would be visible in the near infrared at z ≲ 20 to Euclid and the Wide-Field Infrared Survey Telescope, perhaps signaling the birth of supermassive black hole seeds and the first quasars.

  5. Formation of supermassive black holes through fragmentation of torodial supermassive stars.

    Science.gov (United States)

    Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D; Schnetter, Erik; Müller, Ewald

    2006-04-28

    We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

  6. Recoiling supermassive black holes: a search in the nearby universe

    Energy Technology Data Exchange (ETDEWEB)

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D. [School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623-5603 (United States); Marconi, A. [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Largo E. Fermi 2, I-50125, Firenze (Italy); Capetti, A. [INAF-Osservatorio Astronomico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Batcheldor, D., E-mail: dxl1840@g.rit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  7. The interaction between supermassive black holes and globular clusters

    CERN Document Server

    Spera, Mario; Capuzzo-Dolcetta, Roberto

    2015-01-01

    Almost all galaxies along the Hubble sequence host a compact massive object (CMO) in their center. The CMO can be either a supermassive black hole (SMBH) or a very dense stellar cluster, also known as nuclear star cluster (NSC). Generally, heavier galaxies (mass >~ 10^{11} solar masses) host a central SMBH while lighter show a central NSC. Intermediate mass hosts, instead, contain both a NSC and a SMBH. One possible formation mechanisms of a NSC relies on the dry-merger (migratory) scenario, in which globular clusters (GCs) decay toward the center of the host galaxy and merge. In this framework, the absence of NSCs in high-mass galaxies can be imputed to destruction of the infalling GCs by the intense tidal field of the central SMBH. In this work, we report preliminary results of N-body simulations performed using our high-resolution, direct, code HiGPUs, to investigate the effects of a central SMBH on a single GC orbiting around it. By varying either the mass of the SMBH and the mass of the host galaxy, we d...

  8. The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation

    CERN Document Server

    Volonteri, M; Madau, A F P; Volonteri, Marta; Haardt, Francesco

    2003-01-01

    We assess models for the assembly of supermassive black holes (SMBHs) at the center of galaxies that trace their hierarchical build-up far up in the dark halo `merger tree'. We assume that the first `seed' black holes (BHs) formed in (mini)halos collapsing at z=20 from high-sigma density fluctuations. As these pregalactic holes become incorporated through a series of mergers into larger and larger halos, they sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, form a binary system, and eventually coalesce. The merger history of dark matter halos and associated BHs is followed by cosmological Monte Carlo realizations of the merger hierarchy. A simple model, where quasar activity is driven by major mergers and SMBHs accrete at the Eddington rate a mass that scales with the fifth power of the velocity dispersion, is shown to reproduce the optical LF of quasars in the redshift range 1Binary and triple BH interactions are followed ...

  9. GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States); Baker, John G.; Van Meter, James R. [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 21114 (United States); Coleman Miller, M.; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-06-10

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of {approx}2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10{sup 4} larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  10. Tearing up a misaligned accretion disc with a binary companion

    CERN Document Server

    Doğan, Suzan; King, Andrew; Price, Daniel J

    2015-01-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X--ray binaries.

  11. Joint Formation of Supermassive Black Holes and Galaxies

    OpenAIRE

    Martin G. Haehnelt(IoA/KICC, Cambridge)

    2003-01-01

    The tight correlation between black hole mass and velocity dispersion of galactic bulges is strong evidence that the formation of galaxies and supermassive black holes are closely linked. I review the modeling of the joint formation of galaxies and their central supermassive black holes in the context of the hierarchical structure formation paradigm.

  12. The Final Fates of Accreting Supermassive Stars

    CERN Document Server

    Umeda, Hideyuki; Omukai, Kazuyuki; Yoshida, Naoki

    2016-01-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $\\gtrsim 10^5~M_\\odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $\\dot M \\lesssim 0.1~M_\\odot~{\\rm yr}^{-1}$. With $\\dot{M} \\simeq 0.3 - 1~M_\\odot~{\\rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage ...

  13. Supermassive Black Holes in the Early Universe

    CERN Document Server

    Melia, Fulvio

    2015-01-01

    The recent discovery of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.3 has exacerbated the time compression problem implied by the appearance of supermassive black holes only ~900 Myr after the big bang, and only ~500 Myr beyond the formation of Pop II and III stars. Aside from heralding the onset of cosmic reionization, these first and second generation stars could have reasonably produced the ~5-20 solar-mass seeds that eventually grew into z~6-7 quasars. But this process would have taken ~900 Myr, a timeline that appears to be at odds with the predictions of LCDM without an anomalously high accretion rate, or some exotic creation of ~10^5 solar-mass seeds. There is no evidence of either of these happening in the local universe. In this paper, we show that a much simpler, more elegant solution to the supermassive black hole anomaly is instead to view this process using the age-redshift relation predicted by the R_h=ct Universe, an FRW cosmology with zero active mass. In this context, cosm...

  14. Star formation around supermassive black holes.

    Science.gov (United States)

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.

  15. Boosted Tidal Disruption by Massive Black Hole Binaries During Galaxy Mergers from the View of N-Body Simulation

    Science.gov (United States)

    Li, Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer

    2017-01-01

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N-body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N-body simulation results to reality, and the implications of our results to observations.

  16. Rotational mixing in close binaries

    CERN Document Server

    de Mink, S E; Langer, N; Yoon, S -Ch; Brott, I; Glebbeek, E; Verkoulen, M; Pols, O R

    2008-01-01

    Rotational mixing is a very important but uncertain process in the evolution of massive stars. We propose to use close binaries to test its efficiency. Based on rotating single stellar models we predict nitrogen surface enhancements for tidally locked binaries. Furthermore we demonstrate the possibility of a new evolutionary scenario for very massive (M > 40 solar mass) close (P < 3 days) binaries: Case M, in which mixing is so efficient that the stars evolve quasi-chemically homogeneously, stay compact and avoid any Roche-lobe overflow, leading to very close (double) WR binaries.

  17. Never Before Seen: Two Supermassive Black Holes in Same Galaxy

    Science.gov (United States)

    2002-11-01

    is a prime example of a massive galaxy in which stars are forming at an exceptionally rapid rate due to a recent collision and subsequent merger of two smaller galaxies. Because of the large amount of dust and gas in such galaxies, it is difficult to peer deep into their central regions with optical telescopes. However, X-rays emanating from the galactic core can penetrate the veil of gas and dust. NGC 6240 Optical & X-ray Comparison of NGC 6240 "The detection of a binary black hole supports the idea that black holes can grow to enormous masses in the centers of galaxies by merging with other black holes," said Komossa. "This is important for understanding how galaxies form and evolve," she said. Over the course of the next few hundred million years, the two black holes in NGC 6240, which are about 3000 light years apart, will drift toward one another and merge to form an even larger supermassive black hole. Toward the end of this process an enormous burst of gravitational waves will be produced several hundred million years from now. These gravitational waves will spread through the universe and produce ripples in the fabric of space, which would appear as minute changes in the distance between any two points. NASA's planned space-based detector, LISA (Laser Interferometer Space Antenna), will search for gravitational waves from massive black-hole mergers. These events are estimated to occur several times each year in the observable universe. "This is the first time we see a binary black hole in action, the smoking gun for something that will become a major gravitational wave burst in the future," said Hasinger. Chandra observed NGC 6240 for 10.3 hours with the Advanced CCD Imaging Spectrometer (ACIS). Other members of the team are Vadim Burwitz and Peter Predehl of the Max Planck Institute, Jelle Kaastra of the Space Research Organization Netherlands and Yasushi Ikebe of the University of Maryland in Baltimore. NASA's Marshall Space Flight Center in Huntsville, Ala

  18. Gravitational waves from supermassive stars collapsing to a supermassive black hole

    Science.gov (United States)

    Shibata, Masaru; Sekiguchi, Yuichiro; Uchida, Haruki; Umeda, Hideyuki

    2016-07-01

    We derive the gravitational waveform from the collapse of a rapidly rotating supermassive star (SMS) core leading directly to a seed of a supermassive black hole (SMBH) in axisymmetric numerical-relativity simulations. We find that the peak strain amplitude of gravitational waves emitted during the black hole formation is ≈5 ×10-21 at the frequency f ≈5 mHz for an event at the cosmological redshift z =3 , if the collapsing SMS core is in the hydrogen-burning phase. Such gravitational waves will be detectable by space laser interferometric detectors like eLISA with signal-to-noise ratio ≈10 , if the sensitivity is as high as LISA for f =1 - 10 mHz . The detection of the gravitational wave signal will provide a potential opportunity for testing the direct-collapse scenario for the formation of a seed of SMBHs.

  19. Gravitational waves from supermassive stars collapsing to a supermassive black hole

    CERN Document Server

    Shibata, Masaru; Uchida, Haruki; Umeda, Hideyuki

    2016-01-01

    We derive the gravitational waveform from the collapse of a rapidly rotating supermassive star (SMS) core leading directly to a seed of a supermassive black hole (SMBH) in axisymmetric numerical-relativity simulations. We find that the peak strain amplitude of gravitational waves emitted during the black-hole formation is $\\approx 5 \\times 10^{-21}$ at the frequency $f \\approx 5$\\,mHz for an event at the cosmological redshift $z=3$, if the collapsing SMS core is in the hydrogen-burning phase. Such gravitational waves will be detectable by space laser interferometric detectors like eLISA with signal-to-noise ratio $\\approx 10$, if the sensitivity is as high as LISA for $f=1$--10\\,mHz. The detection of the gravitational-wave signal will provide a potential opportunity for testing the direct-collapse scenario for the formation of a seed of SMBHs.

  20. MEASURING SUPERMASSIVE BLACK HOLE SPINS IN AGN

    Directory of Open Access Journals (Sweden)

    Laura Brenneman

    2013-12-01

    Full Text Available Measuring the spins of supermassive black holes (SMBHs in active galactic nuclei (AGN can inform us about the relative role of gas accretion vs. mergers in recent epochs of the life of the host galaxy and its AGN. Recent theoretical and observation advances have enabled spin measurements for ten SMBHs thus far, but this science is still very much in its infancy. Herein, I discuss how we measure black hole spin in AGN, using recent results from a long Suzaku campaign on NGC 3783 to illustrate this process and its caveats. I then present our current knowledge of the distribution of SMBH spins in the local universe. I also address prospects for improving the accuracy, precision and quantity of these spin constraints in the next decade and beyond with instruments such as NuSTAR, Astro-H and future large-area X-ray telescopes.

  1. Supermassive blackholes without super Eddington accretion

    Science.gov (United States)

    Christian, Damian Joseph; Kim, Matt I.; Garofalo, David; D'Avanzo, Jaclyn; Torres, John

    2017-08-01

    We explore the X-ray luminosity function at high redshift for active galactic nuclei using an albeit simplified model for mass build-up using a combination of mergers and mass accretion in the gap paradigm (Garofalo et al. 2010). Using a retrograde-dominated configuration we find an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion (Kim et al. 2016). This result is made more compelling by the connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. We will discuss our connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs that will help further understand their properties and evolution.

  2. Formation of Supermassive Black Hole Seeds

    Science.gov (United States)

    Latif, Muhammad A.; Ferrara, Andrea

    2016-10-01

    The detection of quasars at z > 6 unveils the presence of supermassive black holes of a few billion solar masses. The rapid formation process of these extreme objects remains a fascinating and open issue. Such discovery implies that seed black holes must have formed early on, and grown via either rapid accretion or BH/galaxy mergers. In this theoretical review, we discuss in detail various BH seed formation mechanisms and the physical processes at play during their assembly. We discuss the three most popular BH formation scenarios, involving the (i) core-collapse of massive stars, (ii) dynamical evolution of dense nuclear star clusters, (iii) collapse of a protogalactic metal free gas cloud. This article aims at giving a broad introduction and an overview of the most advanced research in the field.

  3. Formation of supermassive black hole seeds

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    The detection of quasars at $z>6$ unveils the presence of supermassive black holes (BHs) of a few billion solar masses. The rapid formation process of these extreme objects remains a fascinating and open issue. Such discovery implies that seed black holes must have formed early on, and grown via either rapid accretion or BH/galaxy mergers. In this theoretical review, we discuss in detail various BH seed formation mechanisms and the physical processes at play during their assembly. We discuss the three most popular BH formation scenarios, involving the (i) core-collapse of massive stars, (ii) dynamical evolution of dense nuclear star clusters, (iii) collapse of a protogalactic metal free gas cloud. This article aims at giving a broad introduction and an overview of the most advanced research in the field.

  4. Tidal stripping of stars near supermassive black holes

    Directory of Open Access Journals (Sweden)

    Blandford R.

    2012-12-01

    Full Text Available In a binary system composed of a supermassive black hole and a star orbiting the hole in an equatorial, circular orbit, the stellar orbit will shrink due to the action of gravitational radiation, until the star fills its Roche lobe outside the Innermost Stable Circular Orbit (ISCO of the hole or plunges into the hole. In the former case, gas will flow through the inner Lagrange point (L1 to the hole. If this tidal stripping process happens on a time scale faster than the thermal time scale but slower than the dynamical time scale, the entropy as a function of the interior mass is conserved. The star will evolve adiabatically, and, in most cases, will recede from the hole while filling its Roche lobe. We calculate how the stellar equilibrium properties change, which determines how the stellar orbital period and mass-transfer rate change through the “Roche evolution” for various types of stars in the relativistic regime. We envisage that the mass stream eventually hits the accretion disc, where it forms a hot spot orbiting the hole and may ultimately modulate the luminosity with the stellar orbital frequency. The ultimate goal is to probe the mass and spin of the hole and provide a test of general relativity in the strong-field regime from the resultant quasi-periodic signals. The observability of such a modulation is discussed along with a possible interpretation of an intermittent 1 hour period in the X-ray emission of RE J1034+ 396.

  5. Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model

    CERN Document Server

    Enoki, M; Nagashima, M; Sugiyama, N; Enoki, Motohiro; Inoue, Kaiki T.; Nagashima, Masahiro; Sugiyama, Naoshi

    2004-01-01

    We investigate the expected gravitational wave emission from coalescing supermassive black hole (SMBH) binaries resulting from mergers of their host galaxies. When galaxies merge, the SMBHs in the host galaxies sink to the center of the new merged galaxy and form a binary system. We employ a semi-analytic model of galaxy and quasar formation based on the hierarchical clustering scenario to estimate the amplitude of the expected stochastic gravitational wave background owing to inspiraling SMBH binaries and bursts owing to the SMBH binary coalescence events. We find that the characteristic strain amplitude of the background radiation is $h_c(f) \\sim 10^{-16} (f/1 \\mu {\\rm Hz})^{-2/3}$ for $f \\lesssim 1 \\mu {\\rm Hz}$ just below the detection limit from measurements of the pulsar timing provided that SMBHs coalesce simultaneously when host galaxies merge. The main contribution to the total strain amplitude of the background radiation comes from SMBH coalescence events at $0

  6. Compact Orthoalgebras

    CERN Document Server

    Wilce, A

    2004-01-01

    We initiate a study of topological orthoalgebras (TOAs), concentrating on the compact case. Examples of TOAs include topological orthomodular lattices, and also the projection lattice of a Hilbert space. As the latter example illustrates, a lattice-ordered TOA need not be a topological lattice. However, we show that a compact Boolean TOA is a topological Boolean algebra. Using this, we prove that any compact regular TOA is atomistic, and has a compact center. We prove also that any compact TOA with isolated 0 is of finite height. We then focus on stably ordered TOAs: those in which the upper-set generated by an open set is open. These include both topological orthomodular lattices and interval orthoalgebras -- in particular, projection lattices. We show that the topology of a compact stably-ordered TOA with isolated 0 is determined by that of of its space of atoms.

  7. A Good Hard Look at Growing Supermassive Black Holes in the Distant Universe

    Science.gov (United States)

    Brandt, W. Niel; Chandra Deep Fields Team

    2017-01-01

    Sensitive cosmic X-ray surveys with the Chandra, XMM-Newton, and now NuSTAR observatories have revolutionized our ability to find and study distant active galactic nuclei (AGNs), the main sites of supermassive black hole growth in the Universe. I will describe some of the resulting discoveries about the demographics, physics, and ecology of distant AGNs with an emphasis on the deepest Chandra surveys, the Chandra Deep Fields. Some specific topics covered will include (1) robust X-ray spectral and variability characterization of the AGNs producing most of cosmic accretion power; (2) the demographics of AGNs in the first galaxies as revealed by direct detection and stacking; (3) AGN/galaxy interactions as investigated via the host properties of X-ray AGNs; and (4) the cosmic balance of power between supermassive black holes and stars. I will also briefly describe other remarkable discoveries coming from the deepest X-ray surveys; e.g., measurements of the evolving X-ray binary populations of normal and starburst galaxies. I will end by discussing some key outstanding questions and new observations and missions aiming to answer them.

  8. Supernova kicks and dynamics of compact remnants in the Galactic Centre

    Science.gov (United States)

    Bortolas, Elisa; Mapelli, Michela; Spera, Mario

    2017-08-01

    The Galactic Centre (GC) is a unique place to study the extreme dynamical processes occurring near a supermassive black hole (SMBH). Here, we investigate the role of supernova (SN) explosions occurring in massive binary systems lying in a disc-like structure within the innermost parsec. We use a regularized algorithm to simulate 3 × 104 isolated three-body systems composed of a stellar binary orbiting the SMBH. We start the integration when the primary member undergoes an SN explosion and analyse the impact of SN kicks on the orbits of stars and compact remnants. We find that SN explosions scatter the lighter stars in the pair on completely different orbits, with higher eccentricity and inclination. In contrast, stellar-mass black holes (BHs) and massive stars retain memory of the orbit of their progenitor star. Our results suggest that SN kicks are not sufficient to eject BHs from the GC. We thus predict that all BHs that form in situ in the central parsec of our Galaxy remain in the GC, building up a cluster of dark remnants. In addition, the change of neutron star (NS) orbits induced by SNe may partially account for the observed dearth of NSs in the GC. About 40 per cent of remnants stay bound to the stellar companion after the kick; we expect up to 70 per cent of them might become X-ray binaries through Roche lobe filling. Finally, the eccentricity of some light stars becomes >0.7 as an effect of the SN kick, producing orbits similar to those of the G1 and G2 dusty objects.

  9. Astrophysical phenomena related to supermassive black holes

    Science.gov (United States)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  10. Does disk fragmentation prevent the formation of supermassive stars in protogalaxies?

    CERN Document Server

    Inayoshi, Kohei

    2014-01-01

    Supermassive stars (SMSs; >10^5 Msun) formed in the first protogalaxies with virial temperature T_vir>10^4 K are expected to collapse into seeds of supermassive black hole (SMBHs) in the high-redshift universe (z>7). Fragmentation of the primordial gas is, however, a possible obstacle to SMS formation. We discuss the expected properties of a compact, metal-free, marginally unstable nuclear protogalactic disk, and the fate of the clumps formed in the disk by gravitational instability. Interior to a characteristic radius R_f=few*10^{-2} pc, the disk fragments into massive clumps with M_c~30 Msun. The clumps grow via accretion and migrate inward rapidly on a timescale of ~10^4 yr, which is comparable or shorter than the Kelvin-Helmholz time >10^4 yr. Some clumps may evolve to zero-age main sequence stars and halt gas accretion by radiative feedback, but most of the clumps can migrate inward and merge with the central protostar before forming massive stars. Moreover, we found that dust-induced-fragmentation in me...

  11. Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift

    CERN Document Server

    Haiman, Z

    2004-01-01

    Recent studies have shown that during their coalescence, binary supermassive black holes (SMBHs) experience a gravitational recoil with velocities of 100 km/s 6), and therefore put constraints on scenarios in which early SMBHs grow at the centers of DM halos. Here we quantify these constraints for the most distant known SMBHs, with inferred masses in excess of 10^9 M(sun), powering the bright quasars discovered in the Sloan Digital Sky Survey at z>6. We assume that these SMBHs grew via a combination of accretion and mergers between pre-existing seed BHs in individual progenitor halos, and that mergers between progenitors with v(esc) < v(kick) disrupt the BH growth process. Our results suggest that under these assumptions, the z=6 SMBHs had a phase during which gained mass significantly more rapidly than under an Eddington-limited exponential growth rate.

  12. Gravitational-wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution

    CERN Document Server

    Shannon, R M; Coles, W A; Hobbs, G; Keith, M J; Manchester, R N; Wyithe, J S B; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Khoo, J; Levin, Y; Osłowski, S; Sarkissian, J M; van Straten, W; Verbiest, J P W; Wang, J-B

    2013-01-01

    The formation and growth processes of supermassive black holes (SMBHs) are not well constrained. SMBH population models, however, provide specific predictions for the properties of the gravitational-wave background (GWB) from binary SMBHs in merging galaxies throughout the Universe. Using observations from the Parkes Pulsar Timing Array, we constrain the fractional GWB energy density with 95% confidence to be ${\\Omega}_{GW}(H_0/73 {\\rm km} {\\rm s}^{-1} {\\rm Mpc}^{-1})^2 < 1.3 \\times 10^{-9}$ at a frequency of 2.8 nHz, which is approximately a factor of six more stringent than previous limits. We compare our limit to models of the SMBH population and find inconsistencies at confidence levels between 46% and 91%. For example, the standard galaxy formation model implemented in the Millennium simulations is inconsistent with our limit with 50% probability.

  13. Realistic Event Rates for Detection of Supermassive Black Hole Coalescence by LISA

    CERN Document Server

    Rhook, K J; Rhook, Kirsty J.

    2005-01-01

    The gravitational waves generated during supermassive black hole (SMBH) coalescence are prime candidates for detection by the satellite LISA. We use the extended Press-Schechter formalism combined with empirically motivated estimates for the SMBH--dark matter halo mass relation and SMBH occupation fraction to estimate the maximum coalescence rate for major SMBH mergers. Assuming efficient binary coalescence, and guided by the lowest nuclear black hole mass inferred in local galactic bulges and nearby low-luminosity active galactic nuclei (10^5 Msun) we predict approximately 15 detections per year at a signal to noise greater than five, in each of the inspiral and ringdown phases. Rare coalescences between SMBHs having masses in excess of 10^7 Msun will be more readily detected via gravitational waves from the ringdown phase.

  14. The supermassive black hole of Fornax A

    CERN Document Server

    Nowak, N; Thomas, J; Bender, R; Davies, R I; Gebhardt, K

    2008-01-01

    The radio galaxy Fornax A (NGC 1316) is a prominent merger remnant in the outskirts of the Fornax cluster. Its giant radio lobes suggest the presence of a powerful AGN and thus a central supermassive black hole (SMBH). We present high-resolution adaptive optics assisted integral-field data of Fornax A, taken with SINFONI at the Very Large Telescope in the K band. We use axisymmetric orbit models to determine the mass of the SMBH in the centre of Fornax A. The three-dimensional nature of our data provides the possibility to directly test the consistency of the data with axisymmetry by modelling each of the four quadrants separately. According to our dynamical models, consistent SMBH masses and dynamical Ks band mass-to-light ratios are obtained for all quadrants, with =1.3x10^8 M_\\odot (rms(M_BH)=0.4x10^8 Msun) and =0.68 (rms(M/L)=0.03), confirming the assumption of axisymmetry. For the folded and averaged data we find M_BH=(1.5+0.75-0.8)x10^8 Msun and M/L=(0.65+0.075-0.05) (3-sigma errors). Thus the black-hol...

  15. Supermassive black holes in the distant universe

    CERN Document Server

    2004-01-01

    This book provides a unique overview of recent developments in studies of AGN and the evolution of supermassive black holes, with particular emphasis on the revolutionary results from the Chandra and XMM-Newton X-ray Observatories Each chapter is a comprehensive analysis and review by an expert in the field that should provide easy access to the subject The chapters progressively follow a single theme---the mapping of the accretion history of the universe---from both theoretical and observational points of view The chapters are written at a level that should be accessible to graduate students and non-specialists, yet the depth and innovation of the analyses will also make it highly informative to the specialist The topical nature of the subject matter means that the material presented in this book is not well covered in the present literature Moreover, the depth and interconnectedness of the chapters ensures that the coverage is much more comprehensive and informative than a conference proceeding would be The...

  16. Supermassive Dark Stars: Detectable in JWST

    CERN Document Server

    Freese, Katherine; Spolyar, Douglas; Valluri, Monica; Bodenheimer, Peter

    2010-01-01

    The first phase of stellar evolution in the history of the Universe may be Dark Stars, powered by dark matter heating rather than by nuclear fusion. Weakly Interacting Massive Particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars for millions to billions of years. In this paper we show that these objects can grow to be supermassive dark stars (SMDS) with masses $\\gtrsim (10^5-10^7) \\msun$. The growth continues as long as dark matter heating persists, since dark stars are large and cool (surface temperature $\\lesssim 5\\times 10^4$K) and do not emit enough ionizing photons to prevent further accretion of baryons onto the star. The dark matter may be provided by two mechanisms: (1) gravitational attraction of dark matter particles on a variety of orbits not previously considered, and (2) capture of WIMPs due to elastic scattering. Once the dark matter fuel is exhausted, the SMDS becomes a heavy main sequence star; these sta...

  17. Witnessing the birth of a supermassive protostar

    CERN Document Server

    Latif, Muhammad A; Hartwig, Tilman

    2015-01-01

    The detection of $\\rm z>6$ quasars reveals the existence of supermassive black holes of a few $\\rm 10^9~M_{\\odot}$. One of the potential pathways to explain their formation in the infant universe is the so-called direct collapse model which provides massive seeds of $\\rm 10^5-10^6~M_{\\odot}$. An isothermal direct collapse mandates that halos should be of a primordial composition and the formation of molecular hydrogen remains suppressed in the presence of a strong Lyman Werner flux. In this study, we perform high resolution cosmological simulations for two massive primordial halos employing a detailed chemical model which includes $\\rm H^-$ cooling as well as realistic opacities for both the bound-free $\\rm H^-$ emission and the Rayleigh scattering of hydrogen atoms. We are able to resolve the collapse up to unprecedentedly high densities of $\\rm \\sim 10^{-3}~g/cm^3$ and to scales of about $\\rm 10^{-4}$ AU. Our results show that the gas cools down to $\\rm \\sim $ 5000 K in the presence of $\\rm H^-$ cooling, an...

  18. Formation of Dark Matter Torii Around Supermassive Black Holes Via The Eccentric Kozai-Lidov Mechanism

    CERN Document Server

    Naoz, Smadar

    2014-01-01

    We explore the effects of long term secular perturbations on the distribution of dark matter particles around Supermassive Black Hole (BH) binaries. We show that in the hierarchical (in separation) three-body problem, one of the BHs and a dark matter particle form an inner binary. Gravitational perturbations from the BH companion, on a much wider orbit, can cause the dark matter particle to reach extremely high eccentricities and even get accreted onto the BH, by what is known as the Eccentric Kozai-Lidov (EKL) mechanism. We show that this may produce a torus-like configuration for the dark matter distribution around the less massive member of the BH binary. We first consider an Intermediate BH (IMBH) in the vicinity of our Galactic Center, which may be a relic of a past minor merger. We show that if the IMBH is close enough (i.e., near the stellar disk) the EKL mechanism is very efficient in exciting the eccentricity of dark matter particles in near-polar configurations to extremely high values where they ar...

  19. Post-Newtonian dynamical modeling of supermassive black holes in galactic-scale simulations

    CERN Document Server

    Rantala, Antti; Johansson, Peter H; Naab, Thorsten; Lahén, Natalia; Sawala, Till

    2016-01-01

    We present KETJU, a new extension of GADGET-3 based on algorithmic chain regularization. The key feature of the code is the inclusion of regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries and surrounding stellar systems at sub-parsec scales. The KETJU code includes Post-Newtonian terms in the equations of motions of the SMBHs which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale pushing the merger separation of SMBHs down to $\\sim 0.005 \\ \\rm pc$. We test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multi-component merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the triaxiality of the merger remnants. For bulge-on...

  20. A Highly Magnetized Twin-Jet Base Pinpoints a Supermassive Black Hole

    CERN Document Server

    Baczko, A -K; Kadler, M; Ros, E; Perucho, M; Krichbaum, T P; Böck, M; Bremer, M; Grossberger, C; Lindqvist, M; Lobanov, A P; Mannheim, K; Mart, I; Müller, C; Wilms, J; Zensus, J A

    2016-01-01

    Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on Blandford & Znajek extract the rotational energy from a Kerr black hole, which could be the case for NGC1052, to launch these jets. This requires magnetic fields of the order of $10^3\\,$G to $10^4\\,$G. We imaged the vicinity of the SMBH of the AGN NGC1052 with the Global Millimetre VLBI Array and found a bright and compact central feature, smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~80000 G consistent with Blandford & Znajek models.

  1. On rapid migration and accretion within disks around supermassive black holes

    CERN Document Server

    McKernan, B; Lyra, W; Perets, H B; Winter, L M; Yaqoob, T

    2011-01-01

    Galactic nuclei should contain a cluster of stars and compact objects in the vicinity of the central supermassive black hole due to stellar evolution, minor mergers and gravitational dynamical friction. By analogy with protoplanetary migration, nuclear cluster objects (NCOs) can migrate in the accretion disks that power active galactic nuclei by exchanging angular momentum with disk gas. Here we show that an individual NCO undergoing runaway outward migration comparable to Type III protoplanetary migration can generate an accretion rate corresponding to Seyfert AGN or quasar luminosities. Multiple migrating NCOs in an AGN disk can dominate traditional viscous disk accretion and at large disk radii, ensemble NCO migration and accretion could provide sufficient heating to prevent the gravitational instability from consuming disk gas in star formation. The magnitude and energy of the X-ray soft excess observed at ~0.1-1keV in Seyfert AGN could be explained by a small population of ~10^{2}-10^{3} accreting stella...

  2. The Supermassive Black Hole—Galaxy Connection

    Science.gov (United States)

    King, Andrew

    2014-09-01

    The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor should be in the range ˜1-30. A factor give black hole winds with velocities v˜0.1 c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical ( M- σ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical M- σ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10-3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out≃1200 km s-1 and drives rates in cool (molecular) gas, giving a typical outflow mechanical energy L mech≃0.05 L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is

  3. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  4. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew

    2002-01-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  5. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  6. The delayed time distribution of massive double compact star mergers

    CERN Document Server

    Mennekens, N

    2016-01-01

    In order to investigate the temporal evolution of binary populations in general, double compact star binaries and mergers in particular within a galactic evolution context, a most straightforward method is obviously the implementation of a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, only the Brussels galactic code explicitly accounts for binaries. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delayed time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively the last decade. In the present paper we present the DTD for merging double neutron star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for the production of r-process elements and the DTDs can be used to study the galactic evolution...

  7. Estimating the fossil disc mass during supermassive black hole mergers: the importance of torque implementation

    CERN Document Server

    Tazzari, Marco

    2015-01-01

    In this paper, we revisit the issue of estimating the "fossil" disc mass in the circumprimary disc, during the merger of a supermassive black hole binary. As the binary orbital decay speeds up due to the emission of gravitational waves, the gas in the circumprimary disc might be forced to accrete rapidly and could in principle provide a significant electromagnetic counterpart to the gravitational wave emission. Since the luminosity of such flare is proportional to the gaseous mass in the circumprimary disc, estimating such mass accurately is important. Previous investigations of this issue have produced contradictory results, with some authors estimating super-Eddington flares and large disc mass, while others suggesting that the "fossil" disc mass is very low, even less than a Jupiter mass. Here, we perform simple 1D calculations to show that such very low estimates of the disc mass are an artifact of the specific implementation of the tidal torque in 1D models. In particular, for moderate mass ratios of the...

  8. Blindly detecting orbital modulations of jets from merging supermassive black holes

    CERN Document Server

    O'Shaughnessy, R; Sesana, A; Kamble, A

    2011-01-01

    In the last few years before merger, supermassive black hole binaries will rapidly inspiral and precess in a magnetic field imposed by a surrounding circumbinary disk. Multiple simulations suggest this relative motion will convert some of the local energy to a Poynting-dominated outflow, with a luminosity 10^{43} erg/s * (B/10^4 G)^2(M/10^8 Msun)^2 (v/0.4 c)^2, some of which may emerge as synchrotron emission at frequencies near 1 GHz where current and planned wide-field radio surveys will operate. On top of a secular increase in power on the gravitational wave inspiral timescale, orbital motion will produce significant, detectable modulations, both on orbital periods and (if black hole spins are not aligned with the binary's total angular momenta) spin-orbit precession timescales. Because the gravitational wave merger time increases rapidly with separation, we find vast numbers of these transients are ubiquitously predicted, unless explicitly ruled out (by low efficiency $\\epsilon$) or obscured (by accretion...

  9. The Formation of Supermassive Black Holes in the First Galaxies

    NARCIS (Netherlands)

    Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya; Glover, Simon C. O.; Spaans, Marco; Klessen, Ralf S.

    2010-01-01

    We discuss the formation of supermassive black holes in the early universe, and how to probe their subsequent evolution with the upcoming mm/sub-mm telescope ALMA. We first focus on the chemical and radiative conditions for black hole formation, in particular considering radiation trapping and molec

  10. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    Science.gov (United States)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope

  11. Tidal disruption of stars by supermassive black holes: The X-ray view

    Directory of Open Access Journals (Sweden)

    Komossa S.

    2012-12-01

    Full Text Available The tidal disruption of stars by supermassive black holes produces luminous soft X-ray accretion flares in otherwise inactive galaxies. First events have been discovered in X-rays with the ROSAT observatory, and have more recently been detected with XMM-Newton, Chandra and Swift, and at other wavelengths. In X-rays, they typically appear as very soft, exceptionally luminous outbursts of radiation, which decline consistent with L ∝ t−5/3 on the timescale of months to years. They reach total amplitudes of decline up to factors 1000–6000 more than a decade after their initial high-states, and in low-state, their host galaxies are essentially X-ray inactive, optically inactive, and radio inactive. X-ray luminous tidal disruption events (TDEs represent a powerful new probe of accretion physics near the event horizon, and of relativistic effects. TDEs offer a new way of estimating black hole spin, and they are signposts of supermassive binary black holes and recoiling black holes. Once discovered in the thousands in upcoming sky surveys, their rates will probe stellar dynamics in distant galaxies, and they will uncover the – so far elusive – population of intermediate mass black holes in the universe, if they do exist. Further, the reprocessing of the flare into IR, optical and UV emission lines provides us with multiple new diagnostics of the properties of any gaseous material in the vicinity of the black hole (including the disrupted star itself and in the host galaxy. First candidate events of this kind have been reported recently.

  12. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  13. Testing general gelativity using gravitational waves from binary neutron stars: Effect of spins

    CERN Document Server

    Agathos, Michalis; Li, Tjonnie G F; Broeck, Chris Van Den; Veitch, John; Vitale, Salvatore

    2013-01-01

    We present a Bayesian data analysis pipeline for testing GR using gravitational wave signals from coalescing compact binaries, and in particular binary neutron stars. In this study, we investigate its performance when sources with spins are taken into account.

  14. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  15. The Milky Way's Supermassive Black Hole: How Good a Case Is It?

    Science.gov (United States)

    Eckart, Andreas; Hüttemann, Andreas; Kiefer, Claus; Britzen, Silke; Zajaček, Michal; Lämmerzahl, Claus; Stöckler, Manfred; Valencia-S, Monica; Karas, Vladimir; García-Marín, Macarena

    2017-05-01

    The compact and, with {˜ }4.3± 0.3× 10^6 M_{\\odot }, very massive object located at the center of the Milky Way is currently the very best candidate for a supermassive black hole (SMBH) in our immediate vicinity. The strongest evidence for this is provided by measurements of stellar orbits, variable X-ray emission, and strongly variable polarized near-infrared emission from the location of the radio source Sagittarius A* (SgrA*) in the middle of the central stellar cluster. Simultaneous near-infrared and X-ray observations of SgrA* have revealed insights into the emission mechanisms responsible for the powerful near-infrared and X-ray flares from within a few tens to one hundred Schwarzschild radii of such a putative SMBH. If SgrA* is indeed a SMBH it will, in projection onto the sky, have the largest event horizon and will certainly be the first and most important target for very long baseline interferometry observations currently being prepared by the event horizon telescope (EHT). These observations in combination with the infrared interferometry experiment GRAVITY at the very large telescope interferometer and other experiments across the electromagnetic spectrum might yield proof for the presence of a black hole at the center of the Milky Way. The large body of evidence continues to discriminate the identification of SgrA* as a SMBH from alternative possibilities. It is, however, unclear when the ever mounting evidence for SgrA* being associated with a SMBH will suffice as a convincing proof. Additional compelling evidence may come from future gravitational wave observatories. This manuscript reviews the observational facts, theoretical grounds and conceptual aspects for the case of SgrA* being a black hole. We treat theory and observations in the framework of the philosophical discussions about "(anti)realism and underdetermination", as this line of arguments allows us to describe the situation in observational astrophysics with respect to supermassive

  16. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  17. Massive black hole binary mergers within sub-pc scale gas discs

    CERN Document Server

    Cuadra, J; Alexander, R D; Begelman, M C

    2008-01-01

    [ABRIDGED] We study supermassive black hole binary mergers driven by angular momentum loss to small-scale gas discs. Such binaries form after major galaxy mergers, but their fate is unclear since hardening through stellar scattering becomes very inefficient at sub-parsec distances. Gas discs may dominate binary dynamics on these scales, and promote mergers. Using numerical simulations, we investigate the evolution of the orbits of binaries embedded within geometrically thin gas discs. Our simulations directly resolve angular momentum transport within the disc, which at the radii of interest is likely dominated by disc self-gravity. We show that the binary decays at a rate which is in good agreement with analytical estimates, while the eccentricity grows. Saturation of eccentricity growth is not observed up to values e > 0.35. Accretion onto the black holes is variable, and is roughly modulated by the binary orbital frequency. Scaling our results, we analytically estimate the maximum rate of binary decay that ...

  18. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  19. Compact Vortices

    CERN Document Server

    Bazeia, D; Marques, M A; Menezes, R; Zafalan, I

    2016-01-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  20. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  1. Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, Luciano; Escala, Andrés, E-mail: ldelvalleb@gmail.com [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2014-01-01

    We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation that is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.

  2. Supermassive black holes formed by direct collapse of inflationary perturbations

    CERN Document Server

    Nakama, Tomohiro; Yokoyama, Jun'ichi

    2016-01-01

    We propose a mechanism of producing a new type of primordial perturbations which collapse to primordial black holes whose mass can be as large as necessary for them to grow to the supermassive black holes observed at high redshifts, without contradicting COBE/FIRAS upper limits on cosmic microwave background (CMB) spectral distortions. In our model, the observable Universe consists of two kinds of many small patches which experienced different expansion histories during inflation. Large amplitudes of primordial perturbations enough to form primordial black holes are realized on patches that experienced more Hubble expansion than the others. By making these patches the minor component, the rarity of supermassive black holes can be explained. On the other hand, most regions of the Universe experienced the standard history and hence have only standard almost scale-invariant adiabatic perturbations confirmed by observations of CMB or large-scale structures of the universe. Thus our mechanism can evade the constra...

  3. Supermassive black holes, large scale structure and holography

    CERN Document Server

    Mongan, T R

    2013-01-01

    A holographic analysis of large scale structure in the universe estimates the mass of supermassive black holes at the center of large scale structures with matter density varying inversely as the square of the distance from their center. The estimate is consistent with two important test cases involving observations of the supermassive black hole with mass 3.6\\times10^{-6} times the galactic mass in Sagittarius A^{*} near the center of our Milky Way and the 2\\times10^{9} solar mass black hole in the quasar ULAS J112001.48+064124.3 at redshift z=7.085. It is also consistent with upper bounds on central black hole masses in globular clusters M15, M19 and M22 developed using the Jansky Very Large Array in New Mexico.

  4. Magnetically-levitating disks around supermassive black holes

    CERN Document Server

    Gaburov, Evghenii; Levin, Yuri

    2012-01-01

    In this paper we report on the formation of magnetically-levitating accretion disks around supermassive black holes. The structure of these disks is calculated by numerically modelling tidal disruption of magnetized interstellar gas clouds. We find that the resulting disks are entirely supported by the pressure of the magnetic fields against the component of gravitational force directed perpendicular to the disks. The magnetic field shows ordered large-scale geometry that remains stable for the duration of our numerical experiments extending over 10% of the disk lifetime. Strong magnetic pressure allows high accretion and inhibits disk fragmentation. This in combination with the repeated feeding of manetized molecular clouds to a supermassive black hole yields a possible solution to the long-standing puzzle of black hole growth in the centres of galaxies.

  5. Cold, clumpy accretion onto an active supermassive black hole

    CERN Document Server

    Tremblay, Grant R; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen L; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael

    2016-01-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the "hot mode" accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of c...

  6. An Observed Fundamental Plane Relation for Supermassive Black Holes

    CERN Document Server

    Hopkins, Philip F; Cox, Thomas J; Robertson, Brant; Krause, Elisabeth

    2007-01-01

    We study observed correlations between supermassive black hole (BHs) and the properties of their host galaxies, and show that the observations define a BH 'fundamental plane' (BHFP), of the form M_BH sigma^(3.0+-0.3)*R_e^(0.43+-0.19), or M_BH M_bulge^(0.54+-0.17)*sigma^(2.2+-0.5), analogous to the FP of elliptical galaxies. The BHFP is preferred over a simple relation between M_BH and any of sigma, M_bulge, M_dyn, or R_e alone at >99.9% significance. The existence of this BHFP has important implications for the formation of supermassive BHs and the masses of the very largest black holes, and immediately resolves several apparent conflicts between the BH masses expected and measured for outliers in both the M_BH-sigma and M_BH-M_bulge relations.

  7. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

    OpenAIRE

    Kormendy, John; Ho, Luis C.

    2013-01-01

    We review the observed demographics and inferred evolution of supermassive black holes (BHs) found by dynamical modeling of spatially resolved kinematics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion of the host-galaxy bulge. It and other correlations led to the belief that BHs and bulges coevolve by regulating each other's growth. New results are now replacing this simple story with a richer and more plausible picture in which BHs corr...

  8. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Science.gov (United States)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.; Haemmerlé, Lionel; Klessen, Ralf S.

    2017-06-01

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ˜ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01-10 M ⊙ yr-1 using the stellar evolution code Kepler. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 M ⊙ for accretion rates of 0.1-10 M ⊙ yr-1, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  9. Higher harmonics increase LISA's mass reach for supermassive black holes

    CERN Document Server

    Arun, K G; Sathyaprakash, B S; Sinha, Siddhartha

    2007-01-01

    Current expectations on the signal to noise ratios and masses of supermassive black holes which the Laser Interferometer Space Antenna (LISA) can observe are based on using in matched filtering only the dominant harmonic of the inspiral waveform at twice the orbital frequency. Other harmonics will affect the signal-to-noise ratio of systems currently believed to be observable by LISA. More significantly, inclusion of other harmonics in our matched filters would mean that more massive systems that were previously thought to be {\\it not} visible in LISA should be detectable with reasonable SNRs. Our estimates show that we should be able to significantly increase the mass reach of LISA and observe the more commonly occurring supermassive black holes of masses $\\sim 10^8M_\\odot.$ More specifically, with the inclusion of all known harmonics LISA will be able to observe even supermassive black hole coalescences with total mass $\\sim 10^8 M_\\odot (10^9M_\\odot)$ (and mass-ratio 0.1) for a low frequency cut-off of $10...

  10. Supermassive black holes formed by direct collapse of inflationary perturbations

    Science.gov (United States)

    Nakama, Tomohiro; Suyama, Teruaki; Yokoyama, Jun'ichi

    2016-11-01

    We propose a mechanism of producing a new type of primordial perturbations that collapse to primordial black holes, whose mass can be as large as necessary for them to grow to the supermassive black holes observed at high redshifts, without contradicting Cosmic Background Explorer/Far Infrared Absolute Spectrophotometer (COBE/FIRAS) upper limits on cosmic microwave background (CMB) spectral distortions. In our model, the observable Universe consists of two kinds of many small patches which experienced different expansion histories during inflation. Primordial perturbations large enough to form primordial black holes are realized on patches that experienced more Hubble expansion than the others. By making these patches the minor component, the rarity of supermassive black holes can be explained. On the other hand, most regions of the Universe experienced the standard history and, hence, only have standard almost-scale-invariant adiabatic perturbations confirmed by observations of CMB or large-scale structures of the Universe. Thus, our mechanism can evade the constraint from the nondetection of the CMB distortion set by the COBE/FIRAS measurement. Our model predicts the existence of supermassive black holes even at redshifts much higher than those observed. Hence, our model can be tested by future observations peeking into the higher-redshift Universe.

  11. The Collapse of Differentially Rotating Supermassive Stars: Conformally Flat Simulations

    CERN Document Server

    Saijo, M

    2004-01-01

    We investigate the gravitational collapse of rapidly rotating relativistic supermassive stars by means of a 3+1 hydrodynamical simulations in conformally flat spacetime of general relativity. We study the evolution of differentially rotating supermassive stars of $q \\equiv J/M^{2} \\sim 1$ ($J$ is the angular momentum and $M$ is the gravitational mass of the star) from the onset of radial instability at $R/M \\sim 65$ ($R$ is the circumferential radius of the star) to the point where the conformally flat approximation breaks down. We find that the collapse of the star of $q \\gtrsim 1$, a radially unstable differentially rotating star form a black hole of $q \\lesssim 1$. The main reason to prevent formation of a black hole of $q \\gtrsim 1$ is that quite a large amount of angular momentum stays at the surface. We also find that most of the mass density collapses coherently to form a supermassive black hole with no appreciable disk nor bar. In the absence of nonaxisymmetric deformation, the collapse of differentia...

  12. Merging Galaxies Create a Binary Quasar

    Science.gov (United States)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  13. Pulsar timing arrays and the challenge of massive black hole binary astrophysics

    CERN Document Server

    Sesana, Alberto

    2014-01-01

    Pulsar timing arrays (PTAs) are designed to detect gravitational waves (GWs) at nHz frequencies. The expected dominant signal is given by the superposition of all waves emitted by the cosmological population of supermassive black hole (SMBH) binaries. Such superposition creates an incoherent stochastic background, on top of which particularly bright or nearby sources might be individually resolved. In this contribution I describe the properties of the expected GW signal, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. I describe the status of current PTA efforts, and prospect of future detection and SMBH binary astrophysics.

  14. Quasiequilibrium sequences of binary strange quark stars in general relativity

    CERN Document Server

    Limousin, F; Gourgoulhon, E; Limousin, Francois; Gondek-Rosinska, Dorota; Gourgoulhon, Eric

    2004-01-01

    Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO, LIGO and other laser interferometers. We present the first computations of quasi-equilibrium sequences of compact binaries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars). We study a precoalescing stage in the conformal flatness approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is irrotational.

  15. The X-ray Lightcurve of the Supermassive star eta Carinae, 1996--2014

    CERN Document Server

    Corcoran, M F; Liburd, J K; Morris, D; Gull, T R; Madura, T I; Teodoro, M; Moffat, A F J; Richardson, N D; Russell, C M P; Pollock, A M T; Owocki, S P

    2015-01-01

    Eta Carinae is the nearest example of a supermassive, superluminous, unstable star. Mass loss from the system is critical in shaping its circumstellar medium and in determining its ultimate fate. Eta Car currently loses mass via a dense, slow stellar wind and possesses one of the largest mass loss rates known. It is prone to episodes of extreme mass ejection via eruptions from some as-yet unspecified cause; the best examples of this are the large-scale eruptions which occurred in 19th century. Eta Car is a colliding wind binary in which strong variations in X-ray emission and in other wavebands are driven by the violent collision of the wind of eta Car-A and the fast, less dense wind of an otherwise hidden companion star. X-ray variations are the simplest diagnostic we have to study the wind-wind collision and allow us to measure the state of the stellar mass loss from both stars. We present the X-ray lightcurve over the last 20 years from ROSAT observations and monitoring with the Rossi X-ray Timing Explorer...

  16. Swift coalescence of supermassive black holes in cosmological mergers of massive galaxies

    CERN Document Server

    Khan, Fazeel M; Mayer, Lucio; Berczik, Peter; Just, Andreas

    2016-01-01

    Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far theoretical models and simulations have been unable to predict directly the SMBH merger timescale from ab-initio galaxy formation theory, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave searches. Here we present the first multi-scale $\\Lambda$CDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at $z\\sim3$, all the way to the final coalescence driven by gravitational wave emission. The two SMBHs, with masses $\\sim10^{8}$ M$_{\\odot}$, settle quickly in the nucleus of the merger remnant. The remnant is triaxial and ex...

  17. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  18. Unraveling Binary Evolution from Gravitational-Wave Signals and Source Statistics

    OpenAIRE

    Mandel, Ilya; Kalogera, Vicky; O'Shaughnessy, Richard

    2010-01-01

    The next generation of ground-based gravitational-wave detectors are likely to observe gravitational waves from the coalescences of compact-objects binaries. We describe the state of the art for predictions of the rate of compact-binary coalescences and report on initial efforts to develop a framework for converting gravitational-wave observations into improved constraints on astrophysical parameters.

  19. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre

    CERN Document Server

    Doeleman, Sheperd; Rogers, Alan E E; Plambeck, Richard; Freund, Robert; Tilanus, Remo P J; Friberg, Per; Ziurys, Lucy M; Moran, James M; Corey, Brian; Young, Ken H; Smythe, Daniel L; Titus, Michael; Marrone, Daniel P; Cappallo, Roger J; Bock, Douglas C J; Bower, Geoffrey C; Chamberlin, Richard; Davis, Gary R; Krichbaum, Thomas P; Lamb, James; Maness, Holly; Niell, Arthur E; Roy, Alan; Strittmatter, Peter; Werthimer, Daniel; Whitney, Alan R; Woody, David

    2008-01-01

    The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation (ref 1). Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun (refs. 2,3). A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A* where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering (refs. 4-7). Here we report observations at a wavelength of 1.3 mm that set a size of 37 (+16, -10; 3-sigma) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expe...

  20. Cosmological Mestel Disks and the Rossby Vortex Instability: The Origin of Supermassive Black Holes

    CERN Document Server

    Colgate, S A; Li, H; Currier, N; Warren, M S; Colgate, Stirling A.; Cen, Renyue; Li, Hui; Currier, Nathan; Warren, Michael S.

    2003-01-01

    A scenario is put forth for the formation of supermassive black holes at the centers of galaxies. It depends upon the formation of a Mestel disk with a flat rotation curve, where the mass is proportional to r and thickness to 1/r. Such disks should form from the collapse of uniformly rotating, isolated, gaseous clouds, either proto-galactic, galaxy-mass damped Lyman alpha clouds or the gas that survives galaxy mergers. We propose that in any case the disk will be unstable to the Rossby vortex instability (RVI). This instability grows from any large, steep pressure gradient in an optically thick disk. Such pressure gradients either occur adjacent to compact objects or could be triggered by individual supernovae in and around the disk. Upon excitation, the RVI transports angular momentum far more efficiently than the turbulence of a viscosity-based Shakura-Sunyaev disk. The critical column density condition in a L* Mestel disk predicts that the black hole mass is ~ 10^8 Msolar and is also proportional to the 1/...

  1. A highly magnetized twin-jet base pinpoints a supermassive black hole

    Science.gov (United States)

    Baczko, A.-K.; Schulz, R.; Kadler, M.; Ros, E.; Perucho, M.; Krichbaum, T. P.; Böck, M.; Bremer, M.; Grossberger, C.; Lindqvist, M.; Lobanov, A. P.; Mannheim, K.; Martí-Vidal, I.; Müller, C.; Wilms, J.; Zensus, J. A.

    2016-09-01

    Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on (Blandford & Znajek 1977, MNRAS, 179, 433) extract the rotational energy from a Kerr black hole, which could be the case for NGC 1052, to launch these jets. This requires magnetic fields on the order of 103G to 104G. We imaged the vicinity of the SMBH of the AGN NGC 1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~ 8.3 × 104 G consistent with Blandford & Znajek models. The VLBI images shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A47

  2. CHANDRA HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Civano, F.; Elvis, M.; Lanzuisi, G.; Aldcroft, T.; Trichas, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bongiorno, A.; Brusa, M. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Blecha, L.; Loeb, A. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Comastri, A.; Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, Bologna 40127 (Italy); Salvato, M.; Komossa, S. [Max-Planck-Institute for Plasma Physics, Excellence Cluster, Boltzmannstrass 2, 85748 Garching (Germany); Koekemoer, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mainieri, V. [ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, Monteporzio-Catone 00040 (Italy); Vignali, C. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, Bologna 40127 (Italy)

    2012-06-10

    We present Chandra High Resolution Camera observations of CID-42, a candidate recoiling supermassive black hole (SMBH) at z = 0.359 in the COSMOS survey. CID-42 shows two optical compact sources resolved in the HST/ACS image embedded in the same galaxy structure and a velocity offset of {approx}1300 km s{sup -1} between the H{beta} broad and narrow emission line, as presented by Civano et al. Two scenarios have been proposed to explain the properties of CID-42: a gravitational wave (GW) recoiling SMBH and a double Type 1/Type 2 active galactic nucleus (AGN) system, where one of the two is recoiling because of slingshot effect. In both scenarios, one of the optical nuclei hosts an unobscured AGN, while the other one, either an obscured AGN or a star-forming compact region. The X-ray Chandra data allow us to unambiguously resolve the X-ray emission and unveil the nature of the two optical sources in CID-42. We find that only one of the optical nuclei is responsible for the whole X-ray unobscured emission observed and a 3{sigma} upper limit on the flux of the second optical nucleus is measured. The upper limit on the X-ray luminosity plus the analysis of the multiwavelength spectral energy distribution indicate the presence of a star-forming region in the second source rather than an obscured SMBH, thus favoring the GW recoil scenario. However, the presence of a very obscured SMBH cannot be fully ruled out. A new X-ray feature, in a SW direction with respect to the main source, is discovered and discussed.

  3. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  4. Theory of disk accretion onto supermassive black holes

    CERN Document Server

    Armitage, P J

    2004-01-01

    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.

  5. M33 A Galaxy with No Supermassive Black Hole

    CERN Document Server

    Gebhardt, K; Kormendy, J; Pinkney, J C; Bower, G A; Green, R; Gull, T R; Hutchings, J B; Joseph, C L; Kaiser, M E; Nelson, C H; Richstone, D O; Weistrop, D; Gebhardt, Karl; Lauer, Tod R.; Kormendy, John; Pinkney, Jason; Bower, Gary A.; Green, Richard; Gull, Theodore; Joseph, Chuck; Nelson, Charles H.; Richstone, Douglas; Weistrop, Donna

    2001-01-01

    Galaxies that contain bulges appear to contain central black holes whose masses correlate with the velocity dispersion of the bulge. We show that no corresponding relationship applies in the pure disk galaxy M33. Three-integral dynamical models fit Hubble Space Telescope WFPC2 photometry and STIS spectroscopy best if the central black hole mass is zero. The upper limit is 1500 M_sun. This is significantly below the mass expected from the velocity dispersion of the nucleus and far below any mass predicted from the disk kinematics. Our results suggest that supermassive black holes are associated only with galaxy bulges and not with their disks or dark halos.

  6. Chandra Imaging of Gamma-Ray Binaries

    CERN Document Server

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G

    2013-01-01

    We review the multiwavelength properties of the few known gamma-ray binaries, focusing on extended emission recently resolved with Chandra. We discuss the implications of these findings for the nature of compact objects and for physical processes operating in these systems.

  7. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    Science.gov (United States)

    Fiacconi, Davide; Rossi, Elena M.

    2016-10-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of ˜100 M⊙ results from the collapse of the inner core of a supermassive star (≳ 104 - 5 M⊙), created by the rapid accumulation (≳ 0.1 M⊙ yr-1) of pristine gas at the centre of newly formed galaxies at z ˜ 15. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole, or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a "quasi-star"). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitative matches results from simulations of rotating convective stellar envelopes, we show that quasi-stars with an envelope mass greater than a few 105 M⊙ × black hole mass/100 M⊙)0.82 have highly sub-keplerian gas motion in their core, preventing gas circularisation outside the black hole's horizon. Less massive quasi-stars could form but last for only ≲ 104 years before the accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate that this might eventually lead to a dual black hole seed population: (i) massive (>104 M⊙) seeds formed in the most massive (>108 M⊙) and rare haloes; (ii) lighter (˜102 M⊙) seeds to be found in less massive and therefore more common haloes.

  8. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    Science.gov (United States)

    Fiacconi, Davide; Rossi, Elena M.

    2017-01-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of ˜100 M⊙ results from the collapse of the inner core of a supermassive star (≳104-5 M⊙), created by the rapid accumulation (≳0.1 M⊙ yr-1) of pristine gas at the centre of newly formed galaxies at z ˜ 15. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a `quasi-star'). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitatively matches results from simulations of rotating convective stellar envelopes, we show that quasi-stars with an envelope mass greater than a few 105 M_{⊙} × (black hole mass/100 M_{⊙})^{0.82} have highly sub-Keplerian gas motion in their core, preventing gas circularization outside the black hole's horizon. Less massive quasi-stars could form but last for only ≲104 yr before the accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate that this might eventually lead to a dual black hole seed population: (i) massive (>104 M⊙) seeds formed in the most massive (>108 M⊙) and rare haloes; (ii) lighter (˜102 M⊙) seeds to be found in less massive and therefore more common haloes.

  9. Ram-pressure feeding of supermassive black holes

    Science.gov (United States)

    Poggianti, Bianca M.; Jaffé, Yara L.; Moretti, Alessia; Gullieuszik, Marco; Radovich, Mario; Tonnesen, Stephanie; Fritz, Jacopo; Bettoni, Daniela; Vulcani, Benedetta; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Omizzolo, Alessandro

    2017-08-01

    When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters. Here we report that six out of a sample of seven ‘jellyfish’ galaxies—galaxies with long ‘tentacles’ of material that extend for dozens of kiloparsecs beyond the galactic disks—host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.

  10. The Direct Collapse of Supermassive Black Hole Seeds

    Science.gov (United States)

    Regan, John A.; Johansson, Peter H.; Wise, John H.

    2016-10-01

    The direct collapse model of supermassive black hole seed formation requires that thegas cools predominantly via atomic hydrogen. To this end we simulate the effect of ananisotropic radiation source on the collapse of a halo at high redshift. The radiationsource is placed at a distance of 3 kpc (physical) from the collapsing object and is setto emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiationemitted from the high redshift source is followed self-consistently using ray tracingtechniques. Due to self-shielding, a small amount of H2 is able to form at the verycenter of the collapsing halo even under very strong LW radiation. Furthermore, we find thata radiation source, emitting radiation field case,in terms of H2 fraction at an equivalent radius. These differences will significantly effectthe dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, thefinal mass of the collapsing object is found to be M ~ 105 M⊙. This is consistentwith predictions for the formation of a supermassive star or quasi-star leading to asupermassive black hole.

  11. Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes

    Science.gov (United States)

    Chartas, G.; Krawczynski, H.; Zalesky, L.; Kochanek, C. S.; Dai, X.; Morgan, C. W.; Mosquera, A.

    2017-03-01

    We present a promising new technique, the g-distribution method, for measuring the inclination angle (i), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g-distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g-distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131–1231 (z s = 0.658, z l = 0.295), QJ 0158–4325 (z s = 1.294, z l = 0.317), and SDSS 1004+4112 (z s = 1.734, z l = 0.68). For RX J1131‑1231, our initial results indicate that r ISCO ≲ 8.5 gravitational radii (r g) and i ≳ 55° (99% confidence level). We detect two shifted Fe lines in several observations, as predicted in our numerical simulations of caustic crossings. The current ΔE distribution of RX J1131–1231 is sparsely sampled, but further X-ray monitoring of RX J1131–1231 and other lensed quasars will provide improved constraints on the inclination angles, ISCO radii, and spins of the black holes of distant quasars.

  12. Dark matter haloes determine the masses of supermassive black holes

    CERN Document Server

    Booth, C M

    2009-01-01

    The energy and momentum deposited by the radiation from accretion onto the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to regulate their growth and to couple their properties to those of their host galaxies. However, it remains unclear whether this self-regulation occurs on the scale at which the BH is gravitationally dominant, on that of the stellar bulge, the galaxy, or that of the entire dark matter halo. To answer this question, we use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the BHs and the properties of their host galaxies. We first confirm unambiguously that the BHs regulate their growth: the amount of energy that the BHs inject into their surroundings remains unchanged when the fraction of the accreted rest mass energy that is injected, is varied by four orders of magnitude....

  13. Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes

    CERN Document Server

    Chartas, G; Zalesky, L; Kochanek, C S; Dai, X; Morgan, C W; Mosquera, A

    2016-01-01

    We present a promising new technique, the g-distribution method, for measuring the inclination angle (i), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g-distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g-distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131-1231 (z_s=0.658, z_l=0.295), QJ 0158-4325 (z_s=1.294, z_l=0.317), and SDSS 1004+4112 (z_s=1.734, z_l=0.68). For RX J1131-1231 our initial results indicate that r_ISCO 76 degrees. We detect two shifted Fe lines, in several observations, as predicted in our numerical simulations of caustic crossings. The current DeltaE-distribution of RX J1131-1231 is sparsely sampled but further X-ray monitoring of RX J1131-1231 and other lensed quasars will provide improved constrai...

  14. Memory effect from spinning unbound binaries

    CERN Document Server

    De Vittori, Lorenzo; Gupta, Anuradha; Jetzer, Philippe

    2014-01-01

    We present a recently developed prescription to obtain ready-to-use gravitational wave (GW) polarization states for spinning compact binaries on hyperbolic orbits. We include leading order spin-orbit interactions, invoking 1.5PN-accurate quasi-Keplerian parametrization for the radial part of the orbital dynamics. We also include radiation reaction effects on $h_+$ and $h_{\\times}$ during the interaction. In the GW signals from spinning binaries there is evidence of the memory effect in both polarizations, in contrast to the non-spinning case, where only the cross polarizations exhibits non-vanishing amplitudes at infinite time. We also compute 1PN-accurate GW polarization states for non-spinning compact binaries in unbound orbits in a fully parametric way, and compare them with existing waveforms.

  15. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  16. Probing Dark Energy with Black Hole Binaries

    CERN Document Server

    Mersini-Houghton, Laura

    2008-01-01

    The equation of state (EoS) of dark energy $w$ remains elusive despite enormous experimental efforts to pin down its value and its time variation. Yet it is the single most important handle we have in our understanding of one of the most mysterious puzzle in nature, dark energy. This letter proposes a new method for measuring the EoS of dark energy by using the gravitational waves (GW) of black hole binaries. The method described here offers an alternative to the standard way of large scale surveys. It is well known that the mass of a black hole changes due to the accretion of dark energy but at an extremely slow rate. However, a binary of supermassive black holes (SBH) radiates gravitational waves with a power proportional to the masses of these accreting stars and thereby carries information on dark energy. These waves can propagate through the vastness of structure in the universe unimpeded. The orbital changes of the binary, induced by the energy loss from gravitational radiation, receive a large contribu...

  17. Compaction Behavior of Isomalt after Roll Compaction

    OpenAIRE

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force....

  18. Observing Compact Stars with AstroSat

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2017-09-01

    This article presents a brief description of India’s AstroSat mission which is a powerful space based observatory for compact star research. An account is given of observational constraints and spectral and timing capabilities as realised post-launch. Some preliminary results of observations of the Crab pulsar and an X-ray binary system GX 301-2 are presented to illustrate some of the capabilities of the mission.

  19. Observing Compact Stars with AstroSat

    Science.gov (United States)

    Bhattacharya, Dipankar

    2017-09-01

    This article presents a brief description of India's AstroSat mission which is a powerful space based observatory for compact star research. An account is given of observational constraints and spectral and timing capabilities as realised post-launch. Some preliminary results of observations of the Crab pulsar and an X-ray binary system GX 301-2 are presented to illustrate some of the capabilities of the mission.

  20. New Insights into X-ray Binaries

    CERN Document Server

    Casares, Jorge

    2009-01-01

    X-ray binaries are excellent laboratories to study collapsed objects. On the one hand, transient X-ray binaries contain the best examples of stellar-mass black holes while persistent X-ray binaries mostly harbour accreting neutron stars. The determination of stellar masses in persistent X-ray binaries is usually hampered by the overwhelming luminosity of the X-ray heated accretion disc. However, the discovery of high-excitation emission lines from the irradiated companion star has opened new routes in the study of compact objects. This paper presents novel techniques which exploits these irradiated lines and summarises the dynamical masses obtained for the two populations of collapsed stars: neutron stars and black holes.