WorldWideScience

Sample records for compact radio galaxies

  1. H I absorption in nearby compact radio galaxies

    Science.gov (United States)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  2. Compact features in radio galaxies and quasars

    International Nuclear Information System (INIS)

    Purvis, A.

    1981-05-01

    The structure of compact features ('hotspots') in the outer lobes of classical double radio sources over a large flux density interval at 81.5 MHz is investigated in order to understand more fully the structural evolution of radio sources with both luminosity and redshift. The technique of interplanetary scintillations is used. An account is given of the development of a new telescope, the 3.6-hectare Array. A method for eliminating zero level and phase drifts from interferometric records and a method for analysing data scattered according to a skewed probability distribution are described. New observations of hotspots in complete samples of bright 3CR sources and 4C quasars having an intermediate flux density are then presented. The problems of interpreting scintillation data are then considered and three methods are suggested to reduce the difficulties imposed by the observational limitation known as 'blending', whereby the whole outer lobe may scintillate and distort the measured hotspot size. Finally, all the new observational data are assimilated and this leads to models for (a) the dependence of source structure on luminosity and (b) for the dependence of observed hotspot size on both luminosity and redshift. (author)

  3. Radio Galaxy Zoo: compact and extended radio source classification with deep learning

    Science.gov (United States)

    Lukic, V.; Brüggen, M.; Banfield, J. K.; Wong, O. I.; Rudnick, L.; Norris, R. P.; Simmons, B.

    2018-05-01

    Machine learning techniques have been increasingly useful in astronomical applications over the last few years, for example in the morphological classification of galaxies. Convolutional neural networks have proven to be highly effective in classifying objects in image data. In the context of radio-interferometric imaging in astronomy, we looked for ways to identify multiple components of individual sources. To this effect, we design a convolutional neural network to differentiate between different morphology classes using sources from the Radio Galaxy Zoo (RGZ) citizen science project. In this first step, we focus on exploring the factors that affect the performance of such neural networks, such as the amount of training data, number and nature of layers, and the hyperparameters. We begin with a simple experiment in which we only differentiate between two extreme morphologies, using compact and multiple-component extended sources. We found that a three-convolutional layer architecture yielded very good results, achieving a classification accuracy of 97.4 per cent on a test data set. The same architecture was then tested on a four-class problem where we let the network classify sources into compact and three classes of extended sources, achieving a test accuracy of 93.5 per cent. The best-performing convolutional neural network set-up has been verified against RGZ Data Release 1 where a final test accuracy of 94.8 per cent was obtained, using both original and augmented images. The use of sigma clipping does not offer a significant benefit overall, except in cases with a small number of training images.

  4. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    Science.gov (United States)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  5. `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    Science.gov (United States)

    Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.

    2017-10-01

    We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ˜1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.

  6. Flattening and radio emission among elliptical galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.; Sparks, W.B.; Wall, J.V.

    1984-01-01

    In a sample of 132 bright elliptical galaxies it is shown that there is a strong correlation between radio activity and flattening in the sense that radio ellipticals are both apparently and inherently rounder than the average elliptical. Both extended and compact sources are subject to the same correlation. No galaxies with axial ratios below 0.65 are found to be radio emitters. (author)

  7. First detection in gamma-rays of a young radio galaxy: Fermi -LAT observations of the compact symmetric object PKS 1718−649

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, G.; Loh, A.; Corbel, S. [Laboratoire AIM (CEA/IRFU—CNRS/INSU—Université Paris Diderot), CEA DSM/SAp, F-91191 Gif-sur-Yvette (France); Siemiginowska, A.; Sobolewska, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ostorero, L. [Dipartimento di Fisica, Università degli Studi di Torino and Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, I-10125 Torino (Italy); Stawarz, Ł., E-mail: giulia.migliori@cea.fr [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków (Poland)

    2016-04-20

    We report the γ -ray detection of a young radio galaxy, PKS 1718−649, belonging to the class of compact symmetric objects (CSOs), with the Large Area Telescope (LAT) on board the Fermi satellite. The third Fermi Gamma-ray LAT catalog (3FGL) includes an unassociated γ -ray source, 3FGL J1728.0−6446, located close to PKS 1718−649. Using the latest Pass 8 calibration, we confirm that the best-fit 1 σ position of the γ -ray source is compatible with the radio location of PKS 1718−649. Cross-matching of the γ -ray source position with the positions of blazar sources from several catalogs yields negative results. Thus, we conclude that PKS 1718−649 is the most likely counterpart to the unassociated LAT source. We obtain a detection test statistics TS ∼ 36 (>5 σ ) with a best-fit photon spectral index Γ = 2.9 ± 0.3 and a 0.1–100 GeV photon flux density F {sub 0.1−100} {sub GeV} = (11.5 ± 0.3) × 10{sup −9} ph cm{sup −2} s{sup −1}. We argue that the linear size (∼2 pc), the kinematic age (∼100 years), and the source distance ( z = 0.014) make PKS 1718−649 an ideal candidate for γ -ray detection in the framework of the model proposing that the most compact and the youngest CSOs can efficiently produce GeV radiation via inverse-Compton scattering of the ambient photon fields by the radio lobe non-thermal electrons. Thus, our detection of the source in γ -rays establishes young radio galaxies as a distinct class of extragalactic high-energy emitters and yields a unique insight on the physical conditions in compact radio lobes interacting with the interstellar medium of the host galaxy.

  8. Structure in radio galaxies

    International Nuclear Information System (INIS)

    Breugel, W. van.

    1980-01-01

    It is shown that radio jets are a rather common phenomenon in radio galaxies. Jets can be disguised as trails in head-tail sources, bridges in double sources or simply remain undetected because of lack of resolution and sensitivity. It is natural to associate these jets with the channels which had previously been suggested to supply energy to the extended radio lobes. The observations of optical emission suggest that a continuous non-thermal spectrum extending from 10 9 to 10 15 Hz is a common property of jets. Because significant amounts of interstellar matter are also observed in each of the galaxies surveyed it seems that models for jets which involve an interaction with this medium may be most appropriate. New information about the overall structure of extended radio sources has been obtained from the detailed multifrequency study with the WSRT. (Auth.)

  9. Compact radio sources

    International Nuclear Information System (INIS)

    Altschuler, D.R.

    1975-01-01

    Eighty-seven compact radio sources were monitored between 1971 and 1974 with the National Radio Astronomy Observatory interferometer. Both flux density and polarization were measured at intervals of about one month at wavelengths of 3.7 and 11.1 cms. Forty-four sources showed definite variability in their total and/or polarized flux density. The variations in polarization were of a shorter time scale than the corresponding flux density variations. Some of the qualitative features of an expanding source model were observed. The data suggest that some form of injection of relativistic electrons is taking place. The absence of significant depolarization in the variable sources indicates that only a small fraction of the mass of the radio outburst is in the form of non-relativistic plasma. Some of the objects observed belong to the BL-Lacertal class. It is shown that this class is very inhomogeneous in its radio properties. For the violently variable BL-Lacertal type objects the spectrum, flux variations and polarization data strongly suggest that these are very young objects

  10. Diverse Formation Mechanisms for Compact Galaxies

    Science.gov (United States)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  11. On compact galaxies in the UGC catalogue

    International Nuclear Information System (INIS)

    Kogoshvili, N.G.

    1980-01-01

    A problem of separation of compact galaxies in the UGC Catalogue is considered. Value of surface brightness equal to or less than 21sup(m) was used as compactness criterion from a square second of arc. 96 galaxies, which are brighter than 14sup(m)5 satisfy this criterion. Among compact galaxies discovered in the UGC Catalogue 7% are the Zwicky galaxies, 15% belong to the Markarian galaxies and 27% of galaxies are part of a galaxy list with high surface brightness. Considerable divergence in estimates of total share of compact galaxies in the B.A. Worontsov-Veljaminov Morphological Catalogue of Galaxies (MCG) and the UGC Catalogue is noted. This divergence results from systematical underestimation of visible sizes of compact galaxies in the MCG Catalogue as compared with the UGC Catalogue [ru

  12. Starbursts in Blue compact dwarf galaxies

    International Nuclear Information System (INIS)

    Thuan, T.X.

    1987-01-01

    We summarize all the arguments for a bursting mode of star formation in blue compact dwarf galaxies. We show in particular how spectral synthesis of far ultraviolet spectra of Blue compact dwarf galaxy constitutes a powerful way for studying the star formation history in these galaxies. Blue compact dwarf galaxy luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, helping us to count and date the bursts

  13. The Multiwavelength Study of Two Unique Radio Galaxies Nectaria ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    They have no compact hotspots and consist of sharply-bounded lobes. They are probably the only two radio galaxies that show large multiple circular radio features (ring-like structures) that are interior to the lobes and not just phenomena of the boundaries. A few of these rings are the largest material circles known ...

  14. Radio emission in peculiar galaxies

    Science.gov (United States)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  15. Radio emission in the Virgo cluster and in SO galaxies

    International Nuclear Information System (INIS)

    Kotanyi, C.

    1981-01-01

    A survey of the radio continuum emission from the galaxies in the Virgo Cluster is presented. The sample of 274 galaxies in total contains a subsample of 188 galaxies complete down to magntiude msub(p) = 14. The observations consisted mostly of short (10 minutes) observations providing one-dimensional (East-West) strip distributions of the radio brightness at 1.4 GHz, with an East-West resolution of 23'' allowing separation of central sources from extended emission, and an r.m.s. noise level of 2 mJy. The radio emission of SO galaxies is examined. A sample of 145 SO galaxies is obtained by combining the Virgo cluster SO's with the nearby non-cluster SO's. The radio data, mainly from short observations, are used to derive the RLF. The radio emission in SO galaxies is at least three times weaker than that in ellipticals and spirals. Flat-spectrum compact nuclear sources are found in SO galaxies but they are at least 10 times weaker than in elliptical galaxies, which is attributed to the small mass of the bulges in SO's as compared to the mass of elliptical galaxies. The absence of steep-spectrum, extended central sources and of disk radio emission in SO's is attributed to their low neutral hydrogen content. (Auth.)

  16. Integrated radio continuum spectra of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marvil, Joshua; Owen, Frazer [National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801 (United States); Eilek, Jean, E-mail: josh.marvil@csiro.au [New Mexico Tech, Socorro, NM 87801 (United States)

    2015-01-01

    types. Early types also have radio emission that is more compact than later type galaxies, as compared to the optical size of the galaxy. Despite these differences, no relation between spectral index and galaxy type is detected.

  17. Microlensing of multiply-imaged compact radio sources - Evidence for compact halo objects in the disk galaxy of B1600+434

    NARCIS (Netherlands)

    Koopmans, LVE; de Bruyn, AG

    We present the first unambiguous case of external variability of a radio gravitational lens, CLASS B1600+434. The Very Lai-ge Array (VLA) 8.5-GHz difference light curve of the lensed images, taking the proper time-delay into account, shows the presence of external variability with 14.6-sigma

  18. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  19. Coma cluster ultradiffuse galaxies are not standard radio galaxies

    Science.gov (United States)

    Struble, Mitchell F.

    2018-02-01

    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  20. Observational properties of compact groups of galaxies

    International Nuclear Information System (INIS)

    Hickson, P.

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications

  1. Radio investigations of clusters of galaxies

    International Nuclear Information System (INIS)

    Valentijn, E.A.

    1978-01-01

    This thesis contains a number of papers of the series entitled, A Westerbork Survey of Rich Clusters of Galaxies. The primary aim was to study the radio characteristics of cluster galaxies and especially the question whether their ''radio-activity'' is influenced by their location inside a cluster. It is enquired whether the presence of an intra-cluster medium (ICM), or the typical cluster evolution or cluster dynamical processes can give rise to radio-observable effects on the behaviour of cluster galaxies. 610 MHz WSRT observations of the Coma cluster (and radio observations of the Hercules supercluster) are presented. Extended radio sources in Abell clusters are then described. (Auth.)

  2. The polarization of radio galaxies

    International Nuclear Information System (INIS)

    Jaegers, W.J.

    1986-01-01

    In this thesis radio observations at 0.6 GHz together with matched (convolved) observations at 1.4 GHz of 30 radiosources are described and interpreted. Sources of great interest which are individually discussed are the complex nearby source 3C66B, the source 4C73.48, the narrow edge-darkened double source 3C130 (together with two newly observed narrow-edge-darkened doubles), the galaxies 3C129 and 3C390.3 and the giant quasar 4C34.47. (Auth.)

  3. The Blue Compact Dwarf Galaxy IZw18

    NARCIS (Netherlands)

    Musella, I.; Marconi, M.; Fiorentino, G.; Clementini, G.; Aloisi, A.; Annibali, F.; Contreras, R.; Saha, A.; Tosi, M.; van der Marel, R. P.

    2012-01-01

    We present the results obtained for the Blue compact galaxy IZw18 on the basis of ACS HST data obtained from our group. In particular, we discuss the stellar population and the variable stars content of this galaxy to get information about its star formation history and distance.

  4. Hot-spots of radio sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Saikia, D.J.

    1979-01-01

    A sample of extragalactic double radio sources is examined to test for a correlation between the prominence of compact hot-spots located at their outer edges and membership of clusters of galaxies. To minimize the effects of incompleteness in published catalogues of clusters, cluster classification is based on the number of galaxies in the neighbourhood of each source. After eliminating possible selection effects, it is found that sources in regions of high galactic density tend to have less prominent hot-spots. It is argued that the result is consistent with the 'continuous-flow' models of radio sources, but poses problems for the gravitational slingshot model. (author)

  5. Radio halo sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1986-01-01

    Radio halo sources remain one of the most enigmatic of all phenomena related to radio emission from galaxies in clusters. The morphology, extent, and spectral structure of these sources are not well known, and the models proposed to explain them suffer from this lack of observational detail. However, recent observations suggest that radio halo sources may be a composite of relic radio galaxies. The validity of this model could be tested using current and planned high resolutions, low-frequency radio telescopes. 31 references

  6. Stellar populations in distant radio galaxies

    International Nuclear Information System (INIS)

    Lilly, S.J.; Longair, M.S.

    1984-01-01

    A homogeneous data set of infrared observations of 83 3CR galaxies with redshifts 0< z<1.6, selected from a statistically complete sample of 90 radio sources, is used to study the colours and magnitudes of these galaxies as a function of their redshifts. New infrared observations are presented for 66 radio galaxies, in addition to new optical results obtained from a re-analysis of existing CCD images. It is shown that the infrared colours do not deviate from the predicted relations with redshift for a standard giant elliptical galaxy spectrum. The optical to infrared colours, however, show substantial deviations at high redshift. No galaxies have been found that are significantly redder than a passively evolving galaxy, and there is a significant scatter of colours bluewards from this model. The excess of ultraviolet light responsible for these colours is not concentrated at the nucleus, and is interpreted as resulting from bursts of star formation, throughout the galaxy. (author)

  7. Spectroscopy of 125 QSO candidates and radio galaxies

    International Nuclear Information System (INIS)

    Wills, B.J.; Wills, D.

    1980-01-01

    Spectroscopic observations of 125 QSO candidates and radio galaxies are reported, many of which are optical identifications of radio sources in the deep survey in progress at the University of Texas Radio Astronomy Observatory (UTRAO). The remainder include optical identifications of sources in other radio surveys and radio-quiet objects selected by their ultraviolet continua or optical variability. Optical positions are given with O''.5 accuracy for 56 of the objects.Forty objects are confirmed as QSOs; redshifts are given for 38 of them and for 18 galaxies. There are also seven objects with apparently continuous spectra: some of them were already known or suspected to be BL Lacertae objects. Twenty-nine objects were found to be Galactic stars, and the results for the remaining 31 are inconclusive, although 12 of them are probable QSOs and six are probable stars.Our spectroscopy of a sample of 90 blue stellar objects found within 3'' of the UTRAO radio positions (including results from two earlier papers) shows that 81 (90%) are QSOs, with inconclusive results fo the other nine; none of the 90 is known to be a star. Even within 5'' of the UTRAO positions, 111 of 128 blue objects (87%) are QSOs, and only five (4%) are known or suspected to be stars. Among 21 red or neutral-color, apparently stellar objects within 3'' of the UTRAO positions, six are QSOs or compact galaxies, 13 are stars, and the results for two more are inconclusive

  8. RADIO SOURCE FEEDBACK IN GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Shabala, Stanislav; Alexander, Paul

    2009-01-01

    We present a galaxy evolution model which incorporates a physically motivated implementation of active galactic nucleus feedback. Intermittent jets inflate cocoons of radio plasma which then expand supersonically, shock heating the ambient gas. The model reproduces observed star formation histories to the highest redshifts for which reliable data exist, as well as the observed galaxy color bimodality. Intermittent radio source feedback also naturally provides a way of keeping the black hole and spheroid growth in step. We find possible evidence for a top-heavy initial mass function for z > 2, consistent with observations of element abundances, and submillimeter and Lyman break galaxy counts.

  9. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  10. Radio and infrared observations of (almost) one hundred non-Seyfert Markarian galaxies

    Science.gov (United States)

    Dressel, Linda L.

    1987-01-01

    The 13 cm flux densities of 96 non-Seyfert Markarian galaxies were measured at Arecibo Observatory. Far infrared flux densities have been published for 78 of these galaxies in the IRAS catalog. The radio, infrared, and optical fluxes of these galaxies and of a magnitude limited sample of normal galaxies were compared to clarify the nature of the radio emission in Markarian galaxies. It was found that Markarian galaxies of a given apparent magnitude and Hubble type generally have radio fluxes several times higher that the fluxes typical of normal galaxies of the same magnitude and type. Remarkably, the ratio of radio flux to far infrared flux is nearly the same for most of these starburst galaxies and for normal spiral disks. However, the compact and peculiar Markarian galaxies consistently have about 60% more radio flux per unit infrared flux than the other Markarian galaxies and the normal spirals. It is not clear whether this difference reflects a difference in the evolution of the starbursts in these galaxies or whether there is excess radio emission of nonstellar origin.

  11. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Komossa, S.; Zensus, J. A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Yuan, Weimin [Key Lab for Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Zhou, Hongyan, E-mail: gumf@shao.ac.cn [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China)

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  12. Dynamical properties of compact groups of galaxies

    Science.gov (United States)

    Hickson, Paul; De Oliveira, Claudia M.; Huchra, John P.; Palumbo, Giorgio G.

    1992-01-01

    Radial velocities are presented for 457 galaxies in the 100 Hickson compact groups. More than 84 percent of the galaxies measured have velocities within 1000 km/s of the median velocity in the group. Ninety-two groups have at least three accordant members, and 69 groups have at least four. The radial velocities of these groups range from 1380 to 42,731 km/s with a median of 8889 km/s, corresponding to a median distance of 89/h Mpc. The apparent space density of these systems ranges from 300 to as much as 10 exp 8 sq h/sq Mpc, which exceeds the densities in the centers of rich clusters. The median projected separation between galaxies is 39/h kpc, comparable to the sizes of the galaxies themselves. A significant correlation is found between crossing time and the fraction of gas-rich galaxies in the groups, and a weak anticorrelation is found between crossing time and the luminosity contrast of the first-ranked galaxy.

  13. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi [Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720 (United States); Stockton, Alan, E-mail: jshih@gemini.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  14. Nature of compact groups of galaxies

    International Nuclear Information System (INIS)

    Hickson, P.; Rood, H.J.

    1988-01-01

    Monte Carlo numerical simulation is used to calculate the probability for the chance occurrence of four galaxies projected on the sky satisfying the Hickson isolation criterion within a loose group of eight members. For the models which match most closely the size and galaxy multiplicity function of observed groups, this chance occurrence is found to be smaller by a factor of about 100 than the value obtained previously by Mamom from numerical simulations of dynamical models of groups. This and other direct independent observational results from the literature constitute strong evidence that nearly all of the Hickson compact groups are real physical systems. It is concluded that the tendency for the spiral fraction of a compact group to be larger than the value inferred from the galaxy morphology-group density relation of rich clusters and loose groups is a real physical effect indicating that galaxy morphology depends strongly on a second parameter which, it is suggested, is the velocity dispersion of a system. 21 references

  15. New radio observations of the Circinus Galaxy

    International Nuclear Information System (INIS)

    Harnett, J.I.; Reynolds, J.E.

    1990-01-01

    We present new radio continuum and OH observations of the Circinus Galaxy which confirm the active nature of the nucleus. The continuum structure is dominated by two spurs of emission, which probably originate in the core and extend roughly along the minor axis of the galaxy. In addition, the OH absorption profiles clearly indicate a rapidly rotating cloud surrounding the nucleus or several independent clouds in the vicinity with inflowing and outflowing motions. The Circinus Galaxy is most probably a Seyfert with underlying nuclear starburst activity. (author)

  16. Redshifts of radio galaxies in Abell clusters of galaxies

    International Nuclear Information System (INIS)

    Owen, F.N.; White, R.A.; Thronson, H.A. Jr.

    1988-01-01

    The paper presents redshifts for 51 radio galaxies and companion systems which were obtained with the Steward 2.3-m and multiple mirror telescopes. The observations were performed over the course of six runs during 1980-1983. The sample includes eight multiple systems (or multiple nuclei) having internal velocity differences ranging from 150 to 2400 km/s. 17 references

  17. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  18. RESOLUTION OF THE COMPACT RADIO CONTINUUM SOURCES IN Arp220

    International Nuclear Information System (INIS)

    Batejat, Fabien; Conway, John E.; Hurley, Rossa; Parra, Rodrigo; Diamond, Philip J.; Lonsdale, Colin J.; Lonsdale, Carol J.

    2011-01-01

    We present 2 cm and 3.6 cm wavelength very long baseline interferometry images of the compact radio continuum sources in the nearby ultra-luminous infrared galaxy Arp220. Based on their radio spectra and variability properties, we confirm these sources to be a mixture of supernovae (SNe) and supernova remnants (SNRs). Of the 17 detected sources we resolve 7 at both wavelengths. The SNe generally only have upper size limits. In contrast all the SNRs are resolved with diameters ≥0.27 pc. This size limit is consistent with them having just entered their Sedov phase while embedded in an interstellar medium (ISM) of density 10 4 cm -3 . These objects lie on the diameter-luminosity correlation for SNRs (and so also on the diameter-surface brightness relation) and extend these correlations to very small sources. The data are consistent with the relation L∝D -9/4 . Revised equipartition arguments adjusted to a magnetic field to a relativistic particle energy density ratio of 1% combined with a reasonable synchrotron-emitting volume filling factor of 10% give estimated magnetic field strengths in the SNR shells of ∼15-50 mG. The SNR shell magnetic fields are unlikely to come from compression of ambient ISM fields and must instead be internally generated. We set an upper limit of 7 mG for the ISM magnetic field. The estimated energy in relativistic particles, 2%-20% of the explosion kinetic energy, is consistent with estimates from models that fit the IR-radio correlation in compact starburst galaxies.

  19. Optical images of quasars and radio galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references.

  20. Optical images of quasars and radio galaxies

    International Nuclear Information System (INIS)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-01-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references

  1. Optical images of quasars and radio galaxies

    Science.gov (United States)

    Hutchings, J. B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions.

  2. A statistical analysis of the Einstein normal galaxy sample. III - Radio and X-ray properties of elliptical and S0 galaxies

    Science.gov (United States)

    Fabbiano, G.; Klein, U.; Trinchieri, G.; Wielebinski, R.

    1987-01-01

    Radioastronomy, optical and X-ray data were used to probe the cause of high X-ray luminosities of 28 radio-quiet elliptical galaxies (RQE) and S0 galaxies previously scanned by the Einstein Observatory. Comparisons were made with similar data on double-lobed 3CR galaxies. Radio luminosities were highly correlated with the X-ray luminosities, agreeing with models of radio nuclear sources in early-type galaxies as accreting compact objects. Additionally, 3CR galaxies seemed to be large-scale versions of normal RQE. The significance of interstellar medium/intracluster medium interactions for high correlations between the core and total radio power from X-ray emitting galaxies is discussed.

  3. Statistical analysis of the Einstein normal galaxy sample. III. Radio and X-ray properties of elliptical and S0 galaxies

    International Nuclear Information System (INIS)

    Fabbiano, G.; Klein, U.; Trinchieri, G.; Wielebinski, R.; Bonn Universitaet, West Germany; Arcetri, Osservatorio Astrofisico, Florence, Italy; Max-Planck-Institut fuer Radioastronomie, Bonn, West Germany)

    1987-01-01

    Radioastronomy, optical and X-ray data were used to probe the cause of high X-ray luminosities of 28 radio-quiet elliptical galaxies (RQE) and S0 galaxies previously scanned by the Einstein Observatory. Comparisons were made with similar data on double-lobed 3CR galaxies. Radio luminosities were highly correlated with the X-ray luminosities, agreeing with models of radio nuclear sources in early-type galaxies as accreting compact objects. Additionally, 3CR galaxies seemed to be large-scale versions of normal RQE. The significance of interstellar medium/intracluster medium interactions for high correlations between the core and total radio power from X-ray emitting galaxies is discussed. 54 references

  4. RADIO AND MID-INFRARED PROPERTIES OF COMPACT STARBURSTS: DISTANCING THEMSELVES FROM THE MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stierwalt, S.; Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Condon, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Evans, A. S., E-mail: emurphy@obs.carnegiescience.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States)

    2013-05-01

    We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) emission and 9.7 {mu}m silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 {mu}m PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 {mu}m PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence.

  5. The cluster environments of powerful, high-redshift radio galaxies

    International Nuclear Information System (INIS)

    Yates, M.G.

    1989-01-01

    We present deep imaging of a sample of 25 powerful radio galaxies in the redshift range 0.15 gr ) about each source, a measure of the richness of environment. The powerful radio galaxies in this sample at z>0.3 occupy environments nearly as rich on average as Abell class 0 clusters of galaxies, about three times richer than the environments of the z<0.3 radio galaxies. This trend in cluster environment is consistent with that seen in radio-loud quasars over the same redshift range. Our previous work on the 3CR sample suggested that the fundamental parameter which correlates with the richness of environment might be the radio luminosity of the galaxy, rather than its redshift. Our direct imaging confirms that the most powerful radio galaxies do inhabit rich environments. (author)

  6. Revealing the Faraday depth structure of radio galaxy NGC 612 with broad-band radio polarimetric observations

    Science.gov (United States)

    Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.

    2018-05-01

    We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.

  7. The Compact Radio Sources in the Nucleus of NGC 1068

    Science.gov (United States)

    Roy, A. L.; Colbert, E. J. M.; Wilson, A. S.; Ulvestad, J. S.

    1998-09-01

    We report VLBA images of the nucleus of the Seyfert galaxy NGC 1068 at 1.7, 5, and 15 GHz, with resolutions between 3 and 10 mas (0.2-0.7 pc) and a sensitivity of ~106 K at all three frequencies. Our goals are to study the morphology of the radio emission at subparsec resolution and to investigate thermal gas in the putative obscuring disk or torus and in the narrow-line region clouds through free-free absorption of the radio emission. All four known radio components in the central arcsecond (S2, S1, C, and NE, from south to north) have been detected at either 1.7 or 5 GHz, or both. No radio emission was detected at 15 GHz. Component S1 is probably associated with the active nucleus, with radio emission originating from the inner edge of the obscuring torus according to Gallimore et al. Our observed flux densities at 1.7 and 5 GHz are in agreement with their thermal bremsstrahlung emission model, and we find that the nuclear radiation may be strong enough to heat the gas in S1 to the required temperature of ~4 × 106 K. The bremsstrahlung power would be 0.15(frefl/0.01) times the bolometric luminosity of the nucleus between 1014.6 and 1018.4 Hz (where frefl is the fraction of radiation reflected into our line of sight by the electron-scattering mirror) and so the model is energetically reasonable. We also discuss two other models for S1 that also match the observed radio spectrum: electron scattering by the torus of radio emission from a compact synchrotron self-absorbed source and synchrotron radiation from the torus itself. Components NE and S2 have spectra consistent with optically thin synchrotron emission, without significant absorption. Both of these components are elongated roughly perpendicular to the larger scale radio jet, suggesting that their synchrotron emission is related to transverse shocks in the jet or to bow shocks in the external medium. Component C has a nonthermal spectrum absorbed at low frequency. This absorption is consistent with free

  8. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  9. Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    Science.gov (United States)

    Alger, M. J.; Banfield, J. K.; Ong, C. S.; Rudnick, L.; Wong, O. I.; Wolf, C.; Andernach, H.; Norris, R. P.; Shabala, S. S.

    2018-05-01

    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.

  10. Millimeter observations of radio-loud active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Bertoldi, F

    In order to study the nature of the far-infrared emission observed in radio-loud active galaxies, we have obtained 1.2 mill observations with the IRAM 30 m telescope for a sample of eight radio-loud active galaxies. In all objects we find that the 1.2 mm emission is dominated by non-thermal

  11. Tracking Galaxy Evolution Through Low-Frequency Radio ...

    Indian Academy of Sciences (India)

    This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old ...

  12. New Members in the Galaxy Group Around Giant Radio Galaxy DA 240

    Science.gov (United States)

    Chen, Ru-Rong; Peng, Bo; Strom, Richard

    2018-05-01

    With new spectroscopic observations of group candidates around the giant radio galaxy DA 240, we have identified five new group members, increasing the number to twenty-five. While all the new members are located some distance from the host galaxy, two of them lie in one of the radio lobes, and the rest are found at a distance from the radio components. The new group members reinforce our earlier conclusion that the distribution of the DA 240 group with respect to the radio lobes is unusual among giant radio galaxy host environments.

  13. A combined optical, infrared and radio study of the megamaser galaxy III Zw 35

    International Nuclear Information System (INIS)

    Chapman, J.M.; Axon, D.J.; Cohen, R.J.; Pedlar, A.; Davies, R.D.; Unger, S.W.

    1990-01-01

    III Zw 35 is a pair of galaxies characterized by powerful radio continuum, far-infrared and OH maser radiation. We have made a multi-frequency study of the galaxy pair based on optical, infrared and radio observations. The brighter northern component is identified as an early-type LINER or Seyfert galaxy containing an active nuclear region from which radio continuum, OH maser and thermal dust emission are detected. We propose that the northern component has a compact active nucleus deeply embedded in a highly obscured region of diameter ∼ 210 pc, within which enhanced star-formation occurs. The lower luminosity southern component is of low mass and is undergoing starburst activity over an extended region of diameter ∼ 5.5 kpc. The origin of the starburst and non-thermal activity appears to be an interaction between the two components. (author)

  14. Simulating nonthermal radiation from cluster radio galaxies.

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, I. L. (Ian L.); Jones, T. W. (Thomas Walter); Ryu, Dongsu

    2004-01-01

    We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.

  15. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  16. A Radio Study of the Ultra-luminous FIR Galaxy NGC 6240

    Science.gov (United States)

    Colbert, E.; Wilson, A. S.; Bland-Hawthorn, J.

    1993-05-01

    A number of galaxies observed in the IRAS mission are noted to emit ~ 99% of their bolometric flux in the FIR, with FIR luminosities in excess of 10(11) Lsun. The interacting galaxy NGC 6240 has often been referred to as the ``proto-typical'' ultra-luminous (L_FIR >~ 10(12) Lsun) FIR galaxy. The origin of the FIR excess remains a disputed subject in the literature. New observations of NGC 6240 were taken with the VLA at 20cm in the B-configuration, and at 3.6cm in the A-configuration. No significant radio emission was detected from or near the possible ultra-massive ``dark core'' hypothesized by Bland-Hawthorn et. al. (1991); however, approximately 30% of Seyfert galaxies have 20 cm radio luminosities weaker than the upper limit derived from the radio maps. The non-thermal radio emission from luminous FIR galaxies is tightly correlated with the FIR emission. Previous radio observations of NGC 6240 revealed two compact, steep-spectrum nuclear sources, nearly coincident with the two nuclear sources seen in optical images. The 2 images from the new VLA observations and 5 images from previous VLA observations are used to identify the morphological and spectral features of the strong, compact components in the nuclear regions (~ 3 kpc) from the nucleus. Feasible explanations for the radio emission are discussed. The models that have been proposed in the literature for the FIR excess of NGC 6240 are evaluated for consistency with the observed radio emission.

  17. Radio ejection and broad forbidden emission lines in the Seyfert galaxy NGC 7674

    International Nuclear Information System (INIS)

    Unger, S.W.; Pedlar, A.; Axon, D.J.

    1988-01-01

    The Seyfert nucleus in NGC7674 (Mkn533) is remarkable for its broad asymmetric forbidden line profiles, which extend 2000 kms -1 blueward of the systemic velocity. The galaxy also has a compact nuclear radio source. We have obtained new high-resolution radio observations of NGC7674, using the European VLBI network and the VLA, and optical spectroscopic observations using the Isaac Newton Telescope. The radio maps reveal a triple radio source with a total angular extent of about 0.7 arcsec, and provide evidence that the radio emission is powered by collimated ejection. In the plane of the sky, the ejection axis appears roughly perpendicular to the galactic rotation axis. Although the dominant radio components are separated by 0.5 arcsec, the broad [OIII]λ5007 line emission is confined to within about 0.25 arcsec of the continuum nucleus. (author)

  18. Radio and optical studies of high luminosity Iras galaxies

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Parker, Q.A.; Savage, A.; MacGillivray, H.T.; Leggett, S.K.; Clowes, R.G.; Unger, S.W.; Pedlar, A.; Heasley, J.N.; Menzies, J.W.

    1987-01-01

    Follow-up observations of a complete sample of 154 IRAS galaxies, optically identified down to B=21, indicate that between 3 and 9% of the sample are ultraluminous depending on the choice of H 0 . VLA observations at 20 cm of the complete sample indicate that 85% are detected above 1mJy and for the most part the radio emission is centrally concentrated. The tight linear relation between radio and infrared luminosities is valid at the highest luminosities. Of the 11 most luminous objects one is a quasar: it fits the radio infrared relation very well which suggests that the infrared and radio emission has the same origin as in the other IRAS galaxies, ie. it probably originates primarily in regions of star formation in the host galaxy. The other 10 very luminous galaxies are either close but resolved mergers or double galaxies, presumably interacting. Radio observations of the 10 original empty field sources in our sample with no optical counterpart (B ≤ 21) allow us to conclude that 4 of these are fainter galaxies just outside the IRAS error ellipse with high values of L IR /L B . One other object, with a radio source at the edge of the error ellipse but no optical counterpart brighter than B = 23, may prove to be a highly luminous galaxy with L IR /L B > ∼ 1250

  19. Star formation suppression in compact group galaxies

    DEFF Research Database (Denmark)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.

    2015-01-01

    , bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and earlytype galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression...... color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work...

  20. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    scenario still remain poorly understood. ... to test models with future observations. ... A popular scenario for the origin of radio halos assumes that relativis- ..... based on particle acceleration by merger-driven turbulence in galaxy clusters shows.

  1. Clustering of Star-forming Galaxies Near a Radio Galaxy at z=5.2

    Science.gov (United States)

    Overzier, Roderik A.; Miley, G. K.; Bouwens, R. J.; Cross, N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.; Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2006-01-01

    We present HST ACS observations of the most distant radio galaxy known, TN J0924-2201 at z=5.2. This radio galaxy has six spectroscopically confirmed Lyα-emitting companion galaxies and appears to lie within an overdense region. The radio galaxy is marginally resolved in i775 and z850, showing continuum emission aligned with the radio axis, similar to what is observed for lower redshift radio galaxies. Both the half-light radius and the UV star formation rate are comparable to the typical values found for Lyman break galaxies at z~4-5. The Lyα emitters are sub-L* galaxies, with deduced star formation rates of 1-10 Msolar yr-1. One of the Lyα emitters is only detected in Lyα. Based on the star formation rate of ~3 Msolar yr-1 calculated from Lyα, the lack of continuum emission could be explained if the galaxy is younger than ~2 Myr and is producing its first stars. Observations in V606i775z850 were used to identify additional Lyman break galaxies associated with this structure. In addition to the radio galaxy, there are 22 V606 break (z~5) galaxies with z850dropouts extracted from GOODS and the UDF parallel fields. We find evidence for an overdensity to very high confidence (>99%), based on a counts-in-cells analysis applied to the control field. The excess suggests that the V606 break objects are associated with a forming cluster around the radio galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9291.

  2. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    International Nuclear Information System (INIS)

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-01-01

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 3 μ m /S 1.6 μ m versus S 5 μ m /S 3 μ m criterion, we identify 42 sources where the rest-frame 1.6 μm emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10 11 M sun , and remarkably constant within the range 1 3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z ∼ 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 μm hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  3. The Evolution of the Stellar Hosts of Radio Galaxies

    International Nuclear Information System (INIS)

    Lacy, Mark; Bunker, Andrew J.; Ridgway, Susan E.

    2000-01-01

    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-iii sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities ≅20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z∼2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the recent model AGN hosts of Kauffmann and Haehnelt. There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z(greater-or-similar sign)3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z(greater-or-similar sign)2.5. The lack of a strong ''redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts (greater-or-similar sign)1 Gyr, from z(greater-or-similar sign)5 to z∼3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early because of high baryon densities in the centers of their dark matter haloes. (c) 2000 The American Astronomical Society

  4. Giant Double Radio Source DA 240: Purveyor of Galaxies

    Science.gov (United States)

    Chen, Ru-Rong; Strom, Richard; Peng, Bo

    2018-05-01

    Galaxies of stars are building blocks of the baryonic universe. Their composition, structure, and kinematics have been well studied, but details of their origins remain sketchy. The collapse of gas clouds, induced by external forces whereby gravity overcomes internal pressure to form stars, is the likely starting point. Among the perturbing initiators of galaxy formation, radio source beams (jets) are quite effective. Typically, a beam may spawn one galaxy, though instances of several aligned with the radio axis are known. Recently, we found an impressive 14 companions in the lobes of the giant radio galaxy DA 240, which we argue formed as the result of jet instigation. This conclusion is bolstered by the fact that the galaxy groups display Z-shaped symmetry with respect to the radio axis. There is some evidence for star formation among the aligned companions. We also conclude that galaxy alignments at low redshift may derive from line-emitting gas observed in radio components of high-redshift galaxies.

  5. Infrared and radio emission from S0 galaxies

    International Nuclear Information System (INIS)

    Bally, J.; Thronson, H.A. Jr.

    1989-01-01

    Far-IR data are presented on 74 early-type S0 galaxies that were selected on the basis of the availability of radio-continuum measurements. Most of the galaxies are detected at IR wavelengths with IRAS, indicating the presence of a cold interstellar medium (ISM) in these galaxies. The mass of gas in these systems is estimated to lie in the range of 10 to the 7th to 10 to the 10th solar. The most massive ISM in some S0s approaches that found in some spirals. The brighter IR-emitting galaxies all lie close to a relationship established for gas-rich spiral galaxies. None of these galaxies have large ratio fluxes, suggesting that strong nuclear radio sources or extended radio lobes and jets are absent or suppressed. Strong radio emission is found among those galaxies that are either faint or not detected at IR wavelengths. The absence of an ISM suggests that these galaxies are of an earlier type that those that have large IR fluxes. 38 references

  6. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...

  7. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    Science.gov (United States)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  8. Observations of neutral hydrogen in radio-loud and interacting galaxies

    Science.gov (United States)

    Heckman, T. M.; Balick, B.; Van Breugel, W. J. W.; Miley, G. K.

    1983-01-01

    The results of a survey of H I in radio-loud and interacting galaxies is presented. Four cases of H I absorption and five of emission are reported. The interesting features found for individual galaxies are described, and the systematic properties are discussed. Column densities of absorbing gas generally exceed those expected for a 'Milky Way' H I disk by more than an order of magnitude. The absorbing gas must have a flattened, disklike morphology oriented roughly parallel to the optical disk of the galaxy. Turbulent noncircular gas motions are evidently present, which are shown to be almost certainly induced by galaxy-galaxy interactions. The set of galaxies in which H I absorption has been detected is dominated by morphologically peculiar objects. It is concluded that the detection of H I seen in absorption against a nuclear radio source permits direct determination of the sense of radial flow of extranuclear material, and is direct evidence that potential 'food' for a compact object in the nucleus exists in the galaxy.

  9. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  10. Fast radio burst tied to distant dwarf galaxy (Image 2)

    National Science Foundation

    2017-06-07

    Full Text Available Radio telescope at Arecibo only localized the fast radio burst to the area inside the two circles in this image, but the Very Large Array was able to pinpoint it as a dwarf galaxy within the square (shown at intersection of cross hairs in enlarged box)

  11. Dynamical evolution in clusters of galaxies with low-frequency radio emission

    International Nuclear Information System (INIS)

    Guthrie, B.N.G.

    1977-01-01

    Clusters of galaxies in which radio emission at low frequencies ( approximately 10 9 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed. (Auth.)

  12. Radio identifications of UGC galaxies - starbursts and monsters

    International Nuclear Information System (INIS)

    Condon, J.J.; Broderick, J.J.

    1988-01-01

    New and previously published observational data on galaxies with declination less than +82 deg from the Uppsala General Catalog (Nilson, 1973) are compiled in extensive tables and characterized in detail. Optical positions are confirmed by measurement of Palomar Sky Survey O prints, and radio identifications for 176 galaxies are made on the basis of 1.4-GHz Green Bank sky maps or 1.49-GHz observations obtained with the C configuration of the VLA in November-December 1986; contour maps based on the latter observations are provided. Radio-selected and IR-selected galaxy populations are found to be similar (and distinct from optically selected populations), and three radio/IR criteria are developed to distinguish galaxies powered by starbursts from those with supermassive black holes or other monster energy sources. 197 references

  13. The host galaxy of a fast radio burst

    OpenAIRE

    Keane, E. F.; Jencson, J.; Kasliwal, Mansi M.

    2016-01-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty i...

  14. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    Science.gov (United States)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  15. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  16. Radio properties of central dominant galaxies in cluster cooling flows

    International Nuclear Information System (INIS)

    O'dea, C.P.; Baum, S.A.

    1986-01-01

    New VLA observations of central dominant (cd) galaxies currently thought to be in cluster cooling flows are combined with observations from the literature to examine the global properties of a heterogeneous sample of 31 cd galaxies. The radio sources tend to be of low or intermediate radio power and have small sizes (median extent about 25 kpc). The resolved sources tend to have distorted morphologies (e.g., wide-angle tails and S shapes). It is not yet clear whether the radio emission from these cd galaxies is significantly different from those not thought to be in cluster cooling flows. The result of Jones and Forman (1984), that there is a possible correlation between radio power and excess X-ray luminosity in the cluster center (above a King model fit to the X-ray surface brightness), is confirmed. 43 references

  17. The radio halo and active galaxies in the Coma cluster

    International Nuclear Information System (INIS)

    Cordey, R.A.

    1985-01-01

    The Cambridge Low-Frequency Synthesis Telescope has been used to map the Coma cluster at 151 MHz. Two new extended sources are found, associated with the cluster galaxies NGC4839 and NGC4849. The central halo radio source is shown not to have a simple symmetrical structure but to be distorted, with separate centres of brightening near the radio galaxies NGC4874 and IC4040. The structure cannot be accounted for by cluster-wide acceleration processes but implies a close connection with current radio galaxies and, in particular, models requiring diffusion of electrons out of radio sources seem to be favoured. The other large source, near Coma A, is detected and higher resolution data at 1407 MHz are used to clarify its structure. (author)

  18. Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER

    Science.gov (United States)

    Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.

    2018-05-01

    We present radio continuum maps of 12 nearby (D ≤ 27 Mpc), edge-on (i ≥ 76°), late-type spiral galaxies mostly at 1.4 and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telescope, Effelsberg 100-m, and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of 3.0 ± 1.7 kpc; they show no correlation with either star formation rate (SFR), SFR surface density (ΣSFR), or rotation speed (Vrot). The advection speeds range from 100 to 700 km s - 1 and display correlations of V∝SFR0.36 ± 0.06 and V∝ Σ _SFR^{0.39± 0.09}; they agree remarkably well with the escape velocities (0.5 ≤ V/Vesc ≤ 2), which can be explained by cosmic ray-driven winds. Radio haloes show the presence of disc winds in galaxies with ΣSFR > 10 - 3 M⊙ yr - 1 kpc - 2 that extend over several kpc and are driven by processes related to the distributed star formation in the disc.

  19. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  20. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  1. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NARCIS (Netherlands)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into

  2. Classifying Radio Galaxies with the Convolutional Neural Network

    International Nuclear Information System (INIS)

    Aniyan, A. K.; Thorat, K.

    2017-01-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  3. Classifying Radio Galaxies with the Convolutional Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Aniyan, A. K.; Thorat, K. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa)

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  4. Classifying Radio Galaxies with the Convolutional Neural Network

    Science.gov (United States)

    Aniyan, A. K.; Thorat, K.

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff-Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ˜200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  5. A CLUSTER OF COMPACT RADIO SOURCES IN W40

    International Nuclear Information System (INIS)

    RodrIguez, Luis F.; Rodney, Steven A.; Reipurth, Bo

    2010-01-01

    We present deep 3.6 cm radio continuum observations of the H II region W40 obtained using the Very Large Array (VLA) in its A and B configurations. We detect a total of 20 compact radio sources in a region of 4' x 4', with 11 of them concentrated in a band with 30'' of extent. We also present JHK photometry of the W40 cluster taken with the QUIRC instrument on the University of Hawaii 2.2 m telescope. These data reveal that 15 of the 20 VLA sources have infrared counterparts, and 10 show radio variability with periods less than 20 days. Based on these combined radio and IR data, we propose that eight of the radio sources are candidate ultracompact H II regions, seven are likely to be young stellar objects, and two may be shocked interstellar gas.

  6. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  7. An intrinsically asymmetric radio galaxy: 0500+630?

    Science.gov (United States)

    Saikia, D. J.; Thomasson, P.; Jackson, N.; Salter, C. J.; Junor, W.

    1996-10-01

    As part of a search for high-luminosity radio galaxies with one-sided structures, the radio galaxy 0500+630 has been imaged with both the VLA and MERLIN and its optical spectrum determined using the Isaac Newton Telescope on La Palma. The galaxy is found to have a redshift of 0.290+/-0.004. The radio observations show the source to be highly asymmetric, with an overall structure which cannot be understood easily by ascribing it either to orientation and relativistic beaming effects or to an asymmetric distribution of gas in the central region. A comparison of this source with objects of similar luminosity suggests that it is one of the best examples yet of a source with possibly an intrinsic asymmetry in either the collimation of its jets or the supply of energy from the central engine to opposite sides.

  8. Giant Radio Jet Coming From Wrong Kind of Galaxy

    Science.gov (United States)

    2003-01-01

    Giant jets of subatomic particles moving at nearly the speed of light have been found coming from thousands of galaxies across the Universe, but always from elliptical galaxies or galaxies in the process of merging -- until now. Using the combined power of the Hubble Space Telescope, the Very Large Array (VLA) and the 8-meter Gemini-South Telescope, astronomers have discovered a huge jet coming from a spiral galaxy similar to our own Milky Way. Radio-optical view of galaxy Combined HST and VLA image of the galaxy 0313-192. Optical HST image shows the galaxy edge-on; VLA image, shown in red, reveals giant jet of speeding particles. For more images, see this link below. CREDIT: Keel, Ledlow & Owen; STScI,NRAO/AUI/NSF, NASA "We've always thought spirals were the wrong kind of galaxy to generate these huge jets, but now we're going to have to re-think some of our ideas on what produces these jets," said William Keel, a University of Alabama astronomer who led the research team. Keel worked with Michael Ledlow of Gemini Observatory and Frazer Owen of the National Radio Astronomy Observatory. The scientists reported their findings at the American Astronomical Society's meeting in Seattle, Washington. "Further study of this galaxy may provide unique insights on just what needs to happen in a galaxy to produce these powerful jets of particles," Keel said. In addition, Owen said, "The loose-knit nature of the cluster of galaxies in which this galaxy resides may play a part in allowing this particular spiral to produce jets." Astronomers believe such jets originate at the cores of galaxies, where supermassive black holes provide the tremendous gravitational energy to accelerate particles to nearly the speed of light. Magnetic fields twisted tightly by spinning disks of material being sucked into the black hole are presumed to narrow the speeding particles into thin jets, like a nozzle on a garden hose. Both elliptical and spiral galaxies are believed to harbor supermassive

  9. Ultra-high-energy cosmic rays from radio galaxies

    Science.gov (United States)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  10. Low frequency radio observations of five rich clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.; Erickson, W.C.

    1980-01-01

    Observations have been made at 43.0 and 73.8 MHz of five rich x-ray emitting clusters of galaxies: Abell 399/401, Abell 426 (the Perseus cluster), Abell 1367, Abell 1656 (the Coma cluster), and the Virgo cluster. A fan beam synthesis system has been used to search for extended radio emission, i.e., radio halos, in these clusters. Radio halos were detected in the Coma and Virgo clusters. No evidence was found for the existence of 3C84B, the halo source previously thought to exist in the Perseus cluster. If halo sources exist in Abell 399/401 or Abell 1367, they must be quite weak at frequencies less than 100 MHz. The observed sizes of the extended sources in Coma and Virgo imply that the rate of particle propagation away from strong radio galaxies greatly exceeds the Alfven velocity and is probably independent of particle energy

  11. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  12. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  13. Particle acceleration by Alfven wave turbulence in radio galaxies

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1986-01-01

    Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources

  14. Radio Selection of the Most Distant Galaxy Clusters

    Science.gov (United States)

    Daddi, E.; Jin, S.; Strazzullo, V.; Sargent, M. T.; Wang, T.; Ferrari, C.; Schinnerer, E.; Smolčić, V.; Calabró, A.; Coogan, R.; Delhaize, J.; Delvecchio, I.; Elbaz, D.; Gobat, R.; Gu, Q.; Liu, D.; Novak, M.; Valentino, F.

    2017-09-01

    We show that the most distant X-ray-detected cluster known to date, Cl J1001 at {z}{spec}=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10\\prime\\prime ) in deep 0\\buildrel{\\prime\\prime}\\over{.} 75 resolution VLA 3 GHz imaging, with {S}3{GHz}> 8 μ {Jy}. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg2 field using radio-detected 3 GHz sources and looking for peaks in {{{Σ }}}5 density maps. Cl J1001 is the strongest overdensity by far with > 10σ , with a simple {z}{phot}> 1.5 preselection. A cruder photometric rejection of zsamples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z≳ 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.

  15. Neutrino Bursts from Fanaroff-Riley I Radio Galaxies

    CERN Document Server

    Anchordoqui, Luis A.; Halzen, Francis; Weiler, Thomas J.; Anchordoqui, Luis A.; Goldberg, Haim; Halzen, Francis; Weiler, Thomas J.

    2004-01-01

    On the basis of existing observations (at the 4.5 \\sigma level) of TeV gamma-ray outbursts from the Fanaroff-Riley I (FRI) radio galaxy Centaurus A, we estimate the accompanying neutrino flux in a scenario where both photons and neutrinos emerge from pion decay. We find a neutrino flux on Earth dF_{\

  16. High-Redshift Radio Galaxies from Deep Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, ... Articles are also visible in Web of Science immediately.

  17. (WAT) Radio Source Associated with the Galaxy PGC 1519010 NG

    Indian Academy of Sciences (India)

    2009-03-13

    Mar 13, 2009 ... 2Raman Research Institute, Sadashivnagar, Bangalore 560 080, India. ∗ e-mail: ... Radio galaxies—cluster of galaxies—ram pressure—intra- ... In this paper, we report the GMRT detection of a WAT associated with the galaxy.

  18. Physics of compact radio sources. I. Particle acceleration and flux variations

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.; Scott, J.S.

    1976-01-01

    The observed patterns of variability of compact radio sources may be explained by assuming that the radio components are plasmons containing relativistic particles, and by applying a model with the following features: (1) the plasmons are ejected at high speed into the interstellar medium in the nuclei of active galaxies: (2) ram pressure confinement of the plasmons leads to Rayleigh-Taylor and Kelvin-Helmholtz instabilities therein; (3) turbulence is thereby introduced into the plasmons; (4) the turbulence amplifies the plasmon magnetic field (for a short period) and this leads to betatron aceleration of the relativistic particles; (5) the turbulence vortices continue to accelerate the particles by the second-order Fermi acceleration mechanism. The emission patterns are the result of the combination of these accelerations and adiabatic losses

  19. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  20. MULTI-FREQUENCY STUDIES OF RADIO RELICS IN THE GALAXY CLUSTERS A4038, A1664, AND A786

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Ruta; Dwarakanath, K. S., E-mail: ruta@iucaa.ernet.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080 (India)

    2012-01-01

    We present a multi-frequency study of radio relics associated with the galaxy clusters A4038, A1664, and A786. Radio images, integrated spectra, spectral index maps, and fits to the integrated spectra in the framework of the adiabatic compression model are presented. Images of the relic in A4038 at 150, 240, and 606 MHz with the Giant Meterwave Radio Telescope have revealed extended ultra-steep spectrum ({alpha} {approx} -1.8 to -2.7) emission of extent 210 Multiplication-Sign 80 kpc{sup 2}. The model of passively evolving radio lobes compressed by a shock fits the integrated spectrum best. The relic with a circular morphology at the outskirts of the cluster A1664 has an integrated spectral index of {approx} - 1.10 {+-} 0.06 and is best fit by the model of radio lobes lurking for {approx}4 Multiplication-Sign 10{sup 7} yr. The relic near A786 has a curved spectrum and is best fit by a model of radio lobes lurking for {approx}3 Multiplication-Sign 10{sup 7} yr. At 4.7 GHz, a compact radio source, possibly the progenitor of the A786 relic, is detected near the center of the radio relic. The A786 radio relic is thus likely a lurking radio galaxy rather than a site of cosmological shock as has been considered in earlier studies.

  1. Evolution of Extragalactic Radio Sources and Quasar/Galaxy Unification

    Science.gov (United States)

    Onah, C. I.; Ubachukwu, A. A.; Odo, F. C.; Onuchukwu, C. C.

    2018-04-01

    We use a large sample of radio sources to investigate the effects of evolution, luminosity selection and radio source orientation in explaining the apparent deviation of observed angular size - redshift (θ - z) relation of extragalactic radio sources (EGRSs) from the standard model. We have fitted the observed θ - z data with standard cosmological models based on a flat universe (Ω0 = 1). The size evolution of EGRSs has been described as luminosity, temporal and orientation-dependent in the form DP,z,Φ ≍ P±q(1 + z)-m sinΦ, with q=0.3, Φ=59°, m=-0.26 for radio galaxies and q=-0.5, Φ=33°, m=3.1 for radio quasars respectively. Critical points of luminosity, logPcrit=26.33 WHz-1 and logDc=2.51 kpc (316.23 kpc) of the present sample of radio sources were also observed. All the results were found to be consistent with the popular quasar/galaxy unification scheme.

  2. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  3. Identification and spectrophotometry of faint southern radio galaxies

    International Nuclear Information System (INIS)

    Spinrad, H.; Kron, R.G.; Hunstead, R.W.

    1980-01-01

    We have observed a mixed sample of southern radio sources, identified on the Palomar sky survey or on previous direct plates taken with medium-aperture reflectors. At CIO we obtained a few deep 4m photographs and SIT spectrophotometry for redshift and continuum-color measurement. Almost all our sources were faint galaxies; the largest redshift measured was for 3C 275, with z=0.480. The ultraviolet continuum of PKS 0400--643, a ''thermal'' galaxy with z=0.476, closely resembles that of 3C 295 and shows some color evolution in U--B compared to nearby giant ellipticals

  4. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI

    Science.gov (United States)

    Middelberg, E.; Roy, A. L.; Nagar, N. M.; Krichbaum, T. P.; Norris, R. P.; Wilson, A. S.; Falcke, H.; Colbert, E. J. M.; Witzel, A.; Fricke, K. J.

    2004-04-01

    We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component configurations in NGC 7674 and NGC 2110 are simple, linear structures, whereas the configurations in NGC 5506 and Mrk 1210 have multiple components with no clear axis of symmetry. We suggest that NGC 7674 is a low-luminosity compact symmetric object. Comparing the images at different epochs, we find a proper motion in NGC 7674 of (0.92±0.07) c between the two central components separated by 282 pc and, in NGC 5506, we find a 3 σ upper limit of 0.50 c for the components separated by 3.8 pc. Our results confirm and extend earlier work showing that the outward motion of radio components in Seyfert galaxies is non-relativistic on pc scales. We briefly discuss whether this non-relativistic motion is intrinsic to the jet-formation process or results from deceleration of an initially relativistic jet by interaction with the pc or sub-pc scale interstellar medium. We combined our sample with a list compiled from the literature of VLBI observations made of Seyfert galaxies, and found that most Seyfert nuclei have at least one flat-spectrum component on the VLBI scale, which was not seen in the spectral indices measured at arcsec resolution. We found also that the bimodal alignment of pc and kpc radio structures displayed by radio galaxies and quasars is not displayed by this sample of Seyferts, which shows a uniform distribution of misalignment between 0° and 90°. The frequent misalignment could result from jet precession or from deflection of the jet by interaction with gas in the interstellar medium.

  5. The difference between radio-loud and radio-quiet active galaxies

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-01-01

    The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.

  6. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R. [INAF/IRA, via Gobetti 101, I-40129 Bologna (Italy); Ettori, S. [INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Pratt, G. W. [Laboratoire AIM, IRFU/Service dAstrophysique-CEA/DSM-CNRS-Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Dolag, K. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Markevitch, M. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the

  7. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  8. 4C radio sources in clusters of galaxies

    International Nuclear Information System (INIS)

    McHardy, I.M.

    1979-01-01

    Observations of a complete sample of 4C and 4CT radio sources in Abell clusters with the Cambridge One-Mile telescope are analysed. It is concluded that radio sources are strongly concentrated towards the cluster centres and are equally likely to be found in clusters of any richness. The probability of a galaxy of a given absolute magnitude producing a source above a given luminosity does not depend on cluster membership. 4C and 4CT radio sources in clusters, selected at 178 MHz, occur preferentially in Bautz-Morgan (BM) class 1 clusters, whereas those selected at 1.4 GHz do not. The most powerful radio source in the cluster is almost always associated with the optically brightest galaxy. The average spectrum of 4C sources in the range 408 to 1407 MHz is steeper in BM class 1 than in other classes. Spectra also steepen with cluster richness. the morphology of 4C sources in clusters depends strongly on BM class and, in particular, radio-trail sources occur only in BM classes II, II-III and III. (author)

  9. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    Science.gov (United States)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  10. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    NARCIS (Netherlands)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-01-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio

  11. A young source of optical emission from distant radio galaxies.

    Science.gov (United States)

    Hammer, F; Fèvre, O Le; Angonin, M C

    1993-03-25

    DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.

  12. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by ...

  13. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the. Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emis- sion closely follows the ultraviolet emission ...

  14. Searching for Compact Radio Sources Associated with UCH ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Masqué, Josep M.; Trinidad, Miguel A.; Rodríguez-Rico, Carlos A. [Departamento de Astronomía, Universidad de Guanajuato, Apdo. Postal 144, 36000 Guanajuato, México (Mexico); Rodríguez, Luis F.; Kurtz, Stan; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2017-02-10

    Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 10{sup 4}–10{sup 5} years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.

  15. Interstellar scattering of the compact radio source 2005 + 403

    International Nuclear Information System (INIS)

    Mutel, R.L.; Lestrade, J.

    1990-01-01

    Analysis of Mk III VLBI visibility amplitudes of the compact radio source 2005 + 403 shows an excess at baselines greater than a few diffractive scale lengths compared with that expected from formulas using ensemble-averaged quantities and power-law turbulence with quasi-Kolmogorov spectral indices. The data are in good agreement with the 1989 analysis of Goodman and Narayan, who find that measured visibility amplitudes correspond to the average visibility regime, which differs significantly from the ensemble-averaged results for baselines much longer than one diffractive scale length. 20 refs

  16. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Martin; Westhues, Christian; Chini, Rolf [Astronomisches Institut, Ruhr Universität, Bochum (Germany); Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Barthel, Peter; Koopmans, Léon V. E. [Kapteyn Astronomical Institute, University of Groningen (Netherlands); Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Vegetti, Simona [Max-Planck-Institut für Astrophysik, Garching (Germany); Clements, David L. [Imperial College, London (United Kingdom); Fassnacht, Christopher D. [University of California, Davis, CA (United States); Horesh, Assaf [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA (United States); Lagattuta, David J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Stern, Daniel; Wylezalek, Dominika, E-mail: haas@astro.rub.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

    2014-07-20

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L{sub i}∼8±4 M{sub ⊙} L{sub ⊙}{sup −1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a

  17. Radio-continuum jets around the peculiar galaxy pair ESO 295-IG022

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2010-01-01

    Full Text Available We report new radio-continuum observations with the Australia Telescope Compact Array (ATCA of the region surrounding the peculiar galaxy pair ESO 295-IG022 at the centre of the poor cluster Abell S0102. We observed this cluster at wavelengths of λ=20/13 and 6/3 cm with the ATCA 6 km array. With these configurations, we achieved a resolution of ~2'' at 3 cm which is sufficient to resolve the jet-like structure of ~3' length detected at 20 cm. From our new high resolution images at 6 and 3 cm we confirm the presence of a double jet structure, most likely originating from the northern galaxy (ESO 295-IG022-N, bent and twisted towards the south. We found the spectral index of the jet to be very steep (α=-1.32. No point source was detected that could be associated with the core of ESO 295-IG022-N. On the other hand, ESO 295-IG022-S does not show any jet structure, but does show a point radio source. This source has variable flux and spectral index, and appears to be superposed on the line-of-sight of the jets (seen at 20-cm originating from the northern galaxy ESO 295-IG022-N. Finally, regions of very high and somewhat well ordered polarization were detected at the level of 70%.

  18. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  19. On the origin of X-shaped radio galaxies

    International Nuclear Information System (INIS)

    Gopal-Krishna; Biermann, Peter L.; Gergely, László Á.; Wiita, Paul J.

    2012-01-01

    After a brief, critical review of the leading explanations proposed for the small but important subset of radio galaxies showing an X-shaped morphology (XRGs) we propose a generalized model, based on the jet-shell interaction and spin-flip hypotheses. The most popular scenarios for this intriguing phenomenon invoke either hydrodynamical backflows and over-pressured cocoons or rapid jet reorientations, presumably from the spin-flips of central engines following the mergers of pairs of galaxies, each of which contains a supermassive black hole. We confront these models with a number of key observations, and thus argue that none of the models is capable of explaining the entire range of the salient observational properties of XRGs, although some of the arguments raised in the literature against the spin-flip scenario are probably not tenable. We then propose a new scenario which also involves galactic mergers but would allow the spin of the central engine to maintain its direction. Motivated by detailed multi-band observations of the nearest radio galaxy, Centaurus A, this new model emphasizes the role of the interactions between the jets and the shells of stars and gas that form and rotate around the merged galaxy and can cause temporary deflections of the jets, occasionally giving rise to an X-shaped radio structure. Although each model is likely to be relevant to a subset of XRGs, the bulk of the evidence indicates that most of them are best explained by the jet-shell interaction or spin-flip hypotheses.

  20. Detection of a compact radio source near the center of a gravitational lens: quasar image or galactic core

    International Nuclear Information System (INIS)

    Gorenstein, M.V.; Shapiro, I.I.; Cohen, N.L.

    1983-01-01

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q0957 + 561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives

  1. On the Evolution of Helium in Blue Compact Galaxies

    International Nuclear Information System (INIS)

    Fields, B.D.; Olive, K.A.

    1998-01-01

    We discuss the chemical evolution of dwarf irregular and blue compact galaxies in light of recent data, new stellar yields, and chemical evolution models. We examine the abundance data for evidence of H ii region self-enrichment effects, which would lead to correlations in the scatter of helium, nitrogen, and oxygen abundances around their mean trends. The observed helium abundance trends show no such correlations, although the nitrogen-oxygen trend does show strong evidence for real scatter beyond observational error. We construct simple models for the chemical evolution of these galaxies, using the most recent yields of 4 He, C, N, and O in intermediate- and high-mass stars. The effects of galactic outflows, which can arise both from bulk heating and evaporation of the interstellar medium and from the partial escape of enriched supernova ejecta are included. In agreement with other studies, we find that supernova-enriched outflows can roughly reproduce the observed He, C, N, and O trends; however, in models that fit N versus O, the slopes ΔY/ΔO and ΔY/ΔN consistently fall more than 2 σ below the fit to observations. We discuss the role of the models and their uncertainties in the extrapolation of primordial helium from the data. We also explore the model dependence arising from nucleosynthesis uncertainties associated with nitrogen yields in intermediate-mass stars, the fate of 8 endash 11 M circle-dot stars, and massive star winds. copyright copyright 1998. The American Astronomical Society

  2. EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Stephanie K.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Schiavon, Ricardo [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Graves, Genevieve [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Damjanov, Ivana [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Newman, Jeffrey [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Simard, Luc [National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2015-01-01

    Most massive, passive galaxies are compact at high redshifts, but similarly compact massive galaxies are rare in the local universe. The most common interpretation of this phenomenon is that massive galaxies have grown in size by a factor of about five since redshift z = 2. An alternative explanation is that recently quenched massive galaxies are larger (a {sup p}rogenitor bias{sup )}. In this paper, we explore the importance of progenitor bias by looking for systematic differences in the stellar populations of compact early-type galaxies in the DEEP2 survey as a function of size. Our analysis is based on applying the statistical technique of bootstrap resampling to constrain differences in the median ages of our samples and to begin to characterize the distribution of stellar populations in our co-added spectra. The light-weighted ages of compact early-type galaxies at redshifts 0.5 < z < 1.4 are compared to those of a control sample of larger galaxies at similar redshifts. We find that massive compact early-type galaxies selected on the basis of red color and high bulge-to-total ratio are younger than similarly selected larger galaxies, suggesting that size growth in these objects is not driven mainly by progenitor bias, and that individual galaxies grow as their stellar populations age. However, compact early-type galaxies selected on the basis of image smoothness and high bulge-to-total ratio are older than a control sample of larger galaxies. Progenitor bias will play a significant role in defining the apparent size changes of early-type galaxies if they are selected on the basis of the smoothness of their light distributions.

  3. The radio galaxy K-z relation to z ~ 4.5

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve; Eales, Steve; Blundell, Katherine M.; Willott, Chris J.

    2001-01-01

    Using a new radio sample, 6C* designed to find radio galaxies at z > 4 along with the complete 3CRR and 6CE sample we extend the radio galaxy K-z relation to z~4.5. The 6C* K-z data significantly improve delineation of the K-z relation for radio galaxies at high redshift (z > 2). Accounting for non-stellar contamination, and for correlations between radio luminosity and estimates of stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity ...

  4. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-01-01

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q ∼> 0.3 with a minimum possible value q min ≅ 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s –1 in the direction within an angle ∼< 40° relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  5. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in [National Center for Radio Astrophysics—Tata Institute of Fundamental Research Post Box 3, Ganeshkhind P.O., Pune 41007 (India)

    2017-10-01

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.

  6. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  7. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Prandoni, I. [INAF-IRA, Via P. Gobetti 101, I-40129 Bologna (Italy); Lapi, A.; Obi, I.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2017-06-20

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statistics at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.

  8. Problem of spiral galaxies and satellite radio sources

    International Nuclear Information System (INIS)

    Arp, H.; Carpenter, R.; Gulkis, S.; Klein, M.

    1976-01-01

    A detailed comparison is made between the results of this program and the results of previous investigators. In particular, attention is called to the potentially important implications of an investigation by Tovmasyan, who searched a large number of spirals and found evidence that a small percentage of them apparently have radio satellites located up to 20' from the central galaxy. 15 sources were measured selected from Tovmasyan's list of 43 satellite sources. Results confirm his positions and relative flux densities for each of the sources

  9. The fate of high redshift massive compact galaxies in dense environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Tobias; /Zurich, ETH; Mayer, Lucio; /Zurich U.; Carollo, Marcella; /Zurich, ETH; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  10. Magnetic field structures in active compact radio sources

    International Nuclear Information System (INIS)

    Jones, T.W.; Rudnick, L.; Fiedler, R.L.; Aller, H.D.; Aller, M.F.; Hodge, P.E.

    1985-01-01

    The analysis of simultaneous multifrequency linear polarimetry data between 1.4 GHz and 90 GHz for about 20 active, compact radio sources at six epochs from 1977 December 10 1980 July is presented. In addition, monthly 8 Ghz polarization data on the same sources were examined. The general polarization characteristics of these sources can be well described in terms of magnetic fields which are largely turbulent and slightly anisotropic. The magnetic field symmetry axes are generally aligned with the source structural axes on the milli-arcsecond scale (OJ 287 is a notable exception.) Monte Carlo calculations indicate that observed polarization variations and in particular rotator polarization events can be produced in this model as a consequence of random walks generated through evolution of the turbulent magnetic field. 43 references

  11. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    Science.gov (United States)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  12. MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES

    International Nuclear Information System (INIS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-01-01

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 μm color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  13. ON THE ORIGIN OF FANAROFF-RILEY CLASSIFICATION OF RADIO GALAXIES: DECELERATION OF SUPERSONIC RADIO LOBES

    International Nuclear Information System (INIS)

    Kawakatu, Nozomu; Kino, Motoki; Nagai, Hiroshi

    2009-01-01

    We argue that the origin of 'FRI/FRII dichotomy' - the division between Fanaroff-Riley class I (FRI) with subsonic lobes and class II (FRII) radio sources with supersonic lobes is sharp in the radio-optical luminosity plane (Owen-White diagram) - can be explained by the deceleration of advancing radio lobes. The deceleration is caused by the growth of the effective cross-sectional area of radio lobes. We derive the condition in which an initially supersonic lobe turns into a subsonic lobe, combining the ram pressure equilibrium between the hot spots and the ambient medium with the relation between 'the hot spot radius' and 'the linear size of radio sources' obtained from the radio observations. We find that the dividing line between the supersonic lobes and subsonic ones is determined by the ratio of the jet power L j to the number density of the ambient matter at the core radius of the host galaxy n-bar a . It is also found that the maximal ratio of (L j ,n-bar a ) exists and its value resides in (L j ,n-bar a ) max ∼10 44-47 er s -1 cm 3 , taking into account considerable uncertainties. This suggests that the maximal value (L j ,n-bar a ) max separates between FRIs and FRIIs.

  14. Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field

    NARCIS (Netherlands)

    Brienza, M.; Godfrey, L.; Morganti, R.; Prandoni, I.; Harwood, J.; Mahony, E. K.; Hardcastle, M. J.; Murgia, M.; Röttgering, H. J. A.; Shimwell, T. W.; Shulevski, A.

    2017-01-01

    Context. The phase of radio galaxy evolution after the jets have switched off, often referred to as the remnant phase, is poorly understood and very few sources in this phase are known. Aims: In this work we present an extensive search for remnant radio galaxies in the Lockman Hole, a well-studied

  15. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Lähteenmäki, A.; Järvelä, E.; Ramakrishnan, V.; Tornikoski, M.; Tammi, J.; Vera, R. J. C.; Chamani, W.

    2018-06-01

    We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections. 37 GHz data are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/L1

  16. Model of the electron acceleration in the clouds of radio galaxies

    International Nuclear Information System (INIS)

    Fedorenko, V.N.

    1980-01-01

    The mechanism of electron turbulent acceleration in the clouds of radio galaxies is studied. It is suggested that clouds of radio galaxies are continuously filled by relativistic matter. A self-consistent turbulent acceleration regime in the clouds of radio galaxies is shown to be realized. The synchrotron energetic losses of the ultra-relativistic electrons are compensated by the turbulent acceleration due to Langmuir and Alfven waves. The source of Langmuir waves turbulence is the relativistic matter emanating from the galaxy nuclei and relaxating within the ''hot spots'' of the clouds

  17. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  18. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  19. VLBA Observations of Low Luminosity Flat Spectrum Radio Galaxies and BL Lac Objects: Polarisation Properties

    Science.gov (United States)

    Bondi, M.; Dallacasa, D.; Stanghellini, C.; Marchã, M. J. M.

    We obtained two-epoch VLBA observations at 5 GHz of a list of radio galaxies drawn from the 200 mJy sample (Marcha et al. 1996). The objects selected for milli-arcsecond scale observations are classified, on the basis of their optical spectroscopic and polarimetric properties, as BL Lac objects, normal weak line radio galaxies, broad line radio galaxies, and transition objects (those with intermediate properties). We present preliminary results on the radio polarization properties, on the milli-arcsecond scale, of objects with different optical properties and discuss structural variations detected from the two epochs.

  20. THE UBIQUITOUS RADIO CONTINUUM EMISSION FROM THE MOST MASSIVE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Brown, Michael J. I.; Jannuzi, Buell T.; Floyd, David J. E.; Mould, Jeremy R.

    2011-01-01

    We have measured the radio continuum emission of 396 early-type galaxies brighter than K = 9, using 1.4 GHz imagery from the NRAO Very Large Array Sky Survey, Green Bank 300 ft Telescope, and 64 m Parkes Radio Telescope. For M K K < -25.5 early-type galaxies are greater than zero in all cases. It is thus highly likely that the most massive galaxies always host an active galactic nucleus or have recently undergone star formation.

  1. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    International Nuclear Information System (INIS)

    Sargsyan, Lusine A.; Weedman, Daniel W.

    2009-01-01

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 μm polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z ν (7.7 μm)] - 42.57 ± 0.2, for SFR in M sun yr -1 and νL ν (7.7 μm) the luminosity at the peak of the 7.7 μm PAH feature in erg s -1 , is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 ± 0.05)log [νL ν (7.7 μm)] - 21.5 ± 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between νL ν (7.7 μm) and L ir , this becomes log [SFR(PAH)/SFR(UV)]= (0.53 ± 0.05)log L ir - 4.11 ± 0.18, for L ir in L sun . Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of ∼10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z ∼ 2.5. Application of this factor explains why the most luminous starbursts discovered by Spitzer at z ∼ 2.5 are optically faint; with this amount of extinction, the optical magnitude of a starburst

  2. On optical spectra of the NGC 6677 galaxy and the adjacent bright compact object

    International Nuclear Information System (INIS)

    Chuvaev, K.K.

    1987-01-01

    Spectral observations of NGC 6677 galaxy and the adjacent object carried out during six nights on the spectrograph with the image tube of 2.6-m Shain telescope showed, that the bright compact object is a star belonging to our galaxy but not an active galaxy. The NGC 6677 galaxy has sufficiently rich emission spectrum. On the basis of measured values of red shift Z, the inclination and the extent of emission lines, the mass of the galaxy has been estimated (M=7x10 9 M Sun )

  3. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    Science.gov (United States)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  4. Testing and selecting cosmological models with ultra-compact radio quasars

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolei [Beijing Normal University, Department of Astronomy, Beijing (China); University of Michigan, Department of Physics, Ann Arbor, MI (United States); Cao, Shuo; Qi, Jingzhao; Zhu, Zong-Hong [Beijing Normal University, Department of Astronomy, Beijing (China); Zheng, Xiaogang; Biesiada, Marek [Beijing Normal University, Department of Astronomy, Beijing (China); University of Silesia, Department of Astrophysics and Cosmology, Institute of Phyisics, Katowice (Poland)

    2017-10-15

    In this paper, we place constraints on four alternative cosmological models under the assumption of the spatial flatness of the Universe: CPL, EDE, GCG and MPC. A new compilation of 120 compact radio quasars observed by very-long-baseline interferometry, which represents a type of new cosmological standard rulers, are used to test these cosmological models. Our results show that the fits on CPL obtained from the quasar sample are well consistent with those obtained from BAO. For other cosmological models considered, quasars provide constraints in agreement with those derived with other standard probes at 1σ confidence level. Moreover, the results obtained from other statistical methods including figure of merit, Om(z) and statefinder diagnostics indicate that: (1) Radio quasar standard ruler could provide better statistical constraints than BAO for all cosmological models considered, which suggests its potential to act as a powerful complementary probe to BAO and galaxy clusters. (2) Turning to Om(z) diagnostics, CPL, GCG and EDE models cannot be distinguished from each other at the present epoch. (3) In the framework of statefinder diagnostics, MPC and EDE will deviate from the ΛCDM model in the near future, while GCG model cannot be distinguished from the ΛCDM model unless much higher precision observations are available. (orig.)

  5. On the relationship between optical and radio emission from active galaxy nuclei

    International Nuclear Information System (INIS)

    Zentsova, A.S.; Fedorenko, V.N.

    1991-01-01

    Model in which the radio emission of nuclei of Seyfert galaxies emerges in the regions of formation of their narrow emission lines, R∼100 pc is developed. Gaseous clouds, producing this emission, are moving in the surrounding hot gas and induce shock waves. The shock waves accelerate electrons, which produce radio emission via synchrotron mechanism. The model explains an observational correlation between the radio and optical properties of Seyfert galaxies and makes some predictions on the parameters of the region R∼100 pc

  6. Polarimetry and Unification of Low-Redshift Radio Galaxies

    International Nuclear Information System (INIS)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-01-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or Pα.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise steeply

  7. Polarimetry and Unification of Low-Redshift Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-11-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or P{alpha}.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise

  8. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  9. An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies

    Science.gov (United States)

    Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi

    2018-05-01

    Using large samples containing nearly 2300 active galaxies of low radio luminosity (1.4 GHz luminosity between 2 × 1023 and 3 × 1025 W Hz‑1, essentially low-excitation radio galaxies) at z ≲ 0.3, we present a self-contained analysis of the dependence of the nuclear radio activity on both intrinsic and extrinsic properties of galaxies, with the goal of identifying the best predictors of the nuclear radio activity. While confirming the established result that stellar mass must play a key role on the triggering of radio activities, we point out that for the central, most massive galaxies, the radio activity also shows a strong dependence on halo mass, which is not likely due to enhanced interaction rates in denser regions in massive, cluster-scale halos. We thus further investigate the effects of various properties of the intracluster medium (ICM) in massive clusters on the radio activities, employing two standard statistical tools, principle component analysis and logistic regression. It is found that ICM entropy, local cooling time, and pressure are the most effective in predicting the radio activity, pointing to the accretion of gas cooling out of a hot atmosphere to be the likely origin in triggering such activities in galaxies residing in massive dark matter halos. Our analysis framework enables us to logically discern the mechanisms responsible for the radio activity separately for central and satellite galaxies.

  10. A simulation-based analytic model of radio galaxies

    Science.gov (United States)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  11. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    International Nuclear Information System (INIS)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J.; Trump, Jonathan R.; Dekel, Avishai; Kassin, Susan A.; Koekemoer, Anton M.; Kocevski, Dale D.; Van der Wel, Arjen; Pérez-González, Pablo G.; Pacifici, Camilla; Simons, Raymond; Campbell, Randy D.; Goodrich, Bob; Kassis, Marc; Ceverino, Daniel; Finkelstein, Steven L.

    2014-01-01

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M ☉ yr –1 and masses of log(M/M ☉ ) ∼10.8. Their high integrated gas velocity dispersions of σ int =230 −30 +40 km s –1 , as measured from emission lines of Hα and [O III], and the resultant M * -σ int relation and M * -M dyn all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M * /M dyn ) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13 −13 +17 %), and present larger σ int than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  12. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J. [University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Trump, Jonathan R. [Pennsylvania State University, University Park, State College, PA 16802 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kassin, Susan A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [University of Kentucky, Lexington, KY 40506 (United States); Van der Wel, Arjen [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pérez-González, Pablo G. [Universidad Complutense de Madrid, Avda. de Sneca, 2 Ciudad Universitaria, E-28040 Madrid (Spain); Pacifici, Camilla [Yonsei University Observatory, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Simons, Raymond [Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2683 (United States); Campbell, Randy D.; Goodrich, Bob; Kassis, Marc [W. M. Keck Observatory, California Association for Research in Astronomy, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Ceverino, Daniel [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain); Finkelstein, Steven L. [The University of Texas at Austin, Austin, TX 78712 (United States); and others

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  13. LOW-POWER RADIO GALAXIES IN THE DISTANT UNIVERSE: A SEARCH FOR FR I AT 1 < z < 2 IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Chiaberge, Marco; Tremblay, Grant; Macchetto, F. Duccio; Sparks, W. B.; Capetti, Alessandro; Tozzi, Paolo

    2009-01-01

    We present a search for FR I radio galaxies between 1 < z < 2 in the COSMOS field. In absence of spectroscopic redshift measurements, the selection method is based on multiple steps which make use of both radio and optical constraints. The basic assumptions are that (1) the break in radio power between low-power FR Is and the more powerful FR IIs does not change with redshift, and (2) that the photometric properties of the host galaxies of low-power radio galaxies in the distant universe are similar to those of FR IIs in the same redshift bin, as is the case for nearby radio galaxies. We describe the results of our search, which yields 37 low-power radio galaxy candidates that are possibly FR Is. We show that a large fraction of these low-luminosity radio galaxies display a compact radio morphology that does not correspond to the FR I morphological classification. Furthermore, our objects are apparently associated with galaxies that show clear signs of interactions, at odds with the typical behavior observed in low-z FR I hosts. The compact radio morphology might imply that we are observing intrinsically small and possibly young objects that will eventually evolve into the giant FR Is we observe in the local universe. One of the objects appears as pointlike in Hubble Space Telescope (HST) images. This might belong to a population of FR I-QSOs, which however would represent a tiny minority of the overall population of high-z FR Is. As for the local FR Is, a large fraction of our objects are likely to be associated with groups or clusters, making them 'beacons' for high-redshift clusters of galaxies. Our search for candidate high-z FR Is we present in this paper constitutes a pilot study for objects to be observed with future high-resolution and high-sensitivity instruments such as the EVLA and ALMA in the radio band, HST/WFC3 in the optical and IR, James Webb Space Telescope in the IR, as well as future generation X-ray satellites.

  14. GREEN PEA GALAXIES AND COHORTS: LUMINOUS COMPACT EMISSION-LINE GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Izotov, Yuri I.; Guseva, Natalia G.; Thuan, Trinh X.

    2011-01-01

    We present a large sample of 803 star-forming luminous compact galaxies (LCGs) in the redshift range z = 0.02-0.63, selected from Data Release 7 of the Sloan Digital Sky Survey (SDSS). The global properties of these galaxies are similar to those of the so-called green pea star-forming galaxies in the redshift range z = 0.112-0.360 and selected from the SDSS on the basis of their green color and compact structure. In contrast to green pea galaxies, our LCGs are selected on the basis of both their spectroscopic and photometric properties, resulting in a ∼10 times larger sample, with galaxies spanning a redshift range ∼>2 times larger. We find that the oxygen abundances and the heavy element abundance ratios in LCGs do not differ from those of nearby low-metallicity blue compact dwarf galaxies. The median stellar mass of LCGs is ∼10 9 M sun . However, for galaxies with high EW(Hβ), ≥ 100 A, it is only ∼7 x 10 8 M sun . The star formation rate in LCGs varies in the large range of 0.7-60 M sun yr -1 , with a median value of ∼4 M sun yr -1 , a factor of ∼3 lower than in high-redshift star-forming galaxies at z ∼> 3. The specific star formation rates in LCGs are extremely high and vary in the range ∼10 -9 -10 -7 yr -1 , comparable to those derived in high-redshift galaxies.

  15. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    Science.gov (United States)

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  16. Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal

    Science.gov (United States)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.

    2018-05-01

    Ongoing and future radio surveys aim to trace the evolution of black hole growth and feedback from active galactic nuclei (AGNs) throughout cosmic time; however, there remain major uncertainties in translating radio luminosity functions into a reliable assessment of the energy input as a function of galaxy and/or dark matter halo mass. A crucial and long-standing problem is the composition of the radio-lobe plasma that traces AGN jet activity. In this paper, we carry out a systematic comparison of the plasma conditions in Fanaroff & Riley class I and II radio galaxies to demonstrate conclusively that their internal composition is systematically different. This difference is best explained by the presence of an energetically dominant proton population in the FRI, but not the FRII radio galaxies. We show that, as expected from this systematic difference in particle content, radio morphology also affects the jet-power/radio-luminosity relationship, with FRII radio galaxies having a significantly lower ratio of jet power to radio luminosity than the FRI cluster radio sources used to derive jet-power scaling relations via X-ray cavity measurements. Finally, we also demonstrate conclusively that lobe composition is unconnected to accretion mode (optical excitation class): the internal conditions of low- and high-excitation FRII radio lobes are indistinguishable. We conclude that inferences of population-wide AGN impact require careful assessment of the contribution of different jet subclasses, particularly given the increased diversity of jet evolutionary states expected to be present in deep, low-frequency radio surveys such as the LOFAR Two-Metre Sky Survey.

  17. Jet disruption in wide-angle tailed radio galaxies

    International Nuclear Information System (INIS)

    Burns, J.O.; Norman, M.L.; Clarke, D.A.

    1986-01-01

    The mechanisms responsible for the bending of the jets and tails of wide-angle tailed (WAT) radio galaxies in clusters are investigated theoretically, with a focus on sharp bends and rapid jet disruption. Large (1 Mpc) and small (200 kpc) WATs are differentiated, and it is suggested that the jet-tail transition in large WATs is due to collisions between the jet and cool clouds of the intracluster medium (ICM). The transition in small WATs is attributed to the passage of the jet through a planar Mach disk perpendicular to the jet flow direction. Such a disk is shown in numerical simulations to form when there is a shocklike jump in ambient pressure at the ISM/ICM interface; the origins of such a jump are explored. 14 references

  18. DISCOVERY OF ULTRA-STEEP SPECTRUM GIANT RADIO GALAXY WITH RECURRENT RADIO JET ACTIVITY IN ABELL 449

    International Nuclear Information System (INIS)

    Hunik, Dominika; Jamrozy, Marek

    2016-01-01

    We report a discovery of a 1.3 Mpc diffuse radio source with extremely steep spectrum fading radio structures in the vicinity of the Abell 449 cluster of galaxies. Its extended diffuse lobes are bright only at low radio frequencies and their synchrotron age is about 160 Myr. The parent galaxy of the extended relic structure, which is the dominant galaxy within the cluster, is starting a new jet activity. There are three weak X-rays sources in the vicinity of the cluster as found in the ROSAT survey, however it is not known if they are connected with this cluster of galaxies. Just a few radio galaxy relics are currently known in the literature, as finding them requires sensitive and high angular resolution low-frequency radio observations. Objects of this kind, which also are starting a new jet activity, are important for understanding the life cycle and evolution of active galactic nuclei. A new 613 MHz map as well as the archival radio data pertaining to this object are presented and analyzed

  19. Radio synchrotron spectra of star-forming galaxies

    Science.gov (United States)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  20. ON THE DEARTH OF COMPACT, MASSIVE, RED SEQUENCE GALAXIES IN THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Taylor, Edward N.; Franx, Marijn; Brinchmann, Jarle; Glazebrook, Karl; Van der Wel, Arjen; Van Dokkum, Pieter G

    2010-01-01

    We set out to test the claim that the recently identified population of compact, massive, and quiescent galaxies at z ∼ 2.3 must undergo significant size evolution to match the properties of galaxies found in the local universe. Using data from the Sloan Digital Sky Survey (SDSS; Data Release 7), we have conducted a search for local red sequence galaxies with sizes and masses comparable to those found at z ∼ 2.3. The SDSS spectroscopic target selection algorithm excludes high surface brightness objects; we show that this makes incompleteness a concern for such massive, compact galaxies, particularly for low redshifts (z ∼ * >10 10.7 M sun (∼5 x 10 10 M sun ) red sequence galaxies at 0.066 spec 5000. This result cannot be explained by incompleteness: in the 0.066 75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as ∼20%. In order to confirm that the absence of such compact massive galaxies in SDSS is not produced by spectroscopic selection effects, we have also looked for such galaxies in the basic SDSS photometric catalog, using photometric redshifts. While we do find signs of a slight bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider. Accepting the high-redshift results, it is clear that massive galaxies must undergo significant structural evolution over z ∼< 2 in order to match the population seen in the local universe. Our results suggest that a highly stochastic mechanism (e.g., major mergers) cannot be the primary driver of this strong size evolution.

  1. SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Vieira, J. D.; Sreevani, J. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brandt, W. N. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Litke, K.; Marrone, D. P.; Spilker, J. S. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 37-582C, Cambridge, MA 02139 (United States); Murphy, E. J., E-mail: jingzhema@ufl.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2016-12-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST , Spitzer , Herschel , Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (∼4500 M {sub ☉} yr{sup −1}) and SFR surface density Σ{sub SFR} (∼2000 M {sub ☉} yr{sup −1} kpc{sup −2}) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 10{sup 13} L {sub ☉} originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Σ{sub SFR} of any known galaxy. This high Σ{sub SFR}, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  2. SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7

    International Nuclear Information System (INIS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Vieira, J. D.; Sreevani, J.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Breuck, C. de; Gullberg, B.; Bothwell, M. S.; Brandt, W. N.; Carlstrom, J. E.; Chapman, S. C.; Hezaveh, Y.; Litke, K.; Marrone, D. P.; Spilker, J. S.; Malkan, M.; McDonald, M.; Murphy, E. J.

    2016-01-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST , Spitzer , Herschel , Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (∼4500 M ☉ yr −1 ) and SFR surface density Σ SFR (∼2000 M ☉ yr −1 kpc −2 ) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 10 13 L ☉ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Σ SFR of any known galaxy. This high Σ SFR , which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  3. A search for HI in elliptical galaxies with nuclear radio sources

    International Nuclear Information System (INIS)

    Dressel, L.L.; Bania, T.M.; O'Connell, R.W.

    1982-01-01

    Two of the galaxies with large HI mass, NGC 1052 and 4278, are known to have powerful nuclear continuum radio sources (P 2380 approximately 10 22 WHz -1 ). Since both of these attributes are fairly rare among elliptical galaxies, their coexistence in these galaxies is not likely to have occurred by chance. The authors have therefore observed twelve other elliptical galaxies with nuclear radio power P 2380 > 10 22 WHz -1 at Arecibo Observatory, to determine whether a large mass of HI is a necessary auxillary to nuclear continuum emission. (Auth.)

  4. Galactic interaction as the trigger for the young radio galaxy MRC B1221-423

    OpenAIRE

    Anderson, Craig; Johnston, Helen; Hunstead, Richard

    2013-01-01

    Mergers between a massive galaxy and a small gas-rich companion (minor mergers) have been proposed as a viable mechanism for triggering radio emission in an active galaxy. Until now the problem has been catching this sequence of events as they occur. With MRC B1221$-$423 we have an active radio galaxy that has only recently been triggered, and a companion galaxy that provides the "smoking gun". Using spectroscopic data taken with the VIMOS Integral Field Unit detector on the European Southern...

  5. Radio properties of type 1.8 and 1.9 Seyfert galaxies

    International Nuclear Information System (INIS)

    Ulvestad, J.S.

    1986-01-01

    A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle. 39 references

  6. Metal enriched gaseous halos around distant radio galaxies: Clues to feedback in galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reuland, M; van Breugel, W; de Vries, W; Dopita, A; Dey, A; Miley, G; Rottgering, H; Venemans, B; Stanford, S A; Lacy, M; Spinrad, H; Dawson, S; Stern, D; Bunker, A

    2006-08-01

    We present the results of an optical and near-IR spectroscopic study of giant nebular emission line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07 and B2 0902+34. Previous deep narrow band Ly{alpha} imaging had revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s{sup -1}, and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s{sup -1}. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of {approx} 60 kpc along the radio-axis. The dynamical structures traced in the Ly{alpha} line are, in most cases, closely echoed in the Carbon and Oxygen lines. This shows that the Ly{alpha} line is produced in a highly clumped medium of small filling factor, and can therefore be used as a tracer of the dynamics of HzRGs. We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming 'red and dead' Elliptical galaxies.

  7. The unique structural parameters of the underlying host galaxies in blue compact dwarfs

    International Nuclear Information System (INIS)

    Janowiecki, Steven; Salzer, John J.

    2014-01-01

    The nature of possible evolutionary pathways between various types of dwarf galaxies is still not fully understood. Blue compact dwarf galaxies (BCDs) provide a unique window into dwarf galaxy formation and evolution and are often thought of as an evolutionary stage between different classes of dwarf galaxies. In this study we use deep optical and near-infrared observations of the underlying hosts of BCDs in order to study the structural differences between different types of dwarf galaxies. When compared with dwarf irregular galaxies of similar luminosities, we find that the underlying hosts of BCDs have significantly more concentrated light distributions, with smaller scale lengths and brighter central surface brightnesses. We demonstrate here that the underlying hosts of BCDs are distinct from the broad continuum of typical dwarf irregular galaxies, and that it is unlikely that most dwarf irregular galaxies can transform into a BCD or vice versa. Furthermore, we find that the starburst in a BCD only brightens it on average by ∼0.8 mag (factor of two), in agreement with other studies. It appears that a BCD is a long-lived and distinct type of dwarf galaxy that exhibits an exceptionally concentrated matter distribution. We suggest that it is this compact mass distribution that enables the strong star formation events that characterize this class of dwarf galaxy, that the compactness of the underlying host can be used as a distinguishing parameter between BCDs and other dwarf galaxies, and that it can also be used to identify BCDs which are not currently experiencing an intense starburst event.

  8. THE SCALING RELATIONS AND THE FUNDAMENTAL PLANE FOR RADIO HALOS AND RELICS OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2015-01-01

    Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, while the correlations concerning giant radio halos are in general the strongest. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane

  9. 150 southern compact and bright-nucleus galaxies

    International Nuclear Information System (INIS)

    Fairall, A.P.

    1977-01-01

    Galaxies having regions of exceptionally high surface brightness have been selected from the ESO Quick Blue Survey and investigated by 'grating photography' -direct photography plus low-dispersion slitless spectroscopy. Two new Seyfert galaxies and a peculiar multiple system have been discovered. Differences in red continua are also noted. (author)

  10. Optical polarization position angle versus radio structure axis in Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, R R.J. [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1983-05-12

    The hypothesis that there are two polarization classes of Seyfert galaxies, analogous to the perpendicular and parallel radio galaxy groups, is investigated by examining optical polarimetry data. In the sample considered it is shown that all the Seyfert 1 galaxies have roughly parallel polarization while all the Seyfert 2 galaxies have roughly perpendicular polarizations. These alignment effects can be interpreted as being due to thin and thick scattering disks, respectively, surrounding the continuum sources. This would represent a fundamental difference between the two types of Seyfert galaxies.

  11. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  12. MONITORING THE BIDIRECTIONAL RELATIVISTIC JETS OF THE RADIO GALAXY 1946+708

    International Nuclear Information System (INIS)

    Taylor, G. B.; Charlot, P.; Vermeulen, R. C.; Pradel, N.

    2009-01-01

    We report on a multifrequency, multi-epoch campaign of Very Long Baseline Interferometry (VLBI) observations of the radio galaxy 1946+708 using the Very Long Baseline Array and a Global VLBI array. From these high-resolution observations, we deduce the kinematic age of the radio source to be ∼4000 years, comparable with the ages of other Compact Symmetric Objects. Ejections of pairs of jet components appears to take place on time scales of ten years and these components in the jet travel outward at intrinsic velocities between 0.6c and 0.9c. From the constraint that jet components cannot have intrinsic velocities faster than light, we derive H 0 > 57 km s -1 Mpc -1 from the fastest pair of components launched from the core. We provide strong evidence for the ejection of a new pair of components in ∼1997. From the trajectories of the jet components, we deduce that the jet is most likely to be helically confined, rather than being purely ballistic in nature.

  13. The gaseous haloes of evolving galaxies: a probe using the linear sizes of radio sources

    International Nuclear Information System (INIS)

    Subramanian, K.; Swarup, G.

    1990-01-01

    As galaxies form and evolve, their gaseous haloes are expected to undergo corresponding evolution. We examine here whether observations of the linear sizes of radio sources can be used to probe such evolution. For this purpose we first represent the gas density at various stages of galaxy formation and evolution by means of simple model density profiles, and then work out the expected linear sizes (l) of radio sources in these models. (author)

  14. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    International Nuclear Information System (INIS)

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Schinnerer, E.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-01-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  15. FAR-UV EMISSION PROPERTIES OF FR1 RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Danforth, Charles W.; Stocke, John T.; France, Kevin; Begelman, Mitchell C. [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Perlman, Eric, E-mail: danforth@colorado.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL 32901 (United States)

    2016-11-20

    The power mechanism and accretion geometry for low-power FR 1 radio galaxies are poorly understood in comparison to those for Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Ly α recombination line observed using the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope ( HST ) to investigate the accretion flows in three well-known, nearby FR 1s: M87, NGC 4696, and Hydra A. The Ly α emission line’s luminosity, velocity structure, and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the supermassive black hole in these radio-mode active galactic nuclei. We observe strong Ly α emission in all three objects with total luminosity similar to that seen in BL Lacertae objects. M87 shows a complicated emission-line profile in Ly α , which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Ly α luminosities ∼10{sup 40} erg s{sup -1} are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of a near-unity covering factor. It is possible that the Ly α -emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Ly α luminosities larger than M87 but their extrapolated, nonthermal continua are so luminous that they overpredict the observed strength of Ly α , a clear indicator of relativistic beaming in our direction. Given their substantial space density (∼4 × 10{sup -3} Mpc{sup -3}), the unbeamed Lyman continuum radiation of FR 1s may make a substantial minority contribution (∼10%) to the local UV background if all FR 1s are similar to M87 in ionizing flux level.

  16. The progenitors of the compact early-type galaxies at high redshift

    International Nuclear Information System (INIS)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Cassata, Paolo; Tundo, Elena; Conselice, Christopher J.; Wiklind, Tommy; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10 10 M ☉ ) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  17. The progenitors of the compact early-type galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Cassata, Paolo [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Tundo, Elena; Conselice, Christopher J. [The School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Wiklind, Tommy [Joint ALMA Observatory, ESO, Santiago (Chile); Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wuyts, Stijn [Max-Planck-Institut für Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Boulevard, Baltimore, MD 21218 (United States); Hathi, Nimish [Carnegie Observatories, Pasadena, CA 91101 (United States); Huang, Kuang-Han [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Kocevski, Dale, E-mail: ccwillia@astro.umass.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); and others

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10{sup 10} M {sub ☉}) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  18. A redshift survey of very faint (B <= 22.5) field galaxies, radio sources, and quasars

    International Nuclear Information System (INIS)

    Koo, D.C.

    1983-01-01

    As part of a three year program to study the evolution of quasars, radio sources and galaxies, a 10 night redshift survey has been carried out. A few preliminary results are presented (a magnitude-redshift plot of 54 galaxies). (Auth.)

  19. Flat radio-spectrum galaxies and BL Lacs I. Core properties

    NARCIS (Netherlands)

    Dennett-Thorpe, J; Marcha, MJ

    This paper concerns the relationship of BL Lacs and flat-spectrum weak emission-line galaxies. We compare the weak emission-line galaxies and the BL Lacs in a sample of 57 flat-spectrum objects (Marcha et al. 1996), using high-frequency radio and non-thermal optical flux densities, spectral indices

  20. Fornax A, Centaurus A other radio galaxies as sources of ultra-high energy cosmic rays

    Science.gov (United States)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2018-06-01

    The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.

  1. POX 186: the ultracompact blue compact dwarf galaxy reveals its nature

    Science.gov (United States)

    Doublier, V.; Kunth, D.; Courbin, F.; Magain, P.

    2000-01-01

    High resolution, ground based R and I band observations of the ultra compact dwarf galaxy POX 186 are presented. The data, obtained with the ESO New Technology Telescope (NTT), are analyzed using a new deconvolution algorithm which allows one to resolve the innermost regions of this stellar-like object into three Super-Star Clusters (SSC). Upper limits to both masses (M ~ 105 Msun) and physical sizes (<=60pc) of the SSCs are set. In addition, and maybe most importantly, extended light emission underlying the compact star-forming region is clearly detected in both bands. The R-I color rules out nebular Hα contamination and is consistent with an old stellar population. This casts doubt on the hypothesis that Blue Compact Dwarf Galaxies (BCDG) are young galaxies. based on observations carried out at NTT in La Silla, operated by the European Southern Observatory, during Director's Discretionary Time.

  2. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    International Nuclear Information System (INIS)

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-01

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 ∼ 23 -O 32 plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  3. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    Science.gov (United States)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-04-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with a largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and GMRT observations at 325 MHz. The spectral index of the total source between 143 MHz and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  4. The Origin of the Infrared Emission in Radio Galaxies : III. Analysis of 3CRR Objects

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Robinson, A.; Morganti, R.; Kharb, P.

    2010-01-01

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z <0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid-to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN

  5. A Hidden Radio Halo in the Galaxy Cluster A 1682? T. Venturi1 ...

    Indian Academy of Sciences (India)

    Abstract. High sensitivity observations of radio halos in galaxy clus- ters at frequencies ν ≤ 330 MHz are still relatively rare, and very little is known compared to the classical 1.4 GHz images. The few radio halos imaged down to 150–240 MHz show a considerable spread in size, mor- phology and spectral properties.

  6. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Edgar A.; Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Tadhunter, Clive N. [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Lopez-Rodriguez, Enrique [NASA Ames Research Center, SOFIA Science Center, SOFIA/USRA, Mountain View, CA (United States); Department of Astronomy, University of Texas at Austin, Austin, TX (United States); McDonald Observatory, University of Texas at Austin, Austin, TX (United States); Packham, Chris, E-mail: e.ramirez@inaoep.mx [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); National Astronomical Observatory of Japan, Tokyo (Japan)

    2017-11-22

    We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11) optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  7. In situ particle acceleration and physical conditions in radio tail galaxies

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.; Scott, J.S.

    1976-01-01

    A model for the objects known as radio tail galaxies is presented. Independent plasmons emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The turbulence produces both in situ betatron and second order Fermi acceleration. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the tail. The relevance of this method of particle acceleration for the problem of the origin of X-ray emission in clusters of galaxies is discussed

  8. Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits

    Energy Technology Data Exchange (ETDEWEB)

    Janowiecki, Steven [International Center for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Salzer, John J.; Zee, Liese van [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Skillman, Evan, E-mail: steven.janowiecki@uwa.edu.au [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States)

    2017-02-10

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar masses and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.

  9. On the origin of the dust lane in the active radio galaxies

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1979-01-01

    A simple explosion model leading to the extragalactic extended radio sources is developed to understand the origin of the dust lane seen in the active radio galaxies. The point explosion in a spheroid with inhomogeneous density distribution is investigated by taking account of the cooling effect induced by radiative energy loss. It is suggested that the morphological relation between the dust lane and double radio sources is well explained on the basis of explosion model. (author)

  10. Stellar Dynamics and Star Formation Histories of z ∼ 1 Radio-loud Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barišić, Ivana; Van der Wel, Arjen; Chauké, Priscilla; Van Houdt, Josha; Straatman, Caroline [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Bezanson, Rachel [Department of Astrophysics, Princeton University, Princeton, NJ 08544 (United States); Pacifici, Camilla [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Noeske, Kai [experimenta gGmbH, Kranenstraße 14, 74072 Heilbronn (Germany); Muñoz-Mateos, Juan C. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago (Chile); Franx, Marijn; Labbé, Ivo; Maseda, Michael V.; Sobral, David [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 AA Leiden (Netherlands); Smolčić, Vernesa [Department of Physics, Faculty of Science, University of Zagreb, Bijenicka cesta 32, 10000 Zagreb (Croatia); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Calhau, João [Department of Physics, Lancaster University, Lancaster LA1 4 YB (United Kingdom); Van Dokkum, Pieter G. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gallazzi, Anna [INAF-Osservatorio Astrofsico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Muzzin, Adam, E-mail: barisic@mpia.de [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario, ON MJ3 1P3 (Canada); and others

    2017-09-20

    We investigate the stellar kinematics and stellar populations of 58 radio-loud galaxies of intermediate luminosities ( L {sub 3} {sub GHz} > 10{sup 23} W Hz{sup −1}) at 0.6 < z < 1. This sample is constructed by cross-matching galaxies from the deep VLT/VIMOS LEGA-C spectroscopic survey with the VLA 3 GHz data set. The LEGA-C continuum spectra reveal for the first time stellar velocity dispersions and age indicators of z ∼ 1 radio galaxies. We find that z ∼ 1 radio-loud active galactic nucleus (AGN) occur exclusively in predominantly old galaxies with high velocity dispersions: σ {sub *} > 175 km s{sup −1}, corresponding to black hole masses in excess of 10{sup 8} M {sub ⊙}. Furthermore, we confirm that at a fixed stellar mass the fraction of radio-loud AGN at z ∼ 1 is five to 10 times higher than in the local universe, suggesting that quiescent, massive galaxies at z ∼ 1 switch on as radio AGN on average once every Gyr. Our results strengthen the existing evidence for a link between high black hole masses, radio loudness, and quiescence at z ∼ 1.

  11. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    International Nuclear Information System (INIS)

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L.

    2012-01-01

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L 1.4GHz > 10 23 W Hz –1 ) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  12. Classifying bent radio galaxies from a mixture of point-like/extended images with Machine Learning.

    Science.gov (United States)

    Bastien, David; Oozeer, Nadeem; Somanah, Radhakrishna

    2017-05-01

    The hypothesis that bent radio sources are supposed to be found in rich, massive galaxy clusters and the avalibility of huge amount of data from radio surveys have fueled our motivation to use Machine Learning (ML) to identify bent radio sources and as such use them as tracers for galaxy clusters. The shapelet analysis allowed us to decompose radio images into 256 features that could be fed into the ML algorithm. Additionally, ideas from the field of neuro-psychology helped us to consider training the machine to identify bent galaxies at different orientations. From our analysis, we found that the Random Forest algorithm was the most effective with an accuracy rate of 92% for a classification of point and extended sources as well as an accuracy of 80% for bent and unbent classification.

  13. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    International Nuclear Information System (INIS)

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-01-01

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  14. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    Science.gov (United States)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; hide

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  15. Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope

    Science.gov (United States)

    Vacca, Valentina; Murgia, M.; Loi, F. Govoni F.; Vazza, F.; Finoguenov, A.; Carretti, E.; Feretti, L.; Giovannini, G.; Concu, R.; Melis, A.; Gheller, C.; Paladino, R.; Poppi, S.; Valente, G.; Bernardi, G.; Boschin, W.; Brienza, M.; Clarke, T. E.; Colafrancesco, S.; Enßlin, T.; Ferrari, C.; de Gasperin, F.; Gastaldello, F.; Girardi, M.; Gregorini, L.; Johnston-Hollitt, M.; Junklewitz, H.; Orrù, E.; Parma, P.; Perley, R.; Taylor, G. B.

    2018-05-01

    We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8° × 8° area in the sky, likely associated with a z≈0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.

  16. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro; Kino, Motoki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagira, Hiroshi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Kawakatu, Nozomu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asada, Keiichi, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  17. Unification of Radio Galaxies and their Accretion Jet Properties ...

    Indian Academy of Sciences (India)

    Abstract. We investigate the relation between black hole mass, Mbh, and jet power, Qjet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in Mbh–Qjet plane, which strongly supports the unification scheme of FR. I/BL Lac and FR II/radio quasar.

  18. CHEMODYNAMICS OF COMPACT STELLAR SYSTEMS IN NGC 5128: HOW SIMILAR ARE GLOBULAR CLUSTERS, ULTRA-COMPACT DWARFS, AND DWARF GALAXIES?

    International Nuclear Information System (INIS)

    Taylor, Matthew A.; Puzia, Thomas H.; Harris, Gretchen L.; Harris, William E.; Kissler-Patig, Markus; Hilker, Michael

    2010-01-01

    Velocity dispersion measurements are presented for several of the most luminous globular clusters (GCs) in NGC 5128 (Centaurus A) derived from high-resolution spectra obtained with the UVES echelle spectrograph on the 8.2 m ESO/Very Large Telescope. The measurements are made utilizing a penalized pixel-fitting method that parametrically recovers line-of-sight velocity dispersions. Combining the measured velocity dispersions with surface photometry and structural parameter data from the Hubble Space Telescope enables both dynamical masses and mass-to-light ratios to be derived. The properties of these massive stellar systems are similar to those of both massive GCs contained within the Local Group and nuclear star clusters and ultra-compact dwarf galaxies (UCDs). The fundamental plane relations of these clusters are investigated in order to fill the apparent gap between the relations of Local Group GCs and more massive early-type galaxies. It is found that the properties of these massive stellar systems match those of nuclear clusters in dwarf elliptical galaxies and UCDs better than those of Local Group GCs, and that all objects share similarly old (∼>8 Gyr) ages, suggesting a possible link between the formation and evolution of nuclear star clusters in dwarf elliptical galaxies (dE,Ns), UCDs, and massive GCs. We find a very steep correlation between dynamical mass-to-light ratio and dynamical mass of the form Υ V dyn ∝ M dyn 0.24±0.02 above M dyn ∼ 2x10 6 M sun . Formation scenarios are investigated with a chemical abundance analysis using absorption-line strengths calibrated to the Lick/IDS index system. The results lend support to two scenarios contained within a single general formation scheme. Old, massive, super-solar [α/Fe] systems are formed on short (∼ 13 -10 15 M sun potential wells of massive galaxies and galaxy clusters.

  19. Seyfert Galaxies: Radio Continuum Emission Properties and the ...

    Indian Academy of Sciences (India)

    sample of Seyfert galaxies in the framework of the unification scheme. Key words. Galaxies: ... 25/49 sub-fields. Self-calibration is used iteratively to improve the image quality. 4. ... Antonucci, R. R. J., Miller, J. S. 1985, Astrophys. J., 297, 621.

  20. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    International Nuclear Information System (INIS)

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-01

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  1. INVERSE COMPTON X-RAY HALOS AROUND HIGH-z RADIO GALAXIES: A FEEDBACK MECHANISM POWERED BY FAR-INFRARED STARBURSTS OR THE COSMIC MICROWAVE BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blundell, Katherine M. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Lehmer, B. D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Alexander, D. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-12-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z {approx} 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L {sub X} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and sizes of {approx}60 kpc. Their morphologies are broadly similar to the {approx}60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z {approx} 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z {approx} 3.6 radio galaxies, which are {approx}4 Multiplication-Sign fainter in the far-infrared than those at z {approx} 3.8, also have {approx}4 Multiplication-Sign fainter X-ray IC emission. Including data for a further six z {approx}> 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes {approx}<100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on {approx}100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly{alpha} emission line

  2. A supermassive black hole in an ultra-compact dwarf galaxy.

    Science.gov (United States)

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  3. The Metallicity Evolution of Blue Compact Dwarf Galaxies from the Intermediate Redshift to the Local Universe

    Science.gov (United States)

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and Dn(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass-metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower Dn(4000) index values. The insignificant deviation in the mass-metallicity and mass-SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  4. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu; Fang, Guanwen

    2016-01-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D n (4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D n (4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models

  5. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fang, Guanwen, E-mail: ljhhw@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China)

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D{sub n}(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D{sub n}(4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  6. Compact radio sources as a plasma turbulent reactor

    International Nuclear Information System (INIS)

    Atoyan, A.M.; Nagapetyan, A.

    1987-01-01

    The electromagnetic raiation spectra of a homogeneous cosmic radio source (CRS) wherein the relativistic electron acceleration on the langmuir waves leads to the formation of Maxwell-like spectra with characteristic value of the Lorentz-factor γ 0 ∼ 10 3 are considered. It has been shown that due to synchrotron radiation of relativistic electrons, usually observed from CRSs flat radiosepctra, gradually steepening at submillimeter wavelengths are naturally formed in the optically thin range of frequencies. The electromagnetic radiation at the scattering of the electron on the turbulence produces significant nonthermal infrared radiation. Inverse compton scattering of the relativistic electrons on the radio-infrared photons leads the production of X-rays. The characteristic of the electromagnetic radiation spectra obtained in the model are compared with the observational ones

  7. A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source

    Science.gov (United States)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-03-01

    We study the structure of the galaxy cluster Abell 523 (A523) at z = 0.104 using new spectroscopic data for 132 galaxies acquired at the Telescopio Nazionale Galileo, new photometric data from the Isaac Newton Telescope, and X-ray and radio data from the Chandra and Very Large Array archives. We estimate the velocity dispersion of the galaxy population, σ _V=949_{-60}^{+80} km s-1, and the X-ray temperature of the hot intracluster medium, kT = 5.3 ± 0.3 keV. We infer that A523 is a massive system: M200 ˜ 7-9 × 1014 M⊙. The analysis of the optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction and dominated by the two brightest cluster galaxies (BCG1 and BCG2). The X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offset from both the brightest cluster galaxies (BCGs). We confirm the presence of a 1.3 Mpc large radio halo, elongated in the ESE-WNW direction and perpendicular to the optical/X-ray elongation. We detect a significant radio/X-ray offset and radio polarization, two features which might be the result of a magnetic field energy spread on large spatial scales. A523 is found consistent with most scaling relations followed by clusters hosting radio haloes, but quite peculiar in the Pradio-LX relation: it is underluminous in the X-rays or overluminous in radio. A523 can be described as a binary head-on merger caught after a collision along the SSW-NNE direction. However, minor optical and radio features suggest a more complex cluster structure, with A523 forming at the crossing of two filaments along the SSW-NNE and ESE-WNW directions.

  8. Quark nugget dark matter: Comparison with radio observations of nearby galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, K., E-mail: klawson@phas.ubc.ca; Zhitnitsky, A.R.

    2016-06-10

    It has been recently claimed that radio observations of nearby spiral galaxies essentially rule out a dark matter source for the galactic haze [1]. Here we consider the low energy thermal emission from a quark nugget dark matter model in the context of microwave emission from the galactic centre and radio observations of nearby Milky Way like galaxies. We demonstrate that observed emission levels do not strongly constrain this specific dark matter candidate across a broad range of the allowed parameter space in drastic contrast with conventional dark matter models based on the WIMP paradigm.

  9. Powerful Radio Galaxies with Simbol-X: Lobes and Hot Spots

    Science.gov (United States)

    Migliori, G.; Grandi, P.; Angelini, L.; Raimondi, L.; Torresi, E.; Palumbo, G. G. C.

    2009-05-01

    We present here the first Simbol-X simulations of the extended components, lobes and hot spots, of the radio galaxies. We use the paradigmatic case of Pictor A to test the capabilities of Simbol-X in this field of studies. Simulations demonstrate that Simbol-X will be able not only to perform spatially resolved studies on the lobes of radio galaxies below 10 keV but also to observe, for the first time, hard X-ray emission from the hot spots. These extremely promising results show the considerable potentiality of Simbol-X in studying interaction phenomena between relativistic plasma and surrounding environment.

  10. Powerful Radio Galaxies with Simbol-X: Lobes and Hot Spots

    International Nuclear Information System (INIS)

    Migliori, G.; Grandi, P.; Raimondi, L.; Torresi, E.; Angelini, L.; Palumbo, G. G. C.

    2009-01-01

    We present here the first Simbol-X simulations of the extended components, lobes and hot spots, of the radio galaxies. We use the paradigmatic case of Pictor A to test the capabilities of Simbol-X in this field of studies. Simulations demonstrate that Simbol-X will be able not only to perform spatially resolved studies on the lobes of radio galaxies below 10 keV but also to observe, for the first time, hard X-ray emission from the hot spots. These extremely promising results show the considerable potentiality of Simbol-X in studying interaction phenomena between relativistic plasma and surrounding environment.

  11. Unification of Radio Galaxies and their Accretion Jet Properties

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We investigate the relation between black hole mass, bh, and jet power, jet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in bh-jet plane, which strongly supports the unification scheme of FR I/BL Lac and FR II/radio ...

  12. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  13. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    Science.gov (United States)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  14. Two micron spectroscopy of the Blue Compact Dwarf Galaxy Haro 2

    International Nuclear Information System (INIS)

    Davidge, T.J.; Maillard, J.P.

    1990-01-01

    This paper discusses the results of 2-micron spectroscopic observations of the Blue Compact Dwarf Galaxy (BCDG) Haro 2, obtained with the 3.6-m Canada-France-Hawaii Telescope. The spectrum contains emission lines of H I, He I, Fe II, and H2 and strong absorption originating from Delta-v = 2 transitions of CO. The strengths of the various features are discussed and the extinction in the 2-micron region is estimated. The spectrum of Haro 2 is compared with those of other BCDGs and the starburst galaxies NGC 253 and M82. It is found that, in many respects, Haro 2 is a typical starburst galaxy and that its blue near-IR colors are not necessarily a sign of youth. 35 refs

  15. ENHANCED NITROGEN IN MORPHOLOGICALLY DISTURBED BLUE COMPACT GALAXIES AT 0.20 < z < 0.35: PROBING GALAXY MERGING FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwon; Rey, Soo-Chang; Yeom, Bum-Suk; Yi, Wonhyeong [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Sung, Eon-Chang; Kyeong, Jaemann [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Humphrey, Andrew, E-mail: jiwon@cnu.ac.kr, E-mail: screy@cnu.ac.kr [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762, Porto (Portugal)

    2013-04-10

    We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z = 0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either ''disturbed'' or ''undisturbed'' by visual inspection of the SDSS images, and using the Gini coefficient and M{sub 20}. We derive oxygen and nitrogen abundances using the T{sub e} method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the H{alpha} to near-UV star formation rate ratio. The equivalent width of the H{beta} emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer timescales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  16. Radio observations of some clusters of galaxies at lambda=3.5 and 4 mm

    International Nuclear Information System (INIS)

    Efanov, V.A.; Zinchenko, I.I.; Kislyakov, A.G.; Krasil'nikov, A.A.; Kukina, E.P.; Moiseev, I.G.

    1980-01-01

    Millimeter radio observations with the 22-m Crimean antenna are reported for the central regions of the clusters of galaxies in Virgo, Hercules, and Coma Berenices, and from the cluster Abell 2199. In two of these, Coma and A2199, sources with a flux density of several jansky have been detected. The position of the source in A2199 matches that of the radio source 3C 338, but the object in the Coma cluster does not correspond to any known radio source. The nature of the emission from the new sources is discussed

  17. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    Science.gov (United States)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-12-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio source (P1.4GHz=3 ×1023 W Hz-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (˜ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.

  18. The extreme flare in III Zw 2:. Evolution of a radio jet in a Seyfert galaxy

    NARCIS (Netherlands)

    Brunthaler, A.; Falcke, H.D.E.; Bower, G.C.; Aller, M.F.; Aller, H.D.; Teräsranta, H.

    2005-01-01

    A very detailed monitoring of a radio flare in the Seyfert I galaxy III Zw 2 with the VLA and the VLBA is presented. The relative astrometry in the VLBA observations was precise to a few muas. The spectral and spatial evolutions of the source are closely linked, and these observations allowed us to

  19. The extreme flare in III Zw 2: evolution of a radio jet in a Seyfert galaxy

    NARCIS (Netherlands)

    Brunthaler, A.; Falcke, H.D.E.; Bower, G.C.; Aller, M.F.; Aller, H.D.; Teraesranta, H.

    2005-01-01

    A very detailed monitoring of a radio flare in the Seyfert I galaxy III Zw 2 with the VLA and the VLBA is presented. The relative astrometry in the VLBA observations was precise on a level of a few microarcseconds. Spectral and spatial evolution of the source are closely linked and these

  20. Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    NARCIS (Netherlands)

    Cordes, J.M.; Wasserman, I.; Hessels, J.W.T.; Lazio, T.J.W.; Chatterjee, S.; Wharton, R.S.

    2017-01-01

    The amplitudes of fast radio bursts (FRBs) can be strongly modulated by plasma lenses in their host galaxies, including that of the repeating FRB 121102 at ∼1 Gpc luminosity distance. Caustics require the lens’ dispersion measure depth ({{DM}}{\\ell }), scale size (a), and distance from the source

  1. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    Science.gov (United States)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  2. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J., E-mail: fvogt@mso.anu.edu.au [Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  3. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

    Science.gov (United States)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.

    2018-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  4. JVLA observations of IC 348 SW: Compact radio sources and their nature

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico)

    2014-07-20

    We present sensitive 2.1 and 3.3 cm Jansky Very Large Array radio continuum observations of the region IC 348 SW. We detect a total of 10 compact radio sources in the region, 7 of which are first reported here. One of the sources is associated with the remarkable periodic time-variable infrared source LRLL 54361, opening the possibility of monitoring this object at radio wavelengths. Four of the sources appear to be powering outflows in the region, including HH 211 and HH 797. In the case of the rotating outflow HH 797, we detect a double radio source at its center, separated by ∼3''. Two of the sources are associated with infrared stars that possibly have gyrosynchrotron emission produced in active magnetospheres. Finally, three of the sources are interpreted as background objects.

  5. PHYSICAL PROPERTIES AND MORPHOLOGY OF A NEWLY IDENTIFIED COMPACT z = 4.04 LENSED SUBMILLIMETER GALAXY IN ABELL 2218

    International Nuclear Information System (INIS)

    Knudsen, Kirsten K.; Kneib, Jean-Paul; Richard, Johan; Petitpas, Glen; Egami, Eiichi

    2010-01-01

    We present the identification of a bright submillimeter (submm) source, SMM J163555.5+661300, detected in the lensing cluster Abell 2218, for which we have accurately determined the position using observations from the Submillimeter Array (SMA). The identified optical counterpart has a spectroscopic redshift of z = 4.044 ± 0.001 if we attribute the single emission line detected at λ = 6140 A to Lyα. This redshift identification is in good agreement with the optical/near-infrared photometric redshift as well as the submm flux ratio S 450 /S 850 ∼ 1.6, the radio-submm flux ratio S 1.4 /S 850 24 /S 850 12 L sun , which implies a star formation rate (SFR) of 230 M sun yr -1 . This makes it the lowest-luminosity submillimeter galaxy (SMG) known at z>4 to date. Previous CO(4-3) emission line observations yielded a non-detection, for which we derived an upper limit of the CO line luminosity of L CO ' = 0.3x10 10 K km s -1 pc -2 , which is not inconsistent with the L ' CO -L FIR relation for starburst galaxies. The best-fit model to the optical and near-infrared photometry give a stellar population with an age of 1.4 Gyr and a stellar mass of 1.6 x 10 10 M sun . The optical morphology is compact and in the source plane the galaxy has an extent of ∼6 x 3 kpc with individual star-forming knots of sun yr -1 kpc 2 . The redshift of J163556 extends the redshift distribution of faint, lensed SMGs, and we find no evidence that these have a different redshift distribution than bright SMGs.

  6. GALAXY CLUSTER RADIO RELICS IN ADAPTIVE MESH REFINEMENT COSMOLOGICAL SIMULATIONS: RELIC PROPERTIES AND SCALING RELATIONSHIPS

    International Nuclear Information System (INIS)

    Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Smith, Britton D.; O'Shea, Brian W.; Turk, Matthew J.

    2011-01-01

    Cosmological shocks are a critical part of large-scale structure formation, and are responsible for heating the intracluster medium in galaxy clusters. In addition, they are capable of accelerating non-thermal electrons and protons. In this work, we focus on the acceleration of electrons at shock fronts, which is thought to be responsible for radio relics-extended radio features in the vicinity of merging galaxy clusters. By combining high-resolution adaptive mesh refinement/N-body cosmological simulations with an accurate shock-finding algorithm and a model for electron acceleration, we calculate the expected synchrotron emission resulting from cosmological structure formation. We produce synthetic radio maps of a large sample of galaxy clusters and present luminosity functions and scaling relationships. With upcoming long-wavelength radio telescopes, we expect to see an abundance of radio emission associated with merger shocks in the intracluster medium. By producing observationally motivated statistics, we provide predictions that can be compared with observations to further improve our understanding of magnetic fields and electron shock acceleration.

  7. Ultra-compact high velocity clouds in the ALFALFA HI survey: Candidate Local Group galaxies?

    Science.gov (United States)

    Adams, Elizabeth Ann Kovenz

    The increased sensitivity and spatial resolution of the ALFALFA HI survey has resulted in the detection of ultra-compact high velocity clouds (UCHVCs). These objects are good candidates to represent low mass gas-rich galaxies in the Local Group and Local Volume with stellar populations that are too faint to be detected in extant optical surveys. This idea is referred to as the "minihalo hypothesis". We identify the UCHVCs within the ALFALFA dataset via the use of a 3D matched filtering signal identification algorithm. UCHVCs are selected based on a compact size ( 120 km s-1) and isolation. Within the 40% complete ALFALFA survey (alpha.40), 59 UCHVCs are identified; 19 are in a most-isolated subset and are the best galaxy candidates. Due to the presence of large HVC complexes in the fall sky, most notably the Magellanic Stream, the association of UCHVCs with existing structure cannot be ruled out. In the spring sky, the spatial and kinematic distribution of the UCHVCs is consistent with simulations of dark matter halos within the Local Group. In addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are consistent with both theoretical and observational predictions for low mass gas-rich galaxies. Importantly, the HI properties of the UCHVCs are consistent with those of two recently discovered low mass gas-rich galaxies in the Local Group and Local Volume, Leo T and Leo P. Detailed follow-up observations are key for addressing the minihalo hypothesis. High resolution HI observations can constrain the environment of a UCHVC and offer evidence for a hosting dark matter halo through evidence of rotation support and comparison to theoretical models. Observations of one UCHVC at high resolution (15'') reveal the presence of a clumpy HI distribution, similar to both low mass galaxies and circumgalactic compact HVCs. An extended envelope containing ˜50% of the HI flux is resolved out by the array configuration; observations at lower spatial resolution can recover

  8. Radio continuum processes in clusters of galaxies; Proceedings of the Workshop, Green Bank, WV, Aug. 4-8, 1986

    International Nuclear Information System (INIS)

    O'dea, C.P.; Uson, J.M.

    1986-01-01

    Recent observational and theoretical investigations of clusters of galaxies are examined in reviews and reports. Topics addressed include radio surveys of clusters, accretion flows, wide-angle-tail radio sources, the interaction of radio sources with the intracluster medium, diffuse emission in clusters, cluster dynamics, and the environment of powerful radio sources. Particular attention is given to a local perspective on galaxies in rich clusters, X-ray observations of clusters, VLA observations of distant clusters, the halo of Vir A at 327 MHz, Exosat observations of the Vir Cluster, accretion flows in elliptical galaxies, jet disruption in wide-angle-tail radio galaxies, beam trajectories in the intracluster medium, the Suniaev-Zel'dovich effect, dark matter in clusters, and the H I environment of high-redshift quasars

  9. Modelling the gas kinematics of an atypical Ly α emitting compact dwarf galaxy

    Science.gov (United States)

    Forero-Romero, Jaime E.; Gronke, Max; Remolina-Gutiérrez, Maria Camila; Garavito-Camargo, Nicolás; Dijkstra, Mark

    2018-02-01

    Star-forming compact dwarf galaxies (CDGs) resemble the expected pristine conditions of the first galaxies in the Universe and are the best systems to test models on primordial galaxy formation and evolution. Here, we report on one of such CDGs, Tololo 1214-277, which presents a broad, single peaked, highly symmetric Ly α emission line that had evaded theoretical interpretation so far. In this paper, we reproduce for the first time these line features with two different physically motivated kinematic models: an interstellar medium composed by outflowing clumps with random motions and an homogeneous gaseous sphere undergoing solid body rotation. The multiphase model requires a clump velocity dispersion of 54.3 ± 0.6 km s-1 with outflows of 54.3 ± 5.1 km s-1 , while the bulk rotation velocity is constrained to be 348^{+75}_{-48} km s-1. We argue that the results from the multiphase model provide a correct interpretation of the data. In that case, the clump velocity dispersion implies a dynamical mass of 2 × 109 M⊙, 10 times its baryonic mass. If future kinematic maps of Tololo 1214-277 confirm the velocities suggested by the multiphase model, it would provide additional support to expect such kinematic state in primordial galaxies, opening the opportunity to use the models and methods presented in this paper to constrain the physics of star formation and feedback in the early generation of Ly α -emitting galaxies.

  10. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    Science.gov (United States)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  11. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  12. The hot and cold interstellar matter of early type galaxies and their radio emission

    International Nuclear Information System (INIS)

    Kim, Dongwoo; Fabbiano, G.

    1990-01-01

    Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths

  13. Infrared photometry of the nuclei of early-type radio galaxies

    International Nuclear Information System (INIS)

    Sparks, W.B.; Bailey, J.

    1986-01-01

    J,H,K,L' two-aperture photometry and single-aperture 10-μm(N) photometry of the nuclei of 44 nearby radio elliptical and SO galaxies are presented. Clear infrared excesses are found from the galaxies with broad emission-lines, the BL Lac objects, and two other galaxies, one of which appears to have an extended infrared excess. In addition, the sample as a whole appears to have positive 10-μm emission which is believed to be largely due to starlight. The near-infrared colours in general are characteristic of normal starlight, with only the strongest 10-μm emitters showing a significant near-infrared excess. These latter galaxies have blue optical colours. (author)

  14. COMPLEX GAS KINEMATICS IN COMPACT, RAPIDLY ASSEMBLING STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Amorin, R.; Vilchez, J. M.; Perez-Montero, E. [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia S/N, E-18008 Granada (Spain); Haegele, G. F.; Firpo, V. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad de la Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Papaderos, P., E-mail: amorin@iaa.es [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-08-01

    Deep, high-resolution spectroscopic observations have been obtained for six compact, strongly star-forming galaxies at redshift z {approx} 0.1-0.3, most of them also known as green peas. Remarkably, these galaxies show complex emission-line profiles in the spectral region including H{alpha}, [N II] {lambda}{lambda}6548, 6584, and [S II] {lambda}{lambda}6717, 6731, consisting of the superposition of different kinematical components on a spatial extent of few kiloparsecs: a very broad line emission underlying more than one narrower component. For at least two of the observed galaxies some of these multiple components are resolved spatially in their two-dimensional spectra, whereas for another one a faint detached H{alpha} blob lacking stellar continuum is detected at the same recessional velocity {approx}7 kpc away from the galaxy. The individual narrower H{alpha} components show high intrinsic velocity dispersion ({sigma} {approx} 30-80 km s{sup -1}), suggesting together with unsharped masking Hubble Space Telescope images that star formation proceeds in an ensemble of several compact and turbulent clumps, with relative velocities of up to {approx}500 km s{sup -1}. The broad underlying H{alpha} components indicate in all cases large expansion velocities (full width zero intensity {>=}1000 km s{sup -1}) and very high luminosities (up to {approx}10{sup 42} erg s{sup -1}), probably showing the imprint of energetic outflows from supernovae. These intriguing results underline the importance of green peas for studying the assembly of low-mass galaxies near and far.

  15. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  16. CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z ∼ 2

    International Nuclear Information System (INIS)

    Barro, Guillermo; Faber, S. M.; Koo, David C.; Kocevski, Dale D.; Trump, Jonathan R.; Mozena, Mark; McGrath, Elizabeth; Cheung, Edmond; Fang, Jerome; Pérez-González, Pablo G.; Williams, Christina C.; Van der Wel, Arjen; Wuyts, Stijn; Bell, Eric F.; Croton, Darren J.; Ceverino, Daniel; Dekel, Avishai; Ashby, M. L. N.; Ferguson, Henry C.; Fontana, Adriano

    2013-01-01

    We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M * > 10 10 M ☉ ) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z ∼> 2, cSFGs present SFR = 100-200 M ☉ yr –1 , yet their specific star formation rates (sSFR ∼ 10 –9 yr –1 ) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (∼30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10 8 yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ∼ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z ∼> 2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z ∼< 2) path in which larger SFGs form extended QGs without passing through a compact state.

  17. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  18. RADIO ACTIVE GALAXY NUCLEI IN GALAXY CLUSTERS: HEATING HOT ATMOSPHERES AND DRIVING SUPERMASSIVE BLACK HOLE GROWTH OVER COSMIC TIME

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-J.; McNamara, B. R. [Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1 (Canada); Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138-1516 (United States)

    2013-01-20

    We estimate the average radio active galactic nucleus (AGN, mechanical) power deposited into the hot atmospheres of galaxy clusters over more than three quarters of the age of the Universe. Our sample was drawn from eight major X-ray cluster surveys and includes 685 clusters in the redshift range 0.1 < z < 0.6 that overlap the area covered by the NRAO VLA Sky Survey (NVSS). The radio-AGN mechanical power was estimated from the radio luminosity of central NVSS sources, using the relation of Cavagnolo et al. that is based on mechanical powers determined from the enthalpies of X-ray cavities. We find only a weak correlation between radio luminosity and cluster X-ray luminosity, although the most powerful radio sources reside in luminous clusters. The average AGN mechanical power of 3 Multiplication-Sign 10{sup 44} erg s{sup -1} exceeds the X-ray luminosity of 44% of the clusters, indicating that the accumulation of radio-AGN energy is significant in these clusters. Integrating the AGN mechanical power to redshift z = 2.0, using simple models for its evolution and disregarding the hierarchical growth of clusters, we find that the AGN energy accumulated per particle in low luminosity X-ray clusters exceeds 1 keV per particle. This result represents a conservative lower limit to the accumulated thermal energy. The estimate is comparable to the level of energy needed to 'preheat' clusters, indicating that continual outbursts from radio-AGN are a significant source of gas energy in hot atmospheres. Assuming an average mass conversion efficiency of {eta} = 0.1, our result implies that the supermassive black holes that released this energy did so by accreting an average of {approx}10{sup 9} M {sub Sun} over time, which is comparable to the level of growth expected during the quasar era.

  19. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    Science.gov (United States)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1poster, I will present the results of this study and compare our results to various results in the literature.

  20. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    International Nuclear Information System (INIS)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.; Alatalo, Katherine

    2016-01-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H 2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H 2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.

  1. A VLA SURVEY FOR FAINT COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Mann, Rita K. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Williams, Jonathan P., E-mail: psheehan@email.arizona.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-11-10

    We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin{sup 2} at 1.3 cm, 70 arcmin{sup 2} at 3.6 cm and 109 arcmin{sup 2} at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope -identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free–free and dust emission model to characterize the radio emission. We extrapolate the free–free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.

  2. Radio recombination lines from diffuse interstellar gas in the Galaxy

    International Nuclear Information System (INIS)

    Cersosimo, J.C.; Onello, J.S.

    1991-01-01

    The paper reports the detection of the H159-alpha and H200-beta radio recombination lines at 1.62 GHz at l = 30.5 deg and 31.0 deg in the Galactic plane. Using the new observations obtained with the NRAO 43 m telescope a non-LTE analysis is presented to show that the observed LTE intensity ratio for these lines can arise from an inhomogeneous ionized nebula with a low-density component. 16 refs

  3. A Radio Study of the Seyfert Galaxy Markarian 6: Implications for Seyfert Life Cycles

    Science.gov (United States)

    Kharb, P.; O'Dea, C. P.; Baum, S. A.; Colbert, E. J. M.; Xu, C.

    2006-11-01

    We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales: ~7.5 kpc bubbles, ~1.5 kpc bubbles lying nearly orthogonal to them, and a ~1 kpc radio jet lying orthogonal to the kiloparsec-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 Msolar yr-1, an estimate much lower than the SFR of ~33 Msolar yr-1 derived assuming that the bubbles are a result of starburst winds energized by supernova explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We then present an energetically plausible model wherein the bubbles are a result of energy deposited by the kiloparsec-scale jet as it plows into the interstellar medium. Finally, we consider a model in which the complex radio structure is a result of an episodically powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology and is consistent with the energetics, the spectral index, and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy, which results from an accretion event.

  4. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Joseph L.; Lister, Matthew L., E-mail: jlr@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  5. The X-Ray Core of the Low-Luminosity Radio Galaxy 3C346 and ASCA Spectroscopy to Test BL LAC/Radio Galaxy Unification

    Science.gov (United States)

    Worrall, Diana

    2000-01-01

    Radio galaxies are relatively faint sources for Advanced Spacecraft for Cosmology Astrophysics (ASCA), and so in order to get the best possible results from the observations two things have been necessary, both of which delayed the fast preparation of papers. Firstly, the best possible data screening and background subtraction were necessary to improve the signal-to-noise, and all our several initial analysis trials were discarded in favor of using FTOOLS versions 4.1 and above. Secondly, we found that the ASCA spectra were statistically too poor to discriminate well between non-thermal and thermal models, never mind the mixture of the two which we expected on the basis of our ROSAT spatial separation of components in radio galaxies. This means that in each case we have needed to combine the ASCA spectroscopy with analysis of data from other X-ray or radio observations in order to exploit the ASCA data to the full. Our analysis for 3C 346 has yielded the cleanest final result. This powerful radio galaxy at a redshift of 0.161, lies in a poor cluster, which we have separated well from the dominant X-ray component of unresolved emission using a spatial analysis of archival ROSAT data. We were then able to fix the thermal component in our ASCA spectral analysis, and have found evidence that the unresolved emission varied by 32 +/- 13% over the 18 months between the ROSAT and ASCA observations. The unresolved X-ray emission does not suffer from intrinsic absorption, and we have related it to radio structures on both milliarcsecond scales and the arcsecond scales which Chandra can resolve. The source is a target of a Chandra AO2 proposal which we have recently submitted to follow up on our ASCA (and ROSAT) work. 3C 346's orientation to the line of sight is uncertain. However, the absence of X-ray absorption, and the radio/optical/X-ray colors, when combined with with previous radio evidence that the source is a foreshortened radio galaxy of the FRII class, suggest that

  6. The chemical composition and age of the blue compact dwarf galaxy Haro 2

    International Nuclear Information System (INIS)

    Davidge, T.J.

    1989-01-01

    Spectroscopic observations are presented of the central star-forming nebula in the blue compact dwarf galaxy Haro 2 (MrK 33). Using the strengths of various emission lines, it is found that the electron temperature is roughly 9250 K and that the O abundance is comparable with that of the LMC. Weak Mg b 5175-A and Fe I 5335-A absorption lines have also been identified. An effort has been made to investigate the origin of these lines using synthetic spectra. It is concluded that, contrary to the findings of Loose and Thuan (1986), Haro 2 probably contains an old stellar substrate. Finally, it is suggested that Haro 2 may eventually evolve into a nucleated dwarf elliptical galaxy. 44 refs

  7. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    Science.gov (United States)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  8. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Science.gov (United States)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  9. A fast radio burst in the direction of the Carina dwarf spheroidal galaxy

    OpenAIRE

    Ravi, V.; Shannon, R. M.; Jameson, A.

    2014-01-01

    We report the real-time discovery of a fast radio burst (FRB 131104) with the Parkes radio telescope in a targeted observation of the Carina dwarf spheroidal galaxy. The dispersion measure of the burst is 779 cm$^{-3}$ pc, exceeding predictions for the maximum line-of-sight Galactic contribution by a factor of 11. The temporal structure of the burst is characterized by an exponential scattering tail with a timescale of 2.0$^{+0.8}_{-0.5}$ ms at 1582 MHz that scales as frequency to the power $...

  10. CANDELS+3D-HST: Compact SFGs at z ∼ 2-3, the progenitors of the first quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, G.; Faber, S. M.; Koo, D. C.; Guo, Y. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Pérez-González, P. G. [Universidad Complutense de Madrid, F. CC. Físicas, 28040 Madrid (Spain); Pacifici, C. [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Trump, J. R. [Pennsylvania State University, University Park, PA 16802 (United States); Wuyts, S.; Hsu, L. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Bell, E. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Dekel, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Porter, L.; Primack, J. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Ferguson, H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ashby, M. L. N.; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Caputi, K. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Ceverino, D. [Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122 (Australia); Giavalisco, M. [Astronomy Department, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); and others

    2014-08-10

    We analyze the star-forming and structural properties of 45 massive (log(M/M{sub ☉}) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ∼ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically are disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ∼2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M{sub ☉}) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers

  11. CANDELS+3D-HST: Compact SFGs at z ∼ 2-3, the progenitors of the first quiescent galaxies

    International Nuclear Information System (INIS)

    Barro, G.; Faber, S. M.; Koo, D. C.; Guo, Y.; Pérez-González, P. G.; Pacifici, C.; Trump, J. R.; Wuyts, S.; Hsu, L.; Bell, E.; Dekel, A.; Porter, L.; Primack, J.; Ferguson, H.; Ashby, M. L. N.; Fazio, G. G.; Caputi, K.; Ceverino, D.; Croton, D.; Giavalisco, M.

    2014-01-01

    We analyze the star-forming and structural properties of 45 massive (log(M/M ☉ ) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ∼ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically are disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ∼2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M ☉ ) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk

  12. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    International Nuclear Information System (INIS)

    Haxthausen, E.; Carilli, C.; Vangorkom, J.H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance

  13. H I IMAGING OBSERVATIONS OF SUPERTHIN GALAXIES. II. IC 2233 AND THE BLUE COMPACT DWARF NGC 2537

    International Nuclear Information System (INIS)

    Matthews, Lynn D.; Uson, Juan M.

    2008-01-01

    We have used the Very Large Array to image the H I 21 cm line emission in the edge-on Sd galaxy IC 2233 and the blue compact dwarf NGC 2537. We also present new optical B, R, and Hα imaging of IC 2233 obtained with the WIYN telescope. Despite evidence of localized massive star formation in the form of prominent H II regions and shells, supergiant stars, and a blue integrated color, IC 2233 is a low surface brightness system with a very low global star formation rate (∼ sun yr -1 ), and we detect no significant 21 cm radio continuum emission from the galaxy. The H I and ionized gas disks of IC 2233 are clumpy and vertically distended, with scale heights comparable to that of the young stellar disk. Both the stellar and H I disks of IC 2233 appear flared, and we also find a vertically extended, rotationally anomalous component of H I extending to ∼ 2.4d 10 kpc from the midplane. The H I disk exhibits a mild lopsidedness as well as a global corrugation pattern with a period of ∼7d 10 kpc and an amplitude of ∼150d 10 pc. To our knowledge, this is the first time corrugations of the gas disk have been reported in an external galaxy; these undulations may be linked to bending instabilities or to underlying spiral structure and suggest that the disk is largely self-gravitating. Lying at a projected distance of 16'.7 from IC 2233, NGC 2537 has an H I disk with a bright, tilted inner ring and a flocculent, dynamically cold outer region that extends to ∼3.5 times the extent of the stellar light (D 25 ). Although NGC 2537 is rotationally-dominated, we measure H I velocity dispersions as high as σ V.HI ∼25 km s -1 near its center, indicative of significant turbulent motions. The inner rotation curve rises steeply, implying a strong central mass concentration. Our data indicate that IC 2233 and NGC 2537 do not constitute a bound pair and most likely lie at different distances. We also find no compelling evidence of a recent minor merger in either IC 2233 or NGC

  14. Testing the dark matter origin of the WMAP-Planck haze with radio observations of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric; Linden, Tim; Profumo, Stefano [Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 (United States); Hooper, Dan, E-mail: erccarls@ucsc.edu, E-mail: dhooper@fnal.gov, E-mail: tlinden@ucsc.edu, E-mail: profumo@ucsc.edu [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2013-07-01

    If the Galactic WMAP radio haze, as recently confirmed by Planck, is produced by dark matter annihilation or decay, similar diffuse radio halos should exist around other galaxies with physical properties comparable to the Milky Way. If instead the haze is due to an astrophysical mechanism peculiar to the Milky Way or to a transient event, a similar halo need not exist around all Milky Way ''twins''. We use radio observations of 66 spiral galaxies to test the dark matter origin of the haze. We select galaxies based on morphological type and maximal rotational velocity, and obtain their luminosities from a 1.49 GHz catalog and additional radio observations at other frequencies. We find many instances of galaxies with radio emission that is less than 5% as bright as naively expected from dark matter models that could produce the Milky Way haze, and at least 3 galaxies that are less than 1% as bright as expected, assuming dark matter distributions, magnetic fields, and cosmic ray propagation parameters equal to those of the Milky Way. For reasonable ranges for the variation of these parameters, we estimate the fraction of galaxies that should be expected to be significantly less bright in radio, and argue that this is marginally compatible with the observed distribution. While our findings therefore cannot rule out a dark matter origin for the radio haze at this time, we find numerous examples (including the Andromeda Galaxy) where, if dark matter is indeed the origin of the Milky Way haze, some mechanism must be in place to suppress the corresponding haze of the external galaxy. We point out that Planck data will offer opportunities to improve this type of constraint in a highly relevant frequency range and for a potentially larger set of candidate galaxies.

  15. Theoretical parameters of powerful radio galaxies. II. Generation of MHD turbulence by collisionless shock waves

    International Nuclear Information System (INIS)

    Baryshev, Yu.V.; Morozov, V.N.

    1988-01-01

    It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases

  16. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-01-01

    The recent detection by the Fermi γ-ray space telescope of high-energy γ-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE γ-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  17. The metallicity evolution of blue compact dwarf galaxies from the intermediate redshift to the local Universe

    OpenAIRE

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-01-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range in [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope (MMT). More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD sampl...

  18. Peculiar morphology of the high-redshift radio galaxies 3C 13 and 3C 256 in subarcsecond seeing

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Nottale, L.; Mazure, A.; Christian, C.

    1988-01-01

    High-spatial-resolution imaging is presented for two radio galaxies from the 3C catalog, 3C 13 and 3C 256 with redshifts of 1.351 and 1.819, respectively. The excellent image quality obtained at CFHT, 0.6-arcsec FWHM for 3C 13 and 0.7-arcsec FWHM for 3C 256 in the R band, over long integration times, made it possible to resolve these distant galaxies into complex structures. As suggested by Le Fevre et al. (1987) for another source (the gravitational lens candidate 3C 324) an interpretation in terms of gravitational amplification by foreground galaxies or clusters of galaxies is proposed. 3C 13 appears to be the most serious candidate, since a foreground galaxy, with an absolute luminosity M(R) = 23.3 and a redshift z = 0.477, is only 3.9 in from the extended radio galaxy. 18 references

  19. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    International Nuclear Information System (INIS)

    Tendulkar, S. P.; Kaspi, V. M.; Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N.; Cordes, J. M.; Chatterjee, S.; Bower, G. C.; Law, C. J.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Lazio, T. J. W.; Marcote, B.; Paragi, Z.; McLaughlin, M. A.; Ransom, S. M.; Scholz, P.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10"−"4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m_r_′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M _* ∼ (4–7) × 10"7 M _⊙, assuming a mass-to-light ratio between 2 to 3 M _⊙ L _⊙ "−"1. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M _⊙ yr"−"1 and a substantial host dispersion measure (DM) depth ≲324 pc cm"−"3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  20. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, S. P.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Cordes, J. M.; Chatterjee, S. [Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Bower, G. C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720 (United States); Law, C. J. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720 (United States); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Burke-Spolaor, S.; Butler, B. J.; Demorest, P. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Marcote, B.; Paragi, Z. [Joint Institute for VLBI ERIC, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Scholz, P., E-mail: shriharsh@physics.mcgill.ca, E-mail: bassa@astron.nl [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); and others

    2017-01-10

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  1. Radio and x-ray observations of compact sources in or near supernova remnants

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.

    1982-01-01

    We present VLA multifrequency radio observations of six compact radio sources from the list of nine objects proposed by Ryle et al. [Nature 276, 571 (1978)] as a new class of radio star, possibly the stellar remnants of supernovae. We also present the results of a search for x-ray emission from four of these objects with the Einstein observatory. The radio observations provide information on spectra, polarization, time variability, angular structure, and positions for these sources. The bearing of these new data on the nature of the sources is discussed. One particularly interesting result is that the polarization and angular-size measurements are combined in an astrophysical argument to conclude that one of the sources (2013+370) is extragalactic. No x-ray emission was detected from any of the four objects observed, but an extended x-ray source was found coincident with the supernova remnant G 33.6+0.1 near 1849+005. Our measurements provide no compelling arguments to consider any of the six objects studied as radio stars

  2. Ram pressure statistics for bent tail radio galaxies

    CSIR Research Space (South Africa)

    Mguda, Z

    2015-01-01

    Full Text Available ), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa 2South African Astronomical Observatory (SAAO), PO Box 9, 7935 Observatory, Cape Town, South Africa 3Department of Physics, University of Witwatersrand... Published by Oxford University Press on behalf of the Royal Astronomical Society at South A frican A stronom ical O bservatory on D ecem ber 18, 2014 http://m nras.oxfordjournals.org/ D ow nloaded from Statistics for bent radio sources 3311 are left for a...

  3. Measuring size evolution of distant, faint galaxies in the radio regime

    Science.gov (United States)

    Lindroos, L.; Knudsen, K. K.; Stanley, F.; Muxlow, T. W. B.; Beswick, R. J.; Conway, J.; Radcliffe, J. F.; Wrigley, N.

    2018-05-01

    We measure the evolution of sizes for star-forming galaxies as seen in 1.4 GHz continuum radio for z = 0-3. The measurements are based on combined VLA+MERLIN data of the Hubble Deep Field, and using a uv-stacking algorithm combined with model fitting to estimate the average sizes of galaxies. A sample of ˜1000 star-forming galaxies is selected from optical and near-infrared catalogues, with stellar masses M⊙ ≈ 1010-1011 M⊙ and photometric redshifts 0-3. The median sizes are parametrized for stellar mass M* = 5 × 1010 M⊙ as R_e = A× {}(H(z)/H(1.5))^{α _z}. We find that the median radio sizes evolve towards larger sizes at later times with αz = -1.1 ± 0.6, and A (the median size at z ≈ 1.5) is found to be 0.26^'' ± 0.07^'' or 2.3±0.6 kpc. The measured radio sizes are typically a factor of 2 smaller than those measure in the optical, and are also smaller than the typical H α sizes in the literature. This indicates that star formation, as traced by the radio continuum, is typically concentrated towards the centre of galaxies, for the sampled redshift range. Furthermore, the discrepancy of measured sizes from different tracers of star formation, indicates the need for models of size evolution to adopt a multiwavelength approach in the measurement of the sizes star-forming regions.

  4. ROTATION MEASURES ACROSS PARSEC-SCALE JETS OF FANAROFF-RILEY TYPE I RADIO GALAXIES

    International Nuclear Information System (INIS)

    Kharb, P.; Gabuzda, D. C.; O'Dea, C. P.; Shastri, P.; Baum, S. A.

    2009-01-01

    We present the results of a parsec-scale polarization study of three FRI radio galaxies-3C66B, 3C78, and 3C264-obtained with Very Long Baseline Interferometry at 5, 8, and 15 GHz. Parsec-scale polarization has been detected in a large number of beamed radio-loud active galactic nuclei, but in only a handful of the relatively unbeamed radio galaxies. We report here the detection of parsec-scale polarization at one or more frequencies in all three FRI galaxies studied. We detect Faraday rotation measures (RMs) of the order of a few hundred rad m -2 in the nuclear jet regions of 3C78 and 3C264. In 3C66B, polarization was detected at 8 GHz only. A transverse RM gradient is observed across the jet of 3C78. The inner-jet magnetic field, corrected for Faraday rotation, is found to be aligned along the jet in both 3C78 and 3C264, although the field becomes orthogonal further from the core in 3C78. The RM values in 3C78 and 3C264 are similar to those previously observed in nearby radio galaxies. The transverse RM gradient in 3C78, the increase in the degree of polarization at the jet edge, the large rotation in the polarization angles due to Faraday rotation, and the low depolarization between frequencies suggest that a layer surrounding the jet with a sufficient number of thermal electrons and threaded by a toroidal or helical magnetic field is a good candidate for the Faraday rotating medium. This suggestion is tentatively supported by Hubble Space Telescope optical polarimetry but needs to be examined in a greater number of sources.

  5. POLARIZED EXTENDED Ly{alpha} EMISSION FROM A z = 2.3 RADIO GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, A. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Vernet, J.; Fosbury, R. A. E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Villar-Martin, M. [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir, km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Di Serego Alighieri, S. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Cimatti, A., E-mail: andrew.humphrey@astro.up.pt [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2013-05-01

    We present spatially resolved spectropolarimetric measurements of the 100 kpc scale gaseous environment of the z = 2.34 radio galaxy TXS 0211-122. The polarization level of the narrow Ly{alpha} emission is low centrally (P < 5%), but rises to P = 16.4% {+-} 4.6% in the eastern part of the nebula, indicating that the nebula is at least partly powered by the scattering of Ly{alpha} photons by H I. Not only is this the first detection of polarized Ly{alpha} around a radio-loud active galaxy, it is also the second detection to date for any kind of Ly{alpha} nebula. We also detect a pair of diametrically opposed UV continuum sources along the slit, at the outer edges of the Ly{alpha} nebula, which we suggest may be the limb of a dusty shell, related to the large-scale H I absorbers often associated with high-z radio galaxies.

  6. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Science.gov (United States)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  7. Scintillating confusion: Evaluation of a technique for measuring compact structure in weak radio sources

    International Nuclear Information System (INIS)

    Spangler, S.R.; Cordes, J.M.; Meyers, K.A.

    1979-01-01

    An attractive scheme for investigating compact structure in weak radio sources is to study the scintillation properties of confusion in a large single-dish radio telescope. We have investigated the utility of this technique by observing the scintillations of 860-MHz confusion of the NRAO 300' (91 m) telescope. Analysis of these data indicated a reduction in the mean scintillation index with decreasing flux density which implied that weaker sources possessed less compact structure. More direct observations indicated that the weak sources of interest were not significantly deficient in compact structure, so the first result is probably due to properties of the IPS process in the strong scintillation regime. Our results may be due to overresolution (by the IPS process in the strong scintillation regime) of the ''hot spots'' responsible for scintillation in most strong sources at frequencies below 1000 MHz, or may indicate abnormally strong turbulence in the solar wind during August, 1977. Future applications of this method would be best conducted at lower frequencies with larger reflectors or short-spacing interferometers

  8. New 20-cm radio-continuum study of the small Magellanic cloud - part III: Compact Hii regions

    Directory of Open Access Journals (Sweden)

    Wong G.F.

    2012-01-01

    Full Text Available We present and discuss a new catalogue of 48 compact Hii regions in the Small Magellanic Cloud (SMC and a newly created deep 1420 MHz (λ=20 cm radio-continuum image of the N19 region located in the southwestern part of the SMC. The new images were created by merging 1420 MHz radiocontinuum archival data from the Australian Telescope Compact Array. The majority of these detected radio compact Hii regions have rather flat spectral indices which indicates, as expected, that the dominant emission mechanism is of thermal nature.

  9. Ultrahigh-energy Cosmic Rays from Fanaroff Riley class II radio galaxies

    Science.gov (United States)

    Rachen, Joerg; Biermann, Peter L.

    1992-08-01

    The hot spots of very powerful radio galaxies (Fanaroff Riley class II) are argued to be the sources of the ultrahigh energy component in Cosmic Rays. We present calculations of Cosmic Ray transport in an evolving universe, taking the losses against the microwave background properly into account. As input we use the models for the cosmological radio source evolution derived by radioastronomers (mainly Peacock 1985). The model we adopt for the acceleration in the radio hot spots has been introduced by Biermann and Strittmatter (1987), and Meisenheimer et al. (1989) and is based on first order Fermi theory of particle acceleration at shocks (see, e.g., Drury 1983). As an unknown the actual proportion of energy density in protons enters, which together with structural uncertainties in the hot spots should introduce no more than one order of magnitude in uncertainty: We easily reproduce the observed spectra of high energy cosmic rays. It follows that scattering of charged energetic particles in intergalactic space must be sufficiently small in order to obtain contributions from sources as far away as even the nearest Fanaroff Riley class II radio galaxies. This implies a strong constraint on the turbulent magnetic field in intergalactic space.

  10. Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-μJy Radio Source Population

    Science.gov (United States)

    Carilli, C. L.; Lee, Nicholas; Capak, P.; Schinnerer, E.; Lee, K.-S.; McCraken, H.; Yun, M. S.; Scoville, N.; Smolčić, V.; Giavalisco, M.; Datta, A.; Taniguchi, Y.; Urry, C. Megan

    2008-12-01

    We present an analysis of the radio properties of large samples of Lyman break galaxies (LBGs) at z ~ 3, 4, and 5 from the COSMOS field. The median stacking analysis yields a statistical detection of the z ~ 3 LBGs (U-band dropouts), with a 1.4 GHz flux density of 0.90 +/- 0.21 μJy. The stacked emission is unresolved, with a size = 3 is smaller than at lower redshifts. Conversely, the radio luminosity for a given star formation rate may be systematically lower at very high redshift. Two possible causes for a suppressed radio luminosity are (1) increased inverse Compton cooling of the relativistic electron population due to scattering off the increasing CMB at high redshift or (2) cosmic-ray diffusion from systematically smaller galaxies. The radio detections of individual sources are consistent with a radio-loud AGN fraction of 0.3%. One source is identified as a very dusty, extreme starburst galaxy (a "submillimeter galaxy"). Based on observations in the COSMOS Legacy Survey including those taken on the HST, Keck, NRAO-VLA, Subaru, KPNO 4 m, CTIO 4 m, and CFHT 3.6 m. The Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  11. VizieR Online Data Catalog: Radio haloes in nearby galaxies (Heesen+, 2018)

    Science.gov (United States)

    Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.

    2018-02-01

    We present radio continuum observations of 12 nearby (D=2-27Mpc) edge-on galaxies at two different frequencies, namely at 1.4 and 5GHz (one galaxy at 8.5GHz instead of 5GHz). Our sample includes 11 late-type spiral (Sb or Sc) galaxies and one Magellanic-type barred galaxy (SBm), which are all highly inclined (i>=76°). As part of our study we have obtained several additional radio continuum maps. We make these maps publicly available (as well as all the other radio continuum maps in the paper). For 4 galaxies (NGC 55, 253, 891 and 4631) we have used single-dish maps, to correct for the missing zero-spacing flux where necessary. The Effelsberg maps of NGC 253 and 4631 were already presented in Heesen et al. (2009A&A...494..563H) and Mora & Krause (2013A&A...560A..42M), respectively, and the Effelsberg map of NGC 891 was already presented in Dumke (1997, PhD thesis, University of Bonn). We present these maps for completeness. The 4.80-GHz map of NGC 55 obtained with the 64-m Parkes telescope is so far unpublished. Furthermore, we show two maps of NGC 4631 at 1.35 and 1.65GHz observed with the VLA in D- configuration (R. Beck 2016, priv. comm.). The data were observed in August 1996, with 12 h on-source (ID: AG486) and reduced in standard fashion with AIPS. The maps have an angular resolution of 52 arcsec, so that we did not use them in the analysis, but they also show the halo of this galaxy very well. Lastly, we obtained maps of three further edge-on galaxies observed with the VLA (NGC 4157, 4217 and 4634). We reduced the data as described in Section 2, but since we had only one frequency available and no spectral index map, we did not use them in the analysis. The maps of NGC 4157 and 4217 were created by re-reducing archive data (IDs AI23, AF85, AH457 and AS392 for NGC 4157 and ID AM573 for NGC 4217). The map of NGC 4634 was created by using so far unpublished data from the VLA (ID: AD538). (3 data files).

  12. Suzaku Diagnostics of the Energetics in the Lobes of the Giant Radio Galaxy 3C 35

    Science.gov (United States)

    Isobe, Naoki; Seta, Hiromi; Gandhi, Poshak; Tashiro, Makoto S.

    2011-02-01

    The Suzaku observation of a giant radio galaxy 3C 35 revealed faint extended X-ray emission, associated with its radio lobes and/or host galaxy. After careful subtraction of the X-ray and non-X-ray background and contaminating X-ray sources, the X-ray spectrum of the faint emission was reproduced by a sum of the power-law (PL) and soft thermal components. The soft component was attributed to the thermal plasma emission from the host galaxy. The photon index of the PL component, Γ = 1.35+0.56 -0.86 +0.11 -0.10, where the first and second errors represent the statistical and systematic ones, was found to agree with the synchrotron radio index from the lobes, ΓR = 1.7. Thus, the PL component was attributed to the inverse Compton (IC) X-rays from the synchrotron electrons in the lobes. The X-ray flux density at 1 keV was derived as 13.6 ± 5.4+4.0 -3.6 nJy with the photon index fixed at the radio value. The X-ray surface brightness from these lobes (~0.2 nJy arcmin-2) is lowest among the lobes studied through the IC X-ray emission. In combination with the synchrotron radio flux density, 7.5 ± 0.2 Jy at 327.4 MHz, the electron energy density spatially averaged over the lobes was evaluated to be the lowest among those radio galaxies, as u e = (5.8 ± 2.3+1.9 -1.7) × 10-14 erg cm-3 over the electron Lorentz factor of 103-105. The magnetic energy density was calculated as u m = (3.1+2.5 -1.0 +1.4 -0.9) × 10-14 erg cm-3, corresponding to the magnetic field strength of 0.88+0.31 -0.16 +0.19 -0.14 μG. These results suggest that the energetics in the 3C 35 lobes are nearly consistent with equipartition between the electrons and magnetic fields.

  13. CONSTRAINING JET PRODUCTION SCENARIOS BY STUDIES OF NARROW-LINE RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Stasinska, Grazyna [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, Place Jules Janssen, F-92190 Meudon (France); Koziel-Wierzbowska, Dorota [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Asari, Natalia V., E-mail: sikora@camk.edu.pl [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-03-01

    We study a large sample of narrow-line radio galaxies (NLRGs) with extended radio structures. Using 1.4 GHz radio luminosities L {sub 1.4}, narrow optical emission line luminosities L {sub [OIII]} and L{sub H{sub {alpha}}}, as well as black hole masses M {sub BH} derived from stellar velocity dispersions measured from the optical spectra obtained with the Sloan Digital Sky Survey, we find that (1) NLRGs cover about four decades of the Eddington ratio, {lambda} {identical_to} L {sub bol}/L {sub Edd}{proportional_to}L {sub line}/M {sub BH}; (2) L {sub 1.4}/M {sub BH} strongly correlates with {lambda}; and (3) radio loudness, R{identical_to}L{sub 1.4}/L{sub line}, strongly anti-correlates with {lambda}. A very broad range of the Eddington ratio indicates that the parent population of NLRGs includes both radio-loud quasars (RLQs) and broad-line radio galaxies (BLRGs). The correlations they obey and their high jet production efficiencies favor a jet production model which involves the so-called magnetically choked accretion scenario. In this model, production of the jet is dominated by the Blandford-Znajek mechanism, and the magnetic fields in the vicinity of the central black hole are confined by the ram pressure of the accretion flow. Since large net magnetic flux accumulated in central regions of the accretion flow required by the model can take place only via geometrically thick accretion, we speculate that the massive, 'cold' accretion events associated with luminous emission-line active galactic nucleus can be accompanied by an efficient jet production only if preceded by a hot, very sub-Eddington accretion phase.

  14. A Polarimetric Search for Hidden Quasars in Three Radio-selected Ultraluminous Infrared Galaxies

    International Nuclear Information System (INIS)

    Tran, H.D.; Brotherton, M.S.; Stanford, S.A.; Breugel, W. van; Dey, A.; Stern, D.; Antonucci, R.

    1999-01-01

    We have carried out a spectropolarimetric search for hidden broad-line quasars in three ultraluminous infrared galaxies (ULIRGs) discovered in the positional correlations between sources detected in deep radio surveys and the IRAS Faint Source Catalog. Only the high-ionization Seyfert 2 galaxy TF J1736+1122 is highly polarized, displaying a broad-line spectrum visible in polarized light. The other two objects, TF J1020+6436 and FF J1614+3234, display spectra dominated by a population of young (A type) stars similar to those of open-quotes E+Aclose quotes galaxies. They are unpolarized, showing no sign of hidden broad-line regions. The presence of young starburst components in all three galaxies indicates that the ULIRG phenomenon encompasses both active galactic nuclei (AGNs) and starburst activity, but the most energetic ULIRGs do not necessarily harbor open-quotes buried quasars.close quotes We find that a luminous infrared galaxy is most likely to host an obscured quasar if it exhibits a high-ionization ([O iii] λ5007/Hβ approx-gt 5) spectrum typical of a 'classic' Seyfert 2 galaxy with little or no Balmer absorption lines, is 'ultraluminous' (L IR approx-gt 10 12 L circle-dot ), and has a 'warm' IR color (f 25 /f 60 approx-gt 0.25). The detection of hidden quasars in this group but not in the low-ionization, starburst-dominated ULIRGs (classified as LINERs or H ii galaxies) may indicate an evolutionary connection, with the latter being found in younger systems. copyright copyright 1999. The American Astronomical Society

  15. HUBBLE SPACE TELESCOPE WFC3 GRISM SPECTROSCOPY AND IMAGING OF A GROWING COMPACT GALAXY AT z = 1.9

    International Nuclear Information System (INIS)

    Van Dokkum, Pieter G.; Brammer, Gabriel

    2010-01-01

    We present HST/WFC3 grism near-IR spectroscopy of the brightest galaxy at z > 1.5 in the GOODS-South WFC3 ERS grism pointing. The spectrum is of remarkable quality and shows the redshifted Balmer lines Hβ, Hγ, and Hδ in absorption at z = 1.902 ± 0.002. The absorption lines can be produced by a post-starburst stellar population with a luminosity-weighted age of ∼0.5 Gyr. The mass-to-light ratio inferred from the spectrum implies a stellar mass of (4 ± 1) x 10 11 M sun . We determine the morphology of the galaxy from a deep WFC3 H 160 image. Similar to other massive galaxies at z ∼ 2 the galaxy is compact, with an effective radius of 2.1 ± 0.3 kpc. Although most of the light is in a compact core, the galaxy has two red, smooth spiral arms that appear to be tidally induced. The spatially resolved spectroscopy demonstrates that the center of the galaxy is quiescent whereas the surrounding disk is forming stars, as it shows Hβ in emission. The galaxy interacts with a companion at a projected distance of 18 kpc, which also shows prominent tidal features. The companion is a factor of ∼10 fainter than the primary galaxy and may have a lower metallicity. It is tempting to interpret these observations as evidence for the growth of compact, quiescent high-redshift galaxies through minor mergers, which has been proposed by several recent observational and theoretical studies. Interestingly both objects host luminous active galactic nuclei, which implies that these mergers can be accompanied by significant black hole growth.

  16. ON THE COMPACT H II GALAXY UM 408 AS SEEN BY GMOS-IFU: PHYSICAL CONDITIONS

    International Nuclear Information System (INIS)

    Lagos, Patricio; Telles, Eduardo; Munoz-Tunon, Casiana; Carrasco, Eleazar R.; Cuisinier, Francois; Tenorio-Tagle, Guillermo

    2009-01-01

    We present Integral Field Unit GMOS-IFU data of the compact H II galaxy UM 408, obtained at the Gemini South telescope, in order to derive the spatial distribution of emission lines and line ratios, kinematics, plasma parameters, and oxygen abundances as well the integrated properties over an area of 3''x4.''4 equivalent with ∼750 pc x 1100 pc located in the central part of the galaxy. The starburst in this area is resolved into two giant regions of about 1.''5 and 1'' (∼375 and ∼250 pc) diameter, respectively and separated 1.5-2'' (∼500 pc). The extinction distribution concentrate its highest values close but not coincident with the maxima of Hα emission around each one of the detected regions. This indicates that the dust has been displaced from the exciting clusters by the action of their stellar winds. The ages of these two regions, estimated using Hβ equivalent widths, suggest that they are coeval events of ∼5 Myr with stellar masses of ∼10 4 M sun . We have also used [O III]/Hβ and [S II]/Hα ratio maps to explore the excitation mechanisms in this galaxy. Comparing the data points with theoretical diagnostic models, we found that all of them are consistent with excitation by photoionization by massive stars. The Hα emission line was used to measure the radial velocity and velocity dispersion. The heliocentric radial velocity shows an apparent systemic motion where the east part of the galaxy is blueshifted, while the west part is redshifted, with a relative motion of ∼10 km s -1 . The velocity dispersion map shows supersonic values typical for extragalactic H II regions. We derived an integrated oxygen abundance of 12+log(O/H) = 7.87 summing over all spaxels in our field of view. An average value of 12+log(O/H) = 7.77 and a difference of Δ(O/H) = 0.47 between the minimum and maximum values (7.58 ± 0.06-8.05 ± 0.04) were found, considering all data points where the oxygen abundance was measured. The spatial distribution of oxygen abundance

  17. PREDICTIONS FOR ULTRA-DEEP RADIO COUNTS OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Claudia; Lapi, Andrea; De Zotti, Gianfranco; Bressan, Alessandro; Perrotta, Francesca; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Cai, Zhen-Yi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Negrello, Mattia; Bonato, Matteo, E-mail: cmancuso@sissa.it [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-09-01

    We have worked outty predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch-dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free–free) emission. The SFR functions were derived taking into account both the dust-obscured and the unobscured star formation, by combining far-infrared, ultraviolet, and Hα luminosity functions up to high redshifts. We have also revisited the South Pole Telescope counts of dusty galaxies at 95 GHz, performing a detailed analysis of the Spectral Energy Distributions. Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 μJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.

  18. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2015-01-01

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z ⊙ ). We also find that the remnants of these mergers can have rather high mass densities (10 4 M ⊙ pc −3 ) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs

  19. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia 35 Stirling Highway, Crawley Western Australia, 6009 (Australia)

    2015-10-10

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers can have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.

  20. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions

  1. Evolution of the plasma universe: I. Double radio galaxies, quasars, and extragalactic jets

    International Nuclear Information System (INIS)

    Peratt, A.L.

    1986-01-01

    Cosmic plasma physics and our concept of the universe is in a state of rapid revision. This change started with in-situ measurements of plasmas in Earth's ionosphere, cometary atmospheres, and planetary magnetospheres; the translation of knowledge from laboratory experiments to astrophysical phenomena; discoveries of helical and filamentary plasma structures in the Galaxy and double radio sources; and the particle simulation of plasmas not accessible to in-situ measurement. Because of these, Birkeland (field-aligned) currents, double layers, and magnetic-field-aligned electric fields are now known to be far more important to the evolution of space plasma, including the acceleration of charged particles to high energies, than previously thought. This paper and its sequel investigate the observational evidence for a plasma universe threaded by Birkeland currents or filaments. This model of the universe was inspired by the advent of three-dimensional fully electromagnetic particle simulations and their application to the study of laboratory z pinches. This study resulted in totally unexpected phenomena in the data post-processed from the simulation particle, field, and history dumps. In particular, when the simulation parameters were scaled to galactic dimensions, the interaction between pinched filaments led to synchrotron radiation whose emission properties were found to share the following characteristics with double radio galaxies and quasars: power magnitude, isophotal morphology, spectra, brightness along source, polarization, and jets. The evolution of these pinched synchrotron emitting plasmas to elliptical, peculiar, and spiral galaxies by continuing the simulation run is addressed in a sequel paper

  2. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    International Nuclear Information System (INIS)

    Kunert-Bajraszewska, M.; Siemiginowska, A.; Labiano, A.

    2013-01-01

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 ± 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3σ level out to ∼60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of β = 0.58 ± 0.2 and a core radius of 9.4 +1.1 -0.9 arcsec. The average temperature of the cluster is equal to kT = 4.4 +0.5 -0.3 keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L (0.5-2 k eV) = 3 × 10 44 erg s –1 and mass 1.5 × 10 14 M ☉

  3. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    Energy Technology Data Exchange (ETDEWEB)

    Kunert-Bajraszewska, M. [Torun Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziacka 5, 87-100 Torun (Poland); Siemiginowska, A. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Labiano, A., E-mail: magda@astro.uni.torun.pl [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir km. 4, E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-07-20

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 {+-} 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3{sigma} level out to {approx}60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of {beta} = 0.58 {+-} 0.2 and a core radius of 9.4{sup +1.1}{sub -0.9} arcsec. The average temperature of the cluster is equal to kT = 4.4{sup +0.5}{sub -0.3} keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L{sub (0.5-2{sub keV)}} = 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and mass 1.5 Multiplication-Sign 10{sup 14} M{sub Sun}.

  4. Understanding the radio spectral indices of galaxy cluster relics by superdiffusive shock acceleration

    Science.gov (United States)

    Zimbardo, Gaetano; Perri, Silvia

    2018-06-01

    Galaxy cluster merger shocks are the likely source of relativistic electrons, but many observations do not fit into the standard acceleration models. In particular, there is a long-standing discrepancy between the radio derived Mach numbers M_radio and the Mach numbers derived from X-ray measurements, M_X. Here, we show how superdiffusive electron transport and superdiffusive shock acceleration (SSA) can help to solve this problem. We present a heuristic derivation of the superlinear time growth of the mean square displacement of particles, ⟨Δx2⟩∝tβ, and of the particle energy spectral index in the framework of SSA. The resulting expression for the radio spectral index α is then used to determine the superdiffusive exponent β from the observed values of α and of the compression ratio for a number of radio relics. Therefore, the fact that M_radio>M_X can be explained by SSA without the need to make assumptions on the energy spectrum of the seed electrons to be re-accelerated. We also consider the acceleration times obtained in the diffusive case, based both on the Bohm diffusion coefficient and on the quasilinear diffusion coefficient. While in the latter case the acceleration time is consistent with the estimated electron energy loss time, the former case it is much shorter.

  5. VizieR Online Data Catalog: Galaxy clusters: radio halos, relics and parameters (Yuan+, 2015)

    Science.gov (United States)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2017-10-01

    A large number of radio halos, relics, and mini-halos have been discovered and measured in recent decades through observations with VLA (e.g., Giovannini & Feretti 2000NewA....5..335G; van Weeren et al. 2011A&A...533A..35V), GMRT (e.g., Venturi et al. 2007A&A...463..937V; Kale et al. 2015A&A...579A..92K), WSRT (e.g., van Weeren et al. 2010Sci...330..347V; Trasatti et al. 2015A&A...575A..45T), and also ATCA (e.g., Shimwell et al. 2014MNRAS.440.2901S, 2015MNRAS.449.1486S). We have checked the radio images of radio halos, relics, and mini-halos in the literature and collected in Table 1 the radio flux Sν at frequencies within a few per cent around 1.4 GHz, 610 MHz, and 325 MHz; we have interpolated the flux at an intermediate frequency if measurements are available at higher and lower frequencies. To establish reliable scaling relations, we include only the very firm detection of diffuse radio emission in galaxy clusters, and omit questionable detections or flux estimates due to problematic point-source subtraction. (3 data files).

  6. TURBULENCE AND RADIO MINI-HALOS IN THE SLOSHING CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    ZuHone, J. A.; Markevitch, M.; Brunetti, G.; Giacintucci, S.

    2013-01-01

    A number of relaxed, cool-core galaxy clusters exhibit diffuse, steep-spectrum radio sources in their central regions, known as radio mini-halos. It has been proposed that the relativistic electrons responsible for the emission have been reaccelerated by turbulence generated by the sloshing of the cool core gas. We present a high-resolution MHD simulation of gas sloshing in a galaxy cluster coupled with subgrid simulations of relativistic electron acceleration to test this hypothesis. Our simulation shows that the sloshing motions generate turbulence on the order of δv ∼ 50-200 km s –1 on spatial scales of ∼50-100 kpc and below in the cool core region within the envelope of the sloshing cold fronts, whereas outside the cold fronts, there is negligible turbulence. This turbulence is potentially strong enough to reaccelerate relativistic electron seeds (with initial γ ∼ 100-500) to γ ∼ 10 4 via damping of magnetosonic waves and non-resonant compression. The seed electrons could remain in the cluster from, e.g., past active galactic nucleus activity. In combination with the magnetic field amplification in the core, these electrons then produce diffuse radio synchrotron emission that is coincident with the region bounded by the sloshing cold fronts, as indeed observed in X-rays and the radio. The result holds for different initial spatial distributions of pre-existing relativistic electrons. The power and the steep spectral index (α ≈ 1-2) of the resulting radio emission are consistent with observations of mini-halos, though the theoretical uncertainties of the acceleration mechanisms are high. We also produce simulated maps of inverse-Compton hard X-ray emission from the same population of relativistic electrons.

  7. CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE'S WIDE FIELD CAMERA 3

    International Nuclear Information System (INIS)

    Szomoru, Daniel; Franx, Marijn; Bouwens, Rychard J.; Van Dokkum, Pieter G.; Trenti, Michele; Illingworth, Garth D.; Labbe, Ivo; Oesch, Pascal A.; Carollo, C. Marcella

    2010-01-01

    We present very deep Wide Field Camera 3 (WFC3) photometry of a massive, compact galaxy located in the Hubble Ultra Deep Field. This quiescent galaxy has a spectroscopic redshift z = 1.91 and has been identified as an extremely compact galaxy by Daddi et al. We use new H F160W imaging data obtained with Hubble Space Telescope/WFC3 to measure the deconvolved surface brightness profile to H ∼ 28 mag arcsec -2 . We find that the surface brightness profile is well approximated by an n = 3.7 Sersic profile. Our deconvolved profile is constructed by a new technique which corrects the best-fit Sersic profile with the residual of the fit to the observed image. This allows for galaxy profiles which deviate from a Sersic profile. We determine the effective radius of this galaxy: r e = 0.42 ± 0.14 kpc in the observed H F160W band. We show that this result is robust to deviations from the Sersic model used in the fit. We test the sensitivity of our analysis to faint 'wings' in the profile using simulated galaxy images consisting of a bright compact component and a faint extended component. We find that due to the combination of the WFC3 imaging depth and our method's sensitivity to extended faint emission we can accurately trace the intrinsic surface brightness profile, and that we can therefore confidently rule out the existence of a faint extended envelope around the observed galaxy down to our surface brightness limit. These results confirm that the galaxy lies a factor ∼10 off from the local mass-size relation.

  8. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    Science.gov (United States)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  9. A FAST RADIO BURST IN THE DIRECTION OF THE CARINA DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    Ravi, V.; Shannon, R. M.; Jameson, A.

    2015-01-01

    We report the real-time discovery of a fast radio burst (FRB 131104) with the Parkes radio telescope in a targeted observation of the Carina dwarf spheroidal galaxy. The dispersion measure of the burst is 779 cm –3  pc, exceeding predictions for the maximum line-of-sight Galactic contribution by a factor of 11. The temporal structure of the burst is characterized by an exponential scattering tail with a timescale of 2.0 −0.5 +0.8  ms at 1582 MHz that scales as frequency to the power –4.4 −1.8 +1.6 (all uncertainties represent 95% confidence intervals). We bound the intrinsic pulse width to be <0.64 ms due to dispersion smearing across a single spectrometer channel. Searches in 78 hr of follow-up observations with the Parkes telescope reveal no additional sporadic emission and no evidence for associated periodic radio emission. We hypothesize that the burst is associated with the Carina dwarf galaxy. Follow-up observations at other wavelengths are necessary to test this hypothesis

  10. Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission

    Science.gov (United States)

    Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.

    2018-01-01

    Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.

  11. A FAST RADIO BURST IN THE DIRECTION OF THE CARINA DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, V. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Shannon, R. M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Jameson, A., E-mail: v.vikram.ravi@gmail.com [Swinburne University of Technology, Centre for Astrophysics and Supercomputing, Mail H39, P.O. Box 218, VIC 3122 (Australia)

    2015-01-20

    We report the real-time discovery of a fast radio burst (FRB 131104) with the Parkes radio telescope in a targeted observation of the Carina dwarf spheroidal galaxy. The dispersion measure of the burst is 779 cm{sup –3} pc, exceeding predictions for the maximum line-of-sight Galactic contribution by a factor of 11. The temporal structure of the burst is characterized by an exponential scattering tail with a timescale of 2.0{sub −0.5}{sup +0.8} ms at 1582 MHz that scales as frequency to the power –4.4{sub −1.8}{sup +1.6} (all uncertainties represent 95% confidence intervals). We bound the intrinsic pulse width to be <0.64 ms due to dispersion smearing across a single spectrometer channel. Searches in 78 hr of follow-up observations with the Parkes telescope reveal no additional sporadic emission and no evidence for associated periodic radio emission. We hypothesize that the burst is associated with the Carina dwarf galaxy. Follow-up observations at other wavelengths are necessary to test this hypothesis.

  12. The astrophysical consequences of intervening galaxy gas on fast radio bursts

    Science.gov (United States)

    Prochaska, J. Xavier; Neeleman, Marcel

    2018-02-01

    We adopt and analyze results on the incidence and physical properties of damped Ly$\\alpha$ systems (DLAs) to predict the astrophysical impact of gas in galaxies on observations of Fast Radio Bursts (FRBs). Three DLA measures form the basis of this analysis: (i) the HI column density distribution, parameterized as a double power-law; (ii) the incidence of DLAs with redshift (derived here), $\\ell(z)=A+B \\arctan(z-C)$ with $A=0.236_{-0.021}^{+0.016}, B=0.168_{-0.017}^{+0.010}, C=2.87_{-0.13}^{+0.17}$ and (iii) the electron density, parameterized as a log-normal deviate with mean $10^{-2.6} cm^{-3}$ and dispersion 0.3dex. Synthesizing these results, we estimate that the average rest-frame dispersion measure from the neutral medium of a single, intersecting galaxy is DM$^{NM}_{DLA}=0.25$ pc/cm^3. Analysis of AlIII and CII* absorption limits the putative warm ionized medium to contribute DM$^{WIM}_{DLA}<20$pc/cm^3. Given the low incidence of DLAs, we find that a population of FRBs at z=2 will incur DM(z=2)=0.01 pc/cm^3 on average, with a 99% c.l. upper bound of 0.22 pc/cm^3. Assuming that turbulence of the ISM in external galaxies is qualitatively similar to our Galaxy, we estimate that the angular broadening of an FRB by intersecting galaxies is negligible ($\\theta<0.1$mas). The temporal broadening is also predicted to be small, $\\tau \\approx 0.3$ms for a z=1 galaxy intersecting a z=2 FRB for an observing frequency of $\

  13. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  14. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    NARCIS (Netherlands)

    Martin, Nicolas F.; Nidever, David L.; Besla, Gurtina; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Gruendl, Robert A.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Blum, Robert D.; Saha, Abhijit; Conn, Blair C.; Bell, Eric F.; Chu, You-Hua; Cioni, Maria-Rosa L.; de Boer, Thomas J. L.; Gallart, Carme; Jin, Shoko; Kunder, Andrea; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Monelli, Matteo; Monteagudo, Lara; Noël, Noelia E. D.; Olszewski, Edward W.; Stringfellow, Guy S.; van der Marel, Roeland P.; Zaritsky, Dennis

    We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3),

  15. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  16. Surface brightness and color distributions in blue compact dwarf galaxies. I. Haro 2, an extreme example of a star-forming young elliptical galaxy

    International Nuclear Information System (INIS)

    Loose, H.H.; Thuan, T.X.; Virginia Univ., Charlottesville, VA)

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The missing mass problem of Haro 2 is also discussed. 28 references

  17. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  18. Large Binocular Telescope/LUCIFER spectroscopy: kinematics of a compact early-type galaxy at z ≃ 1.4

    Science.gov (United States)

    Longhetti, M.; Saracco, P.; Gargiulo, A.; Tamburri, S.; Lonoce, I.

    2014-04-01

    We present a high signal-to-noise ratio (S/N > 10) medium-resolution (R = 2000) Large Binocular Telescope/LUCIFER spectrum of the early-type galaxy (ETG) S2F1-142 at z ≃ 1.4. By means of the CaT line at 8662 Å, we measured its redshift z = 1.386 ± 0.001 and we estimated its velocity dispersion σ v=340^{-60}_{+120} km s-1. Its corresponding virial mass is 3.9 × 1011 M⊙, compatible with the stellar mass estimates obtained assuming initial mass functions (IMFs) less dwarf rich than the Salpeter one. S2F1-142 is a compact galaxy with Re = 3.1 ± 0.2 kpc, i.e. an effective radius more than three times smaller than the average Re of ETGs with the same mass in the local Universe. At the same time, we found local and high-redshift galaxies with a similar mass content and similar effective radius confirming that it is fully consistent with the already available measures of Re and σv both in the local and in the distant Universe. Considering the distribution of Re and σv as a function of the stellar mass content of ETGs, both in the local and in the distant Universe, we noticed that the measured velocity dispersions of the more compact galaxies are on average slightly lower than expected on the basis of their compactness and the virial theorem, suggesting that (i) their dark matter content is lower than in the more diffuse galaxies and/or (ii) their luminosity profiles are steeper than in the more diffuse galaxies and/or (iii) their larger compactness is an apparent effect caused by the overestimate of their stellar mass content (due to bottom lighter IMF and/or systematic affecting the stellar mass estimates).

  19. Multi-spectral study of a new sample of blue compact dwarf galaxies

    CERN Document Server

    Doublier, V; Comte, G

    1999-01-01

    For pt.I see ibid., vol.124, no.3, p.405-24 (1997). We present the results of surface photometry on a new sample of blue compact dwarf galaxies (BCDGs), in continuation to a previous paper (Doublier et al. 1997). The 22 galaxies $9 (plus two companions) discussed in the present paper have been selected in the Southern Hemisphere, from several lists. An atlas containing isophotal maps, surface brightnesses and B-R color profiles of the sample is given, together $9 with the tables containing the photometric parameters. The results are consistent with those for objects selected from the Byurakan surveys in the Northern Hemisphere. Similarly, we find about one fourth of the BCDGs showing a $9 dominant r/sup 1/4/ brightness distribution component, one fourth of the BCDGs showing a dominant exponential surface brightness profile, and about half of them show composite brightness distributions. Integrated properties, colors, $9 mean surface brightnesses and luminosity-radius relations are investigated and discussed f...

  20. Faraday rotation at low frequencies: magnetoionic material of the large FRII radio galaxy PKS J0636-2036

    Science.gov (United States)

    O'Sullivan, S. P.; Lenc, E.; Anderson, C. S.; Gaensler, B. M.; Murphy, T.

    2018-04-01

    We present a low-frequency, broad-band polarization study of the FRII radio galaxy PKS J0636-2036 (z = 0.0551), using the Murchison Widefield Array (MWA) from 70 to 230 MHz. The northern and southern hotspots (separated by ˜14.5 arcmin on the sky) are resolved by the MWA (3.3 arcmin resolution) and both are detected in linear polarization across the full frequency range. A combination of Faraday rotation measure (RM) synthesis and broad-band polarization model fitting is used to constrain the Faraday depolarization properties of the source. For the integrated southern hotspot emission, two-RM-component models are strongly favoured over a single RM component, and the best-fitting model requires Faraday dispersions of approximately 0.7 and 1.2 rad m-2 (with a mean RM of ˜50 rad m-2). High-resolution imaging at 5 arcsec with the Australia Telescope Compact Array shows significant sub-structure in the southern hotspot and highlights some of the limitations in the polarization modelling of the MWA data. Based on the observed depolarization, combined with extrapolations of gas density scaling relations for group environments, we estimate magnetic field strengths in the intergalactic medium between ˜0.04 and 0.5 μG. We also comment on future prospects of detecting more polarized sources at low frequencies.

  1. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2

    International Nuclear Information System (INIS)

    Kriek, Mariska; Van Dokkum, Pieter G.; Marchesini, Danilo; Labbe, Ivo; Franx, Marijn; Quadri, Ryan F.; Illingworth, Garth D.

    2009-01-01

    Several recent studies have shown that about half of the massive galaxies at z ∼ 2 are in a quiescent phase. Moreover, these galaxies are commonly found to be ultra-compact with half-light radii of ∼1 kpc. We have obtained a ∼29 hr spectrum of a typical quiescent, ultra-dense galaxy at z = 2.1865 with the Gemini Near-Infrared Spectrograph. The spectrum exhibits a strong optical break and several absorption features, which have not previously been detected in z > 2 quiescent galaxies. Comparison of the spectral energy distribution with stellar population synthesis models implies a low star formation rate (SFR) of 1-3 M sun yr -1 , an age of 1.3-2.2 Gyr, and a stellar mass of ∼2 x 10 11 M sun . We detect several faint emission lines, with emission-line ratios of [N II]/Hα, [S II]/Hα, and [O II]/[O III] typical of low-ionization nuclear emission-line regions. Thus, neither the stellar continuum nor the nebular emission implies active star formation. The current SFR is <1% of the past average SFR. If this galaxy is representative of compact quiescent galaxies beyond z = 2, it implies that quenching of star formation is extremely efficient and also indicates that low luminosity active galactic nuclei (AGNs) could be common in these objects. Nuclear emission is a potential concern for the size measurement. However, we show that the AGN contributes ∼<8% to the rest-frame optical emission. A possible post-starburst population may affect size measurements more strongly; although a 0.5 Gyr old stellar population can make up ∼<10% of the total stellar mass, it could account for up to ∼40% of the optical light. Nevertheless, this spectrum shows that this compact galaxy is dominated by an evolved stellar population.

  2. Evidence for a Multiphase ISM in Early Type Galaxies and Elliptical Galaxies with Strong Radio Continuum

    Science.gov (United States)

    Kim, Dong Woo

    1997-01-01

    We have observed NGC 1316 (Fornax A) with the ROSAT HRI. In this paper, we present the results of these observations and we complement them with the spectral analysis of the archival PSPC data. The spectral properties suggest the presence of a significant component of thermal X-ray emission (greater than 60%), amounting to approx. 10(exp 9) solar mass of hot ISM. Within 3 feet from the nucleus of NGC 1316, the HRI X-ray surface brightness falls as r(exp -2) following the stellar light. In the inner approx. 30 inch., however, the X-ray surface brightness is significantly elongated, contrary to the distribution of stellar light, which is significantly rounder within 10 inch. This again argues for a non-stellar origin of the X-ray emission. This flattened X-ray feature is suggestive of either the disk-like geometry of a rotating cooling flow and/or the presence of extended, elongated dark matter. By comparing the morphology of the X-ray emission with the distribution of optical dust patches, we find that the X-ray emission is significantly reduced at the locations where the dust patches are more pronounced, indicating that at least some of the X-ray photons are absorbed by the cold ISM. We also compare the distribution of the hot and cold ISM with that of the ionized gas, using recently obtained H(sub alpha) CCD data. We find that the ionized gas is distributed roughly along the dust patches and follows the large scale X-ray distribution at r greater than 1 foot from the nucleus. However, there is no one-to-one correspondence between ionized gas and hot gas. Both morphological relations and kinematics suggest different origins for hot and cold ISM. The radio jets in projection appear to pass perpendicularly through the central X-ray ellipsoid. Comparison of thermal and radio pressures suggests that the radio jets are confined by the surrounding hot gaseous medium.

  3. Twin radio relics in the nearby low-mass galaxy cluster Abell 168

    Science.gov (United States)

    Dwarakanath, K. S.; Parekh, V.; Kale, R.; George, L. T.

    2018-06-01

    We report the discovery of twin radio relics in the outskirts of the low-mass merging galaxy cluster Abell 168 (redshift=0.045). One of the relics is elongated with a linear extent ˜800 kpc and projected width of ˜80 kpc and is located ˜900 kpc towards the north of the cluster centre, oriented roughly perpendicular to the major axis of the X-ray emission. The second relic is ring-shaped with a size ˜220 kpc and is located near the inner edge of the elongated relic at a distance of ˜600 kpc from the cluster centre. These radio sources were imaged at 323 and 608 MHz with the Giant Meterwave Radio Telescope and at 1520 MHz with the Karl G. Jansky Very Large Array (VLA). The elongated relic was detected at all frequencies, with a radio power of 1.38 ± 0.14 × 1023 W Hz-1 at 1.4 GHz and a power law in the frequency range 70-1500 MHz (S ∝ να, α = -1.1 ± 0.04). This radio power is in good agreement with that expected from the known empirical relation between the radio powers of relics and host cluster masses. This is the lowest mass (M500 = 1.24 × 1014 M⊙) cluster in which relics due to merger shocks are detected. The ring-shaped relic has a steeper spectral index (α) of -1.74 ± 0.29 in the frequency range 100-600 MHz. We propose this relic to be an old plasma, revived due to adiabatic compression by the outgoing shock that produced the elongated relic.

  4. Close entrainment of massive molecular gas flows by radio bubbles in the central galaxy of Abell 1795

    Science.gov (United States)

    Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Combes, F.; Edge, A. C.; Hogan, M. T.; McDonald, M.; Salomé, P.; Tremblay, G.; Vantyghem, A. N.

    2017-12-01

    We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5-7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central active galactic nucleus have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxy's systemic velocity at the nucleus to -370 km s^{-1}, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, shows that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic XCO factor, the total molecular gas mass is 3.2 ± 0.2 × 109 M⊙. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of 2. Stimulated feedback, where the radio bubbles lift low-entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.

  5. Radio emission, cosmic ray electrons, and the production of γ-rays in the galaxy

    International Nuclear Information System (INIS)

    Webber, W.R.; Simpson, G.A.; Cane, H.V.

    1980-01-01

    Using a perspective based on new radio data, we have reexamined the traditional derivation of the interstellar electron spectrum using the galactic nonthermal radio spectrum. The radio spectrum derived in the polar directions is now used as a base for this derivation rather than the anticenter spectrum. The interstellar electron spectrum between 70 and 1200 MeV is found to have an exponent -2.14 +- 0.06, steeper than previously determined, and leading to electron fluxes at low energies up to a factor of 10 larger than previously predicted. The electron spectrum below approx.20 MeV measured at Earth is used along with solar modulation arguments to suggest that this interstellar electron spectrum flattens to an exponent of -1.6 +- 0.1 between 5 and 70 MeV. We then use radio maps to predict the γ-ray fluxes produced by the bremsstrahlung process to be expected from these electrons. Using the radio maps, we fiest define L/sub eff/, the effective path length for radio emission in various directions, to predict the effective path length for γ-ray emission. The spectral shapes of γ-rays predicted when the contribution from π 0 decay is included, show little evidence of a pion-decay bump and agree well with those observed, indicating that large changes in the cosmic-ray electron to proton ratio from that observed locally are unlikely along a line of sight. The differences in the predicted and observed γ-ray intensities in the galactic plane are small. However, in the polar direction, the predicted γ-ray flux using the radio data is approx.6 times larger than that actually observed. This is indicative of the fact that the radio emissivity is considerably thicker than the γ-ray emissivity disk, and the cosmic-ray electron population extends beyond the gaseous disk of the Galaxy. This technique of estimating the γ-ray intensity using the radio data is compared with the usual technique which employs estimates of the column density of hydrogen

  6. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 2

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We discuss the wavelength dependence (0.44-2.2 μm) of polarization of the sample of 71 Seyfert and three broad-line radio galaxies presented in a previous paper. For four galaxies, 3A 0557-383, Fairall 51, IC 4392A and NGC 3783, we also present spectropolarimetry covering the wavelength range of 0.4-0.6 μm. (author)

  7. On the interaction of the PKS B1358–113 radio galaxy with the A1836 cluster

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, Ł.; Simionescu, A.; Hagino, K. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Szostek, A.; Kozieł-Wierzbowska, D.; Ostrowski, M. [Astronomical Observatory, Jagiellonian University, ulica Orla 171, 30-244 Kraków (Poland); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Siemiginowska, A.; Harris, D. E. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Werner, N. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States); Madejski, G. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Begelman, M. C., E-mail: stawarz@astro.isas.jaxa.jp [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440 (United States)

    2014-10-20

    Here we present the analysis of multifrequency data gathered for the Fanaroff-Riley type-II (FR II) radio galaxy PKS B1358-113, hosted in the brightest cluster galaxy in the center of A1836. The galaxy harbors one of the most massive black holes known to date, and our analysis of the acquired optical data reveals that this black hole is only weakly active, with a mass accretion rate M-dot {sub acc}∼2×10{sup −4} M-dot {sub Edd}∼0.02 M{sub ⊙} yr{sup –1}. Based on analysis of new Chandra and XMM-Newton X-ray observations and archival radio data, and assuming the well-established model for the evolution of FR II radio galaxies, we derive the preferred range for the jet kinetic luminosity L {sub j} ∼ (1-6) × 10{sup –3} L {sub Edd} ∼ (0.5-3) × 10{sup 45} erg s{sup –1}. This is above the values implied by various scaling relations proposed for radio sources in galaxy clusters, being instead very close to the maximum jet power allowed for the given accretion rate. We also constrain the radio source lifetime as τ{sub j} ∼ 40-70 Myr, meaning the total amount of deposited jet energy E {sub tot} ∼ (2-8) × 10{sup 60} erg. We argue that approximately half of this energy goes into shock heating of the surrounding thermal gas, and the remaining 50% is deposited into the internal energy of the jet cavity. The detailed analysis of the X-ray data provides indication for the presence of a bow shock driven by the expanding radio lobes into the A1836 cluster environment. We derive the corresponding shock Mach number in the range M{sub sh}∼2--4, which is one of the highest claimed for clusters or groups of galaxies. This, together with the recently growing evidence that powerful FR II radio galaxies may not be uncommon in the centers of clusters at higher redshifts, supports the idea that jet-induced shock heating may indeed play an important role in shaping the properties of clusters, galaxy groups, and galaxies in formation. In this context, we speculate on

  8. LeMMINGs - I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores

    Science.gov (United States)

    Baldi, R. D.; Williams, D. R. A.; McHardy, I. M.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Muxlow, T. W. B.; Aalto, S.; Alberdi, A.; Bendo, G. J.; Corbel, S.; Evans, R.; Fenech, D. M.; Green, D. A.; Klöckner, H.-R.; Körding, E.; Kharb, P.; Maccarone, T. J.; Martí-Vidal, I.; Mundell, C. G.; Panessa, F.; Peck, A. B.; Pérez-Torres, M. A.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Westcott, J.

    2018-05-01

    We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams. We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for H II galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032 to 1040 erg s-1: LINERs and H II galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ˜107 M⊙, but a break emerges at lower masses. Using [O III] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted H II galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; H II galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.

  9. Probing the Cosmological Principle in the counts of radio galaxies at different frequencies

    Science.gov (United States)

    Bengaly, Carlos A. P.; Maartens, Roy; Santos, Mario G.

    2018-04-01

    According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is ~2 times larger than predicted by the mock data. For TGSS, the dipole is almost ~ 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.

  10. Development of a remotely maintainable radio-frequency module for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Snider, J.D.

    1988-01-01

    The Compact Ignition Tokamak (CIT) will require reliable remote handling (RH) systems to overcome failures in diagnostic and operational equipment. Oak Ridge National laboratory (ORNL) is responsible for the ex-vessel remote maintenance systems for the CIT. Part of this effort is performing remote maintenance demonstrations on replicas of various CIT equipment. To ensure successful RH, the machine must be designed with proven remote maintenance features. In the demonstrations, critical remote maintenance features are tested before actual CIT equipment designs are finalized. Designs and procedures required to remotely remove and install a radio-frequency (rf) module from a modplane port on the tokamak were recently demonstrated at ORNL. This testing identified both successful design features for remote maintenance of the rf module and areas that require further development. 1 ref., 11 figs

  11. Westerbork Synthesis Radio Telescope HI Imaging of HI-selected Local Group Galaxy Candidates

    Science.gov (United States)

    Adams, Elizabeth A.; Cannon, J. M.; Oosterloo, T.; Giovanelli, R.; Haynes, M. P.

    2014-01-01

    The paucity of low mass galaxies in the Universe is a long-standing problem. We recently presented a set of isolated ultra-compact high velocity clouds (UCHVCs) identified within the dataset of the Arecibo Legacy Fast ALFA (ALFALFA) HI line survey that are consistent with representing low mass gas-bearing dark matter halos within the Local Group (Adams et al. 2013). At distances of ~1 Mpc, the UCHVCs have HI masses of ~10^5 Msun and indicative dynamical masses of ~10^7 Msun. The HI diameters of the UCHVCs range from 4' to 20', or 1 to 6 kpc at a distance of 1 Mpc. We have selected the most compact and isolated UCHVCs with the highest average column densities as representing the best galaxy candidates. Seven of these systems have been observed with WSRT to enable higher spatial resolution 40-60") studies of the HI distribution. The HI morphology revealed by the WSRT data offers clues to the environment of the UCHVCs, and velocity fields allow the underlying mass distribution to be constrained. The Cornell ALFALFA team is supported by NSF AST-1107390 and by the Brinson Foundation. JMC is supported by NSF grant AST-1211683.

  12. The radio continuum-star formation rate relation in WSRT sings galaxies

    International Nuclear Information System (INIS)

    Heesen, Volker; Brinks, Elias; Leroy, Adam K.; Heald, George; Braun, Robert; Bigiel, Frank; Beck, Rainer

    2014-01-01

    We present a study of the spatially resolved radio continuum-star formation rate (RC-SFR) relation using state-of-the-art star formation tracers in a sample of 17 THINGS galaxies. We use SFR surface density (Σ SFR ) maps created by a linear combination of GALEX far-UV (FUV) and Spitzer 24 μm maps. We use RC maps at λλ22 and 18 cm from the WSRT SINGS survey and Hα emission maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/mid-IR (MIR) based Σ SFR maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7 kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R int =0.78±0.38, consistent with the relation by Condon. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Σ SFR for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Σ SFR agrees with the integrated ratio and has only quasi-random fluctuations with galactocentric radius that are relatively small (25%). Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Σ SFR , with a typical standard deviation of a factor of two. Averaged over our sample we find (Σ SFR ) RC ∝(Σ SFR ) hyb 0.63±0.25 , implying that data points with high Σ SFR are relatively radio dim, whereas the reverse is true for low Σ SFR . We interpret this as a result of spectral aging of cosmic-ray electrons (CREs), which are diffusing away from the star formation sites where they are injected into the interstellar medium. This is supported by our finding that the radio spectral index is a second parameter in pixel-by-pixel plots: those data points dominated by young CREs are relatively radio dim, while those dominated by old CREs are slightly more RC bright than what would be expected from a linear extrapolation. We studied the ratio R of radio to FUV/MIR-based integrated SFR as a function of

  13. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    Science.gov (United States)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  14. Non-Uniform Free-Free Absorption in the GPS Radio Galaxy 0108+388

    CERN Document Server

    Marr, J M; Crawford, F

    2001-01-01

    We have observed the canonical gigahertz-peaked spectrum source 0108+388 with the VLBA at a range of frequencies above and below the spectral peak. The activity that dominates the radio emission from 0108+388, which is also classified as a Compact Symmetric Object, is thought to be less than 1000 years old. We present strong evidence that the spectral turnover in 0108+388 results from free-free absorption by non-uniform gas, possibly in the form of a disk in the central tens of parsecs.

  15. TURBULENT COSMIC-RAY REACCELERATION AT RADIO RELICS AND HALOS IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Fujita, Yutaka; Takizawa, Motokazu; Yamazaki, Ryo; Akamatsu, Hiroki; Ohno, Hiroshi

    2015-01-01

    Radio relics are synchrotron emission found on the periphery of galaxy clusters. From the position and the morphology, it is often believed that the relics are generated by cosmic-ray (CR) electrons accelerated at shocks through a diffusive shock acceleration (DSA) mechanism. However, some radio relics have harder spectra than the prediction of the standard DSA model. One example is observed in the cluster 1RXS J0603.3+4214, which is often called the “Toothbrush Cluster.” Interestingly, the position of the relic is shifted from that of a possible shock. In this study, we show that these discrepancies in the spectrum and the position can be solved if turbulent (re)acceleration is very effective behind the shock. This means that for some relics turbulent reacceleration may be the main mechanism to produce high-energy electrons, contrary to the common belief that it is the DSA. Moreover, we show that for efficient reacceleration, the effective mean free path of the electrons has to be much smaller than their Coulomb mean free path. We also study the merging cluster 1E 0657−56, or the “Bullet Cluster,” in which a radio relic has not been found at the position of the prominent shock ahead of the bullet. We indicate that a possible relic at the shock is obscured by the observed large radio halo that is generated by strong turbulence behind the shock. We propose a simple explanation of the morphological differences of radio emission among the Toothbrush, the Bullet, and the Sausage (CIZA J2242.8+5301) Clusters

  16. Occurrence of Radio Minihalos in a Mass-limited Sample of Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Giacintucci, Simona; Clarke, Tracy E. [Naval Research Laboratory, 4555 Overlook Avenue SW, Code 7213, Washington, DC 20375 (United States); Markevitch, Maxim [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cassano, Rossella; Venturi, Tiziana; Brunetti, Gianfranco, E-mail: simona.giacintucci@nrl.navy.mil [INAF—Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2017-06-01

    We investigate the occurrence of radio minihalos—diffuse radio sources of unknown origin observed in the cores of some galaxy clusters—in a statistical sample of 58 clusters drawn from the Planck Sunyaev–Zel’dovich cluster catalog using a mass cut ( M {sub 500} > 6 × 10{sup 14} M {sub ⊙}). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores—at least 12 out of 15 (80%)—in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or “warm cores.” These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.

  17. Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Poutanen, T.; Natoli, P.

    2011-01-01

    The data reported in Planck's Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest sou...

  18. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S. [Indian Institute of Astrophysics, Block-II, Koramangala, Bangalore-560034 (India); Sahayanathan, S. [Astrophysical Science Division, Bhabha Atomic Research Center, Mumbai-400085 (India); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Anjum, Ayesha [Department of Physics, Christ University, Bangalore-560029 (India); Pandey, S. B., E-mail: vaidehi@iiap.res.in [Aryabhatta Research Institute of Observational Sciences, Manora peak, Nainital-263129 (India)

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  19. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    OpenAIRE

    Martin, NF; Nidever, DL; Besla, G; Olsen, K; Walker, AR; Vivas, AK; Gruendl, RA; Kaleida, CC; Muñoz, RR; Blum, RD; Saha, A; Conn, BC; Bell, EF; Chu, YH; Cioni, MRL

    2015-01-01

    © 2015. The American Astronomical Society. All rights reserved.We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact (rh = 68 ± 11 pc) and faint (MV = -4.8 ± 0.3), but well within the realm of dwarf galaxies. The stellar distribution of Hydra II in the color-magnitude diagram is well-described by a m...

  20. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    International Nuclear Information System (INIS)

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.; Johnson, Kelsey E.; Balser, Dana S.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combination of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.

  1. Gas Sloshing and Radio Galaxy Dynamics in the Core of the 3C 449 Group

    Science.gov (United States)

    Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E.; Roediger, Elke; ZuHone, John A.; Hardcastle, Martin J.; Jones, Christine; Croston, Judith H.

    2013-01-01

    We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge.We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation.

  2. A DETAILED STUDY OF THE LOBES OF ELEVEN POWERFUL RADIO GALAXIES

    International Nuclear Information System (INIS)

    Daly, Ruth A.; Mory, Matthew P.; McKane, Justin; Altenderfer, Christopher; Beury, Michael; Kharb, Preeti; O'Dea, Christopher P.; Baum, Stefi A.

    2010-01-01

    Radio lobes of a sample of 11 very powerful classical double radio galaxies were studied. Each source was rotated so that the symmetry axis of the source was horizontal, and vertical cross-sectional cuts were taken across the source at intervals of one beam size. These were used to study the cross-sectional surface brightness profiles, the width of each slice, radio emissivity as a function of position across each slice, the first and second moments, and the average surface brightness, minimum-energy magnetic field strength, and pressure of each slice. Typically, a Gaussian provides a good description of the surface brightness profile of cross-sectional slices. The Gaussian full width at half-maximum (FWHM) as a function of distance from the hot spot first increases and then decreases with increasing distance from the hot spot. The width as a function of distance from the hot spot is generally highly symmetric on each side of the source. The radio emissivity is often close to flat across a slice, indicating a roughly constant emissivity and pressure for that slice. Some slices show variations in radio emissivity that indicate an 'edge-peaked' pressure profile for that slice. When this occurs, it is generally found in slices near the local maxima of the bridge width. The emissivity does not exhibit any signature of emission from a jet. The first moment is generally quite close to zero indicating only small excursions of the ridgeline from the symmetry axis of the source. The second moment indicates the same source shape as is found using the Gaussian FWHM. The average surface brightness is peaked at the hot spot, and is fairly flat across most of the radio lobes. The average magnetic field strength and pressure peak at the hot spot and gradually decrease with increasing distance from the hot spot, reaching a roughly constant value at a location that is typically just before the location of a local maximum of the bridge width. These results are interpreted in terms

  3. ULTRA-COMPACT HIGH VELOCITY CLOUDS AS MINIHALOS AND DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Faerman, Yakov; Sternberg, Amiel [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978 (Israel); McKee, Christopher F., E-mail: yakovfae@post.tau.ac.il [Department of Physics and Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States)

    2013-11-10

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 10{sup 4} K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ∼10{sup 7} M{sub ☉} within the central 300 pc (independent of total halo mass), consistent with the 'Strigari mass scale' observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d ∼> 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s{sup –1}), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M{sub 300} = 8 (± 0.2) × 10{sup 6} M{sub ☉} best fits the observed H I profile. We derive an upper limit of P{sub HIM} ∼< 150 cm{sup –3} K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  4. CONNECTION BETWEEN THE ACCRETION DISK AND JET IN THE RADIO GALAXY 3C 111

    International Nuclear Information System (INIS)

    Chatterjee, Ritaban; Marscher, Alan P.; Jorstad, Svetlana G.; Harrison, Brandon; Agudo, Ivan; Taylor, Brian W.; Markowitz, Alex; Rivers, Elizabeth; Rothschild, Richard E.; McHardy, Ian M.; Aller, Margo F.; Aller, Hugh D.; Laehteenmaeki, Anne; Tornikoski, Merja; Gomez, Jose L.; Gurwell, Mark

    2011-01-01

    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4-10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuum flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 lt-day of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with a steeper slope at shorter timescales. The break timescale of 13 +12 -6 days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which the X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons-the corona-situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the Fanaroff-Riley class I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black hole.

  5. THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Tundo, Elena [INAF, Osservatorio Astrofisico di Firenze, Largo Enrico Fermi 5, I-50125, Firenze (Italy); Mobasher, Bahram; Nayyeri, Hooshang [Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman [Space Telescope Science Institute, 3700 San Martin Boulevard, Baltimore, MD 21218 (United States); Trump, Jonathan R. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Cassata, Paolo [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso (Chile); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Guo, Yicheng [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Pentericci, Laura; Castellano, Marco; Fontana, Adriano; Grazian, Andrea [INAF - Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone (Italy); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Finkelstein, Steven L., E-mail: ccwilliams@email.arizona.edu [Department of Astronomy, University of Texas, Austin (United States); and others

    2015-02-10

    Quenched galaxies at z > 2 are nearly all very compact relative to z ∼ 0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present rest-frame UV spectra of Lyman-break galaxies (LBGs) at z ∼ 3 selected to be candidate progenitors of the quenched galaxies at z ∼ 2 based on their compact rest-frame-optical sizes and high Σ{sub SFR}. We compare their UV properties to those of more extended LBGs of similar mass and star-formation rate (non-candidates). We find that candidate progenitors have faster bulk interstellar medium (ISM) gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyα and interstellar absorption lines in that their Lyα emission remains strong despite high interstellar absorption, possibly indicating that the neutral H I fraction is patchy, such that Lyα photons can escape. We detect stronger C IV P-Cygni features (emission and absorption) and He II emission in candidates, indicative of larger populations of metal-rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyα properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z ∼ 2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of their stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally sized LBGs at these (early) epochs.

  6. THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z ∼ 2

    International Nuclear Information System (INIS)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Tundo, Elena; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman; Trump, Jonathan R.; Cassata, Paolo; Dekel, Avishai; Guo, Yicheng; Lee, Kyoung-Soo; Pentericci, Laura; Castellano, Marco; Fontana, Adriano; Grazian, Andrea; Bell, Eric F.; Finkelstein, Steven L.

    2015-01-01

    Quenched galaxies at z > 2 are nearly all very compact relative to z ∼ 0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present rest-frame UV spectra of Lyman-break galaxies (LBGs) at z ∼ 3 selected to be candidate progenitors of the quenched galaxies at z ∼ 2 based on their compact rest-frame-optical sizes and high Σ SFR . We compare their UV properties to those of more extended LBGs of similar mass and star-formation rate (non-candidates). We find that candidate progenitors have faster bulk interstellar medium (ISM) gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyα and interstellar absorption lines in that their Lyα emission remains strong despite high interstellar absorption, possibly indicating that the neutral H I fraction is patchy, such that Lyα photons can escape. We detect stronger C IV P-Cygni features (emission and absorption) and He II emission in candidates, indicative of larger populations of metal-rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyα properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z ∼ 2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of their stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally sized LBGs at these (early) epochs

  7. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    Science.gov (United States)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (GMOS z\\prime -band image (≃ 1\\buildrel{\\prime\\prime}\\over{.} 4 (4.6 kpc) at FWHM with ellipticity b/a=0.45). The spatial offset between the centroid of the Hα emission region and the position of the radio bursts is 0\\buildrel{\\prime\\prime}\\over{.} 08+/- 0\\buildrel{\\prime\\prime}\\over{.} 02 (0.26 ± 0.07 kpc), indicating that FRB 121102 is located within the star-forming region. This close spatial association of FRB 121102 with the star-forming region is consistent with expectations from young pulsar/magnetar models for FRB 121102, and it also suggests that the observed Hα emission region can make a major dispersion measure (DM) contribution to the host galaxy DM component of FRB 121102. Nevertheless, the largest possible value of the DM contribution from the Hα emission region inferred from our observations still requires a significant amount of ionized baryons in intergalactic medium (IGM; the so-called “missing” baryons) as the DM source of FRB 121102, and we obtain a 90% confidence level lower limit on the cosmic baryon density in the IGM in the low-redshift universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  8. Compact galaxies in the region with the center coordinates 07sup(h)59sup(m)+54 deg 44'

    International Nuclear Information System (INIS)

    Boerngen, F.; Kalloglyan, A.T.

    1980-01-01

    A list of 70 compact galaxies is presented, galaxies being found in the metagalactic field in the region with center coordinates αsub(1950)=07sup(h)59sup(m), deltasub(1950)54 deg 44'. The selection of objects have been carried out on negatives obtained in the Schmidt focus of the two-meter universal telescope of Tautenburg observatory in the colour B and V system. Galaxies of the highest surface brightness and of spherical configuration have been included. Only in some cases slightly elongated objects have been included due to their very high surface brightness. The coordinates, B and V stellar values of all objects have been measured. The maps of their identification are presented

  9. On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13

    Science.gov (United States)

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-06-01

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  10. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    Science.gov (United States)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  11. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  12. A Search for Blazar-Like Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Directory of Open Access Journals (Sweden)

    Hugh R. Miller

    2017-03-01

    Full Text Available We report the results of an observational program to investigate the gamma-ray and optical variability properties of the vRL NLSY1 galaxies listed in the Yuan et al. sample. We have identified 17 members of the Yuan et al. sample possibly associated with gamma-ray sources based on a combination of their optical polarization and optical variability and their gamma-ray properties. Eight have previously been associated with gamma-ray sources. We find nine additional members that we predict are excellent candidates to be associated with gamma-ray sources in the future. All 17 sources have many properties in common with flat spectrum radio quasars (FSRQs, suggesting that they may, in fact, constitute a new subclass of FSRQs.

  13. A catapult model for the narrow-line region in Seyferts and radio galaxies

    International Nuclear Information System (INIS)

    Smith, M.D.

    1984-01-01

    The kinematics and stability of clouds falling radially into a supersonic wind are studied. A critical parameter is found, the ejection coefficient, which separates clouds which continue to gravitate inwards from those which are catapulted out by the ram pressure of the wind. This leads to a maximum size for ejected clouds. The clouds are partially broken up by fluid dynamic instabilities and the fragments expelled with enhanced velocities. This model is applied to the narrow-line region of Seyferts and radio galaxies. A quasi-steady picture may be established for the wind-ambient medium interaction zone. The wind is shocked and escapes through jets or bubbles; the ambient medium cools, forming the clouds which gravitate inwards. (author)

  14. 3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions

    Directory of Open Access Journals (Sweden)

    Carolina Casadio

    2017-10-01

    Full Text Available We present total and linearly polarized 3 mm Global mm-VLBI Array (GMVA; mm-VLBI: Very Long Baseline Interferometry observations at millimetre wavelengths images of a sample of blazars and radio galaxies from the VLBA-BU-BLAZAR 7 mm monitoring program designed to probe the innermost regions of active galactic nuclei (AGN jets and locate the sites of gamma-ray emission observed by the Fermi-LAT. The lower opacity at 3 mm and improved angular resolution—on the order of 50 microarcseconds—allow us to distinguish features in the jet not visible in the 7 mm VLBA data. We also compare two different methods used for the calibration of instrumental polarisation and we analyze the resulting images for some of the sources in the sample.

  15. A Study of the Radio Continuum Far Infrared Correlation at Small Scales in the Galaxy

    Science.gov (United States)

    Rodriguez-Martinez, Monica I.; Allen, R. J.; Wiklind, T.; Loinard, L.

    2006-12-01

    We present a study of the behavior of the Radio Continuum (RC) Far Infrared (FIR) correlation on scales corresponding to the size of small molecular clouds. This was done by comparing the spatial distribution of RC emission and FIR emission from a sample of several regions, distributed within the range 79∘ ≤ l ≤ 174∘ in the Galaxy. We have examined the 408 and 1420 MHz mosaic images of the sample, from the Canadian Galactic Plane Survey (CGPS), which later were compared with images at 60 and 100 μm. Preliminary results suggest that the RC -FIR correlation still holds at small scales, since a good qualitative correlation between RC and FIR emission is found. The physical process involved that may cause such correlation will be discussed as well as the nature of the RC emission. This research makes use of data from the Canadian Galactic Plane Survey.

  16. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D.

    2015-01-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  17. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S. [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India); Ravikumar, C. D., E-mail: vaidehi@iiap.res.in [Department of Physics, University of Calicut, Malappuram-673635 (India)

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  18. Compact Binary Mergers and the Event Rate of Fast Radio Bursts

    Science.gov (United States)

    Cao, Xiao-Feng; Yu, Yun-Wei; Zhou, Xia

    2018-05-01

    Fast radio bursts (FRBs) are usually suggested to be associated with mergers of compact binaries consisting of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). We test these models by fitting the observational distributions in both redshift and isotropic energy of 22 Parkes FRBs, where, as usual, the rates of compact binary mergers (CBMs) are connected with cosmic star formation rates by a power-law distributed time delay. It is found that the observational distributions can well be produced by the CBM model with a characteristic delay time from several tens to several hundreds of megayears and an energy function index 1.2 ≲ γ ≲ 1.7, where a tentative fixed spectral index β = 0.8 is adopted for all FRBs. Correspondingly, the local event rate of FRBs is constrained to {(3{--}6)× {10}4{f}{{b}}-1({ \\mathcal T }/270{{s}})}-1{({ \\mathcal A }/2π )}-1 {Gpc}}-3 {yr}}-1 for an adopted minimum FRB energy of E min = 3 × 1039 erg, where f b is the beaming factor of the radiation, { \\mathcal T } is the duration of each pointing observation, and { \\mathcal A } is the sky area of the survey. This event rate, about an order of magnitude higher than the rates of NS–NS/NS–BH mergers, indicates that the most promising origin of FRBs in the CBM scenario could be mergers of WD–WD binaries. Here a massive WD could be produced since no FRB was found to be associated with an SN Ia. Alternatively, if all FRBs can repeat on a timescale much longer than the period of current observations, then they could also originate from a young active NS that forms from relatively rare NS–NS mergers and accretion-induced collapses of WD–WD binaries.

  19. NuSTAR Observations of the Powerful Radio-Galaxy Cygnus A

    DEFF Research Database (Denmark)

    Reynolds, Christopher S.; Lohfink, Anne M.; Ogle, Patrick M.

    2015-01-01

    We present NuSTAR observations of the powerful radio galaxy Cygnus A,focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN...... and intracluster medium (ICM) components. NuSTAR gives a source-dominated spectrum of the AGN out to >70keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law (Γ~1.6-1.7) absorbed by a neutral column density of NH~1.6x1023 cm-2. However, we also detect curvature in the hard (>10ke......V (90% confidence). Interestingly, the absorbed power-law plus reflection modelleaves residuals suggesting the absorption/emission from a fast(15,000-26,000km/s), high column-density (NW>3x1023 cm-2), highly ionized (ξ~2,500 erg cm/s-1) wind. A second, even faster ionized wind component is also...

  20. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    International Nuclear Information System (INIS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Gronwall, C.; Fedotov, K.; Desjardins, T. D.; Gallagher, S. C.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Walker, L. M.; Johnson, K. E.; Tzanavaris, P.

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  1. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter.

    Science.gov (United States)

    Muñoz, Julian B; Kovetz, Ely D; Dai, Liang; Kamionkowski, Marc

    2016-08-26

    The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20-100  M_{⊙} window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ∼20  M_{⊙} would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass M_{L} induces two images, separated by a typical time delay ∼few×(M_{L}/30  M_{⊙})  msec. Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 10^{4} FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 10^{4} FRBs would constrain the fraction f_{DM} of dark matter in MACHOs to f_{DM}≲0.08 for M_{L}≳20  M_{⊙}.

  2. THERMAL PLASMA IN THE GIANT LOBES OF THE RADIO GALAXY CENTAURUS A

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, S. P.; Feain, I. J.; McClure-Griffiths, N. M.; Ekers, R. D.; Carretti, E. [CSIRO Astronomy and Space Science, ATNF, P.O. Box 76, Epping, NSW 1710 (Australia); Robishaw, T. [Herzberg Institute of Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Gaensler, B. M.; Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Stawarz, L. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2013-02-20

    We present a Faraday rotation measure (RM) study of the diffuse, polarized, radio emission from the giant lobes of the nearest radio galaxy, Centaurus A. After removal of the smooth Galactic foreground RM component, using an ensemble of background source RMs located outside the giant lobes, we are left with a residual RM signal associated with the giant lobes. We find that the most likely origin of this residual RM is from thermal material mixed throughout the relativistic lobe plasma. The alternative possibility of a thin-skin/boundary layer of magnetoionic material swept up by the expansion of the lobes is highly unlikely since it requires, at least, an order of magnitude enhancement of the swept-up gas over the expected intragroup density on these scales. Strong depolarization observed from 2.3 to 0.96 GHz also supports the presence of a significant amount of thermal gas within the lobes; although depolarization solely due to RM fluctuations in a foreground Faraday screen on scales smaller than the beam cannot be ruled out. Considering the internal Faraday rotation scenario, we find a thermal gas number density of {approx}10{sup -4} cm{sup -3}, implying a total gas mass of {approx}10{sup 10} M {sub Sun} within the lobes. The thermal pressure associated with this gas (with temperature kT {approx} 0.5 keV, obtained from recent X-ray results) is approximately equal to the non-thermal pressure, indicating that over the volume of the lobes, there is approximate equipartition between the thermal gas, radio-emitting electrons, and magnetic field (and potentially any relativistic protons present).

  3. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    Science.gov (United States)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  4. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    Science.gov (United States)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  5. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; /Waseda U., RISE; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Takahashi, Y.; /Waseda U., RISE; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Hayashida, M.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; Grandi, P.; /Bologna Observ.; Burnett, T.H.; /Washington U., Seattle; Celotti, A.; /SISSA, Trieste; Fegan, S.J.; Fortin, P.; /Ecole Polytechnique; Maeda, K.; Nakamori, T.; /Waseda U., RISE; Taylor, G.B.; /New Mexico U.; Tosti, G.; /INFN, Perugia /Perugia U.; Digel, S.W.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; McConville, W.; /NASA, Goddard /Maryland U.; Finke, J.; /Naval Research Lab, Wash., D.C.; D' Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  6. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    International Nuclear Information System (INIS)

    Klaric, M.; Byrd, G.G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region

  7. DISCOVERY OF A GIANT RADIO HALO IN A NEW PLANCK GALAXY CLUSTER PLCKG171.9-40.7

    Energy Technology Data Exchange (ETDEWEB)

    Giacintucci, Simona [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kale, Ruta; Venturi, Tiziana [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Wik, Daniel R.; Markevitch, Maxim, E-mail: simona@astro.umd.edu [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-20

    We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from an NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, and has an extent of {approx}1 Mpc and a radio power of {approx}5 Multiplication-Sign 10{sup 24} W Hz{sup -1} at 1.4 GHz. Its integrated radio spectrum has a slope of {alpha} Almost-Equal-To 1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMM-Newton X-ray data shows that the cluster is hot ({approx}10 keV) and disturbed, consistent with X-ray-selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.

  8. Enormous Disc of Cool Gas Surrounding the Nearby Powerful Radio Galaxy NGC 612 (PKS 0131-36)

    Science.gov (United States)

    2008-05-22

    galaxies in clus- ters appear to be much more devoid of H I gas, as sug- gested by a recent H I survey of the VIRGO cluster by di Serego Alighieri et...120th Street, New York, N.Y. 10027, USA 2Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA Dwingeloo, the Netherlands 3Kapteyn...NGC 612. This paper is part of an ongoing study to map the large-scale neutral hydrogen properties of nearby radio galaxies and it presents the first

  9. LOFAR reveals the giant: a low-frequency radio continuum study of the outflow in the nearby FR I radio galaxy 3C 31

    Science.gov (United States)

    Heesen, V.; Croston, J. H.; Morganti, R.; Hardcastle, M. J.; Stewart, A. J.; Best, P. N.; Broderick, J. W.; Brüggen, M.; Brunetti, G.; ChyŻy, K. T.; Harwood, J. J.; Haverkorn, M.; Hess, K. M.; Intema, H. T.; Jamrozy, M.; Kunert-Bajraszewska, M.; McKean, J. P.; Orrú, E.; Röttgering, H. J. A.; Shimwell, T. W.; Shulevski, A.; White, G. J.; Wilcots, E. M.; Williams, W. L.

    2018-03-01

    We present a deep, low-frequency radio continuum study of the nearby Fanaroff-Riley class I (FR I) radio galaxy 3C 31 using a combination of LOw Frequency ARray (LOFAR; 30-85 and 115-178 MHz), Very Large Array (VLA; 290-420 MHz), Westerbork Synthesis Radio Telescope (WSRT; 609 MHz) and Giant Metre Radio Telescope (GMRT; 615 MHz) observations. Our new LOFAR 145-MHz map shows that 3C 31 has a largest physical size of 1.1 Mpc in projection, which means 3C 31 now falls in the class of giant radio galaxies. We model the radio continuum intensities with advective cosmic ray transport, evolving the cosmic ray electron population and magnetic field strength in the tails as functions of distance to the nucleus. We find that if there is no in situ particle acceleration in the tails, then decelerating flows are required that depend on radius r as v∝rβ (β ≈ -1). This then compensates for the strong adiabatic losses due to the lateral expansion of the tails. We are able to find self-consistent solutions in agreement with the entrainment model of Croston & Hardcastle, where the magnetic field provides ≈1/3 of the pressure needed for equilibrium with the surrounding intracluster medium. We obtain an advective time-scale of ≈190 Myr, which, if equated to the source age, would require an average expansion Mach number M ≈ 5 over the source lifetime. Dynamical arguments suggest that instead either the outer tail material does not represent the oldest jet plasma or else the particle ages are underestimated due to the effects of particle acceleration on large scales.

  10. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Ignacio; Vazdekis, Alexandre [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205-La Laguna, Tenerife (Spain); Ferré-Mateu, Anna [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Balcells, Marc [Isaac Newton Group of Telescopes, E-38700 Santa Cruz de La Palma, Canary Islands (Spain); Sánchez-Blázquez, Patricia, E-mail: trujillo@iac.es [Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049, Cantoblanco, Madrid (Spain)

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  11. 2.2 micron image of 3C 368 at z = 1.13, a galaxy with aligned radio and stellar axes

    International Nuclear Information System (INIS)

    Chambers, K.C.; Miley, G.K.; Joyce, R.R.

    1988-01-01

    A K-band IR image of the z = 1.13 radio galaxy 3C 368, one of the brightest examples of the recently discovered phenomenon of alignment between the optical and radio axes of powerful distant radio galaxies, is presented. The observations show that the IR morphology is also elongated and aligned along the optical and radio axes, but is not coincident with the radio emission. Various mechanisms for producing the IR and optical flux and the resultant constraints on the origin of the alignment effect in high-redshift radio galaxies are discussed. The most likely explanation is that the emission is produced mainly by young stars formed by interaction of the radio source with the ISM. The IR flux is then interpreted as dominated by a population of red supergiants. Independent of the origin of the emission, the observed alignment implies that powerful radio galaxies at high redshifts are distant from giant ellipticals, even in the IR. Hence, attempts to derive a cosmological standard candle using studies which combine these two types of galaxies are likely to be invalid. 32 references

  12. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    Energy Technology Data Exchange (ETDEWEB)

    Dicken, D. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Tadhunter, C. [University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morganti, R. [ASTRON, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Axon, D.; Robinson, A.; Magagnoli, M. [Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Ramos Almeida, C. [Instituto de Astrofisica de Canarias (IAC), C/V ia Lactea, s/n, E-38205 La Laguna, Tenerife (Spain); Mingo, B. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Hardcastle, M. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nesvadba, N. P. H.; Singh, V. [Institut d' Astrophysique Spatiale, CNRS, Université Paris Sud, F-91405 Orsay (France); Kouwenhoven, M. B. N. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Rose, M.; Spoon, H. [224 Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Inskip, K. J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Holt, J., E-mail: daniel.dicken@cea.fr [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2014-06-20

    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  13. Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bhatia, R.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurinsky, N.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3 mm to 350 μm). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg2 (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a

  14. The search for faint radio supernova remnants in the outer Galaxy: five new discoveries

    Science.gov (United States)

    Gerbrandt, Stephanie; Foster, Tyler J.; Kothes, Roland; Geisbüsch, Jörn; Tung, Albert

    2014-06-01

    Context. High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the "missing SNR problem"). Aims: The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued SNRs. Methods: We examine 5 × 5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved "point" sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate flux densities at each frequency to characterise the radio spectra behaviour of these candidates. We further look for mid- and high-frequency (1420 MHz, 4.8 GHz) ordered polarized emission from the limb brightened "shell"-like continuum features that the candidates sport. Finally, we use IR and optical maps to provide additional backing evidence. Results: Here we present evidence that five new objects, identified as filling all or some of the criteria above, are strong candidates for new SNRs. These five are designated by their Galactic coordinate names G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8, and G160.1-1.1. The radio spectrum of each is presented, highlighting their steepness, which is characteristic of synchrotron radiation. CGPS 1420 MHz polarization data and 4.8 GHz polarization data also provide evidence that these objects are newly discovered SNRs. These discoveries represent a significant increase in the number of SNRs known in the outer

  15. UGC galaxies stronger than 25 mJy at 4.85 GHz

    International Nuclear Information System (INIS)

    Condon, J.J.; Frayer, D.T.; Broderick, J.J.

    1991-01-01

    UGC galaxies in the declination band +5 to +75 deg were identified by position coincidence with radio sources stronger than 25 mJy on the Green Bank 4.85 GHz sky maps. Candidate identifications were confirmed or rejected with the aid of published aperture-synthesis maps and new 4.86 GHz VLA maps having 15 or 18 arcsec resolution, resulting in a sample of 347 nearby radio galaxies plus five new quasar-galaxy pairs. The radio energy sources in UGC galaxies were classified as starbursts or monsters on the basis of their infrared-radio flux ratios, infrared spectral indices, and radio morphologies. The rms scatter in the logarithmic infrared-radio ratio q is not more than 0.16 for starburst galaxies selected at 4.85 GHz. Radio spectral indices were obtained for nearly all of the UGC galaxies, and S0 galaxies account for a disproportionate share of the compact flat-spectrum (alpha less than 0.5) radio sources. The extended radio jets and lobes produced by monsters are preferentially, but not exclusively, aligned within about 30 deg of the optical minor axes of their host galaxies. The tendency toward minor-axis ejection appears to be independent of radio-source size and is strongest for elliptical galaxies. 230 refs

  16. CHANG-ES. IV. RADIO CONTINUUM EMISSION OF 35 EDGE-ON GALAXIES OBSERVED WITH THE KARL G. JANSKY VERY LARGE ARRAY IN D CONFIGURATION—DATA RELEASE 1

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, Theresa; Irwin, Judith; MacGregor, Stephen, E-mail: twiegert@astro.queensu.ca, E-mail: irwin@astro.queensu.ca, E-mail: 11sm36@queensu.ca [Department of Physics, Engineering Physics, and Astronomy, Queen' s University, Kingston, ON, K7L 3N6 (Canada); and others

    2015-09-15

    We present the first part of the observations made for the Continuum Halos in Nearby Galaxies, an EVLA Survey (CHANG-ES) project. The aim of the CHANG-ES project is to study and characterize the nature of radio halos, their prevalence as well as their magnetic fields, and the cosmic rays illuminating these fields. This paper reports observations with the compact D configuration of the Karl G. Jansky Very Large Array (VLA) for the sample of 35 nearby edge-on galaxies of CHANG-ES. With the new wide bandwidth capabilities of the VLA, an unprecedented sensitivity was achieved for all polarization products. The beam resolution is an average of 9.″6 and 36″ with noise levels reaching approximately 6 and 30 μJy beam{sup −1} for C- and L-bands, respectively (robust weighting). We present intensity maps in these two frequency bands (C and L), with different weightings, as well as spectral index maps, polarization maps, and new measurements of star formation rates (SFRs). The data products described herein are available to the public in the CHANG-ES data release available at http://www.queensu.ca/changes. We also present evidence of a trend among galaxies with larger halos having higher SFR surface density, and we show, for the first time, a radio continuum image of the median galaxy, taking advantage of the collective signal-to-noise ratio of 30 of our galaxies. This image shows clearly that a “typical” spiral galaxy is surrounded by a halo of magnetic fields and cosmic rays.

  17. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  18. MULTIWAVELENGTH VARIABILITY OF THE BROAD LINE RADIO GALAXY 3C 120

    International Nuclear Information System (INIS)

    Marshall, Kevin; Ryle, Wesley T.; Miller, H. Richard; Marscher, Alan P.; Jorstad, Svetlana G.; Chicka, Benjamin; McHardy, Ian M.

    2009-01-01

    We present results from a multiyear monitoring campaign of the broad-line radio galaxy 3C 120, using the Rossi X-ray Timing Explorer for nearly five years of observations. Additionally, we present coincident optical monitoring using data from several ground-based observatories. Both the X-ray and optical emission are highly variable and appear to be strongly correlated, with the X-ray emission leading the optical by 28 days. The X-ray power density spectrum is best fit by a broken power law, with a low-frequency slope of -1.2, breaking to a high-frequency slope of -2.1, and a break frequency of log ν b = -5.75 Hz, or 6.5 days. This value agrees well with the value expected based on 3C 120's mass and accretion rate. We find no evidence for a second break in the power spectrum. Combined with a moderately soft X-ray spectrum (Γ = 1.8) and a moderately high accretion rate, this indicates that 3C 120 fits in well with the high/soft variability state found in most other active galactic nuclei. Previous studies have shown that the spectrum has a strong Fe Kα line, which may be relativistically broadened. The presence of this line, combined with a power spectrum similar to that seen in Seyfert galaxies, suggests that the majority of the X-ray emission in this object arises in or near the disk, and not in the jet.

  19. Optical spectra and radio properties of quasars

    International Nuclear Information System (INIS)

    Wills, B.J.

    1982-01-01

    Using high quality spectrophotometric scans obtained at the McDonald Observatory, and data from the literature the author shows that, for quasars, the relative strength of optical Fe II emission (the broad blended feature lambda4570) may be roughly inversely proportional to line widths (full width at half maximum, FWHM). A similar relation between the relative intensity of the UV Fe II blend between 2300 and 2600 A (the lambda2500 feature) and the widths of Mg II and Hβ is shown. She distinguishes between compact and extended radio sources and includes radio quiet quasars, Seyfert 1 galaxies and BLRG's. The quasars associated with extended radio sources have the broadest emission lines and the weakest Fe II, falling close to the region occupied by BLRG's which also have extended radio structure. Those quasars with strong Fe II and compact radio structure are most similar to the Seyfert 1 galaxies. (Auth.)

  20. Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    International Nuclear Information System (INIS)

    Katsuta, Junichiro

    2012-01-01

    CentaurusB is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months accumulation of Fermi-LAT data and of newly acquired Suzaku X-ray data for Centaurus B. The source is detected at GeV photon energies, although we cannot completely exclude the possibility that it is an artifact due to incorrect modeling of the bright Galactic diffuse emission in the region. The LAT image provides a weak hint of a spatial extension of the γ rays along the radio lobes, which is consistent with the lack of source variability in the GeV range. We note that the extension cannot be established statistically due to the low number of the photons. Surprisingly, we do not detect any diffuse emission of the lobes at X-ray frequencies, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. The broad-band modeling shows that the observed γ-ray flux of the source may be produced within the lobes, if the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. This association would imply that efficient in-situ acceleration of the ultrarelativistic particles is occurring and that the lobes are dominated by the pressure from the relativistic particles. However, if the diffuse X-ray emission is much below the Suzaku upper limits, the observed γ-ray flux is not likely to be produced within the lobes, but instead within the unresolved core of Centaurus B. In this case, the extended lobes could be dominated by the pressure of the magnetic field.

  1. Comparisons of Jet Properties between GeV Radio Galaxies and Blazars

    Science.gov (United States)

    Xue, Zi-Wei; Zhang, Jin; Cui, Wei; Liang, En-Wei; Zhang, Shuang-Nan

    2017-09-01

    We compile a sample of spectral energy distributions (SEDs) of 12 GeV radio galaxies (RGs), including eight FR I RGs and four FR II RGs. These SEDs can be represented with the one-zone leptonic model. No significant unification, as expected in the unification model, is found for the derived jet parameters between FR I RGs and BL Lacertae objects (BL Lacs) and between FR II RGs and flat spectrum radio quasars (FSRQs). However, on average FR I RGs have a larger {γ }{{b}} (break Lorentz factor of electrons) and lower B (magnetic field strength) than FR II RGs, analogous to the differences between BL Lacs and FSRQs. The derived Doppler factors (δ) of RGs are on average smaller than those of blazars, which is consistent with the unification model such that RGs are the misaligned parent populations of blazars with smaller δ. On the basis of jet parameters from SED fits, we calculate their jet powers and the powers carried by each component, and compare their jet compositions and radiation efficiencies with blazars. Most of the RG jets may be dominated by particles, like BL Lacs, not FSRQs. However, the jets of RGs with higher radiation efficiencies tend to have higher jet magnetization. A strong anticorrelation between synchrotron peak frequency and jet power is observed for GeV RGs and blazars in both the observer and co-moving frames, indicating that the “sequence” behavior among blazars, together with the GeV RGs, may be intrinsically dominated by jet power.

  2. Radio observations of the double-relic galaxy cluster Abell 1240

    Science.gov (United States)

    Hoang, D. N.; Shimwell, T. W.; van Weeren, R. J.; Intema, H. T.; Röttgering, H. J. A.; Andrade-Santos, F.; Akamatsu, H.; Bonafede, A.; Brunetti, G.; Dawson, W. A.; Golovich, N.; Best, P. N.; Botteon, A.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoeft, M.; Stroe, A.; White, G. J.

    2018-05-01

    We present LOFAR 120 - 168 MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT 595 - 629 MHz and VLA 2 - 4 GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of M=2.4 and 2.3 for the northern and southern shocks, respectively. For M≲ 3 shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high (>10 per cent) particle acceleration efficiency required. However, for M≳ 4 shocks the required efficiency is ≳ 1% and ≳ 0.5%, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to ≥53 ± 3° and ≥39 ± 5° for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics (˜1.8 Mpc) our upper limit on the power is P1.4GHz = (1.4 ± 0.6) × 1023 W Hz-1 which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.

  3. Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Junichiro; /Stanford U., HEPL /KIPAC, Menlo Park; Tanaka, Y.T.; /Hiroshima U.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; O' Sullivan, S.P.; /Australia, CSIRO, Epping; Cheung, C.C.; /NAS, Washington, D.C.; Kataoka, J.; /Waseda U., RISE; Funk, S.; /Stanford U., HEPL /KIPAC, Menlo Park; Yuasa, T.; Odaka, H.; Takahashi, T.; /JAXA, Sagamihara; Svoboda, J.; /European Space Agency

    2012-08-17

    CentaurusB is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months accumulation of Fermi-LAT data and of newly acquired Suzaku X-ray data for Centaurus B. The source is detected at GeV photon energies, although we cannot completely exclude the possibility that it is an artifact due to incorrect modeling of the bright Galactic diffuse emission in the region. The LAT image provides a weak hint of a spatial extension of the {gamma} rays along the radio lobes, which is consistent with the lack of source variability in the GeV range. We note that the extension cannot be established statistically due to the low number of the photons. Surprisingly, we do not detect any diffuse emission of the lobes at X-ray frequencies, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. The broad-band modeling shows that the observed {gamma}-ray flux of the source may be produced within the lobes, if the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. This association would imply that efficient in-situ acceleration of the ultrarelativistic particles is occurring and that the lobes are dominated by the pressure from the relativistic particles. However, if the diffuse X-ray emission is much below the Suzaku upper limits, the observed {gamma}-ray flux is not likely to be produced within the lobes, but instead within the unresolved core of Centaurus B. In this case, the extended lobes could be dominated by the pressure of the magnetic field.

  4. The FIR-Radio Correlation in Rapidly Star-Forming Galaxies: The Spectral Index Problem and Proton Calorimetry

    Science.gov (United States)

    Thompson, Todd A.; Lacki, Brian C.

    We review the physics of the FIR-radio correlation (FRC) of star-forming galaxies, focusing on "electron calorimetry" as an explanation. We emphasize the importance of the "spectral index problem"—that galaxies have flatter GHz synchrotron spectra than predicted in the strong-cooling calorimeter limit. We argue that these shallow spectra require significant bremsstrahlung and/or ionization losses for the primary and secondary CR electron/positron populations. This then implies that CR protons suffer strong pionic losses before escape in dense starburst galaxies ("proton calorimetry"), and that these systems should be gamma-ray bright, forming a FIR-gamma-ray correlation. Implications for the diffuse non-thermal cosmic gamma-ray and neutrino backgrounds are mentioned. Caveats and uncertainties, as well as other solutions to the "spectral index problem" such as rapid advection of CRs in starburst superwinds, are highlighted.

  5. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Asada, Keiichi; Inoue, Makoto [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Fujisawa, Kenta [The Research Institute of Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8511 (Japan); Nagai, Hiroshi; Hagiwara, Yoshiaki [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wajima, Kiyoaki, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China)

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  6. A peculiar distribution of radial velocities of faint radio-galaxies with 13.0<=msub(corr)<=15.5

    International Nuclear Information System (INIS)

    Karoji, H.; Nottale, L.; Vigier, J.-P.

    1976-01-01

    A sample of 41 radio-galaxies with 13.0<=msub(corr)<=15.5 has been analyzed to test the angular redshift anisotropy discovered on Sc I galaxies by Rubin, Rubin and Ford (1973). The sample does not present their anisotropy but contains an even more curious distribution of radial velocities which suggests that the Rubin-Ford effect results from an anomalous redshift of light when it travels through clusters of galaxies. (Auth.)

  7. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    Science.gov (United States)

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  8. Detection of an apparent, distant cluster of galaxies associated with the radio-tail QSO 3C 275.1

    International Nuclear Information System (INIS)

    Hintzen, P.; Boeshaar, G.O.; Scott, J.S.

    1981-01-01

    Based on the suggestion that QSOs with distorted radio structures are likely to be members of clusters of galaxies (Hintzen and Scott), we have obtained deep direct observations of the fields containing 3C 270.1 and 3C 275.1, the most reliably substantiated cases of wide-angle radio tails associated with QSOs. Our 75'' square field centered on 3C 275.1 (z = 0.557) contains over three-dozen objects, many of which are nonstellar, between m/sub R/ = 19.8 and m/sub R/ = 23.5. The quasar itself lies at the center of an illiptical nebulosity. The size of this nebulosity and the magnitude distribution of the surrounding objects are consistent with the interpretation that the QSO is the nucleus of a giant elliptical galaxy which is a member of a cluster of galaxies at zapprox.0.55. Our observations of 3C 270.1 (z = 1.519) show no definitive evidence of an associated cluster of galaxies, which is consistent with the cosmological interpretation of QSO redshifts

  9. The Photocatalytic Activity and Compact Layer Characteristics of TiO2 Films Prepared Using Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    H. C. Chang

    2014-01-01

    Full Text Available TiO2 compact layers are used in dye-sensitized solar cells (DSSCs to prevent charge recombination between the electrolyte and the transparent conductive substrate (indium tin oxide, ITO; fluorine-doped tin oxide, FTO. Thin TiO2 compact layers are deposited onto ITO/glass by means of radio frequency (rf magnetron sputtering, using deposition parameters that ensure greater photocatalytic activity and increased DSSC conversion efficiency. The photoinduced decomposition of methylene blue (MB and the photoinduced hydrophilicity of the TiO2 thin films are also investigated. The photocatalytic performance characteristics for the deposition of TiO2 films are improved by using the Grey-Taguchi method. The average transmittance in the visible region exceeds 85% for all samples. The XRD patterns of the TiO2 films, for sol-gel with spin coating of porous TiO2/TiO2 compact/ITO/glass, show a good crystalline structure. In contrast, without the TiO2 compact layer (only porous TiO2, the peak intensity of the anatase (101 plane in the XRD patterns for the TiO2 film has a lower value, which demonstrates inferior crystalline quality. With a TiO2 compact layer to prevent charge recombination, a higher short-circuit current density is obtained. The DSSC with the FTO/glass and Pt counter electrode demonstrates the energy conversion efficiency increased.

  10. A single population of red globular clusters around the massive compact galaxy NGC 1277

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  11. High levels of absorption in orientation-unbiased, radio-selected 3CR Active Galaxies

    Science.gov (United States)

    Wilkes, Belinda J.; Haas, Martin; Barthel, Peter; Leipski, Christian; Kuraszkiewicz, Joanna; Worrall, Diana; Birkinshaw, Mark; Willner, Steven P.

    2014-08-01

    A critical problem in understanding active galaxies (AGN) is the separation of intrinsic physical differences from observed differences that are due to orientation. Obscuration of the active nucleus is anisotropic and strongly frequency dependent leading to complex selection effects for observations in most wavebands. These can only be quantified using a sample that is sufficiently unbiased to test orientation effects. Low-frequency radio emission is one way to select a close-to orientation-unbiased sample, albeit limited to the minority of AGN with strong radio emission.Recent Chandra, Spitzer and Herschel observations combined with multi-wavelength data for a complete sample of high-redshift (1half the sample is significantly obscured with ratios of unobscured: Compton thin (22 24.2) = 2.5:1.4:1 in these high-luminosity (log L(0.3-8keV) ~ 44-46) sources. These ratios are consistent with current expectations based on modelingthe Cosmic X-ray Background. A strong correlation with radio orientation constrains the geometry of the obscuring disk/torus to have a ~60 degree opening angle and ~12 degree Compton-thick cross-section. The deduced ~50% obscured fraction of the population contrasts with typical estimates of ~20% obscured in optically- and X-ray-selected high-luminosity samples. Once the primary nuclear emission is obscured, AGN X-ray spectra are frequently dominated by unobscured non-nuclear or scattered nuclear emission which cannot be distinguished from direct nuclear emission with a lower obscuration level unless high quality data is available. As a result, both the level of obscuration and the estimated instrinsic luminosities of highly-obscured AGN are likely to be significantly (*10-1000) underestimated for 25-50% of the population. This may explain the lower obscured fractions reported for optical and X-ray samples which have no independent measure of the AGN luminosity. Correcting AGN samples for these underestimated luminosities would result in

  12. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  13. Energetics of the molecular gas in the H2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

    Science.gov (United States)

    Nesvadba, N. P. H.; Boulanger, F.; Salomé, P.; Guillard, P.; Lehnert, M. D.; Ogle, P.; Appleton, P.; Falgarone, E.; Pineau Des Forets, G.

    2010-10-01

    We present a detailed analysis of the gas conditions in the H2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M⊙ yr-1) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~10-50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H2 line emission is factors 10-100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~-1800 km s-1 and a mass outflow rate of 30-40 M⊙ yr-1, which cannot be explained by star formation. The mechanical power implied by the wind, of order 1043 erg s-1, is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 107-8 yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥1011 M⊙ could generally be regulated through a fundamentally similar form of “maintenance-phase” AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer.

  14. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  15. Architectures/Algorithms/Tools for Ultra-Low Power, Compact EVA Digital Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The EVA digital radio imposes tight constraints on power consumption, latency, throughput, form factor, reconfigurability, single event upset and fault tolerance,...

  16. STELLAR MASSES OF LYMAN BREAK GALAXIES, Lyα EMITTERS, AND RADIO GALAXIES IN OVERDENSE REGIONS AT z = 4-6

    International Nuclear Information System (INIS)

    Overzier, Roderik A.; Shu Xinwen; Zheng Wei; Rettura, Alessandro; Zirm, Andrew; Ford, Holland; Bouwens, Rychard J.; Illingworth, Garth D.; Miley, George K.; Venemans, Bram; White, Richard L.

    2009-01-01

    We present new information on galaxies in the vicinity of luminous radio galaxies (RGs) and quasars at z≅4, 5, and 6. These fields were previously found to contain overdensities of Lyman Break Galaxies (LBGs) or spectroscopic Lyα emitters, which were interpreted as evidence for clusters-in-formation ('protoclusters'). We use Hubble Space Telescope and Spitzer data to infer stellar masses from stellar synthesis models calibrated against the Millennium Run simulations, and contrast our results with large samples of LBGs in more average environments as probed by the Great Observatories Origins Deep Survey (GOODS). The following results were obtained. First, LBGs in both overdense regions and in the field at z = 4-5 lie on a very similar sequence in a z'-[3.6] versus 3.6 μm color-magnitude diagram. This is interpreted as a sequence in stellar mass (M * ∼ 10 9 -10 11 M sun ) in which galaxies become increasingly red due to dust and age as their star formation rate (SFR) increases, while their specific SFR stays constant. Second, the two RGs are among the most massive objects (M * ∼ 10 11 M sun ) known to exist at z ≅ 4-5, and are extremely rare based on the low number density of such objects as estimated from the ∼25x larger area GOODS survey. We suggest that the presence of the massive (radio) galaxies and associated supermassive black holes has been boosted through rapid accretion of gas or merging inside overdense regions. Third, the total stellar mass found in the z = 4 protocluster TN1338 accounts for 4, based on a comparison with the massive X-ray cluster Cl1252 at z = 1.2. Although future near-infrared observations should determine whether any massive galaxies are currently being missed by our UV/Lyα selections, one possible explanation for this mass difference is that TN1338 evolves into a smaller cluster than Cl1252. This raises the interesting question of whether the most massive protocluster regions at z > 4 remain yet to be discovered.

  17. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    Science.gov (United States)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  18. SEARCH FOR BLUE COMPACT DWARF GALAXIES DURING QUIESCENCE. II. METALLICITIES OF GAS AND STARS, AGES, AND STAR FORMATION RATES

    International Nuclear Information System (INIS)

    Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C.; Vazdekis, A.

    2009-01-01

    We examine the metallicity and age of a large set of Sloan Digital Sky Survey/Data Release 6 galaxies that may be blue compact dwarf (BCD) galaxies during quiescence (QBCDs). The individual spectra are first classified and then averaged to reduce noise. The metallicity inferred from emission lines (tracing ionized gas) exceeds by ∼0.35 dex the metallicity inferred from absorption lines (tracing stars). Such a small difference is significant according to our error budget estimate. The same procedure was applied to a reference sample of BCDs, and in this case the two metallicities agree, being also consistent with the stellar metallicity in QBCDs. Chemical evolution models indicate that the gas metallicity of QBCDs is too high to be representative of the galaxy as a whole, but it can represent a small fraction of the galactic gas, self-enriched by previous starbursts. The luminosity-weighted stellar age of QBCDs spans the whole range between 1 and 10 Gyr, whereas it is always smaller than 1 Gyr for BCDs. Our stellar ages and metallicities rely on a single stellar population spectrum fitting procedure, which we have specifically developed for this work using the stellar library MILES.

  19. NuSTAR reveals the Comptonizing corona of the broad-line radio galaxy 3C 382

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, D. R.; Bollenbacher, J. M. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Brenneman, L. W. [Harvard-Smithsonian CfA, 60 Garden Street MS-67, Cambridge, MA 02138 (United States); Madsen, K. K.; Baloković, M.; Harrison, F. A.; Walton, D. J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Boggs, S. E. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E.; Craig, W. W. [DTU SpaceNational Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Gandhi, P. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Lohfink, A. M. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Markwardt, C. B.; Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, D., E-mail: david.ballantyne@physics.gatech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-10-10

    Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year and found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of Γ=1.68{sub −0.02}{sup +0.03}, while the photon-index of the higher flux spectrum is Γ=1.78{sub −0.03}{sup +0.02}. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from kT{sub e} = 330 ± 30 keV in the low flux data to 231{sub −88}{sup +50} keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts ∼10% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe Kα line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.

  20. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    International Nuclear Information System (INIS)

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-01-01

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I ν falls with distance d from the core, following the relation, I ν ∝d a , where a is typically ∼ – 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r∝d 0 .4 ; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra observations of 15 UGC FRIs detect X-ray jets in 9 of them. The high frequency of occurrence of X

  1. OPTICAL MONITORING OF THE BROAD-LINE RADIO GALAXY 3C 390.3

    International Nuclear Information System (INIS)

    Dietrich, Matthias; Peterson, Bradley M.; Grier, Catherine J.; Bentz, Misty C.; Eastman, Jason; Frank, Stephan; Gonzalez, Raymond; Marshall, Jennifer L.; DePoy, Darren L.; Prieto, Jose L.

    2012-01-01

    We have undertaken a new ground-based monitoring campaign on the broad-line radio galaxy 3C 390.3 to improve the measurement of the size of the broad emission-line region and to estimate the black hole mass. Optical spectra and g-band images were observed in late 2005 for three months using the 2.4 m telescope at MDM Observatory. Integrated emission-line flux variations were measured for the hydrogen Balmer lines Hα, Hβ, Hγ, and for the helium line He IIλ4686, as well as g-band fluxes and the optical active galactic nucleus (AGN) continuum at λ = 5100 Å. The g-band fluxes and the optical AGN continuum vary simultaneously within the uncertainties, τ cent (0.2 ± 1.1) days. We find that the emission-line variations are delayed with respect to the variable g-band continuum by τ(Hα) 56.3 +2.4 –6.6 days, τ(Hβ) = 44.3 +3.0 –3.3 days, τ(Hγ) = 58.1 +4.3 –6.1 days, and τ(He II 4686) = 22.3 +6.5 –3.8 days. The blue and red peaks in the double-peaked line profiles, as well as the blue and red outer profile wings, vary simultaneously within ±3 days. This provides strong support for gravitationally bound orbital motion of the dominant part of the line-emitting gas. Combining the time delay of the strong Balmer emission lines of Hα and Hβ and the separation of the blue and red peaks in the broad double-peaked profiles in their rms spectra, we determine M vir bh = 1.77 +0.29 –0.31 × 10 8 M ☉ and using σ line of the rms spectra M vir bh 2.60 +0.23 –0.31 × 10 8 M ☉ for the central black hole of 3C 390.3, respectively. Using the inclination angle of the line-emitting region which is measured from superluminal motion detected in the radio range, accretion disk models to fit the optical double-peaked emission-line profiles, and X-ray observations, the mass of the black hole amounts to M bh = 0.86 +0.19 –0.18 × 10 9 M ☉ (peak separation) and M bh 1.26 +0.21 –0.16 × 10 9 M ☉ (σ line ), respectively. This result is consistent with the black

  2. OPTICAL MONITORING OF THE BROAD-LINE RADIO GALAXY 3C 390.3

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Matthias; Peterson, Bradley M.; Grier, Catherine J.; Bentz, Misty C.; Eastman, Jason; Frank, Stephan; Gonzalez, Raymond; Marshall, Jennifer L.; DePoy, Darren L.; Prieto, Jose L., E-mail: dietrich@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2012-09-20

    We have undertaken a new ground-based monitoring campaign on the broad-line radio galaxy 3C 390.3 to improve the measurement of the size of the broad emission-line region and to estimate the black hole mass. Optical spectra and g-band images were observed in late 2005 for three months using the 2.4 m telescope at MDM Observatory. Integrated emission-line flux variations were measured for the hydrogen Balmer lines H{alpha}, H{beta}, H{gamma}, and for the helium line He II{lambda}4686, as well as g-band fluxes and the optical active galactic nucleus (AGN) continuum at {lambda} = 5100 A. The g-band fluxes and the optical AGN continuum vary simultaneously within the uncertainties, {tau}{sub cent} (0.2 {+-} 1.1) days. We find that the emission-line variations are delayed with respect to the variable g-band continuum by {tau}(H{alpha}) 56.3{sup +2.4}{sub -6.6} days, {tau}(H{beta}) = 44.3{sup +3.0}{sub -3.3} days, {tau}(H{gamma}) = 58.1{sup +4.3}{sub -6.1} days, and {tau}(He II 4686) = 22.3{sup +6.5}{sub -3.8} days. The blue and red peaks in the double-peaked line profiles, as well as the blue and red outer profile wings, vary simultaneously within {+-}3 days. This provides strong support for gravitationally bound orbital motion of the dominant part of the line-emitting gas. Combining the time delay of the strong Balmer emission lines of H{alpha} and H{beta} and the separation of the blue and red peaks in the broad double-peaked profiles in their rms spectra, we determine M {sup vir}{sub bh} = 1.77{sup +0.29}{sub -0.31} Multiplication-Sign 10{sup 8} M{sub Sun} and using {sigma}{sub line} of the rms spectra M {sup vir}{sub bh} 2.60{sup +0.23}{sub -0.31} Multiplication-Sign 10{sup 8} M{sub Sun} for the central black hole of 3C 390.3, respectively. Using the inclination angle of the line-emitting region which is measured from superluminal motion detected in the radio range, accretion disk models to fit the optical double-peaked emission-line profiles, and X-ray observations

  3. High Redshift Radio Galaxies at Low Redshift, and Some Other Issues

    Science.gov (United States)

    Antonucci, Robert

    Cygnus A is the only high redshift radio galaxy at low redshift, that is it's the only nearby object with radio power in the range of the high redshift 3C objects. It is clear now that this is somewhat misleading in that Cyg A is an overachiever in the radio, and that its actual bolometric luminosity is much more modest than this would indicate. (This point has been explored and generalized in Barthel and Arnaud 1996; also see Carilli and Barthel 1996 for a detailed review of Cyg A). But the energy content of the lobes is famously large. There is a whole history of attempts to show that Cygnus A fits the Unified Model, and our particular contribution was detecting an apparent broad MgII line with the HST (Antonucci, Kinney and Hurt 1994, which includes references to previous work). The spectral signal-to-noise ratio (SNR) was less than amazing; furthermore an unflagged dead diode took out ~12 Å from the line profile; and there was an uncertain ``noise" contribution from confusing narrow lines (gory details in Antonucci 1994). One of the referees of our paper - the favorable one - stated that ``only a mother could love that line." Thus we reobserved it with somewhat better SNR and with the bad diode flagged, and the old and new data are presented to the same scale in Figure 1. Most of the bins are within the combined 1 σ statistical errors, and the many statistically significant wiggles are almost all present in NGC1068 as well (Antonucci, Hurt and Miller 1994). The point is that the errors are believable, and that the continuum should be set low. I believe the MgII line is there and is broader than we thought originally. (A detailed discussion of the spectrum is in prep.) In the 1994 paper we also stated that the polarization in the UV (F320W FOC filter) is ~6 %, and perpendicular to the radio axis, indicating that there is a fairly large contribution from scattered light from a quasar in this region. This is consistent with the scenario of Jackson and Tadhunter

  4. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  5. Fermi-LAT and Suzaku observations of the radio galaxy Centaurus B

    International Nuclear Information System (INIS)

    Katsuta, J.; Tanaka, Y. T.; Stawarz, Ł.; O’Sullivan, S. P.; Cheung, C. C.

    2013-01-01

    Centaurus B is a nearby radio galaxy positioned in the southern hemisphere close to the Galactic plane. Here, in this work, we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the γ-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies and analyze the extension and variability of the γ-ray source in the LAT dataset, in which it appears as a steady γ-ray emitter. The X-ray core of Centaurus B is detected as a bright source of a continuum radiation. We do not detect, however, any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and γ-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed γ-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed γ-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. In conclusion, by means of synchrotron self-Compton modeling, we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.

  6. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    Science.gov (United States)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  7. ON THE SOURCE OF FARADAY ROTATION IN THE JET OF THE RADIO GALAXY 3C 120

    International Nuclear Information System (INIS)

    Gomez, Jose L.; Roca-Sogorb, Mar; Agudo, Ivan; Marscher, Alan P.; Jorstad, Svetlana G.

    2011-01-01

    The source of Faraday rotation in the jet of the radio galaxy 3C 120 is analyzed through Very Long Baseline Array observations carried out between 1999 and 2007 at 86, 43, 22, 15, 12, 8, 5, 2, and 1.7 GHz. Comparison of observations from 1999 to 2001 reveals uncorrelated changes in the linear polarization of the underlying jet emission and the Faraday rotation screen: while the rotation measure (RM) remains constant between approximately 2 and 5 mas from the core, the RM-corrected electric vector position angles (EVPAs) of two superluminal components are rotated by almost 90 0 when compared to other components moving through similar jet locations. On the other hand, the innermost 2 mas experiences a significant change in RM-including a sign reversal-but without variations in the RM-corrected EVPAs. Similarly, observations in 2007 reveal a double sign reversal in RM along the jet, while the RM-corrected EVPAs remain perpendicular to the jet axis. Although the observed coherent structure and gradient of the RM along the jet support the idea that the Faraday rotation is produced by a sheath of thermal electrons that surrounds the emitting jet, the uncorrelated changes in the RM and RM-corrected EVPAs indicate that the emitting jet and the source of Faraday rotation are not closely connected physically and have different configurations for the magnetic field and/or kinematical properties. Furthermore, the existence of a region of enhanced RM whose properties remain constant over three years requires a localized source of Faraday rotation, favoring a model in which a significant fraction of the RM originates in foreground clouds.

  8. DEEP RADIO CONTINUUM IMAGING OF THE DWARF IRREGULAR GALAXY IC 10: TRACING STAR FORMATION AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Heesen, V.; Brinks, E.; Rau, U.; Rupen, M. P.; Hunter, D. A.

    2011-01-01

    We exploit the vastly increased sensitivity of the Expanded Very Large Array to study the radio continuum and polarization properties of the post-starburst, dwarf irregular galaxy IC 10 at 6 cm, at a linear resolution of ∼50 pc. We find close agreement between radio continuum and Hα emission, from the brightest H II regions to the weaker emission in the disk. A quantitative analysis shows a strictly linear correlation, where the thermal component contributes 50% to the total radio emission, the remainder being due to a non-thermal component with a surprisingly steep radio spectral index of between -0.7 and -1.0 suggesting substantial radiation losses of the cosmic-ray electrons. We confirm and clearly resolve polarized emission at the 10%-20% level associated with a non-thermal superbubble, where the ordered magnetic field is possibly enhanced due to the compression of the expanding bubble. A fraction of the cosmic-ray electrons has likely escaped because the measured radio emission is a factor of three lower than what is suggested by the Hα-inferred star formation rate.

  9. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    Energy Technology Data Exchange (ETDEWEB)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-3083 (United States); Marshall, Kevin [Department of Physics and Astronomy, Widener University, Chester, PA 19013 (United States); Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver, E-mail: maune@chara.gsu.edu [Cahill Laboratory of Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  10. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    International Nuclear Information System (INIS)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-01-01

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  11. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 1

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We present new broad-band optical and near-infrared (0.44-2.2 μm) flux density and polarization measurements of a sample of 71 Seyfert galaxies and three broad-line radio galaxies. We confirm the results of earlier studies which show that the polarization of Seyferts is generally low in the V-band and at longer wavelengths, but in the B-band somewhat higher polarizations are commonly found. After correction has been made for the effects of stellar dilution, we find that Seyfert 2 nuclei are probably more highly polarized than Seyfert 1's. The small sample of Seyfert 2's selected using the 'warm' IRAS colour criterion tend to be more highly polarised than those selected by optical techniques. (author)

  12. COMPACT STARBURSTS IN z similar to 3-6 SUBMILLIMETER GALAXIES REVEALED BY ALMA

    NARCIS (Netherlands)

    Ikarashi, Soh; Ivison, R. J.; Caputi, Karina I.; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David H.; Iono, Daisuke; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lagos, Claudia D. P.; Motohara, Kentaro; Nakanishi, Kouichiro; Ohta, Kouji; Tamura, Yoichi; Umehata, Hideki; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2015-01-01

    We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z(phot) similar to 3-6. Their infrared luminosities and star formation rates (SFRs) are L-IR similar to, 2-6 x 10(12) L-circle dot and similar

  13. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    Czech Academy of Sciences Publication Activity Database

    Izotov, Y.I.; Orlitová, Ivana; Schaerer, D.; Thuan, T.X.; Verhamme, A.; Guseva, N.G.; Worseck, G.

    2016-01-01

    Roč. 529, č. 7585 (2016), s. 178-180 ISSN 0028-0836 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : digital sky survey * emission-line galaxies * small-magellanic- cloud Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 40.137, year: 2016

  14. Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data

    Science.gov (United States)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo

    2011-11-01

    We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  15. Radio/X-ray monitoring of the broad-line radio galaxy 3C 382. High-energy view with XMM-Newtonand NuSTAR

    Science.gov (United States)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.

    2018-05-01

    We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.

  16. The Connection between the Radio Jet and the γ-ray Emission in the Radio Galaxy 3C 120 and the Blazar CTA 102

    Directory of Open Access Journals (Sweden)

    Carolina Casadio

    2016-09-01

    Full Text Available We present multi-wavelength studies of the radio galaxy 3C 120 and the blazar CTA 102 during unprecedented γ-ray flares for both sources. In both studies the analysis of γ-ray data has been compared with a series of 43 GHz VLBA images from the VLBA-BU-BLAZAR program, providing the necessary spatial resolution to probe the parsec scale jet evolution during the high energy events. To extend the radio dataset for 3C 120 we also used 15 GHz VLBA data from the MOJAVE sample. These two objects which represent very different classes of AGN, have similar properties during the γ-ray events. The γ-ray flares are associated with the passage of a new superluminal component through the mm VLBI core, but not all ejections of new components lead to γ-ray events. In both sources γ-ray events occurred only when the new components are moving in a direction closer to our line of sight. We locate the γ-ray dissipation zone a short distance from the radio core but outside of the broad line region, suggesting synchrotron self-Compton scattering as the probable mechanism for the γ-ray production.

  17. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    Science.gov (United States)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  18. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    Energy Technology Data Exchange (ETDEWEB)

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana, E-mail: s.dzib@crya.unam.mx [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58089 (Mexico)

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  19. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    International Nuclear Information System (INIS)

    Dzib, Sergio A.; Rodríguez-Garza, Carolina B.; Rodríguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana

    2013-01-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact (∼0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of α = 1.3 ± 0.3 (S ν ∝ν α ). This spectral index and the brightness temperature of the source (∼6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk

  20. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  1. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    International Nuclear Information System (INIS)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P.

    2013-01-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s –1 , median angular diameters of 10', and median velocity widths of 23 km s –1 . We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of ∼1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of ∼10 5 -10 6 M ☉ , H I diameters of ∼2-3 kpc, and indicative dynamical masses within the H I extent of ∼10 7 -10 8 M ☉ , similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  2. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P., E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  3. Associated HI Absorption in the z = 3.4 Radio Galaxy B2 0902 + 343 ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of star formation (Einsenhardt & Dickinson 1992). The spatial ... on the blue-ward side of the narrow absorption feature has been reported by ..... associated with a merging galaxy located near the hot spot or dwarf galaxy along the line of sight ...

  4. Upper Limits on the Presence of Central Massive Black Holes in Two Ultra-compact Dwarf Galaxies in Centaurus A

    Science.gov (United States)

    Voggel, Karina T.; Seth, Anil C.; Neumayer, Nadine; Mieske, Steffen; Chilingarian, Igor; Ahn, Christopher; Baumgardt, Holger; Hilker, Michael; Nguyen, Dieu D.; Romanowsky, Aaron J.; Walsh, Jonelle L.; den Brok, Mark; Strader, Jay

    2018-05-01

    The recent discovery of massive black holes (BHs) in the centers of high-mass ultra-compact dwarf galaxies (UCDs) suggests that at least some are the stripped nuclear star clusters of dwarf galaxies. We present the first study that investigates whether such massive BHs, and therefore stripped nuclei, also exist in low-mass (M < 107 M ⊙) UCDs. We constrain the BH masses of two UCDs located in Centaurus A (UCD 320 and UCD 330) using Jeans modeling of the resolved stellar kinematics from adaptive optics data obtained with the SINFONI integral field spectrograph at the Very Large Telescope (VLT/SINFONI). No massive BHs are found in either UCD. We find a 3σ upper limit on the central BH mass in UCD 330 of M • < 1.0 × 105 M ⊙, which corresponds to 1.7% of the total mass. This excludes a high-mass fraction BH and would only allow low-mass BHs similar to those claimed to be detected in Local Group globular clusters. For UCD 320, poorer data quality results in a less constraining 3σ upper limit of M • < 1 × 106 M ⊙, which is equal to 37.7% of the total mass. The dynamical mass-to-light ratios of UCD 320 and UCD 330 are not inflated compared to predictions from stellar population models. The non-detection of BHs in these low-mass UCDs is consistent with the idea that elevated dynamical mass-to-light ratios do indicate the presence of a substantial BH. Although no massive BHs are detected, these systems could still be stripped nuclei. The strong rotation (v/σ of 0.3–0.4) in both UCDs and the two-component light profile in UCD 330 support the idea that these UCDs may be stripped nuclei of low-mass galaxies whose BH occupation fraction is not yet known.

  5. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  6. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  7. ISO spectroscopy of compact HII regions in the Galaxy - II. Ionization and elemental abundances

    NARCIS (Netherlands)

    Martin-Hernandez, NL; Peeters, E; Morisset, C; Tielens, AGGM; Cox, P; Roelfsema, PR; Baluteau, JP; Schaerer, D; Mathis, JS; Damour, F; Churchwell, E; Kessler, MF

    Based on the ISO spectral catalogue of compact H II regions by Peeters et al. (2002), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 H II regions located at galactocentric distances between R-Gal = 0

  8. Compact state-space models for complex superconducting radio-frequency structures based on model order reduction and concatenation methods

    International Nuclear Information System (INIS)

    Flisgen, Thomas

    2015-01-01

    The modeling of large chains of superconducting cavities with couplers is a challenging task in computational electrical engineering. The direct numerical treatment of these structures can easily lead to problems with more than ten million degrees of freedom. Problems of this complexity are typically solved with the help of parallel programs running on supercomputing infrastructures. However, these infrastructures are expensive to purchase, to operate, and to maintain. The aim of this thesis is to introduce and to validate an approach which allows for modeling large structures on a standard workstation. The novel technique is called State-Space Concatenations and is based on the decomposition of the complete structure into individual segments. The radio-frequency properties of the generated segments are described by a set of state-space equations which either emerge from analytical considerations or from numerical discretization schemes. The model order of these equations is reduced using dedicated model order reduction techniques. In a final step, the reduced-order state-space models of the segments are concatenated in accordance with the topology of the complete structure. The concatenation is based on algebraic continuity constraints of electric and magnetic fields on the decomposition planes and results in a compact state-space system of the complete radio-frequency structure. Compared to the original problem, the number of degrees of freedom is drastically reduced, i.e. a problem with more than ten million degrees of freedom can be reduced on a standard workstation to a problem with less than one thousand degrees of freedom. The final state-space system allows for determining frequency-domain transfer functions, field distributions, resonances, and quality factors of the complete structure in a convenient manner. This thesis presents the theory of the state-space concatenation approach and discusses several validation and application examples. The examples

  9. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

    Science.gov (United States)

    Hota, Ananda; Konar, C.; Stalin, C. S.; Vaddi, Sravani; Mohanty, Pradeepta K.; Dabhade, Pratik; Dharmik Bhoga, Sai Arun; Rajoria, Megha; Sethi, Sagar

    2016-12-01

    We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny's Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and

  10. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    International Nuclear Information System (INIS)

    Tombesi, F.; Sambruna, R. M.; Mushotzky, R. F.; Reeves, J. N.; Gofford, J.; Braito, V.; Ballo, L.; Cappi, M.

    2010-01-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ≅ 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ≅ 4-5.6 erg s -1 cm and column densities of N H ≅ 10 22 -10 23 cm -2 . These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ∼0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  11. Compact and maintenance-free radio probes for environmental surveillance of the gamma dose rate

    International Nuclear Information System (INIS)

    Genrich, V.

    1998-01-01

    The author reports on his experience with the operation of radio data networks for the continuous observation of the gamma dose rate in nuclear installations. Practically at every location (within) the installation the hermetically sealed probes can record the measurement values. Moreover, the probes have proved successful in environmental surveillance where they typically work in the form of measurement rings in 10 to 30 km distance. All measurement data are organized in the form of a data base. They can be disposed of in the form of an SQL-server in the computer network (LAN) of the power plant or the institution in charge of environmental surveillance. In comparison to conventional, e.g. cable-bound measurement networks with the new radio transmission technology there are numerous advantages: - minimal cost for projection - minimal cost for installation due to simple fixing - quasi-mobile use with highest possible flexibility - maintenance-free operation and high degree of operating reliability. (orig.) [de

  12. Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies

    Science.gov (United States)

    Rachen, J. P.; Biermann, P. L.

    1993-05-01

    The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.

  13. PSR J1755-2550: a young radio pulsar with a massive, compact companion

    Science.gov (United States)

    Ng, C.; Kruckow, M. U.; Tauris, T. M.; Lyne, A. G.; Freire, P. C. C.; Ridolfi, A.; Caiazzo, I.; Heyl, J.; Kramer, M.; Cameron, A. D.; Champion, D. J.; Stappers, B.

    2018-06-01

    Radio pulsars found in binary systems with short orbital periods are usually fast spinning as a consequence of recycling via mass transfer from their companion stars; this process is also thought to decrease the magnetic field of the neutron star being recycled. Here, we report on timing observations of the recently discovered binary PSR J1755-2550 and find that this pulsar is an exception: with a characteristic age of 2.1 Myr, it is relatively young; furthermore, with a spin period of 315 ms and a surface magnetic field strength at its poles of 0.88 × 1012 G, the pulsar shows no sign of having been recycled. Based on its timing and orbital characteristics, the pulsar either has a massive white dwarf (WD) or a neutron star (NS) companion. To distinguish between these two cases, we searched radio observations for a potential recycled pulsar companion and analysed archival optical data for a potential WD companion. Neither work returned conclusive detections. We apply population synthesis modelling and find that both solutions are roughly equally probable. Our population synthesis also predicts a minimum mass of 0.90 M⊙ for the companion star to PSR J1755-2550 and we simulate the systemic runaway velocities for the resulting WDNS systems which may merge and possibly produce Ca-rich supernovae. Whether PSR J1755-2550 hosts a WD or a NS companion star, it is certainly a member of a rare subpopulation of binary radio pulsars.

  14. Panoramic Radio Astronomy : Wide-field 1-2 GHz research on galaxy evolution

    NARCIS (Netherlands)

    Heald, G.; Serra, P.

    2009-01-01

    In this contribution we give a brief overview of the Panoramic Radio Astronomy (PRA) conference held on 2-5 June 2009 in Groningen, the Netherlands. The conference was motivated by the on-going development of a large number of new radio telescopes and instruments which, within a few years, will

  15. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    NARCIS (Netherlands)

    Tendulkar, S.P.; Bassa, C.G.; Cordes, J.M.; Bower, G.C.; Law, C.J.; Chatterjee, S.; Adams, E.A.K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B.J.; Demorest, P.; Hessels, J.W.T.; Kaspi, V.M.; Lazio, T.J.W.; Maddox, N.; Marcote, B.; McLaughlin, M.A.; Paragi, Z.; Ransom, S.M.; Scholz, P.; Seymour, A.; Spitler, L.G.; van Langevelde, H.J.; Wharton, R.S.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10‑4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find

  16. Reflective electroabsorption modular for compact base station radio-over-fiber systems

    Science.gov (United States)

    Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.

    2003-07-01

    A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.

  17. Low-beam-loss design of a compact, high-current deuteron radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2004-10-01

    Full Text Available A 201.5 MHz, 50 mA, 2.0 MeV deuteron radio frequency quadrupole accelerator is proposed as the neutron generator for the neutron experiment facility project at Peking University, China. Based on better understanding of beam losses, some new optimization procedures concerning both longitudinal and transverse dynamics are adopted. Accordingly, the beam transmission efficiency is improved from 91.2% to 98.3% and the electrode length is shortened from 2.91 to 2.71 m. The fundamental physical analyses are performed to look inside the new design recipe and explain why it works.

  18. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  19. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  20. Interstellar scattering, the North Polar Spur, and a possible new class of compact galactic radio sources

    International Nuclear Information System (INIS)

    Rickard, J.J.; Cronyn, W.M.

    1979-01-01

    A reanalysis of the Cambridge interplanetary scintillation (IPS) catalog of angular sizes of radio sources reveals that there is no statistically significant evidence for increased interstellar angular broadening in the galactic plane, in conflict with previous studies. There is a significant contribution to the decrease in the ratios of scintillators/nonscintillators and strong/weak scintillators near the plane from galactic supernova remnants which were included in previous studies of source counts. Using the catalog angular sizes, we show there is no lack of small sources of any size in the plane. However, we do find a 500 deg 2 region near the North Polar Spur (NPS) radio feature, a suspected supernova remnant, where there seems to be a true deficit of small sources. This deficit may be caused by enhanced broadening associated with the NPS. Our conclusion about the apparent absence of angular broadening in the plane conflicts with estimates of broadening based upon the geometrical relationship between time delay and angular size applied to pulsar coherence bandwidths and pulse decay times. To explain this discrepancy, we suggest two alternatives: (1) Large angular broadening of extragalactic sources in the plane may indeed exist so that sources exhibiting IPS (i.e., of small angular diameter) must be galactic in nature. Properties of this possible new class of sources--called scintars--are discussed, and 42 scintar candidates are identified. (2) There is little angular broadening of extragalactic sources, and the pulsar data are being misinterpreted

  1. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    International Nuclear Information System (INIS)

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-01-01

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  2. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    Science.gov (United States)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  3. The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9

    Science.gov (United States)

    Silva, M.; Humphrey, A.; Lagos, P.; Villar-Martín, M.; Morais, S. G.; di Serego Alighieri, S.; Cimatti, A.; Fosbury, R.; Overzier, R. A.; Vernet, J.; Binette, L.

    2018-03-01

    We present a detailed study of the kinematic, chemical and excitation properties of the giant Ly α emitting nebula and the giant H I absorber associated with the z = 2.92 radio galaxy MRC 0943-242, using spectroscopic observations from Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE), VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765-6378 Å at z = 2.92) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localized compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of supersolar metallicity gas (Z/Z⊙ = 2.1) by an active galactic nuclei-like continuum (α = -1.0) at a moderate ionization parameter (U = 0.018) gives the best overall fit to the complete X-SHOOTER emission-line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the H I absorption feature across the range log N(H I/cm-2) = 15.20 and 19.63, with the two best fitting occurring near the extreme ends of this range. The extended H I absorber is blueshifted relative to the emission-line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large-scale expanding shell.

  4. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.II; Brown, R.L.

    1985-12-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy H II regions G30.8-0.0 (in the W43 complex) and G25.4-02., along with radio and molecular line measurements at selected positions. An effort is made to understand far infrared wavelingths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. For G25.4-0.2, the radio recombination line and CO line data permit resolution of the distance ambiguity for this source. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright H II regions. Using revised distances of 4.3 kpc for G26.4SE and 12 kpc for G25.4NW, that the latter, which is apparently the fainter of the two sources, is actually the more luminous. Though it is not seen on the Palomar Sky Survey, G25.4SE is easily visible in the 9532A line of S III and is mapped in this line. The ratio of total luminosity to ionizing luminosity is very similar to that of H II regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  5. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.; Brown, R.L.

    1985-09-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  6. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Zhang, Jin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xue, Zi-Wei; Zhang, Shuang-Nan, E-mail: zhang.jin@hotmail.com [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  7. Compact radio and infrared sources near the centre of the bipolar outflow NGC 2264D

    International Nuclear Information System (INIS)

    Mendoza, E.E.; Rodriguez, L.F.; Chavarria-K, C.; Neri, L.

    1990-01-01

    A multi-frequency study of the central region of the bipolar outflow NGC 2264D in the Monoceros OB1 molecular cloud has been made in an attempt to localize and understand its driving source. We have detected a weak (≅ 0.6 mJy) radio continuum source at 6 cm, using the VLA; a bright (≅ 270 Jy) H 2 O maser, using the Haystack Observatory telescope; and near-infrared counterparts to these sources at San Pedro Martir Observatory. Stromgren and JHKL'M photometry of stellar objects in the region was also carried out at this observatory. The star-like object W166, a probable Herbig Be/Ae star, which has strong Hα emission and a near-infrared excess, is located closest to the centroid of the bipolar outflow and is probably its driving source. (author)

  8. X-ray continuum and iron K emission line from the radio galaxy 3C 390.3

    Science.gov (United States)

    Inda, M.; Makishima, K.; Kohmura, Y.; Tashiro, M.; Ohashi, T.; Barr, P.; Hayashida, K.; Palumbo, G. G. C.; Trinchieri, G.; Elvis, M.

    1994-01-01

    X-ray properties of the radio galaxy 3C 390.3 were investigated using the European X-ray Observatory Satellite (EXOSAT) and Ginga satellites. Long-term, large-amplitude X-ray intensity changes were detected over a period extending from 1984 through 1991, and high-quality X-ray spectra were obtained especially with Ginga. The X-ray continuum spectra were described with power-law model with photon slope in the range 1.5-1.8, and the slope flattened as the 2-20 keV luminosity decreased by 40%. There was a first detection of the iron emission line from this source at the 90% confidence level. An upper limit was derived on the thermal X-ray component. X-ray emission mechanisms and possible origins of the long-term variation are discussed.

  9. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    Science.gov (United States)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  10. VizieR Online Data Catalog: Radio image of Luminous Infrared Galaxies (Vardoulaki+, 2015)

    Science.gov (United States)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Munoz, L.

    2014-09-01

    VLA images at 1.49GHz (name_A2000.fits) and at 8.44GHz (name_X2000.fits). All images are in J2000 coordinates. Some maps contain both interacting galaxies of the system, while others are separated and marked accordingly. (2 data files).

  11. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints

    NARCIS (Netherlands)

    Zandanel, F.; Tamborra, I.; Gabici, S.; Ando, S.

    2015-01-01

    Cosmic-ray protons accumulate for cosmological times in clusters of galaxies because their typical radiative and diffusive escape times are longer than the Hubble time. Their hadronic interactions with protons of the intra-cluster medium generate secondary electrons, gamma rays, and neutrinos. In

  12. VizieR Online Data Catalog: Spectroscopy of luminous compact blue galaxies (Crawford+, 2016)

    Science.gov (United States)

    Crawford, S. M.; Wirth, G. D.; Bershady, M. A.; Randriamampandry, S. M.

    2017-10-01

    Deep imaging data in UBRIz and two narrow bands were obtained with the Mini-Mosaic camera from the WIYN 3.5 m telescope for all five clusters between 1999 October and 2004 June. We obtained spectroscopic observations for a sample of cluster star-forming galaxies with the DEIMOS, Faber et al. 2003 on the Keck II Telescope during 2005 October and 2007 April. The narrow-band filters were specifically designed to detect [OII] λ3727 at the redshift of each cluster. All of the clusters have been the target of extensive observations with the HST, primarily using either WFPC2 or the Advanced Camera for Surveys (ACS). For all measurements, we have attempted to select data taken in a filter closest to the rest-frame B band. We have employed ACS imaging data whenever possible and substituted WFPC2 images only when required. For clusters observed in the far-infrared regime by the Spitzer Space Telescope, we extracted MIPS 24μm flux densities, S24, from images obtained through the Enhanced Imaging Products archive. (2 data files).

  13. The radio universe

    International Nuclear Information System (INIS)

    Worvill, R.

    1977-01-01

    Elementary description of the development of radioastronomy, radio waves from the sun and planets, the use of radio telescopes and the detection of nebulae, supernova, radio galaxies and quasars is presented. A brief glossary of terms is included. (UK)

  14. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  15. THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT OF THE BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED BY CHANDRA HETG

    Energy Technology Data Exchange (ETDEWEB)

    Tombesi, F.; Kallman, T.; Leutenegger, M. A. [X-ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Reeves, J. N. [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Reynolds, C. S.; Mushotzky, R. F.; Behar, E. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Braito, V. [INAF—Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy); Cappi, M., E-mail: francesco.tombesi@nasa.gov, E-mail: ftombesi@astro.umd.edu [Department of Physics, Technion 32000, Haifa 32000 (Israel)

    2016-10-20

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.

  16. Magnetic fields in barred galaxies I. The atlas

    CERN Document Server

    Beck, R; Ehle, M; Harnett, J I; Haynes, R F; Shukurov, A M; Sokoloff, D D; Thierbach, M

    2002-01-01

    The total and polarized radio continuum emission of 20 barred galaxies was observed with the Very Large Array (VLA) at 3, 6, 18 and 22 cm and with the Australia Telescope Compact Array (ATCA) at 6 cm and 13 cm. Maps at 30 arcsec angular resolution are presented here. Polarized emission (and therefore a large-scale regular magnetic field) was detected in 17 galaxies. Most galaxies of our sample are similar to non-barred galaxies with respect to the radio/far-infrared flux correlation and equipartition strength of the total magnetic field. Galaxies with highly elongated bars are not always radio-bright. We discuss the correlation of radio properties with the aspect ratio of the bar and other measures of the bar strength. We introduce a new measure of the bar strength, \\Lambda, related to the quadrupole moment of the bar's gravitational potential. The radio surface brightness I of the barred galaxies in our sample is correlated with \\Lambda, I \\propto \\Lambda^0.4+/-0.1, and thus is highest in galaxies with a lon...

  17. The changing source of X-ray reflection in the radio-intermediate Seyfert 1 galaxy III Zw 2

    Science.gov (United States)

    Gonzalez, A. G.; Waddell, S. G. H.; Gallo, L. C.

    2018-03-01

    We report on X-ray observations of the radio-intermediate, X-ray bright Seyfert 1 galaxy, III Zw 2, obtained with XMM-Newton, Suzaku, and Swift over the past 17 yr. The source brightness varies significantly over yearly time-scales, but more modestly over periods of days. Pointed observations with XMM-Newton in 2000 and Suzaku in 2011 show spectral differences despite comparable X-ray fluxes. The Suzaku spectra are consistent with a power-law continuum and a narrow Gaussian emission feature at ˜6.4 keV, whereas the earlier XMM-Newton spectrum requires a broader Gaussian profile and soft-excess below ˜2 keV. A potential interpretation is that the primary power-law emission, perhaps from a jet base, preferentially illuminates the inner accretion disc in 2000, but the distant torus in 2011. The interpretation could be consistent with the hypothesized precessing radio jet in III Zw 2 that may have originated from disc instabilities due to an ongoing merging event.

  18. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    International Nuclear Information System (INIS)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Groves, B.; Delgado, R. Gonzalez

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 < z < 0.7), conducting a statistical investigation of the links between radio jet, active galactic nucleus (AGN), starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [O III]λ5007 emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [O III] luminosities. Since [O III] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circumnuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 μm. We demonstrate that AGN heating is energetically feasible, and identify the narrow-line region clouds as the most likely location of the cool, far-IR emitting dust. Starbursts make a major contribution to the heating of the cool dust in only 15%-28% of our targets. We also investigate the orientation dependence of the continuum properties, finding that the broad- and narrow-line objects in our sample with strong emission lines have similar distributions of MFIR luminosities and colors. Therefore our results are entirely consistent with the orientation-based unified schemes for powerful radio galaxies. However, the weak line radio galaxies form a separate class of objects with intrinsically low-luminosity AGNs in which both the optical emission lines and the MFIR continuum are weak.

  19. The VLT/MUSE view of the central galaxy in Abell 2052. Ionized gas swept by the expanding radio source

    Science.gov (United States)

    Balmaverde, Barbara; Capetti, Alessandro; Marconi, Alessandro; Venturi, Giacomo

    2018-04-01

    We report observations of the radio galaxy 3C 317 (at z = 0.0345) located at the center of the Abell cluster A2052, obtained with the VLT/MUSE integral field spectrograph. The Chandra images of this cluster show cavities in the X-ray emitting gas, which were produced by the expansion of the radio lobes inflated by the active galactic nucleus (AGN). Our exquisite MUSE data show with unprecedented detail the complex network of line emitting filaments enshrouding the northern X-ray cavity. We do not detect any emission lines from the southern cavity, with a luminosity asymmetry between the two regions higher than 75. The emission lines produced by the warm phase of the interstellar medium (WIM) enable us to obtain unique information on the properties of the emitting gas. We find dense gas (up to 270 cm-3) that makes up part of a global quasi spherical outflow that is driven by the radio source, and obtain a direct estimate of the expansion velocity of the cavities (265 km s-1). The emission lines diagnostic rules out ionization from the AGN or from star-forming regions, suggesting instead ionization from slow shocks or from cosmic rays. The striking asymmetric line emission observed between the two cavities contrasts with the less pronounced differences between the north and south sides in the hot gas; this represents a significant new ingredient for our understanding of the process of the exchange of energy between the relativistic plasma and the external medium. We conclude that the expanding radio lobes displace the hot tenuous phase of the interstellar medium (ISM), but also impact the colder and denser ISM phases. These results show the effects of the AGN on its host and the importance of radio mode feedback. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A19

  20. Radio Continuum and Far-infrared Emission from the Galaxies in the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    . Stotal. Galaxy. (mJy/bm). (arc sec). (mJy). Morph. NGC 1407. 0.50. 6 × 6. 99 ± 10. Diffuse. NGC 1371. 0.22. 15 × 15. 19.7 ± 2. Linear. NGC 1415. 0.12. 4 × 4. 27 ± 3. Linear. NGC 1482. 0.81. 8 × 8. 280 ± 30. Diffuse. NGC 1385. 0.41. 15 × 15.

  1. Central radio sources

    International Nuclear Information System (INIS)

    Phinney, E.S.

    1985-01-01

    The compact radio sources in the nuclei of most active galaxies lie closer to their centers of activity than any other region accessible to observation, excepting only the broad emission line region. They provide uniquely strong evidence for bulk motion of matter at relativistic velocities, encouraging the belief that the activity originates in a gravitational potential well whose escape velocity is of the order of the speed of light. The observational facts are reviewed as well as several theoretical pictures of them. Those places where systematic observations could help to distinguish the true theoretical picture from the many competing forgeries are emphasized. 76 references

  2. Metal enrichment of the neutral gas of blue compact dwarf galaxies: the compelling case of Pox 36

    Science.gov (United States)

    Lebouteiller, V.; Kunth, D.; Thuan, T. X.; Désert, J. M.

    2009-02-01

    Context: Evidence has grown over the past few years that the neutral phase of blue compact dwarf (BCD) galaxies may be metal-deficient as compared to the ionized gas of their H ii regions. These results have strong implications for our understanding of the chemical evolution of galaxies, and it is essential to strengthen the method, as well as to find possible explanations. Aims: We present the analysis of the interstellar spectrum of Pox 36 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Pox 36 was selected because of the relatively low foreground gas content that makes it possible to detect absorption-lines weak enough that unseen components should not be saturated. Methods: Interstellar lines of H i, N i, O i, Si ii, P ii, Ar i, and Fe ii are detected. Column densities are derived directly from the observed line profiles except for H i, whose lines are contaminated by stellar absorption, thus needing the stellar continuum to be removed. We used the TLUSTY models to remove the stellar continuum and isolate the interstellar component. The best fit indicates that the dominant stellar population is B0. The observed far-UV flux agrees with an equivalent number of ~300 B0 stars. The fit of the interstellar H i line gives a column density of 1020.3±0.4 cm-2. Chemical abundances were then computed from the column densities using the dominant ionization stage in the neutral gas. Our abundances are compared to those measured from emission-line spectra in the optical, probing the ionized gas of the H ii regions. Results: Our results suggest that the neutral gas of Pox 36 is metal-deficient by a factor ~7 as compared to the ionized gas, and they agree with a metallicity of ≈1/35 Z_⊙. Elemental depletion is not problematic because of the low dust content along the selected lines of sight. In contrast, the ionized gas shows a clear depletion pattern, with iron being strongly depleted. Conclusions: The abundance discontinuity between the neutral and ionized phases

  3. CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY

    International Nuclear Information System (INIS)

    Swift, Jonathan J.; Johnson, John Asher; Morton, Timothy D.; Montet, Benjamin T.; Muirhead, Philip S.; Crepp, Justin R.; Fabrycky, Daniel C.

    2013-01-01

    The Kepler space telescope has opened new vistas in exoplanet discovery space by revealing populations of Earth-sized planets that provide a new context for understanding planet formation. Approximately 70% of all stars in the Galaxy belong to the diminutive M dwarf class, several thousand of which lie within Kepler's field of view, and a large number of these targets show planet transit signals. The Kepler M dwarf sample has a characteristic mass of 0.5 M ☉ representing a stellar population twice as common as Sun-like stars. Kepler-32 is a typical star in this sample that presents us with a rare opportunity: five planets transit this star, giving us an expansive view of its architecture. All five planets of this compact system orbit their host star within a distance one-third the size of Mercury's orbit, with the innermost planet positioned a mere 4.3 stellar radii from the stellar photosphere. New observations limit possible false positive scenarios, allowing us to validate the entire Kepler-32 system making it the richest known system of transiting planets around an M dwarf. Based on considerations of the stellar dust sublimation radius, a minimum mass protoplanetary nebula, and the near period commensurability of three adjacent planets, we propose that the Kepler-32 planets formed at larger orbital radii and migrated inward to their present locations. The volatile content inferred for the Kepler-32 planets and order of magnitude estimates for the disk migration rates suggest that these planets may have formed beyond the snow line and migrated in the presence of a gaseous disk. If true, then this would place an upper limit on their formation time of ∼10 Myr. The Kepler-32 planets are representative of the full ensemble of planet candidates orbiting the Kepler M dwarfs for which we calculate an occurrence rate of 1.0 ± 0.1 planet per star. The formation of the Kepler-32 planets therefore offers a plausible blueprint for the formation of one of the largest

  4. Some Like it Hot: Linking Diffuse X-Ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis

    2014-01-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  5. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  6. THE CIRCUMGALACTIC MEDIUM OF SUBMILLIMETER GALAXIES. I. FIRST RESULTS FROM A RADIO-IDENTIFIED SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Hai; Mutel, R.; Isbell, J.; Lang, C.; McGinnis, D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Hennawi, J. F. [Max-Planck-Institut fur Astronomie, Heidelberg (Germany); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Casey, C. [Department of Astronomy, the University of Texas at Austin, 2515 Speedway Blvd, Stop C1400, Austin, TX 78712 (United States); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Kereš, D. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Zhang, Z.-Y.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Clements, D. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Mooley, K. [Oxford Centre For Astrophysical Surveys, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United States); Perley, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Stockton, A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Thompson, D. [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States)

    2016-11-20

    We present the first results from an ongoing survey to characterize the circumgalactic medium (CGM) of massive high-redshift galaxies detected as submillimeter galaxies (SMGs). We constructed a parent sample of 163 SMG–QSO pairs with separations less than ∼36″ by cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed QSOs. The Herschel sources were selected to match the properties of the SMGs. We determined the sub-arcsecond positions of six Herschel sources with the Very Large Array and obtained secure redshift identification for three of those with near-infrared spectroscopy. The QSO sightlines probe transverse proper distances of 112, 157, and 198 kpc at foreground redshifts of 2.043, 2.515, and 2.184, respectively, which are comparable to the virial radius of the ∼10{sup 13} M {sub ⊙} halos expected to host SMGs. High-quality absorption-line spectroscopy of the QSOs reveals systematically strong H i Ly α absorption around all three SMGs, with rest-frame equivalent widths of ∼2–3 Å. However, none of the three absorbers exhibit compelling evidence for optically thick H i gas or metal absorption, in contrast to the dominance of strong neutral absorbers in the CGM of luminous z ∼ 2 QSOs. The low covering factor of optically thick H i gas around SMGs tentatively indicates that SMGs may not have as prominent cool gas reservoirs in their halos as the coeval QSOs and that they may inhabit less massive halos than previously thought.

  7. FERMI/LAT OBSERVATIONS OF SWIFT/BAT SEYFERT GALAXIES: ON THE CONTRIBUTION OF RADIO-QUIET ACTIVE GALACTIC NUCLEI TO THE EXTRAGALACTIC γ-RAY BACKGROUND

    International Nuclear Information System (INIS)

    Teng, Stacy H.; Mushotzky, Richard F.; Reynolds, Christopher S.; Sambruna, Rita M.; Davis, David S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R X,BAT where radio-loud objects have log R X,BAT > –4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be ∼2 × 10 –11 photons cm –2 s –1 , approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the γ-ray (1-100 GeV) luminosity of ∼ 41 erg s –1 . In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  8. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaomi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki [Institute of Astronomy, School of Science, University of Tokyo, Mitaka, Tokyo 181-0015 (Japan); Itoh, Ryosuke [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tominaga, Nozomu [Department of Physics, Faculty of Science and Engineering, Konan University, Kobe, Hyogo 658-8501 (Japan); Saito, Yoshihiko; Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Stawarz, Łukasz [Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210 (Japan); Gandhi, Poshak [Department of Physics, Durham University, Durham DH1-3LE (United Kingdom); Ali, Gamal; Essam, Ahmad; Hamed, Gamal [National Research Institute of Astronomy and Geophysics, Helwan, Cairo (Egypt); Aoki, Tsutomu [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, Kiso, Nagano 397-0101 (Japan); Contreras, Carlos; Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Iwata, Ikuru, E-mail: masaomi.tanaka@nao.ac.jp [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  9. Fermi/LAT Observations of Swift/BAT Seyfert Galaxies: On the Contribution of Radio-Quiet Active Galactic Nuclei to the Extragalactic gamma-Ray Background

    Science.gov (United States)

    Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  10. RELATIVISTIC PLASMA AS THE DOMINANT SOURCE OF THE OPTICAL CONTINUUM EMISSION IN THE BROAD-LINE RADIO GALAXY 3C 120

    International Nuclear Information System (INIS)

    Leon-Tavares, J.; Lobanov, A. P.; Arshakian, T. G.; Chavushyan, V. H.; Doroshenko, V. T.; Sergeev, S. G.; Efimov, Y. S.; Nazarov, S. V.

    2010-01-01

    We report a relation between radio emission in the inner jet of the Seyfert galaxy 3C 120 and optical continuum emission in this galaxy. Combining the optical variability data with multi-epoch high-resolution very long baseline interferometry observations reveals that an optical flare rises when a superluminal component emerges into the jet, and its maxima is related to the passage of such component through the location of a stationary feature at a distance of ∼1.3 pc from the jet origin. This indicates that a significant fraction of the optical continuum produced in 3C 120 is non-thermal, and it can ionize material in a sub-relativistic wind or outflow. We discuss implications of this finding for the ionization and structure of the broad emission line region, as well as for the use of broad emission lines for determining black hole masses in radio-loud active galactic nucleus.

  11. MARBLE (Multiple Antenna Radio-interferometry for Baseline Length Evaluation): Development of a Compact VLBI System for Calibrating GNSS and Electronic Distance Measurement Devices

    Science.gov (United States)

    Ichikawa, R.; Ishii, A.; Takiguchi, H.; Kimura, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hanado, Y.; Koyama, Y.; Kondo, T.; Kurihara, S.; Kokado, K.; Kawabata, R.; Nozawa, K.; Mukai, Y.; Kuroda, J.; Ishihara, M.; Matsuzaka, S.

    2012-12-01

    We are developing a compact VLBI system with a 1.6-m diameter aperture dish in order to provide reference baseline lengths for calibration. The reference baselines are used to validate surveying instruments such as GPS and EDM and is maintained by the Geospatial Information Authority of Japan (GSI). The compact VLBI system will be installed at both ends of the reference baseline. Since the system is not sensitive enough to detect fringes between the two small dishes, we have designed a new observation concept including one large dish station. We can detect two group delays between each compact VLBI system and the large dish station based on conventional VLBI measurement. A group delay between the two compact dishes can be indirectly calculated using a simple equation. We named the idea "Multiple Antenna Radio-interferometry for Baseline Length Evaluation", or MARBLE system. The compact VLBI system is easy transportable and consists of the compact dish, a new wide-band front-end system, azimuth and elevation drive units, an IF down-converter unit, an antenna control unit (ACU), a counterweight, and a monument pillar. Each drive unit is equipped with a zero-backlash harmonic drive gearing component. A monument pillar is designed to mount typical geodetic GNSS antennas easily and an offset between the GNSS antenna reference point. The location of the azimuth-elevation crossing point of the VLBI system is precisely determined with an uncertainty of less than 0.2 mm. We have carried out seven geodetic VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the two prototypes of the compact VLBI system between December 2009 and December 2010. The average baseline length and repeatability of the experiments is 54184874.0 ± 2.4 mm. The results are well consistent with those obtained by GPS measurements. In addition, we are now planning to use the compact VLBI system for precise time and frequency comparison between separated locations.

  12. Radio polarization properties of quasars and active galaxies at high redshifts

    Science.gov (United States)

    Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.

    2018-04-01

    We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.

  13. J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cen