WorldWideScience

Sample records for compact hemielliptic dielectric

  1. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John [CPAC, Livermore, CA (United States); Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hamm, Robert W. [R and M Technical Enterprises, Pleasanton, CA (United States); Becker, Reinard [Scientific Software Service, Gelnhausen (Germany)

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  2. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-01-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  3. Experimental and Numerical Investigation of Compact Dielectric Wakefield Accelerators

    2016-03-01

    macroparticles. Additionally the laser is chosen to have a transverse rms spot size of σc = 0.8 mm and rms duration of σt = 1 ps. A solenoidal lens is...photocathode laser . . . . . . . . . . 24 3.3 Experimental realization of a linearly-ramped bunch with a multifrequency linac... laser . Our approach toward the development of a compact beam-driven accelerator consists of four main components depicted in Fig. 1. The production of

  4. Development of compact slip detection sensor using dielectric elastomer

    Choi, Jae-young; Hwang, Do-Yeon; Kim, Baek-chul; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2015-04-01

    In this paper, we developed a resistance tactile sensor that can detect a slip on the surface of sensor structure. The presented sensor device has fingerprint-like structures that are similar with the role of the humans finger print. The resistance slip sensor that the novel developed uses acrylo-nitrile butadiene rubber (NBR) as a dielectric substrate and graphene as an electrode material. We can measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To manufacture our sensor, we developed a new imprint process. By using this process, we can produce sensor with micro unit structure. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip is successfully detected. We will discuss the slip detection properties.

  5. The effect of compaction parameters and dielectric composition on properties of soft magnetic composites

    Xiao, Ling; Sun, Y. H.; Yu, Lie

    2011-07-01

    This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.

  6. The effect of compaction parameters and dielectric composition on properties of soft magnetic composites

    Xiao Ling; Yu Lie; Sun, Y H

    2011-01-01

    This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.

  7. Conductivity percolation in loosely compacted microcrystalline cellulose: An in situ study by dielectric spectroscopy during densification.

    Nilsson, Martin; Frenning, Göran; Gråsjö, Johan; Alderborn, Göran; Strømme, Maria

    2006-10-19

    The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.

  8. Compact dielectric cavities based on frozen bound states in the continuum

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    Dielectric microcavities are used widely today for confining the light to its wavelength scale, which is important for fundamental physics studies of light-matter interactions such as cavity quantum electrodynamics (QED) and cavity polaritons, as well as various applications including ultrafast...

  9. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength...... information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary...... optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach lambda/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design...

  10. ArCLight—A Compact Dielectric Large-Area Photon Detector

    Martin Auger

    2018-02-01

    Full Text Available ArgonCube Light readout system (ArCLight is a novel device for detecting scintillation light over large areas with Photon Detection Efficiency (PDE of the order of a few percent. Its robust technological design allows for efficient use in large-volume particle detectors, such as Liquid Argon Time Projection Chambers (LArTPCs or liquid scintillator detectors. Due to its dielectric structure it can be placed inside volumes with high electric field. It could potentially replace vacuum PhotoMultiplier Tubes (PMTs in applications where high PDE is not required. The photon detection efficiency for a 10 × 10 cm2 detector prototype was measured to be in the range of 0.8% to 2.2% across the active area.

  11. EFFECT OF DIFFERENT COMPACTION PRESSURE AND DIFFERENT SINTERING ROUTE ON K0.5NA0.5NBO₃ PHYSICAL AND DIELECTRIC PROPERTIES

    Nor Fatin Khairah Bahanurddin

    2016-07-01

    Full Text Available Alkaline niobate known as K0.5Na0.5NbO3 (KNN, a lead-free piezoelectric ceramic was synthesized via a solid state reaction method. The samples were compacted at different pressures (100, 200, 300 and 400 MPa and sintered using two different techniques (conventional furnace and hot isostatic pressing (HIP. The effect of compaction pressure and sintering technique on physical and dielectric properties was studied. The optimum compaction pressure (300 MPa and sintering via HIP (at 1080 °C for 30 min increased the density and grain size ( range 30 - 300 nm and improved its dielectric properties. Therefore, the combination of suitable compaction pressure and sintering technique has produced larger grain size and higher density of KNN which resulted in outstanding dielectric properties. At room temperature, excellent values of ε r (5517.35 and tan δ (0.954, recorded at 1 MHz were measured for the KNN300HIP sample with highest density (4.4885 g/cm³.

  12. Compact, Wearable Antennas for Battery-Less Systems Exploiting Fabrics and Magneto-Dielectric Materials

    Alessandra Costanzo

    2014-08-01

    Full Text Available In this paper, we describe some promising solutions to the modern need for wearable, energy-aware, miniaturized, wireless systems, whose typical envisaged application is a body area network (BAN. To reach this goal, novel materials are adopted, such as fabrics, in place of standard substrates and metallizations, which require a systematic procedure for their electromagnetic characterization. Indeed, the design of such sub-systems represents a big issue, since approximate approaches could result in strong deviations from the actual system performance. To face this problem, we demonstrate our design procedure, which is based on the concurrent use of electromagnetic software tools and nonlinear circuit-level techniques, able to simultaneously predict the actual system behavior of an antenna system, consisting of the radiating and of the nonlinear blocks, at the component level. This approach is demonstrated for the design of a fully-wearable tri-band rectifying antenna (rectenna and of a button-shaped, electrically-small antenna deploying a novel magneto-dielectric substrate. Simulations are supported by measurements, both in terms of antenna port parameters and far-field results.

  13. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  14. Trends of microwave dielectric materials for antenna application

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  15. Trends of microwave dielectric materials for antenna application

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  16. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  17. Compact particle accelerator

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  18. Compact NMR

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  19. Compact vortices

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  20. Compact stars

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  1. Super dielectric capacitor using scaffold dielectric

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  2. Inertial polarization of dielectrics

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  3. Optimal Super Dielectric Material

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  4. Compact Radiative Control Structures for Millimeter Astronomy

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  5. Dielectrics in electric fields

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  6. Lattices of dielectric resonators

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  7. Pharmaceutical powder compaction technology

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  8. Characterization of dielectric materials

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  9. Inductive dielectric analyzer

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  10. Method of making dielectric capacitors with increased dielectric breakdown strength

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  11. Contemporary dielectric materials

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  12. Dielectric Modulated FET (DMFET)

    First page Back Continue Last page Graphics. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the nanogap cavity leads to change in effective gate capacitance and thus gate bias for FET. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the ...

  13. Thermal dielectric function

    Moneta, M.

    1999-01-01

    Thermal dielectric functions ε(k,ω) for homogeneous electron gas were determined and discussed. The ground state of the gas is described by the Fermi-Dirac momentum distribution. The low and high temperature limits of ε(k,ω) were related to the Lindhard dielectric function and to ε(k, omega) derived for Boltzmann and for classical momentum distributions, respectively. (author)

  14. Light in complex dielectrics

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  15. Improved Dielectric Films For Capacitors

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  16. Dielectric materials for electrical engineering

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  17. Cast dielectric composite linear accelerator

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  18. Optics of dielectric microstructures

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  19. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  20. Self-Compacting Concrete

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  1. Compact Polarimetry Potentials

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  2. Pharmaceutical powder compaction technology

    Çelik, Metin

    2011-01-01

    "Revised to reflect modern pharmaceutical compacting techniques, this Second Edition guides pharmaceutical engineers, formulation scientists, and product development and quality assurance personnel...

  3. Compact Antenna Range

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  4. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  5. Super Dielectric Materials.

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  6. Super Dielectric Materials

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  7. Thermally switchable dielectrics

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  8. On dielectric breakdown statistics

    Tuncer, Enis; James, D Randy; Sauers, Isidor; Ellis, Alvin R; Pace, Marshall O

    2006-01-01

    In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones

  9. Compact Ignition Tokamak Program: R and D needs

    Flanagan, C.A.

    1985-01-01

    This report on the Compact Ignition Tokamak Program supplies information concerning: segmented vacuum vessel joint development; first wall tile attachments; first wall/tile development - composite materials; vacuum leak detection; high frequency rf sources; Faraday shield development; design and testing of rf launchers for high power, ling pulse operation; radiation hardened, low loss, dielectric windows for rf, IR, visible, UV and X-rays, mirrors for changing direction and focusing IR, visible and UV radiation; radiation resistant optical dielectric wave guides; radiation resistant HV insulation for diagnostic magnetic pickup coils; compact radiation and/or magnetic shielding for in-vault diagnostics that need some attenuation to reduce S/N ratio; radiation hardened line-of-sight sensors such as bolometers, UV and soft X-ray detectors, neutral particle analyzers, torus pressure gauges; special maintenance fixtures and tools; material properties - design data base - all materials; and insulation - electrical/thermal and mechanical properties

  10. Uniaxial backfill block compaction

    Koskinen, V.

    2012-05-01

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  11. Compaction properties of isomalt

    Bolhuis, Gerad K.; Engelhart, Jeffrey J. P.; Eissens, Anko C.

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of

  12. Model Compaction Equation

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  13. Compact gas-insulated transformer. Fourteenth quarterly report

    1983-08-01

    Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)

  14. Stabilization of compactible waste

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  15. Mouse Embryo Compaction.

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  16. Small Valdivia compact spaces

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  17. Compact turbidity meter

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  18. Dielectric nanoresonators for light manipulation

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  19. Center for dielectric studies

    Cross, L. E.; Newnham, R. E.; Biggers, J. V.

    1984-05-01

    This report focuses upon the parts of the Center program which have drawn most extensively upon Navy funds. In the basic study of polarization processes in high K dielectrics, major progress has been made in understanding the mechanisms in relaxor ferroelectric in the perovskite structure families. A new effort is also being mounted to obtain more precise evaluation of the internal stress effects in fine grained barium titanate. Related to reliability, studies of the effects of induced macro-defects are described, and preparation for the evaluation of space charge by internal potential distribution measurements discussed. To develop new processing methods for very thin dielectric layers, a new type of single barrier layer multilayer is discussed, and work on the thermal evaporation of oriented crystalline antimony sulphur iodide describe.

  20. Dielectric properties of polyethylene

    Darwish, S.; Riad, A.S.; El-Shabasy, M.

    2005-01-01

    The temperature dependence of dielectric properties in polyethylene was measured in the frequency range from 10 to 105 Hz. The frequency dependence of the complex impedance in the complex plane could be fitted by semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with parallel surface resistance-capacitance combination. The relaxation time, has been evaluated from experimental results. Results reveal that the temperature dependence, is a thermally activated process

  1. Dielectric Wakefield Researches

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Uskov, V.V.; Marshall, T.C.

    2006-01-01

    Excitation of wakefield in cylindrical dielectric waveguide/resonator by a sequence of relativistic electron bunches was investigated using an electron linac 'Almaz-2' (4.5 MeV, 6·10 3 bunches of duration 60 ps and charge 0.32 nC each). Energy spectrum of electrons, radial topography and longitudinal distribution of wakefield, and total energy of excited wakefield were measured by means of magnetic analyzer, high frequency probe, and a sensitive calorimeter

  2. Dielectric lattice gauge theory

    Mack, G.

    1983-06-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  3. Dielectric lattice gauge theory

    Mack, G.

    1984-01-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  4. Compaction of FGD-gypsum

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  5. Dielectric properties of lunar surface

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  6. Physically detached 'compact groups'

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  7. Ion diffusion in compacted bentonite

    Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)

    1999-03-01

    In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K{sub d}, unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.) 45 refs.

  8. Ion diffusion in compacted bentonite

    Lehikoinen, J.

    1999-03-01

    In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K d , unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.)

  9. Investigation of HMA compactability using GPR technique

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    . Actually, the prediction is not regulated by any standards or specifications, although the practice is considered to be workable. In view of the above, an extensive experiment was carried out in both the laboratory and the field based on a trial asphalt pavement section under construction. In the laboratory, the study focused on the estimation of the density of HMA specimens achieved through three different roller compaction modes (static, vibratory and a combination of both) targeted to simulate field compaction and assess the asphalt mix compactability. In the field, the different compaction modes were successively implemented on three subsections of the trial pavement section. Along each subsection, GPR data was collected in order to determine the new material's dielectric properties and based on that, to predict its density using proper algorithm. Thus, cores were extracted to be used as ground truth data. The comparison of the new asphalt material compactability as obtained from the laboratory specimens, the predictions based on GPR data and the field cores provided useful information that facilitated the selection of the most effective compaction mode yielding the proper compaction degree in the field. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

  10. Compact super-wideband optical antenna

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  11. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  12. Inhomogeneous compact extra dimensions

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  13. Dielectric Properties Of Nanoferrites

    Jankov, Stevan B.; Cvejic, Zeljka N.; Rakic, Srdjan; Srdic, Vladimir

    2007-01-01

    Dielectric properties: permittivity, loss factor, tan delta and ionic conductivity of nanostructured ferrites have been measured. Samples used were nickel, zinc and yttrium doped ferrites mixed in various ratios. The synthesis has been performed using precipitation method and obtained powders were pressed in pellets under varying pressure. X-ray diffractography approach for the refinement of structure and microstructural analysis has been performed. All parameters have been measured in 1 Hz to 100 kHz frequency range and 30 deg. C to 80 deg. C temperature range. Significant improvements in permittivity, loss factor and ionic conductivity comparing to bulk samples have been observed

  14. Dielectric materials and electrostatics

    Gallot-Lavalle, Olivier

    2013-01-01

    An introduction to the physics of electrical insulation, this book presents the physical foundations of this discipline and the resulting applications. It is structured in two parts. The first part presents a mathematical and intuitive approach to dielectrics; various concepts, including polarization, induction, forces and losses are discussed. The second part provides readers with the keys to understanding the physics of solid, liquid and gas insulation. It comprises a phenomenological description of discharges in gas and its resulting applications. Finally, the main electrical properties

  15. HTS microstrip disk resonator with an upper dielectric layer for 4GHz

    Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru

    2006-01-01

    We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power

  16. Discharge ignition near a dielectric

    Sobota, A.; Veldhuizen, van E.M.; Stoffels, W.W.

    2008-01-01

    Electrical breakdown in noble gas near a dielectric is an important issue in lighting industry. In order to investigate the influence of the dielectric on the ignition process, we perform measurements in argon, with pressure varying from 0.1 to 1 bar, using a pin–pin electrode geometry. Here, we

  17. Generalized dielectric permittivity tensor

    Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.

    1986-01-01

    The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form

  18. Magnetic force induced tristability for dielectric elastomer actuators

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  19. Characterization of ceramic powder compacts

    Yanai, K.; Ishimoto, S.; Kubo, T.; Ito, K.; Ishikawa, T.; Hayashi, H.

    1995-01-01

    UO 2 and Al 2 O 3 powder packing structures in cylindrical powder compacts are observed by scanning electron microscopy using polished cross sections of compacts fixed by low viscosity epoxy resin. Hard aggregates which are not destroyed during powder compaction are observed in some of the UO 2 powder compacts. A technique to measure local density in powder compacts is developed based on counting characteristic X-ray intensity by energy dispersive X-ray analysis (EDX). The local density of the corner portion of the powder compact fabricated by double-acting dry press is higher than that of the inner portion. ((orig.))

  20. Dielectric Actuation of Polymers

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  1. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  2. Bloch surface wave structures for high sensitivity detection and compact waveguiding

    Khan, Muhammad Umar; Corbett, Brian

    2016-01-01

    Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

  3. Broadband electromagnetic analysis of compacted kaolin

    Bore, Thierry; Scheuermann, Alexander; Wagner, Norman; Cai, Caifang

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz–3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification. (paper)

  4. Weakly compact operators and interpolation

    Maligranda, Lech

    1992-01-01

    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  5. Compact stellarators as reactors

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  6. Compact torsatron reactors

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R 0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R 0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  7. Compact Spreader Schemes

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  8. Compact fusion reactors

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  9. Compact nuclear fuel storage

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  10. Laser amplification in excited dielectrics

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using...... these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400nm femtosecond laser pulse is coherently...

  11. Analysis of laboratory compaction methods of roller compacted concrete

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  12. Compaction of cereal grain

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  13. Compact nuclear reactor

    Juric, S.I.

    1975-01-01

    A compact nuclear reactor of the pressurized-water variety is described which has two separate parts separably engageable for ease of inspection, maintenance and repair. One of the parts is a pressure vessel having an active core and the other of the parts is a closure adapted on its lower surface with an integral steam generator. An integral pump, external pressurizer and control rods are provided which communicate with the active core when engaged to form a total unit. (U.S.)

  14. Compact power reactor

    Wetch, J.R.; Dieckamp, H.M.; Wilson, L.A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector

  15. CMS (Compact Muon Solenoid)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  16. Compact Information Representations

    2016-08-02

    Department of Defense, Executive Services, Directorate (0704-0188).   Respondents should be aware that notwithstanding any other provision of law, no person...which lies in the mission of AFOSR. 15.  SUBJECT TERMS sparse sampling , principal components analysis 16.  SECURITY CLASSIFICATION OF: 17...approved for public release Contents 1 Training for Ph.D. Students and Postdoc Researchers 2 2 Papers 2 3 Summary of Proposed Research: Compact

  17. Relativistic plasma dielectric tensor evaluation based on the exact plasma dispersion functions concept

    Castejon, F.; Pavlov, S. S.

    2006-01-01

    The fully relativistic plasma dielectric tensor for any wave and plasma parameter is estimated on the basis of the exact plasma dispersion functions concept. The inclusion of this concept allows one to write the tensor in a closed and compact form and to reduce the tensor evaluation to the calculation of those functions. The main analytical properties of these functions are studied and two methods are given for their evaluation. The comparison between the exact dielectric tensor with the weakly relativistic approximation, widely used presently in plasma waves calculations, is given as well as the range of plasma temperature, harmonic number, and propagation angle in which the weakly relativistic approximation is valid

  18. A general method for synthesis continuous silver nanoshells on dielectric colloids

    Chen Dong; Liu Huiyu; Liu Jianshu; Ren Xianglin; Meng Xianwei; Wu Wei; Tang Fangqiong

    2008-01-01

    A method for the controlled synthesis of silver nanoshells on various dielectric colloids, such as silica and polystyrene is presented in this study. The complexation of triethanolamine and silver ions is applied here to moderate the availability of the silver ions in the reaction solution, which directly affect the coating process. The morphologies of the particles were studied with transmission electron microscopy and their crystallinity and chemical composition were confirmed by X-ray and electron diffraction. The synthesis conditions were investigated and experimental results show that compact silver shells with easily controlled thickness can be deposited on dielectric cores by this method

  19. Diffusion through statically compacted clay

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  20. Dielectric inspection of erythrocyte morphology

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  1. Dielectric inspection of erythrocyte morphology

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  2. Silicone-based Dielectric Elastomers

    Skov, Anne Ladegaard

    Efficient conversion of energy from one form to another (transduction) is an important topic in our daily day, and it is a necessity in moving away from the fossil based society. Dielectric elastomers hold great promise as soft transducers, since they are compliant and light-weight amongst many...... energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... elastomer transducers. The subject of this thesis is improvement of properties of silicone-based dielectric elastomers with special focus on design guides towards electrically, mechanically, and electromechanically reliable elastomers. Strategies for improving dielectric elastomer performance are widely...

  3. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  4. MECHANICS OF DYNAMIC POWDER COMPACTION PROCESS

    Nurettin YAVUZ

    1996-01-01

    In recent years, interest in dynamic compaction methods of metal powders has increased due to the need to improve compaction properties and to increase production rates of compacts. In this paper, review of dynamic and explosive compaction of metal powders are given. An attempt is made to get a better understanding of the compaction process with the mechanicis of powder compaction.

  5. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of

  6. Compact neutron flux monitor

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  7. Compact ignition experiments

    Angelini, A.; Coppi, B.; Nassi, M.

    1992-01-01

    This paper reports on high magnetic field experiments which can be designed to investigate D-T ignition conditions based on present-day experimental results and theoretical understanding of plasma phenomena. The key machine elements are: large plasma currents, compact dimensions, tight aspect ratios, moderate elongations and significant triangularities of the plasma column. High plasma densities, strong ohmic heating, the needed degree of energy confinement, good plasma purity and robust stability against ideal and resistive instabilities can be achieved simultaneously. The Ignitor design incorporates all these characteristics and involves magnet technology developments, started with the Alcator experiment, that use cryogenically cooled normal conductors

  8. Compact LINAC for deuterons

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  9. Compact electron storage rings

    Williams, G.P.

    1987-01-01

    There have been many recent developments in the area of compact storage rings. Such rings would have critical wavelengths of typically 10 A, achieved with beam energies of several hundreds of MeV and superconducting dipole fields of around 5 Tesla. Although the primary motivation for progress in this area is that of commercial x-ray lithography, such sources might be an attractive source for college campuses to operate. They would be useful for many programs in materials science, solid state, x-ray microscopy and other biological areas. We discuss the properties of such sources and review developments around the world, primarily in the USA, japan and W. Germany

  10. Compact synchrotron radiation source

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  11. LASL Compact Torus Program

    Linford, R.K.; Armstrong, W.T.; Bartsch, R.R.

    1981-01-01

    The Compact Torus (CT) concept includes any axisymmetric toroidal plasma configuration, which does not require the linking of any material through the hole in the torus. Thus, the magnet coils, vacuum vessel, etc., have a simple cylindrical or spherical geometry instead of the toroidal geometry required for Tokamaks and RFP's. This simplified geometry results in substantial engineering advantages in CT reactor embodiments while retaining the good confinement properties afforded by an axisymmetric toroidal plasma-field geometry. CT's can be classified into three major types by using the ion gyro radius rho/sub i/ and the magnitude of the maximum toroidal field B/sub tm/

  12. Compact Q-balls

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Losano, L.; Marques, M.A. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, R. [Departamento de Ciências Exatas, Universidade Federal da Paraíba, 58297-000 Rio Tinto, PB (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Rocha, R. da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-580 Santo André (Brazil)

    2016-07-10

    In this work we deal with non-topological solutions of the Q-ball type in two space–time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  13. Scalable Nonlinear Compact Schemes

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  14. Compact magnetic fusion systems

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  15. Compact magnetic fusion systems

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  16. Diffusion in compacted betonite

    Muurinen, A.; Rantanen, J.

    1985-01-01

    The objective of this report is to collect the literature bearing on the diffusion in compacted betonite, which has been suggested as possible buffer material for the disposal of spent fuel. Diffusion in a porous, water-saturated material is usually described as diffusion in the pore-water where sorption on the solid matter can delay the migration in the instationary state. There are also models which take into consideration that the sorbed molecules can also move while being sorbed. Diffusion experiments in compacted bentonite have been reported by many authors. Gases, anions, cations and actinides have been used as diffusing molecules. The report collects the results and the information on the measurement methods. On the basis of the results can be concluded that different particles possibly follow different diffusion mechanisms. The parameters which affect the diffusion seem to be for example the size, the electric charge and the sorption properties of the diffusing molecule. The report also suggest the parameters to be used in the diffusion calculation of the safety analyses of spent fuel disposal. (author)

  17. Compact Infrasonic Windscreen

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  18. Compact electrostatic comb actuator

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  19. Development task of compact reactor

    Kurushima, Morihiro

    1982-01-01

    In the Ministry of International Trade and Industry, studies proceed on the usage of compact medium and small LWRs. As such, the reactors from 100 to 200 MW may meet varieties of demands in scale and kind in view of the saving of petroleum and the economy of nuclear power. In this case, the technology of light water reactors with already established safety will be suitable for the development of compact reactors. The concept of ''nuclear power community'' using the compact reactors in local society and industrial zones was investigated. The following matters are described: need for the introduction of compact reactors, the survey on the compact reactor systems, and the present status and future problems for compact reactor usage. (J.P.N.)

  20. The United Nations Global Compact

    Rasche, Andreas; Waddock, Sandra; McIntosh, Malcolm

    2013-01-01

    This article reviews the interdisciplinary literature on the UN Global Compact. The review identifies three research perspectives, which scholars have used to study the UN Global Compact so far: a historical perspective discussing the Global Compact in the context of UN-business relations...... key empirical as well as conceptual scholarly contributions. The remainder of this article contains focused summaries of the articles selected for this Special Issue. All articles are introduced and evaluated against the background of the three research perspectives....

  1. Electrical actuation of dielectric droplets

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  2. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  3. Compact vacuum insulation embodiments

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact vacuum insulation

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. The Compact Ignition Tokamak

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  6. Compact cryocooler heat exchangers

    Luna, J.; Frederking, T.H.K.

    1991-01-01

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  7. Compact semiconductor lasers

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  8. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR WLAN band.

  9. Materials Fundamentals of Gate Dielectrics

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  10. Laser amplification in excited dielectrics

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  11. Dielectric function of semiconductor superlattice

    Qin Guoyi.

    1990-08-01

    We present a calculation of the dielectric function for semiconductor GaAs/Ga 1-x Al x As superlattice taking account of the extension of the electron envelope function and the difference of both the dielectric constant and width between GaAs and Ga 1-x Al x As layers. In the appropriate limits, our results exactly reduce to the well-known results of the quasi two-dimensional electron gas obtained by Lee and Spector and of the period array of two-dimensional electron layers obtained by Das Sarma and Quinn. By means of the dielectric function of the superlattice, the dispersion relation of the collective excitation and the screening property of semiconductor superlattice are discussed and compared with the results of the quasi two-dimensional system and with the results of the periodic array of the two-dimensional electron layers. (author). 4 refs, 3 figs

  12. Capacitive Cells for Dielectric Constant Measurement

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  13. Dielectric behaviour of strontium tartrate single crystals

    Unknown

    dielectric loss (tan δ) as functions of frequency and temperature. Ion core type ... Since the data on dielectric properties of strontium tartrate trihydrate (STT) do not ... through 'AE' make 15-amp dimmerstat, the rate of heating was maintained ...

  14. The Dielectric Constant of Lubrication Oils

    Carey, A

    1998-01-01

    The values of the dielectric constant of simple molecules is discussed first, along with the relationship between the dielectric constant and other physical properties such as boiling point, melting...

  15. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    system, with respect to functionalization, is achieved. It is investigated how the different functionalization variables affect essential DE properties, including dielectric permittivity, dielectric loss, elastic modulus and dielectric breakdown strength, and the optimal degree of chemical......%) was obtained without compromising other vital DE properties such as elastic modulus, gel fraction, dielectric and viscous loss and electrical breakdown strength....

  16. Geometric phase from dielectric matrix

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  17. Charge accumulation in lossy dielectrics: a review

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  18. Compact magnetic fusin reactor concepts

    Chung, K.M.

    1984-01-01

    Compact, high-power-density approaches to fusion power represent alternatives to main-line fusion concepts, Tokamaks and mirrors. If technological issues are resolved, theses approaches would yield small, low-cost fusion power plants. This survey reviews the principal physics and technology employed by leading compact magnetic fusion plants. (Author)

  19. Solid targetry for compact cyclotrons

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  20. Roller-compacted concrete pavements.

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  1. Machine for compacting solid residues

    Herzog, J.

    1981-11-01

    Machine for compacting solid residues, particularly bulky radioactive residues, constituted of a horizontally actuated punch and a fixed compression anvil, in which the residues are first compacted horizontally and then vertically. Its salient characteristic is that the punch and the compression anvil have embossments on the compression side and interpenetrating plates in the compression position [fr

  2. IR-spectroscopical investigations on the glass structure of porous and sintered compacts of colloidal silica gels

    Clasen, Rolf; Hornfeck, M.; Theiss, Wolfgang

    1991-08-01

    The forming and sintering of fumed silica powders is an interesting route for the preparation of large, very pure or doped silica glasses with a precise geometry. The processing from the shaping of a porous compact to the sintering of transparent silica glass can be successfully investigated with optical spectroscopy. As only the dielectric function DF (a dielectric function is the square root of the complex refractive index) characterizes the material, the vibrational bands were calculated from reflectance measurements. In compacts of fine particles, the topology cannot be neglected. Therefore, the models describing topological effects are briefly reviewed. With these model calculations it could be proven that new bands in the compacts and the significant shifts in the reflectance spectra during sintering are mainly caused by topological effects and that changes in the glass structure play only a secondary role.

  3. Cellulose Triacetate Dielectric Films For Capacitors

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  4. Dielectric waveguide amplifiers and lasers

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  5. Dielectric properties of fly ash

    Unknown

    India's annual coal production is used in about 72 power- generating plants and ... performance of this material as cracking catalyst was investigated with ... Chemically, the FA was silica to an extent of 55–70%, followed by ... Cu, Pb, Cd, Ag, Mn, Fe, Ti, Na, Mo, S, P, Zn and Cl in different ... two-probe method. The dielectric ...

  6. Dielectric polarization in random media

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  7. Improved di-electric composition

    Sharp, R C

    1915-03-29

    An improved di-electric composition is disclosed composed of pitch or bitumen which is melted, and to which is added, while molten, a quantity of finely ground or pulverized spent shale, the whole being mixed or stirred to make a homogeneous composition, substantially as described.

  8. Compact radio sources

    Altschuler, D.R.

    1975-01-01

    Eighty-seven compact radio sources were monitored between 1971 and 1974 with the National Radio Astronomy Observatory interferometer. Both flux density and polarization were measured at intervals of about one month at wavelengths of 3.7 and 11.1 cms. Forty-four sources showed definite variability in their total and/or polarized flux density. The variations in polarization were of a shorter time scale than the corresponding flux density variations. Some of the qualitative features of an expanding source model were observed. The data suggest that some form of injection of relativistic electrons is taking place. The absence of significant depolarization in the variable sources indicates that only a small fraction of the mass of the radio outburst is in the form of non-relativistic plasma. Some of the objects observed belong to the BL-Lacertal class. It is shown that this class is very inhomogeneous in its radio properties. For the violently variable BL-Lacertal type objects the spectrum, flux variations and polarization data strongly suggest that these are very young objects

  9. Compact Dexterous Robotic Hand

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  10. Compact stellarator coils

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  11. Compact neutron generator

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  12. Compact tokamak reactors

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  13. Investigation of the dielectric properties of shale

    Martemyanov, Sergey M.

    2011-01-01

    The article is dedicated to investigation of the dielectric properties of oil shale. Investigations for samples prepared from shale mined at the deposit in Jilin Province in China were done. The temperature and frequency dependences of rock characteristics needed to calculate the processes of their thermal processing are investigated. Frequency dependences for the relative dielectric constant and dissipation factor of rock in the frequency range from 0,1 Hz to 1 MHz are investigated. The temperature dependences for rock resistance, dielectric capacitance and dissipation factor in the temperature range from 20 to 600°C are studied. Key words: shale, dielectric properties, relative dielectric constant, dissipation factor, temperature dependence, frequency dependence

  14. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  15. Compact Holographic Data Storage

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  16. Compact instantaneous water heater

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  17. What Is Business's Social Compact?

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  18. Collapse settlement in compacted soils

    Booth, AR

    1977-01-01

    Full Text Available Research into collapse settlement in compacted soils is described, with special reference to recent cases in Southern Africa where collapse settlement occurred in road embankments following wetting of the soil. The laboratory work described...

  19. Dielectric coatings on metal substrates

    Glaros, S.S.; Baker, P.; Milam, D.

    1976-01-01

    Large aperture, beryllium substrate-based mirrors have been used to focus high intensity pulsed laser beams. Finished surfaces have high reflectivity, low wavefront distortion, and high laser damage thresholds. This paper describes the development of a series of metallic coatings, surface finishing techniques, and dielectric overcoatings to meet specified performance requirements. Beryllium substrates were coated with copper, diamond-machined to within 5 micro-inches to final contour, nickel plated, and abrasively figured to final contour. Bond strengths for several bonding processes are presented. Dielectric overcoatings were deposited on finished multimetallic substrates to increase both reflectivity and the damage thresholds. Coatings were deposited using both high and low temperature processes which induce varying stresses in the finished coating substrate system. Data are presented to show the evolution of wavefront distortion, reflectivity, and damage thresholds throughout the many steps involved in fabrication

  20. Asymmetric Dielectric Elastomer Composite Material

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  1. Coherent multimoded dielectric wakefield accelerators

    Power, J.

    1998-01-01

    There has recently been a study of the potential uses of multimode dielectric structures for wakefield acceleration [1]. This technique is based on adjusting the wakefield modes of the structure to constructively interfere at certain delays with respect to the drive bunch, thus providing an accelerating gradient enhancement over single mode devices. In this report we examine and attempt to clarify the issues raised by this work in the light of the present state of the art in wakefield acceleration

  2. Energy storage in ceramic dielectrics

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  3. Dielectric-filled radiofrequency linacs

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  4. A novel variable stiffness mechanism for dielectric elastomer actuators

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  5. Terahertz-frequency dielectric response of liquids

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  6. Compact Intracloud Discharges

    Smith, David A. [Univ. of Colorado, Boulder, CO (United States)

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  7. Development of a dielectric ceramic based on diatomite-titania part two: dielectric properties characterization

    Medeiros Jamilson Pinto

    1998-01-01

    Full Text Available Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.

  8. Summary of Self-compacting Concrete Workability

    GUO Gui-xiang; Duan Hong-jun

    2015-01-01

    On the basis of a large number of domestic and foreign literature, situation and development of self-compacting concrete is introduced. Summary of the compacting theory of self-compacting concrete. And some of the factors affecting the workability of self-compacting concrete were discussed and summarized to a certain extent. Aims to further promote the application and research of self-compacting concrete

  9. Clustering of near clusters versus cluster compactness

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  10. Compact magnetic confinement fusion: Spherical torus and compact torus

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  11. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    Chen, Pai-Yen; Farhat, Mohamed; Bagci, Hakan

    2015-01-01

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  12. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    Chen, Pai-Yen

    2015-03-31

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  13. Electrical breakdown phenomena of dielectric elastomers

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  14. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric...

  15. High-gradient compact linear accelerator

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  16. Compact Low Frequency Radio Antenna

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  17. A compact nanosecond pulse generator for DBD tube characterization

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  18. Professional Windows Embedded Compact 7

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  19. Modeling of compact loop antennas

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  20. Compact accelerator for medical therapy

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  1. Compact toroid refueling of reactors

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  2. Co-compact Gabor Systems on Locally Compact Abelian Groups

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2016-01-01

    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characteriz...

  3. Isometric coactions of compact quantum groups on compact ...

    a compact quantum metric space in the framework of Rieffel, where the ... This problem can be formulated and studied in various settings. ... The spaces we are interested in this paper are metric spaces, both classical and quantum. ... He has given a definition for a quantum symmetry of a classical ...... by the construction of I.

  4. Ferroelectric dielectrics integrated on silicon

    Defay, Emmanuel

    2013-01-01

    This book describes up-to-date technology applied to high-K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies.After detailing the basic thermodynamic theory applied to high-K dielectrics thin films including extrinsic effects, this book emphasizes the specificity of thin films. Deposition and patterning technologies are then presented. A whole chapter is dedicated to the major role played in the field by X-Ray Diffraction characterization, and other characterization techniques are also described such as Radio frequency characterizat

  5. Ionic Structure at Dielectric Interfaces

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  6. Broadband cloaking using composite dielectrics

    Ruey-Bing Hwang

    2011-03-01

    Full Text Available In this paper, we present a novel cloaking structure that is able to make a metallic block invisible in a metallic waveguide. Such a cloak is made up of a stack of commonly used dielectric slabs. We carry out the numerical simulation and observe the detour of the vector Poynting power through the cloak. Moreover, the experiment is conducted for measuring the scattering characteristics including the reflection and transmission coefficients. The great improvement in the transmission coefficient in a broad bandwidth after cloaking is demonstrated. Significantly, the theory of mode conversion is developed for explaining the cloaking phenomenon.

  7. Compaction dynamics of crunchy granular material

    Guillard François

    2017-01-01

    Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  8. Compaction dynamics of crunchy granular material

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  9. Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave

    Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.

    2018-01-01

    The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.

  10. High thermal conductivity lossy dielectric using a multi layer configuration

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  11. Thermally stimulated discharge current (TSDC) and dielectric ...

    Unknown

    2001-10-09

    Oct 9, 2001 ... Measurements of TSDC and dielectric constant, ε′, have been ... Keywords. Semiconducting glass; TSDC; trap energy; dielectric constant. 1. ... determination of mean depth of the internal charge, activation ... thermal charging, viz. (i) internal ... the basis of d.c. conductivity and short range Na+ ion motion.

  12. Dielectric spectroscopy of watermelons for quality sensing

    Nelson, Stuart O.; Guo, Wen-chuan; Trabelsi, Samir; Kays, Stanley J.

    2007-07-01

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and an impedance analyser over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC. However, SSC prediction from the dielectric properties by this relationship was not as high as expected (coefficient of determination about 0.4). Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for the four melon cultivars and for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which may be attributable to a combination of bound water, Maxwell-Wagner, molecular cluster or ion-related effects, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from their dielectric properties.

  13. Dielectric material options for integrated capacitors

    Ruhl, G.; Lehnert, W.; Lukosius, M.; Wenger, C.; Baristiran Kaynak, C.; Blomberg, T.; Haukka, S.; Baumann, P.K.; Besling, W.F.A.; Roest, A.L.; Riou, B.; Lhostis, S.; Halimaou, A.; Roozeboom, F.; Langereis, E.; Kessels, W.M.M.; Zauner, A.; Rushworth, S.A.

    2014-01-01

    Future MIM capacitor generations will require significantly increased specific capacitances by utilization of high-k dielectric materials. In order to achieve high capacitance per chip area, these dielectrics have to be deposited in three-dimensional capacitor structures by ALD or AVD (atomic vapor

  14. Analysis of electron interactions in dielectric gases

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  15. Aging of Dielectric Properties below Tg

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    The dielectric loss at 1Hz in TPP is studied during a temperature step from one equilibrium state to another. In the applied cryostate the temperature can be equilibrated on a timescale of 1 second. The aging time dependence of the dielectric loss is studied below Tg applying temperature steps...

  16. Compact objects and accretion disks

    Blandford, Roger; Agol, Eric; Broderick, Avery; Heyl, Jeremy; Koopmans, Leon; Lee, Hee-Won

    2002-01-01

    Recent developments in the spectropolarimetric study of compact objects, specifically black holes (stellar and massive) and neutron stars are reviewed. The lectures are organized around five topics: disks, jets, outflows, neutron stars and black holes. They emphasize physical mechanisms and are

  17. Engineering aspects of compact stellarators

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  18. Compact Circuit Preprocesses Accelerometer Output

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  19. Microscopic resolution broadband dielectric spectroscopy

    Mukherjee, S; Watson, P; Prance, R J

    2011-01-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  20. Microscopic resolution broadband dielectric spectroscopy

    Mukherjee, S.; Watson, P.; Prance, R. J.

    2011-08-01

    Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.

  1. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime

    Zhang, Huifang; Zhang, Xueqian; Xu, Quan; Wang, Qiu; Xu, Yuehong; Wei, Minggui; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Zhang, Xixiang; Hu, Cong; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Dielectric metasurfaces have achieved great success in realizing high-efficiency wavefront control in the optical and infrared ranges. Here, we experimentally demonstrate several efficient, polarization-independent, all-silicon dielectric metasurfaces in the terahertz regime. The metasurfaces are composed of cylindrical silicon pillars on a silicon substrate, which can be easily fabricated using etching technology for semiconductors. By locally tailoring the diameter of the pillars, full control over abrupt phase changes can be achieved. To show the controlling ability of the metasurfaces, an anomalous deflector, three Bessel beam generators, and three vortex beam generators are fabricated and characterized. We also show that the proposed metasurfaces can be easily combined to form composite devices with extended functionalities. The proposed controlling method has promising applications in developing low-loss, ultra-compact spatial terahertz modulation devices. (C) 2017 Chinese Laser Press

  2. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime

    Zhang, Huifang

    2017-12-11

    Dielectric metasurfaces have achieved great success in realizing high-efficiency wavefront control in the optical and infrared ranges. Here, we experimentally demonstrate several efficient, polarization-independent, all-silicon dielectric metasurfaces in the terahertz regime. The metasurfaces are composed of cylindrical silicon pillars on a silicon substrate, which can be easily fabricated using etching technology for semiconductors. By locally tailoring the diameter of the pillars, full control over abrupt phase changes can be achieved. To show the controlling ability of the metasurfaces, an anomalous deflector, three Bessel beam generators, and three vortex beam generators are fabricated and characterized. We also show that the proposed metasurfaces can be easily combined to form composite devices with extended functionalities. The proposed controlling method has promising applications in developing low-loss, ultra-compact spatial terahertz modulation devices. (C) 2017 Chinese Laser Press

  3. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  4. Fabrication of Nonvolatile Memory Effects in High-k Dielectric Thin Films Using Electron Irradiation

    Park, Chanrock; Cho, Daehee; Kim, Jeongeun; Hwang, Jinha

    2010-01-01

    Electron Irradiation can be applied towards nano-floating gate memories which are recognized as one of the next-generation nonvolatile memory semiconductors. NFGMs can overcome the preexisting limitations encountered in Dynamic Random Access Memories and Flash memories with the excellent advantages, i. e. high-density information storage, high response speed, high compactness, etc. The traditional nano-floating gate memories are fabricated through multi-layered nano structures of the dissimilar materials where the charge-trapping portions are sandwiched into the high-k dielectrics. However, this work reports the unique nonvolatile responses in single-layered high-k dielectric thin films if irradiated with highly accelerated electron beams. The implications of the electron irradiation will be discussed towards high-performance nano-floating gate memories

  5. Compaction and relaxation of biofilms

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  6. Special issue on compact x-ray sources

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    . New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.

  7. Numerical investigation of dielectric barrier discharges

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  8. Rate type isotach compaction of consolidated sandstone

    Waal, J.A. de; Thienen-Visser, K. van; Pruiksma, J.P.

    2015-01-01

    Laboratory experiments on samples from a consolidated sandstone reservoir are presented that demonstrate rate type compaction behaviour similar to that observed on unconsolidated sands and soils. Such rate type behaviour can have large consequences for reservoir compaction, surface subsidence and

  9. Siting actions in compacts and nonmember states

    Tullis, J.

    1986-05-01

    This paper examines the status of siting actions in those compacts and states currently progressing with siting studies. The efforts of the Central Compact Commission, Texas, California, Colorado and Illinois are highlighted to illustrate progress, methodology, and problems encountered

  10. Low-profile high-voltage compact gas switch

    Goerz, D.A.; Wilson, M.J.; Speer, R.D.

    1997-01-01

    This paper discusses the development and testing of a low-profile, high-voltage, spark-gap switch designed to be closely coupled with other components into an integrated high-energy pulsed-power source. The switch is designed to operate at 100 kV using SF6 gas pressurized to less than 0.7 MPa. The volume of the switch cavity region is less than 1.5 cm3, and the field stress along the gas-dielectric interface is as high as 130 kV/cm. The dielectric switch body has a low profile that is only I -cm tall at its greatest extent and nominally 2-mm thick over most of its area. This design achieves a very low inductance of less than 5 nH, but results in field stresses exceeding 500 kV/cm in the dielectric material. Field modeling was done to determine the appropriate shape for the highly stressed insulator and electrodes, and special manufacturing techniques were employed to mitigate the usual mechanisms that induce breakdown and failure in solid dielectrics. Static breakdown tests verified that the switch operates satisfactorily at 100 kV levels. The unit has been characterized with different shaped electrodes having nominal gap spacings of 2.0, 2.5, and 3.0 mm. The relationship between self-break voltage and operating pressure agrees well with published data on gas properties, accounting for the field enhancements of the electrode shapes being used. Capacitor discharge tests in a low inductance test fixture exhibited peak currents up to 25 kA with characteristic frequencies of the ringdown circuit ranging from 10 to 20 MHz. The ringdown waveforms and scaling of measured parameters agree well with circuit modeling of the switch and test fixture. Repetitive operation has been demonstrated at moderate rep-rates up to 15 Hz, limited by the power supply being used. Preliminary tests to evaluate lifetime of the compact switch assembly have been encouraging. In one case, after more than 7,000 high-current ringdown tests with approximately 30 C of total charge transferred, the

  11. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  12. Powder compaction in systems of bimodal distribution

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  13. UV written compact broadband optical couplers

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques.......In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques....

  14. Invariant subsets under compact quantum group actions

    Huang, Huichi

    2012-01-01

    We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.

  15. Equationally Compact Acts : Coproducts / Peeter Normak

    Normak, Peeter

    1998-01-01

    In this article equational compactness of acts and its generalizations are discussed. As equational compactness does not carry over to coproducts a slight generalization of c-equational campactness is introduced. It is proved that a coproduct of acts is c-equationally compact if and only if all components are c-equationally campact

  16. Formation and evolution of compact binaries

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  17. The color dielectric model of QCD

    Pirner, H.-J.; Massachusetts Inst. of Tech., Cambridge, MA; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    This paper demonstrates the emergence of valence gluons and their bound states, the glueballs from perturbative quantum chromodynamics (QCD). We discuss the phenomenological constraints and theoretical method needed to generate effective glueballs actions. We show how color dielectric confinement works naively and in the lattice model of color dielectrics. This lattice model is derived for SU(2) color by a blockspinning Monte Carlo renormalization group procedure. We interpret the resulting long-distance as a strongly interacting lattice string theory where the valence link gluon fields randomize in the color dielectric background which mimics the integrated out high-frequency gluon modes in the vacuum. The fluctuations of the color dielectric fields are related to color neutral glueballs modes. We give the extension of this color dielectric SU(2) theory for general SU(N) with quarks and address the problems associated with combining confinement and chiral symmetry breaking. Finally we prove the efficiency of the effective theory in applications to the heavy quark system, the the baryon, to the nucleon-nucleon interaction, to baryon models and the gluon plasma transition. In all those cases the behavior of the higher energy gluons can be monitored via the color dielectric fields. An increase in the energy density from ''deconfining'' the higher frequency modes inside the flux tube or in thermally excited matter shows up as an increase in the value of the color dielectric field and its associated energy density. (Author)

  18. Virtual gap dielectric wall accelerator

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  19. Standards for dielectric elastomer transducers

    Carpi, Federico; Frediani, Gabriele; Anderson, Iain; Bauer, Siegfried; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Pelrine, Ron; Lassen, Benny; Rechenbach, Björn; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O’Brien, Benjamin; Pei, Qibing

    2015-01-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation. (paper)

  20. Standards for dielectric elastomer transducers

    Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert

    2015-10-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

  1. Compact sources for eyesafe illumination

    Baranova, Nadia; Pu, Rui; Stebbins, Kenneth; Bystryak, Ilya; Rayno, Michael; Ezzo, Kevin; DePriest, Christopher

    2018-02-01

    Q-peak has demonstrated a compact, pulsed eyesafe laser architecture operating with >10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2˜4), while also providing a path toward higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high-pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse widths designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.

  2. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Breuer, John

    2013-08-29

    Stanford. The potential of dielectric laser accelerators lies in the larger attainable acceleration gradients resulting in a more compact design as well as a lower cost of these devices compared with conventional accelerator facilities. This size reduction by potentially a factor of 100 is owed to the two orders of magnitude larger damage threshold of dielectric materials as compared to metals. We present an outlook towards the design of an envisioned large-scale dielectric laser accelerator and its possible application in future compact free electron lasers.

  3. Magnetohydrodynamical processes near compact objects

    Bisnovatyi Kogan, G.S.

    1979-01-01

    Magnetohydrodynamical processes near compact objects are reviewed in this paper. First the accretion of the magnetized matter into a single black hole and spectra of radiation are considered. Then the magnetic-field phenomena in the disk accretion, when the black hole is in a pair are discussed. Furthermore, the magnetohydrodynamics phenomena during supernova explosion are considered. Finally the magnetohydrodynamics in the accretion of a neutron star is considered in connection With x-ray sources

  4. Compact toroids with Alfvenic flows

    Wang Zhehui; Tang, X.Z.

    2004-01-01

    The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory

  5. Durability of Self Compacting Concrete

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  6. Comminution circuits for compact itabirites

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  7. Strange matter in compact stars

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  8. Strange matter in compact stars

    Klähn Thomas

    2018-01-01

    Full Text Available We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  9. A dielectric approach to high temperature superconductivity

    Mahanty, J.; Das, M.P.

    1989-01-01

    The dielectric response of an electron-ion system to the presence of a pair of charges is investigated. From the nature of the dielectric function, it is shown that a strong attractive pair formation is possible depending on the dispersion of the ion branches. The latter brings a reduction to the sound velocity which is used as a criterion for the superconductivity. By solving the BCS equation with the above dielectric function, we obtain a reasonable value of T/sub c/. 17 refs., 1 fig

  10. Radiation pressure on a dielectric surface

    Hirose, A.

    2010-01-01

    The radiation pressure on an insulating dielectric medium should be calculable from the force acting on the polarization vector P. The well-known force proposed by Gordon (Phys. Rev. A, 8, 14 (1973) disappears in the case of a steady-state plane wave. A new form of force explicitly involving the polarization vector is proposed and applied to determine the partition of the incident momentum among the reflected and transmitted wave, and the dielectric medium. The momentum of electromagnetic wave in a dielectric medium thus found is consistent with the classical relationship, wave momentum flux density = wave intensity/wave velocity. (author)

  11. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  12. Response Of Lowland Rice To Soil Compaction

    Idawati; Haryanto

    2000-01-01

    Soil compaction, as a new tillage practice for paddy soil, is to substitute pudding in order to reduce land preparation cost. To study response of lowland rice to soil compaction, a pot experiment has been conducted which took place in the greenhouse of P3TIR-BATAN. Soil for experiment was taken from pusakanegara. Two factors (degree of soil compaction and rice variety) were combined. Degree of compaction was split into 3 levels (DI = normal; D215% more compact than normal; 30 % more compact than normal), and rice variety into 2 levels (IR64 and Atomita IV). KH 2 32 PO 4 solution was injected into the soil surrounding rice clump to test the root activity at blooming stage of rice plant. Data resulted from this experiment is presented together with additional data from some other experiments of fertilization in the research s erie to study soil compaction. Some information's from experiment results are as following. Both rice varieties tested gave the same response to soil compaction. Root activity, according to data of 32 P absorbed by plant, was not harmed by soil compaction at the degree tested in the experiment. This prediction is supported by the growth by rice observed at generative growth stage, in pot experiment as well as in field experiment, which showed that soil compaction tested did not decrease rice yield but in opposite in tended to increase the yield. In practising soil compaction in land preparation, fertilizers should be applied by deep placement to have higher increasing is rice yield

  13. Identification of structural relaxation in the dielectric response of water

    Hansen, Jesper Schmidt; Kisliuk, Alexander; Solokov, Alexei P.

    2016-01-01

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we...... unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols....

  14. Prediction of reservoir compaction and surface subsidence

    De Waal, J.A.; Smits, R.M.M.

    1988-06-01

    A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

  15. Diverse Formation Mechanisms for Compact Galaxies

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  16. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  17. Dielectric properties of nanosilica filled epoxy nanocomposites

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  18. The Electrical Breakdown of Thin Dielectric Elastomers

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  19. imide, crystal structure, thermal and dielectric studies

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  20. Multiscale dipole relaxation in dielectric materials

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  1. Photoconductivity and dielectric studies of potassium pentaborate

    Single crystal of potassium pentaborate (KB5) has been grown by solution growth ... equipped with the Gunn Oscillator guided with rectangular wave-guide. ... its dielectric behaviour with the change of frequency has also been investigated.

  2. Infrared and THz spectroscopy of nanostructured dielectrics

    Jan Petzelt

    2009-09-01

    Full Text Available Results achieved using the infrared/THz spectroscopy of various inhomogeneous dielectrics in the Department of Dielectrics, Institute of Physics, Prague, during the last decade are briefly reviewed. The discussion concerns high-permittivity ceramics with inevitable low-permittivity dead layers along the grain boundaries, relaxor ferroelectrics with highly anisotropic polar nano-regions, classical matrix-type composites, core-shell composites, filled nanoporous glasses, polycrystalline and epitaxial thin films, heterostructures and superlattices on dielectric substrates. The analysis using models based on the effective medium approach is discussed. The importance of depolarizing field and of the percolation of components on the effective ac dielectric response and the excitations contributing to it are emphasized.

  3. Organic dielectrics in high voltage cables

    Vermeer, J

    1962-03-01

    It appears that the limit has been reached in the applicability of oil-impregnated paper as the dielectric for ehv cables, as with rising voltages the prevention of conductor losses becomes increasingly difficult, while the dielectric losses of the insulation, increasing as the square of the voltage, contribute to a greater extent to the temperature rise of the conductor. The power transmitting capacity of ehv cables reaches a maximum at 500 to 600 kV for these reasons. Apart from artificial cooling, a substantial improvement can be obtained only with the use of insulating materials with much lower dielectric losses; these can moreover be applied with a smaller wall thickness, but this means higher field strengths. Synthetic polymer materials meet these requirements but can be used successfully only in the form of lapped film tapes impregnated with suitable liquids. The electrical properties of these heterogeneous dielectrics, in particular, their impulse breakdown strengths are studied in detail.

  4. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    M. M. Islam

    2014-01-01

    Full Text Available A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.

  5. Confinement in the color dielectric model

    Pirner, H.J.

    1990-01-01

    The paper consists of several parts. In Section 2, I give an introduction to the main physics of lattice gauge theory. Section 3 gives an outline of the colour dielectric model and first numerical results on the effective action after one block-spinning step. Section 4 reviews some new work on the generalization of the colour dielectric model to SU3 colour . (orig./HSI)

  6. In-beam dielectric properties of alumina

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  7. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  8. Dielectric properties of PMMA/Soot nanocomposites.

    Clayton, Lanetra M; Cinke, Martin; Meyyappan, M; Harmon, Julie P

    2007-07-01

    Dielectric analysis (DEA) of relaxation behavior in poly(methyl methacrylate) (PMMA) soot nanocomposites is described herein. The soot, an inexpensive material, consists of carbon nanotubes, amorphous and graphitic carbon and metal particles. Results are compared to earlier studies on PMMA/multi-walled nanotube (MWNT) composites and PMMA/single-walled nanotube (SWNT) composites. The beta relaxation process appeared to be unaffected by the presence of the soot, as was noted earlier in nanotube composites. The gamma relaxation region in PMMA, normally dielectrically inactive, was "awakened" in the PMMA/soot composite. This occurrence is consistent with previously published data on nanotube composites. The dielectric permittivity, s', increased with soot content. The sample with 1% soot exhibited a permittivity (at 100 Hz and 25 degrees C) of 7.3 as compared to 5.1 for neat PMMA. Soot increased the dielectric strength, deltaE, of the composites. The 1% soot sample exhibited a dielectric strength of 6.38, while the neat PMMA had a value of 2.95 at 40 degrees C. The symmetric broadening term (alpha) was slightly higher for the 1% composite at temperatures near the secondary relaxation and near the primary relaxation, but all samples deviated from symmetrical semi-circular behavior (alpha = 1). The impact of the soot filler is seen more clearly in dielectric properties than in mechanical properties studies conducted earlier.

  9. Dielectric loss against piezoelectric power harvesting

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  10. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  11. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  12. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  13. Self-compacting concrete (SCC)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  14. Portable compact multifunction IR calibrator

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  15. Thermal evolution of compact stars

    Schaab, C.; Glendenning, N.K.

    1996-01-01

    A collection of modern, field-theoretical equations of state is applied to the investigation of cooling properties of compact stars. These comprise neutron stars as well as hypothetical strange-matter stars, made up of absolutely stable 3-flavor strange-quark matter. Various uncertainties in the behavior of matter at supernuclear densities, e.g., hyperonic degrees of freedom, behavior of coupling strengths in matter, pion and meson condensation, superfluidity, transition to quark matter, absolute stability of strange-quark matter, and last but not least the many-body technique itself are tested against the body of observed cooling data. (orig.)

  16. Shock compaction of molybdenum powder

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  17. Simplified compact containment BWR plant

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-01-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  18. Porewater chemistry in compacted bentonite

    Muurinen, A.; Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)

    1999-03-01

    In this study, the porewater chemistry in compacted bentonite, considered as an engineered barrier in the repository of spent fuel, has been studied in interaction experiments. Many parameters, like the composition and density of bentonite, composition of the solution, bentonite-to-water ratio (B/W), surrounding conditions and experimental time have been varied in the experiments. At the end of the interaction the equilibrating solution, the porewaters squeezed out of the bentonite samples, and bentonites themselves were analyzed to give information for the interpretation and modelling of the interaction. Equilibrium modelling was performed with the HYDRAQL/CE computer code 33 refs.

  19. Compact inertial confinement multireactor concepts

    Pendergrass, J.H.

    1985-01-01

    Inertial confinement fusion (ICF) commercial-applications plant-optimum driver pulse repetition rates may exceed reactor pulse-repetition-rate capabilities. Thus, more than one reactor may be required for low-cost production of electric power, process heat, fissionable fuels, etc., in ICF plants. Substantial savings in expensive reactor containment cells and blankets can be realized by placing more than one reactor in a cell and by surrounding more than one reactor cavity with a single blanket system. There are also some potential disadvantages associated with close coupling in compact multicavity blankets and multireactor cells. Tradeoffs associated with several scenarios have been studied

  20. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    Blanovsky, Anatoly

    2004-12-01

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  1. Spectrometers for compact neutron sources

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  2. Manufacturability of compact synchrotron mirrors

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  3. Compact Visualisation of Video Summaries

    Janko Ćalić

    2007-01-01

    Full Text Available This paper presents a system for compact and intuitive video summarisation aimed at both high-end professional production environments and small-screen portable devices. To represent large amounts of information in the form of a video key-frame summary, this paper studies the narrative grammar of comics, and using its universal and intuitive rules, lays out visual summaries in an efficient and user-centered way. In addition, the system exploits visual attention modelling and rapid serial visual presentation to generate highly compact summaries on mobile devices. A robust real-time algorithm for key-frame extraction is presented. The system ranks importance of key-frame sizes in the final layout by balancing the dominant visual representability and discovery of unanticipated content utilising a specific cost function and an unsupervised robust spectral clustering technique. A final layout is created using an optimisation algorithm based on dynamic programming. Algorithm efficiency and robustness are demonstrated by comparing the results with a manually labelled ground truth and with optimal panelling solutions.

  4. Prediction for swelling characteristics of compacted bentonite

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  5. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  6. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    Badot, Jean-Claude, E-mail: jc.badot@chimie-paristech.fr [Institut de Recherche de Chimie Paris, UMR CNRS 8247, Réseau sur le Stockage Electrochimique de l' Energie (RS2E), Chimie Paris Tech, PSL*, 11 rue P. et M. Curie, 75231 Cedex 05 Paris (France); Lestriez, Bernard [Institut des Matériaux Jean Rouxel, UMR CNRS 6502, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes (France); Dubrunfaut, Olivier [GeePs | Group of electrical engineering – Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Universités, UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette CEDEX, Paris (France)

    2016-11-15

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li{sub 2}CO{sub 3} on LiNiO{sub 2} and carbon coating on LiFePO{sub 4}). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO{sub 2} (ageing and degradation in air) and LiFePO{sub 4} (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li{sub 1.1}V{sub 3}O{sub 8}) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  7. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-01-01

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator

  8. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  9. An experimental study of electrical and dielectric properties of consolidated clayey materials

    Comparon, L.

    2005-06-01

    This study is devoted to the electrical and dielectric properties of consolidated clays. A better understanding of the conduction and polarization phenomena in clays is necessary to better interpret in situ measurements in terms of water saturation and texture. An experimental study was carried out on synthetic clay samples (kaolinite and smectite) compacted with various water contents, porosities and mineralogical compositions, on a large frequency range, using three laboratory setups. The electrical properties of natural argillites (from ANDRA) were then investigated. We found that the response of the synthetic samples is mainly controlled by water content on the whole frequency range; two polarization phenomena were observed, which were related to the Maxwell-Wagner polarization and the electrical double layer polarization around the clay particles. The electrical response of argillites is more complex; it is controlled by water content but also by the microstructure of the rock. In these rocks, the electrical and dielectric anisotropies are high; anisotropy was also measured for the synthetic clays. The existing models explain the high frequency limit of the dielectric permittivity of the clayey materials, but the low frequency part of the spectra (≤1 MHz) needs theoretical developments. (author)

  10. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    Badot, Jean-Claude; Lestriez, Bernard; Dubrunfaut, Olivier

    2016-01-01

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li_2CO_3 on LiNiO_2 and carbon coating on LiFePO_4). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO_2 (ageing and degradation in air) and LiFePO_4 (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li_1_._1V_3O_8) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  11. The Future Concrete: Self-Compacting Concrete

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  12. Starbursts in Blue compact dwarf galaxies

    Thuan, T.X.

    1987-01-01

    We summarize all the arguments for a bursting mode of star formation in blue compact dwarf galaxies. We show in particular how spectral synthesis of far ultraviolet spectra of Blue compact dwarf galaxy constitutes a powerful way for studying the star formation history in these galaxies. Blue compact dwarf galaxy luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, helping us to count and date the bursts

  13. Effect of slash on forwarder soil compaction

    Timothy P. McDonald; Fernando Seixas

    1997-01-01

    A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...

  14. The Future Concrete: Self-Compacting Concrete

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  15. Compact approach to fusion power reactors

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1984-01-01

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  16. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  17. Dielectric properties of binary solutions a data handbook

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  18. Soil compaction and growth of woody plants

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  19. Peculiarities of powder brittle media compaction

    Perel'nam, V.E.; Aristarkhov, A.I.

    1981-01-01

    The paper is concerned with theoretical and practical aspects of the compaction process for powders of almost unstrained materials. Consideration from the standpoint of compressible body strain mechanics shows that such porous media may have a certain ''threshold'' density. Ductile characteristics of the porous material compacted up to this extent are identical with properties of compacrat bodies, i.e. there is a theoretically substantiated ban on a possibility of their further compaction without changing the state of the powder particle material. Theoretical conclusions are confirmed by results of experimental studies in compaction of titanium- containing ceramics [ru

  20. Soil compaction and growth of woody plants

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  1. Performance Optimization of a Conical Dielectric Elastomer Actuator

    Chongjing Cao

    2018-06-01

    Full Text Available Dielectric elastomer actuators (DEAs are known as ‘artificial muscles’ due to their large actuation strain, high energy density and self-sensing capability. The conical configuration has been widely adopted in DEA applications such as bio-inspired locomotion and micropumps for its good compactness, ease for fabrication and large actuation stroke. However, the conical protrusion of the DEA membrane is characterized by inhomogeneous stresses, which complicate their design. In this work, we present an analytical model-based optimization for conical DEAs with the three biasing elements: (I linear compression spring; (II biasing mass; and (III antagonistic double-cone DEA. The optimization is to find the maximum stroke and work output of a conical DEA by tuning its geometry (inner disk to outer frame radius ratio a/b and pre-stretch ratio. The results show that (a for all three cases, stroke and work output are maximum for a pre-stretch ratio of 1 × 1 for the Parker silicone elastomer, which suggests the stretch caused by out-of-plane deformation is sufficient for this specific elastomer. (b Stroke maximization is obtained for a lower a/b ratio while a larger a/b ratio is required to maximize work output, but the optimal a/b ratio is less than 0.3 in all three cases. (c The double-cone configuration has the largest stroke while single cone with a biasing mass has the highest work output.

  2. All-dielectric rod antenna array for terahertz communications

    Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao

    2018-05-01

    The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.

  3. Accelerating Dielectrics Design Using Thinking Machines

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  4. Evaluation of high temperature capacitor dielectrics

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  5. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore Clayton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fichtl, Christopher Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-05

    The dynamic compaction response of CeO2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  6. Acceleration of a compact torus

    Hartmann, C.W.; Eddleman, J.L.; Hammer, J.H.; Kusse, B.

    1987-01-01

    The authors report the first results of a study of acceleration of spheromak-type compact toruses in the RACE experiment (plasma Ring ACceleration Experiment). The RACE apparatus consists of (1) a magnetized, coaxial plasma gun 50 cm long, 35 cm OD, 20 cm ID, (2) 600 cm long coaxial acceleration electrodes 50 cm OD, 20 cm ID, (3) a 250 kJ electrolytic capacitor bank to drive the gun solenoid for initial magnetization, (4) a 200 kJ gun bank, (5) a 260 kJ accelerator bank, and (6) magnetic probes and other diagnostics, and vacuum apparatus. To outer acceleration electrode is an extension, at larger OD, of the gun outer electrode, and the inner acceleration electrode is supported and fed by a coaxial insert in the gun center electrode as shown

  7. Experimental studies of compact toroids

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 μs pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity

  8. Quasistatic evolution of compact toroids

    Sgro, A.G.; Spencer, R.L.; Lilliequist, C.

    1981-01-01

    Some results are presented of simulations of the post formation evolution of compact toroids. The simulations were performed with a 1-1/2 D transport code. Such a code makes explicit use of the fact that the shapes of the flux surfaces in the plasma change much more slowly than do the profiles of the physical variables across the flux surfaces. Consequently, assuming that the thermodynamic variables are always equilibrated on a flux surface, one may calculate the time evolution of these profiles as a function of a single variable that labels the flux surfaces. Occasionally, during the calculation these profiles are used to invert the equilibrium equation to update the shapes of the flux surfaces. In turn, these shapes imply certain geometric cofficients, such as A = 2 >, which contain the geometric information required by the 1-D equations

  9. Compact RFID Enabled Moisture Sensor

    U. H. Khan

    2016-09-01

    Full Text Available This research proposes a novel, low-cost RFID tag sensor antenna implemented using commercially available Kodak photo-paper. The aim of this paper is to investigate the possibility of stable, RFID centric communication under varying moisture levels. Variation in the frequency response of the RFID tag in presence of moisture is used to detect different moisture levels. Combination of unique jaw shaped contours and T-matching network is used for impedance matching which results in compact size and minimal ink consumption. Proposed tag is 1.4 × 9.4 cm2 in size and shows optimum results for various moisture levels upto 45% in FCC band with a bore sight read range of 12.1 m.

  10. COMPACTION STUDIES OF TORREFIED WILLOW

    Michał Rejdak

    2017-01-01

    Full Text Available The article presents the results of studies of torrefied willow (Salix viminalis L. compaction. Densification tests were performed using a hydraulic press with a maximum pressure of 216 MPa. The effect of basic parameters of the briquetting process (pressure and temperature on mechanical parameters of manufactured briquettes were determined. On the basis of the research, it was found that the increase in pressure and temperature of the densification process increases the density and strength of pressed briquettes. The positive effect of temperature is particularly noticeable at lower pressing pressures (36 MPa – 72 MPa. In the case of a temperature of 300 °C, the increase in a pressure from 144 MPa to 216 MPa resulted in the decrease in the density and strength of the briquette. It was also found that the briquettes manufactured at this temperature are characterized by lower density and strength than the briquettes obtained at a temperature of 200 °C.

  11. A compact mobile neutron generator

    Zhou Changgeng; Li Yan; Hu Yonghong; Lou Benchao; Wu Chunlei

    2007-06-01

    Through fitting the high voltage terminal from introducing overseas and pulse system et al. from oneself developing together, a compact mobile neutron generator is established. The length and weight of this neutron generator are 2 500 mm and less than 1 t, respectively. It can be expediently moved to the location which is required by experimental people. It is consisted of RF ion source, acceleration tube, high voltage generator, focus device, microsecond pulse system, gas leak system, control system, vacuum system and experimental target. It can produce 150 μA continuous deuterium ion beam current, also can produce the pulse deuterium ion beam current. The pulse widths are 10-100 μs and frequencies 10 Hz, 1 000 Hz, 10 000 Hz. The D-T neutron yields of the neutron generator may arrive 1.5 x 10 10 s -1 . The working principle and the structure of the main parts of this neutron generator are described. (authors)

  12. Compact torus compression of microwaves

    Hewett, D.W.; Langdon, A.B.

    1985-01-01

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code

  13. Anisotropic models for compact stars

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2015-05-15

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)

  14. Compact oleic acid in HAMLET.

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara

    2005-11-07

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  15. Studies of accelerated compact toruses

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  16. Magnetohydodynamics stability of compact stellarators

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-01

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 minus k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta (approximately 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current

  17. A Compact UWB Diversity Antenna

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  18. Compact Digital High Voltage Charger

    Li, Ge

    2005-01-01

    The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.

  19. Compact Microwave Fourier Spectrum Analyzer

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  20. Optimal shapes of compact strings

    Maritan, A.; Micheletti, C.; Trovato, A.; Banavar, J.R.

    2000-07-01

    Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and subdivision of space. Here we study an analogous problem-that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally-occurring proteins. (author)

  1. Physics of Compact Advanced Stellarators

    Zarnstorff, M.C.; Berry, L.A.; Brooks, A.; Fredrickson, E.; Fu, G.-Y.; Hirshman, S.; Hudson, S.; Ku, L.-P.; Lazarus, E.; Mikkelsen, D.; Monticello, D.; Neilson, G.H.; Pomphrey, N.; Reiman, A.; Spong, D.; Strickler, D.; Boozer, A.; Cooper, W.A.; Goldston, R.; Hatcher, R.; Isaev, M.; Kessel, C.; Lewandowski, J.; Lyon, J.; Merkel, P.; Mynick, H.; Nelson, B.E.; Nuehrenberg, C.; Redi, M.; Reiersen, W.; Rutherford, P.; Sanchez, R.; Schmidt, J.; White, R.B.

    2001-01-01

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties

  2. Compact autonomous navigation system (CANS)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  3. General Relativity and Compact Stars

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  4. Dielectric spectra of proteins in conducting media

    Ruderman, G.; Xammar Oro, J.R. de

    1990-10-01

    Dielectric measurements of serum albumin and myoglobin in solutions of varying conductivities were performed. The results presented confirm that also for protein solutions, the Maxwell predictions of a threshold frequency in conducting materials holds. The threshold frequency of a serum albumin solution was experimentally determined. Attention should be recalled that, if the dielectric spectra of proteins solutions want to be measured, three distinct frequency regions are to be observed: a low frequency region, where the sample behaves like a conductor; an intermediate region centered around the threshold frequency, where the free charges partially screen the fixed ones; and a high frequency region where the sample behaves like a good dielectric. (author). 8 refs, 5 figs

  5. Bimodal condensation silicone elastomers as dielectric elastomers

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    Lately, dielectric elastomers (DEs) which consist of an elastomer sandwiched between electrodes on both sides, have gained interest as materials for actuators, generators, and sensors. An ideal elastomer for DE uses is characterized by high extensibility, flexibility and good mechanical fatigue...... elastomers were prepared by mixing different mass ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6) between long polydimethylsiloxane (PDMS) chains and short PDMS chains. The resulting elastomers were investigated with respect to their rheology, dielectric properties, tensile strength, electrical breakdown, as well.......Moreover, a series of elastomers with the same mass ratio (7:3) between long and short PDMS chains were made at different humidity (90%, 70%, 50%, 30%, 10%) at 23oC. The dielectric and mechincal properties of the resulting elastomers were shown to depend strongly on the atmospheric humidity level.In addition...

  6. Actuation response of polyacrylate dielectric elastomers

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved......, though there are discrepancies. Further analysis suggests that these arise mostly from imperfect manufacture of the actuators, though there is a small contribution from an explicitly electrostrictive behavior of the acrylic adhesive. Measurements of the dielectric constant of stretched polymer reveal...... that the dielectric constant drops, when the polymer is strained, indicating the existence of a small electrostrictive effect. Finally, measurements of the electric breakdown field were made. These also show a dependence upon the strain. In the unstrained state the breakdown field is 20 WV/m, which grows to 218MV...

  7. Electron-beam-induced conduction in dielectrics

    Acris, F C; Davies, P M; Lewis, T J [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-03-14

    A model for the enhanced conduction induced in dielectric films under electron bombardment while electrically stressed is discussed. It is assumed that the beam produces a virtual electrode at the end of its range in the dielectric and, as a consequence, the induced conduction is shown to depend on the properties of that part of the dielectric beyond the range of the beam. This model has also been discussed recently by Nunes de Oliviera and Gross. In the present treatment, it is shown how the model permits investigation of beam scattering and carrier generation and recombination processes. Experiments on electron-bombardment-induced conduction of thin (72 to 360 nm) films of anodic tantalum oxide are reported and it is shown that the theoretical model provides a very satisfactory explanation of all features of the results including the apparent threshold energy for enhanced conduction.

  8. On equilibrium charge distribution above dielectric surface

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  9. Studies on metal-dielectric plasmonic structures.

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  10. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  11. Method for fabrication of crack-free ceramic dielectric films

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2017-12-05

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  12. New calibration algorithms for dielectric-based microwave moisture sensors

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  13. Method for fabrication of crack-free ceramic dielectric films

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  14. Growth, characterization and dielectric property studies of gel grown ...

    Administrator

    chemical reaction method. Plate-like single ... Barium succinate; gel growth; single crystals; dielectric constant; dielectric loss. 1. .... The chemical reaction involved in the birth of a new .... due to the displacement of electrons and ions, respec-.

  15. Effect of deformation and dielectric filling on electromagnetic ...

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    great significance in the development of microwave communication networks and ... media. Rectangular dielectric waveguide structures are analysed by Bierwirth ..... Schweig E, Bridges W B 1984 Computer analysis of dielectric waveguide: A ...

  16. Dielectric loss against piezoelectric power harvesting

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-01-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems. (fast track communications)

  17. Dielectric optical antenna thermal emitters and metamaterials

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  18. Dielectric Optical Antenna Emitters and Metamaterials

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  19. On compact multipliers of topological algebras

    Mohammad, N.

    1994-08-01

    It is shown that if the maximal ideal space Δ(A) of a semisimple commutative complete metrizable locally convex algebra contains no isolated points, then every compact multiplier is trivial. Particularly, compact multipliers on semisimple commutative Frechet algebras whose maximal ideal space has no isolated points are identically zero. (author). 5 refs

  20. Compaction Characteristics of Igumale Shale | Iorliam | Global ...

    This paper reports the outcome of an investigation into the effect of different compactive energies on the compaction characteristics of Igumale shale, to ascertain its suitability as fill material in highway ... The study showed that Igumale shale is not suitable for use as base, subbase and filling materials in road construction.

  1. Compact Process Development at Babcock & Wilcox

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  2. Investigation of pressing of molybdenum powder compacts

    Mymrin, S.A.; Kuznetsov, V.Eh.; Yampol'skij, M.L.; Leonov, S.A.; Mikhridinov, R.M.; Korzukhin, V.A.

    1990-01-01

    Results of an experimental investigation into pressing of compacts of MCh type molybdenum powders using the industrial equipment are presented. To measure the density of powder molybdenum billets a radioisotopic density meter with cesium-137 is used as radioactive gamma radiation source. The dependence of the produced billet density on the specific compacting pressure at different values of the powder bulk density is ascertained

  3. Compact fuel storage rack for fuel pools

    Parras, F.; Louvat, J.P.

    1986-01-01

    ETS LEMER and FRAMATOME propose a new compact storage rack. This rack permits a considerable increase of the storage capacity of cooling pools. A short description of the structure and the components is presented, to propose racks that are: . Inalterable, . Compact, . Insensitive to earthquakes. Installation in pools already in operation is simplified by their light structure and the bearing device [fr

  4. Quantification of the compactibility of pharmaceutical powders

    Sonnergaard, Jørn

    2006-01-01

    The purpose of this study is to investigate and to quantify the compactibility of pharmaceutical powders by a simple linear relationship between the diametral compressive strength of tablets and the applied compaction pressure. The mechanical strength of the tablets is characterized as the crushing...

  5. Feature Based Control of Compact Disc Players

    Odgaard, Peter Fogh

    Two servo control loops are used to keep the Optical Pick-up Unit focused and radially on the information track of the Compact Disc. These control servos have problems handling surface faults on the Compact Disc. In this Ph.D thesis a method is proposed to improve the handling of these surface...

  6. Computing Decoupled Residuals for Compact Disc Players

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  7. The classification of 2-compact groups

    K. S. Andersen, Kasper; Grodal, Jesper

    2009-01-01

    with Moeller and Viruel for p odd, this establishes the full classification of p-compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p-compact groups and root data over the p-adic integers. As a consequence we prove the maximal torus conjecture, giving a one...

  8. Nanocomposite dielectrics-properties and implications

    Nelson, J K; Hu, Y [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2005-01-21

    The incorporation of nanoparticles into thermosetting resins is seen to impart desirable dielectric properties when compared with conventional (micron-sized particulates) composites. Although the improvements are accompanied by the mitigation of internal charge in the materials, the nature of the interfacial region is shown to be pivotal in determining the dielectric behaviour. In particular, it is shown that the conditions and enhanced area of the interface changes the bonding that may give rise to an interaction zone, which affects the interfacial polarization through the formation of local conductivity.

  9. Dielectric barrier discharge image processing by Photoshop

    Dong, Lifang; Li, Xuechen; Yin, Zengqian; Zhang, Qingli

    2001-09-01

    In this paper, the filamentary pattern of dielectric barrier discharge has been processed by using Photoshop, the coordinates of each filament can also be obtained. By using Photoshop two different ways have been used to analyze the spatial order of the pattern formation in dielectric barrier discharge. The results show that the distance of the neighbor filaments at U equals 14 kV and d equals 0.9 mm is about 1.8 mm. In the scope of the experimental error, the results from the two different methods are similar.

  10. FDTD Method for Piecewise Homogeneous Dielectric Media

    Zh. O. Dombrovskaya

    2016-01-01

    Full Text Available In this paper, we consider a numerical solution of Maxwell’s curl equations for piecewise uniform dielectric medium by the example of a one-dimensional problem. For obtaining the second order accuracy, the electric field grid node is placed into the permittivity discontinuity point of the medium. If the dielectric permittivity is large, the problem becomes singularly perturbed and a contrast structure appears. We propose a piecewise quasi-uniform mesh which resolves all characteristic solution parts of the problem (regular part, boundary layer and transition zone placed between them in detail. The features of the mesh are discussed. 

  11. Gold nanoparticles extraction from dielectric scattering background

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  12. Optical dielectric function of intrinsic amorphous silicon

    Ching, W.Y.; Lin, C.C.

    1978-01-01

    The imaginary part of the optical dielectric function epsilon 2 (ω) has been calculated using a continuous-random-tetrahedral network as the structural model for the atomic positions. Here the electronic energies and wave functions are determined by first-principles calculations with the method of linear combinations of atomic orbitals (LCAO), and the momentum matrix elements are evaluated directly from the LCAO wave functions. The calculated dielectric function is in good overall agreement with experiment. At energies within 1 eV above the threshold, the epsilon 2 curve shows some structures that are due to interband transitions between the localized states near the band gap

  13. Mass of polaritons in different dielectric media

    Dzedolik, I V; Lapayeva, S N

    2011-01-01

    Some models of electromagnetic field interactions with linear and nonlinear dielectric media based on the approach of polarization and electromagnetic wave propagation in media are considered. It is shown that quasi-particles generated in the dielectric medium, called polaritons, have mass whose quantity depends on the efficiency of the electromagnetic field and interaction with the medium. The mass and velocity of polaritons can be controlled by the external electric field. The value of the mass of polaritons was measured in a transparent crystal

  14. Theory of the dielectric wakefield accelerator

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  15. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Beloborodov, Roman; Pervukhina, Marina; Han, Tongcheng; Josh, Matthew

    2017-01-01

    High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for t...

  16. Correlating particle hardness with powder compaction performance.

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  17. On compact galaxies in the UGC catalogue

    Kogoshvili, N.G.

    1980-01-01

    A problem of separation of compact galaxies in the UGC Catalogue is considered. Value of surface brightness equal to or less than 21sup(m) was used as compactness criterion from a square second of arc. 96 galaxies, which are brighter than 14sup(m)5 satisfy this criterion. Among compact galaxies discovered in the UGC Catalogue 7% are the Zwicky galaxies, 15% belong to the Markarian galaxies and 27% of galaxies are part of a galaxy list with high surface brightness. Considerable divergence in estimates of total share of compact galaxies in the B.A. Worontsov-Veljaminov Morphological Catalogue of Galaxies (MCG) and the UGC Catalogue is noted. This divergence results from systematical underestimation of visible sizes of compact galaxies in the MCG Catalogue as compared with the UGC Catalogue [ru

  18. Elaboration and dielectric characterization of a doped ferroelectric ...

    ... 1150,1180 and 1200 °C successively to optimize the sintering temperature optimal where the density of the sample is maximum (near theoretical density) and therefore the product has better physical quality. The study of dielectric properties of all samples showed a high permittivity dielectric εr = 18018, low dielectric loss: ...

  19. RF cavity using liquid dielectric for tuning and cooling

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  20. Temperature dependence of the dielectric properties of rubber wood

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  1. Analyzing the effect of gate dielectric on the leakage currents

    Sakshi

    2016-01-01

    Full Text Available An analytical threshold voltage model for MOSFETs has been developed using different gate dielectric oxides by using MATLAB software. This paper explains the dependency of threshold voltage on the dielectric material. The variation in the subthreshold currents with the change in the threshold voltage sue to the change of dielectric material has also been studied.

  2. Note: On the dielectric constant of nanoconfined water

    Zhang, Chao

    2018-01-01

    Investigations of dielectric properties of water in nanoconfinement are highly relevant for various applications. Here, using a simple capacitor model, we show that the low dielectric constant of nanoconfined water found in molecular dynamics simulations can be largely explained by the so-called dielectric dead-layer effect known for ferroelectric nanocapacitors.

  3. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  4. Norbornylene-based polymer systems for dielectric applications

    Dirk, Shawn M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2012-07-17

    A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.

  5. Dielectric measurements on PWB materials at microwave frequencies

    Unknown

    the angular frequency and c0 the velocity of light, c the thickness of the ... Dielectric parameters, absorption index and refractive index for pure PSF and pure PMMA at 8⋅92 GHz frequency and at 35°C temperature. Dielectric. Dielectric. Loss. Relaxation. Conductivity Absorption. Refractive. Thickness, constant loss tangent.

  6. Dielectric and photo-dielectric properties of TlGaSeS crystals

    Administrator

    cDepartment of Physics, Middle East Technical University, 06800 Ankara, Turkey. MS received ... The crystals are observed to exhibit a dark high frequency effective dielectric constant value of ~ 10\\65 x ... communication systems. Keywords.

  7. Ceramic-polymer nanocomposites with increased dielectric permittivity and low dielectric loss

    Bhardwaj, Sumit; Paul, Joginder; Raina, K. K.; Thakur, N. S.; Kumar, Ravi

    2014-01-01

    The use of lead free materials in device fabrication is very essential from environmental point of view. We have synthesized the lead free ferroelectric polymer nanocomposite films with increased dielectric properties. Lead free bismuth titanate has been used as active ceramic nanofillers having crystallite size 24nm and PVDF as the polymer matrix. Ferroelectric β-phase of the polymer composite films was confirmed by X-ray diffraction pattern. Mapping data confirms the homogeneous dispersion of ceramic particles into the polymer matrix. Frequency dependent dielectric constant increases up to 43.4 at 100Hz, whereas dielectric loss decreases with 7 wt% bismuth titanate loading. This high dielectric constant lead free ferroelectric polymer films can be used for energy density applications

  8. Cooling of hypernuclear compact stars

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  9. Spherically symmetric charged compact stars

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  10. Compact 3D quantum memory

    Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf

    2018-05-01

    Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.

  11. Structural, dielectric and electrical properties of ...

    Administrator

    Detailed studies of dielectric properties of the compound as a function of temperature at ... Microscope (Jeol, JSM-840), operated at 20 kV. The sin- tered pellet was .... grain boundaries, and provides the true picture of the electrical properties of ...

  12. Quantum optics of dispersive dielectric media

    Lenac, Z.

    2003-01-01

    We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion. In our model the medium is described by a Lorenz-type dielectric function ε(r,ω) appropriate, e.g., for ionic crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function, i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion of the total field (transverse and longitudinal) in terms of the coupled (polariton) eigenmodes, and this approach incorporates all previous results derived for similar but restricted systems (e.g., without spatial or frequency dependence of coupled modes). Within the same model, we also quantize the Hamiltonian of a nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogonality and closure relations, which are used in a discussion of the fundamental (equal-time) commutation relations between the conjugate field operators

  13. Partial discharges and bulk dielectric field enhancement

    McAllister, Iain Wilson; Johansson, Torben

    2000-01-01

    A consequence of partial discharge activity within a gaseous void is the production of a field enhancement in the solid dielectric in the proximity of the void. This situation arises due to the charge created by the partial discharges accumulating at the void wall. The influence of the spatial...

  14. 7th International Symposium on Gaseous Dielectrics

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  15. Pentaquarks in chiral color dielectric model

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.

  16. Spontaneous emission from active dielectric microstructures

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    and engineered due to the dependence of the emission rate on the location and polarisation of the emitters in the structure. This paper addresses the methods of quantum electrodynamics of dielectric media which enable calculation of the local rate of spontaneous emission in active microstructures....

  17. Dielectric barrier discharges applied for optical spectrometry

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.241, year: 2016

  18. Test plan for prototype dielectric permittivity sensor

    Pfeifer, M.C.

    1993-07-01

    The digface characterization project funded by the Buried Waste Integrated Demonstration (BWID) is designed to test a new method of monitoring hazardous conditions during the remediation at waste sites. Often on a large scale, the exact cause of each anomaly is difficult to determine and ambiguities remain in the characterization of a site. The digface characterization concept is designed to alleviate some of this uncertainty by creating systems that monitor small volumes of soil and detect anomalous areas during remediation before they are encountered. The goal of the digface characterization demonstration is to detect changes in the physical properties from one volume to another and relate these changes in physical properties to changes in the level of contamination. Dielectric permittivity mapping is a method that might prove useful in digface characterization. In this project, the role of a dielectric permittivity monitoring device is under investigation. This project addresses two issues: what are the optimal means of mapping dielectric permittivity contrasts and what types of targets can be detected using dielectric permittivity mapping

  19. Thermal aspects of resistors embedded in dielectrics

    Caprari, R.S.

    1995-10-01

    This note presents a formula for estimating the temperature of a distributed resistor or resistor chain that is immersed in a dielectric medium, which in turn is surrounded by a heat reservoir. An example computation from an actual instrument in included. 6 refs

  20. Characterization of a surface dielectric barrier discharge

    Pemen, A.J.M.; Beckers, F.J.C.M.; Heesch, van E.J.M.

    2009-01-01

    A surface dielectric barrier discharge (SDBD) reactor provides a homogeneous plasma over a large surface area. This allows surface treatments of foils, textiles or fibers. Here we present results of a study to characterize the AC and pulsed performance of SDBD with regard to ozone production,

  1. Dielectric image line groove antennas for millimeterwaves

    Solbach, K.; Wolff, I.

    Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.

  2. Dielectric barrier discharges applied for optical spectrometry

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.241, year: 2016

  3. Vegetable oil based liquid nanocomposite dielectric

    Leon Chetty

    2013-01-01

    Full Text Available Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor oil, the DC conduction current increased approximately linearly with the applied DC voltage. In nanomodified linseed oil, the characteristic curve showed two distinct regions: a linear region (at lower applied voltage and a saturation region (at slightly higher voltage. Conversely, in nanomodified castor oil, the characteristic curve showed three distinct regions: a linear region (at lower applied voltage, a saturation region (at intermediate applied voltage and an exponential growth region (at higher applied voltage. The nanomodified linseed oil exhibited a better dielectric performance than the nanomodified castor oil. Overall, the addition of nanodielectrics to vegetable oils decreased the dielectric performance of the vegetable oils. The results of this study contribute to the understanding of the pre-breakdown phenomenon in liquid nanocomposite dielectrics.

  4. Testing quantised inertia on emdrives with dielectrics

    McCulloch, M. E.

    2017-05-01

    Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.

  5. Microwave dielectric properties of nanostructured nickel ferrite

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  6. Effects of Radiation on Capacitor Dielectrics

    Bouquet, F. L.; Somoano, R. B.; Frickland, P. O.

    1987-01-01

    Data gathered on key design parameters. Report discusses study of electrical and mechanical properties of irradiated polymer dielectric materials. Data compiled for use by designers of high-energy-density capacitors that operate in presence of ionizing radiation. Study focused on polycarbonates, polyetheretherketones, polymethylpentenes, polyimides (including polyetherimide), polyolefins, polysulfones (including polyethersulfone and polyphenylsulfone), and polyvinylidene fluorides.

  7. Polyvinylidene fluoride film as a capacitor dielectric

    Dematos, H. V.

    1981-01-01

    Thin strips of polyvinylidene fluoride film (PVDF) with vacuum deposited electrodes were made into capacitors by conventional winding and fabrication techniques. These devices were used to identify and evaluate the performance characteristics offered by the PVDF in metallized film capacitors. Variations in capacitor parameters with temperature and frequence were evaluated and compared with other dielectric films. Their impact on capacitor applications is discussed.

  8. Improvement in the microwave dielectric properties of ...

    Administrator

    ... linearly with x. Relative permittivity (εr) increased from 47⋅2 to 54⋅5, unloaded ... and are used in the manufacture of DRs for mobile phone handsets and base ... Microwave dielectric properties were measured using a. R3767CH Agilent ...

  9. Conductivity, dielectric behaviour and magnetoelectric effect in ...

    intensity of the magnetic field. The maximum value of ME coefficient was observed for 75% ferroelectric phase composite. Keywords. Conductivity; dielectric behaviour; magnetoelectric effect; CuFe2O4; BaTiO3. 1. Introduction. Magnetoelectric composites consist of two phases viz. piezoelectric and piezomagnetic. The ME ...

  10. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  11. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, such as admittance or dielectric constant - as a function of frequency and comparing the results with expectations based on physical, chemical, and microstructural models. This article reviews the principles and practical aspects of the technique, the representations of the results, the analysis of data......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  12. Femtosecond laser excitation of dielectric materials

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  13. Surface waves on metal-dielectric metamaterials

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types...

  14. Characterization of Dielectric Electroactive Polymer transducers

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  15. Vectorial analysis of dielectric photonic crystal VCSEL

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    A new vertical-cavity surface-emitting laser structure employing a dielectric photonic crystal mirror has been suggested and been numerically investigated. The new structure has a smaller threshold gain, a moderate strength of single-transverse-mode operation, a high quality of emission beam free...

  16. Large scale processing of dielectric electroactive polymers

    Vudayagiri, Sindhu

    Efficient processing techniques are vital to the success of any manufacturing industry. The processing techniques determine the quality of the products and thus to a large extent the performance and reliability of the products that are manufactured. The dielectric electroactive polymer (DEAP...

  17. Characterization of dielectric charging in RF MEMS

    Herfst, R.W.; Huizing, H.G.A.; Steeneken, P.G.; Schmitz, Jurriaan

    2005-01-01

    Capacitive RF MEMS switches show great promise for use in wireless communication devices such as mobile phones, but the successful application of these switches is hindered by the reliability of the devices: charge injection in the dielectric layer (SiN) can cause irreversible stiction of the moving

  18. Electrical breakdown phenomena of dielectric elastomers

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...

  19. Does soil compaction increase floods? A review

    Alaoui, Abdallah; Rogger, Magdalena; Peth, Stephan; Blöschl, Günter

    2018-02-01

    Europe has experienced a series of major floods in the past years which suggests that flood magnitudes may have increased. Land degradation due to soil compaction from crop farming or grazing intensification is one of the potential drivers of this increase. A literature review suggests that most of the experimental evidence was generated at plot and hillslope scales. At larger scales, most studies are based on models. There are three ways in which soil compaction affects floods at the catchment scale: (i) through an increase in the area affected by soil compaction; (ii) by exacerbating the effects of changes in rainfall, especially for highly degraded soils; and (iii) when soil compaction coincides with soils characterized by a fine texture and a low infiltration capacity. We suggest that future research should focus on better synthesising past research on soil compaction and runoff, tailored field experiments to obtain a mechanistic understanding of the coupled mechanical and hydraulic processes, new mapping methods of soil compaction that combine mechanical and remote sensing approaches, and an effort to bridge all disciplines relevant to soil compaction effects on floods.

  20. Evaluation of automatic vacuum- assisted compaction solutions

    M. Brzeziński

    2011-01-01

    Full Text Available Currently on the mould-making machines market the companies like: DiSA, KUENKEL WAGNER, HAFLINGER, HEINRICH WAGNER SINTO, HUNTER, SAVELLI AND TECHNICAL play significant role. These companies are the manufacturers of various solutions in machines and instalations applied in foundry engineering. Automatic foundry machines for compaction of green sand have the major role in mechanisation and automation processes of making the mould. The concept of operation of automatic machines is based on the static and dynamic methods of compacting the green sand. The method which gains the importance is the compacting method by using the energy of the air pressure. It's the initial stage or the supporting process of compacting the green sand. However in the automatic mould making machines using this method it's essential to use the additional compaction of the mass in order to receive the final parameters of the form. In the constructional solutions of the machines there is the additional division which concerns the method of putting the sand into the mould box. This division distinquishes the transport of the sand with simultaneous compaction or the putting of the sand without the pre-compaction. As the solutions of the major manufacturers are often the subject for application in various foundries, the authors of the paper would like/have the confidence to present their own evaluation process confirmed by their own researches and independent analysis of the producers' solutions.

  1. Soil compaction and fertilization in soybean productivity

    Beutler Amauri Nelson

    2004-01-01

    Full Text Available Soil compaction and fertilization affect soybean development. This study evaluated the effects of soil compaction and fertilization on soybean (Glycine max cv. Embrapa 48 productivity in a Typic Haplustox under field conditions in Jaboticabal, SP, Brazil. A completely randomized design with a 5 x 2 factorial layout (compaction vs. fertilization, with four replications in each treatment, was employed. Each experimental unit (replicate consisted of a 3.6 m² useful area. After the soil was prepared by cultivation, an 11 Mg tractor passed over it a variable number of times to create five levels of compaction. Treatments were: T0= no compaction, T1= one tractor pass, T2= two, T4= four, and T6= six passes, and no fertilizer and fertilizer to give soybean yields of 2.5 to 2.9 Mg ha-1. Soil was sampled at depths of 0.02-0.05, 0.07-0.10, and 0.15-0.18 m to determine macro and microporosity, penetration resistance (PR, and bulk density (Db. After 120 days growing under these conditions, the plants were analyzed in terms of development (plant height, number of pods, shoot dry matter per plant and weight of 100 seeds and seed productivity per hectare. Soil compaction decreased soybean development and productivity, but this effect was decreased by soil fertilization, showing that such fertilization increased soybean tolerance to soil compaction.

  2. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  3. Preparation and Characterization of Pure Organic Dielectric Composites for Capacitors

    Mao Xin

    2018-01-01

    Full Text Available This work reports the excellent dielectric composites were prepared from polyimide (PI and poly(vinylidene fluoride (PVDF via solution blending and thermal imidization or chemical imidization. The dielectric and thermal properties of the composites were studied. Results indicated that the dielectric properties of the composites synthesized by these two methods were enhanced through the introduction of PVDF, and the composites exhibited excellent thermal stability. Compared to the thermal imidization, the composites prepared by chemical imidization exhibited superior dielectric properties. This study demonstrated that the PI/PVDF composites were potential dielectric materials in the field of electronics.

  4. Topological entropy of continuous actions of compactly generated groups

    Schneider, Friedrich Martin

    2015-01-01

    We introduce a notion of topological entropy for continuous actions of compactly generated topological groups on compact Hausdorff spaces. It is shown that any continuous action of a compactly generated topological group on a compact Hausdorff space with vanishing topological entropy is amenable. Given an arbitrary compactly generated locally compact Hausdorff topological group $G$, we consider the canonical action of $G$ on the closed unit ball of $L^{1}(G)' \\cong L^{\\infty}(G)$ endowed with...

  5. Dielectric loss of strontium titanate thin films

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  6. Strategy Guideline. Compact Air Distribution Systems

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. 'Crescent'-shaped tokamak for compact ignition

    Yamazaki, K.; Reiersen, W.T.

    1985-12-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross-section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design dose not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  8. 'Crescent'-shaped tokamak for compact ignition

    Yamazaki, K.; Reiersen, W.T.

    1986-01-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design does not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  9. Generalised model for anisotropic compact stars

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Shibpur, Department of Physics, Howrah, West Bengal (India)

    2016-12-15

    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned. (orig.)

  10. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit.

    Ma, Y G; Lan, L; Zhong, S M; Ong, C K

    2011-10-24

    In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America

  11. A physically based compact I-V model for monolayer TMDC channel MOSFET and DMFET biosensor.

    Rahman, Ehsanur; Shadman, Abir; Ahmed, Imtiaz; Khan, Saeed Uz Zaman; Khosru, Quazi D M

    2018-06-08

    In this work, a compact transport model has been developed for monolayer transition metal dichalcogenide (TMDC) channel MOSFET. The analytical model solves the Poisson's equation for the inversion charge density to get the electrostatic potential in the channel. Current is then calculated by solving the drift-diffusion equation. The model makes gradual channel approximation to simplify the solution procedure. The appropriate density of states obtained from the first principle density functional theory simulation has been considered to keep the model physically accurate for monolayer TMDC channel FET. The outcome of the model has been benchmarked against both experimental and numerical quantum simulation results with the help of a few fitting parameters. Using the compact model, detailed output and transfer characteristics of monolayer WSe 2 FET have been studied, and various performance parameters have been determined. The study confirms excellent ON and OFF state performances of monolayer WSe 2 FET which could be viable for the next generation high-speed, low power applications. Also, the proposed model has been extended to study the operation of a biosensor. A monolayer MoS 2 channel based dielectric modulated FET is investigated using the compact model for detection of a biomolecule in a dry environment.

  12. A physically based compact I–V model for monolayer TMDC channel MOSFET and DMFET biosensor

    Rahman, Ehsanur; Shadman, Abir; Ahmed, Imtiaz; Zaman Khan, Saeed Uz; Khosru, Quazi D. M.

    2018-06-01

    In this work, a compact transport model has been developed for monolayer transition metal dichalcogenide (TMDC) channel MOSFET. The analytical model solves the Poisson’s equation for the inversion charge density to get the electrostatic potential in the channel. Current is then calculated by solving the drift–diffusion equation. The model makes gradual channel approximation to simplify the solution procedure. The appropriate density of states obtained from the first principle density functional theory simulation has been considered to keep the model physically accurate for monolayer TMDC channel FET. The outcome of the model has been benchmarked against both experimental and numerical quantum simulation results with the help of a few fitting parameters. Using the compact model, detailed output and transfer characteristics of monolayer WSe2 FET have been studied, and various performance parameters have been determined. The study confirms excellent ON and OFF state performances of monolayer WSe2 FET which could be viable for the next generation high-speed, low power applications. Also, the proposed model has been extended to study the operation of a biosensor. A monolayer MoS2 channel based dielectric modulated FET is investigated using the compact model for detection of a biomolecule in a dry environment.

  13. Optimization of silver-dielectric-silver nanoshell for sensing applications

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  14. Development of compact nuclear simulator

    Ham, Chang Shik; Kwon, Kee Choon; Lyu, Sung Phil; Kim, Jung Taek; Jung, Chul Hwan; Lee, Dong Young; Hwang, In Koo; Kim, Young Gil; Kim, Jung Soo; Park, Won Man

    1988-12-01

    Compact nuclear simulator is designed to carry out the various operational modes as real nuclear power plant, start-up, preoperational test, preheating, hot start-up, cold shutdown, power control and the operational conditions in steady and accident states. It can be used for the fundamental training of the operators, maintenance personnel, inspectors of regulatory body, system or component designers, NSSS designers, safety analysis by transient analysis and for the making questions for an operator qualifying examination and the training of research fellows in the Nuclear Training Center of KAERI. Everyone knows that the TMI accident resulted from the defect of the man-machine interface of main control room and of the quality of the operators. No proper action on the malfunction of small part in a system can cause severe accident like TMI-2 accident, so it is very important urgent to upgrade the operators' capability and to train operators for the understanding of dynamic transient phenomena in plant system. So it is necessary to develop CNS which is very efficient to train operators, operation and maintenance supervisors, maintenance personnel and inspectors of regulation committee to understand the dynamic transient phenomena. This report is the final report of KAERI-CNS project which was designed and manufactured in '85.7-'88.12. This CNS was designed and fabricated in conjunction with STUDSVIK, Sweden and installed at KAERI-NTC, and entitled KAERI-CNS. KAERI and STUDSVIK have developed math. modeling software. Many parts of CNS hardware were supplied by local firms.The followings are major parts of this project performed in '85.7-'88.12. 1.Contract with STUDSVIK for joint design and manufacturing CNS 2.Selection of malfunctions and design and manufacture of console panel 3.Manufacture of interface card and graphic display system 4.Software module development 5.S/W and H/W integration 6.Factory acceptance test and Site acceptance test 7.Running test. (Author)

  15. Compact Ceramic Microchannel Heat Exchangers

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  16. Diagnostics for the National Compact Stellarator Experiment

    Stratton, B.C.; Johnson, D.; Feder, R.; Fredrickson, E.; Neilson, H.; Takahashi, H.; Zarnstorf, M.; Cole, M.; Goranson, P.; Lazarus, E.; Nelson, B.

    2003-01-01

    The status of planning of the National Compact Stellarator Experiment (NCSX) diagnostics is presented, with the emphasis on resolution of diagnostics access issues and on diagnostics required for the early phases of operation

  17. Observing Compact Stars with AstroSat

    Dipankar Bhattacharya

    2017-09-12

    Sep 12, 2017 ... based observatory for compact star research. An account is given of ... unprecedented capability to study such rapid variability simultaneously at all ..... Physical Research Laboratory, University of Leicester and the Canadian ...

  18. Compact Energy Conversion Module, Phase II

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  19. Compact energy conversion module, Phase I

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  20. Mappings with closed range and compactness

    Iyahen, S.O.; Umweni, I.

    1985-12-01

    The motivation for this note is the result of E.O. Thorp that a normed linear space E is finite dimensional if and only if every continuous linear map for E into any normed linear space has a closed range. Here, a class of Hausdorff topological groups is introduced; called r-compactifiable topological groups, they include compact groups, locally compact Abelian groups and locally convex linear topological spaces. It is proved that a group in this class which is separable, complete metrizable or locally compact, is necessarily compact if its image by a continuous group homomorphism is necessarily closed. It is deduced then that a Hausdorff locally convex is zero if its image by a continuous additive map is necessarily closed. (author)

  1. Steady state compact toroidal plasma production

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  2. Effect of Subsoil Compaction on Hydraulic Parameters

    Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per

    Soil compaction is a major threat to sustainable soil quality and is increasing since agricultural machinery is becoming heavier and is used more intensively. Compaction not only reduces pore volume, but also modifies the pore connectivity. The inter-Nordic research project POSEIDON (Persistent...... effects of subsoil compaction on soil ecological services and functions) put forward the hypothesis that due to a decrease in the hydraulic conductivity in the soil matrix, compaction increases the frequency of preferential flow events in macropores and therefore increases the leaching of otherwise....... In the field the near-saturated hydraulic conductivity was measured with a tension infiltrometer in the same treatments at a depth of 30 cm. In the laboratory saturated and near-saturated hydraulic conductivity and the bulk density were measured as well. Also, macropores in the large soil cores were made...

  3. Impact Compaction of a Granular Material

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  4. Compact Positron Tomograph for Prostate Imaging

    Derenzo, Stephen

    2003-01-01

    The goal of this project is to construct a functioning compact positron tomography, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  5. Compact Positron Tomograph for Prostate Imaging

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  6. Compact Positron Tomograph for Prostate Imaging

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  7. New geometrical compactness measures for zones design

    Eric Alfredo Rincón-García

    2012-07-01

    Full Text Available The design of compact zones has been studied because of its influence in the creation of zones with regular forms, which are easier to analyze, to investigate or to administer. This paper propose a new method to measure compactness,by means of the transformation of the original geographical spaces, into figures formed with square cells, which are used to measure the similarity between the original zone and an ideal zone with straight forms. The proposed method was applied to design electoral zones, which must satisfy constraints of compactness, contiguity and population balance, in a topographical configuration that favors the creation of twisted and diffuse shapes. The results show that the new method favors the creation of zones with straight forms, without an important effect to the population balance, which are considered zones of high quality. Keywords: Redistricting, compactness, simulated annealing, GIS. Mathematics Subject Classification: 90C59, 90C29, 68T20.

  8. Compaction of amorphous iron–boron powder

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  9. Temperature evolution during compaction of pharmaceutical powders.

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  10. Controlled Compact High Voltage Power Lines

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  11. Compact 2 Micron Seed Laser, Phase I

    National Aeronautics and Space Administration — This proposal is for the development of new compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass fibers,...

  12. Compact 2 Micron Seed Laser, Phase II

    National Aeronautics and Space Administration — This proposal is for the development of innovative compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass...

  13. Gamma-Rays from Galactic Compact Sources

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  14. Compact variable rate laser for space application

    National Aeronautics and Space Administration — We will focus on the development and test of high reliable, radiation tolerant, compact laser for planetary mission.  The laser will be able to operate at variable...

  15. Deep Compaction Control of Sandy Soils

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  16. Compaction of spent nuclear fuel cans

    Sullivan, H.

    1985-01-01

    Hydraulic press apparatus for compacting waste material eg. spent nuclear fuel cans comprises a fixed frame, a movable cross head, a press crown and three groups of piston/cylinder devices; having their pistons connected to the cross head and their cylinders secured to the press crown. A control means connects the first group of devices to hydraulic fluid in a reservoir which is pressurised initially by gas from gas accumulators to move the cross head and a quill secured thereto towards the frame base to compact the waste at a first high rate under a first high loading. Compaction then proceeds at a lower second rate at a lower second loading as the hydraulic fluid in the reservoir is pressurised by a pump. At two subsequent stages of compaction of the waste at which resistance increases causing a pressure rise in cylinders the control means causes hydraulic fluid to be passed to the second group of devices and thence to the third group of devices, the compaction rate reducing at each stage but the compaction force increasing. (author)

  17. Sobolev Spaces on Locally Compact Abelian Groups: Compact Embeddings and Local Spaces

    Przemysław Górka

    2014-01-01

    Full Text Available We continue our research on Sobolev spaces on locally compact abelian (LCA groups motivated by our work on equations with infinitely many derivatives of interest for string theory and cosmology. In this paper, we focus on compact embedding results and we prove an analog for LCA groups of the classical Rellich lemma and of the Rellich-Kondrachov compactness theorem. Furthermore, we introduce Sobolev spaces on subsets of LCA groups and study its main properties, including the existence of compact embeddings into Lp-spaces.

  18. Dielectric Elastomers for Fluidic and Biomedical Applications

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  19. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  20. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  1. Information authentication using an optical dielectric metasurface

    Wang, Xiaogang; Mei, Shengtao

    2017-01-01

    Metasurfaces that consist of a monolayer of photonic artificial atoms are emerging as attractive materials for optical wavefront-shaping and polarization-control devices. By integrating nanophotonics with a phase-encoding technique, we demonstrate theoretically an information authentication method using dielectric metasurfaces that can be verified without information disclosure at visible wavelengths. The required secured diffraction pattern can be simply achieved by a metasurface hologram with a small number of pixels, which means increased efficiency and lower costs of production. Although the decrypted image is noisy, it can be authenticated by recognition algorithms where the primary image is used as a reference. The results show that the dielectric metasurface approach, providing great flexibility in the design of the wavefront of light and compatible with the CMOS technology, can be potentially applied in optical information security. (letter)

  2. Broadband dielectric spectroscopy of oxidized porous silicon

    Axelrod, Ekaterina; Urbach, Benayahu; Sa'ar, Amir; Feldman, Yuri

    2006-01-01

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals

  3. Colour dielectric model of the proton

    Jen, P.K.; Pradhan, T.

    1984-01-01

    A model of the proton with its constituent quarks bound in a colour polarizable medium with dielectric constant varying as (a/r - b 2 ) from a fixed centre, is presented. The Dirac equation modified by the colour polarization is solved and the analytic expression for the wavefunction of the quarks obtained shows that quarks with higher energy lie closer to the fixed centre. The energy spectrum is equispaced without any continuum. A semiclassical approximation scheme yields closed orbits for quarks which have smaller size for higher energies and no orbits with size bigger than a certain maximum, thereby rendering the quarks permanently confined. The wavefunctions of the three quarks constituting the proton are used to calculate physical parameters of the proton such as its mass, charge radius and weak coupling constant which with suitable choice of the constants a and b appearing in the dielectric constant agree fairly well with experimental results. (author)

  4. Dielectric Constant Measurements of Solid 4He

    Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.

    2011-03-01

    Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.

  5. Dielectric response of planar relativistic quantum plasmas

    Bardos, D.C.; Frankel, N.E.

    1991-01-01

    The dielectric response of planar relativistic charged particle-antiparticle plasmas is investigated, treating Fermi and Bose plasmas. The conductivity tensor in each case is derived in the self-consistent Random Phase Approximation. The tensors are then evaluated at zero temperature for the case of no external fields, leading to explicit dispersion relations for the electrodynamic modes of the plasma. The longitudinal and transverse modes are in general coupled for plasma layers. This coupling vanishes, however, in the zero field case, allowing 'effective' longitudinal and transverse dielectric functions to be defined in terms of components of the conductivity tensor. Solutions to the longitudinal mode equations (i.e. plasmon modes) are exhibited, while purely transverse modes are found not to exist. In the case of the Bose plasma the screening of a test charge is investigated in detail. 41 refs., 1 fig

  6. Broadband dielectric spectroscopy of oxidized porous silicon

    Axelrod, Ekaterina [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Urbach, Benayahu [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Sa' ar, Amir [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Feldman, Yuri [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel)

    2006-04-07

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals.

  7. Enhanced dielectric-wall linear accelerator

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  8. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  9. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  10. High power testing oa ANL X-band dielectric-loaded accelerating structures

    Power, J. G.; Gai, W.; Jing, C.; Konecny, R.; Gold, S. H.; Kinkead, A. K.

    2002-01-01

    In the second phase of a program to develop a compact accelerator based on a dielectric-loaded accelerating structure, we have conducted high power tests on a traveling-wave and a standing-wave prototype. Indications are that the traveling-wave structure achieved an accelerating gradient of 3-5 MV/m before the input coupling window failed, while the standing wave structure was poorly matched at high power due to contamination of copper residue on its coupling window. To solve both of these problems, a new method for coupling RF into the structures has been developed. The new couplers and the rest of the modular structure are currently under construction and will be tested at the Naval Research Laboratory shortly

  11. Dielectric properties of proton irradiated PES

    Shah, Nilam; Singh, N.L.; Singh, K.P.

    2005-01-01

    Polyethersulfone films were irradiated with 3 MeV proton beam at fluences ranging from 10 13 to 10 15 ions/cm 2 . AC electrical properties of irradiated samples were studied in the frequency range 100 Hz to 1MHz by LCR meter. There is an exponential increase in conductivity with frequency but the effect of irradiation is not significant. The dielectric loss/constant are observed to change with fluence. (author)

  12. Dielectric response in guiding center plasma

    Krommes, J.A.; Similon, P.

    1979-12-01

    The dielectric function for guiding center plasma is derived from the direct-interaction approximation. For the special case of thermal equilibrium, the reslt agrees with, although is more detailed than, an earlier calculation of Taylor. An explicit formula for the collision operator Σ' is given. The calculation illustrates several important features of renormalized turbulence theory: cancellation between the so-called diffusion and polarization parts of Σ', and the role of the renormalization in providing the proper description of adiabatic response

  13. Modeling of Dielectric Heating within Lyophilization Process

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  14. Cellulose triacetate, thin film dielectric capacitor

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  15. Cordierite Glass-Ceramics for Dielectric Materials

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  16. Heat transfer in large compacts of SYNROC powder

    Buykx, W.J.

    1984-01-01

    The parameters determining the time required to reach temperature uniformity in a shock heated cylindrical compact of SYNROC powder are identified as the dimensions of the compact and the thermal diffusivity of the material. The effect of shape and size of the compact are discussed, and an experimental study of the factors influencing the thermal diffusivity of compacted SYNROC powder is described

  17. Roller compaction of moist pharmaceutical powders.

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  19. Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface

    Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong

    2018-02-01

    Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with controllable birefringence is numerically designed. The phenomena of trapped magnetic mode resonance and high Q-factors are modulated by inserting graphene between silicon and silica. This results in a broader transmission wavelength in comparison to the all-dielectric structure without graphene. The birefringence tunability is based on the dimensions of silicon and the Fermi energy of graphene. Consequently, a linear-to-circular polarization conversion is achieved at a high degree of 96%, in the near-infrared. Moreover, the polarization state of the scattered light is switchable between right and left hand circular polarizations, based on an external gate biasing voltage. Unlike in plasmonic metasurfaces, these achievements demonstrate an efficient structure that is free from radiative and ohmic losses. Furthermore, the ultrathin thickness and the compactness of the structure are demonstrated as key components in realizing integrable and CMOS compatible photonic sensors.

  20. InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants

    Alhashim, Hala H.

    2015-10-16

    We report on the impurity-free vacancy-disordering effect in InAs/GaAs quantum-dot (QD) laser structure based on seven dielectric capping layers. Compared to the typical SiO2 and Si3N4 films, HfO2 and SrTiO3 dielectric layers showed superior enhancement and suppression of intermixing up to 725°C, respectively. A QD peak ground-state differential blue shift of >175  nm (>148  meV) is obtained for HfO2 capped sample. Likewise, investigation of TiO2, Al2O3, and ZnO capping films showed unusual characteristics, such as intermixing-control caps at low annealing temperature (650°C) and interdiffusion-promoting caps at high temperatures (≥675°C). We qualitatively compared the degree of intermixing induced by these films by extracting the rate of intermixing and the temperature for ground-state and excited-state convergences. Based on our systematic characterization, we established reference intermixing processes based on seven different dielectric encapsulation materials. The tailored wavelength emission of ∼1060−1200  nm at room temperature and improved optical quality exhibited from intermixed QDs would serve as key materials for eventual realization of low-cost, compact, and agile lasers. Applications include solid-state laser pumping, optical communications, gas sensing, biomedical imaging, green–yellow–orange coherent light generation, as well as addressing photonic integration via area-selective, and postgrowth bandgap engineering.

  1. A large coaxial reflection cell for broadband dielectric characterization of coarse-grained materials

    Bore, Thierry; Bhuyan, Habibullah; Bittner, Tilman; Murgan, Vignesh; Wagner, Norman; Scheuermann, Alexander

    2018-01-01

    Knowledge of the frequency-dependent electromagnetic properties of coarse-grained materials is imperative for the successful application of high frequency electromagnetic measurement techniques for near and subsurface monitoring. This paper reports the design, calibration and application of a novel one-port large coaxial cell for broadband complex permittivity measurements of civil engineering materials. It was designed to allow the characterization of heterogeneous material with large aggregate dimensions (up to 28 mm) over a frequency range from 1 MHz-860 MHz. In the first step, the system parameters were calibrated using the measured scattering function in a perfectly known dielectric material in an optimization scheme. In the second step, the method was validated with measurements made on standard liquids. Then the performance of the cell was evaluated on a compacted coarse-grained soil. The dielectric spectra were obtained by means of fitting the measured scattering function using a transverse electromagnetic mode propagation model considering the frequency-dependent complex permittivity. Two scenarios were systematically analyzed and compared. The first scenario consisted of a broadband generalized dielectric relaxation model with two Cole-Cole type relaxation processes related to the interaction of the aqueous phase and the solid phase, a constant high frequency contribution as well as an apparent direct current conductivity term. The second scenario relied on a three-phase theoretical mixture equation which was used in a forward approach in order to calibrate the model. Both scenarios provide almost identical results for the broadband effective complex relative permittivity. The combination of both scenarios suggests the simultaneous estimation of water content, density, bulk and pore water conductivity for road base materials for in situ applications.

  2. Dielectric properties of agricultural materials and their applications

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  3. Properties of dielectric barrier discharges in different arrangements

    Pietsch, G.J.

    2001-01-01

    Dielectric barrier discharges (DBDs) occur in arrangements where at least one dielectric is positioned in a gas space in between conducting electrodes. When breakdown field strength is reached in such a device, charge carriers are created in the gas region, accelerated, multiplied and finally collected on the surface(s) of the dielectric(s). The charge accumulation on the dielectric creates a counter field to that resulting from the power supply and as all of these processes are rather fast, the discharge quenches rapidly. The dielectric has two tasks, it limits the transferred charge and by this the energy conversion and distributes the discharge over the electrode area. That is why DBDs are non-thermal discharges which exist even at atmospheric pressure

  4. Dielectric spectroscopy of Ag-starch nanocomposite films

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  5. Aligning laboratory and field compaction practices for asphalt - the influence of compaction temperature on mechanical properties

    Bijleveld, Frank; Miller, Seirgei Rosario; de Bondt, A.H.; Doree, Andries G.

    2015-01-01

    The approach used to identify a compaction temperature in the laboratory, based on binder viscosity, provides a single compaction temperature whereas, on-site, a roller operates within a temperature window. The effect on the density and mechanical properties of rolling during a temperature window

  6. Strategy Guideline: Compact Air Distribution Systems

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. DNA compaction by azobenzene-containing surfactant

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  8. Electrical properties of the potassium polytitanate compacts

    Goffman, V.G.; Gorokhovsky, A.V.; Kompan, M.M.; Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V.; Fedorov, F.S.

    2014-01-01

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10 4 –10 5 . • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10 −2 to 10 −6 –10 −7 Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10 −2 Sm/m (high frequencies, ion conductivity) up to 10 −6 –10 −7 Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10 4 –10 5 . This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures

  9. Hydrodynamic modeling and explosive compaction of ceramics

    Hoenig, C.; Holt, A.; Finger, M.; Kuhl, W.

    1977-01-01

    High-density ceramics with high-strength microstructure were achieved by explosive compaction. Well-characterized Al 2 O 3 , AlN, and boron powders were explosively compacted in both cylindrical and flat plate geometries. In cylindrical geometries compacted densities between 91 and 98 percent of theoretical were achieved. Microhardness measurements indicated that the strength and integrity of the microstructure were comparable to conventionally fabricated ceramics, even though all samples with densities greater than 90 percent theoretical contained macrocracks. Fractured surfaces evaluated by SEM showed evidence of boundary melting. Equation of state data for porous Al 2 O 3 were used to calculate the irreversible work done on the sample as a function of pressure. This was expressed as a percentage of the total sample which could be melted. Calculations show that very little melting can be expected in samples shocked to less than 3 GPa. Significant melting and grain boundary fusion can be expected in samples shocked to pressures greater than 8 GPa. Hydrodynamic modeling of right cylinder compaction with detonation at one end was attempted by using a two-dimensional computer code. The complications of this analysis led to experiments using plane shock waves. Flat-plate compaction assemblies were designed and analyzed by 2-D hydrodynamic codes. The use of porous shock attenuators was evaluated. Experiments were performed on aluminum oxide powders in plane wave geometry. Microstructure evaluations were made as a function of location in the flat plate samples. 11 figures, 1 table

  10. Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS

    Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim

    2015-03-01

    In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.

  11. Compact Triple-Band Antenna Employing Simplified MTLs for Wireless Applications

    Zhangjing Wang

    2016-01-01

    Full Text Available A compact triple-band asymmetric coplanar waveguide- (ACPW- fed antenna based on simplified metamaterial transmission lines (SMTLs is proposed in this paper. The antenna consists of two SMTL unit cells of the same dimension. Three operating bands, which cover UMTS in the 1.76 GHz band and WLAN in the 5.2 GHz and 5.8 GHz, are achieved when the zeroth-order and first-positive-order modes appear. The characteristics of the proposed transmission line metamaterial structure are studied in detail by circuit analysis and dispersion analysis. The working mechanism and radiation performances of the antenna are examined and illustrated at the three operating bands, respectively. A prototype designed on FR4 substrate with dielectric constant 4.3 occupies an overall size of 12.55 × 22.7 × 1.6 mm3 and is constructed and successfully measured.

  12. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-01-01

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches

  13. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.

    2014-07-01

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  14. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues

    Gabriel, S.; Lau, R.W.; Gabriel, C.

    1996-01-01

    A parametric model was developed to describe the variation of dielectric properties of tissues as a function of frequency. The experimental spectrum from 10 Hz to 100 GHz was modelled with four dispersion regions. The development of the model was based on recently acquired data, complemented by data surveyed from the literature. The purpose is to enable the prediction of dielectric data that are in line with those contained in the vast body of literature on the subject. The analysis was carried out on a Microsoft Excel spreadsheet. Parameters are given for 17 tissue types. (author)

  15. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Unknown

    Abstract. Dielectric properties such as dielectric constant (ε′) and dielectric loss tangent (tan δ) of mixed. Mn–Zn–Er ferrites having the compositional formula Mn0⋅58Zn0⋅37Fe2⋅05–xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were measured at room temperature in the frequency range 1–13 MHz using a HP ...

  16. Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    Krasnok, Alex; Caldarola, Martin; Bonod, Nicolas; Alú, Andrea

    2017-01-01

    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effec...

  17. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  18. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  19. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  20. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  1. Dielectric constant of ionic solutions: a field-theory approach.

    Levy, Amir; Andelman, David; Orland, Henri

    2012-06-01

    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

  2. Improved dielectric functions in metallic films obtained via template stripping

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  3. Stretched exponential relaxation and ac universality in disordered dielectrics

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens

    2007-01-01

    This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are stretc......This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues...

  4. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  5. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  6. JAPC Compact Simulator evolution to latest integration

    Nabeta, T.; Nakayama, Y.

    1999-01-01

    This paper describes the evolution of JAPC compact simulator from the first installation in 1988 until recent integration with SIMULATE-3 engineering code core model and extended simulation for Mid-loop operation and severe accidents. JAPC Compact Simulator has an advanced super compact rotating panel design. Three plants, Tokai 2 (GE BWR 5), Tsuruga 1 (GE BWR 2), Tsuruga 2 (MHI PWR 4-Loop) are simulated. The simulator has been used for training of operator and engineering personnel, and has continuously been upgraded to follow normal plant modifications as well as development in modeling and computer technology. The integration of SIMULATE-3 core model is, to our knowledge, the first integration of a real design code into a training simulator. SIMULATE-3 has been successfully integrated into the simulator and run in real time, without compromising the accuracy of SIMULATE-3. The code has been modified to also handle mid-loop operation and severe accidents. (author)

  7. Design study of the compact ERL

    Hajima, Ryoichi; Nakamura, Norio; Sakanaka, Shogo; Kobayashi, Yukinori

    2008-02-01

    Energy-recovery linac (ERL) is a promising device for future X-ray light sources, which can produce coherent X-rays and femto-second X-ray pulses. In Japan, we have organized a collaboration team, consisting of the members of KEK, JAEA, ISSP and other laboratories, toward realization of future ERL light sources, and started R and D efforts to establish accelerator technologies relevant to the ERL light source. In order to demonstrate all the accelerator technologies working together, we have decided to build a small facility, the Compact ERL. This report presents a design study of the Compact ERL, which includes R and D issues for each accelerator component, studies on the beam dynamics, performance of the Compact ERL as a light source of THz and X-ray. (author)

  8. Coherent states for quantum compact groups

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  9. Coherent states for quantum compact groups

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  10. Coherent states for quantum compact groups

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  11. May compact storage facilities be licensed

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  12. Powder and compaction characteristics of pregelatinized starches.

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  13. Challenges: a state and compact perspective

    Brown, H.

    1987-01-01

    The challenges facing states and compacts in their efforts to implement the Low-Level Waste Policy Amendments Act are described. Institutional challenges include: small-volume sites; compact maintenance; shifting agencies and changing personnel; and timing of progress. The technical challenge lies in the enormous number of plans, procedures, and regulations that have to be developed over the next four years. There are two main fiscal challenges: funding of day-to-day operations of compact commissions; and financing the siting and construction of new disposal sites. There are also two main regulatory challenges: host states must develop regulations for siting and selection of technology; and all states have to await federal regulations to be completed. The final challenge is political: whether a region can overcome public opposition and actually site a facility

  14. Optical absorption in compact and extended dendrimers

    Supritz, C.; Engelmann, A.; Reineker, P.

    2005-01-01

    Dendrimers are highly branched molecules, which are expected to be useful, for example, as efficient artificial light harvesting systems, in nano-technological or in medical applications. There are two different classes of dendrimers: compact dendrimers with constant distance between neighboring branching points throughout the macromolecule and extended dendrimers, where this distance increases from the system periphery to the center. We investigate the linear optical absorption spectra of these dendrimer types using the Frenkel exciton concept. The electron-phonon interaction is taken into account by introducing a heat bath that interacts with the exciton in a stochastic manner. We discuss compact dendrimers with equal excitation energies at all molecules, dendrimers with a functionalized core as well as with a whole branch functionalized. Furthermore the line shape of a compact dendrimer is discussed when neighboring molecules at the periphery interact and when all molecules have randomly distributed excitation energies due to disorder. Finally, we discuss two models for extended dendrimers

  15. Compaction and sedimentary basin analysis on Mars

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  16. Activation analysis of the compact ignition tokamak

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  17. Explaining compact groups as change alignments

    Mamon, G.A.

    1990-01-01

    The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams ampersand Rood 1987; Sulentic 1987; Hickson ampersand Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke ampersand Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups

  18. Observational properties of compact groups of galaxies

    Hickson, P.

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications

  19. Travelling water waves with compactly supported vorticity

    Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun

    2013-01-01

    In this paper, we prove the existence of two-dimensional, travelling, capillary-gravity, water waves with compactly supported vorticity. Specifically, we consider the cases where the vorticity is a δ-function (a point vortex), or has small compact support (a vortex patch). Using a global bifurcation theoretic argument, we construct a continuum of finite-amplitude, finite-vorticity solutions for the periodic point vortex problem. For the non-periodic case, with either a vortex point or patch, we prove the existence of a continuum of small-amplitude, small-vorticity solutions. (paper)

  20. Simulation of the metallic powders compaction process

    Prado, J.M.; Riera, M.D.

    1998-01-01

    The simulation by means of finite elements of the forming processes of mechanical components is a very useful tool for their design and validation. In this work, the simulation of the compaction of a metal powder is presented. The finite element software ABAQUS is used together with the modified CAM-clay plasticity model in order to represent the elastoplastic behaviour of the material. Density distributions are obtained and therefore the motion of the compaction punches which improve this distribution can be found. Stress distribution in the different parts of the mould can also be determined. (Author) 9 refs

  1. Ultra-compact Ku band rectenna

    Takacs , Alexandru; Aubert , Hervé; Charlot , Samuel

    2015-01-01

    International audience; This paper addresses an innovative and ultra-compact rectenna designed for energy harvesting or wireless power transfer applications. The presented rectenna uses a printed cross dipoles antenna array and a rectifier implemented with only one silicon Schottky diode. Experimental results show that 1.15 mW of DC power can be obtained for an optimal load impedance of 500 Ω using a compact rectenna (2.5 cm 2 or 0.6 square wavelength) illuminated by an electric field of 60 V...

  2. Spherical conformal models for compact stars

    Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-10-15

    We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)

  3. Compacted dimensions and singular plasmonic surfaces

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  4. SU-E-T-512: Electromagnetic Simulations of the Dielectric Wall Accelerator

    Uselmann, A; Mackie, T [University of Wisconsin and Morgridge Institute for Research, Madison, WI (United States)

    2014-06-01

    Purpose: To characterize and parametrically study the key components of a dielectric wall accelerator through electromagnetic modeling and particle tracking. Methods: Electromagnetic and particle tracking simulations were performed using a commercial code (CST Microwave Studio, CST Inc.) utilizing the finite integration technique. A dielectric wall accelerator consists of a series of stacked transmission lines sequentially fired in synchrony with an ion pulse. Numerous properties of the stacked transmission lines, including geometric, material, and electronic properties, were analyzed and varied in order to assess their impact on the transverse and axial electric fields. Additionally, stacks of transmission lines were simulated in order to quantify the parasitic effect observed in closely packed lines. Particle tracking simulations using the particle-in-cell method were performed on the various stacks to determine the impact of the above properties on the resultant phase space of the ions. Results: Examination of the simulation results show that novel geometries can shape the accelerating pulse in order to reduce the energy spread and increase the average energy of accelerated ions. Parasitic effects were quantified for various geometries and found to vary with distance from the end of the transmission line and along the beam axis. An optimal arrival time of an ion pulse relative to the triggering of the transmission lines for a given geometry was determined through parametric study. Benchmark simulations of single transmission lines agree well with published experimental results. Conclusion: This work characterized the behavior of the transmission lines used in a dielectric wall accelerator and used this information to improve them in novel ways. Utilizing novel geometries, we were able to improve the accelerating gradient and phase space of the accelerated particle bunch. Through simulation, we were able to discover and optimize design issues with the device at

  5. Influence of dielectric polarization upon PD transients: Use of hollow dielectric spheres

    McAllister, Iain Wilson

    1997-01-01

    Hollow glass spheres have recently been employed to provide a reproducible source of partial discharges. The influence of the shell permittivity upon the PD transients is examined. It is shown that, relative to the non-shell situation, the magnitude of such transients may be increased or decrease......, depending on the ratio of the shell-to-bulk dielectric permittivities....

  6. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  7. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung

    2016-01-01

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  8. Metallic nanoparticles in dielectrics: A comparative study

    Agambayev, Agamyrat; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.

    2017-01-01

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  9. Ionic conductivity and complexation in liquid dielectrics

    Zhakin, Anatolii I

    2003-01-01

    Electronic and ionic conductivity in nonpolar liquids is reviewed. Theoretical results on ionic complexation (formation of ion pairs and triplets, dipole-dipole chains, ion-dipole clusters) in liquid dielectrics in an intense external electric field are considered, and the relation between the complexation process and ionic conductivity is discussed. Experimental results supporting the possibility of complexation are presented and compared with theoretical calculations. Onsager's theory about the effect of an intense external electric field on ion-pair dissociation is corrected for the finite size of ions. (reviews of topical problems)

  10. Dielectric materials electrization by fast electrons

    Dyrkov, V.A.; Kononov, B.A.

    1990-01-01

    Electrization of short-circuited high-ohmage targets under irradiation by 50-200 keV electrons non-uniformly by volume is investigated both experimentally and theoretically. The obtained data show that effect of space charge field increases monotonically up to stationary state during irradiation. Time constant for space charge accumulation constitutes 1-10 min and has lower value for polymethylmethacrylate as compared with polyethyleneterephthalate and decreases with increase of beam current density. Good agreement of experimental and theoretical results for both materials confirms the validity of main positions of phonomenological model of space charge formation in dielectric materials under fast electron irradiation

  11. Operation regimes of a dielectric laser accelerator

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  12. Monitoring diver kinematics with dielectric elastomer sensors

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The

  13. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  14. Dielectric and Insulating Technology 2006 : Review & Forecast

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  15. Two-Channel Dielectric Wake Field Accelerator

    Hirshfield, Jay L.

    2012-01-01

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  16. Dielectric barrier discharge processing of aerospace materials

    Scott, S J; Figgures, C C; Dixon, D G

    2004-01-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin

  17. Metallic nanoparticles in dielectrics: A comparative study

    Agambayev, Agamyrat

    2017-10-25

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  18. Dielectric Relaxation of Water: Theory and Experiment

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)

  19. Conductorlike behavior of a photoemitting dielectric surface

    De, B. R.

    1979-01-01

    It has been suggested in the past that a uniformly illuminated photoemitting dielectric surface of finite extent acquires in the steady state a surface charge distribution as if the surface were conducting (i.e., the surface becomes equipotential). In this paper an analytical proof of this conductorlike behavior is given. The only restrictions are that the photoelectron emission from the surface has azimuthal symmetry and that the photosheath may be assumed to be collisionless. It is tacitly assumed that a steady state is attainable, which means that the photoelectron spectrum has a high-energy cutoff.

  20. Nano-CMOS gate dielectric engineering

    Wong, Hei

    2011-01-01

    According to Moore's Law, not only does the number of transistors in an integrated circuit double every two years, but transistor size also decreases at a predictable rate. At the rate we are going, the downsizing of CMOS transistors will reach the deca-nanometer scale by 2020. Accordingly, the gate dielectric thickness will be shrunk to less than half-nanometer oxide equivalent thickness (EOT) to maintain proper operation of the transistors, leaving high-k materials as the only viable solution for such small-scale EOT. This comprehensive, up-to-date text covering the physics, materials, devic