WorldWideScience

Sample records for common chromosomal aneuploidies

  1. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    Science.gov (United States)

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  2. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  3. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    Science.gov (United States)

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  4. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat.

    Science.gov (United States)

    Gao, Lihong; Diarso, Moussa; Zhang, Ai; Zhang, Huakun; Dong, Yuzhu; Liu, Lixia; Lv, Zhenling; Liu, Bao

    2016-01-01

    Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Constitutional aneuploidy and cancer predisposition.

    Science.gov (United States)

    Ganmore, Ithamar; Smooha, Gil; Izraeli, Shai

    2009-04-15

    Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are important not only for patient counseling and clinical management, but also for deciphering the mechanisms by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major constitutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition.

  6. Chromosomal Abnormalities Associated with Neural Tube Defects (I: Full Aneuploidy

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-12-01

    Full Text Available Fetuses with neural tube defects (NTDs carry a risk of chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with other structural abnormalities, and family history of chromosome aberrations. This article provides an overview of chromosomal abnormalities associated with NTDs in embryos, fetuses, and newborn patients, and a comprehensive review of numerical chromosomal abnormalities associated with NTDs, such as trisomy 18, trisomy 13, triploidy, trisomy 9, trisomy 2, trisomy 21, trisomy 7, trisomy 8, trisomy 14, trisomy 15, trisomy 16, trisomy 5 mosaicism, trisomy 11 mosaicism, trisomy 20 mosaicism, monosomy X, and tetraploidy. NTDs may be associated with aneuploidy. Perinatal identification of NTDs should alert one to the possibility of chromosomal abnormalities and prompt a thorough cytogenetic investigation and genetic counseling.

  7. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  8. Constitutional aneuploidy and cancer predisposition†

    Science.gov (United States)

    Ganmore, Ithamar; Smooha, Gil; Izraeli, Shai

    2009-01-01

    Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are important not only for patient counseling and clinical management, but also for deciphering the mechanisms by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major constitutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition. PMID:19297405

  9. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    Science.gov (United States)

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  10. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos.

    Science.gov (United States)

    McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H

    2018-04-24

    Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.

  11. Frequency of chromosomal aneuploidy in high quality embryos from young couples using preimplantation genetic screening

    Directory of Open Access Journals (Sweden)

    Farzaneh Fesahat

    2017-09-01

    Full Text Available Background: Selection of the best embryo for transfer is very important in assisted reproductive technology (ART. Using morphological assessment for this selection demonstrated that the correlation between embryo morphology and implantation potential is relatively weak. On the other hand, aneuploidy is a key genetic factor that can influence human reproductive success in ART. Objective: The aim of this lab trial study was to evaluate the incidence of aneuploidies in five chromosomes in the morphologically high-quality embryos from young patients undergoing ART for sex selection. Materials and Methods: A total of 97 high quality embryos from 23 women at the age of 37or younger years that had previously undergone preimplantation genetic screening for sex selection were included in this study. After washing, the slides of blastomeres from embryos of patients were reanalyzed by fluorescence in-situ hybridization for chromosomes 13, 18 and 21. Results: There was a significant rate of aneuploidy determination in the embryos using preimplantation genetic screening for both sex and three evaluated autosomal chromosomes compared to preimplantation genetic screening for only sex chromosomes (62.9% vs. 24.7%, p=0.000. The most frequent detected chromosomal aneuploidy was trisomy or monosomy of chromosome 13. Conclusion: There is considerable numbers of chromosomal abnormalities in embryos generated in vitro which cause in vitro fertilization failure and it seems that morphological characterization of embryos is not a suitable method for choosing the embryos without these abnormalities

  12. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  13. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    Science.gov (United States)

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  14. Aneuploidy involving chromosome 1 may be an early predictive marker of intestinal type gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L. [Royal Glamorgan Hospital, Ynysmaerdy, Llantrisant CF72 8XR (United Kingdom); Somasekar, A. [Institute of Life Science, Swansea School of Medicine, Swansea University, Swansea SA28PP (United Kingdom); Neath Port Talbot Hospital, Abertawe Bro Morgannwg University NHS Trust, Baglan Way, Port Talbot SA12 7BX (United Kingdom); Davies, D.J.; Cronin, J.; Doak, S.H. [Institute of Life Science, Swansea School of Medicine, Swansea University, Swansea SA28PP (United Kingdom); Alcolado, R. [Royal Glamorgan Hospital, Ynysmaerdy, Llantrisant CF72 8XR (United Kingdom); Williams, J.G. [Neath Port Talbot Hospital, Abertawe Bro Morgannwg University NHS Trust, Baglan Way, Port Talbot SA12 7BX (United Kingdom); Griffiths, A.P. [Department of Histopathology, Morriston Hospital, Abertawe Bro Morgannwg University NHS Trust, Morriston, SA66NL (United Kingdom); Baxter, J.N. [Department of Surgery, Morriston Hospital, Abertawe Bro Morgannwg University NHS Trust, Morriston, SA66NL (United Kingdom); Jenkins, G.J.S., E-mail: g.j.jenkins@swansea.ac.uk [Institute of Life Science, Swansea School of Medicine, Swansea University, Swansea SA28PP (United Kingdom)

    2009-10-02

    Intestinal type gastric cancer is a significant cause of mortality, therefore a better understanding of its molecular basis is required. We assessed if either aneuploidy or activity of the oncogenic transcription factor nuclear factor kappa B (NF-{kappa}B), increased incrementally during pre-malignant gastric histological progression and also if they correlated with each other in patient samples, as they are both induced by oxygen free radicals. In a prospective study of 54 (aneuploidy) and 59 (NF-{kappa}B) consecutive patients, aneuploidy was assessed by interphase fluorescent in situ hybridisation (FISH) for chromosome 1. NF-{kappa}B was assessed by expression of interleukin-8 (IL-8), and in a subset, by immunohistochemistry (IHC) for active p65. Aneuploidy levels increased incrementally across the histological series. 2.76% of cells with normal histology (95% CI, 2.14-3.38%) showed background levels of aneuploidy, this increased to averages of 3.78% (95% CI, 3.21-4.35%), 5.89% (95% CI, 3.72-8.06%) and 7.29% (95% CI, 4.73-9.85%) of cells from patients with gastritis, Helicobacter pylori positive gastritis and atrophy/intestinal metaplasia (IM) respectively. IL-8 expression was only increased in patients with current H. pylori infection. NF-{kappa}B analysis showed some increased p65 activity in inflamed tissues. IL-8 expression and aneuploidy level were not linked in individual patients. Aneuploidy levels increased incrementally during histological progression; were significantly elevated at very early stages of neoplastic progression and could well be linked to cancer development and used to assess cancer risk. Reactive oxygen species (ROS) induced in early gastric cancer are presumably responsible for the stepwise accumulation of this particular mutation, i.e. aneuploidy. Hence, aneuploidy measured by fluorescent in situ hybridisation (FISH) coupled to brush cytology, would be worthy of consideration as a predictive marker in gastric cancer and could be

  15. Aneuploidy involving chromosome 1 may be an early predictive marker of intestinal type gastric cancer

    International Nuclear Information System (INIS)

    Williams, L.; Somasekar, A.; Davies, D.J.; Cronin, J.; Doak, S.H.; Alcolado, R.; Williams, J.G.; Griffiths, A.P.; Baxter, J.N.; Jenkins, G.J.S.

    2009-01-01

    Intestinal type gastric cancer is a significant cause of mortality, therefore a better understanding of its molecular basis is required. We assessed if either aneuploidy or activity of the oncogenic transcription factor nuclear factor kappa B (NF-κB), increased incrementally during pre-malignant gastric histological progression and also if they correlated with each other in patient samples, as they are both induced by oxygen free radicals. In a prospective study of 54 (aneuploidy) and 59 (NF-κB) consecutive patients, aneuploidy was assessed by interphase fluorescent in situ hybridisation (FISH) for chromosome 1. NF-κB was assessed by expression of interleukin-8 (IL-8), and in a subset, by immunohistochemistry (IHC) for active p65. Aneuploidy levels increased incrementally across the histological series. 2.76% of cells with normal histology (95% CI, 2.14-3.38%) showed background levels of aneuploidy, this increased to averages of 3.78% (95% CI, 3.21-4.35%), 5.89% (95% CI, 3.72-8.06%) and 7.29% (95% CI, 4.73-9.85%) of cells from patients with gastritis, Helicobacter pylori positive gastritis and atrophy/intestinal metaplasia (IM) respectively. IL-8 expression was only increased in patients with current H. pylori infection. NF-κB analysis showed some increased p65 activity in inflamed tissues. IL-8 expression and aneuploidy level were not linked in individual patients. Aneuploidy levels increased incrementally during histological progression; were significantly elevated at very early stages of neoplastic progression and could well be linked to cancer development and used to assess cancer risk. Reactive oxygen species (ROS) induced in early gastric cancer are presumably responsible for the stepwise accumulation of this particular mutation, i.e. aneuploidy. Hence, aneuploidy measured by fluorescent in situ hybridisation (FISH) coupled to brush cytology, would be worthy of consideration as a predictive marker in gastric cancer and could be clinically useful in pre

  16. Psychotic disorder and its characteristics in sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Annapia Verri

    2009-09-01

    Full Text Available Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.

  17. Frequency of chromosome 17 aneuploidy in primary and recurrent pterygium by interphase-fluorescence in situ hybridization.

    Science.gov (United States)

    Kamis, Umit; Kerimoglu, Hurkan; Ozkagnici, Ahmet; Acar, Hasan

    2006-01-01

    To investigate chromosome 17 numerical aberrations by using fluorescence in situ hybridization (FISH) in pterygia and to find out whether there is any association between chromosome 17 aneuploidy and recurrent pterygia. Pterygium tissue samples were taken from 21 patients by surgical excision. Eighteen of them had primary and 3 had recurrent pterygium. Peripheral whole blood interphase cells obtained from 11 healthy subjects were assigned as control group. The cells from pterygium tissue and peripheral blood were incubated with a hypotonic solution and fixed in order to obtain interphase nuclei. FISH analysis with chromosome-17-specific alpha-satellite DNA probe was performed on both the interphase nuclei of pterygium tissue (of patients) and peripheral whole blood cells of controls. The mean percentage of chromosome 17 aneuploidy was 4.71% for the pterygia group and 4.41% for the controls. No significant difference of chromosome 17 aneuploidy was observed between the patients and the controls. When the group of patients with recurrences was compared with the group without recurrences, there was a significant difference in the frequency of chromosome 17 aneuploidy (U = 17, p = 0.029). Chromosome 17 aneuploidy is probably not an important factor in the formation of pterygium, but it may be related to recurrence.

  18. Molecular diagnostic testing for Klinefelter syndrome and other male sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Hager Karl

    2012-04-01

    Full Text Available Abstract Background Male sex chromosome aneuploidies are underdiagnosed despite concomitant physical and behavioral manifestations. Objective To develop a non-invasive, rapid and high-throughput molecular diagnostic assay for detection of male sex chromosome aneuploidies, including 47,XXY (Klinefelter, 47,XYY, 48,XXYY and 48,XXXY syndromes. Methods The assay utilizes three XYM and four XA markers to interrogate Y:X and X:autosome ratios, respectively. The seven markers were PCR amplified using genomic DNA isolated from a cohort of 323 males with aneuploid (n = 117 and 46,XY (n = 206 karyotypes. The resulting PCR products were subjected to Pyrosequencing, a quantitative DNA sequencing method. Results Receiver operator characteristic (ROC curves were used to establish thresholds for the discrimination of aneuploid from normal samples. The XYM markers permitted the identification of 47,XXY, 48,XXXY and 47,XYY syndromes with 100% sensitivity and specificity in both purified DNA and buccal swab samples. The 48,XXYY karyotype was delineated by XA marker data from 46,XY; an X allele threshold of 43% also permitted detection of 48,XXYY with 100% sensitivity and specificity. Analysis of X chromosome-specific biallelic SNPs demonstrated that 43 of 45 individuals (96% with 48,XXYY karyotype had two distinct X chromosomes, while 2 (4% had a duplicate X, providing evidence that 48,XXYY may result from nondisjunction during early mitotic divisions of a 46,XY embryo. Conclusions Quantitative Pyrosequencing, with high-throughput potential, can detect male sex chromosome aneuploidies with 100% sensitivity.

  19. Sex chromosome aneuploidy in cytogenetic findings of referral patients from south of Iran

    Directory of Open Access Journals (Sweden)

    Najmeh Jouyan

    2012-01-01

    Full Text Available Background: Chromosome abnormality (CA including Sex chromosomes abnormality (SCAs is one of the most important causes of disordered sexual development and infertility. SCAs formed by numerical or structural alteration in X and Y chromosomes, are the most frequently CA encountered at both prenatal diagnosis and at birth. Objective: This study describes cytogenetic findings of cases suspected with CA referred for cytogenetic study. Materials and Methods: Blood samples of 4151 patients referred for cytogenetic analysis were cultured for chromosome preparation. Karyotypes were prepared for all samples and G-Banded chromosomes were analyzed using x100 objective lens. Sex chromosome aneuploidy cases were analyzed and categorized in two groups of Turners and Klinefelter’s syndrome (KFS. Results: Out of 230 (5.54% cases with chromosomally abnormal karyotype, 122 (30% cases suspected of sexual disorder showed SCA including 46% Turner’s syndrome, 46% KFS and the remaining other sex chromosome abnormalities. The frequency of classic and mosaic form of Turner’s syndrome was 33% and 67%, this was 55% and 45% for KFS, respectively. Conclusion: This study shows a relatively high sex chromosome abnormality in this region and provides cytogenetic data to assist clinicians and genetic counselors to determine the priority of requesting cytogenetic study. Differences between results from various reports can be due to different genetic background or ethnicity.

  20. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    Science.gov (United States)

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women.

    Science.gov (United States)

    Badeau, Mylène; Lindsay, Carmen; Blais, Jonatan; Nshimyumukiza, Leon; Takwoingi, Yemisi; Langlois, Sylvie; Légaré, France; Giguère, Yves; Turgeon, Alexis F; Witteman, William; Rousseau, François

    2017-11-10

    Common fetal aneuploidies include Down syndrome (trisomy 21 or T21), Edward syndrome (trisomy 18 or T18), Patau syndrome (trisomy 13 or T13), Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Triple X syndrome (47,XXX) and 47,XYY syndrome (47,XYY). Prenatal screening for fetal aneuploidies is standard care in many countries, but current biochemical and ultrasound tests have high false negative and false positive rates. The discovery of fetal circulating cell-free DNA (ccfDNA) in maternal blood offers the potential for genomics-based non-invasive prenatal testing (gNIPT) as a more accurate screening method. Two approaches used for gNIPT are massively parallel shotgun sequencing (MPSS) and targeted massively parallel sequencing (TMPS). To evaluate and compare the diagnostic accuracy of MPSS and TMPS for gNIPT as a first-tier test in unselected populations of pregnant women undergoing aneuploidy screening or as a second-tier test in pregnant women considered to be high risk after first-tier screening for common fetal aneuploidies. The gNIPT results were confirmed by a reference standard such as fetal karyotype or neonatal clinical examination. We searched 13 databases (including MEDLINE, Embase and Web of Science) from 1 January 2007 to 12 July 2016 without any language, search filter or publication type restrictions. We also screened reference lists of relevant full-text articles, websites of private prenatal diagnosis companies and conference abstracts. Studies could include pregnant women of any age, ethnicity and gestational age with singleton or multifetal pregnancy. The women must have had a screening test for fetal aneuploidy by MPSS or TMPS and a reference standard such as fetal karyotype or medical records from birth. Two review authors independently carried out study selection, data extraction and quality assessment (using the QUADAS-2 tool). Where possible, hierarchical models or simpler alternatives were used for meta-analysis. Sixty-five studies of

  2. Chromosome Connections: Compelling Clues to Common Ancestry

    Science.gov (United States)

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  3. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  4. Attention-deficit hyperactivity disorder symptoms in children and adolescents with sex chromosome aneuploidy: XXY, XXX, XYY, and XXYY.

    Science.gov (United States)

    Tartaglia, Nicole R; Ayari, Natalie; Hutaff-Lee, Christa; Boada, Richard

    2012-05-01

    Attentional problems, hyperactivity, and impulsivity have been described as behavioral features associated with sex chromosome aneuploidy (SCA). In this study, the authors compare attention-deficit hyperactivity disorder (ADHD) symptoms in 167 participants aged 6 to 20 years with 4 types of SCA (XXY n = 56, XYY n = 33, XXX n = 25, and XXYY n = 53). They also evaluate factors associated with ADHD symptomatology (cognitive and adaptive scores, prenatal vs postnatal ascertainment) and describe the clinical response to psychopharmacologic medications in a subset of patients treated for ADHD. Evaluation included medical and developmental history, cognitive and adaptive functioning assessment, and parent and teacher ADHD questionnaires containing DSM-IV criteria. In the total study group, 58% (96/167) met DSM-IV criteria for ADHD on parent-report questionnaires (36% in XXY, 52% in XXX, 76% in XYY, and 72% in XXYY). The Inattentive subtype was most common in XXY and XXX, whereas the XYY and XXYY groups were more likely to also have hyperactive/impulsive symptoms. There were no significant differences in Verbal, Performance, or Full Scale IQ between children with symptom scores in the ADHD range compared with those below the ADHD range. However, adaptive functioning scores were significantly lower in the group whose scores in the ADHD range were compared with those of the group who did not meet ADHD DSM-IV criteria. Those with a prenatal diagnosis of XXY were less likely to meet criteria for ADHD compared with the postnatally diagnosed group. Psychopharmacologic treatment with stimulants was effective in 78.6% (66/84). Children and adolescents with SCA are at increased risk for ADHD symptoms. Recommendations for ADHD evaluation and treatment in consideration of other aspects of the SCA medical and behavioral phenotype are provided.

  5. “How should I tell my child?” Disclosing the Diagnosis of Sex Chromosome Aneuploidies

    Science.gov (United States)

    Dennis, Anna; Howell, Susan; Cordeiro, Lisa; Tartaglia, Nicole

    2017-01-01

    To date, the disclosure of a sex chromosome aneuploidy (SCA) diagnosis to an affected individual has not been explored. This study aimed to assess the timing and content revealed to an affected child by his or her parent(s), resources accessed in preparation, parental feelings of preparedness, common parental concerns, and recommendations for disclosure approaches. Two online surveys were created: 1) for parents of a child with a diagnosis and 2) for individuals with a diagnosis. One-hundred thirty-nine parent surveys (XXY n=68, XXX n=21, XYY n=9, other SCAs n=41) and 67 individual surveys (XXY n=58, XXX n=9) were analyzed. Parents most frequently discussed the topics of learning disabilities (47%) and genetics (45%) with their child during the initial disclosure. A significantly greater proportion of parent respondents reported feeling prepared vs. unprepared for disclosure, regardless of their child’s diagnosis (z-test of proportions, all p’sparents most frequently accessed resources such as websites, support groups, and discussion with the child’s physician prior to disclosure, with unprepared parents accessing fewer resources (M = 2.0 ± 1.41) than prepared parents [M= 2. ± 1.56; t(101) = −2.02, pparental concerns included making the conversation age-appropriate, discussing infertility, and possible impact on the child’s self-esteem. Both parent and individual respondents endorsed being honest with the child, disclosing the diagnosis early and before puberty, and discussing the diagnosis gradually over time. These results provide recommendations for parents, and suggest benefits from additional resources and supports to alleviate concerns when approaching diagnosis disclosure. PMID:25179748

  6. Evaluation of Chromosomal Abnormalities and Common ...

    African Journals Online (AJOL)

    Evaluation of Chromosomal Abnormalities and Common Trombophilic Mutations in Cases with Recurrent Miscarriage. Ahmet Karatas, Recep Eroz, Mustafa Albayrak, Tulay Ozlu, Bulent Cakmak, Fatih Keskin ...

  7. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging.

    Science.gov (United States)

    Capalbo, Antonio; Hoffmann, Eva R; Cimadomo, Danilo; Ubaldi, Filippo Maria; Rienzi, Laura

    2017-11-01

    The unbalanced transmission of chromosomes in human gametes and early preimplantation embryos causes aneuploidy, which is a major cause of infertility and pregnancy failure. A baseline of 20% of human oocytes are estimated to be aneuploid and this increases exponentially from 30 to 35 years, reaching on average 80% by 42 years. As a result, reproductive senescence in human females is predominantly determined by the accelerated decline in genetic quality of oocytes from 30 years of age. Understanding mechanisms of chromosome segregation and aneuploidies in the female germline is a crucial step towards the development of new diagnostic approaches and, possibly, for the development of therapeutic targets and molecules. Here, we have reviewed emerging mechanisms that may drive human aneuploidy, in particular the maternal age effect. We conducted a systematic search in PubMed Central of the primary literature from 1990 through 2016 following the PRISMA guidelines, using MeSH terms related to human aneuploidy. For model organism research, we conducted a literature review based on references in human oocytes manuscripts and general reviews related to chromosome segregation in meiosis and mitosis. Advances in genomic and imaging technologies are allowing unprecedented insight into chromosome segregation in human oocytes. This includes the identification of a novel chromosome segregation error, termed reverse segregation, as well as sister kinetochore configurations that were not predicted based on murine models. Elucidation of mechanisms that result in errors in chromosome segregation in meiosis may lead to therapeutic developments that could improve reproductive outcomes by reducing aneuploidy. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Williams Briana

    2003-10-01

    Full Text Available Abstract Background In Arabidopsis thaliana, the gene Tousled encodes a protein kinase of unknown function, but mutations in the gene lead to flowering and leaf morphology defects. We have recently cloned a mammalian Tousled-Like Kinase (TLK1B and found that it phosphorylates specifically histone H3, in vitro and in vivo. We now report the effects that overexpression of a kinase-dead mutant of TLK1B mediates in a normal diploid cell line. Results Expression of a kinase-dead mutant resulted in reduction of phosphorylated histone H3, which could have consequences in mitotic segregation of chromosomes. When analyzed by FACS and microscopy, these cells displayed high chromosome number instability and aneuploidy. This phenomenon was accompanied by less condensed chromosomes at mitosis; failure of a number of chromosomes to align properly on the metaphase plate; failure of some chromosomes to attach to microtubules; and the occasional presentation of two bipolar spindles. We also used a different method (siRNA to reduce the level of endogenous TLK1, but in this case, the main result was a strong block of cell cycle progression suggesting that TLK1 may also play a role in progression from G1. This block in S phase progression could also offer a different explanation of some of the later mitotic defects. Conclusions TLK1 has a function important for proper chromosome segregation and maintenance of diploid cells at mitosis in mammalian cells that could be mediated by reduced phosphorylation of histone H3 and condensation of chromosomes, although other explanations to the phenotype are possible.

  9. The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis.

    Science.gov (United States)

    Phillips, J L; Hayward, S W; Wang, Y; Vasselli, J; Pavlovich, C; Padilla-Nash, H; Pezullo, J R; Ghadimi, B M; Grossfeld, G D; Rivera, A; Linehan, W M; Cunha, G R; Ried, T

    2001-11-15

    Here we report the genetic characterization of immortalized prostate epithelial cells before and after conversion to tumorigenicity using molecular cytogenetics and microarray technology. We were particularly interested to analyze the consequences of acquired chromosomal aneuploidies with respect to modifications of gene expression profiles. Compared with nontumorigenic but immortalized prostate epithelium, prostate tumor cell lines showed high levels of chromosomal rearrangements that led to gains of 1p, 5, 11q, 12p, 16q, and 20q and losses of 1pter, 11p, 17, 20p, 21, 22, and Y. Of 5700 unique targets on a 6.5K cDNA microarray, approximately 3% were subject to modification in expression levels; these included GRO-1, -2, IAP-1,- 2, MMP-9, and cyclin D1, which showed increased expression, and TRAIL, BRCA1, and CTNNA, which showed decreased expression. Thirty % of expression changes occurred in regions the genomic copy number of which remained balanced. Of the remainder, 42% of down-regulated and 51% of up-regulated genes mapped to regions present in decreased or increased genomic copy numbers, respectively. A relative gain or loss of a chromosome or chromosomal arm usually resulted in a statistically significant increase or decrease, respectively, in the average expression level of all of the genes on the chromosome. However, of these genes, very few (e.g., 5 of 101 genes on chromosome 11q), and in some instances only two genes (MMP-9 and PROCR on chromosome 20q), were overexpressed by > or =1.7-fold when scored individually. Cluster analysis by gene function suggests that prostate tumorigenesis in these cell line models involves alterations in gene expression that may favor invasion, prevent apoptosis, and promote growth.

  10. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma

    Science.gov (United States)

    Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Seabra, Aline Damaceno; Khayat, André Salim; Chen, Elizabeth Suchi; Demachki, Samia; Assumpção, Paulo Pimentel; Faria, Mario Henrique Girão; Rabenhorst, Silvia Helena Barem; Ferreira, Márcia Valéria Pitombeira; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodríguez

    2006-01-01

    AIM: To investigate chromosome 8 numerical aberrations, C-MYC oncogene alterations and its expression in gastric cancer and to correlate these findings with histopathological characteristics of gastric tumors. METHODS: Specimens were collected surgically from seven patients with gastric adenocarcinomas. Immunostaining for C-MYC and dual-color fluorescence in situ hybridization (FISH) for C-MYC gene and chromosome 8 centromere were performed. RESULTS: All the cases showed chromosome 8 aneuploidy and C-MYC amplification, in both the diffuse and intestinal histopathological types of Lauren. No significant difference (P < 0.05) was observed between the level of chromosome 8 ploidy and the site, stage or histological type of the adenocarcinomas. C-MYC high amplification, like homogeneously stained regions (HSRs) and double minutes (DMs), was observed only in the intestinal-type. Structural rearrangement of C-MYC, like translocation, was observed only in the diffuse type. Regarding C-MYC gene, a significant difference (P < 0.05) was observed between the two histological types. The C-MYC protein was expressed in all the studied cases. In the intestinal-type the C-MYC immunoreactivity was localized only in the nucleus and in the diffuse type in the nucleus and cytoplasm. CONCLUSION: Distinct patterns of alterations between intestinal and diffuse types of gastric tumors support the hypothesis that these types follow different genetic pathways. PMID:17036397

  11. Failure to thrive as primary feature in two patients with subtle chromosomal aneuploidy: Interstitial deletion 2q33

    Energy Technology Data Exchange (ETDEWEB)

    Grace, K.; Mulla, W.; Stump, T. [Children`s Hospital of Philadelpha, PA (United States)] [and others

    1994-09-01

    It is well known that patients with chromosomal aneuploidy present with multiple congenital anomalies and dysmorphia, and that they may have associated failure to thrive. However, rarely is failure to thrive the predominant presenting feature. We report two such patients. Patient 1 had a marked history of failure to thrive, (weight 50% for 5 1/2 months at 20 months, length 50% for 15 months at 20 months). Patient 2 was noted to be growth retarded at 2 months upon presenting to the hospital with respiratory symptoms (weight 50% for a newborn, length 50% for 36 weeks gestation). There was relative head sparing in both patients. Chromosome analysis in patient 1, prompted by a negative work-up for the failure to thrive, and emerging evidence of developmental delay, revealed a 46,XY,del(2)(q32.2q33) karyotype. Chromosome analysis in patient 2, done as part of a complete workup for the failure to thrive, revealed a 46,XX,del(2)(q33.2q33.2 or q33.2q33.3) karyotype. On careful examination, subtle dysmorphic features were seen. In both patients these included a long flat philtrum, thin upper lip and high arched palate. Patient 1 also had a small posterior cleft of the palate. These patients have the smallest interstitial deletions of chromosome 2 so far reported. Their deletions overlap within 2q33 although they are not identical. Review of the literature reveals 15 patients with interstitial deletions which include 2q33. Marked growth retardation is reported in 14 of these cases. Cleft palate/abnormal uvula were frequently associated. These cases illustrate the need to include high resolution chromosomal studies as part of a complete work-up for unexplained failure to thrive.

  12. Correlation of HER2 overexpression with gene amplification and its relation to chromosome 17 aneuploidy: a 5-year experience with invasive ductal and lobular carcinomas.

    Science.gov (United States)

    Nassar, Aziza; Khoor, Andras; Radhakrishnan, Reshmitha; Radhakrishnan, Anu; Cohen, Cynthia

    2014-01-01

    The HER2 oncogene shows expression or amplification, or both, in approximately 15% to 20% of breast cancers and has been associated with poor prognosis and a response to trastuzumab therapy. HER2 gene status determines the eligibility of breast cancer patients for trastuzumab therapy and a large fraction (41-56%) of these patients respond to targeted therapy. Several studies have related the increased expression of HER2 to an increased copy number of chromosome 17, rather than amplification of the HER2 gene. We compared the results of immunohistochemistry and fluorescence in situ hybridization in both invasive ductal and invasive lobular carcinomas, to determine the frequency of chromosome 17 aneuploidy associated with discordant results. In total, 390 invasive ductal carcinomas and 180 invasive lobular carcinomas diagnosed from January 2000 to December 2005 were included in the study only if results were available for immunohistochemistry (HercepTest; DAKO, Carpinteria, California) and fluorescence in situ hybridization (PathVysion HER2 DNA Probe Kit; Abbott Laboratories, Des Plaines, Illinois). Tumors classified as invasive ductal carcinomas were graded according to the Bloom-Richardson grading system. Correlation between the results of immunohistochemistry and fluorescence in situ hybridization was performed for all categories. Among invasive ductal carcinomas, 29% (115/390) showed chromosome 17 aneuploidy, mostly associated with grade 3/HER2 2+ (45%) or grade 2/HER2 3+ (55%) that were not amplified. Also, 34% (12/35) of invasive lobular carcinomas showed chromosome 17 aneuploidy; approximately one-third of these cases were HER2 2+ (33%) and HER2 3+ (37%) that were not amplified. Discordance between the results of immunohistochemistry and fluorescence in situ hybridization in both ductal and lobular carcinomas is largely associated with chromosome 17 aneuploidy.

  13. The eXtraordinarY Kids Clinic: an interdisciplinary model of care for children and adolescents with sex chromosome aneuploidy

    Directory of Open Access Journals (Sweden)

    Tartaglia N

    2015-07-01

    Full Text Available Nicole Tartaglia,1,2 Susan Howell,1,2 Rebecca Wilson,2 Jennifer Janusz,1,2 Richard Boada,1,2 Sydney Martin,2 Jacqueline B Frazier,2 Michelle Pfeiffer,2 Karen Regan,2 Sarah McSwegin,2 Philip Zeitler1,2 1Department of Pediatrics, University of Colorado School of Medicine, 2Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA Purpose: Individuals with sex chromosome aneuploidies (SCAs are born with an atypical number of X and/or Y chromosomes, and present with a range of medical, developmental, educational, behavioral, and psychological concerns. Rates of SCA diagnoses in infants and children are increasing, and there is a need for specialized interdisciplinary care to address associated risks. The eXtraordinarY Kids Clinic was established to provide comprehensive and experienced care for children and adolescents with SCA, with an interdisciplinary team composed of developmental–behavioral pediatrics, endocrinology, genetic counseling, child psychology, pediatric neuropsychology, speech–language pathology, occupational therapy, nursing, and social work. The clinic model includes an interdisciplinary approach to care, where assessment results by each discipline are integrated to develop unified diagnostic impressions and treatment plans individualized for each patient. Additional objectives of the eXtraordinarY Kids Clinic program include prenatal genetic counseling, research, education, family support, and advocacy. Methods: Satisfaction surveys were distributed to 496 patients, and responses were received from 168 unique patients. Results: Satisfaction with the overall clinic visit was ranked as “very satisfied” in 85%, and as “satisfied” in another 9.8%. Results further demonstrate specific benefits from the clinic experience, the importance of a knowledgeable clinic coordinator, and support the need for similar clinics across the country. Three case examples of the interdisciplinary approach to assessment and

  14. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy

    DEFF Research Database (Denmark)

    Ottesen, Anne-Marie; Aksglaede, Lise; Garn, Inger

    2010-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients wi......,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height....

  15. Chromosomal and cytoplasmic context determines predisposition to maternal age-related aneuploidy: brief overview and update on MCAK in mammalian oocytes.

    Science.gov (United States)

    Eichenlaub-Ritter, Ursula; Staubach, Nora; Trapphoff, Tom

    2010-12-01

    It has been known for more than half a century that the risk of conceiving a child with trisomy increases with advanced maternal age. However, the origin of the high susceptibility to nondisjunction of whole chromosomes and precocious separation of sister chromatids, leading to aneuploidy in aged oocytes and embryos derived from them, cannot be traced back to a single disturbance and mechanism. Instead, analysis of recombination patterns of meiotic chromosomes of spread oocytes from embryonal ovary, and of origins and exchange patterns of extra chromosomes in trisomies, as well as morphological and molecular studies of oocytes and somatic cells from young and aged females, show chromosome-specific risk patterns and cellular aberrations related to the chronological age of the female. In addition, analysis of the function of meiotic- and cell-cycle-regulating genes in oogenesis, and the study of the spindle and chromosomal status of maturing oocytes, suggest that several events contribute synergistically to errors in chromosome segregation in aged oocytes in a chromosome-specific fashion. For instance, loss of cohesion may differentially predispose chromosomes with distal or pericentromeric chiasmata to nondisjunction. Studies on expression in young and aged oocytes from human or model organisms, like the mouse, indicate that the presence and functionality/activity of gene products involved in cell-cycle regulation, spindle formation and organelle integrity may be altered in aged oocytes, thus contributing to a high risk of error in chromosome segregation in meiosis I and II. Genes that are often altered in aged mouse oocytes include MCAK (mitotic-centromere-associated protein), a microtubule depolymerase, and AURKB (Aurora kinase B), a protein of the chromosomal passenger complex that has many targets and can also phosphorylate and regulate MCAK localization and activity. Therefore we explored the role of MCAK in maturing mouse oocytes by immunofluorescence

  16. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  17. Chromokinesins: Possible Generators of Cancer-Associated Aneuploidy

    National Research Council Canada - National Science Library

    Sharp, David J; Buster, Daniel W

    2005-01-01

    .... Chromokinesins, a family of chromosome-associated microtubule motors, are potential generators of aneuploidy since they are believed to participate in spindle morphogenesis and chromosome movements during mitosis...

  18. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): systematic review.

    Science.gov (United States)

    Lee, Evelyn; Illingworth, Peter; Wilton, Leeanda; Chambers, Georgina Mary

    2015-02-01

    Is preimplantation genetic diagnosis for aneuploidy (PGD-A) with analysis of all chromosomes during assisted reproductive technology (ART) clinically and cost effective? The majority of published studies comparing a strategy of PGD-A with morphologically assessed embryos have reported a higher implantation rate per embryo using PGD-A, but insufficient data has been presented to evaluate the clinical and cost-effectiveness of PGD-A in the clinical setting. Aneuploidy is a leading cause of implantation failure, miscarriage and congenital abnormalities in humans, and a significant cause of ART failure. Preclinical evidence of PGD-A indicates that the selection and transfer of euploid embryos during ART should improve clinical outcomes. A systematic review of the literature was performed for full text English language articles using MEDLINE, EMBASE, SCOPUS, Cochrane Library databases, NHS Economic Evaluation Database and EconLit. The Downs and Black scoring checklist was used to assess the quality of studies. Clinical effectiveness was measured in terms of pregnancy, live birth and miscarriage rates. Nineteen articles meeting the inclusion criteria, comprising three RCTs in young and good prognosis patients and 16 observation studies were identified. Five of the observational studies included a control group of patients where embryos were selected based on morphological criteria (matched cohort studies). Of the five studies that included a control group and reported implantation rates, four studies (including two RCTs) demonstrated improved implantation rates in the PGD-A group. Of the eight studies that included a control group, six studies (including two RCTs) reported significantly higher pregnancy rates in the PGD-A group, and in the remaining two studies, equivalent pregnancies rates were reported despite fewer embryos being transferred in the PGD-A group. The three RCTs demonstrated benefit in young and good prognosis patients in terms of clinical pregnancy rates

  19. Rapid aneuploidy diagnosis by multiplex ligation-dependent probe amplification and array comparative genomic hybridization in pregnancy with major congenital malformations

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2011-03-01

    Conclusions: Prenatal diagnosis of major congenital malformations should alert one to the possibility of chromosomal abnormalities. Multiplex ligation-dependent probe amplification and aCGH have the advantage of rapid aneuploidy diagnosis of common aneuploidies in cases with major congenital malformations.

  20. Genomic and Functional Approaches to Understanding Cancer Aneuploidy

    NARCIS (Netherlands)

    Taylor, Alison M.; Shih, Juliann; Ha, Gavin; Gao, Galen F.; Zhang, Xiaoyang; Berger, Ashton C.; Schumacher, Steven E.; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Cherniack, Andrew D.; Beroukhim, Rameen; Meyerson, Matthew

    2018-01-01

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was

  1. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  2. Evaluation of chromosomal abnormalities and common trombophilic ...

    African Journals Online (AJOL)

    2014-03-01

    Mar 1, 2014 ... Infections, genetic, endocrine, anatomic and immunologic problems have been suggested as causes for RM. ... Metaphase chromosome preparations from the .... The rate of karyotypically abnormal abortion specimens.

  3. Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

    Science.gov (United States)

    Taylor, Alison M; Shih, Juliann; Ha, Gavin; Gao, Galen F; Zhang, Xiaoyang; Berger, Ashton C; Schumacher, Steven E; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J; Cherniack, Andrew D; Beroukhim, Rameen; Meyerson, Matthew

    2018-04-09

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Constitutional and acquired autosomal aneuploidy.

    Science.gov (United States)

    Jackson-Cook, Colleen

    2011-12-01

    Chromosomal imbalances can result from numerical or structural anomalies. Numerical chromosomal abnormalities are often referred to as aneuploid conditions. This article focuses on the occurrence of constitutional and acquired autosomal aneuploidy in humans. Topics covered include frequency, mosaicism, phenotypic findings, and etiology. The article concludes with a consideration of anticipated advances that might allow for the development of screening tests and/or lead to improvements in our understanding and management of the role that aneuploidy plays in the aging process and acquisition of age-related and constitutional conditions.

  5. Laboratory Exercises to Examine Recombination & Aneuploidy in "Drosophila"

    Science.gov (United States)

    Venema, Dennis R.

    2009-01-01

    Chromosomal aneuploidy, a deviation from an exact multiple of an organism's haploid chromosome number, is a difficult concept for students to master. Aneuploidy arising from chromosomal non-disjunction (NDJ) is particularly problematic for students, since it arises in the context of meiosis, itself a challenging subject. Students learning NDJ are…

  6. Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos

    DEFF Research Database (Denmark)

    Agerholm, I.E.; Hnida, C.; Cruger, D.G.

    2008-01-01

    Purpose The aim was to elucidate if the nuclear size and number are indicative of aberrant chromosome content in human blastomeres and embryos. Methods The number of nuclei and the nucleus and blastomere size were measured by a computer controlled system for multilevel analysis. Then the nuclei...... were enumerated for 13 chromosomes by a combination of PNA and DNA probes. Results In the mononucleated embryos there was no difference in the mean size of chromosomally normal and abnormal nuclei but a significant difference in the mean nuclei size of nuclei that had gained chromosomes compared...... to nuclei that had lost chromosomes. The nuclei from multinucleated blastomeres had a significant smaller mean size and the frequency of chromosomally aberrant blastomeres was significantly higher. Conclusion The mean nuclear size is not a marker for the chromosome content in mononucleated embryos. However...

  7. Chromosomal disorders and male infertility

    Institute of Scientific and Technical Information of China (English)

    Gary L Harton; Helen G Tempest

    2012-01-01

    infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family.Despite this,the molecular and genetic factors underlying the cause of infertility remain largely undiscovered.Nevertheless,more and more genetic factors associated with infertility are being identified.This review will focus on our current understanding of the chromosomal basis of male infertility specifically:chromosomal aneuploidy,structural and numerical karyotype abnormalities and Y chromosomal microdeletions.Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans.Aneuploidy is predominantly maternal in origin,but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts.Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm.Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed,as well as the application of preimplantation genetic diagnosis (PGD) in such cases.Clinical recommendations where possible will be made,as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  8. A Female Patient with FMR1 Premutation and Mosaic X Chromosome Aneuploidy and Two Sons with Intellectual Disability.

    Science.gov (United States)

    Galanina, Ekaterina M; Tulupov, Andrey A; Lemskaya, Natalya A; Korostyshevskaya, Aleksandra M; Maksimova, Yuliya V; Shorina, Asia R; Savelov, Andrey A; Sergeeva, Irina G; Isanova, Evgeniya R; Grishchenko, Irina V; Yudkin, Dmitry V

    2017-03-01

    In this report, we describe a molecular cytogenetic study of a family burdened with intellectual disability (ID) and suicide. Our study revealed that the mother has a heterozygous premutation in the FMR1 gene and supernumerary X chromosomes as well as X-derived marker chromosomes. Both of her sons have ID and a normal chromosome number. One of the sons has fragile X syndrome, and the other has ID of an unclear nature.

  9. Comparison of DNA aneuploidy, chromosome 1 abnormalities, MYCN amplification and CD44 expression as prognostic factors in neuroblastoma.

    Science.gov (United States)

    Christiansen, H; Sahin, K; Berthold, F; Hero, B; Terpe, H J; Lampert, F

    1995-01-01

    A comparison of the prognostic impact of five molecular variables in a large series was made, including tests of their nonrandom association and multivariate analysis. Molecular data were available for 377 patients and MYCN amplification, cytogenetic chromosome 1p deletion, loss of chromosome 1p heterozygosity, DNA ploidy and CD44 expression were investigated. Their interdependence and influence on event-free survival was tested uni- and multivariately using Pearson's chi 2-test, Kaplan-Meier estimates, log rank tests and the Cox's regression model. MYCN amplification was present in 18% (58/322) of cases and predicted poorer prognosis in localised (P < 0.001), metastatic (P = 0.002) and even 4S (P = 0.040) disease. CD44 expression was found in 86% (127/148) of cases, and was a marker for favourable outcome in patients with neuroblastoma stages 1-3 (P = 0.003) and 4 (P = 0.017). Chromosome 1p deletion was cytogenetically detected in 51% (28/55), and indicated reduced event-free survival in localised neuroblastoma (P = 0.020). DNA ploidy and loss of heterozygosity on chromosome 1p were of less prognostic value. Most factors of prognostic significance were associated with each other. By multivariate analysis, MYCN was selected as the only relevant factor. Risk estimation of high discriminating power is, therefore, possible for patients with localised and metastatic neuroblastoma using stage and MYCN.

  10. First systematic experience of preimplantation genetic diagnosis for single-gene disorders, and/or preimplantation human leukocyte antigen typing, combined with 24-chromosome aneuploidy testing.

    Science.gov (United States)

    Rechitsky, Svetlana; Pakhalchuk, Tatiana; San Ramos, Geraldine; Goodman, Adam; Zlatopolsky, Zev; Kuliev, Anver

    2015-02-01

    To study the feasibility, accuracy, and reproductive outcome of 24-chromosome aneuploidy testing (24-AT), combined with preimplantation genetic diagnosis (PGD) for single-gene disorders (SGDs) or human leukocyte antigen (HLA) typing in the same biopsy sample. Retrospective study. Preimplantation genetic diagnosis center. A total of 238 PGD patients, average age 36.8 years, for whom 317 combined PGD cycles were performed, involving 105 different conditions, with or without HLA typing. Whole-genome amplification product, obtained in 24-AT, was used for PGD and/or HLA typing in the same blastomere or blastocyst biopsy samples. Proportion of the embryos suitable for transfer detected in these blastomere or blastocyst samples, and the resulting pregnancy and spontaneous abortion rates. Embryos suitable for transfer were detected in 42% blastocyst and 25.1% blastomere samples, with a total of 280 unaffected, HLA-matched euploid embryos detected for transfer in 212 cycles (1.3 embryos per transfer), resulting in 145 (68.4%) unaffected pregnancies and birth of 149 healthy, HLA-matched children. This outcome is significantly different from that of our 2,064 PGD cycle series without concomitant 24-AT, including improved pregnancy (68.4% vs. 45.4%) and 3-fold spontaneous abortion reduction (5.5% vs. 15%) rates. The introduced combined approach is a potential universal PGD test, which in addition to achieving extremely high diagnostic accuracy, significantly improves reproductive outcomes of PGD for SGDs and HLA typing in patients of advanced reproductive age. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Oocyte Development, Meiosis and Aneuploidy

    OpenAIRE

    Maclennan, Marie; Crichton, James; Playfoot, Christopher J; Adams, Ian

    2015-01-01

    Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. ...

  12. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems.

    Science.gov (United States)

    Ye, Christine J; Regan, Sarah; Liu, Guo; Alemara, Sarah; Heng, Henry H

    2018-01-01

    In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis

  13. Cell-Free DNA-Based Non-invasive Prenatal Screening for Common Aneuploidies in a Canadian Province: A Cost-Effectiveness Analysis.

    Science.gov (United States)

    Nshimyumukiza, Léon; Beaumont, Jean-Alexandre; Duplantie, Julie; Langlois, Sylvie; Little, Julian; Audibert, François; McCabe, Christopher; Gekas, Jean; Giguère, Yves; Gagné, Christian; Reinharz, Daniel; Rousseau, François

    2018-01-01

    Yearly, 450 000 pregnant Canadians are eligible for voluntary prenatal screening for trisomy 21. Different screening strategies select approximately 4% of women for invasive fetal chromosome testing. Non-invasive prenatal testing (NIPT) using maternal blood cell-free DNA could reduce those invasive procedures but is expensive. This study evaluated the cost-effectiveness of NIPT strategies compared with conventional strategies. This study used a decision analytic model to estimate the cost-effectiveness of 13 prenatal screening strategies for fetal aneuploidies: six frequently used strategies, universal NIPT, and six strategies incorporating NIPT as a second-tier test. The study considered a virtual cohort of pregnant women of similar size and age as women in Quebec. Model data were obtained from published sources and government databases. The study predicted the number of chromosomal anomalies detected (trisomies 21, 13, and 18), invasive procedures and euploid fetal losses, direct costs, and incremental cost-effectiveness ratios. Of the 13 strategies compared, eight identified fewer cases at a higher cost than at least one of the remaining five strategies. Integrated serum screening with conditional NIPT had the lowest cost, and the cost per case detected was $63 139, with a 90% reduction of invasive procedures. The number of cases identified was improved with four other screening strategies, but with increasing of incremental costs per case (from $61 623 to $1 553 615). Results remained robust, except when NIPT costs and risk cut-offs varied. NIPT as a second-tier test for high-risk women is likely to be cost-effective as compared with screening algorithms not involving NIPT. Copyright © 2018 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  14. Somatic association of telocentric chromosomes carrying homologous centromeres in common wheat.

    Science.gov (United States)

    Mello-Sampayo, T

    1973-01-01

    Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 B (S) and 6 B (L)) and a non-related (5 B (L)) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement - the Rabl orientation - and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary

  15. Modeling the Aneuploidy Control of Cancer

    Directory of Open Access Journals (Sweden)

    Wang Zhong

    2010-07-01

    Full Text Available Abstract Background Aneuploidy has long been recognized to be associated with cancer. A growing body of evidence suggests that tumorigenesis, the formation of new tumors, can be attributed to some extent to errors occurring at the mitotic checkpoint, a major cell cycle control mechanism that acts to prevent chromosome missegregation. However, so far no statistical model has been available quantify the role aneuploidy plays in determining cancer. Methods We develop a statistical model for testing the association between aneuploidy loci and cancer risk in a genome-wide association study. The model incorporates quantitative genetic principles into a mixture-model framework in which various genetic effects, including additive, dominant, imprinting, and their interactions, are estimated by implementing the EM algorithm. Results Under the new model, a series of hypotheses tests are formulated to explain the pattern of the genetic control of cancer through aneuploid loci. Simulation studies were performed to investigate the statistical behavior of the model. Conclusions The model will provide a tool for estimating the effects of genetic loci on aneuploidy abnormality in genome-wide studies of cancer cells.

  16. Chromosome Synapsis and Recombination in Male Hybrids between Two Chromosome Races of the Common Shrew (Sorex araneus L., Soricidae, Eulipotyphla

    Directory of Open Access Journals (Sweden)

    Nadezhda M. Belonogova

    2017-10-01

    Full Text Available Hybrid zones between chromosome races of the common shrew (Sorex araneus provide exceptional models to study the potential role of chromosome rearrangements in the initial steps of speciation. The Novosibirsk and Tomsk races differ by a series of Robertsonian fusions with monobrachial homology. They form a narrow hybrid zone and generate hybrids with both simple (chain of three chromosomes and complex (chain of eight or nine synaptic configurations. Using immunolocalisation of the meiotic proteins, we examined chromosome pairing and recombination in males from the hybrid zone. Homozygotes and simple heterozygotes for Robertsonian fusions showed a low frequency of synaptic aberrations (<10%. The carriers of complex synaptic configurations showed multiple pairing abnormalities, which might lead to reduced fertility. The recombination frequency in the proximal regions of most chromosomes of all karyotypes was much lower than in the other regions. The strong suppression of recombination in the pericentromeric regions and co-segregation of race specific chromosomes involved in the long chains would be expected to lead to linkage disequilibrium between genes located there. Genic differentiation, together with the high frequency of pairing aberrations in male carriers of the long chains, might contribute to maintenance of the narrow hybrid zone.

  17. A common allele on chromosome 9 associated with coronary heartdisease

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Ruth; Pertsemlidis, Alexander; Kavaslar, Nihan; Stewart, Alexandre; Roberts, Robert; Cox, David R.; Hinds, David; Pennachio, Len; Tybjaerg-Hansen, Anne; Folsom, Aaron R.; Boerwinkle,Eric; Hobbs, Helen H.; Cohen, Jonathan C.

    2007-03-01

    Coronary heart disease (CHD) is a major cause of death in Western countries. Here we used genome-wide association scanning to identify a 58 kb interval on chromosome 9 that was consistently associated with CHD in six independent samples. The interval contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a {approx}30-40% increased risk of CHD. These data indicate that the susceptibility allele acts through a novel mechanism to increase CHD risk in a large fraction of the population.

  18. A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene

    DEFF Research Database (Denmark)

    Ottesen, A M; Garn, I D; Aksglaede, L

    2007-01-01

    Due to the high prevalence and variable phenotype of patients with Klinefelter syndrome, there is a need for a robust and rapid screening method allowing early diagnosis. Here, we report on the development and detailed clinical validation of a quantitative real-time PCR (qPCR)-based method...... of the copy number assessment of the androgen receptor (AR) gene, located to Xq11.2-q12. We analysed samples from 50 individuals, including a healthy male and female controls and patients with Klinefelter syndrome (47,XXY; 48,XXXY) (n = 28), mosaicisms (46,XX/47,XXY/48XXYY; 45,X/46,XY) (n = 3), other sex......-gene expression. The XIST-expression based assay was correct in only 29/36 samples (81%). Our findings demonstrated that the AR-qPCR technique is a simple and reliable screening method for diagnosis of patients with Klinefelter syndrome or other chromosomal disorders involving an aberrant number of X-chromosomes....

  19. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Barranger, Audrey, E-mail: audrey.barranger@ifremer.fr [Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade (France); Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’Ile d’Yeu, BP 21105, 44311 Nantes Cedex 03 (France); Benabdelmouna, Abdellah, E-mail: abdellah.benabdelmouna@ifremer.fr [Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade (France); Dégremont, Lionel [Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade (France); Burgeot, Thierry; Akcha, Farida [Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’Ile d’Yeu, BP 21105, 44311 Nantes Cedex 03 (France)

    2015-02-15

    Highlights: • FISH was realized on oyster embryos from diuron-exposed genitors. • rDNA genes were used as probes on the interphase nuclei of embryo preparations. • Higher aneuploidy level was observed in embryos from diuron-exposed genitors. • Hypo- and hyperdiploid (triploid) nuclei were detected. - Abstract: Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment.

  20. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Barranger, Audrey; Benabdelmouna, Abdellah; Dégremont, Lionel; Burgeot, Thierry; Akcha, Farida

    2015-01-01

    Highlights: • FISH was realized on oyster embryos from diuron-exposed genitors. • rDNA genes were used as probes on the interphase nuclei of embryo preparations. • Higher aneuploidy level was observed in embryos from diuron-exposed genitors. • Hypo- and hyperdiploid (triploid) nuclei were detected. - Abstract: Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment

  1. Frequency of aneuploidy related to age in porcine oocytes.

    Directory of Open Access Journals (Sweden)

    Miroslav Hornak

    Full Text Available It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH, combined with whole genome amplification (WGA, to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed.

  2. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  3. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  4. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló , D.; Carvalho, Susana; Pereira, P.; Gaspar, M.B.; Leitã o, A.

    2016-01-01

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment

  5. BACs-on-Beads Technology: A Reliable Test for Rapid Detection of Aneuploidies and Microdeletions in Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Sandra García-Herrero

    2014-01-01

    Full Text Available The risk of fetal aneuploidies is usually estimated based on high resolution ultrasound combined with biochemical determination of criterion in maternal blood, with invasive procedures offered to the population at risk. The purpose of this study was to investigate the effectiveness of a new rapid aneuploidy screening test on amniotic fluid (AF or chorionic villus (CV samples based on BACs-on-Beads (BoBs technology and to compare the results with classical karyotyping by Giemsa banding (G-banding of cultured cells in metaphase as the gold standard technique. The prenatal-BoBs kit was used to study aneuploidies involving chromosomes 13, 18, 21, X, and Y as well as nine microdeletion syndromes in 321 AF and 43 CV samples. G-banding of metaphase cultured cells was performed concomitantly for all prenatal samples. A microarray-based comparative genomic hybridization (aCGH was also carried out in a subset of samples. Prenatal-BoBs results were widely confirmed by classical karyotyping. Only six karyotype findings were not identified by Prenatal-BoBs, all of them due to the known limitations of the technique. In summary, the BACs-on-Beads technology was an accurate, robust, and efficient method for the rapid diagnosis of common aneuploidies and microdeletion syndromes in prenatal samples.

  6. Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells.

    Science.gov (United States)

    Stindl, Reinhard

    2008-01-01

    Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the 'law of genotype-phenotype correlation', since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as

  7. Aneuploidy in Early Miscarriage and its Related Factors

    Institute of Scientific and Technical Information of China (English)

    Chan-Wei Jia; Li Wang; Yong-Lian Lan; Rui Song; Li-Yin Zhou; Lan Yu; Yang Yang

    2015-01-01

    Background:Genetic factors are the main cause of early miscarriage.This study aimed to investigate aneuploidy in spontaneous abortion by fluorescence in situ hybridization (FISH) using probes for 13,16,18,21,22,X and Y chromosomes.Methods:A total of 840 chorionic samples from spontaneous abortion were collected and examined by FISH.We analyzed the incidence and type of abnormal cases and sex ratio in the samples.We also analyzed the relationship between the rate of aneuploidy and parental age,the rate of aneuploidy between recurrent abortion and sporadic abortion,the difference in incidence of aneuploidy between samples from previous artificial abortion and those from no previous induced abortion.Results:A total of 832 samples were finally analyzed.368 (44.23%) were abnormal,in which 84.24% (310/368) were aneuploidies and 15.76% (58/368) were polyploidies.The first was trisomy16 (121/310),followed by trisomy 22,and X monosomy.There was no significant difference in the rate ofaneuploidy in the advanced maternal age group (≥35 years old) and young maternal age group (<35 years old).However,the rate oftrisomy 22 and the total rate oftrisomies 21,13,and 18 (the number oftrisomy 21 plus trisomy 13 and trisomy 18 together) showed significantly different in two groups.We found no skewed sex ratio.There was no significant difference in the rate of aneuploidy between recurrent miscarriage and sporadic abortion or between the samples from previous artificial abortion and those from no previous artificial abortion.Conclusions:Aneuploidy is a principal factor of miscarriage and total parental age is a risk factor.There is no skewed sex ratio in spontaneous abortion.There is also no difference in the rate of aneuploidy between recurrent abortion and sporadic abortion or between previous artificial abortion and no previous induced abortion.

  8. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity

    DEFF Research Database (Denmark)

    Belling, Kirstine González-Izarzugaza; Russo, Francesco; Jensen, Anders Boeck

    2017-01-01

    Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level...

  9. AFLP diversity between the Novosibirsk and Tomsk chromosome races of the common shrew (Sorex araneus

    Directory of Open Access Journals (Sweden)

    Andrey Polyakov

    2009-12-01

    Full Text Available Genetic diversity between of the Novosibirsk and Tomsk chromosome races of the common shrew (Sorex araneus was analyzed using 39 polymorphic AFLP (amplified fragments length polymorphism markers. Exact and F-statistics tests for population differentiation demonstrated significant interracial difference in allele frequencies and significant subdivision between the races. The value of the genetic distance between the chromosome races observed in this study corresponds to that found between subspecies of mammals studied so far.

  10. Effects of cadmium on aneuploidy and hemocyte parameters in the Pacific oyster, Crassostrea gigas

    International Nuclear Information System (INIS)

    Bouilly, Karine; Gagnaire, Beatrice; Bonnard, Marc; Thomas-Guyon, Helene; Renault, Tristan; Miramand, Pierre; Lapegue, Sylvie

    2006-01-01

    Pacific oysters, Crassostrea gigas, are commonly reared in estuaries where they are exposed to anthropogenic pollution. Much research has been made on the toxicity of cadmium to aquatic organisms because the compound recurrently contaminates their environment. Our study examined the influence of cadmium on aneuploidy level (lowered chromosome number in a percentage of somatic cells) and hemocyte parameters in C. gigas at different stages of life. Adults and juveniles were exposed to two different concentrations of cadmium. The first concentration applied was equivalent to a peak value found in Marennes-Oleron bay (Charente-Maritime, France; 50 ng L -1 ) and the second was 10 times higher (500 ng L -1 ). Exposure to 50 ng L -1 cadmium caused a significant decrease in the survival time of C. gigas, but exposure to 500 ng L -1 surprisingly affected the survival time positively. Significant differences in aneuploidy level were observed between the cadmium treatments and the control in adults but not in juveniles or the offspring of the adult groups. The effects of cadmium on hemocyte parameters were analyzed by flow cytometry. Several hemocyte parameters increased significantly after 21 days of cadmium exposure and subsequently decreased. Phenoloxidase-like activity, evaluated by spectrophotometry, varied over the time of the experiment and increased after 66 days of contact with 500 ng L -1 cadmium. Taken together, cadmium at environmentally relevant concentrations seems to have only moderate effects on aneuploidy and hemocyte parameters

  11. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.

    Directory of Open Access Journals (Sweden)

    Melanie Legrand

    2008-01-01

    Full Text Available Haplotype maps (HapMaps reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.

  12. Development and validation of concurrent preimplantation genetic diagnosis for single gene disorders and comprehensive chromosomal aneuploidy screening without whole genome amplification.

    Science.gov (United States)

    Zimmerman, Rebekah S; Jalas, Chaim; Tao, Xin; Fedick, Anastasia M; Kim, Julia G; Pepe, Russell J; Northrop, Lesley E; Scott, Richard T; Treff, Nathan R

    2016-02-01

    To develop a novel and robust protocol for multifactorial preimplantation genetic testing of trophectoderm biopsies using quantitative polymerase chain reaction (qPCR). Prospective and blinded. Not applicable. Couples indicated for preimplantation genetic diagnosis (PGD). None. Allele dropout (ADO) and failed amplification rate, genotyping consistency, chromosome screening success rate, and clinical outcomes of qPCR-based screening. The ADO frequency on a single cell from a fibroblast cell line was 1.64% (18/1,096). When two or more cells were tested, the ADO frequency dropped to 0.02% (1/4,426). The rate of amplification failure was 1.38% (55/4,000) overall, with 2.5% (20/800) for single cells and 1.09% (35/3,200) for samples that had two or more cells. Among 152 embryos tested in 17 cases by qPCR-based PGD and CCS, 100% were successfully given a diagnosis, with 0% ADO or amplification failure. Genotyping consistency with reference laboratory results was >99%. Another 304 embryos from 43 cases were included in the clinical application of qPCR-based PGD and CCS, for which 99.7% (303/304) of the embryos were given a definitive diagnosis, with only 0.3% (1/304) having an inconclusive result owing to recombination. In patients receiving a transfer with follow-up, the pregnancy rate was 82% (27/33). This study demonstrates that the use of qPCR for PGD testing delivers consistent and more reliable results than existing methods and that single gene disorder PGD can be run concurrently with CCS without the need for additional embryo biopsy or whole genome amplification. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. RNAi mediated acute depletion of Retinoblastoma protein (pRb promotes aneuploidy in human primary cells via micronuclei formation

    Directory of Open Access Journals (Sweden)

    Iovino Flora

    2009-11-01

    Full Text Available Abstract Background Changes in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors. Thus, centrosome amplification and mitotic checkpoint dysfunctions are believed possible causes of chromosomal instability. The Retinoblastoma tumor suppressor (RB participates in the regulation of synchrony between DNA synthesis and centrosome duplication and it is involved in transcription regulation of some mitotic genes. Primary human fibroblasts were transfected transiently with short interfering RNA (siRNA specific for human pRb to investigate the effects of pRb acute loss on chromosomal stability. Results Acutely pRb-depleted fibroblasts showed altered expression of genes necessary for cell cycle progression, centrosome homeostasis, kinetochore and mitotic checkpoint proteins. Despite altered expression of genes involved in the Spindle Assembly Checkpoint (SAC the checkpoint seemed to function properly in pRb-depleted fibroblasts. In particular AURORA-A and PLK1 overexpression suggested that these two genes might have a role in the observed genomic instability. However, when they were post-transcriptionally silenced in pRb-depleted fibroblasts we did not observe reduction in the number of aneuploid cells. This finding suggests that overexpression of these two genes did not contribute to genomic instability triggered by RB acute loss although it affected cell proliferation. Acutely pRb-depleted human fibroblasts showed the presence of micronuclei containing whole chromosomes besides the presence of supernumerary centrosomes and aneuploidy. Conclusion Here we show for the first time that RB acute loss triggers centrosome amplification and aneuploidy in human primary fibroblasts. Altogether, our results suggest that pRb-depleted primary human fibroblasts possess an intact spindle checkpoint and that micronuclei, likely caused by mis-attached kinetochores that in turn trigger

  14. Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Min Ni

    2013-09-01

    Full Text Available Aneuploidy is known to be deleterious and underlies several common human diseases, including cancer and genetic disorders such as trisomy 21 in Down's syndrome. In contrast, aneuploidy can also be advantageous and in fungi confers antifungal drug resistance and enables rapid adaptive evolution. We report here that sexual reproduction generates phenotypic and genotypic diversity in the human pathogenic yeast Cryptococcus neoformans, which is globally distributed and commonly infects individuals with compromised immunity, such as HIV/AIDS patients, causing life-threatening meningoencephalitis. C. neoformans has a defined a-α opposite sexual cycle; however, >99% of isolates are of the α mating type. Interestingly, α cells can undergo α-α unisexual reproduction, even involving genotypically identical cells. A central question is: Why would cells mate with themselves given that sex is costly and typically serves to admix preexisting genetic diversity from genetically divergent parents? In this study, we demonstrate that α-α unisexual reproduction frequently generates phenotypic diversity, and the majority of these variant progeny are aneuploid. Aneuploidy is responsible for the observed phenotypic changes, as chromosome loss restoring euploidy results in a wild-type phenotype. Other genetic changes, including diploidization, chromosome length polymorphisms, SNPs, and indels, were also generated. Phenotypic/genotypic changes were not observed following asexual mitotic reproduction. Aneuploidy was also detected in progeny from a-α opposite-sex congenic mating; thus, both homothallic and heterothallic sexual reproduction can generate phenotypic diversity de novo. Our study suggests that the ability to undergo unisexual reproduction may be an evolutionary strategy for eukaryotic microbial pathogens, enabling de novo genotypic and phenotypic plasticity and facilitating rapid adaptation to novel environments.

  15. Meiotic aneuploidy: its origins and induction following chemical treatment in Sordaria brevicollis.

    Science.gov (United States)

    Bond, D J; McMillan, L

    1979-08-01

    A system suitable for the detection of meiotic aneuploidy is described in which various different origins of the aneuploidy can be distinguished. Aneuploid meiotic products are detected as black disomic spores held in asci containing all the products of a single meiosis. Aneuploidy may result from nondisjunction or from a meiosis in which an extra replica of one of the chromosomes has been generated in some other way, e.g., extra replication. By using this system it has been shown that pFPA treatment increase aneuploidy, primarily through an effect on nondisjunction. Preliminary results with trifluralin have indicated that this compound, too, may increase aneuploidy. There is a good possibility that the system can be further developed to permit a more rapid screening using a random plating method; this will allow a more efficient two-part analysis of the effects of compounds under test.

  16. The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis

    NARCIS (Netherlands)

    Ben-David, Uri; Ha, Gavin; Khadka, Prasidda; Jin, Xin; Wong, Bang; Franke, Lude; Golub, Todd R.

    Aneuploidy and copy-number alterations (CNAs) are a hallmark of human cancer. Although genetically engineered mouse models (GEMMs) are commonly used to model human cancer, their chromosomal landscapes remain underexplored. Here we use gene expression profiles to infer CNAs in 3,108 samples from 45

  17. Prenatal screening for fetal aneuploidy in singleton pregnancies.

    Science.gov (United States)

    Chitayat, David; Langlois, Sylvie; Douglas Wilson, R

    2011-07-01

    studies. There were no language restrictions. Searches were updated on a regular basis and incorporated in the guideline to August 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The previous Society of Obstetricians and Gynaecologists of Canada guidelines regarding prenatal screening were also reviewed in developing this clinical practice guideline. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care. This guideline is intended to reduce the number of prenatal invasive procedures done when maternal age is the only indication. This will have the benefit of reducing the numbers of normal pregnancies lost because of complications of invasive procedures. Any screening test has an inherent false-positive rate, which may result in undue anxiety. It is not possible at this time to undertake a detailed cost-benefit analysis of the implementation of this guideline, since this would require health surveillance and research and health resources not presently available; however, these factors need to be evaluated in a prospective approach by provincial and territorial initiatives. RECOMMENDATIONS 1. All pregnant women in Canada, regardless of age, should be offered, through an informed counselling process, the option of a prenatal screening test for the most common clinically significant fetal aneuploidies in addition to a second trimester ultrasound for dating, assessment of fetal anatomy, and detection of multiples. (I-A) 2. Counselling must be non-directive and must respect a woman's right to accept or decline any or all of the testing or options offered at any point in the process. (III-A) 3. Maternal age alone is a poor minimum standard for prenatal screening

  18. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  19. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  20. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló, D.

    2016-11-03

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment contaminated area both in May (31.7%) and October (36.0%) when compared to a less contaminated area over the same periods (20.3% and 29.0% respectively). Interestingly, metal bioaccumulation in gills was higher in the specimens collected at the least contaminated area with the exception of Pb. Indeed, the multivariate analysis revealed a stronger relation between aneuploidy and sediment contamination than between aneuploidy and the bioaccumulation of the metals. The temporal and spatial inconsistency found for the bioaccumulation of metals in R. philippinarum and the positive correlation between sediment contamination and aneuploidy at the most contaminated area suggest that these chromosome-level effects might be due to chronic metal contamination occurring in the Tagus estuary, rather than a direct result of the temporal variation of bioavailable contaminants. The vertical transmission phenomenon of bivalve aneuploidy levels may then be perpetuating those levels on clams from the most contaminated area. The present results shed light about the effect of metal toxicity at the chromosome-level in species inhabiting chronic contaminated areas and highlight the use of aneuploidy as an effective tool to identify persistent contamination in worldwide transitional waters.

  1. The epigenetic landscape of aneuploidy: constitutional mosaicism leading the way?

    Science.gov (United States)

    Davidsson, Josef

    2014-02-01

    The role of structural genetic changes in human disease has received substantial attention in recent decades, but surprisingly little is known about numerical chromosomal abnormalities, even though they have been recognized since the days of Boveri as partaking in different cellular pathophysiological processes such as cancer and genomic disorders. The current knowledge of the genetic and epigenetic consequences of aneuploidy is reviewed herein, with a special focus on using mosaic genetic syndromes to study the DNA methylation footprints and expressional effects associated with whole-chromosomal gains. Recent progress in understanding the debated role of aneuploidy as a driver or passenger in malignant transformation, as well as how the cell responds to and regulates excess genetic material in experimental settings, is also discussed in detail.

  2. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans

    Science.gov (United States)

    York, Dan; Higgins, Robert J.; LeCouteur, Richard A.; Joshi, Nikhil; Bannasch, Danika

    2016-01-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041

  3. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization.

    Science.gov (United States)

    Barranger, Audrey; Benabdelmouna, Abdellah; Dégremont, Lionel; Burgeot, Thierry; Akcha, Farida

    2015-02-01

    Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  5. Radiation- induced aneuploidy in mammalian germ cells

    International Nuclear Information System (INIS)

    Tease, C.

    1989-01-01

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  6. Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders.

    Science.gov (United States)

    Alaizari, Nader A; Sperandio, Marcelo; Odell, Edward W; Peruzzo, Daiane; Al-Maweri, Sadeq A

    2018-02-01

    DNA aneuploidy is an imbalance of chromosomal DNA content that has been highlighted as a predictor of biological behavior and risk of malignant transformation. To date, DNA aneuploidy in oral potentially malignant diseases (OPMD) has been shown to correlate strongly with severe dysplasia and high-risk lesions that appeared non-dysplastic can be identified by ploidy analysis. Nevertheless, the prognostic value of DNA aneuploidy in predicting malignant transformation of OPMD remains to be validated. The aim of this meta-analysis was to assess the role of DNA aneuploidy in predicting malignant transformation in OPMD. The questions addressed were (i) Is DNA aneuploidy a useful marker to predict malignant transformation in OPMD? (ii) Is DNA diploidy a useful negative marker of malignant transformation in OPMD? These questions were addressed using the PECO method. Five studies assessing aneuploidy as a risk marker of malignant change were pooled into the meta-analysis. Aneuploidy was found to be associated with a 3.12-fold increased risk to progress into cancer (RR=3.12, 95% CI 1.86-5.24). Based on the five studies meta-analyzed, "no malignant progression" was more likely to occur in DNA diploid OPMD by 82% when compared to aneuploidy (RR=0.18, 95% CI 0.08-0.41). In conclusion, aneuploidy is a useful marker of malignant transformation in OPMD, although a diploid result should be interpreted with caution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Antoneta Granic

    Full Text Available Elevated low-density lipoprotein (LDL-cholesterol is a risk factor for both Alzheimer's disease (AD and Atherosclerosis (CVD, suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1 high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2 Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3 oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL, induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4 LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5 cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6 ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  8. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  9. Centrosome clustering and cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    International Nuclear Information System (INIS)

    Rey, Javier del; Prat, Esther; Ponsa, Immaculada; Lloreta, Josep; Gelabert, Antoni; Algaba, Ferran; Camps, Jordi; Miró, Rosa

    2010-01-01

    Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

  10. Human oocyte chromosome analyses need a standardized ...

    Indian Academy of Sciences (India)

    Studies of DNA polymorphisms in human trisomic abor- tions and liveborn have ... Keywords. human oocyte chromosomes; cytogenetic analysis; aneuploidy; nondisjunction; predivision. Journal of .... oocytes and giant embryos. Hum. Reprod.

  11. Phase II: Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1554-98

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlay, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cellomics, Inc. (formerly BioDx and Biological Detection, Inc.) to develop an automated system for detecting human sperm aneuploidy. Aneuploidy (an abnormal number of chromosomes) is one of the major categories of chromosomally abnormal sperm, which results in chromosomally defective pregnancies and babies. An automated system would be used for testing the effects of toxic agents and for other research and clinical applications. This collaborated effort was funded by a National Institutes of Environmental Health Services, Phase II, Small Business Innovation Research Program (SBIR) grant to Cellornics (Contract No. N44-ES-82004).

  12. Bibliography of studies on hybrid zones of the common shrew chromosome races distributed in Russia

    Directory of Open Access Journals (Sweden)

    Rena Nadjafova

    2013-11-01

    Full Text Available The common shrew, Sorex araneus Linnaeus, 1758, has become a model species for cytogenetical and evolutionary studies after discovery of extraordinary Robertsonian polymorphism at the within-species level. Development of differential staining techniques (Q-, R-and G-banding made it possible to identify the chromosomal arms and their combination in racial karyotypes. Entering into contact with each other, the chromosomal races might form hybrid zones which represent a great interest for understanding of the process of speciation. Until recently all known hybrid zones of S. araneus were localized in Western Europe and only one was identified in Siberia (Russia between Novosibirsk and Tomsk races (Aniskin and Lukianova 1989, Searle and Wójcik 1998, Polyakov et al. 2011. However, rapidly growing number of reports on discovery of interracial hybrid zones of Sorex araneus in the European part of Russia and neighboring territories appeared lately. The aim of the present work is to compile the bibliography of all studies covering this topic regardless of the original language and the publishing source which hopefully could make research data more accessible to international scientists.It could also be a productive way to save current history of Sorex araneus researches in full context of the ISACC (International Sorex araneus Cytogenetics Committee heritage (Searle et al. 2007, Zima 2008.

  13. Genome-size Variation in Switchgrass (Panicum virgatum: Flow Cytometry and Cytology Reveal Rampant Aneuploidy

    Directory of Open Access Journals (Sweden)

    Denise E. Costich

    2010-11-01

    Full Text Available Switchgrass ( L., a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was considerable variation in genome size within each accession, particularly at the octoploid (2 = 8 = 72 chromosome ploidy level. Highly variable chromosome counts in mitotic cell preparations indicated that aneuploidy was more common in octoploids (86.3% than tetraploids (23.2%. Furthermore, the incidence of hyper- versus hypoaneuploidy is equivalent in tetraploids. This is clearly not the case in octoploids, where close to 90% of the aneuploid counts are lower than the euploid number. Cytogenetic investigation using fluorescent in situ hybridization (FISH revealed an unexpected degree of variation in chromosome structure underlying the apparent genomic instability of this species. These results indicate that rapid advances in the breeding of polyploid biofuel feedstocks, based on the molecular-genetic dissection of biomass characteristics and yield, will be predicated on the continual improvement of our understanding of the cytogenetics of these species.

  14. Study of male–mediated gene flow across a hybrid zone in the common shrew (Sorex araneus using Y chromosome

    Directory of Open Access Journals (Sweden)

    Andrei V. Polyakov

    2017-06-01

    Full Text Available Despite many studies, the impact of chromosome rearrangements on gene flow between chromosome races of the common shrew (Sorex araneus Linnaeus, 1758 remains unclear. Interracial hybrids form meiotic chromosome complexes that are associated with reduced fertility. Nevertheless comprehensive investigations of autosomal and mitochondrial markers revealed weak or no barrier to gene flow between chromosomally divergent populations. In a narrow zone of contact between the Novosibirsk and Tomsk races hybrids are produced with extraordinarily complex configurations at meiosis I. Microsatellite markers have not revealed any barrier to gene flow, but the phenotypic differentiation between races is greater than may be expected if gene flow was unrestricted. To explore this contradiction we analyzed the distribution of the Y chromosome SNP markers within this hybrid zone. The Y chromosome variants in combination with race specific autosome complements allow backcrosses to be distinguished and their proportion among individuals within the hybrid zone to be evaluated. The balanced ratio of the Y variants observed among the pure race individuals as well as backcrosses reveals no male mediated barrier to gene flow. The impact of reproductive unfitness of backcrosses on gene flow is discussed as a possible mechanism of the preservation of race-specific morphology within the hybrid zone.

  15. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  16. Drug resistance in colorectal cancer cell lines is partially associated with aneuploidy status in light of profiling gene expression

    DEFF Research Database (Denmark)

    Guo, Jiao; Xu, Shaohang; Huang, Xuanlin

    2016-01-01

    A priority in solving the problem of drug resistance is to understand the molecular mechanism of how a drug induces the resistance response within cells. Because many cancer cells exhibit chromosome aneuploidy, we explored whether changes of aneuploidy status result in drug resistance. Two typical...... colorectal cancer cells, HCT116 and LoVo, were cultured with the chemotherapeutic drugs irinotecan (SN38) or oxaliplatin (QxPt), and the non- and drug-resistant cell lines were selected. Whole exome sequencing (WES) was employed to evaluate the aneuploidy status of these cells, and RNAseq and LC-MS/MS were...... the aneuploidy status in cancer cells, which was partially associated with the acquired drug resistance....

  17. Low-level chromosome 12 amplification in a primary lipoma of the lung: evidence for a pathogenetic relationship with common adipose tissue tumors.

    Science.gov (United States)

    Bridge, J A; Roberts, C A; Degenhardt, J; Walker, C; Lackner, R; Linder, J

    1998-02-01

    Cytogenetic analysis of a primary lipoma of the lung removed from a 56-year-old woman revealed the presence of a supernumerary marker chromosome in all metaphase cells analyzed; namely, 47,XX,+mar. To the best of our knowledge, this is the first cytogenetic description of a primary lipoma of lung. Genetic analysis of intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma have revealed the presence of one to three supernumerary ring or giant marker chromosomes composed of chromosome 12 segments as the characteristic anomaly. The marker chromosome in the present case was shown to be composed entirely of chromosome 12 material by subsequent analysis with a chromosome 12-specific paint probe and fluorescence in situ hybridization. Thus, analogous to intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma, extra chromosome 12 material is present. These findings support a pathogenetic relationship between this lipoma of unusual anatomic location and common adipose tissue tumors.

  18. Chromosome sorting and its applications in common wheat (Triticum aestivum) genome sequencing

    Czech Academy of Sciences Publication Activity Database

    Wu, S.W.; Xiao, Y.; Zheng, X.; Cai, Y.F.; Doležel, Jaroslav; Liu, B.H.; Yang, L.; Song, M.F.; Zhou, P.; Zhou, Y.; Meng, F.H.; Wang, S.H.; Liu, H.W.; Zhai, H.Q.; Yang, J.P.

    2010-01-01

    Roč. 55, č. 15 (2010), s. 1463-1468 ISSN 1001-6538 Institutional research plan: CEZ:AV0Z50380511 Keywords : Triticum aestivum * flow cytogenetics * chromosome sorting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.087, year: 2010

  19. Effect of Cytosine Arabinoside, 3-Aminobenzamide and Hydroxyurea on the frequencies of radiation-induced micronuclei and aneuploidy in human lymphocytes

    International Nuclear Information System (INIS)

    Cho, Yoon Hee; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won; Kang, Chang Mo

    2005-01-01

    This study was carried out to examine the effect of the DNA repair inhibitors, Cytosine Arabinoside(Ara C), 3-Aminobenzamide(3AB) and Hydroxyurea(HU) on the frequencies of radiation-induced MicroNuclei(MNi) and aneuploidy. Irradiated lymphocytes(1-3Gy) were treated with DNA repair inhibitors, Ara C, 3AB and HU for 3 hours and CBMN assay - FISH technique with DNA probe for chromosome 1 and 4 was performed. The frequencies of x-ray induced MNi and aneuploidy of chromosome 1 and 4 were increased in a dose-dependent manner. Ara C, 3AB and HU enhanced the frequencies of radiation-induced MNi and the frequencies of radiation-induced aneuploidy of chromosome 1 and 4 were enhanced by HU and Ara C while no effect was observed by 3AB. The frequency of radiation-induced aneuploidy of chromosome 1 was higher than that of chromosome 4. These results suggest that there are different mechanisms involved in the formation of MNi and aneuploidy by radiation

  20. Effect of Cytosine Arabinoside, 3-Aminobenzamide and Hydroxyurea on the frequencies of radiation-induced micronuclei and aneuploidy in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Hee; Kim, Yang Jee; Ha, Sung Whan; Chung, Hai Won [Seoul National Univ., Seoul (Korea, Republic of); Kang, Chang Mo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2005-12-15

    This study was carried out to examine the effect of the DNA repair inhibitors, Cytosine Arabinoside(Ara C), 3-Aminobenzamide(3AB) and Hydroxyurea(HU) on the frequencies of radiation-induced MicroNuclei(MNi) and aneuploidy. Irradiated lymphocytes(1-3Gy) were treated with DNA repair inhibitors, Ara C, 3AB and HU for 3 hours and CBMN assay - FISH technique with DNA probe for chromosome 1 and 4 was performed. The frequencies of x-ray induced MNi and aneuploidy of chromosome 1 and 4 were increased in a dose-dependent manner. Ara C, 3AB and HU enhanced the frequencies of radiation-induced MNi and the frequencies of radiation-induced aneuploidy of chromosome 1 and 4 were enhanced by HU and Ara C while no effect was observed by 3AB. The frequency of radiation-induced aneuploidy of chromosome 1 was higher than that of chromosome 4. These results suggest that there are different mechanisms involved in the formation of MNi and aneuploidy by radiation.

  1. Association Of Common Variants On Chromosome 8q24 With Gastric Cancer In Venezuelan Patients

    OpenAIRE

    Labrador; Luis; Torres; Keila; Camargo; Maria; Santiago; Laskhmi; Valderrama; Elvis; Angel Chiurillo; Miguel

    2016-01-01

    Gastric cancer remains one of the leading causes of death in the world, being Central and South America among the regions showing the highest incidence and mortality rates worldwide. Although several single nucleotide polymorphisms (SNPs) identified in the chromosomal region 8q24 by genome-wide association studies have been related with the risk of different kinds of cancers, their role in the susceptibility of gastric cancer in Latin American populations has not been evaluated yet. Hereby, w...

  2. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Parry, J.M.; Sharp, D.; Tippins, R.S.; Parry, E.M.

    1979-01-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems the authors have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. (Auth.)

  3. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    Science.gov (United States)

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  4. Altitudinal partitioning of two chromosome races of the common shrew (Sorex araneus) in West Siberia

    Czech Academy of Sciences Publication Activity Database

    Polyakov, A. V.; Volobouev, V. T.; Aniskin, V. M.; Zima, Jan; Searle, J. B.; Borodin, P. M.

    2003-01-01

    Roč. 67, č. 2 (2003), s. 201-207 ISSN 0025-1461. [Evolution in the Sorex araneus group: cytogenetic and molecular aspects. Meeting of the International Sorex araneus Cytogenetics Committee (ISACC) and associated Symposium in Honour of Professor Karl Fredga /6./. Paris, 03.09.2002-07.09.2002] Grant - others:Russian Foundation for Basic Research(RU) 01-04-49518; Russian Foundation for Basic Research(RU) 01-04-48875 Institutional research plan: CEZ:AV0Z6093917 Keywords : Sorex araneus * chromosome races * hybrid zone s Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.269, year: 2003

  5. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi

    2002-09-01

    Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.

  6. Chromosomal abnormalities and environmental exposures in acute nonlymphocytic leukemia

    International Nuclear Information System (INIS)

    Crane, M.M.; Keating, M.J.; Trujillo, J.M.; Labarthe, D.R.

    1988-01-01

    Chromosomal abnormalities are present in bone marrow of approximately 50% of newly diagnostic acute nonlymphatic leukemia (ANLL) patients, but their etiologic significance, if any, is unclear. The frequency of environmental exposures, gathered by questionnaire from patients or relatives, was compared in 127 newly diagnosed ANLL patients with marrow abnormalities (AA) and 109 ANLL patients with cytogenetically normal marrow. These represented 73% of de novo patients treated at M. D. Anderson Hospital between 1976 and 1983. AA patients were more likely than NN patients to: report cytotoxic treatment for prior medical conditions, smoke cigarettes, drink alcoholic beverages, and work at occupations with possible exposure to mutagens. No statistically significant associations between aneuploidy and use of other tobacco, avocational exposure to chemicals or exposure to animals were present. Associations between specific abnormalities and prior cytotoxic therapy (deletion of chromosome 7), smoking (extra chromosome 8, inversion chromosome 16), and occupation at the time of diagnosis (translocation between chromosomes 8 and 21) were noted. No association between occupational exposure to benzene or ionizing radiation and the 6 most common chromosomal abnormalities in ANLL patients were noted, although these agents are known to be leukemogenic. Problems with interpreting the above associations, including the high nonresponse rate, a high proportion of surrogate respondents, and the large number of significance tests that were performed, are discussed. These results are consistent with those from previously reported series, and suggest that tumor-specific markers may be present for some exposures in this disease

  7. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities.

    Science.gov (United States)

    Chitty, Lyn S; Hudgins, Louanne; Norton, Mary E

    2018-02-01

    Noninvasive prenatal testing (NIPT) using cell-free DNA (cfDNA) from maternal serum has been clinically available since 2011. This technology has revolutionized our ability to screen for the common aneuploidies trisomy 21 (Down syndrome), trisomy 18, and trisomy 13. More recently, clinical laboratories have offered screening for other chromosome abnormalities including sex chromosome abnormalities and copy number variants (CNV) without little published data on the sensitivity, specificity, and positive predictive value. In this debate, the pros and cons of performing prenatal screening via cfDNA for all chromosome abnormalities is discussed. At the time of the debate in 2017, the general consensus was that the literature does not yet support using this technology to screen for all chromosome abnormalities and that education is key for both providers and the patients so that the decision-making process is as informed as possible. © 2018 John Wiley & Sons, Ltd.

  8. Association of common variants on chromosome 8q24 with gastric cancer in Venezuelan patients.

    Science.gov (United States)

    Labrador, Luis; Torres, Keila; Camargo, Maria; Santiago, Laskhmi; Valderrama, Elvis; Chiurillo, Miguel Angel

    2015-07-15

    Gastric cancer remains one of the leading causes of death in the world, being Central and South America among the regions showing the highest incidence and mortality rates worldwide. Although several single nucleotide polymorphisms (SNPs) identified in the chromosomal region 8q24 by genome-wide association studies have been related with the risk of different kinds of cancers, their role in the susceptibility of gastric cancer in Latin American populations has not been evaluated yet. Hereby, we performed a case-control study to explore the associations between three SNPs at 8q24 and gastric cancer risk in Venezuelan patients. We analyzed rs1447295, rs4733616 and rs6983267 SNPs in 122 paraffin-embedded tumor samples from archival bank and 129 samples with chronic gastritis (obtained by upper endoscopy during the study) from the Central Hospital of Barquisimeto (Lara, Venezuela). Genotypes were determined by PCR-RFLP reactions designed in this study for efficient genotyping of formalin-fixed/paraffin-embedded tissues. No significant differences in genotype frequencies between case and control groups were found. However, carriers of the homozygous TT genotype of SNP rs4733616 had an increased risk of developing poorly differentiated gastric cancer according to the codominant (OR=3.59, P=0.035) and the recessive models (OR=4.32, P=0.014, best-fitting model of inheritance), adjusted by age and gender. Our study suggests that the SNP rs4733616 is associated with susceptibility to poorly differentiated gastric cancer in Venezuelans. Additional studies are needed to further interrogate the prognostic value of the rs4733616 marker in this high-risk population for gastric cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. CENP-A regulates chromosome segregation during the first meiosis of mouse oocytes.

    Science.gov (United States)

    Li, Li; Qi, Shu-Tao; Sun, Qing-Yuan; Chen, Shi-Ling

    2017-06-01

    Proper chromosome separation in both mitosis and meiosis depends on the correct connection between kinetochores of chromosomes and spindle microtubules. Kinetochore dysfunction can lead to unequal distribution of chromosomes during cell division and result in aneuploidy, thus kinetochores are critical for faithful segregation of chromosomes. Centromere protein A (CENP-A) is an important component of the inner kinetochore plate. Multiple studies in mitosis have found that deficiencies in CENP-A could result in structural and functional changes of kinetochores, leading to abnormal chromosome segregation, aneuploidy and apoptosis in cells. Here we report the expression and function of CENP-A during mouse oocyte meiosis. Our study found that microinjection of CENP-A blocking antibody resulted in errors of homologous chromosome segregation and caused aneuploidy in eggs. Thus, our findings provide evidence that CENP-A is critical for the faithful chromosome segregation during mammalian oocyte meiosis.

  10. Genetics Home Reference: mosaic variegated aneuploidy syndrome

    Science.gov (United States)

    ... In MVA syndrome, growth before birth is slow (intrauterine growth restriction). After birth, affected individuals continue to grow at ... InfoSearch: Warburton Anyane Yeboa syndrome KidsHealth from Nemours: Intrauterine Growth Restriction ... mosaic variegated aneuploidy syndrome 1 MalaCards: ...

  11. Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells

    Directory of Open Access Journals (Sweden)

    Barra Viviana

    2012-02-01

    Full Text Available Abstract Background Aneuploidy has been acknowledged as a major source of genomic instability in cancer, and it is often considered the result of chromosome segregation errors including those caused by defects in genes controlling the mitotic spindle assembly, centrosome duplication and cell-cycle checkpoints. Aneuploidy and chromosomal instability has been also correlated with epigenetic alteration, however the molecular basis of this correlation is poorly understood. Results To address the functional connection existing between epigenetic changes and aneuploidy, we used RNA-interference to silence the DNMT1 gene, encoding for a highly conserved member of the DNA methyl-transferases. DNMT1 depletion slowed down proliferation of near-diploid human tumor cells (HCT116 and triggered G1 arrest in primary human fibroblasts (IMR90, by inducing p53 stabilization and, in turn, p21waf1 transactivation. Remarkably, p53 increase was not caused by DNA damage and was not observed after p14-ARF post-transcriptional silencing. Interestingly, DNMT1 silenced cells with p53 or p14-ARF depleted did not arrest in G1 but, instead, underwent DNA hypomethylation and became aneuploid. Conclusion Our results suggest that DNMT1 depletion triggers a p14ARF/p53 dependent cell cycle arrest to counteract the aneuploidy induced by changes in DNA methylation.

  12. Embryonic aneuploidy does not differ among genetic ancestry according to continental origin as determined by ancestry informative markers.

    Science.gov (United States)

    Franasiak, Jason M; Olcha, Meir; Shastri, Shefali; Molinaro, Thomas A; Congdon, Haley; Treff, Nathan R; Scott, Richard T

    2016-10-01

    Is embryonic aneuploidy, as determined by comprehensive chromosome screening (CCS), related to genetic ancestry, as determined by ancestry informative markers (AIMs)? In this study, when determining continental ancestry utilizing AIMs, genetic ancestry does not have an impact on embryonic aneuploidy. Aneuploidy is one of the best-characterized barriers to ART success and little information exists regarding ethnicity and whole chromosome aneuploidy in IVF. Classifying continental ancestry utilizing genetic profiles from a selected group of single nucleotide polymorphisms, termed AIMs, can determine ancestral origin with more accuracy than self-reported data. This is a retrospective cohort study of patients undergoing their first cycle of IVF with CCS at a single center from 2008 to 2014. There were 2328 patients identified whom had undergone IVF/CCS and AIM genotyping. All patients underwent IVF/ICSI and CCS after trophectoderm biopsy. Patients' serum was genotyped using 32 custom AIMs to identify continental origin. Admixture proportions were determined using Bayesian clustering algorithms. Patients were assigned to the population (European, African, East Asian or Central/South Asian) corresponding to their greatest admixture proportion. The mean number of embryos tested was 5.3 (range = 1-40) and the mode was 1. Patients' ethnic classifications revealed European (n = 1698), African (n = 103), East Asian (n = 206) or Central/South Asian (n = 321). When controlling for age and BMI, aneuploidy rate did not differ by genetic ancestry (P = 0.28). The study type (retrospective) and the ability to classify patients by continental rather than sub-continental origin as well as the predominantly European patient mix may impact generalizability. Post hoc power calculation revealed power to detect a 16.8% difference in embryonic aneuploidy between the two smallest sample size groups. These data do not support differences in embryonic aneuploidy among various genetic

  13. Chromosome Segregation: The Bigger They Come, the Harder They Fall.

    Science.gov (United States)

    Baudoin, Nicolaas C; Cimini, Daniela

    2018-06-04

    Aneuploidy is frequently found to affect individual chromosomes differentially, but it is unclear whether this depends on inter-chromosome differences in missegregation rates. A new study presents evidence that, in the Indian muntjac, centromere-kinetochore size influences the rate at which chromosomes missegregate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. CINcere Modelling : What Have Mouse Models for Chromosome Instability Taught Us?

    NARCIS (Netherlands)

    Simon, Judith E; Bakker, Bjorn; Foijer, Floris

    2015-01-01

    Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse

  15. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    Science.gov (United States)

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (pcost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Parry, J M; Sharp, D; Tippins, R S; Parry, E M

    1979-06-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.

  17. Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome.

    Science.gov (United States)

    Brezina, Paul R; Benner, Andrew; Rechitsky, Svetlana; Kuliev, Anver; Pomerantseva, Ekaterina; Pauling, Dana; Kearns, William G

    2011-04-01

    To describe a method of amplifying DNA from blastocyst trophectoderm cells (two or three cells) and simultaneously performing 23-chromosome single nucleotide polymorphism microarrays and single-gene preimplantation genetic diagnosis. Case report. IVF clinic and preimplantation genetic diagnostic centers. A 36-year-old woman, gravida 2, para 1011, and her husband who both were carriers of GM(1) gangliosidosis. The couple wished to proceed with microarray analysis for aneuploidy detection coupled with DNA sequencing for GM(1) gangliosidosis. An IVF cycle was performed. Ten blastocyst-stage embryos underwent trophectoderm biopsy. Twenty-three-chromosome microarray analysis for aneuploidy and specific DNA sequencing for GM(1) gangliosidosis mutations were performed. Viable pregnancy. After testing, elective single embryo transfer was performed followed by an intrauterine pregnancy with documented fetal cardiac activity by ultrasound. Twenty-three-chromosome microarray analysis for aneuploidy detection and single-gene evaluation via specific DNA sequencing and linkage analysis are used for preimplantation diagnosis for single-gene disorders and aneuploidy. Because of the minimal amount of genetic material obtained from the day 3 to 5 embryos (up to 6 pg), these modalities have been used in isolation of each other. The use of preimplantation genetic diagnosis for aneuploidy coupled with testing for single-gene disorders via trophectoderm biopsy is a novel approach to maximize pregnancy outcomes. Although further investigation is warranted, preimplantation genetic diagnosis for aneuploidy and single-gene testing seem destined to be used increasingly to optimize ultimate pregnancy success. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. How old are chimpanzee communities? Time to the most recent common ancestor of the Y-chromosome in highly patrilocal societies.

    Science.gov (United States)

    Langergraber, Kevin E; Rowney, Carolyn; Schubert, Grit; Crockford, Cathy; Hobaiter, Catherine; Wittig, Roman; Wrangham, Richard W; Zuberbühler, Klaus; Vigilant, Linda

    2014-04-01

    Many human societies are patrilineal, with males passing on their name or descent group affiliation to their offspring. Y-chromosomes are also passed on from father to son, leading to the simple expectation that males sharing the same surname or descent group membership should have similar Y-chromosome haplotypes. Although several studies in patrilineal human societies have examined the correspondence between Y-chromosome variation and surname or descent group membership, similar studies in non-human animals are lacking. Chimpanzees represent an excellent species for examining the relationship between descent group membership and Y-chromosome variation because they live in strongly male philopatric communities that arise by a group-fissioning process. Here we take advantage of recent analytical advances in the calculation of the time to the most recent common male ancestor and a large sample size of 273 Y-chromosome short tandem repeat haplotypes to inform our understanding of the potential ages of eight communities of chimpanzees. We find that the times to the most recent common male ancestor of chimpanzee communities are several hundred to as much as over two thousand years. These genetic estimates of the great time depths of chimpanzee communities accord well with behavioral observations suggesting that community fissions are a very rare event and are similar to genetic estimates of the time depth of patrilineal human groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of Chromosomal Disorders in Tissue and Blood Samples in Patients with Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    A. Parvaneroo

    2004-12-01

    Full Text Available Statement of Problem: Many studies have indicated that genetic disturbances are common findings in patients with Oral Squamous Cell Carcinoma (OSCC. Identification of these changes can be helpful in diagnostic procedures of these tumors.Purpose: The aim of this study was to appraise the chromosomal disorders in blood and tissue patients with OSCC.Methods and Materials: In this descriptive study, the study group consisted of all OSCC patients who were referred to the Faculty of Dentistry, Tehran University of Medical Sciences, Maxillofacial Surgery Clinic of Shariati Hospital, and Amir Aalam Hospital fromSeptember 2000 to November 2002. In order to study chromosomal disorders in the peripheral blood lymphocytes, 5 mL of blood was obtained from each patient In patients with the large lesion, a piece of involved tissue were obtained and cultured for 24 hours.This led to 29 blood samples and 16 tissue specimens and any relation between OSCC and age, sex, smoking and alcohol use were evaluated.Results: In this study, OSCC was more common in males than in females (3 to 5. 31% of our patients were smokers, and one had a history of alcoholic consumption. There was an increase in incidence of OSCC with age. In this study, all patients had numerical(aneuploidy, polyploidy and structural chromosomal disorders (double minute, fragment,breakage and dicentric. There was significant difference between blood and tissue chromosomal disorders (aneuploidy, polyploidy,breakage in OSCC patients.Conclusion: It can be concluded that chromosomes in patients with OSCC might show some genetic aberration and evaluation of involved tissue might be better way for determining this disorders.

  20. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  1. "European" race-specific metacentrics in East Siberian common shrews (Sorex araneus): a description of two new chromosomal races, Irkutsk and Zima.

    Science.gov (United States)

    Pavlova, Svetlana V; Borisov, Sergei A; Timoshenko, Alexander F; Sheftel, Boris I

    2017-01-01

    Karyotype studies of common shrews in the vicinity of Lake Baikal (Irkutsk Region, Eastern Siberia) resulted in the description of two new chromosomal races of Sorex araneus Linnaeus, 1758 (Lypotyphla, Mammalia), additional to 5 races formerly found in Siberia. In the karyotypes of 12 specimens from 3 locations, the polymorphism of metacentric and acrocentric chromosomes of the Robertsonian type was recorded and two distinct groups of karyotypes interpreted as the chromosomal races were revealed. They are geographically distant and described under the racial names Irkutsk (Ir) and Zima (Zi). Karyotypes of both races were characterized by species-specific (the same for all 74 races known so far) metacentric autosomes af, bc, tu and jl , and the typical sex chromosome system - XX/XY 1 Y 2 . The race-specific arm chromosome combinations include three metacentrics and four acrocentrics in the Irkutsk race ( gk, hi, nq, m, o, p, r ) and four metacentrics and two acrocentrics in the Zima race ( gm, hi, ko, nq, p, r ). Within the races, individuals with polymorphic chromosomes were detected ( g/m, k/o, n/q, p/r ). The presence of the specific metacentric gk allowed us to include the Irkutsk race into the Siberian Karyotypic Group (SKG), distributed in surrounding regions. The Zima race karyotype contained two metacentrics, gm and ko , which have been never found in the Siberian part of the species range, but appear as the common feature of chromosomal races belonging to the West European Karyotypic Group (WEKG). Moreover, the metacentrics of that karyotype are almost identical to the Åkarp race (except the heterozygous pair p/r ) locally found in the southern Sweden. One of two Siberian races described here for the first time, the Zima race, occurs in an area considerably distant from Europe and shares the common metacentrics ( gm, hi, ko ) with races included in WEKG. This fact may support a hypothesis of independent formation of identical arm chromosome combinations

  2. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    Science.gov (United States)

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  3. Auto-catalysed progression of aneuploidy explains the Hayflick limit of cultured cells, carcinogen-induced tumours in mice, and the age distribution of human cancer.

    Science.gov (United States)

    Rasnick, D

    2000-06-15

    Evidence continues to accumulate that aneuploidy, an imbalance in the number of chromosomes, is responsible for the characteristic phenotypes of cancer, including the abnormal cellular size and morphology of cancer cells, the appearance of tumour-associated antigens, as well as the high levels of membrane-bound and secreted proteins responsible for invasiveness and loss of contact inhibition. Aneuploidy has also been demonstrated to be the self-perpetuating source of the karyotypic instability of cancer cells. Here it is shown that the auto-catalysed progression of aneuploidy explains the kinetics of the finite lifetime of diploid cells in culture, the time course of the appearance of papillomas and carcinomas in benzo[a]pyrene-treated mice, and the age-dependence of human cancers. Modelling studies indicate that the ease of spontaneous transformation of mouse cells in culture may be due to a chaotic progression of aneuploidy. Conversely, the strong preference towards senescence and resistance to transformation of human cells in culture may be the result of a non-chaotic progression of aneuploidy. Finally, a method is proposed for quantifying the aneuploidogenic potencies of carcinogens.

  4. Effect of Gsk3 inhibitor CHIR99021 on aneuploidy levels in rat embryonic stem cells.

    Science.gov (United States)

    Bock, Anagha S; Leigh, Nathan D; Bryda, Elizabeth C

    2014-06-01

    Germline competent embryonic stem (ES) cells can serve as a tool to create genetically engineered rat strains used to elucidate gene function or provide disease models. In optimum culture conditions, ES cells are able to retain their pluripotent state. The type of components present and their concentration in ES cell culture media greatly influences characteristics of ES cells including the ability to maintain the cells in a pluripotent state. We routinely use 2i media containing inhibitors CHIR99021 and PD0325901 to culture rat ES cells. CHIR99021 specifically inhibits the Gsk3β pathway. We have found that the vendor source of CHIR99021 has a measurable influence on the level of aneuploidy seen over time as rat ES cells are passaged. Karyotyping of three different rat ES cell lines passaged multiple times showed increased aneuploidy when CHIR99021 from source B was used. Mass spectrometry analysis of this inhibitor showed the presence of unexpected synthetic small molecules, which might directly or indirectly cause increases in chromosome instability. Identifying these molecules could further understanding of their influence on chromosome stability and indicate how to improve synthesis of this media component to prevent deleterious effects in culture.

  5. Search for common haplotypes on chromosome 22q in patients with schizophrenia or bipolar disorder from the Faroe Islands

    DEFF Research Database (Denmark)

    Jorgensen, T H; Børglum, A D; Mors, O

    2002-01-01

    Chromosome 22q may harbor risk genes for schizophrenia and bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. Patients with schizophrenia and bipolar affective disorder from the Faroe...... Islands were typed for 35 evenly distributed polymorphic markers on 22q in a search for shared risk genes in the two disorders. No single marker was strongly associated with either disease, but five two-marker segments that cluster within two regions on the chromosome have haplotypes occurring...

  6. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation.

    Science.gov (United States)

    Tarte, Karin; Gaillard, Julien; Lataillade, Jean-Jacques; Fouillard, Loic; Becker, Martine; Mossafa, Hossein; Tchirkov, Andrei; Rouard, Hélène; Henry, Catherine; Splingard, Marie; Dulong, Joelle; Monnier, Delphine; Gourmelon, Patrick; Gorin, Norbert-Claude; Sensebé, Luc

    2010-02-25

    Clinical-grade human mesenchymal stromal cells (MSCs) have been expanded in vitro for tissue engineering or immunoregulatory purposes without standardized culture conditions or release criteria. Although human MSCs show poor susceptibility for oncogenic transformation, 2 recent studies described their capacity to accumulate chromosomal instability and to give rise to carcinoma in immunocompromised mice after long-term culture. We thus investigated the immunologic and genetic features of MSCs expanded with fetal calf serum and fibroblast growth factor or with platelet lysate in 4 cell-therapy facilities during 2 multicenter clinical trials. Cultured MSCs showed a moderate expression of human leukocyte antigen-DR without alteration of their low immunogenicity or their immunomodulatory capacity. Moreover, some transient and donor-dependent recurring aneuploidy was detected in vitro, independently of the culture process. However, MSCs with or without chromosomal alterations showed progressive growth arrest and entered senescence without evidence of transformation either in vitro or in vivo.

  7. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  8. Assessing the cost of implementing the 2011 Society of Obstetricians and Gynecologists of Canada and Canadian College of Medical Genetics practice guidelines on the detection of fetal aneuploidies.

    Science.gov (United States)

    Lilley, Margaret; Hume, Stacey; Karpoff, Nina; Maire, Georges; Taylor, Sherry; Tomaszewski, Robert; Yoshimoto, Maisa; Christian, Susan

    2017-09-01

    The Society of Obstetricians and Gynecologists of Canada and the Canadian College of Medical Genetics published guidelines, in 2011, recommending replacement of karyotype with quantitative fluorescent polymerase chain reaction when prenatal testing is performed because of an increased risk of a common aneuploidy. This study's objective is to perform a cost analysis following the implementation of quantitative fluorescent polymerase chain reaction as a stand-alone test. A total of 658 samples were received between 1 April 2014 and 31 August 2015: 576 amniocentesis samples and 82 chorionic villi sampling. A chromosome abnormality was identified in 14% (93/658) of the prenatal samples tested. The implementation of the 2011 Society of Obstetricians and Gynecologists of Canada and the Canadian College of Medical Genetics guidelines in Edmonton and Northern Alberta resulted in a cost savings of $46 295.80. The replacement of karyotype with chromosomal microarray for some indications would be associated with additional costs. The implementation of new test methods may provide cost savings or added costs. Cost analysis is important to consider during the implementation of new guidelines or technologies. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  9. [Identification of a novel WART-like chromosome rearrangement in complex heterozygotes in an interracial hybrid zone of the common shrew Sorex araneus L].

    Science.gov (United States)

    Pavlova, S V; Bulatova, N Sh

    2010-09-01

    Karyotypes uncharacteristic of pure races or hybrids were identified in the interracial hybrid zones of the common shrew Sorex araneus L. that were recently discovered in the European part of Russia. This suggests the actual existence in natural populations of WART-like rearrangements (whole-arm reciprocal translocations) along with Robertsonian fusions of acrocentrics. Demonstration of new and still rare chromosome variants is the aim of this communication.

  10. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    Science.gov (United States)

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  11. Chromosomal Abnormalities Associated With Omphalocele

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup(3q, dup(11p, inv(11, dup(1q, del(1q, dup(4q, dup(5p, dup(6q, del(9p, dup(15q, dup(17q, Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.

  12. Paternal isodisomy of chromosome 6 in association with a maternal supernumerary marker chromosome (6)

    Energy Technology Data Exchange (ETDEWEB)

    James, R.S.; Crolla, J.A.; Sitch, F.L. [Salisbury District Hospital, Wiltshire (United Kingdom)] [and others

    1994-09-01

    Uniparental disomy may arise by a number of different mechanisms of aneuploidy correction. A population that has been identified as being at increased risk of aneuploidy are those individuals bearing supernumerary marker chromosomes (SMCs). There have been a number of cases reported of trisomy 21 in association with bi-satellited marker chromosomes have described two individuals with small inv dup (15) markers. One had paternal isodisomy of chromosome 15 and Angelman syndrome. The other had maternal heterodisomy (15) and Prader-Willi syndrome. At the Wessex Regional Genetics Laboratory we have conducted a search for uniparental disomy of the normal homologues of the chromosomes from which SMCs originated. Our study population consists of 39 probands with SMCs originating from a number of different autosomes, including 17 with SMCs of chromosome 15 origin. Using PCR amplification of microsatellite repeat sequences located distal to the regions included in the SMCs we have determined the parental origin of the two normal homologues in each case. We have identified paternal isodisomy of chromosome 6 in a female child with a supernumerary marker ring chromosome 6 in approximately 70% of peripheral blood lymphocytes. The marker was found to be of maternal origin. This is the second case of paternal isodisomy of chromosome 6 to be reported, and the first in association with a SMC resulting in a partial trisomy for a portion of the short arm of chromosome 6. In spite of this, the patient appears to be functioning appropriately for her age.

  13. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity.

    Directory of Open Access Journals (Sweden)

    Yuanjie Hu

    Full Text Available Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7 copy number variation (CNV in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers.

  14. MMS-induced primary aneuploidy and other genotoxic effects in mitotic cells of Aspergillus.

    Science.gov (United States)

    Käfer, E

    1988-10-01

    The possibility of more than 1 target for genotoxic effects of methyl methanesulphonate (MMS) was investigated, using mitotic test systems of the fungus Aspergillus. Haploid and diploid strains were exposed, either as dormant conidia or during mitosis, and analysed for induced aneuploidy and effects on genetic segregation. MMS treatment of haploid strains resulted in dose-dependent increases of stable mutants with altered phenotypes and semi-stable unbalanced aberrations (presumably duplications). In addition, but only in dividing cells, MMS induced unstable aneuploids. These mostly were hyperhaploid with few extra chromosomes and could be identified by comparison with standard disomic phenotypes. When well-marked diploids were treated 3 types of effect could be distinguished, using genetic and phenotypic criteria: (1) Clastogenic and mutagenic effects which caused dose-dependent increases of partial aneuploids with various abnormal phenotypes. These showed secondary genetic segregation of all types and produced euploid normal sectors by eliminating damaged chromosome segments. In addition, but only in dividing nuclei, MMS induced 2 types of segregation: (2) Reciprocal crossing-over at high frequency, recognisable as half or quarter colonies of mutant colour and in some cases as 'twin spots' (i.e., complementary pairs); (3) Trisomics and other aneuploids which showed characteristic phenotypes and expected segregation of markers: the types recovered indicate random malsegregation of chromosomes (occasional deviations resulted from coincidence with induced crossing-over). These results suggest that MMS may have 2 (or more) targets for genotoxic effects: DNA, as evident from induced mutations and aberrations, and from induced recombination in dividing cells; some non-DNA target (nucleotide or protein) essential for nuclear division and susceptible to alkylation, resulting in malsegregation and primary aneuploidy.

  15. Rapid aneuploidy testing (knowing less) versus traditional karyotyping (knowing more) for advanced maternal age: what would be missed, who should decide?

    Science.gov (United States)

    Leung, W C; Lau, E T; Lau, W L; Tang, Rebecca; Wong, Shell Fean; Lau, T K; Tse, K T; Wong, S F; To, W K; Ng, Lucy K L; Lao, T T; Tang, Mary H Y

    2008-02-01

    The application of rapid aneuploidy testing as a stand-alone approach in prenatal diagnosis is much debated. The major criticism of this targeted approach is that it will not detect other chromosomal abnormalities that will be picked up by traditional karyotyping. This study aimed to study the nature of such chromosomal abnormalities and whether parents would choose to terminate affected pregnancies. Retrospective study on a cytogenetic database. Eight public hospitals in Hong Kong. The karyotype results of 19 517 amniotic fluid cultures performed for advanced maternal age (>or=35 years) from 1997 to 2002 were classified according to whether they were detectable by rapid aneuploidy testing. The outcomes of pregnancies with abnormal karyotypes were reviewed from patient records. In all, 333 (1.7%) amniotic fluid cultures yielded abnormal karyotypes; 175 (52.6%) of these were detected by rapid aneuploidy testing, and included trisomy 21 (n=94, 28.2%), trisomy 18 or 13 (n=21, 6.3%), and sex chromosome abnormalities (n=60, 18.0%). The other 158 (47.4%) chromosomal abnormalities were not detectable by rapid aneuploidy testing, of which 63 (18.9%) were regarded to be of potential clinical significance and 95 (28.5%) of no clinical significance. Pregnancy outcomes in 327/333 (98.2%) of these patients were retrieved. In total, 143 (42.9%) of these pregnancies were terminated: 93/94 (98.9%) for trisomy 21, 20/21 (95.2%) for trisomy 18 or 13, 19/60 (31.7%) for sex chromosome abnormalities, and 11/63 (17.5%) for other chromosomal abnormalities with potential clinical significance. There were no terminations in the 95 pregnancies in which karyotyping results were regarded to be of no clinical significance. 'Knowing less' by the rapid aneuploidy stand-alone testing could miss about half of all chromosomal abnormalities detectable by amniocentesis performed for advanced maternal age. Findings from two fifths of the latter were of potential clinical significance, and the parents

  16. Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks

    International Nuclear Information System (INIS)

    Kenow, Kevin P.; Hoffman, David J.; Hines, Randy K.; Meyer, Michael W.; Bickham, John W.; Matson, Cole W.; Stebbins, Katie R.; Montagna, Paul; Elfessi, Abdulaziz

    2008-01-01

    We quantified the level of dietary mercury (Hg), delivered as methylmercury chloride (CH 3 HgCl), associated with negative effects on organ and plasma biochemistries related to glutathione (GSH) metabolism and oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks reared from hatch to 105 days. Mercury-associated effects related to oxidative stress and altered glutathione metabolism occurred at 1.2 μg Hg/g and 0.4 μg Hg/g, an ecologically relevant dietary mercury level, but not at 0.08 μg Hg/g. Among the variables that contributed most to dissimilarities in tissue chemistries between control and treatment groups were increased levels of oxidized glutathione (GSSG), GSH peroxidase, and the ratio of GSSG to GSH in brain tissue; increased levels of hepatic GSH; and decreased levels of hepatic glucose-6-phosphate dehydrogenase (G-6-PDH). Our results also suggest that chronic exposure to environmentally relevant dietary Hg levels did not result in statistically significant somatic chromosomal damage in common loon chicks. - Oxidative stress and altered glutathione metabolism were evident in common loon chicks exposed to ≥0.4 μg Hg as CH 3 HgCl per gram wet food intake

  17. Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks

    Energy Technology Data Exchange (ETDEWEB)

    Kenow, Kevin P. [U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603 (United States)], E-mail: kkenow@usgs.gov; Hoffman, David J. [U.S. Geological Survey, Patuxent Wildlife Research Center, 10300 Baltimore Avenue, Beltsville, MD 20705 (United States)], E-mail: djhoffman@usgs.gov; Hines, Randy K. [U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603 (United States)], E-mail: rkhines@usgs.gov; Meyer, Michael W. [Wisconsin Department of Natural Resources, 107 Sutliff Avenue, Rhinelander, WI 54501 (United States)], E-mail: michael.meyer@dnr.state.wi.us; Bickham, John W. [Center for the Environment and Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: bickham@purdue.edu; Matson, Cole W. [Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708 (United States)], E-mail: matson@duke.edu; Stebbins, Katie R. [U.S. Geological Survey, Patuxent Wildlife Research Center, 10300 Baltimore Avenue, Beltsville, MD 20705 (United States); Montagna, Paul [Texas A and M University-Corpus Christi, Harte Research Institute, Corpus Christi, TX (United States)], E-mail: paul.montagna@tamucc.edu; Elfessi, Abdulaziz [University of Wisconsin-La Crosse, La Crosse, WI 54601 (United States)], E-mail: elfessi.abdu@uwlax.edu

    2008-12-15

    We quantified the level of dietary mercury (Hg), delivered as methylmercury chloride (CH{sub 3}HgCl), associated with negative effects on organ and plasma biochemistries related to glutathione (GSH) metabolism and oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks reared from hatch to 105 days. Mercury-associated effects related to oxidative stress and altered glutathione metabolism occurred at 1.2 {mu}g Hg/g and 0.4 {mu}g Hg/g, an ecologically relevant dietary mercury level, but not at 0.08 {mu}g Hg/g. Among the variables that contributed most to dissimilarities in tissue chemistries between control and treatment groups were increased levels of oxidized glutathione (GSSG), GSH peroxidase, and the ratio of GSSG to GSH in brain tissue; increased levels of hepatic GSH; and decreased levels of hepatic glucose-6-phosphate dehydrogenase (G-6-PDH). Our results also suggest that chronic exposure to environmentally relevant dietary Hg levels did not result in statistically significant somatic chromosomal damage in common loon chicks. - Oxidative stress and altered glutathione metabolism were evident in common loon chicks exposed to {>=}0.4 {mu}g Hg as CH{sub 3}HgCl per gram wet food intake.

  18. A simple and reliable in vitro test system for the analysis of induced aneuploidy as well as other cytogenetic end-points using Chinese hamster cells

    International Nuclear Information System (INIS)

    Dulout, F.N.; Natarajan, A.T.

    1987-01-01

    Although aneuploidy is a serious human health problem, the experimental methodology devised until now to study the mechanisms involved in the induction of aneuploidy and for the screening of aneuploidy-inducing agents has not been so much employed to have the necessary validation. A procedure using primary cell cultures of Chinese hamster embryo cells grown on cover glasses is described. To avoid the excessive scattering and subsequent loss of chromosomes, a hypotonic treatment with a 0.17% sodium chloride solution, at room temperature, followed by in situ fixation has been standardized. This procedure improves the method through the reduction of the spontaneous frequency of aneuploid cells. Experiments carried out with cells treated with X-rays, X-rays plus caffeine, and the synthetic estrogen diethylstilbestrol (DES) demonstrated the accuracy of the system since the average chromosome number remained constant in spite of the induction of high frequencies of aneuploid cells. Moreover, the method allows for the analysis of other cytogenetic endpoints such as anaphase-telophase alterations, structural chromosome aberrations or sister chromatid exchanges. (author)

  19. High Aneuploidy Rates Observed in Embryos Derived from Donated Oocytes are Related to Male Aging and High Percentages of Sperm DNA Fragmentation

    Directory of Open Access Journals (Sweden)

    Javier García-Ferreyra

    2015-01-01

    Full Text Available Capsule Male aging effects on aneuploidy rates in embryos. Objective Paternal age is associated with decreasing sperm quality; however, it is unknown if it influences chromosomal abnormalities in embryos. The objective of this study is to evaluate if the aneuploidy rates in embryos are affected by advanced paternal age. Methods A total of 286 embryos, obtained from 32 in vitro fertilization/intracytoplasmic sperm injection cycles with donated oocytes in conjunction with preimplantation genetic diagnosis, were allocated according to paternal age in three groups: Group A: ≤39 years (n = 44 embryos; Group B: 40-49 years (n = 154 embryos; and Group C: ≥50 years (n = 88 embryos. Fertilization rates, embryo quality at day 3, blastocyst development, and aneuploidy embryo rates were then compared. Results There was no difference in the seminal parameters (volume, concentration, and motility in the studied groups. Fertilization rate, percentages of zygotes underwent cleavage, and good quality embryos on day 3 were similar between the three evaluated groups. The group of men ≥50 years had significantly more sperm with damaged DNA, low blastocyst development rate, and higher aneuploidy rates in embryos compared to the other two evaluated groups ( P 50 years old.

  20. Search for common haplotypes on chromosome 22q in patients with schizophrenia or bipolar disorder from the Faroe Islands

    DEFF Research Database (Denmark)

    Jorgensen, Tove H; Børglum, A.D; Mors, O

    2002-01-01

    Chromosome 22q may harbor risk genes for schizophrenia and bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. Patients with schizophrenia and bipolar affective disorder from the Faroe...... was found at a segment of at least 1.1 cM including markers D22S1161 and D22S922 (P=0.0081 in the test for association). Our results also support the a priori evidence of a susceptibility gene to schizophrenia at a segment of at least 0.45 cM including markers D22S279 and D22S276 (P=0.0075). Patients were...... tested for the presence of a missense mutation in the WKL1 gene encoding a putative cation channel close to segment D22S1161-D22S922, which has been associated with schizophrenia. We did not find this mutation in schizophrenic or bipolar patients or the controls from the Faroe Islands. © 2002 Wiley...

  1. An Overview on Prenatal Screening for Chromosomal Aberrations.

    Science.gov (United States)

    Hixson, Lucas; Goel, Srishti; Schuber, Paul; Faltas, Vanessa; Lee, Jessica; Narayakkadan, Anjali; Leung, Ho; Osborne, Jim

    2015-10-01

    This article is a review of current and emerging methods used for prenatal detection of chromosomal aneuploidies. Chromosomal anomalies in the developing fetus can occur in any pregnancy and lead to death prior to or shortly after birth or to costly lifelong disabilities. Early detection of fetal chromosomal aneuploidies, an atypical number of certain chromosomes, can help parents evaluate their pregnancy options. Current diagnostic methods include maternal serum sampling or nuchal translucency testing, which are minimally invasive diagnostics, but lack sensitivity and specificity. The gold standard, karyotyping, requires amniocentesis or chorionic villus sampling, which are highly invasive and can cause abortions. In addition, many of these methods have long turnaround times, which can cause anxiety in mothers. Next-generation sequencing of fetal DNA in maternal blood enables minimally invasive, sensitive, and reasonably rapid analysis of fetal chromosomal anomalies and can be of clinical utility to parents. This review covers traditional methods and next-generation sequencing techniques for diagnosing aneuploidies in terms of clinical utility, technological characteristics, and market potential. © 2015 Society for Laboratory Automation and Screening.

  2. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-19

    Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

  3. Outcome of chromosomally abnormal pregnancies in Lebanon: obstetricians' roles during and after prenatal diagnosis.

    Science.gov (United States)

    Eldahdah, Lama T; Ormond, Kelly E; Nassar, Anwar H; Khalil, Tayma; Zahed, Laila F

    2007-06-01

    To better understand obstetrician experiences in Lebanon when disclosing abnormal amniocentesis results. Structured interviews with 38 obstetricians identified as caregivers from the American University of Beirut Medical Center Cytogenetics Laboratory database of patients with abnormal amniocentesis results between 1999 and 2005. Obstetricians were primarily male, Christian, and with an average of 14 years of experience. They reported doing most pre-amniocentesis counseling, including discussion of risk for common autosomal aneuplodies (95%), and procedure-related risk (95%). Obstetricians reported that 80% of patients at risk for aneuploidy underwent amniocentesis. The study population reported on 143 abnormal test results (124 autosomal abnormalities). When disclosing results, obstetricians reportedly discussed primarily physical and cognitive features of the diagnosis. They varied in levels of directiveness and comfort in providing information. Our records showed that 59% of pregnancies with sex chromosome abnormalities were terminated compared to 90% of those with autosomal aneuploidies; various reasons were proposed by obstetricians. This study is among the few to assess prenatal diagnosis practices in the Middle East, with a focus on the role of the obstetrician. Given the influence of culture and social norms on prenatal decision-making, it remains important to understand the various impacts on clinical practice in many nations. (c) 2007 John Wiley & Sons, Ltd.

  4. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum

    Science.gov (United States)

    Aneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environm...

  5. Significance of common variants on human chromosome 8q24 in relation to the risk of prostate cancer in native Japanese men

    Directory of Open Access Journals (Sweden)

    Hosoi Takayuki

    2009-07-01

    Full Text Available Abstract Background Common variants on human chromosome 8q24, rs1447295 (C/A and rs6983267 (T/G, have been recently linked to the prevalence of prostate cancer in European and American populations. Here, we evaluated whether the single-nucleotide polymorphisms rs1447295 and rs6983267 were associated with the risk of sporadic prostate cancer as well as latent prostate cancer in a native Japanese population. Results We analyzed genomic DNA samples from 391 sporadic prostate cancer patients, 323 controls who had died from causes unrelated to cancer and 112 Japanese men who were diagnosed as having latent prostate cancer based on autopsy results. The polymorphisms were determined by allelic discrimination using a fluorescent-based TaqMan assay. The A allele of rs1447295 was significantly associated with the risk of sporadic prostate cancer (p = 0.04; age-adjusted OR, 1.34, while the G allele of rs6983267 showed a trend towards being a high-risk allele (p = 0.06; age-adjusted OR, 1.27. No significant difference between these two polymorphisms and the risk of latent prostate cancer was observed in the present Japanese population. Conclusion Known variants on human chromosome 8q24 may be risk factors for sporadic prostate cancer in native Japanese men.

  6. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus

    NARCIS (Netherlands)

    Su, Zhan; Gay, Laura J.; Strange, Amy; Palles, Claire; Band, Gavin; Whiteman, David C.; Lescai, Francesco; Langford, Cordelia; Nanji, Manoj; Edkins, Sarah; van der Winkel, Anouk; Levine, David; Sasieni, Peter; Bellenguez, Céline; Howarth, Kimberley; Freeman, Colin; Trudgill, Nigel; Tucker, Art T.; Pirinen, Matti; Peppelenbosch, Maikel P.; van der Laan, Luc J. W.; Kuipers, Ernst J.; Drenth, Joost P. H.; Peters, Wilbert H.; Reynolds, John V.; Kelleher, Dermot P.; McManus, Ross; Grabsch, Heike; Prenen, Hans; Bisschops, Raf; Krishnadath, Kausila; Siersema, Peter D.; van Baal, Jantine W. P. M.; Middleton, Mark; Petty, Russell; Gillies, Richard; Burch, Nicola; Bhandari, Pradeep; Paterson, Stuart; Edwards, Cathryn; Penman, Ian; Vaidya, Kishor; Ang, Yeng; Murray, Iain; Patel, Praful; Ye, Weimin; Mullins, Paul; Wu, Anna H.; Bird, Nigel C.; Dallal, Helen; Shaheen, Nicholas J.; Murray, Liam J.; Koss, Konrad; Bernstein, Leslie; Romero, Yvonne; Hardie, Laura J.; Zhang, Rui; Winter, Helen; Corley, Douglas A.; Panter, Simon; Risch, Harvey A.; Reid, Brian J.; Sargeant, Ian; Gammon, Marilie D.; Smart, Howard; Dhar, Anjan; McMurtry, Hugh; Ali, Haythem; Liu, Geoffrey; Casson, Alan G.; Chow, Wong-Ho; Rutter, Matt; Tawil, Ashref; Morris, Danielle; Nwokolo, Chuka; Isaacs, Peter; Rodgers, Colin; Ragunath, Krish; MacDonald, Chris; Haigh, Chris; Monk, David; Davies, Gareth; Wajed, Saj; Johnston, David; Gibbons, Michael; Cullen, Sue; Church, Nicholas; Langley, Ruth; Griffin, Michael; Alderson, Derek; Deloukas, Panos; Hunt, Sarah E.; Gray, Emma; Dronov, Serge; Potter, Simon C.; Tashakkori-Ghanbaria, Avazeh; Anderson, Mark; Brooks, Claire; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Duncanson, Audrey; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas; Trynka, Gosia; Wijmenga, Cisca; Cazier, Jean-Baptiste; Atherfold, Paul; Nicholson, Anna M.; Gellatly, Nichola L.; Glancy, Deborah; Cooper, Sheldon C.; Cunningham, David; Lind, Tore; Hapeshi, Julie; Ferry, David; Rathbone, Barrie; Brown, Julia; Love, Sharon; Attwood, Stephen; Macgregor, Stuart; Watson, Peter; Sanders, Scott; Ek, Weronica; Harrison, Rebecca F.; Moayyedi, Paul; de Caestecker, John; Barr, Hugh; Stupka, Elia; Vaughan, Thomas L.; Peltonen, Leena; Spencer, Chris C. A.; Tomlinson, Ian; Donnelly, Peter; Jankowski, Janusz A. Z.

    2012-01-01

    Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on

  7. Rapid-prenatal diagnosis through fluorescence in situ hybridization for preventing aneuploidy related birth defects.

    Science.gov (United States)

    Fauzdar, Ashish; Chowdhry, Mohit; Makroo, R N; Mishra, Manoj; Srivastava, Priyanka; Tyagi, Richa; Bhadauria, Preeti; Kaul, Anita

    2013-01-01

    Women with high-risk pregnancies are offered prenatal diagnosis through amniocentesis for cytogenetic analysis of fetal cells. The aim of this study was to evaluate the effectiveness of the rapid fluorescence in situ hybridization (FISH) technique for detecting numerical aberrations of chromosomes 13, 21, 18, X and Y in high-risk pregnancies in an Indian scenario. A total of 163 samples were received for a FISH and/or a full karyotype for prenatal diagnosis from high-risk pregnancies. In 116 samples both conventional culture techniques for getting karyotype through G-banding techniques were applied in conjunction to FISH test using the AneuVysion kit (Abbott Molecular, Inc.), following standard recommended protocol to compare the both the techniques in our setup. Out of 116 patients, we got 96 normal for the five major chromosome abnormality and seven patients were found to be abnormal (04 trisomy 21, 02 monosomy X, and 01 trisomy 13) and all the FISH results correlated with conventional cytogenetics. To summarize the results of total 163 patients for the major chromosomal abnormalities analyzed by both/or cytogenetics and FISH there were 140 (86%) normal, 9 (6%) cases were abnormal and another 4 (2.5%) cases were suspicious mosaic and 10 (6%) cases of culture failure. The diagnostic detection rate with FISH in 116 patients was 97.5%. There were no false-positive and false-negative autosomal or sex chromosomal results, within our established criteria for reporting FISH signals. Rapid FISH is a reliable and prompt method for detecting numerical chromosomal aberrations and has now been implemented as a routine diagnostic procedure for detection of fetal aneuploidy in India.

  8. Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase.

    Science.gov (United States)

    Pampalona, Judit; Roscioli, Emanuele; Silkworth, William T; Bowden, Brent; Genescà, Anna; Tusell, Laura; Cimini, Daniela

    2016-01-01

    Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.

  9. Screening for aneuploidies by maternal age, fetal nuchal translucency and maternal serum biochemistry at 11-13+6 gestational weeks

    Directory of Open Access Journals (Sweden)

    Karadžov-Orlić Nataša

    2012-01-01

    Full Text Available Introduction. Aneuploidies are the major cause of perinatal death and early psychophysical disorders. Objective. In this study, we analyzed detection and false-positive rates of screening for aneuploidies in the first trimester by the combination of maternal age, fetal nuchal translucency (NT thickness and maternal serum free beta-human chorionic gonadotrophin (β-hCG, and pregnancy-associated plasma protein-A (PAPP-A at 11-13+6 weeks of gestation, using the appropriate software developed by the Fetal Medicine Foundation. Methods. Our screening study for aneuploidies analyzed 4172 singleton pregnancies from January 2006 to December 2010. The sensitivities and false-positive rates using the combined aneuploidies determination for the risk cut-off of 1:275 were evaluated. Results. In the trisomy 21 pregnancies, the fetal NT was higher than 95th centile, in 72.8%, serum free b-hCG concentration it was above the 95th centile in 55% and serum PAPP-A was below the 5th centile in 47% of the cases. In the trisomy 18 and 13, the fetal NT was above 95th centile in 66.6% and 44.4% of the cases, respectively. The serum free b-hCG concentration was above the 95th centile in 0 and 10%, but serum PAPP-A was below 5th centile in 80.9% and 88.8% of pregnancies. In the trisomy 21 pregnancies the median free beta-hCG was 2.3 MoM and the median PAPP-A was 0.45 MoM. Chromosomal abnormalities were detected in 169 fetuses: trisomy 21 (97, Turner syndrome (19, trisomy 18 (28, trisomy 13 (11 and others (14. Detection rate of combined screening for aneuploides were 86.0% with false positive rate of 5.3% (mean age 33±4.9 years, >35 years in 35% of pregnancies. Conclusion. Our study suggests that the strategy of first-trimester combined screening of biochemical values and ultrasonographic parameters at 12 gestational weeks identifies higher percentage of aneuploidies with a lower false-positive rate than a single parameter strategy.

  10. The fitness consequences of aneuploidy are driven by condition-dependent gene effects.

    Directory of Open Access Journals (Sweden)

    Anna B Sunshine

    2015-05-01

    Full Text Available Aneuploidy is a hallmark of tumor cells, and yet the precise relationship between aneuploidy and a cell's proliferative ability, or cellular fitness, has remained elusive. In this study, we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains, each containing a different telomeric amplicon (Tamp, ranging in size from 0.4 to 1,000 kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific, with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome-wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp's fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are

  11. ORIGINAL ARTICLE Prenatal diagnosis of aneuploidy among a ...

    African Journals Online (AJOL)

    salah

    terphase cells. Patients and Methods: Prenatal diagnosis was performed on 40 high risk ... Prenatal diagnosis of aneuploidy among a sample of Egyptian high risk pregnancies ..... of medical genetics. 9th ed.: Churchill. Livingstone; 1995. p. 23-45. Edwards and Beard: FISH studies of. 2. pre-implantation embryos and PGD.

  12. A randomized and blinded comparison of qPCR and NGS-based detection of aneuploidy in a cell line mixture model of blastocyst biopsy mosaicism.

    Science.gov (United States)

    Goodrich, David; Tao, Xin; Bohrer, Chelsea; Lonczak, Agnieszka; Xing, Tongji; Zimmerman, Rebekah; Zhan, Yiping; Scott, Richard T; Treff, Nathan R

    2016-11-01

    A subset of preimplantation stage embryos may possess mosaicism of chromosomal constitution, representing a possible limitation to the clinical predictive value of comprehensive chromosome screening (CCS) from a single biopsy. However, contemporary methods of CCS may be capable of predicting mosaicism in the blastocyst by detecting intermediate levels of aneuploidy within a trophectoderm biopsy. This study evaluates the sensitivity and specificity of aneuploidy detection by two CCS platforms using a cell line mixture model of a mosaic trophectoderm biopsy. Four cell lines with known karyotypes were obtained and mixed together at specific ratios of six total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). A female euploid and a male trisomy 18 cell line were used for one set, and a male trisomy 13 and a male trisomy 15 cell line were used for another. Replicates of each mixture were prepared, randomized, and blinded for analysis by one of two CCS platforms (quantitative polymerase chain reaction (qPCR) or VeriSeq next-generation sequencing (NGS)). Sensitivity and specificity of aneuploidy detection at each level of mosaicism was determined and compared between platforms. With the default settings for each platform, the sensitivity of qPCR and NGS were not statistically different, and 100 % specificity was observed (no false positives) at all levels of mosaicism. However, the use of previously published custom criteria for NGS increased sensitivity but also significantly decreased specificity (33 % false-positive prediction of aneuploidy). By demonstrating increased false-positive diagnoses when reducing the stringency of predicting an abnormality, these data illustrate the importance of preclinical evaluation of new testing paradigms before clinical implementation.

  13. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo.

    Directory of Open Access Journals (Sweden)

    Claudia Baumann

    2010-09-01

    Full Text Available The α-thalassemia/mental retardation X-linked protein (ATRX is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA-containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis.

  14. Common chromosomal fragile sites (CFS) may be involved in normal and traumatic cognitive stress memory consolidation and altered nervous system immunity.

    Science.gov (United States)

    Gericke, G S

    2010-05-01

    Previous reports of specific patterns of increased fragility at common chromosomal fragile sites (CFS) found in association with certain neurobehavioural disorders did not attract attention at the time due to a shift towards molecular approaches to delineate neuropsychiatric disorder candidate genes. Links with miRNA, altered methylation and the origin of copy number variation indicate that CFS region characteristics may be part of chromatinomic mechanisms that are increasingly linked with neuroplasticity and memory. Current reports of large-scale double-stranded DNA breaks in differentiating neurons and evidence of ongoing DNA demethylation of specific gene promoters in adult hippocampus may shed new light on the dynamic epigenetic changes that are increasingly appreciated as contributing to long-term memory consolidation. The expression of immune recombination activating genes in key stress-induced memory regions suggests the adoption by the brain of this ancient pattern recognition and memory system to establish a structural basis for long-term memory through controlled chromosomal breakage at highly specific genomic regions. It is furthermore considered that these mechanisms for management of epigenetic information related to stress memory could be linked, in some instances, with the transfer of the somatically acquired information to the germline. Here, rearranged sequences can be subjected to further selection and possible eventual retrotranscription to become part of the more stable coding machinery if proven to be crucial for survival and reproduction. While linkage of cognitive memory with stress and fear circuitry and memory establishment through structural DNA modification is proposed as a normal process, inappropriate activation of immune-like genomic rearrangement processes through traumatic stress memory may have the potential to lead to undesirable activation of neuro-inflammatory processes. These theories could have a significant impact on the

  15. Survey of prenatal counselling practices regarding aneuploidy risk modification, invasive diagnostic procedure risks, and procedure eligibility criteria in Canadian centres.

    Science.gov (United States)

    Hull, Danna; Davies, Gregory; Armour, Christine M

    2012-07-01

    To explore prenatal practices related to aneuploidy screening, risk modification, and invasive diagnostic procedures across Canadian centres. We conducted a survey of members of the Canadian Association of Genetic Counsellors, the Canadian College of Medical Genetics, and the Canadian Society of Maternal Fetal Medicine, who provide direct counselling or management of prenatal patients in Canada. Eighty-two of 157 respondents indicated that their centre's definition of advanced maternal age was ≥ 35 years, with 33/157 respondents reporting an advanced maternal age definition of ≥ 40 years. The majority of respondents reported that prenatal serum screening for aneuploidy is provincially funded in their province or territory (121/147). The majority of respondents who reported that prenatal screening is not provincially funded (17/147) were from Quebec (14/17). Thirty-nine of 123 respondents reported that their centre defines increased nuchal translucency as ≥ 3.0 mm, whereas 49/123 reported a definition of ≥ 3.5 mm. Sixty-four of 150 respondents reported that the aneuploidy risk provided by serum screening is modified by a soft marker likelihood ratio, whereas 46/150 respondents reported that both age-related and serum screening risks are modified. Fifty-nine of 124 respondents reported that their centre will modify aneuploidy risk after a normal ultrasound; the most commonly cited negative likelihood ratio was 0.5. The most commonly reported procedure-related risk for chorionic villus sampling was 1/100 (123/147) and for amniocentesis was 1/200 (73/142). This study demonstrates inconsistencies in prenatal practices and access to screening programs across Canada. The information gained from this study will inform policy advisors developing prenatal practice guidelines at both the provincial and national levels.

  16. Aurora-A overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma.

    Science.gov (United States)

    Lassus, Heini; Staff, Synnöve; Leminen, Arto; Isola, Jorma; Butzow, Ralf

    2011-01-01

    Aurora-A is a potential oncogene and therapeutic target in ovarian carcinoma. It is involved in mitotic events and overexpression leads to centrosome amplification and chromosomal instability. The objective of this study was to evaluate the clinical significance of Aurora-A and DNA ploidy in serous ovarian carcinoma. Serous ovarian carcinomas were analysed for Aurora-A protein by immunohistochemistry (n=592), Aurora-A copy number by CISH (n=169), Aurora-A mRNA by real-time PCR (n=158) and DNA ploidy by flowcytometry (n=440). Overexpression of Aurora-A was found in 27% of the tumors, cytoplasmic overexpression in 11% and nuclear in 17%. The cytoplasmic and nuclear overexpression were nearly mutually exclusive. Both cytoplasmic and nuclear overexpression were associated with shorter survival, high grade, high proliferation index and aberrant p53. Interestingly, only cytoplasmic expression was associated with aneuploidy and expression of phosphorylated Aurora-A. DNA ploidy was associated with poor patient outcome as well as aggressive clinicopathological parameters. In multivariate analysis, Aurora-A overexpression appeared as an independent prognostic factor for disease-free survival, together with grade, stage and ploidy. Aurora-A protein expression is strongly linked with poor patient outcome and aggressive disease characteristics, which makes Aurora-A a promising biomarker and a potential therapeutic target in ovarian carcinoma. Cytoplasmic and nuclear Aurora-A protein may have different functions. DNA aneuploidy is a strong predictor of poor prognosis in serous ovarian carcinoma. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age.

    Science.gov (United States)

    Jones, Keith T

    2008-01-01

    Mammalian oocytes begin meiosis in the fetal ovary, but only complete it when fertilized in the adult reproductive tract. This review examines the cell biology of this protracted process: from entry of primordial germ cells into meiosis to conception. The defining feature of meiosis is two consecutive cell divisions (meiosis I and II) and two cell cycle arrests: at the germinal vesicle (GV), dictyate stage of prophase I and at metaphase II. These arrests are spanned by three key events, the focus of this review: (i) passage from mitosis to GV arrest during fetal life, regulated by retinoic acid; (ii) passage through meiosis I and (iii) completion of meiosis II following fertilization, both meiotic divisions being regulated by cyclin-dependent kinase (CDK1) activity. Meiosis I in human oocytes is associated with an age-related high rate of chromosomal mis-segregation, such as trisomy 21 (Down's syndrome), resulting in aneuploid conceptuses. Although aneuploidy is likely to be multifactorial, oocytes from older women may be predisposed to be becoming aneuploid as a consequence of an age-long decline in the cohesive ties holding chromosomes together. Such loss goes undetected by the oocyte during meiosis I either because its ability to respond and block division also deteriorates with age, or as a consequence of being inherently unable to respond to the types of segregation defects induced by cohesion loss.

  18. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    Science.gov (United States)

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  19. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy.

    Science.gov (United States)

    Sermon, Karen

    2017-01-01

    Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.

  20. Social Function in Multiple X and Y Chromosome Disorders: XXY, XYY, XXYY, XXXY

    Science.gov (United States)

    Visootsak, Jeannie; Graham, John M., Jr.

    2009-01-01

    Klinefelter syndrome (47,XXY) was initially described in the context of its endocrinologic and physical features; however, subsequent studies have revealed specific impairments in verbal skills and social functioning. Males with sex chromosomal aneuploidies are known to have variability in their developmental profile with the majority presenting…

  1. Suppression of Genomic Instabilities Caused by Chromosome Mis-segregation: A Perspective From Studying BubR1 and Sgo1

    Science.gov (United States)

    Dai, Wei

    2013-01-01

    Aneuploidy is a major manifestation of chromosomal instability, which is defined as a numerical abnormality of chromosomes in diploid cells. It is highly prevalent in a variety of human malignancies. Increased chromosomal instability is the major driving force for tumor development and progression. To suppress genomic stability during cell division, eukaryotic cells have evolved important molecular mechanisms, commonly referred to as checkpoints. The spindle checkpoint ensures that cells with defective mitotic spindles or a defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Extensive studies have identified and characterized more than a dozen genes that play important roles in the regulation of the spindle checkpoint in mammalian cells. During the past decade, we have carried out extensive investigation of the role of BubR1 (Bub1-related kinase) and Sgo1 (shugoshin 1), two important gene products that safeguard accurate chromosome segregation during mitosis. This mini-review summarizes our studies, as well as those by other researchers in the field, on the functions of these two checkpoint proteins and their molecular regulation during mitosis. Further elucidation of the molecular mechanisms of the spindle checkpoint regulation has the potential to identify important mitotic targets for rational anticancer drug design. PMID:20040454

  2. Suppression of Genomic Instabilities Caused by Chromosome Mis-segregation: A Perspective From Studying BubR1 and Sgo1

    Directory of Open Access Journals (Sweden)

    Wei Dai

    2009-12-01

    Full Text Available Aneuploidy is a major manifestation of chromosomal instability, which is defined as a numerical abnormality of chromosomes in diploid cells. It is highly prevalent in a variety of human malignancies. Increased chromosomal instability is the major driving force for tumor development and progression. To suppress genomic stability during cell division, eukaryotic cells have evolved important molecular mechanisms, commonly referred to as checkpoints. The spindle checkpoint ensures that cells with defective mitotic spindles or a defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Extensive studies have identified and characterized more than a dozen genes that play important roles in the regulation of the spindle checkpoint in mammalian cells. During the past decade, we have carried out extensive investigation of the role of BubR1 (Bub1-related kinase and Sgo1 (shugoshin 1, two important gene products that safeguard accurate chromosome segregation during mitosis. This mini-review summarizes our studies, as well as those by other researchers in the field, on the functions of these two checkpoint proteins and their molecular regulation during mitosis. Further elucidation of the molecular mechanisms of the spindle checkpoint regulation has the potential to identify important mitotic targets for rational anticancer drug design.

  3. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  4. Identification and Mapping of Simple Sequence Repeat Markers from Common Bean (Phaseolus vulgaris L. Bacterial Artificial Chromosome End Sequences for Genome Characterization and Genetic–Physical Map Integration

    Directory of Open Access Journals (Sweden)

    Juana M. Córdoba

    2010-11-01

    Full Text Available Microsatellite markers or simple sequence repeat (SSR loci are useful for diversity characterization and genetic–physical mapping. Different in silico microsatellite search methods have been developed for mining bacterial artificial chromosome (BAC end sequences for SSRs. The overall goal of this study was genome characterization based on SSRs in 89,017 BAC end sequences (BESs from the G19833 common bean ( L. library. Another objective was to identify new SSR taking into account three tandem motif identification programs (Automated Microsatellite Marker Development [AMMD], Tandem Repeats Finder [TRF], and SSRLocator [SSRL]. Among the microsatellite search engines, SSRL identified the highest number of SSRs; however, when primer design was attempted, the number dropped due to poor primer design regions. Automated Microsatellite Marker Development software identified many SSRs with valuable AT/TA or AG/TC motifs, while TRF found fewer SSRs and produced no primers. A subgroup of 323 AT-rich, di-, and trinucleotide SSRs were selected from the AMMD results and used in a parental survey with DOR364 and G19833, of which 75 could be mapped in the corresponding population; these represented 4052 BAC clones. Together with 92 previously mapped BES- and 114 non-BES-derived markers, a total of 280 SSRs were included in the polymerase chain reaction (PCR-based map, integrating a total of 8232 BAC clones in 162 contigs from the physical map.

  5. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    Science.gov (United States)

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  6. Frequency of aneuploidy related to age in porcine oocytes

    Czech Academy of Sciences Publication Activity Database

    Horňák, M.; Jeseta, M.; Musilová, P.; Pavlok, Antonín; Kubelka, Michal; Motlík, Jan; Rubeš, J.; Anger, Martin

    2011-01-01

    Roč. 6, č. 4 (2011), s. 1-5 E-ISSN 1932-6203 R&D Projects: GA ČR GA523/09/0743; GA AV ČR IAA501620801 Institutional research plan: CEZ:AV0Z50450515 Keywords : porcine * oocytes * aneuploidy Subject RIV: EE - Microbiology, Virology Impact factor: 4.092, year: 2011 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018892

  7. [Introduction of hexaploid of Chinese narcissus and analysis of its chromosome change].

    Science.gov (United States)

    Wang, Rui; Zhang, Ya Nan; Wang, Ya Ying; Tian, Hui Qiao

    2007-06-01

    Anthers of Chinese narcissus (Narcissus tazetta L. var chinesis Roem) were used as explants for callus induction and plant regeneration. About 80% anthers produced callus and 28% of the callus differentiated out bulbs, making a good experiment system of tissue culture of Chinese narcissus for further cellular and gene engineering. The 700 callus were treated by 0.5% colchicin for 5-6 days and then transformed into a MS medium containing 3 mg/L 6-BA to induce differentiation. 90 bulbs were obtained and 55 bulbs among them were checked the chromosome number from their root tips for three times. 29 bulbs (53%, 29/55) still kept triploidy and the most cells of root tips contained 30 chromosomes. 22 bulbs (40%, 22/55) displayed aneuploidy and the most cells of its root tips contained 10-50 chromosomes. 4 bulbs displayed hexaploidy and contained 60 chromosomes. After three months growing, the cells of root tips containing aneuploidy chromosomes disappeared, and the bulbs became triploidy. The chromosomes of 4 hexaploidy bulbs did not changed during three checks. The origin and disappearance of aneuploidy cells of Chinese narcissus after treated by colchicin were discussed.

  8. Aneuploidy assessed by DNA index influences the effect of iron status on plasma and/or supernatant cytokine levels and progression of cells through the cell cycle in a mouse model.

    Science.gov (United States)

    Kuvibidila, Solo; Porretta, Connie; Baliga, Surendra

    2014-02-01

    Aneuploidy, a condition associated with altered chromosome number, hence DNA index, is frequently seen in many diseases including cancers and affects immunity. Iron, an essential nutrient for humans, modulates the immune function and the proliferation of normal and cancer cells. To determine whether impaired immunity seen in iron-deficient subjects may be related to aneuploidy, we measured spleen cell DNA index, percent of cells in different phases of the cell cycle, plasma and/or supernatant IL-2, IL-10, IL-12, and interferon-gamma in control, pair-fed, iron-deficient, and iron-replete mice (N=20-22/group). The test and control diets differed only in iron content (0.09mmol/kg versus 0.9mmol/kg) and were fed for 68days. Mean levels of hemoglobin and liver iron stores of iron-deficient and iron-replete mice were 40-60% lower than those of control and pair-fed mice (P<0.05). Mean plasma levels of IL-10, interferon-gamma and percent of cells in S+G2/M phases were lower in mice with than in those without aneuploidy (P<0.05). Lowest plasma IL-12 and interferon-gamma concentrations were observed in iron-deficient mice with aneuploidy. Mean percents of cultures with aneuploidy and DNA indexes were higher in iron-deficient and iron-replete than in control and pair-fed mice likely due to delayed cell division (P<0.05). Aneuploidy decreased the concentration of IL-2 and interferon-gamma in baseline cultures while it increased that of interferon-gamma in anti-CD3 treated cultures. Aneuploidic indexes negatively correlated with cytokine levels, percents of cells in S+G2/M phases and indicators of iron status (P<0.05). Although chromosome cytogenetics was not performed, for the first time, we report that increased aneuploidy rate may modulate the immune function during iron-deficiency. Copyright © 2014. Published by Elsevier Ltd.

  9. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    Savitsij, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.I.

    1985-01-01

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  10. Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype

    International Nuclear Information System (INIS)

    Lentini, Laura; Amato, Angela; Schillaci, Tiziana; Di Leonardo, Aldo

    2007-01-01

    Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN). CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy), and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represented by Aurora-A/STK15 that associates with centrosomes and is overexpressed in several types of human tumour. Centrosome amplification were induced by hydroxyurea treatment and visualized by immunofluorescence microscopy. Aurora-A/STK15 ectopic expression was achieved by retroviral infection and puromycin selection in HCT116 tumour cells. Effects of Aurora-A/STK15 depletion on centrosome status and ploidy were determined by Aurora-A/STK15 transcriptional silencing by RNA interference. Changes in the expression levels of some mitotic genes were determined by Real time RT-PCR. We investigated whether amplification of centrosomes and overexpression of Aurora-A/STK15 induce CIN using as a model system a colon carcinoma cell line (HCT116). We found that in HCT116 cells, chromosomally stable and near diploid cells harbouring a MIN phenotype, centrosome amplification induced by hydroxyurea treatment is neither maintained nor induces aneuploidy. On the contrary, ectopic overexpression of Aurora-A/STK15 induced supernumerary centrosomes and aneuploidy. Aurora-A/STK15 transcriptional silencing by RNA interference in cells ectopically overexpressing this kinase promptly decreased cell numbers with supernumerary centrosomes and aneuploidy. Our results show that centrosome amplification alone is not sufficient

  11. Is preimplantation genetic diagnosis the ideal embryo selection method in aneuploidy screening?

    Directory of Open Access Journals (Sweden)

    Levent Sahin

    2014-10-01

    Full Text Available To select cytogenetically normal embryos, preimplantation genetic diagnosis (PGD aneuploidy screening (AS is used in numerous centers around the world. Chromosomal abnormalities lead to developmental problems, implantation failure, and early abortion of embryos. The usefulness of PGD in identifying single-gene diseases, human leukocyte antigen typing, X-linked diseases, and specific genetic diseases is well-known. In this review, preimplantation embryo genetics, PGD research studies, and the European Society of Human Reproduction and Embryology PGD Consortium studies and reports are examined. In addition, criteria for embryo selection, technical aspects of PGD-AS, and potential noninvasive embryo selection methods are described. Indications for PGD and possible causes of discordant PGD results between the centers are discussed. The limitations of fluorescence in situ hybridization, and the advantages of the array comparative genomic hybridization are included in this review. Although PGD-AS for patients of advanced maternal age has been shown to improve in vitro fertilization outcomes in some studies, to our knowledge, there is not sufficient evidence to use advanced maternal age as the sole indication for PGD-AS. PGD-AS might be harmful and may not increase the success rates of in vitro fertilization. At the same time PGD, is not recommended for recurrent implantation failure and unexplained recurrent pregnancy loss.

  12. Clinical, social and ethical issues associated with non-invasive prenatal testing for aneuploidy.

    Science.gov (United States)

    Griffin, Blanche; Edwards, Samantha; Chitty, Lyn S; Lewis, Celine

    2018-03-01

    Non-invasive prenatal testing (NIPT), based on analysis of cell-free foetal DNA, is rapidly becoming a preferred method to screen for chromosomal aneuploidy with the technology now available in over 90 countries. This review provides an up-to-date discussion of the key clinical, social and ethical implications associated with this revolutionary technology. Stakeholders are positive about a test that is highly accurate, safe, can be perfomed early in pregnancy, identifies affected pregnancies that might otherwise have been missed and reduces the need for invasive testing. Nevertheless, professional societies currently recommend it as an advanced screening test due to the low false positive rate (FPR). Despite the practical and psychological benefits, a number of concerns have been raised which warrant attention. These include the potential for routinisation of testing and subsequent impact on informed decision-making, an "easy" blood test inadvertently contributing to women feeling pressured to take the test, fears NIPT will lead to less tolerance and support for those living with Down syndrome and the heightened expectation of having "perfect babies". These issues can be addressed to some extent through clinician education, patient information and establishing national and international consensus in the development of comprehensive and regularly updated guidelines. As the number of conditions we are able to test for non-invasively expands it will be increasingly important to ensure pre-test counselling can be delivered effectively supported by knowledgeable healthcare professionals.

  13. The Fitness Consequences of Aneuploidy Are Driven by Condition-Dependent Gene Effects

    Science.gov (United States)

    Sunshine, Anna B.; Payen, Celia; Ong, Giang T.; Liachko, Ivan; Tan, Kean Ming; Dunham, Maitreya J.

    2015-01-01

    Aneuploidy is a hallmark of tumor cells, and yet the precise relationship between aneuploidy and a cell’s proliferative ability, or cellular fitness, has remained elusive. In this study, we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains, each containing a different telomeric amplicon (Tamp), ranging in size from 0.4 to 1,000 kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific, with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome-wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp’s fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that

  14. Gonadal sex chromosome complement in individuals with sex chromosomal and/or gonadal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, J.A.; Sanger, W.G.; Seemayer, T. [Univ. of Nebraska Medical Center, Omaha, NE (United States)] [and others

    1994-09-01

    Gonadal abnormalities are characteristically seen in patients with sex chromosomal aneuploidy. Morphologically these abnormalities can be variable and are hypothesized to be dependent on the sex chromosomal consititution of the gonad (independent of the chromosomal complement of other tissues, such as peripheral blood lymphocytes). In this study, the gonadal sex chromosome complement was evaluated for potential mosaicism and correlated with the histopathology from 5 patients with known sex chromosomal and/or gonadal disorders. FISH techniques using X and Y chromosome specific probes were performed on nuclei extracted from paraffin embedded tissue. Gonadal tissue obtained from case 1 (a true hemaphroditic newborn) consisted of ovotestes and epididymis (left side) and ovary with fallopian tube (right side). Cytogenetic and FISH studies performed on blood, ovotestes and ovary revealed an XX complement. Cytogenetic analysis of blood from case 2, a 4-year-old with suspected Turner syndrome revealed 45,X/46,X,del(Y)(q11.21). FISH analysis of the resected gonads (histologically = immature testes) confirmed an X/XY mosaic complement. Histologically, the gonadal tissue was testicular. Severe autolysis prohibited successful analysis in the 2 remaining cases. In summary, molecular cytogenetic evaluation of gonadal tissue from individuals with sex chromosomal and/or gonadal disorders did not reveal tissue-specific anomalies which could account for differences observed pathologically.

  15. Aneuploidy in benign tumors and nonneoplastic lesions of musculoskeletal tissues.

    Science.gov (United States)

    Alho, A; Skjeldal, S; Pettersen, E O; Melvik, J E; Larsen, T E

    1994-02-15

    Aneuploidy in DNA flow cytometry (FCM) of musculoskeletal tumors is generally considered to be a sign of malignancy. Previously, giant cell tumor of the bone has been reported to contain aneuploid (near-diploid) DNA stemlines. Otherwise, only spordic cases have been reported. The authors wanted to study the relationships among DNA FCM, histology, and clinical course of nonmalignant musculoskeletal lesions. Twenty-eight histologically benign tumors and seven nonneoplastic lesions were subjected to DNA FCM: After tissue preparation mechanically and with ribonuclease and trypsin, the isolated nuclei were stained with propidium iodine using chicken and rainbow trout erythrocytes as controls. In the DNA FCM histograms, ploidy and cell cycle fractions were determined using a computerized mathematical model. The histologic diagnoses were made without knowledge of the DNA FCM results. Aneuploidy was found in eight lesions. A shoulder in the diploid peak, suggesting a diploid and a near-diploid population, was found in DNA histograms of a condensing osteitis of the clavicle (a benign inflammatory process) and of a giant cell tumor of bone. The latter lesion also had a tetraploid population. Six benign tumors--two enchondromas, one osteochondroma, one subcutaneous and one intramuscular lipoma, and a calcifying aponeurotic fibroma--showed clear aneuploidy with separate peaks. The S-phase fraction was less than 10% in all cases. The highest aneuploid population, DNA index = 1.70, in a subcutaneous lipoma, was small, with an undetectable S phase. Despite nonradical operations in seven lesions, no recurrences were observed during a median follow-up of 49 months (range, 28-73 months). Small aneuploid populations with low DNA synthetic activity may be compatible with a benign histologic picture and uneventful clinical course of the musculoskeletal lesion.

  16. Pregnancy outcomes following 24-chromosome preimplantation genetic diagnosis in couples with balanced reciprocal or Robertsonian translocations.

    Science.gov (United States)

    Idowu, Dennis; Merrion, Katrina; Wemmer, Nina; Mash, Janine Gessner; Pettersen, Barbara; Kijacic, Dusan; Lathi, Ruth B

    2015-04-01

    To report live birth rates (LBR) and total aneuploidy rates in a series of patients with balanced translocations who pursued in vitro fertilization (IVF)-preimplantation genetic diagnosis (PGD) cycles. Retrospective cohort analysis. Genetic testing reference laboratory. Seventy-four couples who underwent IVF-PGD due to a parental translocation. IVF cycles and embryo biopsies were performed by referring clinics. Biopsy samples were sent to a single reference lab for PGD for the translocation plus 24-chromosome aneuploidy screening with the use of a single-nucleotide polymorphism (SNP) microarray. LBR per biopsy cycle, aneuploidy rate, embryo transfer (ET) rate, miscarriage rate. The LBR per IVF biopsy cycle was 38%. LBR for patients reaching ET was 52%. Clinical miscarriage rate was 10%. Despite a mean age of 33.8 years and mean of 7 embryos biopsied, there was a 30% chance for no chromosomally normal embryos. Maternal age >35 years, day 3 biopsy, and having fewer than five embryos available for biopsy increased the risk of no ET. IVF-PGD for translocation and aneuploidy screening had good clinical outcomes. Patients carrying a balanced translocation who are considering IVF-PGD should be aware of the high risk of no ET, particularly in women ≥35 years old. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Synaptonemal complex analysis of interracial hybrids between the Moscow and Neroosa chromosomal races of the common shrew Sorex araneus showing regular formation of a complex meiotic configuration (ring-of-four).

    Science.gov (United States)

    Matveevsky, Sergey N; Pavlova, Svetlana V; Maret M Acaeva; Oxana L Kolomiets

    2012-01-01

    Immunocytochemical and electron microscopic analysis of synaptonemal complexes (SCs) was carried out for the first time in homozygotes and complex Robertsonian heterozygotes (hybrids) of the common shrew, Sorex araneus Linnaeus, 1758, from a newly discovered hybrid zone between the Moscow and the Neroosa chromosomal races. These races differ in four monobrachial homologous metacentrics, and closed SC tetravalent is expected to be formed in meiosis of a hybrid. Indeed, such a multivalent was found at meiotic prophase I in hybrids. Interactions between multivalent and both autosomes and/or the sex chromosomes were observed. For the first time we have used immunocytochemical techniques to analyse asynapsis in Sorex araneus and show that the multivalent pairs in an orderly fashion with complete synapsis. Despite some signs of spermatocytes arrested in the meiotic prophase I, hybrids had large number of active sperm. Thus, Moscow - Neroosa hybrid males that form a ring-of-four meiotic configuration are most likely not sterile. Our results support previous demonstrations that monobrachial homology of metacentrics of the common shrew does not lead to complete reproductive isolation between parapatric chromosomal races of the species.

  18. Synaptonemal complex analysis of interracial hybrids between the Moscow and Neroosa chromosomal races of the common shrew Sorex araneus showing regular formation of a complex meiotic configuration (ring-of-four

    Directory of Open Access Journals (Sweden)

    Sergey Matveevsky

    2012-09-01

    Full Text Available Immunocytochemical and electron microscopic analysis of synaptonemal complexes (SCs was carried out for the first time in homozygotes and complex Robertsonian heterozygotes (hybrids of the common shrew, Sorex araneus Linnaeus, 1758, from a newly discovered hybrid zone between the Moscow and the Neroosa chromosomal races. These races differ in four monobrachial homologous metacentrics, and closed SC tetravalent is expected to be formed in meiosis of a hybrid. Indeed, such a multivalent was found at meiotic prophase I in hybrids. Interactions between multivalent and both autosomes and/or the sex chromosomes were observed. For the first time we have used immunocytochemical techniques to analyse asynapsis in S. araneus and show that the multivalent pairs in an orderly fashion with complete synapsis. Despite some signs of spermatocytes arrested in the meiotic prophase I, hybrids had large number of active sperm. Thus, Moscow – Neroosa hybrid males that form a ring-of-four meiotic configuration are most likely not sterile. Our results support previous demonstrations that monobrachial homology of metacentrics of the common shrew does not lead to complete reproductive isolation between parapatric chromosomal races of the species.

  19. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.).

    Science.gov (United States)

    Goriewa-Duba, Klaudia; Duba, Adrian; Kwiatek, Michał; Wiśniewska, Halina; Wachowska, Urszula; Wiwart, Marian

    2018-01-01

    Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  20. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L. and spelt (Triticum spelta L..

    Directory of Open Access Journals (Sweden)

    Klaudia Goriewa-Duba

    Full Text Available Fluorescent in situ hybridization (FISH relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines, to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  1. Hexavalent chromium induces chromosome instability in human urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215 (United States); Liou, Louis [Department of Pathology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 (United States); Adam, Rosalyn M. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Wise, John Pierce Sr., E-mail: john.wise@louisville.edu [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States)

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.

  2. ANEUPLOIDY AND CHROMOSOME BREAKAGE IN SWIM-UP VERSUS UNPROCESSED SEMEN FROM TWENTY HEALTHY MEN

    Science.gov (United States)

    Toxicologic and epidemiologic studies have investigated a number of factors believed to induce cytogenetic damage in human sperm cells in order to estimate heritable risk to future generations. Most of these studies, however, have not enriched research semen specimens for fertil...

  3. Segmental trisomy of chromosome 17: a mouse model of human aneuploidy syndromes

    Czech Academy of Sciences Publication Activity Database

    Vacík, Tomáš; Ort, Michael; Gregorová, Soňa; Strnad, P.; Conte, N.; Bradley, A.; Blatný, Radek; Bureš, Jan; Forejt, Jiří

    2005-01-01

    Roč. 102, č. 12 (2005), s. 4500-4505 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GA309/03/0715 Grant - others:Howard Hughes Medical Institute(US) 55000306 Institutional research plan: CEZ:AV0Z5011922; CEZ:AV0Z50110509 Keywords : dosage-sensitive genes * Down's syndrome * mouse segmental trisomy Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.231, year: 2005

  4. Modeling Chromosomes

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  5. Chromosomal Conditions

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Chromosomal conditions Chromosomal conditions ... Disorders See also: Genetic counseling , Your family health history Last reviewed: February, 2013 ... labor & premature birth The newborn intensive care unit (NICU) Birth defects & ...

  6. Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer

    Directory of Open Access Journals (Sweden)

    Marco R. Cosenza

    2017-08-01

    Full Text Available Chromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown. We used multi-modal imaging of cells with conditional centriole overduplication to show that mitotic rosettes in bipolar spindles frequently harbor unequal centriole numbers, leading to biased chromosome capture that favors binding to the prominent pole. This results in chromosome missegregation and aneuploidy. Rosette mitoses lead to viable offspring and significantly contribute to progeny production. We further show that centrosome abnormalities in primary human malignancies frequently consist of centriole rosettes. As asymmetric centriole rosettes generate mitotic errors that can be propagated, rosette mitoses are sufficient to cause chromosome missegregation in cancer.

  7. Systematic chromosome examination of two families with schizophrenia and two families with manic depressive illness

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, U.; Mors, O.; Ewald, H. [Aarhus Univ. (Denmark)

    1996-02-16

    Systematic and detailed chromosome analysis, combined with a semistructured interview, was performed in 2 families with schizophrenia and in 2 families with manic depressive illness. Prometaphase technique did not reveal any subtle structural chromosome abnormalities. However, in standard techniques, gain and loss of sex chromosomes were observed. This occurred in patients at a younger age than in unaffected persons. This gives rise to the suspicion that sex chromosome aneuploidy may somehow be related to the development of psychosis. But since the data set is small, especially with respect to schizophrenia, further studies are needed to elucidate this observation. In one family, cosegregation of the disease locus with a marker on chromosome 21 was seen. Therefore, further research should determine if chromosome 21 contains a gene for manic depressive illness. 10 refs., 3 figs., 2 tabs.

  8. Does 45,X/46,XX mosaicism with 6-28% of aneuploidy affect the outcomes of IVF or ICSI?

    Science.gov (United States)

    Homer, L; Morel, F; Gallon, F; Le Martelot, M-T; Amice, V; Kerlan, V; De Braekeleer, M

    2012-07-01

    Several studies have shown an increased frequency of chromosomal aberrations in female partners of couples examined prior to intracytoplasmic sperm injection (ICSI). A retrospective cohort study was performed to determine whether 45,X/46,XX mosaicism affects the outcomes of in vitro fertilization (IVF) or ICSI. Forty-six women with a 45,X/46,XX karyotype with 6-28% of aneuploidy were compared with 59 control women (46,XX), matched for age, from the female population who underwent IVF or ICSI between 1 January 1996 and 31 December 2006 at the Reproductive Medicine Unit at Brest University Hospital. The outcomes of 254 treatment cycles were compared according to patient karyotype. No difference was found in the number of retrieved oocytes (8.9 ± 5.5 vs 8.5 ± 4.7; p=0.56) or the number of mature oocytes (7.4 ± 4.7 vs 6.9 ± 4.2; p=0.49) between the 45,X/46,XX group and the 46,XX group, respectively. Fertilization rates did not differ between the groups for either IVF or ICSI. In addition, no difference was found in the pregnancy rate by cycle (17.4% vs 18.7%, respectively; p=0.87). The percentage of first-trimester miscarriages was similar in both groups (13.6% vs 12.5%, respectively; p=0.51). 45,X/46,XX mosaicism with 6-28% of aneuploidy has no adverse effect on the outcomes of IVF or ICSI among women referred to assisted reproductive technologies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Risk of chromosomal abnormalities in early spontaneous abortion after assisted reproductive technology: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jun-Zhen Qin

    Full Text Available BACKGROUND: Studies on the risk of chromosomal abnormalities in early spontaneous abortion after assisted reproductive technology (ART are relatively controversial and insufficient. Thus, to obtain a more precise evaluation of the risk of embryonic chromosomal abnormalities in first-trimester miscarriage after ART, we performed a meta-analysis of all available case-control studies relating to the cytogenetic analysis of chromosomal abnormalities in first-trimester miscarriage after ART. METHODS: Literature search in the electronic databases MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL based on the established strategy. Meta-regression, subgroup analysis, and Galbraith plots were conducted to explore the sources of heterogeneity. RESULTS: A total of 15 studies with 1,896 cases and 1,186 controls relevant to the risk of chromosomal abnormalities in first- trimester miscarriage after ART, and 8 studies with 601 cases and 602 controls evaluating frequency of chromosome anomaly for maternal age≥35 versus <35 were eligible for the meta-analysis. No statistical difference was found in risk of chromosomally abnormal miscarriage compared to natural conception and the different types of ART utilized, whereas the risk of fetal aneuploidy significantly increased with maternal age≥35 (OR 2.88, 95% CI: 1.74-4.77. CONCLUSIONS: ART treatment does not present an increased risk for chromosomal abnormalities occurring in a first trimester miscarriage, but incidence of fetal aneuploidy could increase significantly with advancing maternal age.

  10. Trichostatin A preferentially reverses the upregulation of gene expression levels induced by gain of chromosome 7 in colorectal cancer cell lines

    NARCIS (Netherlands)

    Buishand, Floryne O; Cardin, Eric; Hu, Yue; Ried, Thomas

    Epithelial cancers are defined by a tumor-specific distribution of chromosomal aneuploidies that are maintained when cells metastasize and are conserved in cell lines derived from primary tumors. Correlations between genomic copy number and gene expression have been observed for different tumors

  11. Sperm DNA fragmentation index does not correlate with blastocyst aneuploidy or morphological grading.

    Directory of Open Access Journals (Sweden)

    Itai Gat

    Full Text Available High DNA fragmentation index (DFI may be associated with poor outcome after IVF. Our aim was to determine whether DFI impacts blastocyst quality or clinical outcome. This retrospective study included 134 couples who underwent 177 IVF-ICSI and pre-implantation genetic screening (PGS cycles during January 1st, 2014-March 31st, 2016 and had documented previous DFI. Group 1 (DFI>30% encompassed 25 couples who underwent 36 cycles; Group 2 (DFI 15-30% included 45 couples and 57 cycles; group 3 (DFI<15% included 64 couples and 83 cycles. Male partners within group 1 were older (45.1 compared to 40.6 and 38.3 years, respectively, p<0.05, had higher BMI (32.4 compared to 26.6 and 25.8 respectively, p<0.05 and lower sperm count and motility (46*106/ml and 35.5%, respectively compared to groups 2 (61.8*106/ml and 46.6%, respectively and 3 (75.8*106/ml and 55.1%, respectively, p<0.05. Female parameters including ovarian reserve and response and embryo development were similar. Total numbers of biopsied blastocysts were 116, 175 and 259 in groups 1, 2 and 3, respectively. PGS for 24 chromosomes revealed comparable euploidy rate of 46-50.4%, with a similar morphological classification. No significant differences were found regarding pregnancy rates or pregnancy loss. It seems that DFI doesn't correlate with blastocyst aneuploidy or morphological grading.

  12. Transition from blastomere to trophectoderm biopsy: comparing two preimplantation genetic testing for aneuploidies strategies.

    Science.gov (United States)

    Coll, Lluc; Parriego, Mònica; Boada, Montserrat; Devesa, Marta; Arroyo, Gemma; Rodríguez, Ignacio; Coroleu, Bonaventura; Vidal, Francesca; Veiga, Anna

    2018-05-25

    SummaryShortly after the implementation of comprehensive chromosome screening (CCS) techniques for preimplantation genetic testing for aneuploidies (PGT-A), the discussion about the transition from day 3 to blastocyst stage biopsy was initiated. Trophectoderm biopsy with CCS is meant to overcome the limitations of cleavage-stage biopsy and single-cell analysis. The aim of this study was to assess the results obtained in our PGT-A programme after the implementation of this new strategy. Comparisons between the results obtained in 179 PGT-A cycles with day 3 biopsy (D+3) and fresh embryo transfer, and 204 cycles with trophectoderm biopsy and deferred (frozen-thawed) embryo transfer were established. Fewer embryos were biopsied and a higher euploidy rate was observed in the trophectoderm biopsy group. No differences in implantation (50.3% vs. 61.4%) and clinical pregnancy rate per transfer (56.1% vs. 65.3%) were found. Although the mean number of euploid embryos per cycle did not differ between groups (1.5 ± 1.7 vs. 1.7 ± 1.8), the final number of euploid blastocysts available for transfer per cycle was significantly higher in the trophectoderm biopsy group (1.1 ± 1.3 vs. 1.7 ± 1.8). This factor led to an increased cumulative live birth rate in this last group (34.1% vs. 44.6%). Although both strategies can offer good results, trophectoderm biopsy offers a more robust diagnosis and the intervention is less harmful for the embryos so more euploid blastocysts are finally available for transfer and/or vitrification.

  13. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    OpenAIRE

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2012-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chroma...

  14. Chromosome Territories

    OpenAIRE

    Cremer, Thomas; Cremer, Marion

    2010-01-01

    Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions wit...

  15. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  16. The usage and current approaches of cell free fetal DNA (cffDNA as a prenatal diagnostic method in fetal aneuploidy screening

    Directory of Open Access Journals (Sweden)

    Hülya Erbaba

    2015-12-01

    Full Text Available Prenatal diagnosis of invasive and noninvasive tests can be done in a way (NIPT, but because of the invasive methods have risks of infection and abortion, diagnosing non-invasive procedure increasing day by day. One of the widespread cell free fetal DNA in maternal blood test (cffDNA that is increasing in clinical use has been drawing attention. The incidence of aneuploidy chromosomal anomaly of the kind in which all live births; Trisomy 21 (Down Syndrome 1/800, trisomy 13 (Patau syndrome 1 /10,000, trisomy 18 (Edwards syndrome is a form of 1/6000. Because of the high mortality and morbidity, it is vital that congenital anomalies should be diagnosed in prenatal period. Aneuploidy testing for high-risk pregnant women after the 10th week of pregnancy in terms of the blood sample is taken and free fetal DNA in maternal plasma is based on the measurement of the relative amount. Knowledge of the current criteria for use by healthcare professionals in the field test will allow the exclusion of maternal and fetal risks. In this study, it is aimed to demonstrate current international approaches related to the positive and negative sides of non-invasive that is one of the prenatal diagnostic methods of cffDNA test. J Clin Exp Invest 2015; 6 (4: 414-417

  17. Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions.

    Science.gov (United States)

    Dulik, Matthew C; Osipova, Ludmila P; Schurr, Theodore G

    2011-03-11

    Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th) century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.

  18. Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions.

    Directory of Open Access Journals (Sweden)

    Matthew C Dulik

    Full Text Available Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*. In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.

  19. Frequencies of aneuploidy and dominant lethal mutations in young female mice induced by low dose γ-rays

    International Nuclear Information System (INIS)

    Yao Suyan; Zhang Chaoyang; Dai Lianlian; Gao Changwen

    1991-01-01

    Relationship between aneuploidy, dominant lethal mutations and doses in young feral mice induced by low dose γ-rays was examined. The results suggest that the frequencies of aneuploidy of embryos increased at 0.15 Gy, but increases at over 0.50 Gy after irradiation in groups. The frequencies of aneuploidy and dominant lethal mutations increased with increasing doses and fitted linear relationship. This dose-response relationship of trisomic was not significant. The frequency of dominant lethal mutations induced by 60 Co γ irradiation is 5.59%. The effect of dominant lethal mutation is higher than that of the aneuploidy

  20. Down-Turner Syndrome: A Case with Double Monoclonal Chromosomal Abnormality

    Directory of Open Access Journals (Sweden)

    Gioconda Manassero-Morales

    2016-01-01

    Full Text Available Introduction. The coexistence of Down and Turner syndromes due to double chromosome aneuploidy is very rare; it is even more rare to find the presence of a double monoclonal chromosomal abnormality. Objective. To report a unique case of double monoclonal chromosomal abnormality with trisomy of chromosome 21 and an X ring chromosome in all cells studied; no previous report has been found. Case Report. Female, 28 months old, with pathological short stature from birth, with the following dysmorphic features: tilted upward palpebral fissures, short neck, brachycephaly, and low-set ears. During the neonatal period, the infant presented generalized hypotonia and lymphedema of hands and feet. Karyotype showed 47,X,r(X,+21 [30]. Conclusion. Clinical features of both Down and Turner syndromes were found, highlighting short stature that has remained below 3 z score from birth to the present, associated with delayed psychomotor development. G-banded karyotype analysis in peripheral blood is essential for a definitive diagnosis.

  1. Defects in Histone H3.3 Phosphorylation and ATRX Recruitment to Misaligned Chromosomes during Mitosis Contribute to the Development of Pediatric Glioblastomas

    Science.gov (United States)

    2015-09-01

    aneuploidy. 2. Keywords: aneuploidy, ATRX, cell cycle, chromosome missegregation, CRISPR /Cas9, DAXX, glioblastoma, histone H3.3, microinjection, mitosis...histone H3.3 with mutant constructs. We have switched from shRNA hairpins to CRISPR /Cas9 gene editing to silence both alleles of H3.3 (and an H3.3...plasmids against H3F3B. Both plasmids had the Cas9 gene and a soluble GFP reporter. The CRISPR guide sequence in one of these plasmids was 100% match

  2. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    International Nuclear Information System (INIS)

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed

  3. Aneuploidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy.

    Science.gov (United States)

    Rasnick, David

    2002-07-01

    The autocatalyzed progression of aneuploidy accounts for all cancer-specific phenotypes, the Hayflick limit of cultured cells, carcinogen-induced tumors in mice, the age distribution of human cancer, and multidrug-resistance. Here aneuploidy theory addresses tumor formation. The logistic equation, phi(n)(+1) = rphi(n) (1 - phi(n)), models the autocatalyzed progression of aneuploidy in vivo and in vitro. The variable phi(n)(+1) is the average aneuploid fraction of a population of cells at the n+1 cell division and is determined by the value at the nth cell division. The value r is the growth control parameter. The logistic equation was used to compute the probability distribution for values of phi after numerous divisions of aneuploid cells. The autocatalyzed progression of aneuploidy follows the laws of deterministic chaos, which means that certain values of phi are more probable than others. The probability map of the logistic equation shows that: 1) an aneuploid fraction of at least 0.30 is necessary to sustain a population of cancer cells; and 2) the most likely aneuploid fraction after many population doublings is 0.70, which is equivalent to a DNA(index)=1.7, the point of maximum disorder of the genome that still sustains life. Aneuploidy theory also explains the lack of immune surveillance and the failure of chemotherapy.

  4. Preparation and Fluorescent Analysis of Plant Metaphase Chromosomes.

    Science.gov (United States)

    Schwarzacher, Trude

    2016-01-01

    Good preparations are essential for informative analysis of both somatic and meiotic chromosomes, cytogenetics, and cell divisions. Fluorescent chromosome staining allows even small chromosomes to be visualized and counted, showing their morphology. Aneuploidies and polyploidies can be established for species, populations, or individuals while changes occurring in breeding lines during hybridization or tissue culture and transformation protocols can be assessed. The process of division can be followed during mitosis and meiosis including pairing and chiasma distribution, as well as DNA organization and structure during the evolution of chromosomes can be studied. This chapter presents protocols for pretreatment and fixation of material, including tips of how to grow plants to get good and healthy meristem with many divisions. The chromosome preparation technique is described using proteolytic enzymes, but acids can be used instead. Chromosome slide preparations are suitable for fluorochrome staining for fast screening (described in the chapter) or fluorescent in situ hybridization (see Schwarzacher and Heslop-Harrison, In situ hybridization. BIOS Scientific Publishers, Oxford, 2000).

  5. Genes on B chromosomes: old questions revisited with new tools.

    Science.gov (United States)

    Banaei-Moghaddam, Ali M; Martis, Mihaela M; Macas, Jiří; Gundlach, Heidrun; Himmelbach, Axel; Altschmied, Lothar; Mayer, Klaus F X; Houben, Andreas

    2015-01-01

    B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Often, they have been considered as 'junk DNA' or genomic parasites without functional genes. Due to recent advances in sequencing technologies, it became possible to investigate their DNA composition, transcriptional activity and effects on the host transcriptome profile in detail. Here, we review the most recent findings regarding the gene content of B chromosomes and their transcriptional activities and discuss these findings in the context of comparable biological phenomena, like sex chromosomes, aneuploidy and pseudogenes. Recent data suggest that B chromosomes carry transcriptionally active genic sequences which could affect the transcriptome profile of their host genome. These findings are gradually changing our view that B chromosomes are solely genetically inert selfish elements without any functional genes. This at one side could partly explain the deleterious effects which are associated with their presence. On the other hand it makes B chromosome a nice model for studying regulatory mechanisms of duplicated genes and their evolutionary consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The formation and recovery of two-break chromosome rearrangements from irradiated spermatozoa of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Leigh, B.

    1978-01-01

    Chromosome and chromatid-type rearrangements can be induced by exposure of spermatozoa of Drosophila to ionising radiation. A model, proposed to explain the formation and recovery of compound autosomes, has been extended to account for the induction of centric fragments capped by a duplication of paternal chromosome material. Three basic assumptions have been used; (1) that the sperm nucleus contains a haploid set of unreplicated chromosomes, (2) that the broken chromosome ends can be joined together before or after replication, and (3) that one of the first two cleavage nuclei may be lost and an adult organism derived from the other. The present paper reports a theoretical application of this combination of aasumptions to the general case of the formation and recovery of two-break rearrangements. This has led to an elucidation of the relation between repeats, compounds, fragments, and deficiencies on the one hand and inversions and translocations on the other hand. Dicentric chromosomes and segmental aneuploidy can be simply explained. A selective screen is formed by the segregation of chromatid rearrangements and the aneuploidy tolerance levels of the early cleavage nuclei. Thus there is an alternative way of explaining observations which might indicate preferential breakage or joining

  7. Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System.

    Science.gov (United States)

    Santaguida, Stefano; Richardson, Amelia; Iyer, Divya Ramalingam; M'Saad, Ons; Zasadil, Lauren; Knouse, Kristin A; Wong, Yao Liang; Rhind, Nicholas; Desai, Arshad; Amon, Angelika

    2017-06-19

    Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Blastocyst Morphology Holds Clues Concerning The Chromosomal Status of The Embryo

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Savio Figueira

    2015-07-01

    Full Text Available Background: Embryo morphology has been proposed as an alternative marker of chromosomal status. The objective of this retrospective cohort study was to investigate the association between the chromosomal status on day 3 of embryo development and blastocyst morphology. Materials and Methods: A total of 596 embryos obtained from 106 cycles of intracytoplasmic sperm injection (ICSI followed by preimplantation genetic aneuploidy screening (PGS were included in this retrospective study. We evaluated the relationship between blastocyst morphological features and embryonic chromosomal alteration. Results: Of the 564 embryos with fluorescent in situ hybridization (FISH results, 200 reached the blastocyst stage on day 5 of development. There was a significantly higher proportion of euploid embryos in those that achieved the blastocyst stage (59.0% compared to embryos that did not develop to blastocysts (41.2% on day 5 (P<0.001. Regarding blastocyst morphology, we observed that all embryos that had an abnormal inner cell mass (ICM were aneuploid. Embryos with morphologically normal ICM had a significantly higher euploidy rate (62.1%, P<0.001. As regards to the trophectoderm (TE morphology, an increased rate of euploidy was observed in embryos that had normal TE (65.8% compared to embryos with abnormal TE (37.5%, P<0.001. Finally, we observed a two-fold increase in the euploidy rate in high-quality blastocysts with both high-quality ICM and TE (70.4% compared to that found in low-quality blastocysts (31.0%, P<0.001. Conclusion: Chromosomal abnormalities do not impair embryo development as aneuploidy is frequently observed in embryos that reach the blastocyst stage. A high-quality blastocyst does not represent euploidy of chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y. However, aneuploidy is associated with abnormalities in the ICM morphology. Further studies are necessary to confirm whether or not the transfer of blastocysts with low-quality ICM should be

  9. To Compare Aneuploidy Rates Between ICSI and IVF Cases

    African Journals Online (AJOL)

    Sakarya University School of Medicine, Department in Obstetrics and Gynecology ... Bahcesehir University School of Medicine, Istanbul .... at single cell level over the years, reducing the risk ..... study, although low number of cases is a disadvantage of this study. .... (sex chromosomal and autosomal) in ICSI pregnancies.

  10. Resumption of mitosis in frozen-thawed embryos is not related to the chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge E; Kølvrå, Steen; Crüger, Dorthe G

    2007-01-01

    OBJECTIVE: To study the relation between the resumption of mitosis after thaw and chromosomal constitution in frozen-thawed embryos. In addition, to evaluate the correlation among the three parameters of resumption of mitosis after thaw, postthaw blastomere loss, and multinucleation. DESIGN: Frozen......(S): Forty IVF and/or intracytoplasmic sperm injection patients. INTERVENTION(S): Embryo thawing, morphological evaluation, and fluorescence in situ hybridization analysis for aneuploidy screening. MAIN OUTCOME MEASURE(S): Resumption of mitosis, blastomere loss, multinucleation, and chromosome enumeration....... RESULT(S): No difference was observed in the chromosomal constitution of embryos with and without resumption of mitosis. Neither was the postthaw blastomere loss connected to the chromosomal constitution. The resumption of mitosis was not associated with postthaw loss of blastomeres...

  11. Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype

    Directory of Open Access Journals (Sweden)

    Schillaci Tiziana

    2007-11-01

    Full Text Available Abstract Background Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN. CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy, and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represented by Aurora-A/STK15 that associates with centrosomes and is overexpressed in several types of human tumour. Methods Centrosome amplification were induced by hydroxyurea treatment and visualized by immunofluorescence microscopy. Aurora-A/STK15 ectopic expression was achieved by retroviral infection and puromycin selection in HCT116 tumour cells. Effects of Aurora-A/STK15 depletion on centrosome status and ploidy were determined by Aurora-A/STK15 transcriptional silencing by RNA interference. Changes in the expression levels of some mitotic genes were determined by Real time RT-PCR. Results We investigated whether amplification of centrosomes and overexpression of Aurora-A/STK15 induce CIN using as a model system a colon carcinoma cell line (HCT116. We found that in HCT116 cells, chromosomally stable and near diploid cells harbouring a MIN phenotype, centrosome amplification induced by hydroxyurea treatment is neither maintained nor induces aneuploidy. On the contrary, ectopic overexpression of Aurora-A/STK15 induced supernumerary centrosomes and aneuploidy. Aurora-A/STK15 transcriptional silencing by RNA interference in cells ectopically overexpressing this kinase promptly decreased cell numbers with supernumerary centrosomes and aneuploidy. Conclusion Our

  12. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    International Nuclear Information System (INIS)

    Hwang, Melissa; Peddibhotla, Sirisha; McHenry, Peter; Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy

    2012-01-01

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis

  13. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Melissa [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States); Peddibhotla, Sirisha [Department of Molecular and Human Genetics, Baylor College of Medicine, John P. McGovern Campus, NABS-0250, Houston, TX 77030 (United States); McHenry, Peter [Department of Biology, Southwestern Adventist University, 100 W. Hillcrest, Keene, TX 76059 (United States); Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy, E-mail: vargo-gogola.1@nd.edu [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States)

    2012-04-25

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis.

  14. Risk and uncertainty: shifting decision making for aneuploidy screening to the first trimester of pregnancy.

    Science.gov (United States)

    Farrell, Ruth M; Dolgin, Natasha; Flocke, Susan A; Winbush, Victoria; Mercer, Mary Beth; Simon, Christian

    2011-05-01

    The clinical introduction of first trimester aneuploidy screening uniquely challenges the informed consent process for both patients and providers. This study investigated key aspects of the decision-making process for this new form of prenatal genetic screening. Qualitative data were collected by nine focus groups that comprised women of different reproductive histories (N = 46 participants). Discussions explored themes regarding patient decision making for first trimester aneuploidy screening. Sessions were audio recorded, transcribed, coded, and analyzed to identify themes. Multiple levels of uncertainty characterize the decision-making process for first trimester aneuploidy screening. Baseline levels of uncertainty existed for participants in the context of an early pregnancy and the debate about the benefit of fetal genetic testing in general. Additional sources of uncertainty during the decision-making process were generated from weighing the advantages and disadvantages of initiating screening in the first trimester as opposed to waiting until the second. Questions of the quality and quantity of information and the perceived benefit of earlier access to fetal information were leading themes. Barriers to access prenatal care in early pregnancy presented participants with additional concerns about the ability to make informed decisions about prenatal genetic testing. The option of the first trimester aneuploidy screening test in early pregnancy generates decision-making uncertainty that can interfere with the informed consent process. Mechanisms must be developed to facilitate informed decision making for this new form of prenatal genetic screening.

  15. Causes and consequences of maternal age-related aneuploidy in oocytes: a review

    Czech Academy of Sciences Publication Activity Database

    Danylevska, Anna; Šebestová, Jaroslava

    2013-01-01

    Roč. 58, č. 2 (2013), s. 65-72 ISSN 0375-8427 R&D Projects: GA ČR GA523/09/0743; GA ČR GAP502/12/2201 Institutional support: RVO:67985904 Keywords : aneuploidy * oocyte * maternal age Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.756, year: 2013

  16. Somatic pairing, endomitosis and chromosome aberrations in snakes (Viperidae and Colubridae

    Directory of Open Access Journals (Sweden)

    Beçak Maria Luiza

    2003-01-01

    Full Text Available The positioning of macrochromosomes of Bothrops jararaca and Bothrops insularis (Viperidae was studied in undistorted radial metaphases of uncultured cells (spermatogonia and oogonia not subjected to spindle inhibitors. Colchicinized metaphases from uncultured (spleen and intestine and cultured tissues (blood were also analyzed. We report two antagonic non-random chromosome arrangements in untreated premeiotic cells: the parallel configuration with homologue chromosomes associated side by side in the metaphase plate and the antiparallel configuration having homologue chromosomes with antipolar distribution in the metaphase ring. The antiparallel aspect also appeared in colchicinized cells. The spatial chromosome arrangement in both configurations is groupal size-dependent and maintained through meiosis. We also describe, in untreated gonia cells, endomitosis followed by reductional mitosis which restores the diploid number. In B. jararaca males we observed that some gonad regions present changes in the meiotic mechanism. In this case, endoreduplicated cells segregate the diplochromosomes to opposite poles forming directly endoreduplicated second metaphases of meiosis with the suppression of first meiosis. By a successive division, these cells form nuclei with one set of chromosomes. Chromosome doubling in oogonia is known in hybrid species and in parthenogenetic salamanders and lizards. This species also presented chromosome rearrangements leading to aneuploidies in mitosis and meiosis. It is suggested that somatic pairing, endomitosis, meiotic alterations, and chromosomal aberrations can be correlated processes. Similar aspects of nuclei configurations, endomitosis and reductional mitosis were found in other Viperidae and Colubridae species.

  17. Fanconi anemia and the cell cycle: new perspectives on aneuploidy

    Science.gov (United States)

    2014-01-01

    Fanconi anemia (FA) is a complex heterogenic disorder of genomic instability, bone marrow failure, cancer predisposition, and congenital malformations. The FA signaling network orchestrates the DNA damage recognition and repair in interphase as well as proper execution of mitosis. Loss of FA signaling causes chromosome instability by weakening the spindle assembly checkpoint, disrupting centrosome maintenance, disturbing resolution of ultrafine anaphase bridges, and dysregulating cytokinesis. Thus, the FA genes function as guardians of genome stability throughout the cell cycle. This review discusses recent advances in diagnosis and clinical management of Fanconi anemia and presents the new insights into the origins of genomic instability in FA. These new discoveries may facilitate the development of rational therapeutic strategies for FA and for FA-deficient malignancies in the general population. PMID:24765528

  18. The effect of extremely low frequency electromagnetic fields on the chromosomal instability in bleomycin treated fibroblast cells

    International Nuclear Information System (INIS)

    Cho, Yoon Hee; Kim, Yang Jee; Lee, Joong Won; Kim, Gye Eun; Chung, Hai Won

    2008-01-01

    In order to determine the effect of Extremely Low Frequency ElectroMagnetic Fields (ELF-EMF) on the frequency of MicroNuclei (MN), aneuploidy and chromosomal rearrangement induced by BLeoMycin (BLM) in human fibroblast cells, a 60 Hz ELF-EMF of 0.8 mT field strength was applied either alone or with BLM throughout the culture period and a micronucleus-centromere assay was performed. Our results indicate that the frequencies of MN, aneuploidy and chromosomal rearrangement induced by BLM increased in a dose-dependent manner. The exposure of cells to 0.8 mT ELF-EMF followed by BLM exposure for 3 hours led to significant increases in the frequencies of MN and aneuploidy compared to BLM treatment for 3 hours alone (p<0.05), but no significant difference was observed between field exposed and sham exposed control cells. The obtained results suggest that low density ELF-EMF could act as enhancer of the initiation process of BLM rather than as an initiator of mutagenic effects in human fibroblast

  19. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  20. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  1. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski.

    Science.gov (United States)

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2012-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski-/- mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei (MN) formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, spindle assembly checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of MN-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. Copyright © 2011 Wiley Periodicals, Inc.

  2. Molecular and cytogenetic investigation of Y chromosome deletions over three generations facilitated by intracytoplasmic sperm injection.

    Science.gov (United States)

    Minor, Agata; Wong, Edgar Chan; Harmer, Karynn; Ma, Sai

    2007-08-01

    The azoospermic factor (AZF) region is critical for normal spermatogenesis since microdeletions and partial deletions have been associated with infertility. We investigate the diagnostic ability of karyotyping in detecting clinically relevant Y chromosome deletions. The clinical significance of heterochromatin deletions, microdeletions and partial AZFc deletions is also evaluated. A patient with a Yq deletion, affected by severe oligoasthenoteratozoospermia, underwent intracytoplasmic sperm injection (ICSI) which resulted in the birth of a healthy baby boy. The patient, his father and his son underwent Y chromosome microdeletion and partial AZFc deletion screening. We also studied the aneuploidy rate in the sperm of the patient by fluorescent in situ hybridization. AZF microdeletions were absent in the family. However, microdeletion analysis confirmed that the Yq deletion was limited to the heterochromatin. We found a partial AZFc gr/gr deletion in all three family members. We observed an increased rate of sex chromosome aneuploidy in the infertile patient. Cytogenetic analysis was misleading in identifying the Yq breakpoint. Infertility observed in the patient was associated with the gr/gr partial deletion. However, because of the incomplete penetrance of gr/gr deletions, the consequence of the vertical transmission of the deletion through ICSI remains unknown. Copyright (c) 2007 John Wiley & Sons, Ltd.

  3. Next generation sequencing for preimplantation genetic testing of blastocysts aneuploidies in women of different ages

    Directory of Open Access Journals (Sweden)

    Krzysztof Lukaszuk

    2015-12-01

    Full Text Available Most of the current preimplantation genetic screening of aneuploidies tests are based on the low quality and low density comparative genomic hybridization arrays. The results are based on fewer than 2,700 probes. Our main outcome was the association of aneuploidy rates and the women’s age. Between August–December 2013, 198 blastocysts from women (mean age 36.3+-4.6 undergoing in vitro fertilization underwent routine trophectoderm biopsy. NGS was performed on Ion Torrent PGM (Life Technologies. The results were analyzed in five age groups ( 40. 85 blastocysts were normal according to NGS results. The results in the investigated groups were (% of normal blastocyst in each group: 40 (38.5%. Our study suggests that NGS PGD is applicable for routine preimplantation genetic testing. It allows also for easy customization of the procedure for each individual patient making personalized diagnostics a reality.

  4. Two-stage approach for risk estimation of fetal trisomy 21 and other aneuploidies using computational intelligence systems.

    Science.gov (United States)

    Neocleous, A C; Syngelaki, A; Nicolaides, K H; Schizas, C N

    2018-04-01

    To estimate the risk of fetal trisomy 21 (T21) and other chromosomal abnormalities (OCA) at 11-13 weeks' gestation using computational intelligence classification methods. As a first step, a training dataset consisting of 72 054 euploid pregnancies, 295 cases of T21 and 305 cases of OCA was used to train an artificial neural network. Then, a two-stage approach was used for stratification of risk and diagnosis of cases of aneuploidy in the blind set. In Stage 1, using four markers, pregnancies in the blind set were classified into no risk and risk. No-risk pregnancies were not examined further, whereas the risk pregnancies were forwarded to Stage 2 for further examination. In Stage 2, using seven markers, pregnancies were classified into three types of risk, namely no risk, moderate risk and high risk. Of 36 328 unknown to the system pregnancies (blind set), 17 512 euploid, two T21 and 18 OCA were classified as no risk in Stage 1. The remaining 18 796 cases were forwarded to Stage 2, of which 7895 euploid, two T21 and two OCA cases were classified as no risk, 10 464 euploid, 83 T21 and 61 OCA as moderate risk and 187 euploid, 50 T21 and 52 OCA as high risk. The sensitivity and the specificity for T21 in Stage 2 were 97.1% and 99.5%, respectively, and the false-positive rate from Stage 1 to Stage 2 was reduced from 51.4% to ∼1%, assuming that the cell-free DNA test could identify all euploid and aneuploid cases. We propose a method for early diagnosis of chromosomal abnormalities that ensures that most T21 cases are classified as high risk at any stage. At the same time, the number of euploid cases subjected to invasive or cell-free DNA examinations was minimized through a routine procedure offered in two stages. Our method is minimally invasive and of relatively low cost, highly effective at T21 identification and it performs better than do other existing statistical methods. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright

  5. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males.

    Science.gov (United States)

    Finch, K A; Fonseka, K G L; Abogrein, A; Ioannou, D; Handyside, A H; Thornhill, A R; Hickson, N; Griffin, D K

    2008-06-01

    Many genetic defects with a chromosomal basis affect male reproduction via a range of different mechanisms. Chromosome position is a well-known marker of nuclear organization, and alterations in standard patterns can lead to disease phenotypes such as cancer, laminopathies and epilepsy. It has been demonstrated that normal mammalian sperm adopt a pattern with the centromeres aligning towards the nuclear centre. The purpose of this study was to test the hypothesis that altered chromosome position in the sperm head is associated with male infertility. The average nuclear positions of fluorescence in-situ hybridization signals for three centromeric probes (for chromosomes X, Y and 18) were compared in normoozoospermic men and in men with compromised semen parameters. In controls, the centromeres of chromosomes X, Y and 18 all occupied a central nuclear location. In infertile men the sex chromosomes appeared more likely to be distributed in a pattern not distinguishable from a random model. Our findings cast doubt on the reliability of centromeric probes for aneuploidy screening. The analysis of chromosome position in sperm heads should be further investigated for the screening of infertile men.

  6. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    Science.gov (United States)

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  7. The Detection and Analysis of Chromosome Fragile Sites

    DEFF Research Database (Denmark)

    Bjerregaard, Victoria A; Özer, Özgün; Hickson, Ian D

    2018-01-01

    A fragile site is a chromosomal locus that is prone to form a gap or constriction visible within a condensed metaphase chromosome, particularly following exposure of cells to DNA replication stress. Based on their frequency, fragile sites are classified as either common (CFSs; present in all...... for detection and analysis of chromosome fragile sites....

  8. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  9. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses.

    Science.gov (United States)

    Yan, Liying; Huang, Lei; Xu, Liya; Huang, Jin; Ma, Fei; Zhu, Xiaohui; Tang, Yaqiong; Liu, Mingshan; Lian, Ying; Liu, Ping; Li, Rong; Lu, Sijia; Tang, Fuchou; Qiao, Jie; Xie, X Sunney

    2015-12-29

    In vitro fertilization (IVF), preimplantation genetic diagnosis (PGD), and preimplantation genetic screening (PGS) help patients to select embryos free of monogenic diseases and aneuploidy (chromosome abnormality). Next-generation sequencing (NGS) methods, while experiencing a rapid cost reduction, have improved the precision of PGD/PGS. However, the precision of PGD has been limited by the false-positive and false-negative single-nucleotide variations (SNVs), which are not acceptable in IVF and can be circumvented by linkage analyses, such as short tandem repeats or karyomapping. It is noteworthy that existing methods of detecting SNV/copy number variation (CNV) and linkage analysis often require separate procedures for the same embryo. Here we report an NGS-based PGD/PGS procedure that can simultaneously detect a single-gene disorder and aneuploidy and is capable of linkage analysis in a cost-effective way. This method, called "mutated allele revealed by sequencing with aneuploidy and linkage analyses" (MARSALA), involves multiple annealing and looping-based amplification cycles (MALBAC) for single-cell whole-genome amplification. Aneuploidy is determined by CNVs, whereas SNVs associated with the monogenic diseases are detected by PCR amplification of the MALBAC product. The false-positive and -negative SNVs are avoided by an NGS-based linkage analysis. Two healthy babies, free of the monogenic diseases of their parents, were born after such embryo selection. The monogenic diseases originated from a single base mutation on the autosome and the X-chromosome of the disease-carrying father and mother, respectively.

  10. Counselling considerations for chromosomal mosaicism detected by preimplantation genetic screening.

    Science.gov (United States)

    Besser, Andria G; Mounts, Emily L

    2017-04-01

    The evolution of preimplantation genetic screening (PGS) for aneuploidy to blastocyst biopsy and more sensitive 24-chromosome screening techniques has resulted in a new diagnostic category of PGS results: those classified as mosaic. This diagnosis presents significant challenges for clinicians in developing policies regarding transfer and storage of such embryos, as well as in providing genetic counselling for patients prior to and following PGS. Given the high frequency of mosaic PGS results and the wide range of possible associated outcomes, there is an urgent need to understand how to appropriately counsel patients regarding such embryos. This is the first commentary to thoroughly address pre- and post-test genetic counselling recommendations, as well as considerations regarding prenatal screening and diagnosis. Current data on mosaic PGS results are summarized along with embryo selection considerations and potential outcomes of embryos diagnosed as mosaic. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Coenzyme Q10 Supplementation and Oocyte Aneuploidy in Women Undergoing IVF-ICSI Treatment

    Directory of Open Access Journals (Sweden)

    Yaakov Bentov

    2014-01-01

    Full Text Available Background The age-related reduction in live-birth rate is attributed to a high rate of aneuploidy and follicle depletion. We showed in an animal model that treatment with Coenzyme Q10 (CoQ10 markedly improved reproductive outcome. The aim of this study was to compare the post-meiotic oocyte aneuploidy rate in in vitro fertilization (IVF and intra cytoplasmic sperm injection (ICSI patients treated with CoQ10 or placebo. Methods We conducted a double blind placebo controlled randomized trial that included IVF-ICSI patients 35-43 years of age. The patients were treated with either 600 mg of CoQ10 or an equivalent number of placebo caps. We compared the post-meiotic aneuploidy rate using polar body biopsy (PBBX and comparative genomic hybridization (CGH. According to the power calculation, 27 patients were needed for each arm. Results Owing to safety concerns regarding the effects of polar body biopsy on embryo quality and implantation, the study was terminated before reaching the target number of participants. A total of 39 patients were evaluated and randomized (17 CoQ10, 22 placebo, 27 were given the study medication (12 CoQ10, 15 placebo, and 24 completed an IVF-ICSI cycle including PBBX and embryo transfer (10 CoQ10, 14 placebo. Average age, base line follicle stimulating hormone (FSH, peak estradiol and progesterone serum level, as well as the total number of human menopausal gonadotropin (hMG units–-did not differ between the groups. The rate of aneuploidy was 46.5% in the CoQ10 group compared to 62.8% in the control. Clinical pregnancy rate was 33% for the CoQ10 group and 26.7% for the control group. Conclusion No significant differences in outcome were detected between the CoQ10 and placebo groups. However, the final study was underpowered to detect a difference in the rate of aneuploidy.

  12. The chromosomal risk in sperm from heterozygous Robertsonian translocation carriers is related to the sperm count and the translocation type.

    Science.gov (United States)

    Ferfouri, Fatma; Selva, Jacqueline; Boitrelle, Florence; Gomes, Denise Molina; Torre, Antoine; Albert, Martine; Bailly, Marc; Clement, Patrice; Vialard, François

    2011-12-01

    To study the chromosomal risk in sperm from Robertsonian translocation (RobT) carriers as a function of the sperm count and translocation type. Prospective study. Departments of reproductive biology, cytogenetics, gynecology, and obstetrics. A total of 29 RobT patients (8 normozoospermic and 21 oligozoospermic) and 20 46,XY patients (10 normozoospermic and 10 oligozoospermic). Sperm fluorescence in situ hybridization with probes for translocation malsegregation and chromosome 13, 18, 21, X, and Y probes for studying the interchromosomal effect (ICE). Translocation malsegregation and ICE aneuploidy rates. In RobT carriers, the sperm translocation malsegregation rate was significantly lower in normozoospermic patients (9.7%) than in oligozoospermic patients (18.0%). Considering only oligozoospermic patients, sperm malsegregation rates were significantly lower for rob(14;21) than for rob(13;14) (11.4% vs. 18.9%). In turn, the rates were significantly lower for rob(13;14) than for rare RobTs (18.9% vs. 25.3%). In sperm from normozoospermic RobT, an ICE was suggested by higher chromosome 13 and 21 aneuploidy rates than in control sperm. Conversely, chromosome 13 and 21 sperm aneuploidy rates were lower in oligozoospermic RobT patients than in oligozoospermic 46,XY patients, but higher than in control subjects. Both translocation type and sperm count influence the RobT malsegregation risk. Of the chromosomes analyzed (13, 18, 21, X, and Y), only chromosomes 13 and 21 were found to be associated with an ICE. Relative to the RobT effect, idiopathic alterations in spermatogenesis in 46,XY patients appear to be more harmful for meiosis. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  14. Radiation exposure and chromosome damage

    International Nuclear Information System (INIS)

    Lloyd, D.

    1979-01-01

    Chromosome damage is discussed as a means of biologically measuring radiation exposure to the body. Human lymphocytes are commonly used for this test since the extent of chromosome damage induced is related to the exposure dose. Several hundred lymphocytes are analysed in metaphase for chromosome damage, particularly dicentrics. The dose estimate is made by comparing the observed dicentric yield against calibration curves, previously produced by in vitro irradiation of blood samples to known doses of different types of radiation. This test is useful when there is doubt that the film badge has recorded a reasonable whole body dose and also when there is an absence of any physical data. A case of deliberate exposure is described where the chromosome damage test estimated an exposure of 152 rads. The life span of cell aberrations is also considered. Regular checks on radiotherapy patients and some accidental overdose cases have shown little reduction in the aberration levels over the first six weeks after which the damage disappears slowly with a half-life of about three years. In conclusion, chromosome studies have been shown to be of value in resolving practical problems in radiological protection. (U.K.)

  15. Detection Of Aneuploidy In Chromosomes 3,7,9 And 17 In Bladder Cancer Patients Using Urovysion Assay

    International Nuclear Information System (INIS)

    Abd-Elsattar, N.A.; Yossef, M.F.; Saleh, S.A.R.; Shahin, R.S.; Ali, H.H.; Kotb, Y.M.

    2012-01-01

    Background: Cystoscopy is considered up till now the gold standard as well as urine cytology for diagnosis and follow up of urinary bladder cancer patients. Cystoscopy is an invasive inconclusive technique while cytology have low sensitivity. Therefore search for a more sensitive, non-invasive highly reliable method is important. Aim of the study: To assess the diagnostic sensitivity and specificity of Urovysion to be used as a non-invasive tool for early detection of bladder cancer patients. Furthermore, to assess its relationship with histopathological stages and grades of the disease. Subjects and methods: This study was conducted on 30 patients with urinary bladder cancer( Group I) which were subdivided according to cancer stages and grades into subgroups and 15 diseased control patients (Group II). One urine sample was taken from each patient for Urovysion assay and another sample taken for urine cytology. Results: Urovysion showed higher positive results in (Group I) than urine cytology. In (Group II) the latter did not miss any negative case while urovysion showed only one false positive case. Moreover, Urovysion results revealed significant association with both bladder cancer histopathological stages and grades while urine cytology showed significant association with tumor grades only. Conclusion: Urovysion; both by itself and in combination with urine cytology; offers a sensitive, reliable and non invasive approach to bladder cancer diagnosis. Urovysion is associated with invasiveness of bladder cancer from stage Tis, T1 to T4 and from grades G1 to G3. Thus, urovysion assay can be used as an important diagnostic and prognostic indicator of this disease

  16. The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer

    DEFF Research Database (Denmark)

    Szász, Attila Marcell; Li, Qiyuan; Eklund, Aron Charles

    2013-01-01

    investigated whether the categorical CIN4 score derived from the CIN4 signature was correlated with recurrence-free survival (RFS) and ploidy status in this cohort. Results: We observed a significant association of tumor proliferation, defined by Ki67 and mitotic index (MI), with both CIN4 expression...

  17. Telomere Shortening in Hematological Malignancies with Tetraploidization—A Mechanism for Chromosomal Instability?

    Directory of Open Access Journals (Sweden)

    Eigil Kjeldsen

    2017-11-01

    Full Text Available Aneuploidy, the presence of an abnormal number of chromosomes in a cell, is one of the most obvious differences between normal and cancer cells. There is, however, debate on how aneuploid cells arise and whether or not they are a cause or a consequence of tumorigenesis. Further, it is important to distinguish aneuploidy (the “state” of the karyotype from chromosomal instability (CIN; the “rate” of karyotypic change. Although CIN leads to aneuploidy, not all aneuploid cells exhibit CIN. One proposed route to aneuploid cells is through an unstable tetraploid intermediate because tetraploidy promotes chromosomal aberrations and tumorigenesis. Tetraploidy or near-tetraploidy (T/NT (81–103 chromosomes karyotypes with or without additional structural abnormalities have been reported in acute leukemia, T-cell and B-cell lymphomas, and solid tumors. In solid tumors it has been shown that tetraploidization can occur in response to loss of telomere protection in the early stages of tumorigenesis in colon cancer, Barrett’s esophagus, and breast and cervical cancers. In hematological malignancies T/NT karyotypes are rare and the role of telomere dysfunction for the induction of tetraploidization is less well characterized. To further our understanding of possible telomere dysfunction as a mechanism for tetrapolydization in hematological cancers we here characterized the chromosomal complement and measured the telomere content by interphase nuclei quantitative fluorescence in situ hybridization (iQFISH in seven hematological cancer patients with T/NT karyotypes, and after cytogenetic remission. The patients were identified after a search in our local cytogenetic registry in the 5-year period between June 2012 and May 2017 among more than 12,000 analyzed adult patients in this period. One advantage of measuring telomere content by iQFISH is that it is a single-cell analysis so that the telomere content can be distinguished between normal karyotype

  18. Twin Pregnancy Obtention of Patient with Nonmosaic Klinefelter’s Syndrome and His Wife with Chromosome 9 Inversion by ICSI Treatment

    OpenAIRE

    Yueyue Hu; Haiying Peng; Changjun Zhang

    2013-01-01

    A 24-year-old man was diagnosed with klinefelter’s syndrome (KS) and his wife was found to have an inversion on chromosome 9-46, XX, inv (9) (p11q21)- because of infertility. Intracytoplasmic sperm injection (ICSI) was performed for fertilization after fluorescence in-situ hybridization (FISH) was used to analyze the aneuploidy rate of the X and Y chromosomes of the ejaculated sperms of the patient, and 99 sperms were haploid among 100 sperms that were to be analyzed. A twin pregnancy was ach...

  19. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  20. Hydroquinone, a benzene metabolite, induces Hog1-dependent stress response signaling and causes aneuploidy in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shiga, Takeki; Suzuki, Hiroyuki; Yamamoto, Hiroaki; Yamamoto, Kazuo; Yamamoto, Ayumi

    2010-01-01

    Previously, we have shown that phenyl hydroquinone, a hepatic metabolite of the Ames test-negative carcinogen o-phenylphenol, efficiently induced aneuploidy in Saccharomyces cerevisiae by arresting the cell cycle at the G2/M transition as a result of the activation of the Hog1 (p38 MAPK homolog)-Swe1 (Wee1 homolog) pathway. In this experiment, we examined the aneuploidy forming effects of hydroquinone, a benzene metabolite, since both phenyl hydroquinone and hydroquinone are Ames-test negative carcinogens and share similar molecular structures. As was seen in phenyl hydroquinone, hydroquinone induced aneuploidy in yeast by delaying the cell cycle at the G2/M transition. Deficiencies in SWE1 and HOG1 abolished the hydroquinone-induced delay at the G2/M transition and aneuploidy formation. Furthermore, Hog1 was phosphorylated by hydroquinone, which may stabilize Swe1. These data indicate that the hydroquinone-induced G2/M transition checkpoint, which is activated by the Hog1-Swe1 pathway, plays a role in the formation of aneuploidy. (author)

  1. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in

  2. Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes

    Czech Academy of Sciences Publication Activity Database

    Cioffi, M. de B.; Yano, C. F.; Sember, Alexandr; Bertollo, L.A.C.

    2017-01-01

    Roč. 8, č. 10 (2017), č. článku 258. ISSN 2073-4425 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : alternative evolutionary models * simple and multiple sex chromosomes * independent and common origins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.600, year: 2016

  3. Imaging clues in the prenatal diagnosis of syndromes and aneuploidy

    International Nuclear Information System (INIS)

    Estroff, Judy A.

    2012-01-01

    Advances in fetal sonography and MRI have increased both the range and diagnostic accuracy of detectable fetal anomalies, with many anomalies detectable earlier in pregnancy. The presence of structural anomalies greatly raises the risk that the fetus has a syndrome or abnormal karyotype. In addition, new techniques in maternal serum screening have greatly increased the ability to identify pregnant patients at risk for anomalies and syndromes. This paper reviews maternal first- and second-trimester serum screening and imaging and covers many of the most common fetal karyotypic and structural anomalies. (orig.)

  4. Imaging clues in the prenatal diagnosis of syndromes and aneuploidy

    Energy Technology Data Exchange (ETDEWEB)

    Estroff, Judy A. [Harvard Medical School, Fetal-Neonatal Radiology, Boston, MA (United States); Children' s Hospital Boston, Advanced Fetal Care Center, Department of Radiology, Boston, MA (United States)

    2012-01-15

    Advances in fetal sonography and MRI have increased both the range and diagnostic accuracy of detectable fetal anomalies, with many anomalies detectable earlier in pregnancy. The presence of structural anomalies greatly raises the risk that the fetus has a syndrome or abnormal karyotype. In addition, new techniques in maternal serum screening have greatly increased the ability to identify pregnant patients at risk for anomalies and syndromes. This paper reviews maternal first- and second-trimester serum screening and imaging and covers many of the most common fetal karyotypic and structural anomalies. (orig.)

  5. BCL9L Dysfunction Impairs Caspase-2 Expression Permitting Aneuploidy Tolerance in Colorectal Cancer

    DEFF Research Database (Denmark)

    López-García, Carlos; Sansregret, Laurent; Domingo, Enric

    2016-01-01

    Chromosomal instability (CIN) contributes to cancer evolution, intratumor heterogeneity, and drug resistance. CIN is driven by chromosome segregation errors and a tolerance phenotype that permits the propagation of aneuploid genomes. Through genomic analysis of colorectal cancers and cell lines, ...

  6. Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns.

    Science.gov (United States)

    Sack, Laura Magill; Davoli, Teresa; Li, Mamie Z; Li, Yuyang; Xu, Qikai; Naxerova, Kamila; Wooten, Eric C; Bernardi, Ronald J; Martin, Timothy D; Chen, Ting; Leng, Yumei; Liang, Anthony C; Scorsone, Kathleen A; Westbrook, Thomas F; Wong, Kwok-Kin; Elledge, Stephen J

    2018-04-05

    Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Management of abnormal serum markers in the absence of aneuploidy or neural tube defects

    Science.gov (United States)

    Schnettler, William T.; Hacker, Michele R.; Barber, Rachel E.; Rana, Sarosh

    2013-01-01

    Objective Few guidelines address the management of pregnancies complicated by abnormal maternal serum analytes (MSAs) in the absence of aneuploidy or neural tube defects (NTDs). Our objective was to gather preliminary data regarding current opinions and management strategies among perinatologists in the US. Methods This survey of Maternal Fetal Medicine (MFM) physicians and fellows used a secure electronic web-based data capture tool. Results A total of 545 potential participants were contacted, and 136 (25%) responded. The majority were experienced academic physicians with robust practices. Nearly all (97.7%) respondents reported a belief in an association between abnormal MSAs and adverse pregnancy outcomes other than aneuploidy or NTDs. Plasma protein A (PAPP-A) and α-fetoprotein (AFP) were most often chosen as markers demonstrating a strong association with adverse outcomes. Most (86.9%) respondents acknowledged that abnormal MSAs influenced their counseling approach, and the majority (80.1%) offered additional ultrasound examinations. Nearly half started at 28 weeks and almost one-third at 32 weeks. Respondents acknowledging a relevant protocol in their hospital or practice were more likely to offer additional antenatal testing (p = 0.01). Conclusions Although most perinatologists were in agreement regarding the association of MSAs with adverse pregnancy outcomes, a lack of consensus exists regarding management strategies. PMID:22372385

  8. Pericentric inversion of chromosome 18 in parents leading to a phenotypically normal child with segmental uniparental disomy 18.

    Science.gov (United States)

    Kariminejad, Ariana; Kariminejad, Roxana; Moshtagh, Azadeh; Zanganeh, Maryam; Kariminejad, Mohammad Hassan; Neuenschwander, Stefan; Okoniewski, Michal; Wey, Eva; Schinzel, Albert; Baumer, Alessandra

    2011-05-01

    In this study, we report a familial inversion of chromosome 18, inv(18)(p11.31q21.33), in both members of a consanguineous couple. Their first child had inherited one balanced pericentric inversion along with a recombinant chromosome 18 resulting in dup(18q)/del(18p), and had mild dysmorphic features in the absence of mental and developmental retardation. The second child had received two recombinant chromosomes 18, from the mother a derivative chromosome 18 with dup(18p)/del(18q) and from the father a derivative chromosome 18 with dup(18q)/del(18p). The aberration was prenatally detected; however, as the two opposite aneuploidies were thought to compensate each other, the family decided to carry on with the pregnancy, knowing that uniparental disomy for the segments outside the inversion could have an adverse influence on the development of the child. Uniparental disomy was confirmed by SNP arrays. The child, who has been followed up until the age of 20 months, is healthy and normal. It seems to be the first reported case with two opposite recombinant chromosomes that compensate each other and lead to segmental uniparental disomy for two segments on the chromosome, one maternal and the other paternal.

  9. Chromosomal Evolution in Chiroptera.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Baker, Robert J; Volleth, Marianne

    2017-10-13

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  10. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  11. Pericentric Inversion of Chromosome 9 in an Infant With Ambiguous Genitalia.

    Science.gov (United States)

    Sotoudeh, Arya; Rostami, Parastoo; Nakhaeimoghadam, Maryam; Mohsenipour, Reihaneh; Rezaei, Nima

    2017-10-01

    Pericentric inversion of Chromosome 9 is one of the most common chromosomal abnormalities, which could be associated with various manifestations in some cases. Herein, a patient is presented with ambiguous genitalia that karyotyping revealed pericentric inversion of Chromosome 9 (p12,q13). Pericentric inversion of Chromosome 9 could be considered in the list of differential diagnosis of those with ambiguous genitalia, while chromosomal karyotype and culture could be recommended in children with ambiguous genitalia.

  12. Individualized choice in prenatal diagnosis : the impact of karyotyping and standalone rapid aneuploidy detection on quality of life

    NARCIS (Netherlands)

    Boormans, E. M. A.; Birnie, E.; Oepkes, D.; Boekkooi, P. F.; Bonsel, G. J.; van Lith, J. M. M.

    2010-01-01

    Objective To assess the reasons and perceptions of women who are offered a choice between karyotyping and standalone rapid aneuploidy detection (RAD) and to compare the impact of both tests on anxiety and health-related quality of life Methods In this prospective comparative study, women undergoing

  13. Genome Organization Drives Chromosome Fragility.

    Science.gov (United States)

    Canela, Andres; Maman, Yaakov; Jung, Seolkyoung; Wong, Nancy; Callen, Elsa; Day, Amanda; Kieffer-Kwon, Kyong-Rim; Pekowska, Aleksandra; Zhang, Hongliang; Rao, Suhas S P; Huang, Su-Chen; Mckinnon, Peter J; Aplan, Peter D; Pommier, Yves; Aiden, Erez Lieberman; Casellas, Rafael; Nussenzweig, André

    2017-07-27

    In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT. Published by Elsevier Inc.

  14. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture.

    Directory of Open Access Journals (Sweden)

    Victoria Nikitina

    Full Text Available Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa.The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells.The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12% are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described.The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before

  15. Why Do Sex Chromosomes Stop Recombining?

    Science.gov (United States)

    Ponnikas, Suvi; Sigeman, Hanna; Abbott, Jessica K; Hansson, Bengt

    2018-04-28

    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    Science.gov (United States)

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  17. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  18. Discrimination of chromosome by autoradiography

    International Nuclear Information System (INIS)

    Masubuchi, Masanori

    1975-01-01

    This paper describes discrimination of chromosome by autoradiography. In this method, the difference in DNA synthetic phase between each chromosome was used as a standard, and the used chromosome was in metaphase, as morphological characteristics were markedly in this phase. Cell cycle and autoradiography with 3 H-thymidine were also examined. In order to discriminate chromosome by autoradiography, it was effective to utilize the labelled pattern in late DNA synthetic phase, where asynchronous replication of chromosome appeared most obviously. DNA synthesis in chromosome was examined in each DNA synthetic phase by culturing the chromosome after the treatment with 3 H-thymidine and altering the time to prepare chromosome specimen. Discrimination of chromosome in plants and animals by autoradiography was also mentioned. It was noticed as a structural and functional discrimination of chromosome to observe amino acid uptake into chromosome protein and to utilize the difference in labelled pattern between the sites of chromosome. (K. Serizawa)

  19. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  20. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    Science.gov (United States)

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  1. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.

    Science.gov (United States)

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-03-01

    In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. © 2016. Published by The Company of Biologists Ltd.

  2. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences?

    Science.gov (United States)

    Brezina, Paul R; Anchan, Raymond; Kearns, William G

    2016-07-01

    The purpose of the review was to define the various diagnostic platforms currently available to perform preimplantation genetic testing for aneuploidy and describe in a clear and balanced manner the various strengths and weaknesses of these technologies. A systematic literature review was conducted. We used the terms "preimplantation genetic testing," "preimplantation genetic diagnosis," "preimplantation genetic screening," "preimplantation genetic diagnosis for aneuploidy," "PGD," "PGS," and "PGD-A" to search through PubMed, ScienceDirect, and Google Scholar from the year 2000 to April 2016. Bibliographies of articles were also searched for relevant studies. When possible, larger randomized controlled trials were used. However, for some emerging data, only data from meeting abstracts were available. PGS is emerging as one of the most valuable tools to enhance pregnancy success with assisted reproductive technologies. While all of the current diagnostic platforms currently available have various advantages and disadvantages, some platforms, such as next-generation sequencing (NGS), are capable of evaluating far more data points than has been previously possible. The emerging complexity of different technologies, especially with the utilization of more sophisticated tools such as NGS, requires an understanding by clinicians in order to request the best test for their patients.. Ultimately, the choice of which diagnostic platform is utilized should be individualized to the needs of both the clinic and the patient. Such a decision must incorporate the risk tolerance of both the patient and provider, fiscal considerations, and other factors such as the ability to counsel patients on their testing results and how these may or may not impact clinical outcomes.

  3. Involvement of HTLV-I Tax and CREB in aneuploidy: a bioinformatics approach

    Directory of Open Access Journals (Sweden)

    Pumfery Anne

    2006-07-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is a complex and multifaceted disease associated with human T-cell leukemia virus type 1 (HTLV-I infection. Tax, the viral oncoprotein, is considered a major contributor to cell cycle deregulation in HTLV-I transformed cells by either directly disrupting cellular factors (protein-protein interactions or altering their transcription profile. Tax transactivates these cellular promoters by interacting with transcription factors such as CREB/ATF, NF-κB, and SRF. Therefore by examining which factors upregulate a particular set of promoters we may begin to understand how Tax orchestrates leukemia development. Results We observed that CTLL cells stably expressing wild-type Tax (CTLL/WT exhibited aneuploidy as compared to a Tax clone deficient for CREB transactivation (CTLL/703. To better understand the contribution of Tax transactivation through the CREB/ATF pathway to the aneuploid phenotype, we performed microarray analysis comparing CTLL/WT to CTLL/703 cells. Promoter analysis of altered genes revealed that a subset of these genes contain CREB/ATF consensus sequences. While these genes had diverse functions, smaller subsets of genes were found to be involved in G2/M phase regulation, in particular kinetochore assembly. Furthermore, we confirmed the presence of CREB, Tax and RNA Polymerase II at the p97Vcp and Sgt1 promoters in vivo through chromatin immunoprecipitation in CTLL/WT cells. Conclusion These results indicate that the development of aneuploidy in Tax-expressing cells may occur in response to an alteration in the transcription profile, in addition to direct protein interactions.

  4. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  5. Comparison of first-tier cell-free DNA screening for common aneuploidies with conventional publically funded screening.

    Science.gov (United States)

    Langlois, Sylvie; Johnson, JoAnn; Audibert, François; Gekas, Jean; Forest, Jean-Claude; Caron, André; Harrington, Keli; Pastuck, Melanie; Meddour, Hasna; Tétu, Amélie; Little, Julian; Rousseau, François

    2017-12-01

    This study evaluates the impact of offering cell-free DNA (cfDNA) screening as a first-tier test for trisomies 21 and 18. This is a prospective study of pregnant women undergoing conventional prenatal screening who were offered cfDNA screening in the first trimester with clinical outcomes obtained on all pregnancies. A total of 1198 pregnant women were recruited. The detection rate of trisomy 21 with standard screening was 83% with a false positive rate (FPR) of 5.5% compared with 100% detection and 0% FPR for cfDNA screening. The FPR of cfDNA screening for trisomies 18 and 13 was 0.09% for each. Two percent of women underwent an invasive diagnostic procedure based on screening or ultrasound findings; without the cfDNA screening, it could have been as high as 6.8%. Amongst the 640 women with negative cfDNA results and a nuchal translucency (NT) ultrasound, only 3 had an NT greater or equal to 3.5 mm: one had a normal outcome and two lost their pregnancy before 20 weeks. cfDNA screening has the potential to be a highly effective first-tier screening approach leading to a significant reduction of invasive diagnostic procedures. For women with a negative cfDNA screening result, NT measurement has limited clinical utility. © 2017 John Wiley & Sons, Ltd.

  6. CHROMOSOMES OF WOODY SPECIES

    Directory of Open Access Journals (Sweden)

    Julio R Daviña

    2000-01-01

    Full Text Available Chromosome numbers of nine subtropical woody species collected in Argentina and Paraguay are reported. The counts tor Coutarea hexandra (2n=52, Inga vera subsp. affinis 2n=26 (Fabaceae and Chorisia speciosa 2n=86 (Bombacaceae are reported for the first time. The chromosome number given for Inga semialata 2n=52 is a new cytotype different from the previously reported. Somatic chromosome numbers of the other taxa studied are: Sesbania punicea 2n=12, S. virgata 2n=12 and Pilocarpus pennatifolius 2n=44 from Argentina

  7. Chromosomal organization of repetitive DNAs in Hordeum bogdanii and H. brevisubulatum (Poaceae

    Directory of Open Access Journals (Sweden)

    Quanwen Dou

    2016-10-01

    Full Text Available Molecular karyotypes of H. bogdanii Wilensky, 1918 (2n = 14, and H. brevisubulatum Link, 1844 ssp. brevisubulatum (2n = 28, were characterized by physical mapping of several repetitive sequences. A total of 18 repeats, including all possible di- or trinucleotide SSR (simple sequence repeat motifs and satellite DNAs, such as pAs1, 5S rDNA, 45S rDNA, and pSc119.2, were used as probes for fluorescence in situ hybridization on root-tip metaphase chromosomes. Except for the SSR motifs AG, AT and GC, all the repeats we examined produced detectable hybridization signals on chromosomes of both species. A detailed molecular karyotype of the I genome of H. bogdanii is described for the first time, and each repetitive sequence is physically mapped. A high degree of chromosome variation, including aneuploidy and structural changes, was observed in H. brevisubulatum. Although the distribution of repeats in the chromosomes of H. brevisubulatum is different from that of H. bogdanii, similar patterns between the two species imply that the autopolyploid origin of H. brevisubulatum is from a Hordeum species with an I genome. A comparison of the I genome and the other Hordeum genomes, H, Xa and Xu, shows that colocalization of motifs AAC, ACT and CAT and colocalization of motifs AAG and AGG are characteristic of the I genome. In addition, we discuss the evolutionary significance of repeats in the genome during genome differentiation.

  8. Clonal heterogeneity and chromosomal instability at disease presentation in high hyperdiploid acute lymphoblastic leukemia.

    Science.gov (United States)

    Talamo, Anna; Chalandon, Yves; Marazzi, Alfio; Jotterand, Martine

    2010-12-01

    Although aneuploidy has many possible causes, it often results from underlying chromosomal instability (CIN) leading to an unstable karyotype with cell-to-cell variation and multiple subclones. To test for the presence of CIN in high hyperdiploid acute lymphoblastic leukemia (HeH ALL) at diagnosis, we investigated 20 patients (10 HeH ALL and 10 non-HeH ALL), using automated four-color interphase fluorescence in situ hybridization (I-FISH) with centromeric probes for chromosomes 4, 6, 10, and 17. In HeH ALL, the proportion of abnormal cells ranged from 36.3% to 92.4%, and a variety of aneuploid populations were identified. Compared with conventional cytogenetics, I-FISH revealed numerous additional clones, some of them very small. To investigate the nature and origin of this clonal heterogeneity, we determined average numerical CIN values for all four chromosomes together and for each chromosome and patient group. The CIN values in HeH ALL were relatively high (range, 22.2-44.7%), compared with those in non-HeH ALL (3.2-6.4%), thus accounting for the presence of numerical CIN in HeH ALL at diagnosis. We conclude that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by I-FISH in HeH ALL at presentation, which would corroborate the potential role of CIN in tumor pathogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  10. Patients with endometriosis have aneuploidy rates equivalent to their age-matched peers in the in vitro fertilization population.

    Science.gov (United States)

    Juneau, Caroline; Kraus, Emily; Werner, Marie; Franasiak, Jason; Morin, Scott; Patounakis, George; Molinaro, Thomas; de Ziegler, Dominique; Scott, Richard T

    2017-08-01

    To determine whether endometriosis ultimately results in an increased risk of embryonic aneuploidy. Retrospective cohort. Infertility clinic. Patients participating in an in vitro fertilization (IVF) cycle from 2009-2015 using preimplantation genetic screening (PGS) who had endometriosis identified by surgical diagnosis or by ultrasound findings consistent with a persistent space-occupying disease whose sonographic appearance was consistent with endometriosis. None. Rate of aneuploidy in endometriosis patients undergoing IVF compared to controls without endometriosis undergoing IVF. There were 305 patients with endometriosis who produced 1,880 blastocysts that met the criteria for inclusion in the endometriosis group. The mean age of the patients with endometriosis was 36.1 ± 3.9 years. When the aneuploidy rates in patients with endometriosis and aneuploidy rates in patients without endometriosis were stratified by Society for Assisted Reproductive Technology age groups and compared, there were no statistically significant differences in the rate of aneuploidy (odds ratio 0.85; 95% confidence interval, 0.84-0.85). Patients with endometriosis undergoing IVF have aneuploidy rates equivalent to their age-matched peers in IVF population who do not have endometriosis. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  12. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  13. Current Status of Comprehensive Chromosome Screening for Elective Single-Embryo Transfer

    Directory of Open Access Journals (Sweden)

    Ming-Yih Wu

    2014-01-01

    Full Text Available Most in vitro fertilization (IVF experts and infertility patients agree that the most ideal assisted reproductive technology (ART outcome is to have a healthy, full-term singleton born. To this end, the most reliable policy is the single-embryo transfer (SET. However, unsatisfactory results in IVF may result from plenty of factors, in which aneuploidy associated with advanced maternal age is a major hurdle. Throughout the past few years, we have got a big leap in advancement of the genetic screening of embryos on aneuploidy, translocation, or mutations. This facilitates a higher success rate in IVF accompanied by the policy of elective SET (eSET. As the cost is lowering while the scale of genome characterization continues to be up over the recent years, the contemporary technologies on trophectoderm biopsy and freezing-thaw, comprehensive chromosome screening (CCS with eSET appear to be getting more and more popular for modern IVF centers. Furthermore, evidence has showen that, by these avant-garde techniques (trophectoderm biopsy, vitrification, and CCS, older infertile women with the help of eSET may have an opportunity to increase the success of their live birth rates approaching those reported in younger infertility patients.

  14. Chromosomal Evolution in Chiroptera

    OpenAIRE

    Sotero-Caio, Cibele G.; Baker, Robert J.; Volleth, Marianne

    2017-01-01

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within d...

  15. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    Science.gov (United States)

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  16. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development.

    Directory of Open Access Journals (Sweden)

    Rajiv C McCoy

    2015-10-01

    Full Text Available Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4-8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos

  17. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  18. Preimplantation genetic diagnosis for chromosomal rearrangements with the use of array comparative genomic hybridization at the blastocyst stage.

    Science.gov (United States)

    Christodoulou, Christodoulos; Dheedene, Annelies; Heindryckx, Björn; van Nieuwerburgh, Filip; Deforce, Dieter; De Sutter, Petra; Menten, Björn; Van den Abbeel, Etienne

    2017-01-01

    To establish the value of array comparative genomic hybridization (CGH) for preimplantation genetic diagnosis (PGD) in embryos of translocation carriers in combination with vitrification and frozen embryo transfer in nonstimulated cycles. Retrospective data analysis study. Academic centers for reproductive medicine and genetics. Thirty-four couples undergoing PGD for chromosomal rearrangements from October 2013 to December 2015. Trophectoderm biopsy at day 5 or day 6 of embryo development and subsequently whole genome amplification and array CGH were performed. This approach revealed a high occurrence of aneuploidies and structural rearrangements unrelated to the parental rearrangement. Nevertheless, we observed a benefit in pregnancy rates of these couples. We detected chromosomal abnormalities in 133/207 embryos (64.2% of successfully amplified), and 74 showed a normal microarray profile (35.7%). In 48 of the 133 abnormal embryos (36.1%), an unbalanced rearrangement originating from the parental translocation was identified. Interestingly, 34.6% of the abnormal embryos (46/133) harbored chromosome rearrangements that were not directly linked to the parental translocation in question. We also detected a combination of unbalanced parental-derived rearrangements and aneuploidies in 27 of the 133 abnormal embryos (20.3%). The use of trophectoderm biopsy at the blastocyst stage is less detrimental to the survival of the embryo and leads to a more reliable estimate of the genomic content of the embryo than cleavage-stage biopsy. In this small cohort PGD study, we describe the successful implementation of array CGH analysis of blastocysts in patients with a chromosomal rearrangement to identify euploid embryos for transfer. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Pampalona, J.; Soler, D.; Genesca, A. [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain); Tusell, L., E-mail: laura.tusell@uab.es [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain)

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16{sup INK4a} protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and

  20. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    International Nuclear Information System (INIS)

    Pampalona, J.; Soler, D.; Genesca, A.; Tusell, L.

    2010-01-01

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16 INK4a protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  1. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    Science.gov (United States)

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  2. Synthetic polyploids in Vicia cracca: methodology, effects on plant performance and aneuploidy

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, Z.; Paštová, Ladislava; Münzbergová, Zuzana

    2017-01-01

    Roč. 303, č. 7 (2017), s. 827-839 ISSN 0378-2697 Institutional support: RVO:67985939 Keywords : chromosome number * colchicine * neopolyploid Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.239, year: 2016

  3. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  4. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience.

    Science.gov (United States)

    Ubaldi, Filippo Maria; Cimadomo, Danilo; Capalbo, Antonio; Vaiarelli, Alberto; Buffo, Laura; Trabucco, Elisabetta; Ferrero, Susanna; Albani, Elena; Rienzi, Laura; Levi Setti, Paolo E

    2017-05-01

    To report laboratory and clinical outcomes in preimplantation genetic diagnosis for aneuploidies (PGD-A) cycles for women 44 to 47 years old. Multicenter, longitudinal, observational study. In vitro fertilization (IVF) centers. One hundred and thirty-seven women aged 44.7 ± 0.7 years (range: 44.0-46.7) undergoing 150 PGD-A cycles during April 2013 to January 2016. Quantitative polymerase chain reaction-based PGD-A on trophectoderm biopsies and cryopreserved euploid single-embryo transfer (SET). Primary outcome measure: delivery rate per cycle; secondary outcome measures: miscarriage rate, and the rate and reasons for cycle cancelation with subanalyses for female age and number of metaphase 2 oocytes retrieved. In 102 (68.0%) of 150 cycles blastocyst development was obtained, but only 21 (14.0%) were euploid blastocysts. The overall euploidy rate was 11.8% (22 of 187). Twenty-one SET procedures were performed, resulting in 13 clinical pregnancies, of which 1 miscarried and 12 delivered. The delivery rate was 57.1% per transfer, 8.0% per cycle, and 8.8% per patient. The logistic regression analysis found that only female age (odds ratio 0.78) and number of metaphase 2 oocytes retrieved (odds ratio 1.25) statistically significantly correlated with the likelihood of delivery. The delivery rate per cycle was 10.6% (11 of 104) in patients aged 44.0 to 44.9 years and 2.6% in patients aged 45.0 to 45.9 years (n = 1 of 38). No euploid blastocysts were found for patients older than 45.0 years. Extensive counseling based on biological and clinical data should be provided to women older than 43 years who are requesting IVF because of their very low odds of success and high risk for embryonic aneuploidies. Nevertheless, the low miscarriage and good delivery rates reported in this study in women with good ovarian reserve aged 44 should encourage the use of PGD-A in this population. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc

  5. Occurrence and type of chromosomal abnormalities in consecutive malignant monoclonal gammopathies: correlation with survival

    DEFF Research Database (Denmark)

    Lisse, I M; Drivsholm, A; Christoffersen, P

    1988-01-01

    Chromosome studies were done on 73 patients with multiple myeloma and three patients with plasma cell leukemia. Eighteen of 76 patients (24%) had chromosomally abnormal clones, including all three patients with PCL. The most common anomalous chromosomes were #1, #14, and #12. In addition, i(17q) ...

  6. Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to ongoing three-dimensional nuclear remodeling and breakage-bridge-fusion cycles.

    Science.gov (United States)

    Guffei, Amanda; Sarkar, Rahul; Klewes, Ludger; Righolt, Christiaan; Knecht, Hans; Mai, Sabine

    2010-12-01

    Hodgkin's lymphoma is characterized by the presence of mono-nucleated Hodgkin cells and bi- to multi-nucleated Reed-Sternberg cells. We have recently shown telomere dysfunction and aberrant synchronous/asynchronous cell divisions during the transition of Hodgkin cells to Reed-Sternberg cells.1 To determine whether overall changes in nuclear architecture affect genomic instability during the transition of Hodgkin cells to Reed-Sternberg cells, we investigated the nuclear organization of chromosomes in these cells. Three-dimensional fluorescent in situ hybridization revealed irregular nuclear positioning of individual chromosomes in Hodgkin cells and, more so, in Reed-Sternberg cells. We characterized an increasingly unequal distribution of chromosomes as mono-nucleated cells became multi-nucleated cells, some of which also contained chromosome-poor 'ghost' cell nuclei. Measurements of nuclear chromosome positions suggested chromosome overlaps in both types of cells. Spectral karyotyping then revealed both aneuploidy and complex chromosomal rearrangements: multiple breakage-bridge-fusion cycles were at the origin of the multiple rearranged chromosomes. This conclusion was challenged by super resolution three-dimensional structured illumination imaging of Hodgkin and Reed-Sternberg nuclei. Three-dimensional super resolution microscopy data documented inter-nuclear DNA bridges in multi-nucleated cells but not in mono-nucleated cells. These bridges consisted of chromatids and chromosomes shared by two Reed-Sternberg nuclei. The complexity of chromosomal rearrangements increased as Hodgkin cells developed into multi-nucleated cells, thus indicating tumor progression and evolution in Hodgkin's lymphoma, with Reed-Sternberg cells representing the highest complexity in chromosomal rearrangements in this disease. This is the first study to demonstrate nuclear remodeling and associated genomic instability leading to the generation of Reed-Sternberg cells of Hodgkin's lymphoma

  7. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  8. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    Yang-Feng, T.L.; Xue, Feiyu; Zhong, Wuwei; Cotecchia, S.; Frielle, T.; Caron, M.G.; Lefkowitz, R.J.; Francke, U.

    1990-01-01

    The adrenergic receptors (ARs) (subtypes α 1 , α 2 , β 1 , and β 2 ) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β 2 -and α 2 -AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α 1 -AR gene to chromosome 5q32→q34, the same position as β 2 -AR, and the β 1 -AR gene to chromosome 10q24→q26, the region where α 2 -AR, is located. In mouse, both α 2 -and β 1 -AR genes were assigned to chromosome 19, and the α 1 -AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α 1 -and β 2 -AR genes in humans are within 300 kilobases (kb) and the distance between the α 2 - and β 1 -AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  9. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  10. Impact of type 1 diabetes and glycemic control on fetal aneuploidy biochemical markers

    DEFF Research Database (Denmark)

    Madsen, Helen Nordahl; Ekelund, Charlotte K; Tørring, Niels

    2012-01-01

    Objective. To determine the influence of type 1 diabetes mellitus (T1DM) on the first trimester serum markers of fetal aneuploidy; pregnancy-associated plasma protein-A (PAPP-A) and free beta subunit of human chorionic gonadotropin (free β-hCG) and to evaluate the influence of glycemic control...... on these parameters in the pregnant diabetic women. Design. Retrospective study. Setting. Data were extracted from electronic obstetric and laboratory databases at two Danish University Hospitals. Population. Based on 36 415 pregnancies without T1DM (non-T1DM) and 331 pregnancies with T1DM; β-hCG and PAPP-A were...... across the T1DM and non-T1DM groups, respectively. Additionally, the relationship between PAPP-A MoM and HgbA1C was examined in 348 T1DM pregnancies by Spearman's rank correlation. Main outcome measures. Difference in biochemical marker levels between T1DM and non-T1DM. Results. PAPP-A was 0.86 MoM in T1...

  11. Impact of type 1 diabetes and glycemic control on fetal aneuploidy biochemical markers

    DEFF Research Database (Denmark)

    Madsen, Helen Nordahl; Ekelund, Charlotte Kvist; Tørring, Niels

    2012-01-01

    Objective: To determine the influence of type 1 diabetes mellitus (T1DM) on the first trimester serum markers of fetal aneuploidy; pregnancy-associated plasma protein-A (PAPP-A) and free beta subunit of human chorionic gonadotropin (free β-hCG) and to evaluate the influence of glycemic control...... on these parameters in the pregnant diabetic women. Design: Retrospective study. Setting: Data were extracted from electronic obstetric and laboratory databases at two Danish University Hospitals. Population: Based on 36,415 pregnancies without T1DM (non-T1DM) and 331 pregnancies with T1DM; β-hCG and PAPP-A were...... across the T1DM and non-T1DM groups, respectively. Additionally, the relation between PAPP-A MoM and HgbA1C was examined in 348 T1DM pregnancies by Spearman’s rank correlation. Main outcome measure: Difference in biochemical marker levels between T1DM and non-T1DM. Results: PAPP-A was 0.86 MoM in T1DM...

  12. Relationship between first trimester aneuploidy screening test serum analytes and placenta accreta.

    Science.gov (United States)

    Büke, Barış; Akkaya, Hatice; Demir, Sibel; Sağol, Sermet; Şimşek, Deniz; Başol, Güneş; Barutçuoğlu, Burcu

    2018-01-01

    The aim of this study is to determine whether there is a relationship between first trimester serum pregnancy-associated plasma protein A (PAPP-A) and free beta human chorionic gonadotropin (fβhCG) MoM values and placenta accreta in women who had placenta previa. A total of 88 patients with placenta previa who had first trimester aneuploidy screening test results were enrolled in the study. Nineteen of these patients were also diagnosed with placenta accreta. As probable markers of excessive placental invasion, serum PAPP-A and fβhCG MoM values were compared in two groups with and without placenta accreta. Patients with placenta accreta had higher statistically significant serum PAPP-A (1.20 versus 0.865, respectively, p = 0.045) and fβhCG MoM (1.42 versus 0.93, respectively, p = 0.042) values than patients without accreta. Higher first trimester serum PAPP-A and fβhCG MoM values seem to be associated with placenta accreta in women with placenta previa. Further studies are needed to use these promising additional tools for early detection of placenta accreta.

  13. Environmental exposure to parabens and sperm chromosome disomy.

    Science.gov (United States)

    Jurewicz, Joanna; Radwan, Michał; Wielgomas, Bartosz; Klimowska, Anna; Kałużny, Paweł; Radwan, Paweł; Jakubowski, Lucjusz; Hanke, Wojciech

    2017-10-01

    Parabens are widely used as antimicrobial preservatives in cosmetics, pharmaceuticals, food and beverage processing due to their board spectrum of activity, inertness, and low cost. The study population consisted of 156 men under 45 years of age who attended the infertility clinic for diagnostic purposes with normal semen concentration of 15-300 mln/ml. Participants were interviewed and provided a semen sample. The parabens concentrations: ethyl paraben (EP), butyl paraben (BP), methyl paraben (MP), and iso-butyl paraben (iBuP) were analyzed in the urine using a validated gas chromatography ion-tap mass spectrometry method. The positive association was found between urinary level of BP and XY18 disomy (p = 0.045) and PP and disomy of chromosome 13 (p = 0.007). This is the first study to examine these relationships, and replication of our findings is needed before the association between parabens concentration in urine and aneuploidy can be fully defined. These findings may be of concern due to increased parabens use.

  14. Chromosomal homologies among vampire bats revealed by chromosome painting (phyllostomidae, chiroptera).

    Science.gov (United States)

    Sotero-Caio, C G; Pieczarka, J C; Nagamachi, C Y; Gomes, A J B; Lira, T C; O'Brien, P C M; Ferguson-Smith, M A; Souza, M J; Santos, N

    2011-01-01

    Substantial effort has been made to elucidate karyotypic evolution of phyllostomid bats, mostly through comparisons of G-banding patterns. However, due to the limited number of G-bands in respective karyotypes and to the similarity of non-homologous bands, an accurate evolutionary history of chromosome segments remains questionable. This is the case for vampire bats (Desmodontinae). Despite several proposed homologies, banding data have not yet provided a detailed understanding of the chromosomal changes within vampire genera. We examined karyotype differentiation of the 3 species within this subfamily using whole chromosomal probes from Phyllostomus hastatus (Phyllostominae) and Carollia brevicauda (Carolliinae). Painting probes of P. hastatus respectively detected 22, 21 and 23 conserved segments in Diphylla ecaudata, Diaemus youngi, and Desmodus rotundus karyotypes, whereas 27, 27 and 28 were respectively detectedwith C. brevicauda paints. Based on the evolutionary relationships proposed by morphological and molecular data, we present probable chromosomal synapomorphies for vampire bats and propose chromosomes that were present in the common ancestor of the 5 genera analyzed. Karyotype comparisons allowed us to relate a number of conserved chromosomal segments among the 5 species, providing a broader database for understanding karyotype evolution in the family. 2010 S. Karger AG, Basel.

  15. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  16. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  17. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  18. Know Your Chromosomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Know Your Chromosomes The Strong Holds of Family Trees. Vani Brahmachari. Series Article Volume 1 Issue 3 March 1996 pp 30-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  20. Genome-Wide Gene Expression Disturbance by Single A1/C1 Chromosome Substitution in Brassica rapa Restituted From Natural B. napus

    Directory of Open Access Journals (Sweden)

    Bin Zhu

    2018-03-01

    Full Text Available Alien chromosome substitution (CS lines are treated as vital germplasms for breeding and genetic mapping. Previously, a whole set of nine Brassica rapa-oleracea monosonic alien addition lines (MAALs, C1-C9 was established in the background of natural B. napus genotype “Oro,” after the restituted B. rapa (RBR for Oro was realized. Herein, a monosomic substitution line with one alien C1 chromosome (Cs1 in the RBR complement was selected in the progenies of MAAL C1 and RBR, by the PCR amplification of specific gene markers and fluorescence in situ hybridization. Cs1 exhibited the whole plant morphology similar to RBR except for the defective stamens without fertile pollen grains, but it produced some seeds and progeny plants carrying the C1 chromosome at high rate besides those without the alien chromosome after pollinated by RBR. The viability of the substitution and its progeny for the RBR diploid further elucidated the functional compensation between the chromosome pairs with high homoeology. To reveal the impact of such aneuploidy on genome-wide gene expression, the transcriptomes of MAAL C1, Cs1 and euploid RBR were analyzed. Compared to RBR, Cs1 had sharply reduced gene expression level across chromosome A1, demonstrating the loss of one copy of A1 chromosome. Both additional chromosome C1 in MAAL and substitutional chromosome C1 in Cs1 caused not only cis-effect but also prevalent trans-effect differentially expressed genes. A dominant gene dosage effects prevailed among low expressed genes across chromosome A1 in Cs1, and moreover, dosage effects for some genes potentially contributed to the phenotype deviations. Our results provided novel insights into the transcriptomic perturbation and gene dosage effects on phenotype in CS related to one naturally evolved allopolyploid.

  1. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  2. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  3. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    Science.gov (United States)

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  4. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    Science.gov (United States)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  5. Effect of vitamin E on preovulatory stage irradiated female mouse expressed as chromosomal abnormalities in generated embryos

    International Nuclear Information System (INIS)

    Salimi, M.; Mozdarani, H.

    2006-01-01

    The present study has been carried out to investigate the effects of preovulatory stage gamma-irradiation of female mice in the absence or presence of vitamin E on numerical chromosome abnormalities in 8-cell embryos after mating with non- irradiated males. Materials and Methods: The 8-11 weeks adult female NMRl mice were whole body irradiated at preovulatory stage (post PMSG injection and about 12-18 hours before Injecting HCG) with 4 Gy gamma-rays generated from a cobalt-60 source alone or in combination with 200 IU/kg vitamin E, intraperitoneally administered one hour prior to irradiation. Soon after HCG injection super ovulated irradiated females were mated with non-irradiated males. About 68-h post coitus (p.c), 8-cell embryos were flushed from the oviducts of pregnant mice and were fixed on slides using standard methods in order to screen for metaphase spreads and numerical chromosome abnormalities. Results: In control embryos, 8% of metaphase plates were aneuploidy whereas in preovulatory stage irradiated female mice, about 50% of metaphase plates of embryos showed numerical chromosome aberrations (P nd meiotic division. Reduction of the frequency of chromosome aberrations in the presence of vitamin E is probably due to antioxidant effects of this vitamin, and scavenging free radicals induced by gamma-rays in mice oocytes' environment

  6. The X chromosome in space.

    Science.gov (United States)

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  7. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    Science.gov (United States)

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Simultaneous scoring of 10 chromosomes (9,13,14,15,16,18,21,22,X, and Y) in interphase nuclei by using spectral imaging

    Science.gov (United States)

    Fung, Jingly; Weier, Heinz-Ulli G.; Goldberg, James D.; Pedersen, Roger A.

    1999-06-01

    Numerical aberrations involving parts of or entire chromosomes have detrimental effects on mammalian embryonic, and perinatal development. Only few fetuses with chromosomal imbalances survive to term, and their abnormalities lead to stillbirth or cause severely altered phenotypes in the offspring (such as trisomies involving chromosomes 13, 18, 21, and anomalies of X, and Y). Because aneuploidy of any of the 24 chromosomes will have significant consequences, an optimized preimplantation and prenatal genetic diagnosis (PGD) test will score all the chromosomes. Since most cells to be analyzed will be in interphase rather than metaphase, we developed a rapid procedure for the analysis of interphase cells such as lymphocytes, amniocytes, or early embryonic cells (blastomeres). Our approach was based on in situ hybridization of chromosome-specific non-isotopically labeled DNA probes and Spectral Imaging. The Spectral Imaging system uses an interferometer instead of standard emission filters in a fluorescence microscope to record high resolution spectra from fluorescently stained specimens. This bio-imaging system combines the techniques of fluorescence optical microscopy, charged coupled device imaging, Fourier spectroscopy, light microscopy, and powerful analysis software. The probe set used here allowed simultaneous detection of 10 chromosomes (9, 13, 14, 15, 16, 18, 21, 22, X, Y) in interphase nuclei. Probes were obtained commercially or prepared in-house. Following 16 - 40 h hybridization to interphase cells and removal of unbound probes, image spectra (range 450 - 850 nm, resolution 10 nm) were recorded and analyzed using an SD200 Spectral Imaging system (ASI, Carlsbad, CA). Initially some amniocytes were unscoreable due to their thickness, and fixation protocols had to be modified to achieve satisfactory results. In summary, this study shows the simultaneous detection of at least 10 different chromosomes in interphase cells using a novel approach for multi-chromosome

  9. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ai Xia

    2010-05-01

    Full Text Available Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates.To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus.These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type

  10. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Ganassi, E.Eh.; Zaichkina, S.I.; Malakhova, L.V.

    1987-01-01

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  11. Intraspecific chromosome variability

    Directory of Open Access Journals (Sweden)

    N Dubinin

    2010-12-01

    Full Text Available (Editorial preface. The publication is presented in order to remind us of one of dramatic pages of the history of genetics. It re-opens for the contemporary reader a comprehensive work marking the priority change from plant cytogenetics to animal cytogenetics led by wide population studies which were conducted on Drosophila polytene chromosomes. The year of the publication (1937 became the point of irretrievable branching between the directions of Old World and New World genetics connected with the problems of chromosome variability and its significance for the evolution of the species. The famous book of T. Dobzhansky (1937 was published by Columbia University in the US under the title “Genetics and the origin of species”, and in the shadow of this American ‘skybuilding’ all other works grew dim. It is remarkable that both Dobzhansky and Dubinin come to similar conclusions about the role of chromosomes in speciation. This is not surprising given that they both might be considered as representatives of the Russian genetic school, by their birth and education. Interestingly, Dobzhansky had never referred to the full paper of Dubinin et al. (1937, though a previous short communication in Nature (1936 was included together with all former papers on the related subject. In full, the volume of the original publication printed in the Biological Journal in Moscow comprised 47 pages, in that number 41 pages of the Russian text accompanied by 16 Figs, a table and reference list, and, above all, 6 pages of the English summary. This final part in English is now reproduced in the authors’ version with the only addition being the reference list in the originally printed form.

  12. Centrosome Dysfunction Contributes To Chromosome Instability, Chromoanagenesis And Genome Reprograming In Cancer.

    Directory of Open Access Journals (Sweden)

    German A Pihan

    2013-11-01

    Full Text Available The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker’s precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegreated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.

  13. Familial colorectal cancer, can it be identified by microsatellite instability and chromosomal instability? - A case-control study

    DEFF Research Database (Denmark)

    Sunde, Lone; Bisgaard, Marie Luise; Soll-Johanning, Helle

    2009-01-01

    (Chromosome INstability=LOH (loss of heterozygosity) and/or DNA-aneuploidy (abnormal nuclear DNA contents)) could be used as predictors of familial CRC. Formalin-fixed tissue from 97 patients with CRC (29 patients with 2 or more affected first-degree relatives (="cases"), 29 matched CRC controls without......Colonoscopy is recommended for persons with a familial risk of colorectal cancer (CRC). A familial risk is identified by a family history with CRC and/or predisposing mutation(s). However, such information may not be available. We analysed whether MSI (MicroSatellite Instability) and/or CIN...... a family history, and 39 relatives to cases) were analysed for MSI and CIN. In this small case-control study, no significant differences in the frequencies of MSI and CIN were observed between cases with a family history and their controls without a family history. MSI+;CIN- was observed in 6/29 cases...

  14. Computer aided analysis of additional chromosome aberrations in Philadelphia chromosome positive acute lymphoblastic leukaemia using a simplified computer readable cytogenetic notation

    Directory of Open Access Journals (Sweden)

    Mohr Brigitte

    2003-01-01

    Full Text Available Abstract Background The analysis of complex cytogenetic databases of distinct leukaemia entities may help to detect rare recurring chromosome aberrations, minimal common regions of gains and losses, and also hot spots of genomic rearrangements. The patterns of the karyotype alterations may provide insights into the genetic pathways of disease progression. Results We developed a simplified computer readable cytogenetic notation (SCCN by which chromosome findings are normalised at a resolution of 400 bands. Lost or gained chromosomes or chromosome segments are specified in detail, and ranges of chromosome breakpoint assignments are recorded. Software modules were written to summarise the recorded chromosome changes with regard to the respective chromosome involvement. To assess the degree of karyotype alterations the ploidy levels and numbers of numerical and structural changes were recorded separately, and summarised in a complex karyotype aberration score (CKAS. The SCCN and CKAS were used to analyse the extend and the spectrum of additional chromosome aberrations in 94 patients with Philadelphia chromosome positive (Ph-positive acute lymphoblastic leukemia (ALL and secondary chromosome anomalies. Dosage changes of chromosomal material represented 92.1% of all additional events. Recurring regions of chromosome losses were identified. Structural rearrangements affecting (pericentromeric chromosome regions were recorded in 24.6% of the cases. Conclusions SCCN and CKAS provide unifying elements between karyotypes and computer processable data formats. They proved to be useful in the investigation of additional chromosome aberrations in Ph-positive ALL, and may represent a step towards full automation of the analysis of large and complex karyotype databases.

  15. Chromosomal mechanisms in murine radiation acute myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Breckon, G.; Cox, R.

    1996-01-01

    Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1-6 month) post 3 Gy X-radiation events in bone marrow cells in vivo and karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2; 11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal tranlocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20-25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis. (Author)

  16. X chromosome and suicide.

    Science.gov (United States)

    Fiori, L M; Zouk, H; Himmelman, C; Turecki, G

    2011-02-01

    Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90  kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.

  17. New Y chromosomes and early stages of sex chromosome ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... chromosomes are evolutionary consequences of that func- tion. Given sufficient ... (for a review, see Charlesworth et al. 2005). ... In the present paper, I review sex deter- mination .... part had apparently been exchanged against the homologous ... age group III-Y chromosomes were successful while in well-.

  18. Pure chromosome-specific PCR libraries from single sorted chromosomes

    NARCIS (Netherlands)

    VanDevanter, D. R.; Choongkittaworn, N. M.; Dyer, K. A.; Aten, J. A.; Otto, P.; Behler, C.; Bryant, E. M.; Rabinovitch, P. S.

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted

  19. Chromosome phylogenies of man, great apes, and Old World monkeys.

    Science.gov (United States)

    De Grouchy, J

    1987-08-31

    The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution

  20. Chromosome aberrations of bone marrow cells in heavily exposed atomic bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kamada, Nanao; Kuramoto, Atsushi; Ohkita, Takeshi

    1986-01-01

    Seven hundred and ten bone marrow cells from 13 A-bomb survivors, who were heavily exposed to atomic radiation, were examined using chromosome banding method. An average frequency of chromosome aberrations was 17 %. The most common structural abnormality was translocation (47 %), followed by complex aberrations involving three or more chromosomes (32 %). These abnormalities were frequently seen in A-bomb survivors exposed to estimated doses of 3.5 - 4.0 Gy. Eighty two percent of the structural aberrations were stable. Diploid cells were seen in 0.4 % and tetraploid cells were seen in 0.7 %. The frequency of breakpoint sites was high in chromosomes 1 and 17; while it was low in chromosomes 3, 6, 9, and 11. Abnormal clones were seen in one of the 13 survivors. Chromosome aberrations common to the bone marrow cells and peripheral lymphocytes were not seen in the same individual. (Namekawa, K.)

  1. Cohesin in determining chromosome architecture

    Energy Technology Data Exchange (ETDEWEB)

    Haering, Christian H., E-mail: christian.haering@embl.de [Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg (Germany); Jessberger, Rolf, E-mail: rolf.jessberger@tu-dresden.de [Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany)

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  2. Sex chromosomes in Ephestia kuehniella

    Czech Academy of Sciences Publication Activity Database

    Marec, František; Sahara, K.; Traut, W.

    2001-01-01

    Roč. 44, č. 1 (2001), s. 131 ISSN 0003-3995. [European Cytogenetics Conference /3./. 07.07.2001-10.07.2001, Paris] Institutional research plan: CEZ:AV0Z5007907 Keywords : Telomere * sex chromosomes * chromosome fragments Subject RIV: EB - Genetics ; Molecular Biology

  3. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  4. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14, and 21: implications for recombination between nonhomologues and Robertsonian translocations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K H; Vissel, B; Brown, R; Filby, R G; Earle, E

    1988-02-25

    The authors report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a consensus in situ hybridization profile derived from 13 normal individuals revealed the localization of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocation involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.

  5. Mechanisms of telomere loss and their consequences for chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA (United States)

    2012-10-04

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  6. Mechanisms of telomere loss and their consequences for chromosome instability

    International Nuclear Information System (INIS)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P.

    2012-01-01

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  7. Mechanisms of telomere loss and their consequences for chromosome instability

    Directory of Open Access Journals (Sweden)

    Keiko eMuraki

    2012-10-01

    Full Text Available The ends of chromosomes in mammals, called telomeres, are composed of a 6 base pair repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  8. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  9. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  10. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Audrius Menkis

    2008-03-01

    Full Text Available We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains, derived from one N. tetrasperma heterokaryon (mat A+mat a, was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.

  11. Malignant chondroblastoma presenting as a recurrent pelvic tumor with DNA aneuploidy and p53 mutation as supportive evidence of malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, M.L. [Department of Pathology and Laboratory Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children' s Hospital, Houston, Texas (United States); Department of Pathology and Laboratory Medicine, Houston, TX (United States). Methodist Hospital; Johnson, M.E. [Department of Orthopedic Surgery, Baylor College of Medicine, The Methodist Hospital and Texas Children' s Hospital, Houston, Texas (United States); Truong, L.D.; Hicks, M.J.; Spjut, H.J. [Department of Pathology and Laboratory Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children' s Hospital, Houston, Texas (United States); Smith, F.E. [Department of Oncology, Baylor College of Medicine, The Methodist Hospital and Texas Children' s Hospital, Houston, Texas (United States)

    1999-11-01

    We report a rare case of malignant chondroblastoma, which presented in a 47-year-old man as a recurrent tumor, 18 years following wide excision of a typical pelvic chondroblastoma. Radiologic studies of the recurrent tumor showed a large, lytic, destructive lesion of the right pelvic bones and femur, with a pathologic fracture of the latter, a large pelvic soft tissue mass, and multiple pulmonary metastases. Biopsy tissue showed typical features of chondroblastoma, but also increased nuclear atypia, hyperchromasia, and pleomorphism, compared to the original tumor, and, most significantly, abnormal mitotic figures. Immunohistochemical studies of the recurrent tumor revealed p53 mutation and extensive proliferative activity, and flow cytometric studies showed DNA aneuploidy, none of which was present in the original tumor. The patient received chemotherapy and radiation, but died of disease eight months after presentation. We also review chondroblastoma in general, to assign this unusual lesion to a tumor subtype. (orig.)

  12. Mustard Gas Surrogate, 2-Chloroethyl Ethylsulfide (2-CEES), Induces Centrosome Amplification and Aneuploidy in Human and Mouse Cells

    Science.gov (United States)

    2014-03-01

    increase in aneuploidy in treated  cells .      Methods and Materials    Cell   Culture     Saos2 (human  osteosarcoma ) and NIH3T3 (murine embryonic...fibroblasts)  cells  were obtained  from ATCC (HTB‐85 and CRL‐1658, respectively) and  cultured  in complete media:  Dulbecco’s  Modified Eagle Medium (DMEM...subconfluent  cultures .  After the 5 day incubation,  cells  were treated     with 0.5 μg/ml colcemid (Gibco) for 4 hours.   Cell  media was harvested and retained

  13. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study.

    Science.gov (United States)

    Rubio, Carmen; Bellver, José; Rodrigo, Lorena; Castillón, Gema; Guillén, Alfredo; Vidal, Carmina; Giles, Juan; Ferrando, Marcos; Cabanillas, Sergio; Remohí, José; Pellicer, Antonio; Simón, Carlos

    2017-05-01

    To determine the clinical value of preimplantation genetic diagnosis for aneuploidy screening (PGD-A) in women of advanced maternal age (AMA; between 38 and 41 years). This was a multicenter, randomized trial with two arms: a PGD-A group with blastocyst transfer, and a control group with blastocyst transfer without PGD-A. Private reproductive centers. A total of 326 recruited patients fit the inclusion criteria, and 205 completed the study (100 in the PGD-A group and 105 in the control group). Day-3 embryo biopsy, array comparative genomic hybridization, blastocyst transfer, and vitrification. Primary outcomes were delivery and live birth rates in the first transfer and cumulative outcome rates. The PGD-A group exhibited significantly fewer ETs (68.0% vs. 90.5% for control) and lower miscarriage rates (2.7% vs. 39.0% for control). Delivery rate after the first transfer attempt was significantly higher in the PGD-A group per transfer (52.9% vs 24.2%) and per patient (36.0% vs. 21.9%). No significant differences were observed in the cumulative delivery rates per patient 6 months after closing the study. However, the mean number of ETs needed per live birth was lower in the PGD-A group compared with the control group (1.8 vs. 3.7), as was the time to pregnancy (7.7 vs. 14.9 weeks). Preimplantation genetic diagnosis for aneuploidy screening is superior compared with controls not only in clinical outcome at the first ET but also in dramatically decreasing miscarriage rates and shortening the time to pregnancy. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Vagnarelli, Paola

    2012-01-01

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  15. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  16. Attenuation of G{sub 2} cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J. [and others

    1997-08-01

    The contribution of G{sub 2} cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G{sub 2} and there were large cell line-to-cell line variations in the length of the G{sub 2} block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G{sub 2} delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G{sub 2} delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G{sub 2} delay and the level of chromosome aneuploidy in each cell line, suggesting that the G{sub 2} and mitotic spindel checkpoints may be linked to each other. Attenuation in G{sub 2} checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G{sub 2}. Thus, agents that act solely to override G{sub 2} arrest should produce little radiosensitization in human tumor cells.

  17. Nuclear vlimata and aneuploidy in embryonic cells is caused by meiosis. Behaviour and properties of meiotic cells

    OpenAIRE

    Logothetou-Rella, H.

    1995-01-01

    This study demonstrates that human embryonic cells divide by meiosis. The use of trophoblastic tissue cells (early embryo) and amniotic cells (late embryo) exhibited the following characteristic events of meiosis: nuclear (NVs) and nucleolar (NuVs) vlimata formation; NV invasion in host cells; extrusion of chromosomes; nuclear fusion; metaphase fusion; hybrid cell formation; nuclear, nucleolar and cytoplasmic bridges, chromosomal transfer, variablesized nuc...

  18. Characterization of chromosome instability in interspecific somatic hybrids obtained by X-ray fusion between potato (Solanum tuberosum L.) and S. brevidens Phil

    International Nuclear Information System (INIS)

    Fehér, A.; Preiszner, J.; Litkey, Z.; Csanádi, G; Dudits, D.

    1992-01-01

    Asymmetric somatic hybrids between Solanum tuberosum L. and S. brevidens Phil. have been obtained via the fusion of protoplasts from potato leaves and from cell suspension culture of S. brevidens. The wild Solanum species served as donor after irradiation of its protoplasts with a lethal X-ray dose (200 Gy). Selection of the putative hybrids was based on the kanamycin-resistance marker gene previously introduced into the genome of Solanum brevidens by Agrobacterium-mediated gene transfer. Thirteen out of the 45 selected clones exhibited reduced morphogenic potential. The morphological abnormalities of the regenerated plantlets were gradually eliminated during the extended in vitro culture period. Cytological investigations revealed that the number of chromosomes in the cultured S. brevidens cells used as protoplast source ranged between 28-40 instead of the basic 2n=24 value. There was a high degree of aneuploidy in all of the investigated hybrid clones, and at least 12 extra chromosomes were observed in addition to the potato chromosomes (2n=48). Interand intraclonal variation and segregation during vegetative propagation indicated the genetic instability of the hybrids, which can be ascribed to the pre-existing and X-ray irradiation-induced chromosomal abnormalities in the donor S. brevidens cells. The detection of centromeric chromosome fragments and long, poly-constrictional chromosomes in cytological preparations as well as non-parental bands in Southern hybridizations with restriction fragment length polymorphism (RFLP) markers revealed extensive chromosome rearrangements in most of the regenerated clones. On the basis of the limited number of RFLP probes used, preferential loss of S. brevidens specific markers with a non-random elimination pattern could be detected in hybrid regenerants

  19. Cost-Effectiveness of Old and New Technologies for Aneuploidy Screening.

    Science.gov (United States)

    Sinkey, Rachel G; Odibo, Anthony O

    2016-06-01

    Cost-effectiveness analyses allow assessment of whether marginal gains from new technology are worth increased costs. Several studies have examined cost-effectiveness of Down syndrome (DS) screening and found it to be cost-effective. Noninvasive prenatal screening also appears to be cost-effective among high-risk women with respect to DS screening, but not for the general population. Chromosomal microarray (CMA) is a genetic sequencing method superior to but more expensive than karyotype. In light of CMAs greater ability to detect genetic abnormalities, it is cost-effective when used for prenatal diagnosis of an anomalous fetus. This article covers methodology and salient issues of cost-effectiveness. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes.

    Science.gov (United States)

    Hwang, Grace; Sun, Fengyun; O'Brien, Marilyn; Eppig, John J; Handel, Mary Ann; Jordan, Philip W

    2017-05-01

    SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis. The infertility phenotypes of females with a Zp3-Cre -driven conditional knockout (cKO) of Smc5 demonstrated that maternally expressed SMC5 protein is essential for early embryogenesis. Interestingly, protein levels of SMC5/6 complex components in oocytes decline as wild-type females age. When SMC5/6 complexes were completely absent in oocytes during meiotic resumption, homologous chromosomes failed to segregate accurately during meiosis I. Despite what appears to be an inability to resolve concatenation between chromosomes during meiosis, localization of topoisomerase IIα to bivalents was not affected; however, localization of condensin along the chromosome axes was perturbed. Taken together, these data demonstrate that the SMC5/6 complex is essential for the formation of segregation-competent bivalents during meiosis I, and findings suggest that age-dependent depletion of the SMC5/6 complex in oocytes could contribute to increased incidence of oocyte aneuploidy and spontaneous abortion in aging females. © 2017. Published by The Company of Biologists Ltd.

  1. 35-Year Follow-Up of a Case of Ring Chromosome 2

    DEFF Research Database (Denmark)

    Sarri, Catherine; Douzgou, Sofia; Kontos, Haris

    2015-01-01

    Côté et al. [1981] suggested that ring chromosomes with or without deletions share a common pattern of phenotypic anomalies, regardless of which chromosome is involved. The phenotype of this 'general ring syndrome' consists of growth failure without malformations, few or no minor anomalies, and m...

  2. Chromosome numbers and meiotic analysis in the pre-breeding of ...

    Indian Academy of Sciences (India)

    Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness ...

  3. DNMT3L is a regulator of X chromosome compaction and post-meiotic gene transcription.

    Directory of Open Access Journals (Sweden)

    Natasha M Zamudio

    Full Text Available Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L, have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes.

  4. Chromosomal instability and the abrogated G2/M arrest in x-irradiated myelodysplastic syndrome cells

    International Nuclear Information System (INIS)

    Ban, S.; Sudo, H.; Saegusa, K.; Sagara, M.; Imai, T.; Kimura, A.

    2003-01-01

    A preliminary epidemiological study demonstrated that myelodysplastic syndrome (MDS) has an excess relative risk per sievert of 13 in atomic bomb survivors in Hiroshima. MDS is the only other radiogenic blood disease apart from leukemia. Clinically, MDS involves dysplastic hematopoiesis and an increased risk of leukemic transformation. Because it is uncertain whether MDS pathogenesis affects lymphoid progenitor cells as well as myeloid progenitor cells, we investigated the karyotypes of bone marrow cells and the micronucleus (MN) frequency in peripheral T lymphocytes of twenty- three atomic bomb survivors with MDS and five normal individuals. Aneuploidy was observed in 10 of 23 patients. Chromosome aberrations were observed in 3 of 12 patients with mild symptoms, and six of 11 patients of severe symptoms. The spontaneous- and X-ray-induced-MN frequencies were significantly higher in MDS patients than in normal individuals. Interestingly, radiation sensitivity increased along with the severity of MDS clinical subtypes. Because many of the patients in this study had not been exposed to chemo- or radiation- therapy, their unusual radiosensitivity may be related to their chromosomal or genomic instability. Immortalized lymphoid cell lines were established from B-lymphocytes infected with Epstein-Barr virus in vitro. The abrogation of radiation-induced-G2/M arrest was observed in 10 of 12 MDS-B lymphoid cell lines, but not in the normal B lymphoid cell lines. Our data suggest that the control of chromosomal stability is impaired in pluripotent stem cells of MDS patients, and that the abrogated G2/M arrest may be involved in the pathophysiology of disease progression and the high radiation sensitivity of patients

  5. Common Courses for Common Purposes:

    DEFF Research Database (Denmark)

    Schaub Jr, Gary John

    2014-01-01

    (PME)? I suggest three alternative paths that increased cooperation in PME at the level of the command and staff course could take: a Nordic Defence College, standardized national command and staff courses, and a core curriculum of common courses for common purposes. I conclude with a discussion of how...

  6. Chromosome fragility in Freemartin cattle

    Directory of Open Access Journals (Sweden)

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  7. Are There Knots in Chromosomes?

    Directory of Open Access Journals (Sweden)

    Jonathan T. Siebert

    2017-08-01

    Full Text Available Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES cells based on Hi–C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule and an equilibrium structure.

  8. Flow cytogenetics and chromosome sorting.

    Science.gov (United States)

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  9. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities

    Directory of Open Access Journals (Sweden)

    Jessica Patel

    2016-02-01

    Full Text Available The first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age.

  10. QCI Common

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-18

    There are many common software patterns and utilities for the ORNL Quantum Computing Institute that can and should be shared across projects. Otherwise we find duplication of code which adds unwanted complexity. This is a software product seeks to alleviate this by providing common utilities such as object factories, graph data structures, parameter input mechanisms, etc., for other software products within the ORNL Quantum Computing Institute. This work enables pure basic research, has no export controlled utilities, and has no real commercial value.

  11. Algorithm for sorting chromosomal aberrations

    DEFF Research Database (Denmark)

    Vogel, Ida; Lund, Najaaraq; Rasmussen, Steen

    2018-01-01

    Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray.......Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray....

  12. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    Science.gov (United States)

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  13. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  14. Chromosomes and their meiotic behaviour in two species of Dieuches Dohrn, 1860 (Heteroptera: Lygaeidae: Rhyparochromini

    Directory of Open Access Journals (Sweden)

    Harbhajan Kaur

    2009-08-01

    Full Text Available The Lygaeidae (Heteroptera are a large and diverse family in which the male diploid chromosomal complement ranges from 10 to 30. Diploid numbers of 14 and 16 are taken as two modal numbers of the family. The Rhyparochrominae, one of the largest subfamilies of the Lygaeidae, are known to be heterogeneous both cytologically and morphologically. Available data on the tribe Rhyparochromini reveal that all species are characterized by the presence of a pair of microchromosomes (m-chromosomes and have an XY/XX (♂/♀ sex chromosome determining system. Dieuches coloratus (Distant, 1909 and D. insignis (Distant, 1918 belonging to Rhyparochromini, have 2n=14=10A+2m+XY and 2n=12=8A+2m+XY respectively. Both the species are similar inone pair of distinctly large autosomes in their chromosome complements. The metaphase plate arrangement of autosomes, sex chromosomes and m-chromosomes in D. coloratus is similar to the common condition observed in the tribe Rhyparochromini. In D. insignis, however, the arrangement is different. Here, metaphase I is usual in showing peripheral position of autosomes and central position of sex chromosomes and m-chromosomes. At metaphase II, however, autosomes, sex chromosomes and m-chromosomes are peripherally placed, an arrangement, which is not reported earlier in the tribe Rhyparochromini.

  15. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    Joergensen, A.L.; Bostock, C.J.; Bak, A.L.

    1987-01-01

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  16. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu; Wyrobek, Andrew J

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cell embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.

  17. Diagnostic radiation and chromosome aberrations

    International Nuclear Information System (INIS)

    Patil, S.R.; Hecht, F.; Lubs, H.A.; Kimberling, W.; Brown, J.; Gerald, P.S.; Summitt, R.L.

    1977-01-01

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, s o radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant. (U.K.)

  18. Diagnostic radiation and chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S R; Hecht, F [Dept. of Pediatrics, Child Development and Rehabilitation Center, Univ. of Oregon Health Sciences Center, Portland, Oregon (USA); Lubs, H A; Kimberling, W; Brown, J; Gerald, P S; Summitt, R L

    1977-01-15

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, so radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant.

  19. Designing of plant artificial chromosome (PAC) by using the Chlorella smallest chromosome as a model system.

    Science.gov (United States)

    Noutoshi, Y; Arai, R; Fujie, M; Yamada, T

    1997-01-01

    As a model for plant-type chromosomes, we have been characterizing molecular organization of the Chlorella vulgaris C-169 chromosome I. To identify chromosome structural elements including the centromeric region and replication origins, we constructed a chromosome I specific cosmid library and aligned each cosmid clones to generate contigs. So far, more than 80% of the entire chromosome I has been covered. A complete clonal physical reconstitution of chromosome I provides information on the structure and genomic organization of plant genome. We propose our strategy to construct an artificial chromosome by assembling the functional chromosome structural elements identified on Chrorella chromosome I.

  20. Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae)

    Science.gov (United States)

    E. Durant McArthur; Stewart C. Sanderson

    1999-01-01

    The subgenus Tridentatae of Artemisia (Asteraceae: Anthemideae) is composed of 11 species of various taxonomic and geographic complexities. It is centered on Artemisia tridentata with its three widespread common subspecies and two more geographically confined ones. Meiotic chromosome counts on pollen mother cells...

  1. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Mariem Ben-Abdallah

    Full Text Available Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB, a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of

  2. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes.

    Science.gov (United States)

    Fang, Yuhui; Yuan, Jingya; Wang, Zhangjun; Wang, Haiyan; Xiao, Jin; Yang, Zhixi; Zhang, Ruiqi; Qi, Zengjun; Xu, Weigang; Hu, Lin; Wang, Xiu-E

    2014-08-20

    Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat-alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtH1S, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5H(c), 2H(c), 6H(c), 3H(c) and 1H(c), respectively. The chromosomes H1 and H6 were designated as 7H(c) and 4H(c), respectively, by referring to SSR markers located on rye chromosomes. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  3. Creative Commons

    DEFF Research Database (Denmark)

    Jensen, Lone

    2006-01-01

    En Creative Commons licens giver en forfatter mulighed for at udbyde sit værk i en alternativ licensløsning, som befinder sig på forskellige trin på en skala mellem yderpunkterne "All rights reserved" og "No rights reserved". Derved opnås licensen "Some rights reserved"......En Creative Commons licens giver en forfatter mulighed for at udbyde sit værk i en alternativ licensløsning, som befinder sig på forskellige trin på en skala mellem yderpunkterne "All rights reserved" og "No rights reserved". Derved opnås licensen "Some rights reserved"...

  4. Science commons

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    SCP: Creative Commons licensing for open access publishing, Open Access Law journal-author agreements for converting journals to open access, and the Scholar's Copyright Addendum Engine for retaining rights to self-archive in meaningful formats and locations for future re-use. More than 250 science and technology journals already publish under Creative Commons licensing while 35 law journals utilize the Open Access Law agreements. The Addendum Engine is a new tool created in partnership with SPARC and U.S. universities. View John Wilbanks's biography

  5. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems

    Science.gov (United States)

    Furman, Benjamin L S; Evans, Ben J

    2018-01-01

    Abstract There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions. PMID:29608717

  6. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy

    Science.gov (United States)

    Li, Lu; Douville, Christopher; Wang, Yuxuan; Cohen, Joshua David; Taheri, Diana; Silliman, Natalie; Schaefer, Joy; Ptak, Janine; Dobbyn, Lisa; Papoli, Maria; Kinde, Isaac; Afsari, Bahman; Tregnago, Aline C; Bezerra, Stephania M; VandenBussche, Christopher; Fujita, Kazutoshi; Ertoy, Dilek; Cunha, Isabela W; Yu, Lijia; Bivalacqua, Trinity J; Grollman, Arthur P; Diaz, Luis A; Karchin, Rachel; Danilova, Ludmila; Huang, Chao-Yuan; Shun, Chia-Tung; Turesky, Robert J; Yun, Byeong Hwa; Rosenquist, Thomas A; Pu, Yeong-Shiau; Hruban, Ralph H; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Ken W

    2018-01-01

    Current non-invasive approaches for detection of urothelial cancers are suboptimal. We developed a test to detect urothelial neoplasms using DNA recovered from cells shed into urine. UroSEEK incorporates massive parallel sequencing assays for mutations in 11 genes and copy number changes on 39 chromosome arms. In 570 patients at risk for bladder cancer (BC), UroSEEK was positive in 83% of those who developed BC. Combined with cytology, UroSEEK detected 95% of patients who developed BC. Of 56 patients with upper tract urothelial cancer, 75% tested positive by UroSEEK, including 79% of those with non-invasive tumors. UroSEEK detected genetic abnormalities in 68% of urines obtained from BC patients under surveillance who demonstrated clinical evidence of recurrence. The advantages of UroSEEK over cytology were evident in low-grade BCs; UroSEEK detected 67% of cases whereas cytology detected none. These results establish the foundation for a new non-invasive approach for detection of urothelial cancer. PMID:29557778

  7. Studies on varicocele III: ultrastructural sperm evaluation and 18, X and Y aneuploidies.

    Science.gov (United States)

    Baccetti, Baccio M; Bruni, Emanuele; Capitani, Serena; Collodel, Giulia; Mancini, Stefano; Piomboni, Paola; Moretti, Elena

    2006-01-01

    The idea that varicocele plays a detrimental role in fertility is supported by the presence of a higher frequency of affected men among the infertile population than among men with normal semen parameters. In this research we examined ejaculates from a large group of selected men affected by varicocele by light and electron microscopy. The effect of varicocele on chromosome meiotic segregation was investigated by fluorescence in situ hybridization (FISH). The potential benefits of varicocelectomy on sperm quality were evaluated by analyzing sperm characteristics before and after surgical correction of varicocele. Transmission electron microscopy (TEM) analysis, elaborated previously, showed that the incidence of immaturity, apoptosis, and necrosis was higher in the varicocele group than in controls. FISH analysis performed on sperm nuclei from selected patients with varicocele showed that the mean frequencies of disomies and diploidies were generally out of the normal range, indicating a severe disturbance in meiotic segregation. Sperm characteristics evaluated before and after varicocele repair showed a general improvement. As a consequence, the varicocele seem to affect sperm morphology and function concomitantly with meiotic segregation derangement. In consideration of these data, we suggest that TEM and FISH analyses should be performed for all varicocele patients.

  8. Common approach to common interests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    In referring to issues confronting the energy field in this region and options to be exercised in the future, I would like to mention the fundamental condition of the utmost importance. That can be summed up as follows: any subject in energy area can never be solved by one country alone, given the geographical and geopolitical characteristics intrinsically possessed by energy. So, a regional approach is needed and it is especially necessary for the main players in the region to jointly address problems common to them. Though it may be a matter to be pursued in the distant future, I am personally dreaming a 'Common Energy Market for Northeast Asia,' in which member countries' interests are adjusted so that the market can be integrated and the region can become a most economically efficient market, thus formulating an effective power to encounter the outside. It should be noted that Europe needed forty years to integrate its market as the unified common market. It is necessary for us to follow a number of steps over the period to eventually materialize our common market concept, too. Now is the time for us to take a first step to lay the foundation for our descendants to enjoy prosperity from such a common market.

  9. Low grade mosaic for a complex supernumerary ring chromosome 18 in an adult patient with multiple congenital anomalies

    Directory of Open Access Journals (Sweden)

    Hoogeboom A Jeannette M

    2010-07-01

    Full Text Available Abstract Background Several cases have been reported of patients with a ring chromosome 18 replacing one of the normal chromosomes 18. Less common are patients with a supernumerary ring chromosomes 18. High resolution whole genome examination in patients with multiple congenital abnormalities might reveal cytogenetic abnormalities of an unexpected complexity. Results We report a 24 years old male patient with lower spinal anomalies, hypospadia, bifid scrotum, cryptorchism, anal atresia, kidney stones, urethra anomalies, radial dysplasia, and a hypoplastic thumb. Some of the anomalies overlap with the VACTERL association. Chromosome analysis of cultured peripheral blood lymphocytes revealed an additional ring chromosome in 13% of the metaphases. Both parents had a normal karyotype, demonstrating the de novo origin of this ring chromosome. FISH analysis using whole chromosome paints showed that the additional chromosomal material was derived from chromosome 18. Chromosome analysis of cultured fibroblasts revealed only one cell with the supernumerary ring chromosome in the 400 analyzed. To characterize the ring chromosome in more detail peripheral blood derived DNA was analyzed using SNP-arrays. The array results indicated a 5 Mb gain of the pericentromeric region of chromosome 18q10-q11.2. FISH analysis using BAC-probes located in the region indicated the presence of 6 signals on the r(18 chromosome. In addition, microsatellite analysis demonstrated that the unique supernumerary ring chromosome was paternally derived and both normal copies showed biparental disomy. Conclusions We report on an adult patient with multiple congenital abnormalities who had in 13% of his cells a unique supernumerary ring chromosome 18 that was composed of 6 copies of the 5 Mb gene rich region of 18q11.

  10. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae)

    OpenAIRE

    McCann, Jamie; Schneeweiss, Gerald M.; Stuessy, Tod F.; Villase?or, Jose L.; Weiss-Schneeweiss, Hanna

    2016-01-01

    Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (ma...

  11. DNA Amplifications and Aneuploidy, High Proliferative Activity and Impaired Cell Cycle Control Characterize Breast Carcinomas with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Harald Blegen

    2003-01-01

    Full Text Available In order to explore whether specific cytogenetic abnormalities can be used to stratify tumors with a distinctly different clinical course, we performed comparative genomic hybridization (CGH of tumors from patients who were diagnosed with metastatic disease after an interval of less than 2 years or who remained free from distant metastases for more than 10 years. All patients presented with distant metastases after mastectomy indicating that none of the patients in this study was cured and free of remaining tumor cells. Tumors in the group of short‐term survivors showed a higher average number of chromosomal copy alterations compared to the long‐term survivors. Of note, the number of sub‐chromosomal high‐level copy number increases (amplifications was significantly increased in the group of short‐term survivors. In both short‐ and long‐term survivors recurrent chromosomal gains were mapped to chromosomes 1q, 4q, 8q, and 5p. Copy number changes that were more frequent in the group of short‐term survivors included gains of chromosome 3q, 9p, 11p and 11q and loss of 17p. Our results indicate that low‐ and high grade malignant breast adenocarcinomas are characterized by a specific pattern of chromosomal copy number changes. Furthermore, immunohistochemical evaluation of the expression levels of Ki‐67, p27KIP1, p21WAF1, p53, cyclin A and cyclin E revealed a correlation between increased proliferative activity and poor outcome.

  12. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  13. Retrospective dosimetry using chromosome painting

    International Nuclear Information System (INIS)

    Nasazzi, N.B.; Giorgio, M.D.; Taja, M.R.

    2000-01-01

    Chromosome aberration frequency measured in peripheral lymphocytes of persons exposed to ionizing radiation has been used since 1960s for dose assessment. Suspected overexposure is usually evaluated by the frequency of dicentrics and centric rings using an appropriate in vitro calibration curve. However, these chromosome aberrations are unstable with time after exposure and dose reconstruction may encounter uncertainties when the time between the exposure and the analysis is considerable or even unknown. It appears that translocations persist with time after exposure and may be used as an indication of acute past overexposures. Moreover, they appear to accumulate the cytogenetical information, which correlates with the dose received under fractionated, chronic or even occupational exposure conditions. Translocations may be detected using G-banding, which allows to score the total amount of radiation induced translocations but it is a time consuming method, or by Chromosome Painting, a method base on the Fluorescence in situ Hybridization (FISH) technique, painting only some chromosome pairs with specific whole chromosome probes and then extrapolating the observed translocation frequencies to the full genome. The latter method allows a faster aberration scoring than G-banding and appears to be the most promissory tool for biodosimetry, particularly when it is necessary to assess low doses and consequently to score a large number of metaphases, e.g. radiation workers exposed within dose limits. As with the unstable chromosome aberration, it is necessary an in vitro calibration curve based on the frequency of stable chromosome aberrations to assess doses. Our laboratory performed calibration curves for Co 60 γ-rays based on the frequencies of unstable (dicentrics and centric rings detected by conventional Giemsa staining) and stable chromosome aberrations (translocations and inversions, detected by G-banding). In order to minimize the interlaboratory variability, we

  14. Radiation-induced chromosomal instability

    International Nuclear Information System (INIS)

    Ritter, S.

    1999-01-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/μm) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  15. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  16. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant - others:Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  17. Making the Common Good Common

    Science.gov (United States)

    Chase, Barbara

    2011-01-01

    How are independent schools to be useful to the wider world? Beyond their common commitment to educate their students for meaningful lives in service of the greater good, can they educate a broader constituency and, thus, share their resources and skills more broadly? Their answers to this question will be shaped by their independence. Any…

  18. Drosophila polytene chromosome bands formed by gene introns.

    Science.gov (United States)

    Zhimulev, I F; Boldyreva, L V; Demakova, O V; Poholkova, G V; Khoroshko, V A; Zykova, T Yu; Lavrov, S A; Belyaeva, E S

    2016-01-01

    Genetic organization of bands and interbands in polytene chromosomes has long remained a puzzle for geneticists. It has been recently demonstrated that interbands typically correspond to the 5'-ends of house-keeping genes, whereas adjacent loose bands tend to be composed of coding sequences of the genes. In the present work, we made one important step further and mapped two large introns of ubiquitously active genes on the polytene chromosome map. We show that alternative promoter regions of these genes map to interbands, whereas introns and coding sequences found between those promoters correspond to loose grey bands. Thus, a gene having its long intron "sandwiched" between to alternative promoters and a common coding sequence may occupy two interbands and one band in the context of polytene chromosomes. Loose, partially decompacted bands appear to host large introns.

  19. Implementing non-invasive prenatal testing for aneuploidy in a national healthcare system: global challenges and national solutions.

    Science.gov (United States)

    van Schendel, Rachèl V; van El, Carla G; Pajkrt, Eva; Henneman, Lidewij; Cornel, Martina C

    2017-09-19

    Since the introduction of non-invasive prenatal testing (NIPT) in 2011, mainly by commercial companies, a growing demand for NIPT from the public and healthcare professionals has been putting pressure on the healthcare systems of various countries. This study identifies the challenges of establishing a responsible implementation of NIPT for aneuploidy in prenatal healthcare, by looking at the Netherlands. A mixed methods approach involving 13 stakeholder interviews, document analysis and (participatory) observations of the Dutch NIPT Consortium meetings were used. The Diffusion of Innovation Theory and a Network of Actors model were used to interpret the findings. Implementation of NIPT was facilitated by several factors. The set-up of a national NIPT Consortium enabled discussion and collaboration between stakeholders. Moreover, it led to the plan to offer NIPT through a nationwide research setting (TRIDENT studies), which created a learning phase for careful implementation. The Dutch legal context was perceived as a delaying factor, but eventually gave room for the parties involved to organise themselves and their practices. This study shows that implementing advanced technologies with profound effects on prenatal care benefit from a learning phase that allows time to carefully evaluate the technical performance and women's experiences and to enable public debate. Such a coordinated learning phase, involving all stakeholders, will stimulate the process of responsible and sustainable implementation.

  20. Mapping EBNA-1 Domains Involved in Binding to Metaphase Chromosomes

    Science.gov (United States)

    Marechal, Vincent; Dehee, Axelle; Chikhi-Brachet, Roxane; Piolot, Tristan; Coppey-Moisan, Maité; Nicolas, Jean-Claude

    1999-01-01

    The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids. PMID:10196336

  1. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  2. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis.

    Science.gov (United States)

    Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A

    2016-05-01

    Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.

  3. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    , and identification of susceptibility genes through linkage and association studies has been complicated due to inherent difficulties such as no clear mode of inheritance, genetic heterogeneity, and apparently incomplete penetrance. Positional cloning through mapping of disease-related chromosome rearrangements has...... been an efficient tool for the cloning of disease genes in several Mendelian disorders and in a number of complex disorders. Through cytogenetic investigation of 205 TS patients, we identified three possibly disease-associated chromosome rearrangements rendering this approach relevant in chasing TS...

  4. Chromosomal instability determines taxane response

    DEFF Research Database (Denmark)

    Swanton, C.; Nicke, B.; Schuett, M.

    2009-01-01

    chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival'' genes is associated with poor outcome in estrogen receptor......-positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane...

  5. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Lorena Rodrigo

    2014-01-01

    Full Text Available The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS using array comparative genomic hybridization (aCGH. The study included 1420 CCS cycles for recurrent miscarriage (n=203; repetitive implantation failure (n=188; severe male factor (n=116; previous trisomic pregnancy (n=33; and advanced maternal age (n=880. CCS was performed in cycles with fresh oocytes and embryos (n=774; mixed cycles with fresh and vitrified oocytes (n=320; mixed cycles with fresh and vitrified day-2 embryos (n=235; and mixed cycles with fresh and vitrified day-3 embryos (n=91. Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2% and pregnancy rates per transfer (range: 46.0–62.9% were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1% due to the higher percentage of aneuploid embryos (85.3% and lower number of cycles with at least one euploid embryo available per transfer (40.3%. We concluded that aneuploidy is one of the major factors which affect embryo implantation.

  6. Neurodevelopmental variability in three young girls with a rare chromosomal disorder, 48, XXXX.

    Science.gov (United States)

    Samango-Sprouse, Carole; Keen, Colleen; Mitchell, Francie; Sadeghin, Teresa; Gropman, Andrea

    2015-10-01

    Fourty eight, XXXX is a rare chromosomal aneuploidy associated with neurocognitive deficits, speech and language disorders and executive dysfunction but the scarcity and variability of reported cases limit our understanding of the 48, XXXX phenotype. To our knowledge, this is the first study to report on the neurodevelopmental profile of three young females with 48, XXXX. Patient 1 (age = 11.0), Patient 2 (age = 10.9), and Patient 3 (age = 6.4) were evaluated using comprehensive neurodevelopmental assessments. Parent questionnaires were completed to assess behavioral and psychosocial domains including executive function, ADHD and anxiety. Nonverbal intelligence quotients were 56, 80, and 91 for Patients 1, 2, and 3, respectively. There were significantly impaired visual motor capacities in graphomotor and perceptual domains below the 5th centile in Patients 1 and 2, and mildly impaired visual perception skills in Patient 3. All three patients had Childhood Apraxia of Speech (CAS) but of varying severity and similar executive dysfunction, externalizing problems and social difficulties. Familial learning disabilities (FLD) in Patient 1 and the co-occurrence of ADHD in Patient's 1 and 2 may contribute to their more impaired cognitive performances relative to Patient 3 who is the second reported case of 48, XXXX to have normal intellect. These distinct and overlapping characteristics expand the phenotypic profile of 48, XXXX and may be used in the counseling of families and treatment of children with 48, XXXX. © 2015 Wiley Periodicals, Inc.

  7. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  8. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Thangavelu, Pulari U; Lin, Cheng-Yu; Vaidyanathan, Srividya; Nguyen, Thu H M; Dray, Eloise; Duijf, Pascal H G

    2017-09-22

    During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1 -deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.

  9. Hydrocortisone Increases the Vinblastine-Induced Chromosomal Damages in L929 Cells Investigated by the Micronucleus Assay on Cytokinesis-Blocked Binucleated Cells

    Directory of Open Access Journals (Sweden)

    Tahere Ebrahimipour

    2017-03-01

    Full Text Available Background: Stress may cause damages to DNA or/and change the ability of the cells to overcome these damages. It may also cause irregularities in the cell cycle and induce abnormal cell divisions through glucocorticoid-dependent functions. The abnormal cell divisions, in turn, lead to chromosomal mal-segregation and aneuploidy. In this study, the effects of the stress hormone, hydrocortisone (HYD, were investigated on the induced chromosomal abnormalities by vinblastine (VIN during cell cycle in L929 cells. Methods: This work was performed in winter 2013 at Department of Biology, University of Ferdowsi, Mashhad, Iran. Cultured cells were divided into different groups including control, VIN-treated, HYD treated and VIN+HYD co-treated cells. The induced chromosomal damages were investigated by micronucleus assay in cytokinesis-blocked binucleated cells. Results: Although HYD by itself did not increase the micronuclei (Mn frequency, co-treatment of cells with VIN and HYD led to significant increase (P<0.05 in the frequency of Mn in comparison to control and VIN treated groups. Conclusion: Cells treated with stress hormone are more sensitive to damages induced by VIN. Therefore, stress may not directly result in genetic instability, it can increase the harmful effects associated with other genotoxic agents.

  10. Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny.

    Directory of Open Access Journals (Sweden)

    LaDeana W Hillier

    2007-07-01

    Full Text Available To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism-based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80-110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently.

  11. Comparative cytogenetics of six Indo-Pacific moray eels (Anguilliformes: Muraenidae) by chromosomal banding and fluorescence in situ hybridization.

    Science.gov (United States)

    Coluccia, E; Deidda, F; Cannas, R; Lobina, C; Cuccu, D; Deiana, A M; Salvadori, S

    2015-09-01

    A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae. © 2015 The Fisheries Society of the British Isles.

  12. B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive.

    Science.gov (United States)

    Palestis, Brian G; Burt, Austin; Jones, R Neil; Trivers, Robert

    2004-02-07

    The chromosomes of mammals tend to be either mostly acrocentric (having one long arm) or mostly bi-armed, with few species having intermediate karyotypes. The theory of centromeric drive suggests that this observation reflects a bias during female meiosis, favouring either more centromeres or fewer, and that the direction of this bias changes frequently over evolutionary time. B chromosomes are selfish genetic elements found in some individuals within some species. B chromosomes are often harmful, but persist because they drive (i.e. they are transmitted more frequently than expected). We predicted that species with mainly acrocentric chromosomes would be more likely to harbour B chromosomes than those with mainly bi-armed chromosomes, because female meiosis would favour more centromeres over fewer in species with one-armed chromosomes. Our results show that B chromosomes are indeed more common in species with acrocentric chromosomes, across all mammals, among rodents, among non-rodents and in a test of independent taxonomic contrasts. These results provide independent evidence supporting the theory of centromeric drive and also help to explain the distribution of selfish DNA across species. In addition, we demonstrate an association between the shape of the B chromosomes and the shape of the typical ('A') chromosomes.

  13. Genetics Home Reference: ring chromosome 20 syndrome

    Science.gov (United States)

    ... drugs. Prolonged seizure episodes known as non-convulsive status epilepticus also appear to be characteristic of ring chromosome ... K, Takahashi Y. Ring chromosome 20 and nonconvulsive status epilepticus. A new epileptic syndrome. Brain. 1997 Jun;120 ( ...

  14. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  15. Frequency of primary amenorrhea due to chromosomal aberration

    International Nuclear Information System (INIS)

    Jabbar, S.

    2004-01-01

    Objective: To find out the frequency of primary amenorrhea due to chromosomal aberration and the different options available for management. Subjects and Methods: All patients with primary amenorrhea due to chromosomal aberrations were included in study. Patient's detailed history, general physical examination, presence or absence of secondary sexual characteristics, abdominal and pelvic examination finding were noted. Targeted investigations, including ultrasound, hormonal assay, buccal smear and karyotyping results were recorded. The management options were individually tailored with focus n psychological management. Results: Eighteen patients out of 30,000 patients were diagnosed as having primary amenorrhea. Six had primary amenorrhea due to chromosomal aberrations with the frequency of 0.02%. The age at presentation was 20 years and above in 50%. The most common cause was Turner's syndrome seen in 4 out of 6. The presenting symptoms were delay in onset of menstruation in 05 patients and primary infertility in 01 patient. Conclusion: Primary amenorrhea due to chromosomal aberration is an uncommon condition requiring an early and accurate diagnosis. Turner's syndrome is a relatively common cause of this condition. Management should be multi-disciplinary and individualized according to the patient's age and symptom at presentation. Psychological management is very important and counselling throughout treatment is recommended. (author)

  16. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  17. Chromosomal evolution in the Drosophila cardini group (Diptera: Drosophilidae): photomaps and inversion analysis.

    Science.gov (United States)

    Cordeiro, Juliana; De Toni, Daniela Cristina; da Silva, Gisele de Souza; Valente, Vera Lucia da Silva

    2014-10-01

    Detailed chromosome photomaps are the first step to develop further chromosomal analysis to study the evolution of the genetic architecture in any set of species, considering that chromosomal rearrangements, such as inversions, are common features of genome evolution. In this report, we analyzed inversion polymorphisms in 25 different populations belonging to six neotropical species in the cardini group: Drosophila cardini, D. cardinoides, D. neocardini, D. neomorpha, D. parthenogenetica and D. polymorpha. Furthermore, we present the first reference photomaps for the Neotropical D. cardini and D. parthenogenetica and improved photomaps for D. cardinoides, D. neocardini and D. polymorpha. We found 19 new inversions for these species. An exhaustive pairwise comparison of the polytene chromosomes was conducted for the six species in order to understand evolutionary patterns of their chromosomes.

  18. Microdissection and Chromosome Painting of the Alien Chromosome in an Addition Line of Wheat - Thinopyrum intermedium

    Science.gov (United States)

    Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R.-C.; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  19. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... this incredibly big molecule and separate the two daughter chromosomes and how it makes sure that the daughter cells receives one copy each. The fully extended chromosome is two orders of magnitude larger than the cell in which it is contained. Hence the chromosome is heavily compacted in the cell...

  20. Delayed manifestation and transmission bias of de novo chromosome mutations. Their relevance for radiation health effect

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    2006-01-01

    The origin and transmission of de novo chromosome mutations were reviewed on the basis of our chromosome studies in retinoblastoma patients and male infertility. In a series of 264 sporadic retinoblastoma families, gross chromosome rearrangements involving the RB1 locus were identified in 23 cases (8.7%), of which 16 were non-mosaic and 7 were mosaic mutations. The newly formed chromosome mutations, whether they were non-mosaic or mosaic, had a strong bias towards paternally derived chromosome, indicating that they shared a common mechanism where a pre-mutational event or instability is carried over to zygote by sperm and manifested as gross chromosome mutation at the early stages of development. The de novo chromosome mutations are preferentially transmitted through female carriers. This transmission bias is consistent with the finding of higher frequencies of translocation carriers in infertile men (7.69% versus 0.27% in general populations) in whom meiotic progression is severely suppressed, possibly through activation of meiotic checkpoints. Such a meiotic surveillance mechanism may minimize the spreading of newly-arisen chromosome mutations in populations. A quantitative model of meiotic surveillance mechanism is proposed and successfully applied to the published data on ''humped'' dose-response curves for radiation-induced spermatogonial reciprocal translocations in several mammalian species. (author)

  1. Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    叶英辉; 徐晨明; 金帆; 钱羽力

    2004-01-01

    Objective: Embryonic chromosomal abnormality is one of the main reasons for in vitro fertilization (IVF) failure. This study aimed at evaluating the value of Fluorescence in-situ Hybridization (FISH)-based Preimplantation Genetic Diagnosis (PGD) in screening for embryonic chromosomal abnormality to increase the successful rate of IVF. Method: Ten couples, four with high risk of chromosomal abnormality and six infertile couples, underwent FISH-based PGD during IVF procedure. At day 3, one or two blastomeres were aspirated from each embryo. Biopsied blastomeres were examined using FISH analysis to screen out embryos with chromosomal abnormalities. At day 4, embryos without detectable chromosomal abnormality were transferred to the mother bodies as in regular IVF. Results: Among 54 embryos screened using FISH-based PGD, 30 embryos were detected to have chromosomal abnormalities. The 24 healthy embryos were implanted, resulting in four clinical pregnancies, two of which led to successful normal birth of two healthy babies; one to ongoing pregnancy during the writing of this article; and one to ectopic pregnancy. Conclusion: FISH-based PGD is an effective method for detecting embryonic chromosomal abnormality, which is one of the common causes of spontaneous miscarriages and chromosomally unbalanced offsprings.

  2. Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    叶英辉; 徐晨明; 金帆; 钱羽力

    2004-01-01

    Objective: Embryonic chromosomal abnormality is one of the main reasons for in vitro fertilization (IVF)failure. This study aimed at evaluating the value of Fluorescence in-situ Hybridization (FISH)-based Preimplantation Genetic Diagnosis (PGD) in screening for embryonic chromosomal abnormality to increase the successful rate of IVF. Method:Ten couples, four with high risk of chromosomal abnormality and six infertile couples, underwent FISH-based PGD during IVF procedure. At day 3, one or two blastomeres were aspirated from each embryo. Biopsied blastomeres were examined using FISH analysis to screen out embryos with chromosomal abnormalities. At day 4, embryos without detectable chromosomal abnormality were transferred to the mother bodies as in regular IVF. Results: Among 54 embryos screened using FISH-based PGD, 30 embryos were detected to have chromosomal abnormalities. The 24 healthy embryos were implanted,resulting in four clinical pregnancies, two of which led to successful normal birth of two healthy babies; one to ongoing pregnancy during the writing of this article; and one to ectopic pregnancy. Conclusion: FISH-based PGD is an effective method for detecting embryonic chromosomal abnormality, which is one of the common causes of spontaneous miscarriages and chromosomally unbalanced offsprings.

  3. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Despoina Sakellariou

    2013-11-01

    Full Text Available Human tumors using the alternative lengthening of telomeres (ALT exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines.We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted.We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.

  4. Frequencies of chromosome aberration on radiation workers

    International Nuclear Information System (INIS)

    Yanti Lusiyanti; Zubaidah Alatas

    2016-01-01

    Radiation exposure of the body can cause damage to the genetic material in cells (cytogenetic) in the form of changes in the structure or chromosomal aberrations in peripheral blood lymphocytes. Chromosomal aberrations can be unstable as dicentric and ring chromosomes, and is stable as translocation. Dicentric chromosome is the gold standard biomarker due to radiation exposure, and chromosome translocation is a biomarker for retrospective biodosimetry. The aim of this studi is to conduct examination of chromosomal aberrations in the radiation worker to determine the potential damage of cell that may arise due to occupational radiation exposure. The examination have been carried out on blood samples from 55 radiation workers in the range of 5-30 year of service. Chromosome aberration frequency measurement starts with blood sampling, culturing, harvesting, slide preparations, and lymphocyte chromosome staining with Giemsa and painting with Fluorescence In Situ Hybridization (FISH) technique. The results showed that chromosomal translocations are not found in blood samples radiation workers and dicentric chromosomes found only on 2 blood samples of radiation workers with a frequency of 0.001/cell. The frequency of chromosomal aberrations in the blood cells such workers within normal limits and this means that the workers have been implemented a radiation safety aspects very well. (author)

  5. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Directory of Open Access Journals (Sweden)

    Linda Olsson

    Full Text Available Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  6. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Science.gov (United States)

    Olsson, Linda; Paulsson, Kajsa; Bovée, Judith V M G; Nord, Karolin H

    2011-01-01

    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  7. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  8. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  9. Chromosomes aberations and enviromental factors

    Directory of Open Access Journals (Sweden)

    Marković Srđan Z.

    2017-01-01

    Full Text Available Explanation the topic: Changes in genetic material can lead to aberrant cell in the direction of disorders of cellular regulation, malignant transformation, cell death, or if the adjustment was made at the level of the reproductive cells, to genetic changes in some of the consequent off spring. The topic position in scientific/professional public: Breaking of chromosomes can occur spontaneously or can be induced. Chromatid/chromosome breakings can be induced by different environmental factors: chemicals, biological clastogenic agents, accidentally or intentionally. Conclusions: The authors suggest: - making conditions for strong respect of environmental regulations; - to use higher plants for the early detection of environmental mutagens; - create and orderly update National radionuclide database.

  10. Statistical properties of nucleotides in human chromosomes 21 and 22

    International Nuclear Information System (INIS)

    Zhang Linxi; Sun Tingting

    2005-01-01

    In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r n-1 and a rapid decrease for r > 4 n-1 . In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N 0 (l) can be described by a power law: N 0 (l) ∼ l -μ . The distance distributions P 0 (S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P 0 (S) = a + bS + cS 2 , and it is quite different from the random sequence

  11. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  12. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  13. Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea).

    Science.gov (United States)

    Kulemzina, Anastasia I; Proskuryakova, Anastasia A; Beklemisheva, Violetta R; Lemskaya, Natalia A; Perelman, Polina L; Graphodatsky, Alexander S

    2016-01-01

    Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies. © 2016 S. Karger AG, Basel.

  14. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  15. How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes

    Directory of Open Access Journals (Sweden)

    Alevtina Ruban

    2017-10-01

    Full Text Available Accessory, supernumerary, or—most simply—B chromosomes, are found in many eukaryotic karyotypes. These small chromosomes do not follow the usual pattern of segregation, but rather are transmitted in a higher than expected frequency. As increasingly being demonstrated by next-generation sequencing (NGS, their structure comprises fragments of standard (A chromosomes, although in some plant species, their sequence also includes contributions from organellar genomes. Transcriptomic analyses of various animal and plant species have revealed that, contrary to what used to be the common belief, some of the B chromosome DNA is protein-encoding. This review summarizes the progress in understanding B chromosome biology enabled by the application of next-generation sequencing technology and state-of-the-art bioinformatics. In particular, a contrast is drawn between a direct sequencing approach and a strategy based on a comparative genomics as alternative routes that can be taken towards the identification of B chromosome sequences.

  16. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  17. Termini of human chromosomes display elevated rates of mitotic recombination.

    Science.gov (United States)

    Cornforth, M N; Eberle, R L

    2001-01-01

    The strand-specific in situ hybridization technique of CO-FISH was used to probe telomeres of human mitotic cells in order to determine the spontaneous frequency of crossover. This approach allowed the detection of recombinational crossovers occurring anywhere along the length of individual chromosomes, including reciprocal events taking place between sister chromatids. Although the process of sister chromatid exchange (SCE) is the most prominent type of recombination in somatic mammalian cells, our results show that SCEs accounted for less than a third of the recombinational events revealed by CO-FISH. It is concluded that chromosomal regions near the termini of chromosome arms undergo extraordinarily high rates of spontaneous recombination, producing terminal crossovers whose small size precludes detection by standard cytogenetic methods. That similar results were observed for transformed epithelial cells, as well as primary fibroblasts, suggests that the phenomenon is a common characteristic of human cells. These findings are noteworthy because, although telomeric and subtelomeric DNA is known to be preferentially involved in certain types of recombination, the tips of somatic mammalian chromosomes have not previously been identified as preferred sites for crossover. Implications of these results are discussed in terms of limitations imposed on CO-FISH for its proposed use in directional hybridization mapping.

  18. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomar......We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  19. Enamel Pit Defects and Taurodontism in a Patient with Ring Chromosome 14 and 47,XXX.

    Science.gov (United States)

    Townsend, Janice A; Lacour, Letitia; Scheuerle, Angela E

    2017-01-15

    The purpose of this paper is to describe the clinical findings and management of a case involving a patient with co-occurring ring chromosome 14 syndrome and 47,XXX presenting with enamel pit defects and taurodontism. Ring chromosome 14 syndrome is an unusual condition with uncontrolled seizure disorder as its most significant finding; 47,XXX (trisomy X; triple X) is a more common condition and has characteristic physical and behavioral findings. Neither condition has been associated with enamel pit defects.

  20. Identification of submicroscopic chromosomal aberrations in fetuses with increased

    DEFF Research Database (Denmark)

    Leung, Tak Yeung; Vogel, Ida; Lau, Tze Kin

    2011-01-01

    Objective: Fetal nuchal translucency (NT) is assessed by ultrasound as a screening tool for aneuploidy at 11-13+6 weeks’ gestation. Fetuses with increased NT but apparently normal karyotyping result are still at higher risk of structural abnormality and a range of genetic syndromes, which may be ...

  1. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  2. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. METHODOLOGY/PRINCIPAL FINDINGS: Octoploid triticale was derived from common wheat T. aestivum L. 'Mianyang11'×rye S. cereale L. 'Kustro' and some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' followed by self-fertilization. Genomic in situ hybridization (GISH using rye genomic DNA and fluorescence in situ hybridization (FISH using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in 'Mianyang11'. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. CONCLUSIONS/SIGNIFICANCE: These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.

  3. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    Science.gov (United States)

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  4. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  5. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    Science.gov (United States)

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  6. Chromosomes

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  7. Study on chromosome aberrations test determinated by micro-whole blood culture in vacuum blood collection tube

    International Nuclear Information System (INIS)

    Zhong Zhihong; Han Fang'an; Ge Qinjuan; Wu Xiao; Chen Juan

    2006-01-01

    Objective: To develop an easier and efficient method of culturing the chromosome and analyzing the aberrations in peripheral lymphocytes. Methods: Micro whole was cultured for 54 hours in home-made vacuum blood collection tube, and then collection, slice-making, microscopy detection for the chromosome aberrations was done. The difference of the results was analysed by comparing with the common method. Results: For 60 radiologists and 30 contrasts, the chromosome aberrations in peripheral lymphocytes were examed by this system, the lymphocytes and chromosome were clear and alive and easier to analyse. Compared with the common method, there was no significantly difference between the two analyzing results. Conclusion: The chromosome aberrations test by micro whole blood culture in vacuum blood collection tube is easier and efficient, and is worthy of being widely popularized. (authors)

  8. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. MUS81 promotes common fragile site expression

    DEFF Research Database (Denmark)

    Ying, Songmin; Minocherhomji, Sheroy; Chan, Kok Lung

    2013-01-01

    Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair the fait......Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair...... the faithful disjunction of sister chromatids in mitosis. However, the mechanisms by which CFSs express their fragility, and the cellular factors required to suppress CFS instability, remain largely undefined. Here, we report that the DNA structure-specific nuclease MUS81-EME1 localizes to CFS loci in early...

  10. Advances in plant chromosome genomics

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Šimková, Hana

    2014-01-01

    Roč. 32, č. 1 (2014), s. 122-136 ISSN 0734-9750 R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778; GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : BAC library * Chromosome sorting * Cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.015, year: 2014

  11. Recurrence risk in de novo structural chromosomal rearrangements.

    Science.gov (United States)

    Röthlisberger, Benno; Kotzot, Dieter

    2007-08-01

    According to the textbook of Gardner and Sutherland [2004], the standard on genetic counseling for chromosome abnormalities, the recurrence risk of de novo structural or combined structural and numeric chromosome rearrangements is less than 0.5-2% and takes into account recurrence by chance, gonadal mosaicism, and somatic-gonadal mosaicism. However, these figures are roughly estimated and neither any systematic study nor exact or evidence-based risk calculations are available. To address this question, an extensive literature search was performed and surprisingly only 29 case reports of recurrence of de novo structural or combined structural and numeric chromosomal rearrangements were found. Thirteen of them were with a trisomy 21 due to an i(21q) replacing one normal chromosome 21. In eight of them low-level mosaicism in one of the parents was found either in fibroblasts or in blood or in both. As a consequence of the low number of cases and theoretical considerations (clinical consequences, mechanisms of formation, etc.), the recurrence risk should be reduced to less than 1% for a de novo i(21q) and to even less than 0.3% for all other de novo structural or combined structural and numeric chromosomal rearrangements. As the latter is lower than the commonly accepted risk of approximately 0.3% for indicating an invasive prenatal diagnosis and as the risk of abortion of a healthy fetus after chorionic villous sampling or amniocentesis is higher than approximately 0.5%, invasive prenatal investigation in most cases is not indicated and should only be performed if explicitly asked by the parents subsequent to appropriate genetic counseling. (c) 2007 Wiley-Liss, Inc.

  12. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability.

    Science.gov (United States)

    Sansregret, Laurent; Patterson, James O; Dewhurst, Sally; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R; Medema, René H; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-02-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115. ©2017 American Association for Cancer Research.

  13. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  14. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    Directory of Open Access Journals (Sweden)

    Adauto Lima Cardoso

    2015-06-01

    Full Text Available Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.

  15. Chromosomal aberrations in bladder cancer: fresh versus formalin fixed paraffin embedded tissue and targeted FISH versus wide microarray-based CGH analysis.

    Directory of Open Access Journals (Sweden)

    Elena Panzeri

    Full Text Available Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay widely used for the detection of Transitional Cell Carcinoma (TCC of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN and on Formalin Fixed Paraffin Embedded (FFPE tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions.

  16. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Directory of Open Access Journals (Sweden)

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  17. Reflections and meditations upon complex chromosomal exchanges.

    Science.gov (United States)

    Savage, John R K

    2002-12-01

    The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.

  18. Chromosomal aberrations in ore miners of Slovakia

    International Nuclear Information System (INIS)

    Beno, M.; Vladar, M.; Nikodemova, D.; Vicanova, M.; Durcik, M.

    1998-01-01

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  19. Chromosome heteromorphisms in the Japanese, 3

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Awa, A.A.

    1982-12-01

    The type and frequency of chromosome variants detected by the C-staining method were ascertained in 1,857 individuals residing in Hiroshima. The most frequent heteromorphic variant was the total inversion of the C-band in chromosome 9 found in 27 individuals (1.45%). The total inversion of the C-band in chromosome 1 was not seen in this sample, but the partial inversion of the C-band in chromosome 1 was found in 18 persons (0.97%). Partial inversion was also detected in the C-band in chromosome 9 in 22 individuals (1.18%). In chromosome 16, neither total nor partial inversion of the C-band was observed in the present study. The frequencies of chromosomes 1, 9, and 16 with a very large C-band were 0.70%, 0.22%, and 0.54%, respectively. Aside from these (1, 9, and 16) a very large C-band was found occasionally in chromosomes 4, 5, 6, 11, 12, 14, and 15, and an unusual insertion of the Y chromosome was observed. A total of 128 C-band variants (6.89%) was found in the 1,857 Hiroshima residents. (author)

  20. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  1. Structural Chromosomal Alterations Induced by Dietary Bioflavonoids in Fanconi Anemia Lymphocytes

    Directory of Open Access Journals (Sweden)

    Gonzalo Guevara

    2007-06-01

    Full Text Available IntroductionFanconi anemia is an autosomal recessive diseasecharacterized by a variety of congenital abnormalities,progressive bone marrow failure,increased chromosomal instability and higherrisk to acute myeloid leukemia, solid tumors. Thisentity can be considered an appropriate biologicalmodel to analyze natural substances with possiblegenotoxic effect. The aims of this study wereto describe and quantify structural chromosomalaberrations induced by 5 flavones, 2 isoflavonesand a topoisomerase II chemotherapeutic inhibitorin Fanconi anemia lymphocytes in order todetermine chromosomal numbers changes and/or type of chromosomal damage.Materials and methodsChromosomes stimulated by phytohaemagglutininM, from Fanconi anemia lymphocytes,were analysed by conventional cytogenetic culture.For each chemical substance and controls,one hundred metaphases were evaluated. Chromosomalalterations were documented by photographyand imaging analyzer. To statisticalanalysis was used chi square test to identify significantdifferences between frequencies of chromosomaldamage of basal and exposed cellcultured a P value less than 0.05.ResultsThere were 431 chromosomal alterations in1000 metaphases analysed; genistein was themore genotoxic bioflavonoid, followed in descendentorder by genistin, fisetin, kaempferol,quercetin, baicalein and miricetin. Chromosomalaberrations observed were: chromatidbreaks, chromosomal breaks, cromatid andchromosomal gaps, quadriratials exchanges,dicentrics chromosome and complex rearrangements.ConclusionBioflavonoids as genistein, genistin and fisetin,which are commonly present in the human diet,showed statistical significance in the number ofchromosomal aberrations in Fanconi anemialymphocytes, regarding the basal damage.

  2. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Cloutier

    2015-10-01

    Full Text Available Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX. We find that DNA double-strand break (DSB foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.

  3. Evaluation of chromosomal aberrations in radiologists and medical radiographers chronically exposed to ionising radiation

    International Nuclear Information System (INIS)

    Kasuba, V.; Rozgaj, R.; Jazbec, A.

    2005-01-01

    Chromosomal aberrations are fairly reliable indicators of damage induced by ionising radiation. This study included 180 radiologists and medical radiographers (technicians) and 90 controls who were not occupationally exposed to ionising radiation. All exposed subjects were routinely monitored with film badge, and none was exposed to a radiation dose exceeding the limit for occupational exposure recommended by the International Commission on Radiological Protection (ICRP). Two hundred metaphases for each person were scored. The frequencies of acentric fragments, dicentrics, ring chromosomes and chromosomal exchanges were determined and compared to those obtained in the control group. Chromosome aberrations were analysed using Poisson regression for profession, age, sex, smoking and years of exposure. Age, smoking, diagnostic exposure to X-rays and occupation were found to correlate with the occurrence of acentric fragments. The influence of exposure duration on the frequency of acentric fragments was greater in medical radiographers than in radiologists. Smoking and sex were found to correlate with the occurrence of dicentric chromosomes, which were more common in men than in women. As chromosome aberrations exceeded the expected level with respect to the absorbed dose, our findings confirm the importance of chromosome analysis as a part of regular medical check-up of subjects occupationally exposed to ionising radiation.(author)

  4. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals

    Science.gov (United States)

    Cloutier, Jeffrey M.; Mahadevaiah, Shantha K.; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M. A.

    2015-01-01

    Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. PMID:26509888

  5. The contribution of the Y chromosome to hybrid male sterility in house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Dean, Matthew D; Tucker, Priscilla K; Nachman, Michael W

    2012-08-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.

  6. Chromosomal replicons of higher plants

    International Nuclear Information System (INIS)

    Van't Hof, J.

    1987-01-01

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs

  7. Increased chromosome radiosensitivity during pregnancy

    International Nuclear Information System (INIS)

    Ricoul, Michelle; Sabatier, Laure; Dutrillaux, Bernard

    1997-01-01

    It was necessary to consider the risks of exposure of pregnant women, not only in relation to the child, but also in relation to their own hypersensitivity. We have demonstrated that pregnancy increases radiosensitivity of chromosome in the mouse at the end of gestation. This is of importance since it may have implications on radioprotection of pregnant women and give experimental guidelines to the problems of hypersensitivity to drugs and cancer aggravation during pregnancy. Blood obtained from women at various times of pregnancy was exposed to ionizing radiations. By comparison to non-pregnant women, an increase in chromosome breakage was observed in metaphases from lymphocytes, after short-term culture in the presence of the serum of the same donor. Immediately after delivery, this increase in radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase in radiosensitivity. Pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy. This study provides the first evidence in human that radiosensitivity may vary in relation to physiological conditions

  8. Selfish X chromosomes and speciation.

    Science.gov (United States)

    Patten, Manus M

    2017-12-27

    In two papers published at about the same time almost thirty years ago, Frank (Evolution, 45, 1991a, 262) and Hurst and Pomiankowski (Genetics, 128, 1991, 841) independently suggested that divergence of meiotic drive systems-comprising genes that cheat meiosis and genes that suppress this cheating-might provide a general explanation for Haldane's rule and the large X-effect in interspecific hybrids. Although at the time, the idea was met with skepticism and a conspicuous absence of empirical support, the tide has since turned. Some of the clearest mechanistic explanations we have for hybrid male sterility involve meiotic drive systems, and several other cases of hybrid sterility are suggestive of a role for meiotic drive. In this article, I review these ideas and their descendants and catalog the current evidence for the meiotic drive model of speciation. In addition, I suggest that meiotic drive is not the only intragenomic conflict to involve the X chromosome and contribute to hybrid incompatibility. Sexually and parentally antagonistic selection pressures can also pit the X chromosome and autosomes against each other. The resulting intragenomic conflicts should lead to co-evolution within populations and divergence between them, thus increasing the likelihood of incompatibilities in hybrids. I provide a sketch of these ideas and interpret some empirical patterns in the light of these additional X-autosome conflicts. © 2017 John Wiley & Sons Ltd.

  9. Ploidy plasticity: a rapid and reversible strategy for adaptation to stress.

    Science.gov (United States)

    Berman, Judith

    2016-05-01

    Organisms must be able to grow in a broad range of conditions found in their normal growth environment and for a species to survive, at least some cells in a population must adapt rapidly to extreme stress conditions that kill the majority of cells.Candida albicans, the most prevalent fungal pathogen of humans resides as a commensal in a broad range of niches within the human host. Growth conditions in these niches are highly variable and stresses such exposure to antifungal drugs can inhibit population growth abruptly. One of the mechanisms C. albicans uses to adapt rapidly to severe stresses is aneuploidy-a change in the total number of chromosomes such that one or more chromosomes are present in excess or are missing. Aneuploidy is quite common in wild isolates of fungi and other eukaryotic microbes. Aneuploidy can be achieved by chromosome nondisjunction during a simple mitosis, and in stress conditions it begins to appear after two mitotic divisions via a tetraploid intermediate. Aneuploidy usually resolves to euploidy (a balanced number of chromosomes), but not necessarily to diploidy. Aneuploidy of a specific chromosome can confer new phenotypes by virtue of the copy number of specific genes on that chromosome relative to the copies of other genes. Thus, it is not aneuploidy per se, but the relative copy number of specific genes that confers many tested aneuploidy-associated phenotypes. Aneuploidy almost always carries a fitness cost, as cells express most proteins encoded by genes on the aneuploid chromosome in proportion to the number of DNA copies of the gene. This is thought to be due to imbalances in the stoichiometry of different components of large complexes. Despite this, fitness is a relative function-and if stress is severe and population growth has slowed considerably, then even small growth advantages of some aneuploidies can provide a selective advantage. Thus, aneuploidy appears to provide a transient solution to severe and sudden stress

  10. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.; Beerens, B.; Rose, L.; Fokkens, L.; Cornelissen, B.J.C.; Rep, M.

    2016-01-01

    Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo

  11. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  12. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    International Nuclear Information System (INIS)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-01-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system

  13. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to

  14. Descriptive evaluation of chromosome aberrations in blood lymphocytes due to gamma-irradiation

    International Nuclear Information System (INIS)

    Medina III, F.S.; Gregorio, J.S.; Vinoya, P.C.; Panlaque, C.A.

    1983-01-01

    To induce and evaluate the effect of radiation among Filipinos, frequencies and types of ν-ray induced chromosome aberrations were studied with peripheral lymphocytes from 19 donors. Peripheral blood samples were irradiated at 0 Gray, 500 mGy, 1 Gy, 2 Gy, 3 Gy and 4 Gy. Irradiated blood samples were cultured by the same standard technique as that commonly used for human blood lymphocytes. Our observations showed that irradiation causes chromosomal aberration similar to effects observed in Caucasians. Our study confirm that irradiation causes an increase of the chromosome aberrations types normally found in the control (gaps, chromatid breaks and chromosome fragments) and can induce aberrations which are rarely observed in non-exposed individual (deletions, translocations, polycentrics, rings, and despiralizations). (author)

  15. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation

    Science.gov (United States)

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells. PMID:25485503

  16. RABL6A, a Novel RAB-Like Protein, Controls Centrosome Amplification and Chromosome Instability in Primary Fibroblasts

    Science.gov (United States)

    Zhang, Xuefeng; Hagen, Jussara; Muniz, Viviane P.; Smith, Tarik; Coombs, Gary S.; Eischen, Christine M.; Mackie, Duncan I.; Roman, David L.; Van Rheeden, Richard; Darbro, Benjamin; Tompkins, Van S.; Quelle, Dawn E.

    2013-01-01

    RABL6A (RAB-like 6 isoform A) is a novel protein that was originally identified based on its association with the Alternative Reading Frame (ARF) tumor suppressor. ARF acts through multiple p53-dependent and p53-independent pathways to prevent cancer. How RABL6A functions, to what extent it depends on ARF and p53 activity, and its importance in normal cell biology are entirely unknown. We examined the biological consequences of RABL6A silencing in primary mouse embryo fibroblasts (MEFs) that express or lack ARF, p53 or both proteins. We found that RABL6A depletion caused centrosome amplification, aneuploidy and multinucleation in MEFs regardless of ARF and p53 status. The centrosome amplification in RABL6A depleted p53−/− MEFs resulted from centrosome reduplication via Cdk2-mediated hyperphosphorylation of nucleophosmin (NPM) at threonine-199. Thus, RABL6A prevents centrosome amplification through an ARF/p53-independent mechanism that restricts NPM-T199 phosphorylation. These findings demonstrate an essential role for RABL6A in centrosome regulation and maintenance of chromosome stability in non-transformed cells, key processes that ensure genomic integrity and prevent tumorigenesis. PMID:24282525

  17. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation.

    Science.gov (United States)

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.

  18. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.c.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhuo, S.; Schwartz, D.C.; Freitag, M.; Ma, L.-J.; Danchin, E.G.J.; Henrissat, B.; Cutinho, P.M.; Nelson, D.R.; Straney, D.; Napoli, C.A.; Baker, B.M.; Gribskov, M.; Rep, M.; Kroken, S.; Molnar, I.; Rensing, C.; Kennell, J.C.; Zamora, J.; Farman, M.L.; Selker, E.U.; Salamov, A.; Shapiro, H.; Pangilinan, J.; Lindquist, E.; Lamers, C.; Grigoriev, I.V.; Geiser, D.M.; Covert, S.F.; Temporini, S.; VanEtten, H.D.

    2009-04-20

    The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the"Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on

  19. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Coleman

    2009-08-01

    Full Text Available The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani, is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI. Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique

  20. Intraspecific chromosome number variation: a neglected threat to the conservation of rare plants.

    Science.gov (United States)

    Severns, Paul M; Liston, Aaron

    2008-12-01

    The effectiveness of rare plant conservation will increase when life history, demographic, and genetic data are considered simultaneously. Inbreeding depression is a widely recognized genetic concern in rare plant conservation, and the mixing of genetically diverse populations in restoration efforts is a common remedy. Nevertheless, if populations with unrecognized intraspecific chromosome variation are crossed, progeny fitness losses will range from partial to complete sterility, and reintroductions and population augmentation of rare plants may fail. To assess the current state of cytological knowledge of threatened and endangered plants in the continental United States, we searched available resources for chromosome counts. We also reviewed recovery plans to discern whether recovery criteria potentially place listed species at risk by requiring reintroductions or population augmentation in the absence of cytological information. Over half the plants lacked a chromosome count, and when a taxon did have a count it generally originated from a sampling intensity too limited to detect intraspecific chromosome variation. Despite limited past cytological sampling, we found 11 plants with documented intraspecific cytological variation, while 8 others were ambiguous for intraspecific chromosome variation. Nevertheless, only one recovery plan addressed the chromosome differences. Inadequate within-species cytological characterization, incomplete sampling among listed taxa, and the prevalence of interspecific and intraspecific chromosome variation in listed genera, suggests that other rare plants are likely to have intraspecific chromosome variation. Nearly 90% of all recovery plans called for reintroductions or population augmentation as part of recovery criteria despite the dearth of cytological knowledge. We recommend screening rare plants for intraspecific chromosome variation before reintroductions or population augmentation projects are undertaken to safeguard

  1. Flow Analysis and Sorting of Plant Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vrána, Jan; Cápal, Petr; Šimková, Hana; Karafiátová, Miroslava; Čížková, Jana; Doležel, Jaroslav

    2016-01-01

    Roč. 78, Oct 10 (2016), 5.3.1-5.3.43 ISSN 1934-9300 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : cell cycle synchronization * chromosome genomics * chromosome isolation Subject RIV: EB - Genetics ; Molecular Biology

  2. Chromosome studies in Cashew ( Anacardium occidentale L ...

    African Journals Online (AJOL)

    Despite the increased cultivation of cashew as a commodity crop in sub-Sahara Africa, Asia and South America there are few chromosome studies on it. The present study investigates number, structure and behavior of chromosome in cashew populations growing in Nigeria. Cytological examination of these populations ...

  3. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...

  4. Statistics for X-chromosome associations.

    Science.gov (United States)

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  5. Cytometric analysis of irradiation damaged chromosomes

    International Nuclear Information System (INIS)

    Wilder, M.E.; Raju, M.R.

    1982-01-01

    Irradiation of cells in interphase results in dose-dependent damage to DNA which is discernable by flow-cytometric analysis of chromosomes. The quantity (and possibly the quality) of chromosomal changes is different in survival-matched doses of x and α irradiation. It may, therefore, be possible to use these methods for analysis of dose and type of exposure in unknown cases

  6. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    2015-11-06

    Nov 6, 2015 ... tion and cancer in mice after a long period of time (Yildirim et al. 2013). ... chromosome of man has a short pairing seg- ment, that is not normally ..... Lyon M. F. 1988 The William Allan memorial award address: X-chromosome ...

  7. Chromosomal evolution and phylogenetic analyses in Tayassu ...

    Indian Academy of Sciences (India)

    Chromosome preparation and karyotype description. The material analysed consists of chromosome preparations of the tayassuid species T. pecari (three individuals) and. P. tajacu (four individuals) and were made from short-term lymphocyte cultures of whole blood samples using standard protocols (Chaves et al. 2002).

  8. AFM image of an entire polygene chromosome

    International Nuclear Information System (INIS)

    Li Minqian; Takeuchi; Ikai, A.

    1994-01-01

    The author present AFM images of an entire polygene chromosome of Drosophila for the first time. Comparing with conventional optical microscope, the AFM image of the polygene chromosomes provides much higher resolution and 3-D measurement capability which will lead to finer scale gene mapping and identification

  9. A sexy spin on nonrandom chromosome segregation.

    Science.gov (United States)

    Charville, Gregory W; Rando, Thomas A

    2013-06-06

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    BACKGROUND: Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex...... driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  11. Chromosome behaviour in Rhoeo spathacea var. variegata.

    Science.gov (United States)

    Lin, Y J

    1980-01-01

    Rhoeo spathacea var. variegata is unusual in that its twelve chromosomes are arranged in a ring at meiosis. The order of the chromosomes has been established, and each chromosome arm has been designated a letter in accordance with the segmental interchange theory. Chromosomes are often irregularly orientated at metaphase I. Chromosomes at anaphase I are generally distributed equally (6-6, 58.75%) although not necessarily balanced. Due to adjacent distribution, 7-5 distribution at anaphase I was frequently observed (24.17%), and due to lagging, 6-1-5 and 5-2-5 distributions were also observed (10.83% and 3.33% respectively). Three types of abnormal distribution, 8-4, 7-1-4 and 6-2-4 were observed very infrequently (2.92% total), and their possible origins are discussed. Irregularities, such as adjacent distribution and lagging, undoubtedly reduce the fertility of the plant because of the resulting unbalanced gametes.

  12. Chromosome reduction in Eleocharis maculosa (Cyperaceae).

    Science.gov (United States)

    da Silva, C R M; González-Elizondo, M S; Laforga Vanzela, A L

    2008-01-01

    Chromosome numbers in Cyperaceae lower than the typical basic number x = 5 have been described for only three species: Rhynchospora tenuis (n = 2), Fimbristylis umbellaris (n = 3) and Eleocharis subarticulata (n = 3). Eleocharis maculosa is recorded here as the fourth species of Cyperaceae that has a chromosome number lower than 2n = 10, with 2n = 8, 7 and 6. The karyotype differentiation in E. maculosa was studied using conventional staining (mitosis and meiosis), FISH with 45S and 5S rDNA and telomere probes. The results allow us to determine which chromosomes of the chromosome race with 2n = 10 fused to form the remaining reduced numbers, as well as to understand how the symploidy and translocation mechanisms were important in karyotype differentiation and the formation of chromosome races in Eleocharis. Copyright 2008 S. Karger AG, Basel.

  13. Energy Landscapes of Folding Chromosomes

    Science.gov (United States)

    Zhang, Bin

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  14. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    Science.gov (United States)

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  15. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of