WorldWideScience

Sample records for commercializable power source

  1. Power source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1998-09-29

    The present invention concerns a power plant, in which power is supplied from an ordinary system battery to an ordinary DC bus system when all of the AC power sources should be lost and a generator is driven by a steam turbine. A generator is connected with an ordinary system battery charger by way of a channel. If all of power sources should be lost, the ordinary system battery charger is driven by using emergency steam turbine generator facilities, and reactor steams are supplied thereby enabling to supply power to the ordinary system DC bus system for a long period of time. (N.H.)

  2. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  3. Solar Power Sources

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address......Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  4. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  5. Radioisotope Power Sources

    International Nuclear Information System (INIS)

    Culwell, J. P.

    1963-01-01

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  6. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  8. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    . The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  9. Hybrid power source

    Science.gov (United States)

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  10. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  11. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  12. Energy sources and power plants

    International Nuclear Information System (INIS)

    Schulz, Detlef; Schulz, Karen

    2013-01-01

    Energy is obtained from various energy sources (coal, petroleum, natural gas, nuclear fuels, wind energy, solar energy, hydro power, biomass, geothermal energy). These differ in each case with respect to their availability, methods of their production and the required power plant technologies. As technologies of the future fuel cells and nuclear fusion are traded. [de

  13. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...

  14. Wind power - a power source now enabled by power electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin

    2007-01-01

    energy at the end-user should be set up. Deregulation of energy has lowered the investment in larger power plants, which means the need for new electrical power sources may be increased in the near future. Two major technologies will play important roles to solve the future problems. One is to change......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. It is expected that it has to be doubled within 20 years. The production, distribution and use of the energy should be as technological efficient as possible and incentives to save...... the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most emerging...

  15. Spark-safe power source

    Energy Technology Data Exchange (ETDEWEB)

    Mester, I M; Konushkin, N A; Nevozinskiy, A K; Rubinshteyn, B Sh; Serov, V I; Vasnev, M A

    1981-01-01

    A shortcoming of the known power sources is their low reliability. The purpose of the invention is to improve the reliability of the device. This is achieved because the spark-safe power source is equipped with a by-passing transistor and potentiometer, and also a generator of control interruptions in the circuit, an I-element, first separating transformer, control block, second separating transformer whose secondary winding has a relay winding whose contacts are connected to the load circuit are connected in series. The generator of control separations of the circuit is connected to the base of the by-passing transistor and to the power source outlet, the potentiometer is connected in series to the main thyristor. The middle point of the potentiometer is connected to the second inlet of the I-element.

  16. Review of available power sources

    International Nuclear Information System (INIS)

    Beard, Carl

    2006-01-01

    Klystrons and triodes have been the accepted choice for particle accelerators because they produce high power RF and offer high gain (60 dB) with efficiencies of ∼50%. Although fairly new to the market, inductive output tubes (IOTs) have become available at L-band frequencies and have maintained their high efficiency. The development of superconducting RF at the L-band frequency allows IOTs to become the choice for future accelerator programs. Due to the operational nature of SRF technology in energy recovery mode, there is no longer the requirement for large amounts of RF power from single sources. This report reviews some of the developments in RF power sources suitable for energy recovery linacs (ERLs)

  17. Radioisotope Sources of Electric Power

    Science.gov (United States)

    1973-09-20

    u) watt/cm-3 O) specific activity f) curia/watt (curie/a) a) half-life c) specific power output h) years (capacity) 1) days d) watt/p Polonium - 210 ...AD/A-001 210 RADIOISOTOPE SOURCES OF ELECTRIC POWER G. M. Fradkin, et al Army Foreign Science and Technology Center Charlottesville, Virginia 20...narticularlv for nurninn and irocess~ino of wastg.Sheatinc food , conversion of liruld oxtoner to des, and also for removal of imnurities and reula:tion

  18. High power microwave source development

    Science.gov (United States)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  19. Compact portable electric power sources

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

    1997-02-01

    This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

  20. Backup power sources for DOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This standard establishes fundamental requirements and guidance for backup power sources at DOE facilities. Purpose is to document good engineering practices for installation, testing, and maintenance of these backup power sources, which also covers emergency power sources. Examples are those which supply power to nuclear safety systems, radiation monitors and alarms, fire protection systems, security systems, and emergency lighting.

  1. Conventional power sources for colliders

    International Nuclear Information System (INIS)

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 μsec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 μsec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 μsec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths

  2. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  3. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  4. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  5. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  6. Special Application Thermoelectric Micro Isotope Power Sources

    International Nuclear Information System (INIS)

    Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted

    2008-01-01

    Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources

  7. Voltage resonant inverter as a power source

    OpenAIRE

    Lupenko, Anatoliy; Stakhiv, Petro

    2014-01-01

    The operation mode of a voltage resonant inverter as a power source with variable load is analyzed. In order to reduce load power variations, an approach to development of the inverter’s load power response based on providing similar positive and negative power deviations from its nominal value has been proposed. The design procedure for resonant inverter with open loop structure as a power source has been elaborated. For a high pressure sodium lamp as a load, the power deviation of about 4% ...

  8. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power......The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... systems are illustrated....

  9. Selection of Power Sources for Portable Applications

    NARCIS (Netherlands)

    Flipsen, S.F.J.

    2009-01-01

    New power sources emerge very quickly. Implementation of hybrid power sources for portable electronics depends on the knowledge of industrial designers. For now this group has little understanding of fuel cells and especially fuel-cell hybrids. This slows down implementation and increases the chance

  10. Radioisotope-powered light sources

    International Nuclear Information System (INIS)

    Haff, K.W.; Case, F.N.; Tompkins, J.A.; Remini, W.C.

    1981-11-01

    Significant progress has been made in the past year to improve the geometry of 85 Kr-powered lights, making it possible to acquire the lights from a greater distance than was previously possible. This paper is an update and current status report on the work being done and the improvements made in both 85 Kr and tritium lights since the report made by F.N. Case and W.C. Remini at the November 1980 IES meeting

  11. The Railgun and Its Power Source,

    Science.gov (United States)

    1987-06-01

    inductor 66 3.1.3 The ANU homopolar generator power source 67 3.1.4 Features of an ideal power source 69 3.1.5 Desirable power source pulse energy...3.3.2 Homopolar generators 75 3.3.3 Ordinary large alternators 77 3.3.4 The compulsator 77 3.4 Explosive magnetic flux compression 80 3.5 Minimum mass of...discharge of lead-acid batteries 99 4.4.4 Design and performance of a high rate lead-acid cell 101 4.5 Motor -generator instead of batteries 103 4.5.1

  12. Power System Oscillatory Behaviors: Sources, Characteristics, & Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dosiek, Luke A. [Union College, Schenectady, NY (United States); Pierre, John W. [Univ. of Wyoming, Laramie, WY (United States)

    2017-05-17

    This document is intended to provide a broad overview of the sources, characteristics, and analyses of natural and forced oscillatory behaviors in power systems. These aspects are necessarily linked. Oscillations appear in measurements with distinguishing characteristics derived from the oscillation’s source. These characteristics determine which analysis methods can be appropriately applied, and the results from these analyses can only be interpreted correctly with an understanding of the oscillation’s origin. To describe oscillations both at their source within a physical power system and within measurements, a perspective from the boundary between power system and signal processing theory has been adopted.

  13. Nuclear power, useful energy source

    International Nuclear Information System (INIS)

    Sorin, F.

    2003-01-01

    This article is a reprint of an article published in a newspaper named 'Liberation Champagne' from October 7, 2003. It makes a brief analysis of the future world energy needs, of the need to fight against the global warming and to find a substitution to fossil fuels on the way to depletion. The mankind has to face a contradictory problem: increasing the energy production and saving the fossil fuels. The only solution is to accelerate the development of nuclear energy and of renewable energy sources. This is also the only way to fulfill the Kyoto protocol commitments. Short paper. (J.S.)

  14. Power source device for thermonuclear device

    International Nuclear Information System (INIS)

    Ozaki, Akira.

    1992-01-01

    The present invention provides a small sized and economical power source device for a thermonuclear device. That is, the device comprises a conversion device having a rated power determined by a power required during a plasma current excitation period and a conversion device having a rated power determined by a power required during a plasma current maintaining period, connected in series to each other. Then, for the former conversion device, power is supplied from an electric power generator and, for the latter, power is supplied from a power system. With such a constitution, during the plasma electric current maintaining period for substantially continuous operation, it is possible to conduct bypassing paired operation for the former conversion device while the electric power generator is put under no load. Further, since a short period rated power may be suffice for the former conversion device and the electric power generator having the great rated power required for the plasma electric current excitation period, they can be reduced in the size and made economical. On the other hand, since the power required for the plasma current maintaining period is relatively small, the capacity of the continuous rated conversion device may be small, and the power can be received from the power system. (I.S.)

  15. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Babanova, Sofia; Yolina Hubenova; Mario Mitov

    2009-01-01

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  16. How to Integrate Variable Power Source into a Power Grid

    Science.gov (United States)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  17. Compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs

  18. A compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for componenet development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analyses combined with a finite element thermal analysis have aided in the power source design. The analysis have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high

  19. Sources of the wind power stations

    International Nuclear Information System (INIS)

    Chudivani, J.; Huettner, L.

    2012-01-01

    The paper deals with problems of the wind power stations. Describes the basic properties of wind energy. Shows and describes the different types of electrical machines used as a source of electricity in the wind power stations. Shows magnetic fields synchronous generator with salient poles and permanent magnets in the program FEMM. Describes methods for assessing of reversing the effects of the wind power stations on the distribution network. (Authors)

  20. Power conditioning system for energy sources

    Science.gov (United States)

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  1. Anomalous Power Flow and ``Ghost'' Sources

    Science.gov (United States)

    Monzon, Cesar

    2008-08-01

    It is demonstrated that EM radiation from complex sources can result in real power in restricted regions of space flowing back towards the sources, thereby mimicking “ghost” sources. This counterintuitive mechanism of radiation does not rely on backward waves, as ordinary waves carry the power. Ways to harness the effect by making it directional are presented, together with selected applications, of which deception is a prime example due to the nature of the phenomenon. The concept can be applied to other areas, such as mechanics, acoustics, etc., and can be realized with available technology.

  2. Radioisotope Power Sources for MEMS Devices,

    International Nuclear Information System (INIS)

    Blanchard, J.P.

    2001-01-01

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a 63 Ni liquid source. A source volume containing 64 microCi provided a power of ∼0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications

  3. Power source with spark-safe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Tsesarenko, N P; Alekhin, A V

    1982-01-01

    The invention refers to the technique of electrical monitoring and control in systems operating in a spark-safe medium (for example, in coal mines). A more accurate area of application is mobile objects with autonomous source of electricity (mine diesel locomotives, battery electric locomotives etc.). The purpose of the invention is to simplify and to improve the reliability of the planned device, and also to expand the area of application for conditions when it is powered from an autonomous generator of direct voltage. This goal is achieved because the power source with spark-safe outlet (the source contains a thyristor of advance disconnection, connected by anode to the delimiting throttle, one outlet of which is connected to the capacitor included between the controlling electrode and the anode of the thyristor, and the capacitor is connected through the resistor parallel to the outlet clamps of the source, while the thyristor of emergency protection connected parallel to the inlet clamps of the power source) is additionally equipped with a current sensor, hercon, transistor key (included in series in the power circuit) and optron, whose emitter is connected parallel to the current sensor connected in series to the inlet of the power source, while the receiver of the optron is connected in a circuit for controlling the thyristor of emergency protection. Hercon is built into the core of the delimiting throttle and is connected to the circuit for controlling the transistor key.

  4. New developments in RF power sources

    International Nuclear Information System (INIS)

    Miller, R.H.

    1994-06-01

    The most challenging rf source requirements for high-energy accelerators presently being studied or designed come from the various electron-positron linear collider studies. All of these studies except TESLA (the superconducting entry in the field) have specified rf sources with much higher peak powers than any existing tubes at comparable high frequencies. While circular machines do not, in general, require high peak power, the very high luminosity electron-positron rings presently being designed as B factories require prodigious total average rf power. In this age of energy conservation, this puts a high priority on high efficiency for the rf sources. Both modulating anodes and depressed collectors are being investigated in the quest for high efficiency at varying output powers

  5. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  6. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  7. Statistical studies of powerful extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, J T

    1981-01-01

    This dissertation is mainly about the use of efficient statistical tests to study the properties of powerful extragalactic radio sources. Most of the analysis is based on subsets of a sample of 166 bright (3CR) sources selected at 178 MHz. The first chapter is introductory and it is followed by three on the misalignment and symmetry of double radio sources. The properties of nuclear components in extragalactic sources are discussed in the next chapter, using statistical tests which make efficient use of upper limits, often the only available information on the flux density from the nuclear component. Multifrequency observations of four 3CR sources are presented in the next chapter. The penultimate chapter is about the analysis of correlations involving more than two variables. The Spearman partial rank correlation coefficient is shown to be the most powerful test available which is based on non-parametric statistics. It is therefore used to study the dependences of the properties of sources on their size at constant redshift, and the results are interpreted in terms of source evolution. Correlations of source properties with luminosity and redshift are then examined.

  8. Control for nuclear thermionic power source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Sawyer, C.D.

    1978-01-01

    A control for a power source is described which includes nuclear fuel interspersed with thermionic converters, including a power regulator that maintains a substantially constant output voltage to a variable load, and a control circuit that drives a neutron flux regulator in accordance with the current supplied to the power regulator and the neutron flux density in the region of the converters. The control circuit generates a control signal which is the difference between the neutron flux density and a linear fucntion of the current, and which drives the neutron regulator in a direction to decrease or increase the neutron flux according to the polarity of the control signal

  9. Unattended power sources for remote, harsh environments

    International Nuclear Information System (INIS)

    Lamp, T.R.; Donovan, B.D.

    1994-01-01

    Forest fires that have endangered remote US Air Force sites equipped with radioisotope thermoelectric generators (RTGs) has prompted the assessment of power generating systems as substitutes for RTGs in small scale (10--120 watt) applications. A team of scientists and engineers of the US Air Forces' Wright Laboratory conducted an assessment of electrical power technologies for use by the Air Force in remote, harsh environments. The surprisingly high logistic costs of operating fossil fuel generators resulted in the extension of the assessment to non-RTG sites. The candidate power sources must operate unattended for long periods at a high level of operations reliability. Selection of the optimum power generation technology is complicated and heavily driven by the severe operating environment compounded by the remoteness of the location. It is these site-related characteristics, more than any other, that drive the selection of a safe and economical power source for Arctic applications. A number of proven power generation technologies were evaluated. The assessment concluded that continued use of the RTGs is clearly the safest, most reliable, and most economical approach to supplying electrical power for remote, difficult to access locations

  10. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  11. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  12. 46 CFR 112.01-15 - Temporary emergency power source.

    Science.gov (United States)

    2010-10-01

    ... EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-15 Temporary emergency power source. A temporary emergency power source is one of limited capacity that carries... 46 Shipping 4 2010-10-01 2010-10-01 false Temporary emergency power source. 112.01-15 Section 112...

  13. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  14. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misulovin, A.; Gilai, D.; Levin, P.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    Improvements in the performance of fission power reactors made possible by designing them subcritical driven by D-T neutron sources are investigated. Light-water thermal systems are found to be most promising, neutronically and energetically, for the source driven mode of operation. The range of performance characteristics expected from breeding Light Water Hybrid Reactors (LWHR) is defined. Several promising types of LWHR blankets are identified. Options opened for the nuclear energy strategy by four types of the LWHRs are examined, and the potential contribution of these LWHRs to the nuclear energy economy are discussed. The power systems based on these LWHRs are found to enable a high utilization of the energy content of the uranium resources in all forms available - including depleted uranium and spent fuel from LWRs, while being free from the need for uranium enrichment and plutonium separation capabilities. (author)

  15. Environmentally friendly power sources for aerospace applications

    Science.gov (United States)

    Lapeña-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Ortí, Fortunato; Dudfield, Christopher; Orsillo, Alessandro

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO 2 emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR&TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NO x, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power management

  16. Environmentally friendly power sources for aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Lapena-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Orti, Fortunato [Boeing Research and Technology Europe Ltd., Environmental Technologies, C/ Canada Real de las Merinas 1-3, Building 4, 4th floor, Madrid 28042 (Spain); Dudfield, Christopher; Orsillo, Alessandro [Intelligent Energy Ltd., The Innovation Centre, Epinal Way, Loughborough LE11 3EH (United Kingdom)

    2008-07-01

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO{sub 2} emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR and TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NOx, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power

  17. Electric Power From Ambient Energy Sources

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  18. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that the DT device. The efficienct of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed. (aurthor)

  19. The JLab high power ERL light source

    International Nuclear Information System (INIS)

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered (superconducting) Linac (ERL). The machine has a 160MeV electron beam and an average current of 10mA in 75MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100fs pulses with >200W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10kW of average power in the IR from 1 to 14μm in 400fs pulses at up to 74.85MHz repetition rates and soon will produce similar pulses of 300-1000nm light at up to 3kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and

  20. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  1. Resonant power absorption in helicon plasma sources

    International Nuclear Information System (INIS)

    Chen Guangye; Arefiev, Alexey V.; Bengtson, Roger D.; Breizman, Boris N.; Lee, Charles A.; Raja, Laxminarayan L.

    2006-01-01

    Helicon discharges produce plasmas with a density gradient across the confining magnetic field. Such plasmas can create a radial potential well for nonaxisymmetric whistlers, allowing radially localized helicon (RLH) waves. This work presents new evidence that RLH waves play a significant role in helicon plasma sources. An experimentally measured plasma density profile in an argon helicon discharge is used to calculate the rf field structure. The calculations are performed using a two-dimensional field solver under the assumption that the density profile is axisymmetric. It is found that RLH waves with an azimuthal wave number m=1 form a standing wave structure in the axial direction and that the frequency of the RLH eigenmode is close to the driving frequency of the rf antenna. The calculated resonant power absorption, associated with the RLH eigenmode, accounts for most of the rf power deposited into the plasma in the experiment

  2. Compact, self-regulating nuclear power source

    International Nuclear Information System (INIS)

    Peterson, Otis G.; Kimpland, Robert H.

    2008-01-01

    An inherently safe nuclear power source has been designed, that is self-stabilizing and requires no moving mechanical components. Unlike conventional designs, the proposed reactor is self-regulating through the inherent properties of uranium hydride, which serves as a combination fuel and moderator. The temperature driven mobility of the hydrogen contained in the hydride will control the nuclear activity. If the core temperature increases over the set point, the hydrogen is driven out of the core, the moderation drops and the power production decreases. If the temperature drops, the hydrogen returns and the process is reversed. Thus the design is inherently fail-safe and requires only minimal human oversight. The compact nature and inherent safety opens the possibility for low-cost mass production and operation of the reactors. This design has the capability to dramatically alter the manner in which nuclear energy is harnessed for commercial use. (author)

  3. Research on bioorganic fuels as power sources

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Markku J.; Spets, Jukka-Pekka [Aalto University, Department of Energy Technology-TKK, Applied Thermodynamics, PO Box 4400, FI-02201 TKK (Finland); Kiros, Yohannes [Royal Institute of Technology-KTH, Department of Chemical Engineering and Technology, S100-44 Stockholm (Sweden); Anttila, Tomi [Oy Hydrocell Ltd, Minkkikatu 1-3, 04430 Jaervenpaeae (Finland)

    2010-11-15

    This paper deals with the kind of the bioorganic fuel cells that are equipped with or without ion exchange membranes. The bioorganic materials of interest are alcohols (methanol, ethanol) and glucose, which are obtained from renewable energy sources such as biomass. The operation temperatures of the direct fuel cells cover from room temperature up to 150 C. The direct bioorganic fuel cells belong to the subject area of 'Advanced fuel cells' of the Working group 4 in the EU COST Action 543 among the collaborating Universities and Institutes. Bioorganic fuel cells are suitable for application in small portable power sources, such as backups, battery chargers and in electronic devices. A number of current and earlier works are summarised and advances are highlighted in this area with special emphasis on glucose as a fuel. (author)

  4. Morphology and power of radio sources

    International Nuclear Information System (INIS)

    Scheuer, P.A.G.

    1982-01-01

    The author discusses two points: 1. Observations suggest that the hot-spots move about either because the beam precesses or more discontinuously, as in sources like 3C351 that have multiple hot-spots. The natural interpretation is that the hot-spot at the end of the beam slides over the inner surface of a 'cavity' filled with very hot dilute ex-hot-spot material, extending the cavity at various places at different times. 2. Most of the radio emission of most really powerful radio sources comes from their hot spots. Contrariwise, straightforward equipartition calculations on models lead to at least as much emission from the 'cavity' as from the hot-spots. (Auth.)

  5. PULSAR: an inductive pulse power source

    International Nuclear Information System (INIS)

    Cnare, E.C.; Brooks, W.P.; Cowan, M.

    1979-01-01

    The PULSAR concept of inductive pulsed power source uses a flux-compressing metallic or plasma armature rather than a fast opening switch to transfer magnetic flux to a load. The inductive store may be a relatively unsophisticated dc superconducting magnet since no magnetic energy is taken from it, and no large current transients are induced in it. Initial experimental efforts employed either expendable or reusable metallic armatures with a 200 kJ, 450 mm diameter superconducting magnet. Attention is now being focused on the development of much faster plasma armatures for use in larger systems of one and two meters diameter. Techniques used to generate the required high magnetic Reynolds number flow will be described and initial experimental results will be presented

  6. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  7. 46 CFR 111.10-4 - Power requirements, generating sources.

    Science.gov (United States)

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must... or sources must be sufficient to supply those services necessary to provide normal operational...

  8. A Hybrid, Current-Source/Voltage-Source Power Inverter Circuit

    DEFF Research Database (Denmark)

    Trzynadlowski, Andrzej M.; Patriciu, Niculina; Blaabjerg, Frede

    2001-01-01

    A combination of a large current-source inverter and a small voltage-source inverter circuits is analyzed. The resultant hybrid inverter inherits certain operating advantages from both the constituent converters. In comparison with the popular voltage-source inverter, these advantages include...... reduced switching losses, improved quality of output current waveforms, and faster dynamic response to current control commands. Description of operating principles and characteristics of the hybrid inverter is illustrated with results of experimental investigation of a laboratory model....

  9. HYBRID POWER HARVESTER USING ENGINE SOURCE

    OpenAIRE

    Meeran Mydeen, A.Ahmed; Inasu, Kelwin; Venkatesh, M.; Suthesh, C.

    2017-01-01

    In mainly we present a compact, multisource and battery-free energy harvesting from engine source. This battery free generator captures energy from its environment transient thermal gradients as a main source, and vibration as a secondary source allowing early biasing of the generator and stores this energy in ultra-capacitors .In this way, this multi-source architecture benefits from the synergy between energy scavenging and harvesting.

  10. Radiation Tolerant Low Power Precision Time Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of small, low power atomic clocks is now a reality for ground-based and airborne navigation systems. Kernco's Low Power Precision Time Source...

  11. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  12. Effects of Auxiliary-Source Connection in Multichip Power Module

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Wang, Xiongfei

    2017-01-01

    the power loop and the gate loop like how the Kelvin-source connection does, owing to their involvement in the loop of the power source current. Three effects of the auxiliary-source connections are then analyzed, which are 1) the common source stray inductance reduction, 2) the transient drain......Auxiliary-source bond wires and connections are widely used in power modules with paralleled MOSFETs or IGBTs. This paper investigates the operation mechanism of the auxiliary-source connections in multichip power modules. It reveals that the auxiliary-source connections cannot fully decouple......-source current imbalance mitigation, and 3) the influence on the steady-state current distribution. Lastly, simulations and experimental results validate the theoretical analysis....

  13. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  14. Designing of RF ion source and the power sources system

    International Nuclear Information System (INIS)

    Rusdiyanto.

    1978-01-01

    An RF ion source prototype is being developed for the particle accelerator at the Gama Research Centre. Supply of the gas is fed into the plasma chamber by means of neadle valve system. Magnetic field strength of about 500 gauss is applied to the system to improve the ionization efficiency. Components and spare parts of the RF ion source are made based on locally available materials and are discussed in this report. (author)

  15. Distributed power sources for Mars colonization

    International Nuclear Information System (INIS)

    Miley, George H.; Shaban, Yasser

    2003-01-01

    One of the fundamental needs for Mars colonization is an abundant source of energy. The total energy system will probably use a mixture of sources based on solar energy, fuel cells, and nuclear energy. Here we concentrate on the possibility of developing a distributed system employing several unique new types of nuclear energy sources, specifically small fusion devices using inertial electrostatic confinement and portable 'battery type' proton reaction cells

  16. Radio-isotope powered light source

    International Nuclear Information System (INIS)

    Spottiswoode, N.L.; Ryden, D.J.

    1979-01-01

    The light source described comprises a radioisotope fuel source, thermal insulation against heat loss, a biological shield against the escape of ionizing radiation and a material having a surface which attains incandescence when subject to isotope decay heat. There is then a means for transferring this heat to produce incandescence of the surface and thus emit light. A filter associated with the surface permits a relatively high transmission of visible radiation but has a relatively high reflectance in the infra red spectrum. Such light sources require the minimum of attention and servicing and are therefore suitable for use in navigational aids such as lighthouses and lighted buoys. The isotope fuel sources and thus the insulation and shielding and the incandescent material can be chosen for the use required and several sources, materials, means of housing etc. are detailed. Operation and efficiency are discussed. (U.K.)

  17. LEADERSHIP AND THE SOURCES OF POWER

    OpenAIRE

    MARINESCU Paul; TOMA Sorin-George

    2012-01-01

    The aims of our paper are to demonstrate that power can influence the quality of leadership in a system and, that the leader of an organization can choose to delegate power to the employees, keeping them motivated and improving the overall performance of the organization. The ability to influence others is based on native traits and constitutes a product of personal development. The TeamWork association, comprising students mainly from the Faculty of Administration and Business, University of...

  18. Impedance-Source Networks for Electric Power Conversion Part I

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper...... is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance...

  19. Overview of light sources powered by tritium

    International Nuclear Information System (INIS)

    Wu Jian; Lei Jiarong; Liu Wenke

    2012-01-01

    Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium-based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several shortcomings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium- based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several short- comings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL, light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. (authors)

  20. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    Science.gov (United States)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  1. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    International Nuclear Information System (INIS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells

  2. Nonsafety loads on glass 1E power sources, revisited

    International Nuclear Information System (INIS)

    Lewin, J.

    1980-01-01

    The supply of some nonsafety loads from class 1E power sources is allowed by industry standards (IEEE Standards 308 and 384) and by US Nuclear Regulatory Commission Regulatory Guides 1.32 and 1.75. This has been questioned as a possible source of degradation of the class 1E system, and this power deals with assessment of the effects of this practice on the reliability of the power supply for engineered safety features (ESF) systems

  3. WWER type reactors used as multipurpose nuclear power sources

    International Nuclear Information System (INIS)

    Fiala, J.; Mulak, J.

    1976-01-01

    Safety aspects are assessed of the siting of nuclear power installations in the vicinity of large housing estates and in areas with a high population density, mainly the aspect of the liquidation of the consequences of the maximum credible accident, i.e., the transversal rupture of the primary coolant circuit. The application of WWER type reactors as multipurpose nuclear power sources in Czechoslovakia is justified. It is shown that such a multipurpose nuclear power source differs from a purely condensation nuclear power plant mainly in the design of the secondary stage. The possibilities of such projects are indicated with a view to power and heat operation. (F.M.)

  4. 46 CFR 112.01-20 - Final emergency power source.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Final emergency power source. 112.01-20 Section 112.01-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-20 Final emergency...

  5. Improvement of active filter for HIMAC power sources

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Kubo, Hiroshi; Furuzeki, Shoichiro; Kanazawa, Toru

    1996-03-01

    For the power sources of the synchrotron electromagnets for the heavy particle beam cancer therapy apparatus HIMAC in National Institute of Radiological Science, in order to stabilize the taken-out beam, the ripple property as low as below 1 x 10{sup -6} is required. As for this electromagnet power sources, various devices were applied to lower ripples, and the required specifications have been satisfied. Also the beam spill is stable, but slight variation has been observed, therefore, by improving the performance of the active filter, the ripples were improved. The specifications of the electromagnet power sources and the whole constitution of the power source system are shown. In the HIMAC power sources, the means for having realized the low ripple performance so far are explained. Those are the absorption of the ineffective power generated from the power sources, the control of the ripples of common made due to the transducer thyristor, and the sure compensation of ripples by the control circuit for the power sources. By adding the band pass filters to the active filter, its characteristics were improved. As the result, 1200 Hz ripple component was reduced by 41 db, thus the sufficient effect was obtained. Hereafter, by the high sensitivity measurement of the current of electromagnets and the evaluation of magnetic fields, the validity will be evaluated. (K.I.)

  6. Power sources compared : The ultimate truth?

    NARCIS (Netherlands)

    Flipsen, S.F.J.

    2006-01-01

    Especially, during the last decade the demand for portable power is steadily rising due to the increasing wireless products integrated in our day-to-day lives (cellular phone, personal digital assistant (PDA) and of course the remote control for your television set or VCR). These portable consumer

  7. Advanced Power Sources for Space Missions

    Science.gov (United States)

    1989-01-01

    alternators Pulsed alternators DC generator exciters MHD generator magnets Megawatt propulsion motor (DC) Power conditioning and energy storage Low...been successfully demon- strated in homopolar types of machines and in other stationary ap- plications, such as magnets for high-energy physics

  8. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  9. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...

  10. Norwegian hydropower a valuable peak power source

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Hermod

    2010-07-01

    Full text: The paper gives a historical technical review of the development and installation of approximately 20 000 MW of hydraulic turbines in Norway after World War II. The non polluting production of electricity was consumed for lightening and heating for civil consume and the growing electric furnace industry in Norway in addition to export in rainy years. The paper is mainly based on the authors experience in the design of large turbines, and control systems for operation of Francis Turbines and Reversible Pump Turbines for high and medium heads and Pelton turbines for high heads. During the last 15 years the development of small hydro power plants has also given an increasing contribution to the power production. A brief discussion will be given on the choice of equipment for small hydro production with a very small winter production and overload during the summer. The possibility of operation of a small hydropower plants connected to an isolated grid will also briefly be presented. In addition to the general design of turbines and control systems for large hydro plants, a detailed description will be given of the stability analysis for the governing system which was developed for the large high head plants with long high pressure tunnels systems. A discussion will be included on the introduction of the air cushioned surge chambers for fast stable operation of power plants with long tunnels, connected to isolated grids. Also the principle of stabilizing unstable turbine governing system by means of pressure feed back systems, will be presented and discussed. A description of such system developed in 1992, will be given proving that stability could be obtained in a system with long conduits connected to the turbines. However, the 'governing speed' needed for isolated operation could not be fulfilled without a fast by pass pressure relieve system for Francis turbines, which was not installed in the case for the analysis. Finally a discussion will be

  11. Asymmetries in four powerful radio sources

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Morison, I.

    1983-01-01

    The extragalactic radio sources 3C 153, 196, 249.1 and 268.4 have been observed at frequencies of 408 and 1666 MHz with the new MERLIN array operated by Jodrell Bank, giving resolutions of approx. 0.9 and 0.25 arcsec respectively. The sources show marked asymmetries about the central object in spectral index, flux and morphology, which we believe are most naturally accounted for by the effects of a time-dependent asymmetry in the central powerhouse. In the case of 3C 249.1 the observations suggest that energy is being supplied alternately to the two sides of the source. The 1666-MHz observations also show that each of the other three sources contains one extremely compact hotspot. The minimum internal energy densities in these hotspots are such that confinement by ram pressure of motion through the intergalactic medium may not be possible, indicating that such features are transient phenomena in free expansion, or that some other confinement mechanism is operating. (author)

  12. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  13. Implanted artificial heart with radioisotope power source

    Energy Technology Data Exchange (ETDEWEB)

    Shumakov, V I; Griaznov, G M; Zhemchuzhnikov, G N; Kiselev, I M; Osipov, A P

    1983-02-01

    An atomic artificial heart for orthotopic implantation was developed with the following characteristics: volume, 1.2 L; weight, 1.5 kg; radioisotope power, 45 W; operating life, up to 5 years; hemodynamics, similar to natural hemodynamics. The artificial heart includes a thermal drive with systems for regulating power, feeding steam into the cylinders, return of the condensate to the steam generator, and delivery of power to the ventricles and heat container. The artificial heart is placed in an artificial pericardium partially filled with physiologic solution. It uses a steam engine with two operating cylinders that separately drive the left and right ventricles. There is no electronic control system in the proposed design. The operation of the heat engine is controlled, with preservation of autoregulation by the vascular system of the body. The separate drives for the ventricles is of primary importance as it provides for operation of the artificial heart through control of cardiac activity by venous return. Experimental testing on a hydromechanical bench demonstrated effective autoregulation.

  14. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  15. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  16. Impedance-Source Networks for Electric Power Conversion Part II

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance......-source-network-based power converters has been covered in a previous paper and main topologies were discussed from an application point of view. Now Part II provides a comprehensive review of the most popular control and modulation strategies for impedance-source network-based power converters/inverters. These methods...

  17. Sources of supply for nuclear power plants

    International Nuclear Information System (INIS)

    Skjoeldebrand, R.

    1975-01-01

    In a competitive commercial market situation, such as the one which now exists for nuclear power plants, it is necessary for each prospective buyer to make his own judgements as regards the risks and benefits, advantages and disadvantages of the different suppliers. These judgements should be based on factual data and on some firm criteria supplemented by considerations stemming from the local situation. It is the purpose of this paper to discuss these criteria and considerations and how they can be applied to the data basis. (orig./FW) [de

  18. Exploring the Power of Heterogeneous Information Sources

    Science.gov (United States)

    2011-01-01

    set of movies derived from two information sources: movie genres and users. The genre information may indicate that two movies that are “ animations ...are more similar than two movies one of which is an “ animation ” and one of which is a “romance” movie. Similarly, movies watched by the same set of...grown- ups ’ ’ ’ ’ ’ ’ ’ X1-The Lion King; X2-Toy Story; X3-Kungfu Panda ; X4-Wall-E; X5-Casablanca; X6-Titanic; X7-The Notebook kids Figure 6.2: A

  19. The Origin of Powerful Radio Sources

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-05-01

    Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.

  20. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  1. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  2. Renewable sources electric power: resources and challenges for the France

    International Nuclear Information System (INIS)

    Bouchereau, J.M.; Dormoy, C.

    2001-05-01

    This paper provides information (statistical data, legal framework) on the electric power produced by the renewable energy sources in France. It explains the associated local economical challenge and the french objectives in the European Union Directive. (A.L.B.)

  3. High-power laser source evaluation

    International Nuclear Information System (INIS)

    Back, C.A.; Decker, C.D.; Dipeso, G.J.; Gerassimenko, M.; Managan, R.A.; Serduke, F.J.D.; Simonson, G.F.; Suter, L.J.

    1997-07-01

    This document reports progress in these areas: EXPERIMENTAL RESULTS FROM NOVA: TAMPED XENON UNDERDENSE X-RAY EMITTERS; MODELING MULTI-KEV RADIATION PRODUCTION OF XENON-FILLED BERYLLIUM CANS; MAPPING A CALCULATION FROM LASNEX TO CALE; HOT X RAYS FROM SEEDED NIF CAPSULES; HOHLRAUM DEBRIS MEASUREMENTS AT NOVA; FOAM AND STRUCTURAL RESPONSE CALCULATIONS FOR NIF NEUTRON EXPOSURE SAMPLE CASE ASSEMBLY DESIGN; NON-IGNITION X-RAY SOURCE FLUENCE-AREA PRODUCTS FOR NUCLEAR EFFECTS TESTING ON NIF. Also appended are reprints of two papers. The first is on the subject of ''X-Ray Production in Laser-Heated Xe Gas Targets.'' The second is on ''Efficient Production and Applications of 2- to 10-keV X Rays by Laser-Heated Underdense Radiators.''

  4. Microwave and RF vacuum electronic power sources

    CERN Document Server

    Carter, Richard G

    2018-01-01

    Do you design and build vacuum electron devices, or work with the systems that use them? Quickly develop a solid understanding of how these devices work with this authoritative guide, written by an author with over fifty years of experience in the field. Rigorous in its approach, it focuses on the theory and design of commercially significant types of gridded, linear-beam, crossed-field and fast-wave tubes. Essential components such as waveguides, resonators, slow-wave structures, electron guns, beams, magnets and collectors are also covered, as well as the integration and reliable operation of devices in microwave and RF systems. Complex mathematical analysis is kept to a minimum, and Mathcad worksheets supporting the book online aid understanding of key concepts and connect the theory with practice. Including coverage of primary sources and current research trends, this is essential reading for researchers, practitioners and graduate students working on vacuum electron devices.

  5. Governance of Open Source Software Foundations: Who Holds the Power?

    Directory of Open Access Journals (Sweden)

    Ludovico Prattico

    2012-12-01

    Full Text Available The research reported in this article attempts to discover who holds the power in open source software foundations through the analysis of governance documents. Artificial neural network analysis is used to analyse the content of the bylaws of six open source foundations (Apache, Eclipse, GNOME, Plone, Python, and SPI for the purpose of identifying power structures. Results of the research suggest that: i the actions of an open source software foundation are centered around one of three groups: Members, Chairman/President/Executive Director, and Board of Directors; ii in only one of the six foundations is the Board of Directors responsible for both the community and the product; and iii artificial neural network analysis of the content of bylaws provides unbiased insights of the power structure of open source software foundations. These results may prove useful to those who contribute to open source foundations and use their products and services.

  6. Tritium power source for long-lived sensors

    Science.gov (United States)

    Litz, M. S.; Katsis, D. C.; Russo, J. A.; Carroll, J. J.

    2014-06-01

    A tritium-based indirect converting photovoltaic (PV) power source has been designed and prototyped as a long-lived (~15 years) power source for sensor networks. Tritium is a biologically benign beta emitter and low-cost isotope acquired from commercial vendors for this purpose. The power source combines tritium encapsulated with a radioluminescent phosphor coupled to a commercial PV cell. The tritium, phosphor, and PV components are packaged inside a BA5590-style military-model enclosure. The package has been approved by the nuclear regulatory commission (NRC) for use by DOD. The power source is designed to produce 100μW electrical power for an unattended radiation sensor (scintillator and avalanche photodiode) that can detect a 20 μCi source of 137Cs at three meters. This beta emitting indirect photon conversion design is presented as step towards the development of practical, logistically acceptable, lowcost long-lived compact power sources for unattended sensor applications in battlefield awareness and environmental detection.

  7. Expert assessment of advanced power sources. Contract report

    International Nuclear Information System (INIS)

    Gardner, C.L.

    2007-07-01

    Although DRDC published an exhaustive technical report (in August 2001) on technology trends in advanced power sources projected out to the year 2020, the terrorist attacks on the US on September 11, 2001 (and the consequent, augmented and more broadly-based defence and national security posture adopted by the CF/DND), together with rapid developments in power source technologies over the past five years, internationally, prompted DRDC to update the 2001 report, on a selected number of power source technologies or applications and to provide further guidance to DRDC's Advanced Power Source R and D program. Eight wide-ranging, power source technologies or applications were investigated, using the technique of 'expert elicitation' (that is, using independent experts in the various and diverse technological fields), based on a standardized questionnaire, augmented by the contractor's own expertise (and his overall analysis of the experts' responses) in these diverse areas. In addition, each expert was asked about his/her view on the likely role of nanotechnology in each technological area or application. Following collection and analysis of all the data, the contractor made recommendations on the ability of each power source to meet the future requirements of the CF/DND, taking into account the Technology Readiness Level, for each technology or application

  8. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  9. High power green lasers for gamma source

    Science.gov (United States)

    Durand, Magali; Sevillano, Pierre; Alexaline, Olivier; Sangla, Damien; Casanova, Alexis; Aubourg, Adrien; Saci, Abdelhak; Courjaud, Antoine

    2018-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750 x 500 x 150 mm), which allows a pulse-pulse stability of 0.1 % rms, and a long-term stability of 1,9 % over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 4.4 ps. As for the regenerative amplifier a long-term stability of 1.9 % over 30 hours was achieved in an environment with +/-1°C temperature fluctuations The compression and Second Harmonics Generation Stages have allowed the conversion of 150 mJ of uncompressed infrared beam into 60 mJ at 515 nm.

  10. Integrated Photovoltaic System Used as an Alternative Power Source

    Directory of Open Access Journals (Sweden)

    Ionel Laurentiu Alboteanu

    2014-09-01

    Full Text Available This paper presents a solution to use solar energy as an alternative source of electricity to conventional sources. The solution is to use a compact photovoltaic system integrated into a micro smart grid. The studied photovoltaic system is used into concrete application for the power supply lighting in a didactic laboratory.

  11. An improved electron impact ion source power supply

    International Nuclear Information System (INIS)

    Beaver, E.M.

    1974-01-01

    An electron impact ion source power supply has been developed that offers improved ion beam stability. The electrical adjustments of ion source parameters are more flexible, and safety features are incorporated to protect the electron emitting filament from accidental destruction. (author)

  12. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  13. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  14. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    Underwood, M.L.

    1995-01-01

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  15. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  16. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  17. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  18. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    Science.gov (United States)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  19. Economic analysis of the need for advanced power sources

    International Nuclear Information System (INIS)

    Hardie, R.W.; Omberg, R.P.

    1975-01-01

    The purpose of this paper is to determine the economic need for an advanced power source, be it fusion, solar, or some other concept. However, calculations were also performed assuming abandonment of the LMFBR program, so breeder benefits are a by-product of this study. The model used was the ALPS linear programming system for forecasting optimum power growth patterns. Total power costs were calculated over a planning horizon from 1975 to 2041 and discounted at 7 1 / 2 percent. The benefit of a particular advanced power source is simply the reduction in total power cost resulting from its introduction. Since data concerning advanced power sources (APS) are speculative, parametric calculations varying introduction dates and capital costs about a hypothetical APS plant were performed. Calculations were also performed without the LMFBR to determine the effect of the breeder on the benefits of an advanced power source. Other data used in the study, such as the energy demand curve and uranium resource estimates, are given in the Appendix, and a list of the 11 power plants used in this study is given. Calculations were performed for APS introduction dates of 2001 and 2011. Estimates of APS capital costs included cases where it was assumed the costs were $50/kW and $25/kW higher than the LMFBR. In addition, cases where APS and LMFBR capital costs are identical were also considered. It is noted that the APS capital costs used in this study are not estimates of potential advanced power system plant costs, but were chosen to compute potential dollar benefits of advanced power systems under extremely optimistic assumptions. As a further example, all APS fuel cycle costs were assumed to be zero

  20. Experiences with on-site power sources at KCB

    Energy Technology Data Exchange (ETDEWEB)

    Heijnen, B. M.A. [Borssele Nuclear Power Station, N.V. P.Z.E.M., Postbus 48, 4330 AA Middleburg (Netherlands)

    1986-02-15

    The design of the nuclear power station is of the late sixties. The experiences with the on-site power sources, signal processing and some of the resulting modifications of the design of the power plant are mentioned. In order to let the design satisfy as much as possible present ideas about safety, it was decided to realize a total new and Independent decay heat removal System. With this system a second independent on-site power System is at disposal in case of accident situations. (author)

  1. Methods of formation of efficiency indexes of electric power sources integration in regional electric power systems

    International Nuclear Information System (INIS)

    Marder, L.I.; Myzin, A.I.

    1993-01-01

    A methodic approach to the grounding of the integration process efficiency within the Unified electric power system is given together with the selection of a rational areal structure and concentration of power-generating source capacities. Formation of an economic functional according to alternative scenavies including the cost components taking account of the regional interests is considered. A method for estimation and distribution of the effect from electric power production integration in the power systems under new economic conditions is proposed

  2. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    The potential of low-temperature heat sources for power production has been discussed for decades. The diversity and availability of low-temperature heat sources makes it interesting for power production. The thermodynamic power cycle is one of the promising technologies to produce electricity from low-temperature heat sources. There are different working fluids to be used in a thermodynamic power cycle. Working fluid selection is essential for the performance of the power cycle. Over the last years, different working fluid screening criteria have been used. In broad speaking the screening criteria can be grouped as thermodynamic performance, component size requirement, economic performance, safety and environmental impact. Screening of working fluids at different heat source temperatures (80-200 Celsius degrees) using thermodynamic performance (power output and exergy efficiency) and component size (heat exchanger and turbine) is investigated. It is found that the 'best' working fluid depends on the criteria used and heat source temperature level. Transcritical power cycles using carbon dioxide as a working fluid is studied to produce power at 100 Celsius degrees. Carbon dioxide is an environmentally friendly refrigerant. The global warming potential of carbon dioxide is 1. Furthermore, because of its low critical temperature (31 Celsius degrees), carbon dioxide can operate in a transcritical power cycle for lower heat source temperatures. A transcritical configuration avoids the problem of pinching which otherwise would happened in subcritical power cycle. In the process, better temperature matching is achieved and more heat is extracted. Thermodynamic analysis of transcritical cycle is performed; it is found that there is an optimal operating pressure for highest net power output. The pump work is a sizable fraction of the work produced by the turbine. The effect of efficiency deterioration of the pump and the turbine is compared. When the

  3. Power source roadmaps using bibliometrics and database tomography

    International Nuclear Information System (INIS)

    Kostoff, R.N.; Tshiteya, R.; Pfeil, K.M.; Humenik, J.A.; Karypis, G.

    2005-01-01

    Database Tomography (DT) is a textual database analysis system consisting of two major components: (1) algorithms for extracting multi-word phrase frequencies and phrase proximities (physical closeness of the multi-word technical phrases) from any type of large textual database, to augment (2) interpretative capabilities of the expert human analyst. DT was used to derive technical intelligence from a Power Sources database derived from the Science Citation Index. Phrase frequency analysis by the technical domain experts provided the pervasive technical themes of the Power Sources database, and the phrase proximity analysis provided the relationships among the pervasive technical themes. Bibliometric analysis of the Power Sources literature supplemented the DT results with author/journal/institution/country publication and citation data

  4. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    The global electrical energy consumption is steadily rising and consequently there is a demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective...... renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...... to the grid and this paper will first briefly discuss three different alternative/ renewable energy sources. Next, various configurations of the wind turbine technology are presented, as this technology seems to be most developed and cost-effective. Finally, the developments and requirements from the grid...

  5. Energy control of supercapacitor/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Payman, Alireza; Pierfederici, Serge; Meibody-Tabar, Farid

    2008-01-01

    This paper deals with a flatness based control principle in a hybrid system utilizing a fuel cell as a main power source and a supercapacitor as an auxiliary power source. The control strategy is based on regulation of the dc bus capacitor energy and, consequently, voltage regulation. The proposed control algorithm does not use a commutation algorithm when the operating mode changes with the load power variation and, thus, avoids chattering effects. Using the flatness based control method, the fuel cell dynamic and its delivered power is perfectly controlled, and the fuel cell can operate in a safe condition. In the hybrid system, the supercapacitor functions during transient energy delivery or during energy recovery situations. To validate the proposed method, the control algorithms are executed in dSPACE hardware, while analogical current loops regulators are employed in the experimental environment. The experimental results prove the validity of the proposed approach

  6. Magnet power supplies for the Advanced Light Source

    International Nuclear Information System (INIS)

    Jackson, L.T.; Lutz, I.C.

    1989-03-01

    The Lawrence Berkeley Laboratory (LBL) is building an Advanced Light Source (ALS) to produce synchrotron radiation. An electron linear accelerator, and a booster synchrotron are used to accelerate the electron beam to 1.5 GeV to fill the storage ring. This paper describes the power supplies used for the magnets in the booster and the storage ring and the interface requirements for computer control and monitoring the power supplies and magnet currents. 1 ref., 3 figs., 2 tabs

  7. Possible power source found for fiber optic lasers

    International Nuclear Information System (INIS)

    Krupa, Tyler J.

    2000-01-01

    Scientists at the US Department of Energy's Sandia National Laboratory are researching ways to use a new semiconductor alloy, indium gallium arsenide nitride (InGaAsN), as as photovoltaic power source for lasers in fiber optics and space communication satellites. The efficiency of electricity-generating solar cells utilizing InGaAsN is predicted to be 40%-nearly twice the efficiency rate of a standard silicon solar cell. The use of InGaAsN in solar cells is a potential power source for satellites and other space systems. (AIP) (c)

  8. Characteristics of the low power cylindrical anode layer ion source

    International Nuclear Information System (INIS)

    Zhao Jie; Tang Deli; Cheng Changming; Geng Shaofei

    2009-01-01

    A low power cylindrical anode layer ion source and its working characteristic, and the beam distribution are introduced. This ion source has two working states, emanative state and collimated state, and the normal parameters of this system are: working voltage 200-1200 V, discharge current 0.1-1.4A, air pressure 1.9 x 10 -2 -1.7 x 10 -1 Pa, gas flow 5-20 sccm. (authors)

  9. High Power Modulator/regulators for neutral beam sources

    International Nuclear Information System (INIS)

    Lawson, J.Q.; Deitz, A.

    1975-01-01

    PPPL has recently completed two new Modulator/Regulators for neutral injection sources used on the ATC machine and is constructing four new ones for use with sources on the PLT machine. The ATC modulator uses the well proven 4CX35,000C tetrode as the main switch tube, while the PLT modulators will be using the new but significantly higher powered X-2170 tetrodes. Some interesting circuit and manufacturing techniques are discussed

  10. Powerful warm infrared sources in early-type galaxies

    International Nuclear Information System (INIS)

    Dressel, L.L.

    1988-01-01

    IRAS far-infrared sources have been identified with 129 S0, Sa, Sb, and Sc galaxies in a statistically complete sample of 738 galaxies brighter than 14.5 mag and smaller than 4.0 arcmin. In most cases, the far-IR colors and the ratios of far-IR flux to radio flux density are those of normal galactic disks and/or starbursts. The most powerful far-IR sources in S0 and Sa galaxies are just as powerful as the strongest far-IR sources in Sb and Sc galaxies. Bright-IR sources in S0 and Sa galaxies are warm; those in Sc galaxies are cool. Sb galaxies have both warm and cool IR sources. Bright warm IR sources occur much more frequently in barred galaxies than in galaxies without bars for types S0, Sa, and Sb. Bright, cool IR sources are found with increasing frequency along the Hubble sequence, regardless of the presence or absence of a bar. At least some S0 galaxies with warm, bright IR sources have peculiar morphologies and ambiguous classifications. 22 references

  11. Modern batteries an introduction to electrochemical power sources

    CERN Document Server

    Vincent, C

    2003-01-01

    Based on the successful first edition, this book gives a general theoretical introduction to electrochemical power cells (excluding fuel cells) followed by a comprehensive treatment of the principle battery types - covering chemistry, fabrication characteristics and applications. There have been many changes in the field over the last decade and many new systems have been commercialised. Since the recent advent of battery powered consumer products (mobile phones, camcorders, lap-tops etc.) advanced power sources have become far more important. This text provides an up-to-date account of batter

  12. Optimum Arrangement of Reactive Power Sources While Using Genetic Algori

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov

    2010-01-01

    Full Text Available Reduction of total losses in distribution electricity supply network is considered as an important measure which serves for improvement of efficiency of electric power supply systems. This objective can be achieved by optimum distribution of reactive power sources in proper places of distribution electricity supply network. The proposed methodology is based on application of a genetic algorithm. Total expenses for installation of capacitor banks, their operation and also expenses related to electric power losses are considered as an efficiency function which is used for determination of places with optimum values of capacitor bank power. The methodology is the most efficient for selection of optimum places in the network where it is necessary to install capacitor banks with due account of their power control depending on a switched-on load value in the units.

  13. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  14. 46 CFR 28.870 - Emergency source of electrical power.

    Science.gov (United States)

    2010-10-01

    .... (a) The following electrical loads must be connected to an independent emergency source of power capable of supplying all connected loads continuously for at least three hours: (1) Navigation lights; (2... ventilated compartment. The batteries must be protected from falling objects; (4) Each battery tray must be...

  15. High School Principals as Leaders: Styles and Sources of Power

    Science.gov (United States)

    Brinia, Vasiliki; Papantoniou, Eva

    2016-01-01

    Purpose: The purpose of this paper is to present the characteristics of leadership (style adopted, sources of power exercised and factors affecting leadership) of high school principals in Greece. Design/Methodology/Approach: In total, 235 school principals were surveyed using questionnaires. These questionnaires assessed how often they adopted…

  16. Active Power Deficit Estimation in Presence of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2015-01-01

    The inertia of the power system is reduced in the presence of Renewable Energy Sources (RESs) due to their low or even no contribution in the inertial response as it is inherently available in the Synchronous Machines (SMs). The total inertia of the grid becomes unknown or at least uncertain...

  17. Modified impedance source inverter for power conditioning system

    Indian Academy of Sciences (India)

    DC link voltage boost, reduced total harmonic distortion of output current and voltage, better voltage gain and wide range of output voltage controlcan be achieved easily with improved power quality. Experimental set-up of the modified impedance source inverter with Field Programmable Gate Array (FPGA) controller has ...

  18. Design criteria for an uninterruptable power source (UPS)

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, S.S.N. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Okeke, C.A. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Mortune, B.U. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Okeke, C.C. [Univ. of Nigeria, Nsukka (Nigeria). Dept. of Computer Science

    1997-05-01

    This paper on uninterruptible power source (UPS) is a result of an R and D project; it describes the components of a UPS system and reviews the design requirements necessary for its construction with low cost and ease of maintenance. (orig.)

  19. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  20. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  1. Enhanced sources of acoustic power surrounding AR 11429

    International Nuclear Information System (INIS)

    Donea, Alina; Hanson, Christopher

    2013-01-01

    Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.

  2. Tetrode bias power supply for Indus-1, synchrotron radiation source

    International Nuclear Information System (INIS)

    Tripathi, A.; Badapanda, M.K.; Tyagi, R.; Upadhyay, R.; Bohrey, A.; Hannurkar, P.R.

    2009-01-01

    An AC regulator based 7 kV, 3 A high voltage DC power supply is designed, fabricated and tested on dummy load for BEL make Tetrode type 15000CX, used in the high power RF amplifier at 31.613 MHz employed with INDUS-1, Synchrotron Radiation Source (SRS). Various protections features like over voltage, under voltage, over current, phase failure and phase reversal are incorporated in this power supply and presented in this paper. As Tetrode amplifier requires various other power supplies in addition to this bias power supply and they are operated in a particular sequence for its healthy operation, suitable interlock arrangements have been incorporated and also presented in this paper. The reliable operation of protection and interlock features incorporated in this power supply has been checked with dummy load under simulated conditions. Three numbers of series limiting inductors, one in each phase, have been incorporated in this power supply to limit fault currents under unfavourable conditions and there by increasing the overall life of this power supply. It will replace existing 7 kV, 3 A HVDC power supply, which is in operation for more than fifteen years with Indus-1 SRS and is likely to be helpful in reducing the down time of Indus-1 SRS. It has better performance features than the existing power supply. The long term voltage stability better than 0.3 % and output ripple less than 0.3 % have been achieved for this Tetrode bias power supply. This power supply is likely to be integrated with INDUS-1 SRS soon. (author)

  3. Power supply system for negative ion source at IPR

    Science.gov (United States)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  4. Power supply system for negative ion source at IPR

    International Nuclear Information System (INIS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-01-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ∼5 x 10 12 cm -3 , from which ∼ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (∼15 to 35kV), and high current (∼ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (∼50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (∼ 50kV) isolated from the system. The paper shall

  5. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  6. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    OpenAIRE

    Vlad MARSIC; Alessandro GIULIANO; Meiling ZHU

    2013-01-01

    This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimiza...

  7. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  8. Progress of compact Marx generators high power microwave source

    International Nuclear Information System (INIS)

    Liu Jinliang; Fan Xuliang; Bai Guoqiang; Cheng Xinbing

    2012-01-01

    The compact Marx generators, which can operate at a certain repetition frequency with small size, light weight, and high energy efficiency, are widely used in narrowband, wideband and ultra-wideband high power microwave (HPM) sources. This type of HPM source based on compact Marx generators is a worldwide research focus in recent years, and is important trend of development. The developments of this type of HPM source are described systemically in this paper. The output parameters and structural characteristics are reviewed, and the trends of development are discussed. This work provides reference and evidence for us to master the status of the HPM source based on compact Marx generators correctly and to explore its technical routes scientifically. (authors)

  9. Laser power sources and laser technology for accelerators

    International Nuclear Information System (INIS)

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  10. The role of power sources in the European electricity mix

    Directory of Open Access Journals (Sweden)

    Bonin Bernard

    2017-01-01

    Full Text Available The ongoing debate in Europe about energy transition enhances the necessity to evaluate the performance of the envisaged mix of power sources, in terms of production cost, CO2 emissions and security of supply. In this study, we use MIXOPTIM, a Monte-Carlo simulator of the behavior of a mix of power sources on a territory, to evaluate the performance of the present EU power mix. After a validation on the French mix, we applied it to the whole EU territory and made variational calculations around the present mix to evaluate the performance impacts induced by small changes in installed renewable power and nuclear power. According to the analyzed criteria, the study shows that a plausible way to keep an affordable MWh in Europe with minimal amount of CO2 emissions and acceptable security of supply could be to extend the life of existing Gen II nuclear reactors. All other options lead to the degradation of the mix performance, on at least one of the three criteria listed above.

  11. Integrating renewable energy sources in the Portuguese power system

    International Nuclear Information System (INIS)

    Martins, Nuno; Cabral, Pedro; Azevedo, Helena

    2012-01-01

    The integration of large amounts of renewable energy is an important challenge for the future management of electric systems, since it affects the operation of the electric power system and the design of the transmission and distribution network infrastructure. This is specially due to the connection requirements of the renewable energy technologies, to the extension and adjustment of the grid infrastructure and to the identification of new solutions for operational reserve, in order to maintain the overall system flexibility and security. In this paper, the impact of high penetration of intermittent energy sources, expected in long term in the Portuguese Power System, is analysed and the operational reserve requirements to accomplish a reliable and reasonable electrical energy supply are identified. It was concluded that pumped storage power plants, special power plants with regulating capabilities, will have an important task to provide the operational reserve requirements of the Portuguese Power System. This technology assumes a fundamental role not only to ensure the adequate levels of security of supply but also to allow the maximum exploitation of the installed capacity in renewable energy sources. (authors)

  12. Polyolephine waste recycling as source of power energy

    Directory of Open Access Journals (Sweden)

    Tisovski Štefan

    2008-01-01

    Full Text Available Polyolephine waste (polyetilene, polypropilene is the main source of environmental pollution. Depolymerization of waste in reactor under atmospheric pressure yields hydrocarbon mixture C1-C34. In turn, combustion of C1-C7 fraction provides reactor temperature regime. The plant is automated and energetically highly efficient. Small electric power is required for operating the plant. The waste originating from depolymerazation does not pollute the environment. Fraction C7-C34 not only serves for commercial purposes but also as a power energy provider within the waste deploymerization plant.

  13. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  14. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  15. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  16. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  17. Recent helicity source and power supply improvements in CTX

    International Nuclear Information System (INIS)

    Henins, I.; Knox, S.O.; Jarboe, T.R.; Barnes, C.W.

    1985-01-01

    Since the last CT Symposium, two major changes in CTX have been the introduction of pulse forming networks (PFNs) to drive the coaxial electrode helicity source, and the very recent installation of a larger source with electrode diameters about twice of the previous ones. The power supplies used for CTX have ranged from the simple connection of the capacitor bank across the electrode collector plates (slow mode) to the more sophisticated PFNs, described here, which optimize the energy transfer from the capacitor bank to the magnetic fields of the spheromak. Using the PFNs, the formation and sustainment phase to peak toroidal plasma current lasts longer (approx. =0.7 ms) than in the slow mode (approx. =0.05 ms), thus lowering the peak current that must flow through the electrode surfaces. Also, by supplying the source electrodes with both a square pulse current waveform and a quasi-steady source flux, phi/sub g/, one can generate helicity at a constant source lambda/sub g/ parameter. The use of a larger diameter helicity source will improve the energy efficiency of helicity injection and allow higher source current for the same surface current density because of the larger electrode surface area

  18. Characterization of noise sources in nuclear power reactors

    International Nuclear Information System (INIS)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D

  19. Characterization of noise sources in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D.

  20. Saturable reactor-controlled power supply system for TCT/TFTR neutral beam sources

    International Nuclear Information System (INIS)

    Baker, W.R.; Hopkins, D.B.; Dexter, W.L.; Kuenning, R.W.; Smith, B.J.

    1975-11-01

    Each neutral beam source requires one major power supply, the acceleration supply, and four auxiliary power supplies. The power supplies are designed to permit independent interruption of current to any source and crowbarring within 20 μsec, in the event of a source spark, while not disturbing the normal pulsing of all other adjacent sources. The sources are described

  1. Effect of resonant microwave power on a PIG ion source

    International Nuclear Information System (INIS)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 29 references, 2 figures

  2. Power-law thermal model for blackbody sources

    International Nuclear Information System (INIS)

    Del Grande, N.K.

    1979-01-01

    The spectral radiant emittance W/sub E/ from a blackbody at a temperature kT for photons at energies E above the spectral peak (2.82144 kT) varies as (kT)/sup E/kT/. This power-law temperature dependence, an approximation of Planck's radiation law, may have applications for measuring the emissivity of sources emitting in the soft x-ray region

  3. X-band RF power sources for accelerator applications

    International Nuclear Information System (INIS)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T.

    2011-01-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  4. Scoping calculations of power sources for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis

  5. Design of the power sources for portable nuclear instruments

    International Nuclear Information System (INIS)

    Chen Wei; Fang Fang; Cui Yan; Cui Junliang; Zhou Wei

    2007-01-01

    How to charge for the portable equipments is always a topical subject aimed by people, the application of new type batteries and Battery Management brings great facility to people's life, the rechargeable battery for portable equipments is widely used in portable equipments, but the convenience of the charging power source is limited in special situation. This paper will discuss how to combining rechargeable battery with traditional alkaline batteries for charging the portable instruments. (authors)

  6. A Subtle Source of Power: The Effect of Having an Expectation on Anticipated Interpersonal Power

    Science.gov (United States)

    BALDWIN, AUSTIN S.; KIVINIEMI, MARC T.; SNYDER, MARK

    2009-01-01

    In 2 studies, the authors tested the hypothesis that having information about another person can be a source of power in interpersonal interactions. In Study 1, the authors randomized participants to receive an expectation about an interaction partner, and the expectation provided an informational advantage for some participants but not for others. Participants with an advantage reported higher perceptions of power than did those who had information that did not confer an advantage; however, the effect was isolated to feelings of informational power. In Study 2, the authors examined whether the effect extended to different types of power when the information did not provide an explicit advantage. In this case, participants who received a more ambiguous expectation reported more diffuse feelings of power. The authors discuss implications for understanding the dynamics of power in social interactions. PMID:19245049

  7. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  8. Power-Law Template for Infrared Point-Source Clustering

    Science.gov (United States)

    Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; hide

    2012-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  9. Use assessment of electronic power sources for SMAW

    Directory of Open Access Journals (Sweden)

    Scotti, A.

    1999-04-01

    Full Text Available The aim of the present work was to assess the efficacy of the use of modern technologies for power supplies in Shielded Metal Are Welding (SMAW. Coupon tests were welded by using a series of five different classes of commercial electrodes, covering their current ranges. Both a conventional electromagnetic and an electronic (inverter power sources were employed. Fusion rate, deposition efficiency, bead finish and weld geometry were measured at each experiment. Current and voltage signals were acquired at a high rate to evaluate the dynamic behavior of the power sources. The static performances of both power sources were also determined. The results showed that despite the remarkable differences between the power supplies, based on static and dynamic characterizations, no significant difference was noticed in the operational behavior of the electrodes, in the given conditions, apart from a better anti-stick performance obtained with the electronic power source.

    El objetivo del presente trabajo fue evaluar la eficacia del uso de tecnologías modernas para fuentes de energía en soldaduras con electrodo revestido (Shielded Metal Are Welding -SMAW-. Los materiales de ensayo se soldaron usando una serie de cinco clases diferentes de electrodos comerciales, cubriendo sus rangos de corriente. Para esto se utilizó una fuente de energía electromagnética convencional y una fuente de energía electrónica (inversora. La tasa de fusión, eficiencia de deposición, terminación del cordón así como el diseño de la soldadura se midieron en cada experimento. Las señales de corriente y voltaje se obtuvieron a una proporción alta para evaluar el comportamiento dinámico de las fuentes de energía. También se determinó la actuación estática de ambas fuentes. Los resultados mostraron que a pesar de las diferencias notables entre los suministros de energía, no se nota diferencia alguna significante en la conducta de trabajo de los electrodos, en

  10. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    Directory of Open Access Journals (Sweden)

    Vlad MARSIC

    2013-01-01

    Full Text Available This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimization ensure the system’s energy autonomous capability demonstrated in this paper by presenting the promising testing results achieved following its integration with structural health monitoring and body area network applications.

  11. Source modelling in seismic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, M.S.

    1978-12-01

    The proposed probabilistic procedure provides a consistent method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. The potential earthquake activity zones are idealized as point, line or area sources. For these seismic source types, expressions to evaluate their contribution to seismic risk are derived, considering all the possible site-source configurations. The seismic risk at a site is found to depend not only on the inherent randomness of the earthquake occurrences with respect to magnitude, time and space, but also on the uncertainties associated with the predicted values of the seismic and geometric parameters, as well as the uncertainty in the attenuation model. The uncertainty due to the attenuation equation is incorporated into the analysis through the use of random correction factors. The influence of the uncertainty resulting from the insufficient information on the seismic parameters and source geometry is introduced into the analysis by computing a mean risk curve averaged over the various alternative assumptions on the parameters and source geometry. Seismic risk analysis is carried for the city of Denizli, which is located in the seismically most active zone of Turkey. The second analysis is for Akkuyu

  12. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  13. Use a renewable energy sources and latest power-saving technologies in the the Republic Kazakstan

    International Nuclear Information System (INIS)

    Gulevich, N.V.

    1996-01-01

    The subject of alternative power in Kazakstan is brought up. Wind-, hydro-, solar power, biogas installation can improve the Republic power base. The main directions of activity of A. Einstein International Power engineering Academy on involving renewable energy sources and latest power-saving technologies to Republic of Kazakstan's fuel-power balance is given. It should be noted that renewable power engineering usually handles reversible energy sources and reserved power cycles. (author)

  14. Turbulence in extended synchrotron radio sources. I. Polarization of turbulent sources. II. Power-spectral analysis

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1989-01-01

    Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs

  15. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  16. Radioisotope power sources in the terrestrial and marine environment

    International Nuclear Information System (INIS)

    Holleman, T.J.; Wahlquist, E.J.

    1976-01-01

    In response to user agency needs, the Energy Research and Development Administration (ERDA), Division of Nuclear Research and Applications (NRA), has undertaken a variety of research and development efforts to insure the availability of highly reliable, long-lived nuclear power sources for special purpose terrestrial missions planned for the late 1970's and early 1980's. One such effort currently being pursued is the development of a 1kW(e) Stirling Radioisotope Power System for integration into an Unmanned Free Swimming Submersible (UFSS) demonstration vehicle now under development by the Naval Research Laboratory. Another important effort which NRA has undertaken is a study to evaluate both isotope fueled and non-isotope fueled unattended power systems in the 2kW(e) range for application in cold regions. In the lower power ranges of Radioisotope Thermoelectric Generators, NRA continues to support new development efforts and new application areas. The Division is providing assistance to the Navy on a 1 / 2 W(e) RTG for use in various underwater applications. The various efforts are briefly discussed

  17. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  18. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  19. The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations

    Science.gov (United States)

    Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.

    2017-05-01

    The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.

  20. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  1. POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING

    Energy Technology Data Exchange (ETDEWEB)

    Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Viero, Marco [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Devlin, Mark J.; Reese, Erik D. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Halpern, Mark; Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hlozek, Renee; Marriage, Tobias A.; Spergel, David N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); Wollack, Edward [NASA/Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2012-06-20

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  2. A power transformer as a source of noise.

    Science.gov (United States)

    Zawieska, Wiktor Marek

    2007-01-01

    This article presents selected results of analyses and simulations carried out as part of research performed at the Central Institute of Labor Protection - the National Research Institute (CIOP-PIB) in connection with the development of a system for active reduction of noise emitted by high power electricity transformers. This analysis covers the transformer as a source of noise as well as a mathematical description of the phenomenon of radiation of vibroacoustic energy through a transformer enclosure modeled as a vibrating rectangular plate. Also described is an acoustic model of the transformer in the form of an array of loudspeakers.

  3. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  4. The role of fusion as a future power source

    International Nuclear Information System (INIS)

    Kintner, E.E.; Hirsch, R.L.

    1977-01-01

    Nations of western Europe, Japan, the Soviet Union, and the United States are working together to demonstrate the practicality of fusion power early in the 21st century. Many difficult engineering problems make fusion development one of the most formidable scientific and technological challenges ever attempted. However, the outlook is promising for achieving an inexhaustible energy source that is safe, economic, and with acceptable environmental effects. The United States magnetic fusion power development program aims at producing fusion energy experimentally in the early 1980's and demonstrating power production on a commercial scale before 2000. This prognosis reflects the confidence gained in scientific successes of the late 1960's through the present. However, many physics problems remain to be solved and many complex engineering problems without obvious solutions await attention. In response to experimental successes and the perceived importance of the fusion energy alternative, the United States effort has grown rapidly. Scientific investigations of plasma physics continue while planned engineering studies lead toward the practical goal of a commercial technology that will take a prominent place among available energy sources of the next century. Development of laser and electron beam fusion proceeds. Alternative fusion devices are investigated for their potential feasibility while the tokamak configuration is used for principal experimental devices. A national program plan and budget coordinates the efforts of federal laboratories, universities and industry. The utilities industry conducts an independent program which is increasingly coordinated with government-sponsored activity. Fusion energy programs of several nations benefit one another and should cooperate more closely in specific problem areas. Achievement of practical fusion power could be advanced through more effective mutually supporting fusion development programs. The economic and technical

  5. Corrosion in batteries and fuel-cell power sources

    International Nuclear Information System (INIS)

    Cieslak, W.R.

    1987-01-01

    Batteries and fuel cells, as electrochemical power sources, provide energy through controlled redox reactions. Because these devices contain electrochemically active components, they place metals in contact with environments in which the metals may corrode. The shelf lives of batteries, particularly those that operate at ambient temperatures depend on very slow rates of corrosion of the electrode materials at open circuit. The means of reducing this corrosion must also be evaluated for its influence on performance. A second major corrosion consideration in electrochemical power sources involves the hardware. Again, shelf lives and service lives depend on very good corrosion resistance of the containment materials and inactive components, such as separators. In those systems in which electrolyte purity is important, even small amounts of corrosion that have not lessened structural integrity can degrade performance. There is a wide variety of batteries and fuel cells, and new systems are constantly under development. Therefore, to illustrate the types of corrosion phenomena that occur, this article will discuss the following systems: lead-acid batteries, alkaline batteries (in terms of the sintered nickel electrode only), lithium ambient-temperature batteries, aluminum/air batteries, sodium/sulfur batteries, phosphoric acid (H/sub 3/PO/sub 4/) fuel cells, and molten carbonate fuel cells

  6. Peak Source Power Associated with Positive Narrow Bipolar Lightning Pulses

    Science.gov (United States)

    Bandara, S. A.; Marshall, T. C.; Karunarathne, S.; Karunarathne, N. D.; Siedlecki, R. D., II; Stolzenburg, M.

    2017-12-01

    During the summer of 2016, we deployed a lightning sensor array in and around Oxford Mississippi, USA. The array system comprised seven lightning sensing stations in a network approximately covering an area of 30 km × 30 km. Each station is equipped with four sensors: Fast antenna (10 ms decay time), Slow antenna (1.0 s decay time)), field derivative sensor (dE/dt) and Log-RF antenna (bandwidth 187-192 MHz). We have observed 319 Positive NBPs and herein we report on comparisons of the NBP properties measured from the Fast antenna data with the Log-RF antenna data. These properties include 10-90% rise time, full width at half maximum, zero cross time, and range-normalized amplitude at 100 km. NBPs were categorized according to the fine structure of the electric field wave shapes into Types A-D, as in Karunarathne et al. [2015]. The source powers of NBPs in each category were determined using single station Log-RF data. Furthermore, we also categorized the NBPs in three other groups: initial event of an IC flash, isolated, and not-isolated (according to their spatiotemporal relationship with other lightning activity). We compared the source powers within each category. Karunarathne, S., T. C. Marshall, M. Stolzenburg, and N. Karunarathna (2015), Observations of positive narrow bipolar pulses, J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023150.

  7. A combined source of electron bunches and microwave power

    International Nuclear Information System (INIS)

    Xie, J.L.; Wang, F.Y.; Yang, X.P.; Shen, B.; Gu, W.; Zhang, L.W.

    2003-01-01

    In this article, the possibility of using a high power klystron amplifier simultaneously as a microwave power source as usual and an electron bunches source by extracting the spent beam with a magnet and also as an oscillator by feedback is investigated. The purpose of this study is to demonstrate the feasibility of constructing a very compact electron linear accelerator or for other applications of electron bunches. The feasibility of the idea was first examined by computer simulation of the electron motion in a 5 MW klystron and the characteristics of the klystron spent beam. Experimental study was then carried out by installing a radio frequency cavity and a Faraday cage in sequence at the exit end of a bending magnet located at the top of the klystron collector. The energy and current of the chopped spent electron beam can then be measured. By properly choosing the feedback circuit elements, the frequency stability of the klystron in oscillator mode was proved to be good enough for linac operation. According to the results presented in this article, it is evident that an extremely compact linac for research and education with better affordability can be constructed to promote the applications of linacs

  8. Limitation of fusion power plant installation on future power grids under the effect of renewable and nuclear power sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shutaro, E-mail: takeda.shutarou.55r@st.kyoto-u.ac.jp [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Sakurai, Shigeki [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Suita, Osaka (Japan); Kasada, Ryuta; Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan)

    2016-11-01

    Graphical abstract: - Highlights: • Future power grids would be unstable due to renewable and nuclear power sources. • Output interruptions of fusion plant would cause disturbances to future grids. • Simulation results suggested they would create limitations in fusion installation. • A novel diagram was presented to illustrate this suggested limitation. - Abstract: Future power grids would be unstable because of the larger share of renewable and nuclear power sources. This instability might bring some additional difficulties to fusion plant installation. Therefore, the authors carried out a quantitative feasibility study from the aspect of grid stability through simulation. Results showed that the more renewable and nuclear sources are linked to a grid, the greater disturbance the grid experiences upon a sudden output interruption of a fusion power plant, e.g. plasma disruption. The frequency deviations surpassed 0.2 Hz on some grids, suggesting potential limitations of fusion plant installation on future grids. To clearly show the suggested limitations of fusion plant installations, a novel diagram was presented.

  9. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  10. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  11. Development of the power supplies of the prototype ion source for the EAST

    International Nuclear Information System (INIS)

    Liu Zhimin; Hu Chundong; Liu Sheng; Jiang Caichao; Song Shihua; Xie Yahong; Sheng Peng

    2011-01-01

    For the neutral beam injector (NBI) of the Experimental Advanced Superconducting Tokamak (EAST), a test stand of a high-current ion source has been in construction. The NBI power supply system includes the plasma generator power supply, plasma electrode power supply, high voltage power divider, negative high voltage power supply, and the transmission lines and the snubber. A multi-megawatt prototype ion source was developed. The arc discharge of the prototype ion source was obtained in the test. The test results for the ion source power supplies and the arc discharge of the ion source are presented. (authors)

  12. local alternative sources for cogeneration combined heat and power system

    Science.gov (United States)

    Agll, Abdulhakim Amer

    Global demand for energy continues to grow while countries around the globe race to reduce their reliance on fossil fuels and greenhouse gas emissions by implementing policy measures and advancing technology. Sustainability has become an important issue in transportation and infrastructure development projects. While several agencies are trying to incorporate a range of sustainability measures in their goals and missions, only a few planning agencies have been able to implement these policies and they are far from perfect. The low rate of success in implementing sustainable policies is primarily due to incomplete understanding of the system and the interaction between various elements of the system. The conventional planning efforts focuses mainly on performance measures pertaining to the system and its impact on the environment but seldom on the social and economic impacts. The objective of this study is to use clean and alternative energy can be produced from many sources, and even use existing materials for energy generation. One such pathway is using wastewater, animal and organic waste, or landfills to create biogas for energy production. There are three tasks for this study. In topic one evaluated the energy saving that produced from combined hydrogen, heat, and power and mitigate greenhouse gas emissions by using local sustainable energy at the Missouri S&T campus to reduce energy consumption and fossil fuel usage. Second topic aimed to estimate energy recovery and power generation from alternative energy source by using Rankin steam cycle from municipal solid waste at Benghazi-Libya. And the last task is in progress. The results for topics one and two have been presented.

  13. Inexpensive, Low Power, Open-Source Data Logging hardware development

    Science.gov (United States)

    Sandell, C. T.; Schulz, B.; Wickert, A. D.

    2017-12-01

    Over the past six years, we have developed a suite of open-source, low-cost, and lightweight data loggers for scientific research. These loggers employ the popular and easy-to-use Arduino programming environment, but consist of custom hardware optimized for field research. They may be connected to a broad and expanding range of off-the-shelf sensors, with software support built in directly to the "ALog" library. Three main models exist: The ALog (for Autonomous or Arduino Logger) is the extreme low-power model for years-long deployments with only primary AA or D batteries. The ALog shield is a stripped-down ALog that nests with a standard Arduino board for prototyping or education. The TLog (for Telemetering Logger) contains an embedded radio with 500 m range and a GPS for communications and precision timekeeping. This enables meshed networks of loggers that can send their data back to an internet-connected "home base" logger for near-real-time field data retrieval. All boards feature feature a high-precision clock, full size SD card slot for high-volume data storage, large screw terminals to connect sensors, interrupts, SPI and I2C communication capability, and 3.3V/5V power outputs. The ALog and TLog have fourteen 16-bit analog inputs with a precision voltage reference for precise analog measurements. Their components are rated -40 to +85 degrees C, and they have been tested in harsh field conditions. These low-cost and open-source data loggers have enabled our research group to collect field data across North and South America on a limited budget, support student projects, and build toward better future scientific data systems.

  14. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  15. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  16. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  17. Inductive-energy power flow for X-ray sources

    International Nuclear Information System (INIS)

    Ware, K.D.; Filios, P.G.; Gullickson, R.L.; Hebert, M.P.; Rowley, J.E.; Schneider, R.F.; Summa, W.J.; Vitkovski, I.M.

    1996-01-01

    The Defense Nuclear Agency (DNA) has been developing inductive energy storage (IES) technology for generating intense x-rays from electron beam-target interactions and from plasma radiating sources (PRS). Because of the complex interaction between the commutation of the current from the plasma and the stable dissipation of the energy in the load, DNA has supported several variations of power flow technology. Major variations include: (1) current interruption using a plasma opening switch (POS); (2) continuous current commutation through current-plasma motion against neutral, ionized, or magnetized medium [i.e., dense plasma focus-like (DPF) and plasma flow switch (PFS) technologies]; and, in addition, possible benefits of (3) directly driven complex PRS loads are being investigated. DNA programs include experimental and theoretical modeling and analysis with investigations (1) on Hawk and a Decade module in conjunction with the development of the bremsstrahlung sources (BRS), and (2) on Hawk, ACE-4 and Shiva-Star, as well as cooperative research on GIT-4 and GIT-8, in conjunction with PRS. (author). 1 tab., 12 figs., 17 refs

  18. Inductive-energy power flow for X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Ware, K D; Filios, P G; Gullickson, R L; Hebert, M P; Rowley, J E; Schneider, R F; Summa, W J [Defense Nuclear Agency, Alexandria, VA (United States); Vitkovski, I M [Logicon RDA, Arlington, VA (United States)

    1997-12-31

    The Defense Nuclear Agency (DNA) has been developing inductive energy storage (IES) technology for generating intense x-rays from electron beam-target interactions and from plasma radiating sources (PRS). Because of the complex interaction between the commutation of the current from the plasma and the stable dissipation of the energy in the load, DNA has supported several variations of power flow technology. Major variations include: (1) current interruption using a plasma opening switch (POS); (2) continuous current commutation through current-plasma motion against neutral, ionized, or magnetized medium [i.e., dense plasma focus-like (DPF) and plasma flow switch (PFS) technologies]; and, in addition, possible benefits of (3) directly driven complex PRS loads are being investigated. DNA programs include experimental and theoretical modeling and analysis with investigations (1) on Hawk and a Decade module in conjunction with the development of the bremsstrahlung sources (BRS), and (2) on Hawk, ACE-4 and Shiva-Star, as well as cooperative research on GIT-4 and GIT-8, in conjunction with PRS. (author). 1 tab., 12 figs., 17 refs.

  19. Power flow modelling in electric networks with renewable energy sources in large areas

    International Nuclear Information System (INIS)

    Buhawa, Z. M.; Dvorsky, E.

    2012-01-01

    In many worlds regions there is a great potential for utilizing home grid connected renewable power generating systems, with capacities of MW thousands. The optimal utilization of these sources is connected with power flow possibilities trough the power network in which they have to be connected. There is necessary to respect the long distances among the electric power sources with great outputs and power consumption and non even distribution of the power sources as well. The article gives the solution possibilities for Libya region under utilization of wind renewable sources in north in shore regions. (Authors)

  20. Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle

    International Nuclear Information System (INIS)

    Velez, Fredy; Segovia, Jose; Chejne, Farid; Antolin, Gregorio; Quijano, Ana; Carmen Martin, M.

    2011-01-01

    The main results of a theoretical work on the use of a low temperature heat source for power generation through a carbon dioxide transcritical power cycle are reported in this paper. The procedure for analyzing the behaviour of the proposed cycle consisted in modifying the input pressure to the turbine from 66 bar, maintained constant each evaluated temperature (60 o C, 90 o C, 120 o C and 150 o C) until the net work was approximately zero. As a result, the maximum exergy efficiency was 50%, while the energy efficiencies obtained were 9.8%, 7.3%, 4.9% and 2.4% and the net specific work was 18.2 kJ/kg, 12.8 kJ/kg, 7.8 kJ/kg and 3.5 kJ/kg, respectively. Furthermore, the effect of the addition of an internal heat exchanger, which obviously supposed an increase in the efficiency, was analyzed. The analysis of the proposed system shows the viability of implementing this type of process as an energy alternative and/or strengthener of non-conventional energy sources in non-provided zones, or for increasing the energy efficiency in the industry. -- Highlights: → Energy and exergy analysis of a carbon dioxide transcritical power cycle is reported. → The effect of the inlet temperature to the turbine is evaluated. → Conditions of maximum efficiency and maximum net work are compared. → The inclusion of an IHX is also analysed.

  1. Comparing costs of power and heat production by prospective and present sources

    International Nuclear Information System (INIS)

    Novak, S.

    1979-01-01

    Capital and running costs are compared of power and heat production from different sources. The lowest capital costs were found for coal-fired power plants followed by light water reactor power plants. The capital costs of other types of power plants, such as wind, geothermal, solar, thermonuclear power plants are significantly higher. The estimated specific cost for electric power production in 1985 for a nuclear power plant is lower than for a fossil-fuel power plant. It is estimated that in 1985 coal will be the cheapest heat source. (Ha)

  2. Application of RI power sources to cardiac pacemakers and aftercare in its implantation

    International Nuclear Information System (INIS)

    Hori, Motokazu

    1974-01-01

    RI power sources have long life when they are implanted into human bodies together with cardiac pacemakers, as compared with e.g. mercury batteries. Therefore, the frequency of their replacement can be by far less. However, there are the problems of radiation protection, high cost, availability, etc. The following matters are described: The cardiac pacemaker and its power supply, implantation into human body, problems with patients and conventional power sources; the current state of RI power sources for cardiac pacemakers, including plutonium-238 RTG and 147 Pm and 3 H batteries; and problems with the RI power sources. (Mori, K.)

  3. High stabilized power sources for bending and quadrupole magnets of TRISTAN project

    International Nuclear Information System (INIS)

    Kumagai, Noritaka; Ogawa, Shin-ichi; Koseki, Shoichiro; Nagasaka, Saburo.

    1984-01-01

    In the power source exciting the electro-magnets for the electron ring of TRISTAN project being advanced in the National Laboratory for High Energy Physics, the performance as strict as 10 -4 is required for its long hour stability and pulsating rate of DC output current in order to maintain beam stably. For satisfying such specification, the structure of power source using a high accuracy current detector, an active filter and so on was adopted. In order to verify the performance of this power source, the trial manufacture was carried out independently, and the test combining with actual magnets was performed. As the results, it was confirmed that the power source had the sufficient performance about its output stability, pulsating rate, current-following property and so on. At present, the manufacture of 80 actual power sources is in progress. In this paper, the power source system and the results of performance test of the power source made for trial are reported. The power sources are divide into B power sources for exciting deflecting electro-magnets and Q power sources for exciting quadrupole electro-magnets. (Kako, I.)

  4. Gun power source for electron gun of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Dewangan, S.; Sharma, D.K.; Nanu, K.

    2011-01-01

    In DC electron beam accelerator electron gun is situated at high voltage terminal which requires constant power irrespective of beam energy. Floating power source is required for gun. This paper describes the scheme of static gun power source derived from parallel coupled voltage multiplier column. (author)

  5. Power and choice[expanding use of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, Gerd

    2002-07-01

    As we face up to the increased insecurity and slowing global economy caused by the terrorist attacks of 11 September, tackling climate change may appear to be a separate goal. Yet, as environmentalists, we know all things are connected. These issues are directly and critically linked. If we are serious about tackling any of them we have to tackle them all. The British Prime Minister, Tony Blair, recently asked 'what is the lesson of the financial markets, climate change, international terrorism, nuclear proliferation or world trade?' He answered himself: 'It is that our self-interest and our mutual interests are today inextricably woven together - that power, wealth and opportunity must be in the hands of the many, not the few.' If we adopt a visionary and robust approach to tackling climate change we will also bring about real security, provide a boost for the economy, reduce poverty and make the world fairer. Massive expansion of wind and solar power - and other sources of renewable energy - would provide the energy security we so urgently need. We can replace both the fossil fuels that cause climate change and nuclear reactors with their dangerous legacy. In bringing renewable energy to the world's 2 billion poorest people we would reduce poverty, help fight disease, facilitate education, give hope and independence - and make a better environment for everyone, everywhere. Politicians, commentators and scientists the world over have described climate change as the most pressing environmental issue of the day. But it is not limited purely to the agendas of environment departments. Of course it has environmental effects - including floods, drought, dying coral reefs, melting Arctic and Antarctic ice and sea-level rise - which will both directly and indirectly affect people and economies. But its causes go to the heart of industrial society and its energy supply, almost entirely dependent on fossil fuels. Tackling climate change means phasing these out. The United

  6. Rf power systems for the national synchrotron light source

    International Nuclear Information System (INIS)

    Dickinson, T.; Rheaume, R.H.

    1981-01-01

    The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described

  7. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2015-01-01

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources

  8. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Directory of Open Access Journals (Sweden)

    Sang Hun Lee

    2015-06-01

    Full Text Available Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  9. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-06-15

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  10. Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration: Hydro power flexibility for power systems

    Energy Technology Data Exchange (ETDEWEB)

    Huertas-Hernando, Daniel [Department of Energy Systems, SINTEF, Trondheim Norway; Farahmand, Hossein [Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), Trondheim Norway; Holttinen, Hannele [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Kiviluoma, Juha [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Rinne, Erkka [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Söder, Lennart [Department of Electrical Engineering, KTH University, Stockholm Sweden; Milligan, Michael [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Ibanez, Eduardo [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Martínez, Sergio Martín [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Gomez-Lazaro, Emilio [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Estanqueiro, Ana [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Rodrigues, Luis [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Carr, Luis [Research Association for Energy Economics (FfE GmbH), Munich Germany; van Roon, Serafin [Research Association for Energy Economics (FfE GmbH), Munich Germany; Orths, Antje Gesa [Energinet.dk, Fredericia Denmark; Eriksen, Peter Børre [Energinet.dk, Fredericia Denmark; Forcione, Alain [Hydro Quebec, Montréal Canada; Menemenlis, Nickie [Hydro Quebec, Montréal Canada

    2016-06-20

    Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as well as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.

  11. High precision power supplies for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Olsen, R.; Langenbach, H.

    1987-04-01

    Since beam stability depends to a considerable degree on the stability of the magnet power supplies, and it is desired to push for 3 GeV operation, it was required that new power supplies be obtained for the quadrupoles and sextupoles. These power supplies were to have the lowest ripple that could be reasonably achieved, and were to have a current regulation of better than 10 PPM. In addition, since they operate over a 5 : 1 voltage range, it was considered desirable to ensure that they operated with a good power factor over the operating range. The dipole power supply was modified to use the techniques employed in the smaller supplies

  12. Greenhouse Gas reduction for scenarios of power sources development of the Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Comendant I.

    2010-04-01

    Full Text Available For the new power market conditions, Moldova power sources development options up to 2033 are evaluated, and for the six scenarios selected the greenhouse gas reduction impact is determined.

  13. Low power consumption O-band VCSEL sources for upstream channels in PON systems

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes Lopez, Roberto; Tafur Monroy, Idelfonso

    2012-01-01

    This paper presents an experimental validation of a low power optical network unit employing vertical-cavity surface-emitting lasers as upstream sources for passive optical networks with an increased power budget, enabling even larger splitting ratios....

  14. Development of a method to evaluate shared alternate AC power source effects in multi-unit nuclear power plants

    International Nuclear Information System (INIS)

    Jung, Woo Sik; Yang, Joon Eun

    2003-07-01

    In order to evaluate accurately a Station BlackOut (SBO) event frequency of a multi-unit nuclear power plant that has a shared Alternate AC (AAC) power source, an approach has been developed which accommodates the complex inter-unit behavior of the shared AAC power source under multi-unit Loss Of Offsite Power (LOOP) conditions. The approach is illustrated for two cases, 2 units and 4 units at a single site, and generalized for a multi-unit site. Furthermore, the SBO frequency of the first unit of the 2-unit site is quantified. The SBO frequency at a target unit of Probabilistic Safety Assessment (PSA) could be underestimated if the inter-unit dependency of the shared AAC power source is not properly modeled. The effect of the inter-unit behavior of the shared AAC power source on the SBO frequency is not negligible depending on the Common Cause Failure (CCF) characteristics among AC power sources. The methodology suggested in the present report is believed to be very useful in evaluating the SBO frequency and the core damage frequency resulting from the SBO event. This approach is also applicable to the probabilistic evaluation of the other shared systems in a multi-unit nuclear power plant

  15. Dipole power supply for National Synchrotron Light Source Booster upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far

  16. Pulsed power sources based on MHD generators (A state-of-art review)

    International Nuclear Information System (INIS)

    Das, A.K.; Venkatramani, N.; Rohatgi, V.K.

    1986-01-01

    pulsed Power sources are finding increased applications in powering plasma experiments, CTF devices, investigations of structure of earth's crust or self-contained compact power supplies for military applications. This report reviews the development of magnetohydrodynamic (MHD) power systems for pulsed power applications. The major critical components, which are analysed in detail, include the combustor, high energy fuel development, high field magnet, high power density channel and power conditioning unit. The report concludes that the MHD research has now reached a stage, where it is possible to design and achieve requisite performance from short duration high power compact MHD generators. (author)

  17. Open Source Initiative Powers Real-Time Data Streams

    Science.gov (United States)

    2014-01-01

    Under an SBIR contract with Dryden Flight Research Center, Creare Inc. developed a data collection tool called the Ring Buffered Network Bus. The technology has now been released under an open source license and is hosted by the Open Source DataTurbine Initiative. DataTurbine allows anyone to stream live data from sensors, labs, cameras, ocean buoys, cell phones, and more.

  18. High power pulsed neutron source for electronuclear installation

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    The pulsed neutron source based on the reaction T(d,n)He is described in this report. The source consists of pulsed a pulsed Arkad`ev-Marx generator and a vacuum diode with explosive ion emission. 9 refs., 3 figs.

  19. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, poweful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  20. Fuel cells show promise as vehicle power source

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Fuel-cell-powered vehicles appear to offer great promise for energy-saving, high-efficiency transportation. Fuel cells are both highly efficient (50% thermal efficiency has been demonstrated by some) and non-polluting (water being the main by-product). Dramatic improvements in performance have occurred recently due to aerospace and utility RandD efforts. The primary vehicle considered at workshops of laboratory and industrial investigators was a fuel cell/battery hybrid, in which fuel cells are paralleled by batteries. Fuel cells are used for cruising power and battery recharge, while batteries supply transient power for acceleration and starting

  1. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  2. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  3. 46 CFR 112.05-5 - Emergency power source.

    Science.gov (United States)

    2010-10-01

    ...; tankships; barges with sleeping accommodations for more than 6 persons; mobile offshore drilling units; and... fans, CO2 bottles, space heaters, and internal communication devices, such as sound powered phones. (e...

  4. Evaluation of Residue Based Power Oscillation Damping Control of Inter-area Oscillations for Static Power Sources

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Iov, Florin

    2012-01-01

    Low frequency inter-area oscillations are known stability issue of large interconnected electrical grids. It was demonstrated that additional control loop can be applied for static power sources, like FACTS, HVDC or modern Wind Power Plants, to modulate their power output and successfully attenuate......, it is proposed to give more attention to additional indices like transfer function zero location and interactions between mode of interest and other system dynamics. Consequently, additional rules are proposed for residue based damping control design....

  5. Teacher Views on School Administrators' Organizational Power Sources and Their Change Management Behaviours

    Science.gov (United States)

    Argon, Türkan; Dilekçi, Ümit

    2016-01-01

    This study aimed to determine school administrators' organizational power sources and change management behaviours based on Bolu central district primary and secondary school teachers' views. The study conducted with relational screening model reached 286 teachers. School Administrators' Organizational Power Sources Scale and Change Management…

  6. Review of power sources for Alaska DOT & PF road weather information systems (RWIS) : phase I.

    Science.gov (United States)

    2014-06-01

    This report documents the findings related to a review of power sources for six off-grid Road Weather Information Systems (RWIS) in : Alaska. Various power sources were reviewed as a means of reliably operating the off-grid RWIS sites throughout the ...

  7. Liquid-fueled SOFC power sources for transportation

    Science.gov (United States)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  8. Klystron bias power supplies for Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2008-01-01

    The functioning of an alternating current (AC) voltage regulator based high voltage direct current (HVDC) power supplies with better input and output performances has been presented in this paper. The authors have incorporated a 3-phase series limiting inductor, along with detuned passive filter in each power supply, to take care of line harmonics and the input power factor (IPF), which is simple, cost effective, reliable and provides input performance matching that of an equivalent active filter. Such arrangement has special significance for controlled HVDC power supplies supplying to fixed load but operated from widely varying input voltages. It achieves line voltage total harmonic distortion (THD) below 4% and IPF better than 0.97, for 415 V - 30% to 415 V + 10% variations in 3-phase input voltages. A properly designed crowbar, along with suitable limiting elements, is incorporated in each power supply and stringent wire survivability tests were carried out to limit klystron fault energy below 10 Joules. Several simulated waveforms and experiment results are also presented. (author)

  9. An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhou

    2017-12-01

    Full Text Available This paper provides a review on various PV simulator technologies as well as presents a novel equivalent photovoltaic (PV source that was constructed by using un-illuminated solar panels and a DC power supply that operates in current source mode. The constructed PV source was used for testing photovoltaic converters and various maximum power point tracking (MPPT algorithms required for capturing the maximum possible output power. The mathematical model and electrical characteristics of the constructed PV source were defined and analyzed in detail in the paper. The constructed PV source has the advantages of high bandwidth over the switching circuit based PV simulators. The constructed PV source has been used for testing various power electronics converters and various control techniques effectively in laboratory environments for researchers and university students.

  10. All solid state high voltage power supply for neutral beam sources

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1984-01-01

    The conceptual design of a high frequency solid state, high power, high voltage, power system that reacts fast enough to be compatible with the requirements of a neutral beam source is presented. The system offers the potential of significant advantages over conventional power line frequency systems; such as high reliability, long life, relatively little maintenance requirements, compact size and modular design

  11. Facilitating Constructive Alignment in Power Systems Engineering Education Using Free and Open-Source Software

    Science.gov (United States)

    Vanfretti, L.; Milano, F.

    2012-01-01

    This paper describes how the use of free and open-source software (FOSS) can facilitate the application of constructive alignment theory in power systems engineering education by enabling the deep learning approach in power system analysis courses. With this aim, this paper describes the authors' approach in using the Power System Analysis Toolbox…

  12. Volatility in the California power market: source, methodology and recommendations

    International Nuclear Information System (INIS)

    Dahlgren, R.W.; Liu, C.-C.; Lawarree, J.

    2001-01-01

    Extreme short-term price volatility in competitive electricity markets creates the need for price risk management for electric utilities. Recent methods in California provide examples of lessons that can be applied to other markets worldwide. Value-at-Risk (VAR), a method for quantifying risk exposure in the financial industry, is introduced as a technique that is applicable to quantifying price risk exposure in power systems. The methodology for applying VAR using changes in prices from corresponding hours on previous periods to understand how the hourly VAR entity is exposed when the power system is obligated to serve a load and does not have a contract for supply. The VAR methodology introduced is then applied to a sample company in California that is serving a 100 MW load. Proposed remedies for the problems observed in the competitive California electric power industry are introduced. (Author)

  13. High power light gas helicon plasma source for VASIMR

    International Nuclear Information System (INIS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; McCaskill, Greg E.; Winter, D. Scott; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2006-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition

  14. PIII Plasma Density Enhancement by a New DC Power Source

    International Nuclear Information System (INIS)

    Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Munoz-Castro, A. E.; Valencia A, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.

    2006-01-01

    In practical terms, those plasmas produced by a DC voltage power supply do not attain densities above the 108 to 109 cm-3 band. Here we present a power supply, controlled in current and voltage, which has been successfully designed and constructed delivering plasma densities in the orders of 109 - 1010 cm-3. Its experimental performance test was conducted within one toroidal and one cylindrical chambers capable of 29 and 35 litres, respectively, using nitrogen gas. The DC plasma was characterized by a double electric probe. Several physical phenomena present in the PIII process have been keenly investigated including plasma sheath dynamics, interaction of plasma and surface, etc. In this paper we analyze the effect of the implantation voltage, plasma density and pulse time in the PIII average heating power and fluence density

  15. Solid state isotopic power source for computer chips

    International Nuclear Information System (INIS)

    Brown, P.M.

    1992-01-01

    This paper reports that recent developments in materials technology now make it possible to fabricate nonthermal thin-film isotopic energy converters (REC) with a specific power of 24 W/kg and 5 to 10 year working life at 5 to 10 Watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems

  16. High-current Standing Wave Linac With Gyrocon Power Source

    CERN Document Server

    Karliner, M M; Makarov, I G; Nezhevenko, O A; Ostreiko, G N; Persov, B Z; Serdobintsev, G V

    2004-01-01

    A gyrocon together with high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. 2.2 amps of pulsed current have been obtained at electron energy of 20 MeV. The achieved energy conversion efficiency is about 55%.

  17. SOLAR TO AC POWER SOURCE FOR REMOTE AREAS USING SEIG

    Directory of Open Access Journals (Sweden)

    MEHMET AKBABA

    2012-02-01

    Full Text Available Photovoltaic generators (PVG are increasingly used to provide electricity in remote areas. However, in many applications the DC generated electricity by a PVG need to be converted to AC. Traditionally DC to AC inverters have been widely used for this purpose. In this paper, a different system is proposed in which a self excited induction generator (SEIG driven by a permanent magnet DC motor (DCM and powered from a PVG through a maximum power point tracker (MPPT are used. A step-up chopper is utilized as an MPPT unit. The proposed system is modelled in time domain, and a detailed transient and steady-state analysis are presented. The main reason behind analyzing the system in the time domain is because of the fact that for unknown speeds, the methods developed for steady-state analysis of SEIGs can not be applied. The presented work shows that the full available power of the PVG can be harnessed by selecting suitable values for the duty cycle and the frequency of the step up chopper and the excitation capacitor of the SEIG. It is also shown that with such a combination power utilization efficiency of more than 83% can be achieved.

  18. Geothermal energy: the earth, source of heat and electric power

    International Nuclear Information System (INIS)

    Lenoir, D.

    2005-01-01

    This document provides information on the geothermal energy. It presents the different types of geothermal deposits (very low, low and medium energy geothermal energy), the french deposits and the heat production. The electric power production from the geothermal energy is also discussed with the example of Soultz-sous-Forets. The last part deals with the heat pumps. (A.L.B.)

  19. Source of high-voltage power supply for ozone generators at glow discharge

    International Nuclear Information System (INIS)

    Bruev, A.A.; Golota, V.I.; Zavada, L.M.; Taran, G.V.

    2000-01-01

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  20. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  1. Non-nuclear power sources for deep space

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Tang, C.; Santarius, J.F.

    1998-07-01

    Electric propulsion and non-nuclear power can be used in tandem as a replacement for the current chemical booster and radioisotope thermoelectric generators now in use for deep space applications (i.e., to the asteroid belt and beyond). In current generation systems, electric propulsion is usually considered to be impractical because of the lack of high power for deep space, and non-nuclear power is thought to be impractical partly due to its high mass. However, when taken in combination, a solar powered electric upper stage can provide ample power and propulsion capability for use in deep space. Radioisotope thermoelectric generator (RTG) systems have generally been selected for missions only when other systems are absolutely unavailable. The disadvantages of radioisotopes include the need for nuclear safety as another dimension of concern in payload integration; the lack of assured availability of plutonium in the post-cold-war world; the enormous cost of plutonium-238; and the system complexity introduced by the need to continuously cool the system during the pre-launch phase. A conservative estimate for the total power for the solar array at beginning of life (BOL) may be in the range of 25 kW in order to provide 500 W continuous power at Jupiter. The availability of {approximately} 25 kW(e) in earth orbit raises the interesting possibility of coupling electric propulsion units to this free electric power. If electric propulsion is used to raise the probe from low-earth-orbit to an earth-escape trajectory, the system could actually save on low-earth orbit mass. Electric propulsion could be used by itself in a spiral trajectory orbit raising maneuver to earth escape velocity, or it could be used in conjunction with a chemical upper stage (either solid rocket or liquid), which would boost the payload to an elliptical orbit. The concept is to begin the Earth-Jupiter trip with a swing-by near the Sun close to the orbit of Venus and perhaps even closer if thermal

  2. Perceived Uncertainty Sources in Wind Power Plant Design

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    This presentation for the Fourth Wind Energy Systems Engineering Workshop covers some of the uncertainties that still impact turbulent wind operation and how these affect design and structural reliability; identifies key sources and prioritization for R and D; and summarizes an analysis of current procedures, industry best practice, standards, and expert opinions.

  3. Regulatory inspection: a powerful tool to control industrial radioactive sources

    International Nuclear Information System (INIS)

    Silva, F.C.A. da; Leocadio, J.C.; Ramalho, A.T.

    2008-01-01

    An important contribution for Brazilian development, especially for the quality control of products, is the use of radiation sources by conventional industries. There are in Brazil roughly 3,000 radioactive sources spread out among 950 industries. The main industrial practices involved are: industrial radiography, industrial irradiators, industrial accelerators, well logging petroleum and nuclear gauges. More than 1,800 Radiation Protection Officers (RPOs) were qualified to work in these practices. The present work presents a brief description of the safety control over industrial radioactive installations performed by the Brazilian Regulatory Authority, i.e. the National Commission of Nuclear Energy (CNEN). This paper also describes the national system for radiation safety inspections, the regulation infrastructure and the national inventory of industrial installations. The inspections are based on specific indicators, and their periodicity depends on the risk and type of installation. The present work discusses some relevant aspects that must be considered during the inspections, in order to make the inspections more efficient in controlling the sources. One of these aspects regards the evaluation of the storage place for the sources, a very important parameter for preventing future risky situations. (author)

  4. Radionuclide power source for artificial heart autonomic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lazarenko, Yu V; Gusev, V V; Pustovalov, A A

    1988-02-01

    Works on creating autonomous artificial heart devices with radionuclide heat source are described. Calculated and experimental parameters of /sup 238/Pu base radionuclide thermoelectric RITEG generators designed for supplying perspective blood pump electric drives are presented. RITEG structure is described and the prospects of increasing its efficiency are shown.

  5. High-power microwave generation from a frequency-stabilized virtual cathode source

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.; Kinross-Wright, J.

    1988-01-01

    The evolution of virtual cathode based high-power microwave-source technology has been directed primarily toward achieving higher peak-power levels. As peak powers in excess of 10 GW have been reported, attention has begun to focus on techniques for producing a more frequency- and phase-stable virtual cathode source. Free-running virtual cathode microwave sources characteristically exhibit bandwidths in a single pulse of tens of percent, which makes them unsuitable for many applications such as power sources for phased array antennas and microwave linear accelerators. Presented here are results of an experimental approach utilizing a high-Q, resonant cavity surrounding the oscillating virtual cathode to achieve frequency stabilization and repeatable narrow-band operation. A cylindrical cavity resonator is used with the microwave power being extracted radially through circumferential slot apertures into L-band waveguide

  6. Decentralized and Real-Time Power Dispatch Control for an Islanded Microgrid Supported by Distributed Power Sources

    Directory of Open Access Journals (Sweden)

    Changsun Ahn

    2013-12-01

    Full Text Available Microgrids can deploy traditional and/or renewable power sources to support remote sites. Utilizing renewable power sources requires more complicated control strategies to achieve acceptable power quality and maintain grid stability. In this research, we assume that the grid stability problem is already solved. As a next step, we focus on how the power can be dispatched from multiple power sources for improved grid efficiency. Isolated microgrids frequently require reconfigurations because of the grid expansion or component failures. Therefore, the control strategies ideally should be implemented in a plug-and-play fashion. Moreover, these strategies ideally require no pre-knowledge of the grid structure, and as little communication with neighboring power sources as possible. The control objective is to minimize a cost function that can be adjusted to reflect the desire to minimize energy cost and/or losses. An algorithm is designed to satisfy a derived necessary condition of function optimality. Such conditions are obtained by formulating Lagrange functions. An equivalent grid model approximates the grid structure which was later confirmed to represent the grid behavior adequately. For decentralized operations, we execute the distributed control sequentially using a simple token communication protocol. The performance of the combined system identification-Lagrange function minimization algorithm is demonstrated through simulations.

  7. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  8. Powerful Radio Sources with Simbol-X: The Nucleus

    Science.gov (United States)

    Grandi, Paola

    2009-05-01

    The black holes in the hearts of bright elliptical galaxies are commonly observed to be associated with powerful relativistic jets. The mechanism by which material entering the accretion radius is converted into jet power remains the subject of much debate. At the same time, the interplay between the relativistic jet and the interstellar/intergalactic medium is the topic of intense discussions, being such knowledge essential for understanding the nature of the accretion process, galaxy formation and the growth of supermassive black holes. Simbol-X can play a fundamental role in addressing at least three important questions: I) the link between accretion and relativistic outflow at

  9. Plasma X-ray sources powered by megajoule magnetocumulative generators

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Averchenkov, V Ya; Pikar` , A S; Ryaslov, E A; Kargin, V I; Lazarev, S A; Borodkov, V V; Nazarenko, S T; Makartsev, G F [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation). Russian Federal Nuclear Center

    1997-12-31

    Experiments using magnetocumulative generators (MCGs) were performed to power three different types of high-energy-density plasma discharges suitable for intense x-ray generation. These included the H-pressed discharge, the capillary z-pinch, and the {theta}-pinch. The MCGs were operated both with and without plasma opening switches. The characteristic currents were approximately 10 MA and characteristic time scales approximately 1 {mu}s. (author). 7 figs., 3 refs.

  10. Posibilities of electric power storage from renewable sources

    Directory of Open Access Journals (Sweden)

    Petr Bača

    2010-07-01

    Full Text Available This paper presents an overview of all currently commercially available options of energy storage in the power distributionnetwork. The paper puts forward arguments for energy storage in the distribution network as well as requirements that must be metby the relevant energy storage systems. The paper describes 7 technologies allowing the solution of energy storage problems, includingtheir basic principles and summarizing benefits and drawbacks of individual solutions.

  11. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  12. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani

    2018-05-01

    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  13. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.

    Science.gov (United States)

    Xu, Sheng; Hansen, Benjamin J; Wang, Zhong Lin

    2010-10-19

    Harvesting energy from irregular/random mechanical actions in variable and uncontrollable environments is an effective approach for powering wireless mobile electronics to meet a wide range of applications in our daily life. Piezoelectric nanowires are robust and can be stimulated by tiny physical motions/disturbances over a range of frequencies. Here, we demonstrate the first chemical epitaxial growth of PbZr(x)Ti(1-x)O(3) (PZT) nanowire arrays at 230 °C and their application as high-output energy converters. The nanogenerators fabricated using a single array of PZT nanowires produce a peak output voltage of ~0.7 V, current density of 4 μA cm(-2) and an average power density of 2.8 mW cm(-3). The alternating current output of the nanogenerator is rectified, and the harvested energy is stored and later used to light up a commercial laser diode. This work demonstrates the feasibility of using nanogenerators for powering mobile and even personal microelectronics.

  14. REALIZATION OF INVESTMENT PROJECTS IN POWER GENERATION SECTOR AND DETERMINATION OF CAPITAL INVESTMENT SOURCES

    Directory of Open Access Journals (Sweden)

    V. N. Nagornov

    2008-01-01

    Full Text Available The paper contains information on the basic directions of an investment activity in the power generation sector of the Republic of Belarus and importance of the realization of planned actions at the present moment. The main sources for financing modernization of basic production funds of the Belarusian power generation system have been analyzed in the paper. The paper describes general problems and difficulties that the power industry is facing while realizing investment projects. The most important problem is a formation of sources for complete project financing due to sharp price rise for imported power resources. The paper considers various approaches to provision of the required sources for financing investment activity in the power sector. The paper shows the need for a tariff policy reform, which is to be aimed, first of all, at the reduction of the cross subsidizing in power tariffs.

  15. The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Waldemar Fedak

    2017-12-01

    Full Text Available Sustainable economic development requires the use of renewable energy sources in a rational and thoughtful way. In Polish conditions the use of several types of renewable energy sources on a single setup is a new issue. In particular, hybrid devices in conjunction with intelligent energy systems, such as lighting systems are generally not used. Therefore, the Polish energy production still relies on the burning of coal. Despite their advantages, renewable energy sources are characterized by seasonality and considerable instability. Access to renewable energy varies daily and seasonally, hence activities promoting the use of autonomous, hybrid power systems must be intensified. The presented research aims at the development of the Autonomous Power Supply (APS system based on the so-called energy mix. Such a system works in an isolated arrangement and serves to reliably supply electricity from renewable sources for small residential or public utility devices in an urban area. Systems with up to 3 kW power consist of modules, whose modular design allows the combination of various power configurations and types of renewable energy used. The basic system consists of a primary power source, additional power source, emergency power source, energy storage device, weather station and controller. The energy mix depends on the geographical location of the system. The emergency source can be implemented as an on-grid connector or fuel power generator with the participation of 100% until the primary or accessory power source failure is removed. The energy storage system consists of batteries or supercapacitors. The proposed system can be combined to create a local network that automatically responds to energy shortages in various network nodes by adjusting the supply of electricity within the network depending on its needs. For Poland realistic solutions in this article are the new and modern answer to these requirements.

  16. RENEWABLE ENERGY SOURCES IN ELECTRIC-POWER IN-DUSTRY OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. M. Oleshkevich

    2014-01-01

    Full Text Available The paper investigates technical and economic indices (specific capital inputs, construction period, pay-off period, possible economically substantiated generation of electric power of electric power plants using renewable energy sources under climatic conditions ofBelarus. The indices have been compared with the data of nuclear power engineering. The most efficient directions are wind and biomass power engineering. In accordance with its technical and economic and ecological indices the biomass power engineering is more profitable than nuclear, hydro- and solar power engineering.

  17. A nuclear source term analysis for spacecraft power systems

    International Nuclear Information System (INIS)

    McCulloch, W.H.

    1998-01-01

    All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries

  18. High Power Broadband Multispectral Source on a Hybrid Silicon Chip

    Science.gov (United States)

    2017-03-14

    optical bandwidth of the erbium-doped- fiber -amplifier with densely-spaced frequency channels. To extend the spectral capacity of the Si-on-insulator...associated with non-uniform undercut at the taper tip across the chip after wet etching the active region. Figure 14. Normalized optical emission...Hutchinson, J., Shin, J.-H., Fish, G., and Fang, A., “Integrated silicon photonic laser sources for telecom and datacom,” in [National Fiber Optic

  19. On-line measurement of microwave power in ECR ion source

    International Nuclear Information System (INIS)

    Zhou Changgeng; Kang Wu; Hu Yonghong; Li Yan; Lou Benchao; Zu Xiulan; Xiong Riheng; Chen Junguang; Li Xiaoyun

    2005-01-01

    It is a new technology to apply an ECR ion source to the neutron generator. Because of the structure limitation, working state of the ECR ion source could not be judged by the color of gas discharging in discharge chamber. Therefore, it was hard to estimate if the ECR ion source was working properly in the neutron generator. The method to resolve the problem was described in this paper. The microwave power was measured on-line by a directional coupler and a small microwave power meter. The ion beam current could be educed from the measured incidence microwave power, and discharge state in discharge chamber could be determined. (authors)

  20. A new coaxial high power microwave source based on dual beams

    International Nuclear Information System (INIS)

    Li, Yangmei; Zhang, Xiaoping; Qi, Zumin; Dang, Fangchao; Qian, Baoliang

    2014-01-01

    We present a new coaxial high power microwave source based on dual beams, which combines a relativistic backward wave oscillator (RBWO) (noted as the inner sub-source below) and a coaxial transit-time oscillator (TTO) (noted as the outer sub-source). The cathode consists of an inner and an outer annular cathode, which provides the inner and the outer annular electron beam for the sub-sources, respectively. Particle-in-cell (PIC) simulation results demonstrate that power conversion efficiencies of the two sub-sources with an identical frequency of 9.74 GHz are 29% and 25%, respectively. It is furthermore found that phase locking between the inner and the outer sub-sources can be realized, which suggests a feasibility to obtain a higher power output if the two microwave signals are coherently combined

  1. A new coaxial high power microwave source based on dual beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangmei, E-mail: sunberry1211@hotmail.com; Zhang, Xiaoping; Qi, Zumin; Dang, Fangchao; Qian, Baoliang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-05-15

    We present a new coaxial high power microwave source based on dual beams, which combines a relativistic backward wave oscillator (RBWO) (noted as the inner sub-source below) and a coaxial transit-time oscillator (TTO) (noted as the outer sub-source). The cathode consists of an inner and an outer annular cathode, which provides the inner and the outer annular electron beam for the sub-sources, respectively. Particle-in-cell (PIC) simulation results demonstrate that power conversion efficiencies of the two sub-sources with an identical frequency of 9.74 GHz are 29% and 25%, respectively. It is furthermore found that phase locking between the inner and the outer sub-sources can be realized, which suggests a feasibility to obtain a higher power output if the two microwave signals are coherently combined.

  2. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    Science.gov (United States)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  3. Combustion-based power source for Venus surface missions

    Science.gov (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  4. A miniature fuel reformer system for portable power sources

    Science.gov (United States)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  5. Sources of finance for power generation: an Asian perspective

    International Nuclear Information System (INIS)

    Haggard, Melville

    1994-01-01

    Data are presented which show there is no standard framework for financing independent power projects (IPPs) and that there is a close correlation between the simplicity of the financing solution and the state of development of the local capital market. Some aspects of the optimization of capital structure for IPP financing are considered. In order to increase access to finance, risks need to be minimized. Three principal areas of risk are identified. These are transparency and political risks, cashflow issues and bidding procedures. Strategies for minimizing these risks are outlined. Finally, fuel supply, technology and plant operation are briefly examined as factors influencing electricity price competitiveness. (1 table, 6 figures) (UK)

  6. Vertical integration as a source of market power

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, J.H.

    1981-11-01

    This paper has put forward a theory of vertial integration where the ability of a group of firms to engage in noncompetitive pricing is increased by altering conjectural variations. An analysis of conditions faced by major oil companies at refining indicated little likelihood of market power, short of a complex, secret price fixing agreement. Vertical integration to branded retail outlets appears to have created the ability to price noncompetitively without overt collusion. More interesting for vertical policy are the results on non price rivalry where excess profits appear to have been turned into social costs.

  7. Implementation of 252Cf-source-driven power spectrum density measurement system

    International Nuclear Information System (INIS)

    Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming

    2012-01-01

    The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)

  8. SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    Science.gov (United States)

    Bents, David J.; Kohout, L. L.; Mckissock, Barbara I.; Rodriguez, C. D.; Withrow, C. A.; Colozza, A.; Hanlon, James C.; Schmitz, Paul C.

    1991-01-01

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  9. Z-Source-Inverter-Based Flexible Distributed Generation System Solution for Grid Power Quality Improvement

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Vilathgamuwa, D. M.; Loh, Poh Chiang

    2009-01-01

    Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time......-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using...

  10. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  11. Wind power as an electrical energy source in Illinois

    Science.gov (United States)

    Wendland, W. M.

    1982-03-01

    A preliminary estimate of the total wind power available in Illinois was made using available historical data, and projections of cost savings due to the presence of wind-generated electricity were attempted. Wind data at 10 m height were considered from nine different sites in the state, with three years data nominally being included. Wind-speed frequency histograms were developed for day and night periods, using a power law function to extrapolate the 10 m readings to 20 m. Wind speeds over the whole state were found to average over 8 mph, the cut-in point for most wind turbines, for from 40-63% of the time. A maximum of 75% run-time was determined for daylight hours in April-May. A reference 1.8 kW windpowered generator was used in annual demand projections for a reference one family home, using the frequency histograms. The small generator was projected to fulfill from 25-53% of the annual load, and, based on various cost assumptions, exhibited paybacks taking from 14-27 yr.

  12. How to classify the hydro power renewable energy sources

    International Nuclear Information System (INIS)

    Kalchevski, S.

    2006-01-01

    In this report various classifications of hydropower renewable energy sources (HRES) used in several countries like: USA, China, Russia, EU and Bulgaria are given and discussed. The existence of numerous differences and peculiarities in the various national classifications all over the world require the creation of a common unification. In particular the peculiarity and heterogeneity of HRES in Bulgaria demands a creation of specific regulations about. There is a necessity in a creation of a new law of RES and preparation of united EU energy policy

  13. Consideration on a Low Power Solar Energy Renewable Source

    Directory of Open Access Journals (Sweden)

    Andrei Marusca

    2008-05-01

    Full Text Available This paper presents the contribution of theauthors regarding the implementation of a low powersolar energy renewable source. To optimize theconversion efficiency of the solar irradiance intoelectrical energy an embedded system was designed. Theembedded system can accomplish the maximum powerpoint tracking by evaluation the output voltage andcurrent of the photovoltaic panels and calculate a propercommand for the DC-DC converter of the renewablesource. The key device in this system is a midrange 8 bitmicrocontroller that consists of acquisition, commandand control integrated hardware resources.

  14. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, T J; Conklin, J. C.; Thomas, John F.; Armstrong, T. R.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicate the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel should

  15. Power source labelling and hydro-power - a chance or a risk?

    International Nuclear Information System (INIS)

    Wurche, P.

    2005-01-01

    This short article discusses the electricity labelling legislation passed in Switzerland in November 2004 and similar legislation currently being introduced on a Europe-wide basis. In the future, electricity consumers will be provided with regular information on where and in which type of power station their electricity is generated. The article discusses how such a declaration may affect Swiss hydro-power stations and the changes in customer-perception that the power generation declaration will initiate

  16. Determination of the power of multielement aerosol composition emission from distant industrial sources

    International Nuclear Information System (INIS)

    Popova, S.A.; Kutsenogij, K.P.; Chankina, O.V.

    2008-01-01

    The results from the monitoring of the temporal variability of the multielement composition of atmospheric aerosols are presented. They are used to determine the emission power of a series of elements from distant sources.

  17. High peak power THz source for ultrafast electron diffraction

    Directory of Open Access Journals (Sweden)

    Shengguang Liu

    2018-01-01

    Full Text Available Terahertz (THz science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ∼MeV energy, ∼ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ∼MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ∼1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.

  18. Jets and beams in powerful extragalatic radio sources

    International Nuclear Information System (INIS)

    Pelletier, G.; Roland, J.; Asseo, E.

    1989-01-01

    The simplest, but the most constraining assumption for jet modeling powerfull extragalatic radio sources is to consider a single relativistic plasma with relativistic motion from short distances (few pc) to large distances (few 100 kpc) from the nucleus. We argue that it is worth introducing more ingredients in the model. Besides the interest in developing plasma physics motivated by these objects, there are two reasons for enriching the physics. First, the interpretation of hot spots as resulting from shocks with diffusive acceleration in a thermal classical plasma with a tenuous relativistic component is consistent with data and constrain the parameters. Second, the interpretation of relativistic motions on parsec scales as resulting from a core beam relaxing in a collimated wind is consistent with data and avoid several difficulties. (author). 14 refs

  19. Measurement and diagnosis system for 1.2 MV repetitive pulsed power source

    International Nuclear Information System (INIS)

    Li Yawei; Deng Jianjun; Xie Min; Feng Zongming; Liu Yuntao; Ma Chenggang

    2010-01-01

    In order to analyze the discharge performance and improve the design of the power system, a set of measurement and diagnosis system for the 1.2 MV repetitive pulsed power source, which supplies the drive power for a high power microwave source, has been designed by studying the high-voltage, high-current testing technology, data acquisition, signal processing, fault diagnosis, virtual instruments and electromagnetic compatibility technology, etc. A resistive-capacitive divider and a Rogowski coil are adopted in measurement; ADLINK corporation's PXI chips are used in data acquisition; data transmission system, condition monitoring and data analysis are developed by LabVIEW. This system can realize on-line monitoring and data analysis for the repetitive pulsed power source. (authors)

  20. Passivity-Based Control applied to DC hybrid power source using fuel cell and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, M.Y.; Wack, M.; Laghrouche, S. [SeT, UTBM, Belfort (cedex) 90010 (France); Becherif, M. [SeT, UTBM, Belfort (cedex) 90010 (France); FC-Lab, UTBM, Belfort (cedex) 90010 (France); Henni, A. [Alstom Power System, Energy Management Business, Alstom (France); Aboubou, A. [LMSE Laboratory, Biskra University, 07000 (Algeria)

    2010-07-15

    Nowadays, energy management becomes an absolute necessity. To reduce systems consumption, the idea is to recover energy when it is possible and to reuse it when the system is in need. Energy can be saved in peak power unit (electric double layer capacitors called supercapacitors). Those latter can absorb or supply power peaks. This paper deals with the conception of hybrid power sources using fuel cell as main source, a DC link and supercapacitors as transient power source. The whole system is modeled in state space equations. The energy management is reached using Passivity-Based Control (PBC). PBC is a very powerful nonlinear technique dealing with important system information like the system's total energy. Stability proof and simulation results are given. In this proposed control laws only few measurement are needed (two or three depending on the presented solutions one or two). (author)

  1. Long-term program up to fiscal 1993 of electric power source development

    International Nuclear Information System (INIS)

    Kawakami, Shin-ichi

    1984-01-01

    The long-term, ten years, program up to fiscal 1993 of electric power source development, determined by the Government aims at stable power supply and the expansion of utilization of petroleum-substitute energy. The annual growth in the gross national product (GNP) during the ten years was taken as about 4 %. So, the total electric power demand in fiscal 1993 is scheduled to be 731,000 million kwh, about 34 % up from 547,000 million kwh in fiscal 1983. The structure of electric power sources at the end of fiscal 1993 will be hydraulic 19.7 %, thermal 58.3 %, and nuclear 21.9 %. The development of electric power sources to be initiated in fiscal 1984 is hydraulic 500 MW, thermal 2,000 MW, and nuclear 6,000 MW. (Mori, K.)

  2. Using of alternative sources of the electric power on telecommunication network of Uzbekistan

    International Nuclear Information System (INIS)

    Abdullaev, D.A.; Isaev, R.I.; Makhkamdzhanov, V.M.; Mansurov, M.S.

    1997-01-01

    The article presents the talk on the using of alternative sources of the electric power on telecommunication network of Uzbekistan given at the International Workshop on applied solar energy held in Tashkent (Uzbekistan) in June 1997. As an alternative source the combined solar-wind power plant on the basis of solar cells battery and wind-generator is proposed. The efficiency of proposed system is considered. (A.A.D.)

  3. A New Configuration for Power Sharing of Two Z-Source Inverters

    Directory of Open Access Journals (Sweden)

    M. Ghani varzaneh

    2017-09-01

    Full Text Available This paper presents a new structure to provide the ability for power sharing of two Z-source inverters. According to the operation principles of Z-source inverters, only one input source supplies the circuit, which is a limitation particularly for the stand alone systems feeded by limited output power such as photovoltaics and feul cells. Furthermore; if one source fails to supply,  the load can't be supplied. This paper covers those via interconnection of impedance network of two Z-source inverters. The operating principles of the proposed topology for the stand-alone and power sharing conditions are described and the relations are derived. The topology is simulated, which the results verify the theoretical analysis and well performance of the system. 

  4. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    Science.gov (United States)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  5. Bagasse: New life for an untapped power source

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, T [Sugar Research Institute, Mackay, QLD (Australia)

    1996-11-01

    Sugar cane is an ideal form of untapped renewable energy. Each sugar factory by itself can generate biomass quantities far in excess of those attainable by any other industry in Queensland. For all 29 factories comprising the sugar industry in Queensland, the potential of the renewable energy resource for cogeneration is considerable. Bagasse has always been a major waste handling and disposal undertaking. The sugar industry possesses a substantial renewable energy resource that has not yet begun to be utilized to its fullest potential. This paper serves to quantify that energy potential and explore some of the cogeneration options that are technically feasible. A study is made of the Far North Queensland area as an example of the potential for cogeneration. It was concluded that power levels of approximately 25 to 60 MW per factory could be generated from the available crop resource. Although the technology for large scale conventional cogeneration is well known and proven and the risks are low, the economic factors that constitute a viable business enterprise are less certain. This important part of the cogeneration equation needs to be explored with more vigor and entrepreneurship than has been generated in the past if the potential of cogeneration for Australian sugar factories is to be realized to its fullest. (author). 3 tabs., 4 figs.

  6. Social and legal aspects of preparing the construction and operation of a nuclear power source

    International Nuclear Information System (INIS)

    Curin, K.

    1989-01-01

    The main activities are described involved in creating territorial, technical and economic conditions for the building of nuclear power plants. The basic precondition is the prognostic evaluation of national requirements for power in each planning time stage. From this proceeds the need of a range of power sources with a definition of their types and their incorporation in the power system and of possible power supply to the district heating system. As for nuclear power plants the building should be divided into three stages: from planning investments to the issuance of an investment intent, the stage of construction and that of operation. A detailed description is presented of the activities of all participants in building nuclear power plants in Czechoslovak conditions. Attention is devoted to the aspects of reliability and safety of nuclear power plants and to the effect of the respective activities on reliability and safety. (Z.M.). 1 tab

  7. Proposal for implementation of alternative source term in the nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Bazan L, A.; Lopez L, M.; Vargas A, A.; Cardenas J, J. B.

    2009-10-01

    In 2010 the nuclear power plant of Laguna Verde will implement the extended power upbeat in both units of the plant. Agree with methodology of NEDC-33004P-A, (constant pressure power up rate), and the source term of core, for accidents evaluations, were increased in proportion to the ratio of power level. This means that for the case of a design basis accident of loss of coolant an increase of power of 15% originated an increase of 15% in dose to main control room. Using the method of NEDC-33004P-A to extended power upbeat conditions was determined that the dose value to main control room is very near to regulatory limit established by SRP 6.4. By the above and in order to recover the margin, the nuclear power plant of Laguna Verde will calculate an alternative source term following the criteria established in RG 1.183 (alternative radiological source term for evaluating DBA at nuclear power reactor). This approach also have a more realistic dose value using the criterion of 10-CFR-50.67, in addition is predicted to get the benefit of additional operational flexibilities. This paper present the proposal of implementing the alternative source term in Laguna Verde. (Author)

  8. Performance Availability Assessment of Combined Multi Power Source Traction Drive Considering Real Operational Conditions

    Directory of Open Access Journals (Sweden)

    Frenkel Ilia

    2016-09-01

    Full Text Available The present paper deals with the vehicle’s traction electric drive, consisting of several various electric power sources. One of the main requirements for such systems are the safety and sustainable operations, achieved largely the implementation of an uninterrupted supply of the vehicle’s propulsion system with an electric power.

  9. Wave power as a source of energy along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.

    stream_size 16 stream_content_type text/plain stream_name Power_Directory_1992_141.pdf.txt stream_source_info Power_Directory_1992_141.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  10. Active and reactive power control of a current-source PWM-rectifier using space vectors

    Energy Technology Data Exchange (ETDEWEB)

    Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics

    1997-12-31

    In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.

  11. Power supply for nuclear power plant home consumption using inverter sources

    International Nuclear Information System (INIS)

    Stepar, V.; Tvrdik, J.

    1988-01-01

    A description is presented of the system configuration of a nuclear power plant with WWER-440 and WWER-1000 units and of a system of guaranteed power supply for the plant home consumption network for a WWER-440 power plant. The power supply network consists of 6 inverter supplies for safety systems, 4 supplies for nonsystem facilities and of a minimum of three power supplies for facilities outside the units. A diagram is shown and the principle described of the currently used ABP 1500 power supply system of Soviet origin. Using the experience from its operation, a Czechoslovak inverter supply system was designed featuring parallel operation of the inverter units. The principles are given for the design of a power supply system of an output of 75 kVA, the diagram is shown and the principle described. The design allows implementing and using the system without redundancy or in redundant operation of the 2 from 3 type at an installed capacity of 66%, or of the 1 from 2 type at an installed capacity of 50% of the output. The system is undergoing tests that should verify its reliability. (J.B.). 3 figs., 1 tab

  12. Sound power emitted by a pure-tone source in a reverberation room

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2009-01-01

    Energy considerations are of enormous practical importance in acoustics. In "energy acoustics," sources of noise are described in terms of the sound power they emit, the underlying assumption being that this property is independent of the particular environment where the sources are placed. Howev...

  13. Modeling and analysis of a transcritical rankine power cycle with a low grade heat source

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian

    efficiency, exergetic efficiency and specific net power output. A generic cycle configuration has been used for analysis of a geothermal energy heat source. This model has been validated against similar calculations using industrial waste heat as the energy source. Calculations are done with fixed...

  14. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work ...

  15. The sound power emitted by a source of low acoustic impedance

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Verholt, Lars M.

    1998-01-01

    Several authors have maintained that a source of low acoustic impedance (which includes standardised reference sources of the aerodynamic type) would radiate less than the free field power in a reverberation room. However, neither computer simulations nor experiments have confirmed this assertion....

  16. Open Source, Crowd Source: Harnessing the Power of the People behind Our Libraries

    Science.gov (United States)

    Trainor, Cindi

    2009-01-01

    Purpose: The purpose of this paper is to provide an insight into the use of Web 2.0 and Library 2.0 technologies so that librarians can combine open source software with user-generated content to create a richer discovery experience for their users. Design/methodology/approach: Following a description of the current state of integrated library…

  17. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  18. Power supply for the LBL 40 keV neutral beam source

    International Nuclear Information System (INIS)

    Baker, W.R.; Fitzgerald, M.L.; Honey, V.J.

    1975-11-01

    A 20 keV, 50 Amp, 10 millisec pulse D 0 Neutral Beam Source at the Lawrence Berkeley Laboratory that serves as the prototype for 12 similar sources now in operation on the 2XIIB Mirror Machine at the Lawrence Livermore Laboratory has been recently upgraded to operate at 40 keV. The system of electronically regulated and controlled power supplies that drive the Source is described

  19. The Mediating Effect of Organizational Justice Between Power Sources and Organizational Commitment

    OpenAIRE

    Pahrudin; Noor; Kasmir

    2017-01-01

    This study examines the role of organizational justice in the relationship between energy sources and organizational commitment. This study uses structural equation modeling (SEM) to test the hypothesis on a sample of 160 Indonesian workers in a state enterprise. The results show that energy sources are positively associated with organizational commitment and that organizational fairness is positively related to organizational commitment. The power source, in turn, has a positive effect on or...

  20. Performance and reliability of TPE-2 device with pulsed high power source

    International Nuclear Information System (INIS)

    Sato, Y.; Takeda, S.; Kiyama, S.

    1987-01-01

    The performance and the reliability of TPE-2 device with pulsed high power sources are described. To obtain the stable high beta plasma, the reproducibility and the reliability of the pulsed power sources must be maintained. A new power crowbar system with high efficiency and the switches with low jitter time are adopted to the bank system. A monitor system which always watches the operational states of the switches is developed too, and applied for the fast rising capacitor banks of TPE-2 device. The reliable operation for the bank has been realized, based on the data of switch monitor system

  1. Experimental progress on virtual-cathode very high power microwave source development

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1987-01-01

    The evolution of rf accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing electron sources can produce microwave powers at the gigawatt level and have demonstrated operation from 800 MHz to 40 GHz. Pulse length appears to be limited by electron-beam diode closure, and reflexing electron devices have been operated in a repetitively pulsed mode. An experiment is under way to investigate concepts to stabilize the frequency of the virtual cathode source. If one can successfully frequency and phase lock this source to an external signal, then this source can operate as a very high power microwave amplifier making it practical for accelerator applications. The progress on an experiment to test these concepts will be discussed

  2. Proposed principles on the use of nuclear power sources in space

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1988-01-01

    Since the 1978 reentry of the Soviet satellite Cosmos 954, the United Nations has been discussing the use of nuclear power sources in outer space. Most of these deliberations have taken place in the U.N. Committee on the Peaceful Uses of Outer Space, its two subcommittees (Scientific and Technical Subcommittee and Legal Subcommittee) and their associated working groups. This paper focuses on the technical agreements reached by the Working Group on the Use of Nuclear Power Sources in Outer Space (WGNPS), the legal principles agreed to by the Legal Subcommittee, and relevant treaties on the use of outer space and the use of nuclear power. To date the conclusion reached by the WGNPS in its 1981 report represents a succinct statement of U.N. consensus and of the U.S. position: The Working Group reaffirmed its previous conclusion that nuclear power sources can be used safely in outer space, provided that all necessary safety precautions are met

  3. Operational experiences of the spallation neutron source superconducting linac and power ramp-up

    International Nuclear Information System (INIS)

    Kim, Sang-Ho

    2009-01-01

    The spallation neutron source (SNS) is a second generation pulsed neutron source and designed to provide a 1-GeV, 1.44-MW proton beam to a mercury target for neutron production. Since the commissioning of the accelerator complex in 2006, the SNS has started its operation for neutron production and beam power ramp-up has been in progress toward the design goal. All subsystems of the SNS were designed and developed for substantial improvements compared to existing accelerators because the design beam power is almost an order of magnitude higher compared to existing neutron facilities and the achievable neutron scattering performance will exceed present sources by more than a factor of 20 to 100. In this paper, the operational experiences with the SNS Superconducting Linac (SCL), Power Ramp-up Plan to reach the design goal and the Power Upgrade Plan (PUP) will be presented including machine, subsystem and beam related issues.

  4. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    Science.gov (United States)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  5. A Method for Harmonic Sources Detection based on Harmonic Distortion Power Rate

    Science.gov (United States)

    Lin, Ruixing; Xu, Lin; Zheng, Xian

    2018-03-01

    Harmonic sources detection at the point of common coupling is an essential step for harmonic contribution determination and harmonic mitigation. The harmonic distortion power rate index is proposed for harmonic source location based on IEEE Std 1459-2010 in the paper. The method only based on harmonic distortion power is not suitable when the background harmonic is large. To solve this problem, a threshold is determined by the prior information, when the harmonic distortion power is larger than the threshold, the customer side is considered as the main harmonic source, otherwise, the utility side is. A simple model of public power system was built in MATLAB/Simulink and field test results of typical harmonic loads verified the effectiveness of proposed method.

  6. High stability power sources for bending and quadrupole magnets of TRISTAN project

    International Nuclear Information System (INIS)

    Kumagai, Noritaka; Ogawa, Shin-ichi; Koseki, Shoichiro; Nagasaka, Saburo.

    1985-01-01

    The excitation power sources for the main ring magnets of the TRISTAN project of the Ministry of Educations's National Laboratory for High Energy Physics requires strict performances of 10 -4 for both long time stability and the ripple factor of the DC output current to obtain a stable beam. To satisfy such specifications, a precision current detector, and active filter, and other such technologies are used for the power source. To verify the performance of this power source, a prototype was manufactured and a combined test was done with the magnets actually used at the National Laboratory. The results have proved that the output stability, ripple factor, current tracking, and other specifications are quite satisfactory and, at present, 80 sets have been manufactured for the TRISTAN project. This paper describes the project's power supply system and reports the results of performance tests on the prototype. (author)

  7. Contingent valuation method applied to survey on personal preferences on choice of electric power source

    International Nuclear Information System (INIS)

    Takahashi, Reiko; Nakagome, Yoshihiro

    2004-01-01

    A Survey was conducted on personal preferences regarding their choice of electric power source to verify the applicability of Contingent Valuation Method (CVM) to such analysis. The survey was carried out on local and urban inhabitants in two steps, first by mail and thereafter by direct interview. A choice of four typical forms of power source was presented: nuclear, coal, hydro and green power; and the question was asked whether the respondent would be willing to pay additional charge for specifying their preferable power source. The mail survey indicated more than half of the respondents hold some willingness to pay either for disuse of nuclear power or expansion of green power. The interview survey revealed various complex motives lying behind their answers. Consequently, it was found that their preference is significantly correlated to their personal image or knowledge of power sources, their thinking or attitude toward energy conservation, their sense of consumption and their private view of life. It is concluded that CVM is pertinently applicable to quantitative analysis of individual opinions, particularly in terms of their motivation to participate in national energy issues. A number of modifications, however, should be required to be brought to the survey design in order to ensure smooth application in practice. (author)

  8. Relation between source term and emergency planning for nuclear power plants

    International Nuclear Information System (INIS)

    Shi Zhongqi; Yang Ling

    1992-01-01

    Some background information of the severe accidents and source terms related to the nuclear power plant emergency planning are presented. The new source term information in NUREG-0956 and NUREG-1150, and possible changes in emergency planning requirements in U.S.A. are briefly provided. It is suggested that a principle is used in selecting source terms for establishing the emergency planning policy and a method is used in determining the Emergency Planning Zone (EPZ) size in China. Based on the research results of (1) EPZ size of PWR nuclear power plants being built in China, and (2) impact of reactor size and selected source terms on the EPZ size, it is concluded that the suggested principle and the method are suitable and feasible for PWR nuclear power plants in China

  9. On-line measurement of the microwave power in ECR ion source

    International Nuclear Information System (INIS)

    Zhou Changgeng; Kang Wu; Hu Yonghong; Li Yan; Lou Benchao; Zu Xiulan; Xiong Riheng; Chen Junguang

    2005-01-01

    It is a new technology that ECR ion source is applied in the neutron generator. Because of effect of the structure, working state of ECR ion source could not be judged by the color of gas discharging in discharging chamber as doing in high frequency ion source. Therefore, state adjusting of ECR ion source was difficult in running of the neutron generator. The method to resolve the question is described in this paper. The micro-wave power was measured in case of running by using the method of directional coupler adding small microwave power meter. Because both were in the direct proportion, the ion beam current could be educed from microwave incidence power measured, and discharge state in discharge chamber could be judged. Finally, the neutron generator might be operated in best running state. (authors)

  10. Improvement of ionizer and power supply of 860 A sputtering negative ion source

    International Nuclear Information System (INIS)

    An Kun; Yu Lingda; Wu Bingbing; Wang Guangfu

    2014-01-01

    A transmission surface type ionizer was developed with a φ2.5 mm stainless steel sheath core heating cable, and the ion source power supply was also improved. A continuous adjustable DC switching power supply was employed instead of the original AC power supply as the ionizer power supply, and a 0 - -20 kV DC power supply at the ground potential as the power of the immersion lens replaced the original 10 kV DC power supply suspended in -20 kV. The variation of the beam intensity of H"- in the front Faraday cup of the GIC4117 2 × 1.7 MV tandetron with the ionizer heating current was also shown. (authors)

  11. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrentt problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zero-sequence components are proposed to enhance the power control ability under this adverse conditions. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC sources....

  12. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    International Nuclear Information System (INIS)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard

    2007-01-01

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks

  13. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Centre National de la Recherche Scientifique (Unite Mixte de Recherche 7037), 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2007-07-15

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks. (author)

  14. Batteryless wireless transmission system for electronic drum uses piezoelectric generator for play signal and power source

    International Nuclear Information System (INIS)

    Nishikawa, H; Yoshimi, A; Takemura, K; Tanaka, A; Douseki, T

    2015-01-01

    A batteryless self-powered wireless transmission system has been developed that sends a signal from a drum pad to a synthesizer. The power generated by a piezoelectric generator functions both as the “Play” signal for the synthesizer and as the power source for the transmitter. An FM transmitter, which theoretically operates with zero latency, and a receiver with quick-response squelch of the received signal were developed for wireless transmission with a minimum system delay. Experimental results for an electronic drum without any connecting wires fully demonstrated the feasibility of self-powered wireless transmission with a latency of 900 μs. (paper)

  15. Development of a large proton accelerator for innovative researches; development of high power RF source

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K. H.; Lee, K. O.; Shin, H. M.; Chung, I. Y. [KAPRA, Seoul (Korea); Kim, D. I. [Inha University, Incheon (Korea); Noh, S. J. [Dankook University, Seoul (Korea); Ko, S. K. [Ulsan University, Ulsan (Korea); Lee, H. J. [Cheju National University, Cheju (Korea); Choi, W. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-05-01

    This study was performed with objective to design and develop the KOMAC proton accelerator RF system. For the development of the high power RF source for CCDTL(coupled cavity drift tube linac), the medium power RF system using the UHF klystron for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. 16 refs., 64 figs., 27 tabs. (Author)

  16. Application of the source term code package to obtain a specific source term for the Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Souto, F.J.

    1991-06-01

    The main objective of the project was to use the Source Term Code Package (STCP) to obtain a specific source term for those accident sequences deemed dominant as a result of probabilistic safety analyses (PSA) for the Laguna Verde Nuclear Power Plant (CNLV). The following programme has been carried out to meet this objective: (a) implementation of the STCP, (b) acquisition of specific data for CNLV to execute the STCP, and (c) calculations of specific source terms for accident sequences at CNLV. The STCP has been implemented and validated on CDC 170/815 and CDC 180/860 main frames as well as on a Micro VAX 3800 system. In order to get a plant-specific source term, data on the CNLV including initial core inventory, burn-up, primary containment structures, and materials used for the calculations have been obtained. Because STCP does not explicitly model containment failure, dry well failure in the form of a catastrophic rupture has been assumed. One of the most significant sequences from the point of view of possible off-site risk is the loss of off-site power with failure of the diesel generators and simultaneous loss of high pressure core spray and reactor core isolation cooling systems. The probability for that event is approximately 4.5 x 10 -6 . This sequence has been analysed in detail and the release fractions of radioisotope groups are given in the full report. 18 refs, 4 figs, 3 tabs

  17. Source term estimation during incident response to severe nuclear power plant accidents. Draft

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, T J; Giitter, J

    1987-07-01

    The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)

  18. Source term estimation during incident response to severe nuclear power plant accidents. Draft

    International Nuclear Information System (INIS)

    McKenna, T.J.; Giitter, J.

    1987-01-01

    The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)

  19. Source term estimation during incident response to severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    McKenna, T.J.; Glitter, J.G.

    1988-10-01

    This document presents a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. 39 refs., 48 figs., 19 tabs

  20. Comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, S.

    2009-07-01

    During the past two decades, active power filters have increasingly grown their popularity as a viable method for improving electric power quality. The main reasons for this have been the advent of fast self-commutating solid-state devices, the progression of digital technology and the improved sensor technology. Four-wire active power filters provide an efficient solution for improving the quality of supply in grounded three-phase systems or three-phase systems with neutral conductors, which are commonly used for powering residential, office and public buildings. Four-wire active power filters are applicable in compensating current harmonics, reactive power, neutral current and load phase imbalance.This thesis presents a comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters. The study includes two voltage source topologies and a current source topology with two different dc-link energy storage structures, which are compared on the basis of their filtering properties, filtering performance and efficiency. The obtained results are used for determining the suitability of current source technology for four-wire active power filtering and finding the most viable four-wire shunt active power filter topology. One commonly recognized disadvantage of the current source active power filter has always been the bulky dc-link inductor. To reduce the size of the dc-link inductor, an alternative dc-link structure for current source active power filters was introduced in the late 80's. The hybrid energy storage consists of both inductive and capacitive energy storage elements, two diodes and two controllable semiconductor switching devices. Since the capacitive element is used as a main storage unit, the inductance of the dc-link inductor can be considerably reduced. However, the original dc current control method proposed is not able to utilize the full potential of the hybrid energy storage and the inductance

  1. On the impact of NWP model resolution and power source disaggregation on photovoltaic power prediction

    Czech Academy of Sciences Publication Activity Database

    Eben, Kryštof; Juruš, Pavel; Resler, Jaroslav; Pelikán, Emil; Krč, Pavel

    2011-01-01

    Roč. 8, - (2011), EMS2011-667-4 [EMS Annual Meeting /11./ and European Conference on Applications of Meteorology /10./. 12.09.2011-16.09.2011, Berlin] Institutional research plan: CEZ:AV0Z10300504 Keywords : photovoltaic power prediction * NWP * numerical model parameterization Subject RIV: DG - Athmosphere Sciences, Meteorology

  2. On-site electric power source facility for Japanese nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, T. [Incident/Failure Analysis and Evaluation Office, Nuclear Power Safety Information Research Centre, Nuclear Power Engineering Test Centre, 2nd Floor, Shuwa-Kamiyacho Bldg., 3-13, 4-Chome, Toranomon Minato-ku, Tokyo 105 (Japan)

    1986-02-15

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  3. On-site electric power source facility for Japanese nuclear power plant

    International Nuclear Information System (INIS)

    Oohara, T.

    1986-01-01

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  4. Emergency Mitigating Equipments - Post Fukushima Actions at Canadian Nuclear Power Plants - Portable AC Power Sources

    International Nuclear Information System (INIS)

    Vucetic, Jasmina; Kameswaran, R.

    2015-01-01

    In response to the Fukushima Daiichi NPP accident in 2011, the Canadian Nuclear Safety Commission set up a Task Force to evaluate operational, technical and regulatory implications on Canadian NPPs. While accepting that the risk from beyond-design-basis accidents (BDBA) at Canadian NPPs is very low, the Task Force identified a number of areas where additional improvements or confirmatory assessments would further enhance safety. As a result, a set of 36 Fukushima Action Items (FAIs) were assigned to the licensees. This paper focuses on the FAI related to electrical power system enhancements to address a total loss of all AC Power leading to a possibility of loss of heat sinks (i.e. Station Blackout). This required the licensees to implement the following: - Additional back up power supplied by portable diesel generator(s) to allow key instrumentation and control equipment and key electrical loads to remain operable; - Provisions for a storage and timely transportation and connection of the portable generator(s) to the applicable units; - Provisions for testing of the portable generator; - Provisions for fuelling of portable generators; - Provisions such as panels, receptacles, and connectors to quickly deploy the portable generators to plant system, and separate feeder cables route to avoid a common mode failure; - Load shedding strategy to extend the existing station's battery life to ensure that the connection of portable generators can be completed before the batteries are depleted; - Provisions to supply water to steam generators and Irradiated Fuel Bay using portable pumps; The paper will also provide a brief description of Electrical power systems of the Canadian NPPs designed to satisfy the high safety and reliability requirements for nuclear systems, which are based on the following: - 2 group design philosophy (Group 1 and Group 2 Electrical Power Systems) - 2 separate groups of onsite emergency generators (Class III Standby generators and Emergency

  5. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  6. Evaluation of actual costs of power sources and effects on balance sheets of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Yamaguchi, Yuji; Murakami, Tomoko

    2013-01-01

    After the Fukushima nuclear accident, almost all nuclear power stations continued to stop operation and sharp increase of purchase costs of fossil fuels forced some electric utilities to suffer a deficit. This article presented quantitative analysis of effects of present state on power costs and balance sheets of electric utilities. Levelized costs of electricity increased from 8.6 ¥/kWh (2010) to 11.6 ¥/kWh (2011) and 12.6 ¥/kWh (2012). Total power costs increased from 7.5 Trillion¥(2010) to 9.5 Trillion¥(2011). Due to increase of cost of fossil fuel compensated for nuclear power, electric utilities suffered a net loss of 0.8 Trillion¥ and decreased surplus to 2.5 Trillion¥ in 2011. Net loss of 1.3 Trillion¥ and surplus of 1.2 Trillion¥ was estimated for 2012. This state was beyond the limit of utilities' efforts to reduce costs and uncertain share of power sources became a great risk. Future share of power sources should be judged appropriately from various standpoints (costs, stable supply, energy security and national economic growth) and early public dissemination of new philosophy on share of power sources was highly required. (T. Tanaka)

  7. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  8. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijian; Hong, Mingyi; Dall' Anese, Emiliano; Dhople, Sairaj; Xu, Zi

    2017-03-03

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposed here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.

  9. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Science.gov (United States)

    2010-09-01

    Figure 6.10 TE Module with Microtherm Added Around & Between Legs ............................................................... 57  Figure 6.11 Short... Microtherm ® insulation, 2.6 (W) of heater power was required to maintain a temperature of 400 ºC. This is an indication of the losses in the system...side of the module to the cold plate.  Pour in Microtherm to insulate the module.  Make sure to clean all insulation from the hot side electrodes

  10. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Weiqing; Jing, Qingshen; Bai, Peng; Yang, Ya; Hou, Te-Chien; Wang, Zhong Lin

    2013-11-13

    A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electricity supply from thermal power plants and alternative sources at the Adriatic coast

    International Nuclear Information System (INIS)

    Kurek, J.

    1999-01-01

    The Croatian coastline with its numerous islands offers the most appropriate region in the whole of Croatia for the realisation of energy supply from alternative sources as a substitute for the electricity supplied from coal-driven thermal power plants, not only from the point of view of energy but also financial results. Investment costs of a 100 MW thermal power plant served for the estimation of results which would be achieved with the introduction of alternative sources (the sun, small hydro power plants and biomass) as well as for the rationalisation of consumption and savings of the existing energy sources. The alternative programmes can be conducted partially and the investments financed from savings. However, without a systematic solution for the whole country no significant results can be expected. (author)

  12. Prototype tests on the ion source power supplies of the TEXTOR NI-system

    International Nuclear Information System (INIS)

    Goll, O.; Braunsberger, U.; Schwarz, U.

    1987-01-01

    The PINI ion source for the TEXTOR neutral injector is fed by a new modular transistorized power supply. All modules are located in a high voltage cage on 55 kV dc against ground. The normal operation of the injectors includes frequent grid breakdowns causing transient high voltage stresses on the ion source power supplies. These stresses must not disturb the safe operation of the power supplies. The paper describes the set up for extensive testing of a supply prototype module under the expected operating conditions. The main features of this test program are reviewed and the measures taken for a safe operation are discussed. As a result of the investigations, recommendations for the installation of the power supplies at the TEXTOR NI system are given

  13. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    Science.gov (United States)

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    Science.gov (United States)

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  15. Evolution of the on-site electric power sources on French 900 MWe PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Jean [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, Departement d' Analyse de Surete, Service d' Analyse Fonctionnelle, Institut de Protection et Surete Nucleaire, B.P. No. 6, 92260 Fontenay-aux-Roses (France)

    1986-02-15

    Additional means have been provided on the French 900 MWe PWRs to improve safety if both the off-site and on-site Power sources are lost, namely: - a primary pump seal water injection device, one for two units; - a gas turbine generator for each site; - supplying any failing unit with electric power from a house load operating unit; - supplying a unit from a diesel generator of another unit. (author)

  16. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    Science.gov (United States)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  17. High power laser source for space applications. Phase 1 study: Executive summary

    Science.gov (United States)

    1986-07-01

    A study to design a high power laser diode, to manufacture samples, to test them, and to identify the problems raised by the manufacture of such power sources in order to evaluate the effort required to overcome the difficulties in view of a component qualification was initiated. Theoretical modeling, manufacturing and test of samples, and environmental evaluation were completed. To obtain 200 mW monomode, a reversed CSP structure manufactured by chemical vapor deposition is recommended.

  18. A digital controlled negative high voltage power source for LINAC of HLS

    International Nuclear Information System (INIS)

    Gao Hui; Chen Jun; Hong Jun; Wang Weibing

    2005-01-01

    This paper introduces the working principle of a 10-80 kV negative high voltage power source for the electronic gun of the 200 MeV LINAC of NSRL, especially how to realize the switch power, voltage/current sampling, feedback control and microcontroller module. The firmware design for the SOC microcontroller of ADuC8xx and the application software design for PC are also presented. (authors)

  19. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    Science.gov (United States)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  20. Survey of sources of manpower supply for the nuclear power industry

    International Nuclear Information System (INIS)

    1981-01-01

    The following is a report of a survey designed to determine sources of manpower supply available to the Nuclear Power Industry. The survey is part of a larger research effort which is also designed to investigate occupational employment and training in the Nuclear Power Industry and competing sources of demand for technically qualified manpower. The results of those other studies have been published separately and are available upon request. This report includes a brief discussion of the background of the study, the research methods employed, the results obtained, and some implications of those findings. The appendices contain copies of the questionnaires used in the survey as well as some additional related data

  1. Influence of the crustal and subcrustal Vrancea seismic sources on Cernavoda nuclear power plant site

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Popescu, Emilia; Mircea Radulian

    2002-01-01

    The basis of the seismic hazard assessment in different geographical regions with dense-populated areas and strategic objectives (dams, nuclear power plants, etc.) is the study of seismicity of the seismogenic sources which affect these sites. The purpose of this paper is to provide a complete set of information relative to the Vrancea seismic source (in the crust and the intermediate depth domains) that is fundamental for the seismic hazard evaluation at Cernavoda nuclear power plant site. The analysis that we propose has to deal with the following items: (1) geometrical definition of the seismic sources; (2) setting the earthquake catalog associated to each seismic source; (3) estimation of the maximum possible magnitude; (4) estimation of the frequency - magnitude relationship; (5) computation of the distribution function for focal distance; (6) correlation between focal depth and magnitude; (7) attenuation law. We discuss also the implications of the model parameters on the seismic hazard level. (authors)

  2. Increase of the positive ion source power in JT-60 NBI

    International Nuclear Information System (INIS)

    Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru

    1998-09-01

    Neutral Beam Injection (NBI) heating experiment in JT-60 started in 1986, and the rated injection power of 20MW at 75keV with hydrogen was achieved after several month operation. In 1991, the ion sources and power supply had been upgraded for a higher beam energy up to 120keV with deuterium, following which the ion source operation re-started aiming for an injection power of 40MW at 110keV. In the operation, the beam acceleration voltage was tried to increase by modifying the ion source structure against the break-down which occurred frequently in the ion source. The beam acceleration was, however, unstable in a beam energy range of more than 105keV because of voltage-holding deterioration in the accelerator. Therefore we changed the strategy to increase the injection power: i.e. we tried to increase the beam current with keeping the beam energy. The structure of the source has been modified to be operated in a high current regime. As a result, the deuterium neutral beam injection of 40MW at 91-96keV was achieved in July 1996. (author)

  3. Micro/Nano Fabricated Solid-State Thermoelectric Generator Devices for Integrated High Voltage Power Sources

    Science.gov (United States)

    Fleurial, J.-P.; Ryan, M. A.; Snyder, G. J.; Huang, C.-K.; Whitacre, J. F.; Patel, J.; Lim, J.; Borshchevsky, A.

    2002-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Conventional power generators devices become inefficient in extreme environments (such as encountered in Mars, Venus or outer planet missions) and rechargeable energy storage devices can only be operated in a narrow temperature range thereby limiting mission duration. The planned development of much smaller spacecrafts incorporating a variety of micro/nanodevices and miniature vehicles will require novel, reliable power technologies. It is also expected that such micro power sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Advanced solid-state thermoelectric combined with radioisotope or waste heat sources and low profile energy storage devices are ideally suited for these applications. The Jet Propulsion Laboratory has been actively pursuing the development of thermoelectric micro/nanodevices that can be fabricated using a combination of electrochemical deposition and integrated circuit processing techniques. Some of the technical challenges associated with these micro/nanodevice concepts, their expected level of performance and experimental fabrication and testing results to date are presented and discussed.

  4. Application of sorption heat pumps for increasing of new power sources efficiency

    Science.gov (United States)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  5. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  6. Development of Mixed Autonomous Power System on the Basis of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    D. P. Laoshvili

    2010-01-01

    Full Text Available A principal circuit diagram has been developed for an autonomous power system on the basis of renewable energy sources – solar and accumulator batteries.Due to the usage of a dc pulse converter, a dc converter (interrupter, an IGBT module inverter and a single-phase matching power transformer it is possible to achieve an effective sectioning of constant voltage and their inversion with minimal energy losses.Efficiency factor of the proposed converter installation exceeds 90 % and power factor is close to unity.

  7. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    M. Stirbet; I.E. Campisi; E.F. Daly; G.K. Davis; M. Drury; P. Kneisel; G. Myneni; T. Powers; W.J. Schneider; K.M. Wilson; Y. Kang; K.A. Cummings; T. Hardek

    2001-01-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement

  8. An Active Power Sharing Method among Distributed Energy Sources in an Islanded Series Micro-Grid

    Directory of Open Access Journals (Sweden)

    Wei-Man Yang

    2014-11-01

    Full Text Available Active power-sharing among distributed energy sources (DESs is not only an important way to realize optimal operation of micro-grids, but also the key to maintaining stability for islanded operation. Due to the unique configuration of series micro-grids (SMGs, the power-sharing method adopted in an ordinary AC, DC, and hybrid AC/DC system cannot be directly applied into SMGs. Power-sharing in one SMG with multiple DESs involves two aspects. On the one hand, capacitor voltage stability based on an energy storage system (ESS in the DC link must be complemented. Actually, this is a problem of power allocation between the generating unit and the ESS in the DES; an extensively researched, similar problem has been grid-off distributed power generation, for which there are good solutions. On the other hand, power-sharing among DESs should be considered to optimize the operation of a series micro-grid. In this paper, a novel method combining master control with auxiliary control is proposed. Master action of a quasi-proportional resonant controller is responsible for stability of the islanded SMG; auxiliary action based on state of charge (SOC realizes coordinated allocation of load power among the source. At the same time, it is important to ensure that the auxiliary control does not influence the master action.

  9. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Chen, Wenjie; Liserre, Marco

    2015-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrent problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zerosequence components are proposed to enhance the power control ability under this adverse condition. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC voltage....

  10. Status of magnet power supply development for the APS [Advanced Photon Source] storage ring

    International Nuclear Information System (INIS)

    McGhee, D.

    1989-01-01

    To simplify installation and speed testing of the Advanced Photon Source (APS) storage ring magnets, vacuum chambers and magnet power supplies, a modular approach was developed. All but the dipole magnets are independently controlled. Pulse width modulated dc-to-dc converters are used to power the individual magnets, with 12-pulse power supplies providing the raw dc to the converters. A magnet support base is the heart of a module and may hold as many as 7 magnets with 8 individually powered coils. The dc-to-dc converters are part of each magnet base module. This paper will show the modular approach which is used for the storage ring magnet systems and will give the test results of the prototype topology for the dc-to-dc converters that are being built and tested to power 680 quadrupole and sextupole magnets. 4 refs., 11 figs., 1 tab

  11. Source-term reevaluation for US commercial nuclear power reactors: a status report

    International Nuclear Information System (INIS)

    Herzenberg, C.L.; Ball, J.R.; Ramaswami, D.

    1984-12-01

    Only results that had been discussed publicly, had been published in the open literature, or were available in preliminary reports as of September 30, 1984, are included here. More than 20 organizations are participating in source-term programs, which have been undertaken to examine severe accident phenomena in light-water power reactors (including the chemical and physical behavior of fission products under accident conditions), update and reevaluate source terms, and resolve differences between predictions and observations of radiation releases and related phenomena. Results from these source-term activities have been documented in over 100 publications to date

  12. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    Science.gov (United States)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  13. Demand response power system optimization in presence of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Dumbrava Virgil

    2017-07-01

    Full Text Available This paper optimizes the price-based demand response of a large customer in a power system with stochastic production and classical fuel-supplied power plants. The implemented method of optimization, under uncertainty, is helpful to model both the utility functions for the consumers and their technical limitations. The consumers exposed to price-based demand can reduce their cost for electricity procurement by modifying their behavior, possibly shifting their consumption during the day to periods with low electricity prices. The demand is considered elastic to electricity price if the consumer is willing and capable to buy various amounts of energy at different price levels, the demand function being represented as purchasing bidding blocks. The demand response is seen also by the scientific literature as a possible source of the needed flexibility of modern power systems, while the flexibility of conventional generation technologies is restricted by technical constraints, such as ramp rates. This paper shows how wind power generation affects short term operation of the electricity system. Fluctuations in the amount of wind power fed into the grid require, without storage capacities, compensating changes in the output of flexible generators or in the consumers’ behavior. In the presented case study, we show the minimization of the overall costs in presence of stochastic wind power production. For highlighting the variability degree of production from renewable sources, four scenarios of production were formulated, with different probabilities of occurrence. The contribution brought by the paper is represented by the optimization model for demand-response of a large customer in a power system with fossil fueled generators and intermittent renewable energy sources. The consumer can reduce the power system costs by modifying his demand. The demand function is represented as purchasing bidding blocks for the possible price forecasted realizations

  14. RSS-based localization of isotropically decaying source with unknown power and pathloss factor

    International Nuclear Information System (INIS)

    Sun, Shunyuan; Sun, Li; Ding, Zhiguo

    2016-01-01

    This paper addresses the localization of an isotropically decaying source based on the received signal strength (RSS) measurements that are collected from nearby active sensors that are position-known and wirelessly connected, and it propose a novel iterative algorithm for RSS-based source localization in order to improve the location accuracy and realize real-time location and automatic monitoring for hospital patients and medical equipment in the smart hospital. In particular, we consider the general case where the source power and pathloss factor are both unknown. For such a source localization problem, we propose an iterative algorithm, in which the unknown source position and two other unknown parameters (i.e. the source power and pathloss factor) are estimated in an alternating way based on each other, with our proposed sub-optimum initial estimate on source position obtained based on the RSS measurements that are collected from a few (closest) active sensors with largest RSS values. Analysis and simulation study show that our proposed iterative algorithm guarantees globally convergence to the least-squares (LS) solution, where for our suitably assumed independent and identically distributed (i.i.d.) zero-mean Gaussian RSS measurement errors the converged localization performance achieves the optimum that corresponds to the Cramer–Rao lower bound (CRLB).

  15. Relationship between School Administrators' Organizational Power Sources and Teachers' Organizational Citizenship Behaviors

    Science.gov (United States)

    Altinkurt, Yahya; Yilmaz, Kursad

    2012-01-01

    The main purpose of the research was to determine correlation between school administrators' organizational power sources and teachers' organizational citizenship behaviors in primary schools. The research was a correlational survey model study. 275 participants were randomly chosen for the research. The data were collected by…

  16. A method for measuring power signal background and source strength in a fission reactor

    International Nuclear Information System (INIS)

    Baers, B.; Kall, L.; Visuri, P.

    1977-01-01

    Theory and experimental verification of a novel method for measuring power signal bias and source strength in a fission reactor are reported. A minicomputer was applied in the measurements. The method is an extension of the inverse kinetics method presented by Mogilner et al. (Auth.)

  17. Short-term power sources for tokamaks and other physical experiments

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Žáček, František; Brettschneider, Zbyněk; Lejsek, V.

    2007-01-01

    Roč. 82, č. 4 (2007), s. 369-379 ISSN 0920-3796 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * Impulse power sources * Energy accumulation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.058, year: 2007 http://www.sciencedirect.com/science/journal/09203796

  18. Specific power reduction of an ion source due to heating and cathode sputtering of electrodes

    International Nuclear Information System (INIS)

    Hamilton, G.U.; Semashko, N.N.

    The potentialities and limitations of the water-cooled ion-optical system of the ion source designed for continuous operation of the high-power neutral beam injector are determined. The following problems are analyzed: thermal expansion and deformation of electrodes, electrode sputtering as a result of bombardment, and heat transfer to turbulent flow of water

  19. Study of the general plasma characteristics of a high power multifilament ion source

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1979-09-01

    A general assessment of the steady state and time dependent plasma properties which characterize a high power multifilament ion source is presented. Steady state measurements, obtained via a pulsed electrostatic probe data acquisition system, are described. Fluctuation measurements, obtained via a broadband digital spectral analysis system, are also given

  20. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    Science.gov (United States)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  1. YouPower : An open source platform for community-oriented smart grid user engagement

    NARCIS (Netherlands)

    Huang, Yilin; Hasselqvist, Hanna; Poderi, Giacomo; Scepanovic, S.; Kis, F.; Bogdan, Cristian; Warnier, Martijn; Brazier, F.M.

    2017-01-01

    This paper presents YouPower, an open source platform designed to make people more aware of their energy consumption and encourage sustainable consumption with local communities. The platform is designed iteratively in collaboration with users in the Swedish and Italian test sites of the project

  2. On Asymmetries in Powerful Radio Sources and the Quasar/Galaxy ...

    Indian Academy of Sciences (India)

    3National Centre for Energy Research and Development, University of Nigeria,. Nsukka, Nigeria. ∗ e-mail: ... source orientation and relativistic beaming effects in a sample of powerful non-symmetric ..... shown with open circles in Fig. 6, which ...

  3. Interconnected High-Voltage Pulsed-Power Converters System Design for H− Ion Sources

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H− sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 μs of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H− source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  4. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  5. Status of R&D activity for ITER ICRF power source system

    International Nuclear Information System (INIS)

    Mukherjee, Aparajita; Trivedi, Rajesh; Singh, Raghuraj; Rajnish, Kumar; Machchhar, Harsha; Ajesh, P.; Suthar, Gajendra; Soni, Dipal; Patel, Manoj; Mohan, Kartik; Hari, J.V.S.; Anand, Rohit; Verma, Sriprakash; Agarwal, Rohit; Jha, Akhil; Kazarian, Fabienne; Beaumont, Bertrand

    2015-01-01

    Highlights: • R&D program to establish high power RF technology for ITER ICRF source is described. • R&D RF source is being developed using Diacrode & Tetrode technologies. • Test rig (3 MW/3600 s/35–65 MHz) simulating plasma load is developed. - Abstract: India is in-charge for the procurement of ITER Ion Cyclotron Resonance Frequency (ICRF) sources (1 Prototype + 8 series units) along with auxiliary power supplies and Local Control Unit. As there is no unique amplifier chain able to meet the output power specifications as per ITER requirement (2.5 MW per source at 35–65 MHz/CW/VSWR 2.0), two parallel three-stage amplifier chains along with a combiner circuit on the output side is considered. This kind of RF source will be unique in terms of its stringent specifications and building a first of its kind is always a challenge. An R&D phase has been initiated for establishing the technology considering single amplifier chain experimentation (1.5 MW/35–65 MHz/3600 s/VSWR 2.0) prior to Prototype and series production. This paper presents the status of R&D activity to resolve technological challenges involved and various infrastructures developed at ITER-India lab to support such operation.

  6. Status of R&D activity for ITER ICRF power source system

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Aparajita, E-mail: aparajita.mukherjee@iter-india.org [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar–382428 (India); Trivedi, Rajesh; Singh, Raghuraj; Rajnish, Kumar; Machchhar, Harsha; Ajesh, P.; Suthar, Gajendra; Soni, Dipal; Patel, Manoj; Mohan, Kartik; Hari, J.V.S.; Anand, Rohit; Verma, Sriprakash; Agarwal, Rohit; Jha, Akhil [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar–382428 (India); Kazarian, Fabienne; Beaumont, Bertrand [ITER Organization, CS 90 046, 13067 Sain-Paul-Les-Durance (France)

    2015-10-15

    Highlights: • R&D program to establish high power RF technology for ITER ICRF source is described. • R&D RF source is being developed using Diacrode & Tetrode technologies. • Test rig (3 MW/3600 s/35–65 MHz) simulating plasma load is developed. - Abstract: India is in-charge for the procurement of ITER Ion Cyclotron Resonance Frequency (ICRF) sources (1 Prototype + 8 series units) along with auxiliary power supplies and Local Control Unit. As there is no unique amplifier chain able to meet the output power specifications as per ITER requirement (2.5 MW per source at 35–65 MHz/CW/VSWR 2.0), two parallel three-stage amplifier chains along with a combiner circuit on the output side is considered. This kind of RF source will be unique in terms of its stringent specifications and building a first of its kind is always a challenge. An R&D phase has been initiated for establishing the technology considering single amplifier chain experimentation (1.5 MW/35–65 MHz/3600 s/VSWR 2.0) prior to Prototype and series production. This paper presents the status of R&D activity to resolve technological challenges involved and various infrastructures developed at ITER-India lab to support such operation.

  7. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source.

    Science.gov (United States)

    Zheng, Qiang; Zou, Yang; Zhang, Yalan; Liu, Zhuo; Shi, Bojing; Wang, Xinxin; Jin, Yiming; Ouyang, Han; Li, Zhou; Wang, Zhong Lin

    2016-03-01

    Transient electronics built with degradable organic and inorganic materials is an emerging area and has shown great potential for in vivo sensors and therapeutic devices. However, most of these devices require external power sources to function, which may limit their applications for in vivo cases. We report a biodegradable triboelectric nanogenerator (BD-TENG) for in vivo biomechanical energy harvesting, which can be degraded and resorbed in an animal body after completing its work cycle without any adverse long-term effects. Tunable electrical output capabilities and degradation features were achieved by fabricated BD-TENG using different materials. When applying BD-TENG to power two complementary micrograting electrodes, a DC-pulsed electrical field was generated, and the nerve cell growth was successfully orientated, showing its feasibility for neuron-repairing process. Our work demonstrates the potential of BD-TENG as a power source for transient medical devices.

  8. Target development for the SINQ high-power neutron spallation source

    International Nuclear Information System (INIS)

    Wagner, Werner

    2002-01-01

    SINQ is a 1 MW class research spallation neutron source, driven by the PSI proton accelerator system. In terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation worldwide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience. Therefore, an extensive materials irradiation program (STIP) is currently underway which will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, to develop a liquid lead-bismuth spallation target for a beam power level of 1MW

  9. Comparison of VSC and Z-Source Converter: Power System Application Approach

    Directory of Open Access Journals (Sweden)

    Masoud Jokar Kouhanjani

    2017-01-01

    Full Text Available Application of equipment with power electronic converter interface such as distributed generation, FACTS and HVDC, is growing up intensively. On the other hand, various types of topologies have been proposed and each of them has some advantages. Therefore, appropriateness of each converter regarding to the application is a main question for designers and engineers. In this paper, a part of this challenge is responded by comparing a typical Voltage-Source Converter (VSC and Z-Source Converter (ZSC, through high power electronic-based equipment used in power systems. Dynamic response, stability margin, Total Harmonic Distortion (THD of grid current and fault tolerant are considered as assessment criteria. In order to meet this evaluation, dynamic models of two converters are presented, a proper control system is designed, a small signal stability method is applied and responses of converters to small and large perturbations are obtained and analysed by PSCAD/EMTDC.

  10. Filter and window assemblies for high power insertion device synchrotron radiation sources

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  11. Creation and investigation of powerful EUV sources (λ ∼ 13.5 nm)

    International Nuclear Information System (INIS)

    Borisov, V. M.; Borisova, G. N.; Vinokhodov, A. Yu.; Ivanov, A. S.; Kiryukhin, Yu. B.; Mishchenko, V. A.; Prokofiev, A. V.; Khristoforov, O. B.

    2010-01-01

    Results are presented from experimental studies of repetitively pulsed EUV (λ = 13.5 ± 0.135 nm) sources based on a laser-initiated discharge in tin vapor between rotating disk electrodes. Radiative characteristics of two sources with different systems of tin supply onto the electrode surface and different types of power supply have been compared. A number of new effects have been revealed at pulse repetition rates as high as ∼4000 Hz. A mean radiation power of 520 W into the 2π solid angle has been achieved in the spectral band 13.5 ± 0.135 nm at a deposited electrical power of 24 kW.

  12. Creation and investigation of powerful EUV sources (λ ≈ 13.5 nm)

    Science.gov (United States)

    Borisov, V. M.; Borisova, G. N.; Vinokhodov, A. Yu.; Ivanov, A. S.; Kiryukhin, Yu. B.; Mishchenko, V. A.; Prokofiev, A. V.; Khristoforov, O. B.

    2010-03-01

    Results are presented from experimental studies of repetitively pulsed EUV (λ = 13.5 ± 0.135 nm) sources based on a laser-initiated discharge in tin vapor between rotating disk electrodes. Radiative characteristics of two sources with different systems of tin supply onto the electrode surface and different types of power supply have been compared. A number of new effects have been revealed at pulse repetition rates as high as ˜4000 Hz. A mean radiation power of 520 W into the 2π solid angle has been achieved in the spectral band 13.5 ± 0.135 nm at a deposited electrical power of 24 kW.

  13. Schenkel circuit and its characteristics. DC power source for NHV ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Toshio; Yamada, Masahiro; Nakazawa, Makoto; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan)

    1996-12-01

    For DC high voltage source, it is necessary to have sufficient power capacity to suit for electric current capacity required for operational load and further sufficient power stability when adapting it to an ion accelerator. In this paper, outlines of various DC high voltage forming circuits using generally and characteristics of Schenkel type DC source adapted to ion accelerator were described. Characteristics of the NHV Schenkel type DC electric source on actual circuit construction is shown as follows; (1) Whole circuit construction is intended to improve its discharge resistance by assembly with gaps and resistors. (2) Stability caused by geometric shape specific to the Schenkel circuit is improved by adopting integral moldings of aluminum for its structural material. And, (3) Upgrading of cooling effect, and miniaturization and forming heat loss reduction of system are intended by adopting all aluminum to increasing pressure transformer storing tank for countermeasure of vortex current. (G.K.)

  14. Schenkel circuit and its characteristics. DC power source for NHV ion accelerator

    International Nuclear Information System (INIS)

    Kimura, Toshio; Yamada, Masahiro; Nakazawa, Makoto; Iwamoto, Eiji

    1996-01-01

    For DC high voltage source, it is necessary to have sufficient power capacity to suit for electric current capacity required for operational load and further sufficient power stability when adapting it to an ion accelerator. In this paper, outlines of various DC high voltage forming circuits using generally and characteristics of Schenkel type DC source adapted to ion accelerator were described. Characteristics of the NHV Schenkel type DC electric source on actual circuit construction is shown as follows; 1) Whole circuit construction is intended to improve its discharge resistance by assembly with gaps and resistors. 2) Stability caused by geometric shape specific to the Schenkel circuit is improved by adopting integral moldings of aluminum for its structural material. And, 3) Upgrading of cooling effect, and miniaturization and forming heat loss reduction of system are intended by adopting all aluminum to increasing pressure transformer storing tank for countermeasure of vortex current. (G.K.)

  15. An electric-eel-inspired soft power source from stacked hydrogels.

    Science.gov (United States)

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  16. An electric-eel-inspired soft power source from stacked hydrogels

    Science.gov (United States)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  17. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  18. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    Science.gov (United States)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-09-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  19. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    Science.gov (United States)

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  20. Analysis of a carbon dioxide transcritical power cycle using a low temperature source

    International Nuclear Information System (INIS)

    Cayer, Emmanuel; Galanis, Nicolas; Desilets, Martin; Nesreddine, Hakim; Roy, Philippe

    2009-01-01

    A detailed analysis of a carbon dioxide transcritical power cycle using an industrial low-grade stream of process gases as its heat source is presented. The methodology is divided in four steps: energy analysis, exergy analysis, finite size thermodynamics and calculation of the heat exchangers' surface. The results have been calculated for fixed temperature and mass flow rate of the heat source, fixed maximum and minimum temperatures in the cycle and a fixed sink temperature by varying the high pressure of the cycle and its net power output. The main results show the existence of an optimum high pressure for each of the four steps; in the first two steps, the optimum pressure maximises the thermal or exergetic efficiency while in the last two steps it minimises the product UA or the heat exchangers' surface. These high pressures are very similar for the energy and exergy analyses. The last two steps also have nearly identical optimizing high pressures that are significantly lower that the ones for the first two steps. In addition, the results show that the augmentation of the net power output produced from the limited energy source has no influence on the results of the energy analysis, decreases the exergetic efficiency and increases the heat exchangers' surface. Changing the net power output has no significant impact on the high pressures optimizing each of the four steps

  1. Various technical and legal aspects of nuclear power sources in outer space

    International Nuclear Information System (INIS)

    Boeck, H.; Summerer, L.

    2001-12-01

    Since the very first days of space exploration, nuclear power was considered as an alternative to solar cells for the generation of energy in space. Especially for larger exploration missions beyond Mars, nuclear power sources (NPS) are almost unavoidable. NPS are developed, produced and flown on a continuous basis since almost 40 years by the USA and the Soviet Union, now Russia. While the technological capabilities certainly exist within Europe, Europe has not developed space nuclear power sources. This work is structured in four parts, enlightening this subject from different viewpoints on the European level. In a first chapter, European centres researching in the broader field of this technology are listed. A second chapter deals with the properties and hazards connected with plutonium, the element used in Radioisotope Thermal Generators (RTG). Recent technological developments in the field of RTG are reviewed in chapter 4, while chapter 3 deals with the international legal implications of the use of nuclear power sources in outer space. Refs. 30 (author)

  2. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-01-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm 2 (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 μA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 π mm mrad at 15 kV (1σ) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams

  3. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    Energy Technology Data Exchange (ETDEWEB)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T. [Laboratoire de Physique Subatomique et de Cosmologie de Grenoble, UJF-CNRS/IN2P3 - INPG, 53, rue des Martyrs, 38026 Grenoble Cedex (France)

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  4. The structure and control method of hybrid power source for electric vehicle

    International Nuclear Information System (INIS)

    Li, Maobing; Xu, Hui; Li, Weimin; Liu, Yin; Li, Fade; Hu, Yue; Liu, Li

    2016-01-01

    In this paper, an electric vehicle powertrain configuration is presented, which the lithium-ion battery integrated with ultracapacitors is developed as the hybrid power system to improve the transient performance of an electric vehicle, and to decrease the damage to the battery pack. In the proposed system, a bidirectional direct current/direct current converter is used to couple the ultracapacitors bank to the main battery pack. The energy management strategy based on fuzzy logic for hybrid power system has been proposed to promote the performance of energy flow in the electric vehicle. The experiment results in urban driving cycles show remarkable advantages of the proposed hybrid system configuration and energy management strategy. About 30% of the battery capacity energy is saved while using the hybrid power source. Besides, the voltage and current curves of battery become smoother than that with the single power. - Highlights: • A hybrid power source electric vehicle powertrain configuration is presented. • The energy management strategy based on fuzzy logic is proposed. • The experiment results show remarkable advantages of the configuration and method.

  5. Experimental Evaluation of Supercapacitor-Fuel Cell Hybrid Power Source for HY-IEL Scooter

    Directory of Open Access Journals (Sweden)

    Piotr Bujlo

    2013-01-01

    Full Text Available This paper presents the results of development of a hybrid fuel cell supercapacitor power system for vehicular applications that was developed and investigated at the Energy Sources Research Section of the Wroclaw Division of Electrotechnical Institute (IEL/OW. The hybrid power source consists of a polymer exchange membrane fuel cell (PEMFC stack and an energy-type supercapacitor that supports the system in time of peak power demands. The developed system was installed in the HY-IEL electric scooter. The vehicle was equipped with auxiliary components (e.g., air compressor, hydrogen tank, and electromagnetic valves needed for proper operation of the fuel cell stack, as well as electronic control circuits and a data storage unit that enabled on-line recording of system and vehicle operation parameters. Attention is focused on the system energy flow monitoring. The experimental part includes field test results of a vehicle powered with the fuel cell-supercapacitor system. Values of currents and voltages recorded for the system, as well as the vehicle’s velocity and hydrogen consumption rate, are presented versus time of the experiment. Operation of the hybrid power system is discussed and analysed based on the results of measurements obtained.

  6. Study of energy recovery and power generation from alternative energy source

    Directory of Open Access Journals (Sweden)

    Abdulhakim Amer A. Agll

    2014-11-01

    Full Text Available The energy requirement pattern of world is growing up and developing technology. The available sources, while exhausting and not friendly to the environment, are highly used. Looking at partial supply and different options of environment problems associated with usage, renewable energy sources are getting attention. MSW (Municipal solid waste composition data had been collected from 1997 to 2009, in Benghazi Libya, to evaluate the waste enthalpy. An incinerator with capacity of 47,250 kg/h was confirmed to burn all the quantity of waste generated by the city through the next 15 years. Initial study was performed to investigate energy flow and resource availability to insure sustainable MSW required by the incinerator to work at its maximum capacity during the designated period. The primary purpose of the paper is to discuss the design of Rankin steam cycle for the generation of both power (PG and combined heat power (CHP. In the power generation case, the system was found to be able to generate electrical power of 13.1 MW. Including the combined heat power case, the results showed that the system was able to produce 6.8 million m3/year of desalinated water and generate 11.33 MW of electricity. In conclusion, the CHP designed system has the greatest potential to maximize energy saving, due to the optimal combination of heat production and electricity generation.

  7. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    Science.gov (United States)

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  8. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  9. Source selection problem of competitive power plants under government intervention: a game theory approach

    Science.gov (United States)

    Mahmoudi, Reza; Hafezalkotob, Ashkan; Makui, Ahmad

    2014-06-01

    Pollution and environmental protection in the present century are extremely significant global problems. Power plants as the largest pollution emitting industry have been the cause of a great deal of scientific researches. The fuel or source type used to generate electricity by the power plants plays an important role in the amount of pollution produced. Governments should take visible actions to promote green fuel. These actions are often called the governmental financial interventions that include legislations such as green subsidiaries and taxes. In this paper, by considering the government role in the competition of two power plants, we propose a game theoretical model that will help the government to determine the optimal taxes and subsidies. The numerical examples demonstrate how government could intervene in a competitive market of electricity to achieve the environmental objectives and how power plants maximize their utilities in each energy source. The results also reveal that the government's taxes and subsidiaries effectively influence the selected fuel types of power plants in the competitive market.

  10. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications

    Science.gov (United States)

    Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe

    2018-03-01

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.

  11. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Science.gov (United States)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  12. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    International Nuclear Information System (INIS)

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs

  13. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  14. The electric power stations viewed as a source of local and transfrontier pollution

    International Nuclear Information System (INIS)

    Motiu, C.; Sandu, I.

    1994-01-01

    The pollutant emission of the thermal power stations may have an important contribution to the local pollution as well as to regional (transfrontier) and global pollution. Due to the impossibility at present of making continuous monitoring of the emission of pollutants it is necessary to use computational models for obtaining inventories of the pollutant sources and for studying their dispersion into atmosphere. The computational code used to simulate the pollutant diffusion in the atmosphere is a climatologic model giving the annual average concentration and the evaluation of the maximum SO 2 concentration. The paper presents the analyses for the case of 14 thermal power stations of Romania

  15. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    Directory of Open Access Journals (Sweden)

    Mario Mureddu

    Full Text Available The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  16. Relativistic jets and the most powerful radio sources in the universe

    International Nuclear Information System (INIS)

    Bridle, A.

    1987-01-01

    Relativistic jets, which are beams of particles and magnetic fields emitting synchrotron radiation that emanate from black holes at the centers of galaxies and quasars, have been one of the most exciting discoveries made at the Very Large Array (VLA) operated by the National Radio Astronomy Observatory (NRAO). The VLA is an array of 27 antennas, each 25 meters in diameter, distributed in a Y-formation with two branches 21 kilometers long and one branch 19 kilometers long. Astronomers can use it to study relativistic jets that generate intense natural radio sources (or transmitters). These sources, associated with regions hundreds of thousands of light years across, are the most powerful in the universe in energy output. In his lecture, Bridle describes how consecutive advances in imaging techniques for radio astronomy have uncovered the properties of the powerful radio sources, culminating in the discovery at the VLA that many of these sources contain radio emitting jets. He then describes some of the NRAO's research on these jets, and discusses the jets' physical properties. He concludes with an outlook for the future: the NRAO's Very Long Baseline Array (VLBA) is to be completed in the early 1990's. The VLBA is an array of ten radio telescopes distributed from Hawaii to St. Croix, from the Canadian border to Texas. With the VLBA, astronomers plan to look more deeply into these radio sources. 15 figs

  17. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    Science.gov (United States)

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  18. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  19. The vibrational source strength descriptor using power input from equivalent forces: a simulation study

    DEFF Research Database (Denmark)

    Laugesen, Søren; Ohlrich, Mogens

    1994-01-01

    Simple, yet reliable methods for the approximate determination of the vibratory power supplied by the internal excitation forces of a given vibrational source are of great interest. One such method that relies on the application of a number of “equivalent forces” and measurements of the mean...... squared velocity on either the source or the receiving structure is studied in this paper by means of computer simulations. The study considers a simple system of two flexural beams coupled via a pair of springs. The investigation shows that a relatively small number of equivalent forces suffice...

  20. Modeling the power of renewable energy sources in the context of classical electricity system transformation

    Directory of Open Access Journals (Sweden)

    Rafał Kasperowicz

    2017-10-01

    Full Text Available Many regions, not only in the Europe, introduce plans for the modernization of energy systems so that in a few or several years most of the demand for electricity was being able to cover using renewable energy sources. The aim of this paper is to present the possibility of estimation of appropriate power supply based on the renewable energy sources in the context of the whole energy system in the annual balance, taking into account the technical and the economic optimization strategies. The article presents also the simplified structure of the 100% renewable energy system supported by energy storage systems and the production of synthetic fuels.

  1. Efficient power generation from large 7500C heat sources. Application to coal-fired and nuclear power station

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Pierre, B.

    1980-03-01

    Considering the future concern about a more efficient, rational use of heat sources, and also about a greater location flexibility of power plants owing to dry cooling possibility, closed gas cycles can offer new solutions for fossil or nuclear energy. An efficient heat conversion into power is obtained by the combination of a main non-intercooled helium cycle with a flexible, superheated, low pressure bottoming steam cycle. Emphasis is placed on the matching of the two cycle; for that, a recuperator by-pass arrangement is used. The operation of the main gas turbocompressor does not depend upon the operation of the small steam cycle. Results are given for a conservative turbine inlet temperature of 750 0 C. Applications are made to a coal-fired power plant and to a gas turbine, gas-cooled nuclear reactor. Overall net plant efficiencies of 39 per cent and 46 per cent respectively are reached. For a cycle top temperature equal to 850 0 C, corresponding net efficiencies would be 42 and 49 per cent

  2. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    Science.gov (United States)

    Yang, Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  3. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    International Nuclear Information System (INIS)

    Yang Xiaoling; Miley, George H.; Hora, Heinz

    2009-01-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  4. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    Science.gov (United States)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  5. Knowledge and networks – key sources of power in global health

    Science.gov (United States)

    Hanefeld, Johanna; Walt, Gill

    2015-01-01

    Shiffman rightly raises questions about who exercises power in global health, suggesting power is a complex concept, and the way it is exercised is often opaque. Power that is not based on financial strength but on knowledge or experience, is difficult to estimate, and yet it may provide the legitimacy to make moral claims on what is, or ought to be, on global health agendas. Twenty years ago power was exercised in a much less complex health environment. The World Health Organization (WHO) was able to exert its authority as world health leader. The landscape today is very different. Financial resources for global health are being competed for by diverse organisations, and power is diffused and somewhat hidden in such a climate, where each organization has to establish and make its own moral claims loudly and publicly. We observe two ways which allow actors to capture moral authority in global health. One, through power based on scientific knowledge and two, through procedures in the policy process, most commonly associated with the notion of broad consultation and participation. We discuss these drawing on one particular framework provided by Bourdieu, who analyses the source of actor power by focusing on different sorts of capital. Different approaches or theories to understanding power will go some way to answering the challenge Shiffman throws to health policy analysts. We need to explore much more fully where power lies in global health, and how it is exercised in order to understand underlying health agendas and claims to legitimacy made by global health actors today. PMID:25674577

  6. Impact of plasma tube wall thickness on power coupling in ICP sources

    International Nuclear Information System (INIS)

    Nawaz, Anuscheh; Herdrich, Georg

    2009-01-01

    The inductively heated plasma source at the Institute of Space Systems was investigated with respect to the wall thickness of the plasma tube using an air plasma. For this, the wall thickness of the quartz tube was reduced in steps from 2.5 to 1.25 mm. The significance of reducing the wall thickness was analyzed with respect to both the maximum allowable tube cooling power and the coupling efficiency. While the former results from thermal stresses in the tube's wall, the latter results from a minimization of magnetic field losses near the coil turns of the inductively coupled plasma (ICP) source. Analysis of the thermal stress could be validated by experimental data, i.e. the measurement of the tube cooling power when the respective tube structure failed. The coupling efficiency could be assessed qualitatively by simplified models, and the experimental data recorded show that coupling was improved far more than predicted.

  7. Current Harmonics Compensation in Microgrids Exploiting the Power Electronics Interfaces of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Ioannis Bouloumpasis

    2015-03-01

    Full Text Available This work presents a method of current harmonic reduction in a distorted distribution system. In order to evaluate the proposed method a grid with high-order current harmonics is assumed. The reduction of current distortion is feasible due to the pulse modulation of an active filter, which consists of a buck-boost converter connected back-to-back to a polarity swapping inverter. For a practical application, this system would be the power electronic interface of a Renewable Energy Source (RES and therefore it changes a source of harmonics to a damping harmonics system. Using the proposed method, the current Total Harmonic Distortion (THD of the grid is reduced below the acceptable limits and thus the general power quality of the system is improved. Simulations in the MATLAB/SIMULINK platform and experiments have been performed in order to verify the effectiveness of the proposed method.

  8. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  9. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  10. Nuclear power in space. Use of reactors and radioactive substances as power sources in satellites and space probes

    International Nuclear Information System (INIS)

    Hoestbaeck, Lars

    2008-11-01

    Today solar panels are the most common technique to supply power to satellites. Solar panels will work as long as the power demand of the satellite is limited and the satellite can be equipped with enough panels, and kept in an orbit that allows enough sunlight to hit the panels. There are various types of space missions that do not fulfil these criteria. With nuclear power these types of missions can be powered regardless of the sunlight and as early as 1961 the first satellite with a nuclear power source was placed in orbit. Out of seventy known space missions that has made use of nuclear power, ten have had some kind of failure. In no case has the failure been associated with the nuclear technology used. This report discusses to what degree satellites with nuclear power are a source for potential radioactive contamination of Swedish territory. It is not a discussion for or against nuclear power in space. Neither is it an assessment of consequences if radioactive material from a satellite would reach the earth's surface. Historically two different kinds of Nuclear Power Sources (NPS) have been used to generate electric power in space. The first is the reactor where the energy is derived from nuclear fission of 235 U and the second is the Radioisotope Thermoelectric Generator (RTG) where electricity is generated from the heat of naturally decaying radionuclides. NPS has historically only been used in space by United States and the Soviet Union (and in one failing operation Russia). Nuclear Power Sources have been used in three types of space objects: satellites, space probes and moon/Mars vehicles. USA has launched one experimental reactor into orbit, all other use of NPS by the USA has been RTG:s. The Soviet Union, in contrast, only launched a few RTG:s but nearly forty reactors. The Soviet use of NPS is less transparent than the use in USA and some data published on Soviet systems are more or less well substantiated assessments. It is likely that also future

  11. Low power microwave tests on RF gun prototype of the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2017-08-01

    Full Text Available In this paper, we introduce RF electron gun of Iranian Light Source Facility (ILSF pre-injection system. Design, fabrication and low-power microwave tests results of the prototype RF electron gun have been described in detail. This paper also explains the tuning procedure of the prototype RF electron gun to the desired resonant frequency. The outcomes of this project brighten the path to the fabrication of the RF electron gun by the local industries  

  12. Teachers’ Opinions in Relation to School Principals’ Organizational Power Sources andAuthentic Leadership Levels

    OpenAIRE

    NARTGÜN, Şenay Sezgin; NARTGÜN, Zekeriya; ARICI, Uzman Deniz

    2016-01-01

    The aim of this study is to determine the organizational power sources that used and authentic leadership levels that demonstrated by primary, secondary and high school principals within the framework of teachers‟ opinions. In the study, comparative survey was used. One hundred and twenty teachers of primary, secondary and high schools located at Dörtdivan and Seben provinces of Bolu are consist the working group of this study. The data gathered from the one hundred teachers whom are particip...

  13. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    Science.gov (United States)

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  14. Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach

    Directory of Open Access Journals (Sweden)

    Gregorio López

    2017-08-01

    Full Text Available The integration of Distributed Generation, Electric Vehicles, and storage without compromising the quality of the power delivery requires the deployment of a communications overlay that allows monitoring and controlling low voltage networks in almost real time. Power Line Communications are gaining momentum for this purpose since they present a great trade-off between economic and technical features. However, the power lines also represent a harsh communications medium which presents different problems such as noise, which is indeed affected by Distributed Generation, Electric Vehicles, and storage. This paper provides a comprehensive overview of the types of noise that affects Narrowband Power Line Communications, including normative noises, noises coming from common electronic devices measured in actual operational power distribution networks, and noises coming from photovoltaic inverters and electric vehicle charging spots measured in a controlled environment. The paper also reviews several techniques to mitigate the effects of noise, paying special attention to passive filtering, as for being one of the most widely used solution to avoid this kind of problems in the field. In addition, the paper presents a set of tests carried out to evaluate the impact of some representative noises on Narrowband Power Line Communications network performance, as well as the effectiveness of different passive filter configurations to mitigate such an impact. In addition, the considered sources of noise can also bring value to further improve PLC communications in the new scenarios of the Smart Grid as an input to theoretical models or simulations.

  15. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-07-01

    Full Text Available Today’s battery powered electric vehicles still face many issues: (1 Ways of improving the regenerative braking energy; (2 how to maximally extend the driving-range of electric vehicles (EVs and prolong the service life of batteries; (3 how to satisfy the energy requirements of the EVs both in steady and dynamic state. The electrochemical double-layer capacitors, also called ultra-capacitors (UCs, have the merits of high energy density and instantaneous power output capability, and are usually combined with power battery packs to form a hybrid power supply system (HPSS. The power circuit topology of the HPSS has been illustrated in this paper. In the proposed HPSS, all the UCs are in series, which may cause an imbalanced voltage distribution of each unit, moreover, the energy allocation between the batteries and UCs should also be considered. An energy-management scheme to solve this problem has been presented. Moreover, due to the parameter variations caused by temperature changes and produced errors, the modelling procedure of the HPSS becomes very difficult, so an H∞ current controller is presented. The proposed hybrid power source circuit is implemented on a laboratory hardware setup using a digital signal processor (DSP. Simulation and experimental results have been put forward to demonstrate the feasibility and validity of the approach.

  17. The Sources and the Effects of the Individual Power in the Economic Organizations

    Directory of Open Access Journals (Sweden)

    Alecxandrina Deaconu

    2007-10-01

    Full Text Available Few concepts have such an important significance, both for individuals and for organizations,as it happens with the concept of power. To be in power, to have full powers, to obey power, to gainpower are expressions that translate the individuals’ conscious or unconscious concerns, obsessions orrelations that allow the functioning of the social groups.In their turn, the organizations are the theatre of numerous power games and conflicts. These are notconnected only by personal ambitions, but also by the fact that the individuals and the groups, diverse asstructure and functions, have objectives that do not coincide entirely.Moreover, each individual has a different vision regarding the means, methods or strategies necessaryto get a good functioning of the entire organization. Everyone tries, more or less, to defend the owninterests, which do not necessarily correspond to those of other persons and groups. It is thus natural toemerge conflicts.All these observations require a careful investigation of the power sources and the effects in aneconomic organization, so that we could prepare mechanisms able to diminish the risks of the destructiveconflicts.

  18. An FEL power source for a TeV linear collider

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Hoyer, E.H.; Halbach, K.

    1988-10-01

    In this paper we consider the design of a power source of a linear collider. We take a conservative approach and hence extrapolate as little as possible from present experience. Thus we establish a ''straw man''; i.e., a design which serves as an ''existence proof'' of a power source for a TeV collider. We take as the parameters to which the power source is designed those presented earlier by R. Palmer; namely: f = 17 GHz, W = 634 MW/m, L = 1.44m, W/sub T/ = 3.87 TW, R = 180 Hz, L/sub c/ = 7.41 km, T/sub p/ = 50 ns, where the quantity f is the desired frequency, W is the power needed per meter (for a gradient of 186 MeV/m), L is the length between feeds, W/sub T/ is the total power required, R is the rep-rate, L/sub c/ is the total length of the collider, and T/sub p/ is the rf pulse width. With no emittance dilution, this collider would produce a luminosity of 7.7 /times/ 10 32 cm/sup /minus/2/ sec/sup /minus/1/ for single bunch operation or 1.6 /times/ 10 34 cm/sup /minus/2/ sec/sup /minus/1/ for multi-bunch operating (i.e., 21 bunches). With realistic dilution and R = 386 Hz these luminosity values would be 5.0 /times/ 10 32 and 1.0 /times/ 10 34 cm/sup /minus/2/ sec/sup /minus/1/, respectively. 5 refs., 14 figs., 4 tabs

  19. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  20. On the physics of power, energy and economics of renewable electric energy sources - Part II

    International Nuclear Information System (INIS)

    Skoglund, Annika; Leijon, Mats; Waters, Rafael; Rehn, Alf; Lindahl, Marcus

    2010-01-01

    Renewable Energy Technologies (RETs) are often recognized as less competitive than traditional electric energy conversion systems. Obstacles with renewable electric energy conversion systems are often referred to the intermittency of the energy sources and the relatively high maintenance cost. However, due to an intensified discourse on climate change and its effects, it has from a societal point of view, become more desirable to adopt and install CO 2 neutral power plants. Even if this has increased the competitiveness of RETs in a political sense, the new goals for RET installations must also be met with economical viability. We propose that the direction of technical development, as well as the chosen technology in new installations, should not primarily be determined by policies, but by the basic physical properties of the energy source and the associated potential for inexpensive energy production. This potential is the basic entity that drives the payback of the investment of a specific RET power plant. With regard to this, we argue that the total electric energy conversion system must be considered if effective power production is to be achieved, with focus on the possible number of full loading hours and the Degree of Utilization. This will increase the cost efficiency and economical competitiveness of RET investments, and could enhance faster diffusion of new innovations and installations without over-optimistic subsidies. This paper elaborates on the overall problem of the economy of renewable electric energy conversion systems by studying the interface between physics, engineering and economy reported for RET power plants in different scientific publications. The core objective is to show the practical use of the Degree of Utilization and how the concept is crucial for the design and economical optimization disregarding subsidies. The results clearly indicate that the future political regulative frameworks should consider the choice of renewable energy

  1. Radioisotope Power Sources; Sources d'energie utilisant les radiobotopes; Radioizotopnye istochniki ehnergii; Fuentes radio isotopicas de energia

    Energy Technology Data Exchange (ETDEWEB)

    Culwell, J. P. [USAEC, Washington, D.C (United States)

    1963-11-15

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  2. Performances of a Compact, High-Power WB Source with Circular Polarization

    Science.gov (United States)

    Delmote, P.; Pinguet, S.; Bieth, F.

    This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.

  3. Long-pulse neutral beam power supply system for LBL 20 kV, 10 A sources

    International Nuclear Information System (INIS)

    Honey, V.J.; Baker, W.R.; Fitzgerald, M.L.

    1976-05-01

    A description is given of the power supplies and control system for the LBL 20 kV, 10 A, 10 sec long-pulse neutral beam source test facility, now in operation. Such sources are used in a number of existing and planned fusion power experiments

  4. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christopher; Portnoff, Samuel [Widetronix Corp., Ithaca, New York 14850 (United States); Spencer, M. G. [Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2016-01-04

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P{sup +}N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH{sup 3}{sub x}) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm{sup 2}. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm{sup 2}, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 10{sup 5}–10{sup 6 }cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P{sup +}N junction structure can mitigate some of the negative effects.

  5. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2015-01-01

    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...... power transfer through permanent magnet generator wind turbine system. Considering the tower shadow and the wind shear effect, the mechanical and generator coupling model is developed by PSCAD. Simulation is done to analyze the impacts on output power of operation points and mechanical fluctuation...... components. It is shown that when the oscillation frequency of tower shadow coincides with the system natural frequency, it may cause forced oscillations, whereas, the wind shear and natural wind speed fluctuation are not likely to induce forced oscillations....

  6. Contribution of green energy sources to electrical power production of Turkey: A review

    International Nuclear Information System (INIS)

    Balat, Havva

    2008-01-01

    Green power products may be seen as a means of fostering renewable energy sources (RES) because they create and channel consumer demand for environmentally sound power generation. Turkey also has a large potential for renewable energy exploitation in a number of areas. Clean, domestic and renewable energy is commonly accepted as the key for future life, not only for Turkey but also for the world. The renewable energy contribution in the total primary energy production is insignificant. The alternative and renewable energy systems have been neglected so far in Turkey but must be included in the new energy programs. In this context, Renewable Energy Law was enacted in 2005 in order to encourage renewable-based generation in competitive market conditions. Supporting mechanisms such as feed-in tariffs and purchase obligation are defined in the law, in conformity with the EU legislation and practice. These mechanisms are envisaged to facilitate the development of power plants based on RES. (author)

  7. Dense granular Flows: a conceptual design of high-power neutron source

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2017-01-01

    Full Text Available A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016. Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.

  8. Power Law Distributions in the Experiment for Adjustment of the Ion Source of the NBI System

    International Nuclear Information System (INIS)

    Han Xiaopu; Hu Chundong

    2005-01-01

    The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking

  9. Z-Source Inverter Based Power Quality Compensator with Enhanced Ride-Through Capability

    DEFF Research Database (Denmark)

    Gajanayake, C.J.; Vilathgamuwa, D.M.; Loh, P.C.

    2007-01-01

    Distributed generation has been gaining acceptance over the years and it has the potential to provide reliable power to sensitive loads. However, distributed networks are prone to unbalanced faults conditions. This makes single inverter DG systems unsuitable as UPS systems. This paper proposes...... a Zsource inverter based power quality compensator and a control structure that supplies high quality voltage to the connected sensitive load in the presence of other non linear loads. The proposed topology consists of combination of shunt and series inverters connected to a common Z-source impedance...... network. The shunt inverter is controlled to maintain a quality voltage waveform at the load bus. Whereas the series inverter enhances the ride-through capability during grid faults, protects the shunt inverter by limiting the current and also controls the power delivered to the grid. The performance...

  10. A Modified Load Flow Algorithm in Power Systems with Alternative Energy Sources

    International Nuclear Information System (INIS)

    Contreras, D.L.; Cañedo, J.M.

    2017-01-01

    In this paper an algorithm for calculating the steady state of electrical networks including wind and photovoltaic generation is presented. The wind generators considered are; asynchronous (squirrel cage and doubly fed) and synchronous generators using permanent magnets. The proposed algorithm is based on the formulation of nodal power injections that is solved with the modified Newton Raphson technique in its polar formulation using complex matrices notation. Each power injection of wind and photovoltaic generators is calculated independently in each iteration according to its particular mathematical model, which is generally non-linear. Results are presented with a 30-node test system. The computation time of the proposed algorithm is compared with the conventional methodology to include alternative energy sources in power flows studies. (author)

  11. Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. The source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their diurnal

  12. Testing a high-power LED based light source for hyperspectral imaging microscopy

    Science.gov (United States)

    Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.

  13. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  14. Inventory and source term evaluation of Russian nuclear power plants for marine applications

    International Nuclear Information System (INIS)

    Reistad, O.; Oelgaard, P.L.

    2006-04-01

    This report discusses inventory and source term properties in regard to operation and possible releases due to accidents from Russian marine reactor systems. The first part of the report discusses relevant accidents on the basis of both Russian and western sources. The overview shows that certain vessels were much more accident prone compared to others, in addition, there have been a noteworthy reduction in accidents the last two decades. However, during the last years new types of incidents, such as collisions, has occurred more frequently. The second part of the study considers in detail the most important factors for the source term; reactor operational characteristics and the radionuclide inventory. While Russian icebreakers has been operated on a similar basis as commercial power plants, the submarines has different power cyclograms which results in considerable lower values for fission product inventory. Theoretical values for radionuclide inventory are compared with computed results using the modelling tool HELIOS. Regarding inventory of transuranic elements, the results of the calculations are discussed in detail for selected vessels. Criticality accidents, loss-of-cooling accidents and sinking accidents are considered, bases on actual experiences with these types of accident and on theoretical considerations, and source terms for these accidents are discussed in the last chapter. (au)

  15. Inventory and source term evaluation of Russian nuclear power plants for marine applications

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Norwegian Radiation Protection Authority (Norway); Oelgaard, P.L. [Risoe National Lab. (Denmark)

    2006-04-15

    This report discusses inventory and source term properties in regard to operation and possible releases due to accidents from Russian marine reactor systems. The first part of the report discusses relevant accidents on the basis of both Russian and western sources. The overview shows that certain vessels were much more accident prone compared to others, in addition, there have been a noteworthy reduction in accidents the last two decades. However, during the last years new types of incidents, such as collisions, has occurred more frequently. The second part of the study considers in detail the most important factors for the source term; reactor operational characteristics and the radionuclide inventory. While Russian icebreakers has been operated on a similar basis as commercial power plants, the submarines has different power cyclograms which results in considerable lower values for fission product inventory. Theoretical values for radionuclide inventory are compared with computed results using the modelling tool HELIOS. Regarding inventory of transuranic elements, the results of the calculations are discussed in detail for selected vessels. Criticality accidents, loss-of-cooling accidents and sinking accidents are considered, bases on actual experiences with these types of accident and on theoretical considerations, and source terms for these accidents are discussed in the last chapter. (au)

  16. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  17. Final generic environmental statement on the routine use of plutonium-powered cardiac pacemakers. Update of information on power sources for pacemakers

    International Nuclear Information System (INIS)

    1979-05-01

    The Final Environmental Statement on Routine Use of Plutonium-Powered Cardiac Pacemakers (FES) was issued in July 1976. Supplement 1, prepared in 1978, updates the FES with respect to power sources for pacemakers. Particular attention is given to the non-nuclear lithium batteries as alternatives to 238-Pu power sources in pacemakers. Supplement 1 also considers the current extent of pacemaker use and makeup of the patient population and concludes that the FES' conclusion is still valid that distribution of 238-Pu powered pacemakers for routine use should be authorized subject to specific conditions

  18. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.

    2006-01-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-(micro)m-diameter pinholes in a 50-(micro)m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented

  19. Operating experience relating to on-site electric power sources. Proceedings of a Specialist Meeting

    International Nuclear Information System (INIS)

    1986-02-01

    The reliability of on-site electric power sources of nuclear power plants usually consisting of diesel generators, gas turbine generators and DC power sources, has been a matter of concern during reactor operations. The frequent recurrence and the important consequences of failures relating to on-site electric power sources have led to a general consensus that they form one of the most significant features influencing the total performance of the safety Systems. This has also been confirmed by surveys performed on the incidents reported through the NEA Incident Reporting System (IRS). Accordingly, a recommendation to organise a Specialist Meeting on the subject was made at the third annual meeting of CSNI Principal Working Group No. 1 (Operating Experience and Human Factors). At the 12. meeting of the CSNI held in November 1984. the Committee endorsed the proposal and accepted an offer by the United Kingdom to host and organise the Specialist Meeting. The Specialist Meeting, sponsored by the CSNI, was held in London, United Kingdom from 16 to 18 October 1985. It was hosted by H.M. Nuclear Installations Inspectorate of the Health and Safety Executive. The purpose of the meeting was to promote the exchange of Information on operating experience relating to on-site electric power sources and to look for measures to further improve their reliability In the areas of design, operation and licensing. The meeting was organised by a Programme Group which included nominated members of CSNI PWG No. 1. the Programme Group met in May and June 1985 in Paris to agree on the programme and practical arrangements for the meeting. As a result of the review of the abstracts which had been contributed in response to the Call for Papers, 28 papers were accepted for presentation during the meeting. Approximately 60 delegates from 13 Member countries, and the NEA Secretariat, attended the meeting. Session summaries prepared by the respective session chairmen are Included prior to the

  20. Operating experience relating to on-site electric power sources. Proceedings of a Specialist Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-02-15

    The reliability of on-site electric power sources of nuclear power plants usually consisting of diesel generators, gas turbine generators and DC power sources, has been a matter of concern during reactor operations. The frequent recurrence and the important consequences of failures relating to on-site electric power sources have led to a general consensus that they form one of the most significant features influencing the total performance of the safety Systems. This has also been confirmed by surveys performed on the incidents reported through the NEA Incident Reporting System (IRS). Accordingly, a recommendation to organise a Specialist Meeting on the subject was made at the third annual meeting of CSNI Principal Working Group No. 1 (Operating Experience and Human Factors). At the 12. meeting of the CSNI held in November 1984. the Committee endorsed the proposal and accepted an offer by the United Kingdom to host and organise the Specialist Meeting. The Specialist Meeting, sponsored by the CSNI, was held in London, United Kingdom from 16 to 18 October 1985. It was hosted by H.M. Nuclear Installations Inspectorate of the Health and Safety Executive. The purpose of the meeting was to promote the exchange of Information on operating experience relating to on-site electric power sources and to look for measures to further improve their reliability In the areas of design, operation and licensing. The meeting was organised by a Programme Group which included nominated members of CSNI PWG No. 1. the Programme Group met in May and June 1985 in Paris to agree on the programme and practical arrangements for the meeting. As a result of the review of the abstracts which had been contributed in response to the Call for Papers, 28 papers were accepted for presentation during the meeting. Approximately 60 delegates from 13 Member countries, and the NEA Secretariat, attended the meeting. Session summaries prepared by the respective session chairmen are Included prior to the

  1. Hybrid Systems of Distributed Generation with Renewable Sources: Modeling and Analysis of Their Operational Modes in Electric Power System

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov

    2013-01-01

    Full Text Available The paper considers problems pertaining to modeling and simulation of operational hybrid system modes of the distributed generation comprising conventional sources – modular diesel generators, gas-turbine power units; and renewable sources – wind and solar power plants. Operational modes of the hybrid system have been investigated under conditions of electrical connection with electric power system and in case of its isolated operation. As a consequence

  2. Development of a new MT system using the commercial power line as a source (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, Koji; Noritake, Kazumitsu; Miyata, Hatsuho; Sakuma, Hideki; Saito, Akira

    1988-10-01

    PLMT method is an electromagnetic induction method which uses a commercial power line as a source of electomagnetic energy, and enables accurate measurement in short periods. A numeric calculation example of the effect of distance from a power line as well as the results of actual measurements carried out in the Sekiret mining area (Niger) and Kushikino area, Kagoshima Prefecture are reported. Possibility of estimating average ground resistivity by numerical calculation is demonstrated using the electric field and magnetic field generated by power lines. In the measurement in the Sekiret mining area, Niger, north-south electric field and east-west magnetic field were measured from directly under the power line to the distance of 20 km. The relation of the amplitudes of electric field and magnetic field with the distance is shown. The theoretic curve of 0.02 (mho/m) conductivity agreed well with the value mesured in the area about 1 km from the power line. In the measurement at Kushikino area, the value agrees well with the theoretical curve of 0.01 conductivity, whose average resistivity is considered to be about 100 {Omega}m. 6 references, 11 figures.

  3. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  4. Nuclear steam supply system KLT-40 enhanced safety as independent power supply source. Employment prospects

    International Nuclear Information System (INIS)

    Polunichev, V.I.; Sayanov, D.G.; Ardabievsky, A.A.

    1993-01-01

    High quality of KLT-40 nuclear steam supply system (NSSS) providing enhanced safety is attained owing to the development and operation experience of equipments and systems in Soviet nuclear icebreakers. First of all they are the operating nuclear-powered icebreakers open-quotes Arktikaclose quotes, open-quotes Sibirclose quotes, open-quotes Rossiyaclose quotes, open-quotes Sovetsky Soyuzclose quotes, the limited draught icebreakers of joint Soviet-Finnish manufacturing open-quotes Taimyrclose quotes open-quotes Vaigachclose quotes. 30-years trouble-free operation of icebreaker open-quotes Leninclose quotes, the ancestor of nuclear powered fleet, is unprecedented. Operation life of individual equipment items amounts to 107000 hours, that testifies to high reliability and life characteristics of NSSS. Trouble-free operation of the nuclear-powered icebreakers' reactor plants (RPs) exceeded 130 reactor years, that proves high quality of design decisions being underlain in the basis of the KLT-40 NSSS for the lighter-cargo carrier open-quotes Sevmorputclose quotes, which was put into operation into 1988. Besides it testifies to the expediency of KLT-40 NSSS employment as a power source in different power installations. The KLT-40 is a reactor plant with a pwr type reactor. The design is described in detail with diagrams

  5. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.

    Science.gov (United States)

    Lee, Inyoung; Sode, Takashi; Loew, Noya; Tsugawa, Wakako; Lowe, Christopher Robin; Sode, Koji

    2017-07-15

    An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm 2 ) to prepare a miniaturized enzyme anode. The enzyme fuel cell was connected with a 100 μF capacitor and a power boost converter as a charge pump. The voltage of the enzyme fuel cell was increased in a stepwise manner by the charge pump from 330mV to 3.1V, and the generated electricity was charged into a 100μF capacitor. The charge pump circuit was connected to an ultra-low-power microcontroller. Thus prepared BioCapacitor based circuit was able to operate an ultra-low-power microcontroller continuously, by running a program for 17h that turned on an LED every 60s. Our success in operating a microcontroller using glucose as the sole energy source indicated the probability of realizing implantable self-powered autonomously operated artificial organs, such as artificial pancreas. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Study of a microwave power source for a two-beam accelerator

    International Nuclear Information System (INIS)

    Houck, T.L.

    1994-01-01

    A theoretical and experimental study of a microwave power source suitable for driving a linear e + e - collider is reported. The power source is based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept, is driven by a 5-MeV, 1-kA induction accelerator electron beam, and operates at X-band frequencies. The development of a computer code to simulate the transverse beam dynamics of an intense relativistic electron beam transiting a system of microwave resonant structures is presented. This code is time dependent with self-consistent beam-cavity interactions and uses realistic beam parameters. Simulations performed with this code are compared with analytical theory and experiments. The concept of spacing resonant structures at distances equal to the betatron wavelength of the focusing system to suppress the growth of transverse instabilities is discussed. Simulations include energy spread over the beam to demonstrate the effect of Landau damping and establish the sensitivity of the betatron wavelength spacing scheme to errors in the focusing system. The design of the Reacceleration Experiment is described in detail and includes essentially all the issues related to a full scale RK-TBA microwave source. A total combined power from three output structures in excess of 170 MW with an amplitude stability of ±4% over a 25 ns pulse was achieved. The results of the experiment are compared to simulations used during the design phase to validate the various codes and methods used. The primary issue for the RK-TBA concept is identified as transverse beam instability associated with the excitation of higher order modes in the resonant structures used for extracting microwave power from the modulated beam. This work represents the first successful experimental demonstration of repeated cycles of microwave energy extraction from and reacceleration of a modulated beam

  7. Developments in leading out addressing the power output from the new nuclear power sources into the power system of the Slovak Republic

    International Nuclear Information System (INIS)

    Kvetan, R.; Gramblicka, M.

    2009-01-01

    Safety and reliability of electricity market in Slovakia is one of the goals of the state policy of the Slovak Republic. Strategy of energy security of SR in electric power sector is aimed predominantly at assurance of sufficient sources of electricity situated in Slovakia that would cover the needs of households, industry and agriculture and service sectors. Sufficiency of sources in conditions of SR requires permanent maintaining the balance of installed production capacity and expected yearly consumption in period of 25 or 30 years. The task of SEPS Inc. is to assure reliable operation of the transmission system, management of the system via dispatching centres (balanced consumption and production in the regulation area in SR), maintenance and development of the system, so that reliable and high-quality supplies of electricity and parallel operation with neighbouring systems in accordance with UCTE recommendations and respecting nondiscriminatory and transparent principles of access to the grids with minimum environmental impact.

  8. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Fossorier Marc

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  9. Single-event burnout hardening of planar power MOSFET with partially widened trench source

    Science.gov (United States)

    Lu, Jiang; Liu, Hainan; Cai, Xiaowu; Luo, Jiajun; Li, Bo; Li, Binhong; Wang, Lixin; Han, Zhengsheng

    2018-03-01

    We present a single-event burnout (SEB) hardened planar power MOSFET with partially widened trench sources by three-dimensional (3D) numerical simulation. The advantage of the proposed structure is that the work of the parasitic bipolar transistor inherited in the power MOSFET is suppressed effectively due to the elimination of the most sensitive region (P-well region below the N+ source). The simulation result shows that the proposed structure can enhance the SEB survivability significantly. The critical value of linear energy transfer (LET), which indicates the maximum deposited energy on the device without SEB behavior, increases from 0.06 to 0.7 pC/μm. The SEB threshold voltage increases to 120 V, which is 80% of the rated breakdown voltage. Meanwhile, the main parameter characteristics of the proposed structure remain similar with those of the conventional planar structure. Therefore, this structure offers a potential optimization path to planar power MOSFET with high SEB survivability for space and atmospheric applications. Project supported by the National Natural Science Foundation of China (Nos. 61404161, 61404068, 61404169).

  10. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Marc Fossorier

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope M-ary phase shift key (M-PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded M-PSK signaling (with M=2k. Then, it is extended to include coded M-PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded M-PSK signaling performs 3.1 to 5.2 dB better than uncoded M-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  11. Study of 1 MW neutron source synchrotron dual frequency power circuit for the main ring magnets

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the proposed design of the resonant power circuits for the 1-MW neutron source synchrotron's main ring magnets. The synchrotron is to have a duty cycle of 30 Hz with a maximum upper limit of operation corresponding to 2.0 GeV and a maximum design value of 2.2 GeV. A stability of 30 ppM is the design goal for the main bending and focusing magnets (dipoles and quadruples), in order to achieve an overall stabffity of 100 ppm when random field and position errors of the magnets are included. The power circuits of this design are similar to those used in Argonne's Intense Pulsed Neutron Source (IPNS) where the energy losses during each cycle are supplied by continuous excitation from modulated multiphase DC power supplies. Since only 50% of the 30-Hz sinewave is used for acceleration, a dual-frequency resonant magnet circuit is used in this design. The 30-Hz repetition rate is maintained with a 20-Hz magnet guide field during acceleration and a 60-Hz reset field when no beam is present. This lengthens the guide-field rise time and shortens the fall time, improving the duty factor for acceleration. The maximum B dot is reduced by 33% during acceleration and hence, the maximum rf voltage/turn is reduced by 56%

  12. Assessing harmonic current source modelling and power definitions in balanced and unbalanced networks

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson-Hope, Gary; Stemmet, W.C. [Cape Peninsula University of Technology, Cape Town Campus, Cape Town (South Africa)

    2006-07-01

    The purpose of this paper is to assess the DlgSILENT PowerFactory software power definitions (indices) in terms of phase and sequence components for balanced and unbalanced networks when harmonic distortion is present and to compare its results to hand calculations done, following recommendation made by the IEEE Working Group on this topic. This paper also includes the development of a flowchart for calculating power indices in balanced and unbalanced three-phase networks when non-sinusoidal voltages and currents are present. A further purpose is to determine how two industrial grade harmonic analysis software packages (DlgSILENT and ERACS) model three-phase harmonic sources used for current penetration studies and to compare their results when applied to a network. From the investigations, another objective was to develop a methodology for modelling harmonic current sources based on a spectrum obtained from measurements. Three case studies were conducted and the assessment and developed methodologies were shown to be effective. (Author)

  13. Selective application of revised source terms to operating nuclear power plants

    International Nuclear Information System (INIS)

    Moon, Joo Hyun; Song, Jae Hyuk; Lee, Young Wook; Ko, Hyun Seok; Kang, Chang Sun

    2001-01-01

    More than 30 years later since 1962 when TID-14844 was promulgated, there has been big change of the US NRC's regulatory position in using accident source terms for radiological assessment following a design basis accident (DBA). To replace the instantaneous source terms of TID-14844, the time-dependent source terms of NUREG-1465 was published in 1995. In the meantime, the radiological acceptance criteria for reactor site evaluation in 10 CFR Part 100 were also revised. In particular, the concept of total effective dose equivalent has been incorporated in accordance with the radiation protection standards set forth in revised 10 CFR Part 20. Subsequently, the publication of Regulatory Guide 1.183 and the revision of Standard Review Plan 15.0.1 followed in 2000, which provided the licensee of operating nuclear power reactor with the acceptable guidance of applying the revised source term. The guidance allowed the holder of an operating license issued prior to January 10, 1997 to voluntarily revise the accident source terms used in the radiological consequence analyses of DBA. Regarding to its type of application, there suggested full and selective applications, Whether it is full or selective, based upon the scope and nature of associated plant modifications being proposed, the actual application of the revised source terms to an operating plant is expected to give a large impact on its facility design basis. Considering scope and cost of the analyses required for licensing, selective application is seemed to be more appealing to an licensee of the operating plant rather than full application. In this paper, hence, the selective application methodology is reviewed and is actally applied to the assessment of offsite radiological consequence following a LOCA at Ulchin Unit 3 and 4, in order to identify and analyze the potential impacts due to application of revised source terms and to assess the considerations taken in each application prior to its actual

  14. Evaluation of applicability of alternative source terms to operating nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Lim, S. N.; Park, Y. S.; Nam, K. M.; Song, D. B.; Bae, Y. J.; Lee, Y. J.; Jung, C. Y.

    2002-01-01

    In 1995 and 2000, NRC issued NUREG-1465 and Regulatory Guide 1.183 with respect to Alternative Source Terms(AST) replacing the existing source terms of TID-14844 and Regulatory Guide 1.4, 1.25, and 1.77 for radiological Design Basis Accidents(DBA) analysis. In 1990, ICRP published ICRP Pub. 60 which represents new recommendations on dose criteria and concepts. In Korea, alternative source terms were used for evaluation of effective doses for design basis accidents of Advanced Power Reactor(APR1400) using the computer program developed by an overseas company. Recently, DBADOSE, new computer program for DBA analysis incorporating AST and effective dose concept was developed by KHNP and KOPEC, and reanalysis applying AST to operating nuclear power plants, Kori units 3 and 4 in Korea using DBADOSE has been performed. As the results of this analysis, it was concluded that some conservative variables or operation procedures of operating plants could be mitigated or simplified by virtue of increased safety margin and consequently, economical and operational benefits ensue. In this paper, methodologies and results of Kori 3 and 4 DBA reanalysis and sensitivity analysis for mitigation of main design variables are introduced

  15. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    International Nuclear Information System (INIS)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-01-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented

  16. Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    Shoudao Huang

    2016-09-01

    Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.

  17. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), CNRS, Nancy Universite, INPL-ENSEM 2, avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2009-08-01

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle. (author)

  18. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  19. Institutional impediments to using alternative water sources in thermoelectric power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP

  20. Technical evaluation of the proposed changes in the technical specifications for emergency power sources for the Big Rock Point nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1979-12-01

    The technical evaluation is presented for the proposed changes to the Technical Specifications for emergency power sources for the Big Rock Point nuclear power plant. The criteria used to evaluate the acceptability of the changes include those delineated in IEEE Std-308-1974, and IEEE Std-450-1975 as endorsed by US NRC Regulatory Guide 1.129

  1. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muguira, L., E-mail: lmuguira@essbilbao.org [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Portilla, J. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Etxebarria, V. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain)

    2014-03-21

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  2. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    International Nuclear Information System (INIS)

    Muguira, L.; Portilla, J.; Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J.; Etxebarria, V.; Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D.

    2014-01-01

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  3. Commissioning of the First Klystron-Based X-Band Power Source at CERN

    CERN Document Server

    Kovermann, J; Curt, S; Doebert, S; Naon, M; McMonagle, G; Paju, E; Rey, S; Riddone, G; Schirm, K; Syratchev, I; Timeo, L; Wuensch, W; Hamdi, A; Peauger, FF; Eichner, J; Haase, A; Sprehn, D

    2012-01-01

    A new klystron based X-band rf power source operating at 11.994 GHz has been installed and started to be commissioned at CERN in collaboration with CEA Saclay and SLAC for CLIC accelerating structure tests. The system comprises a solid state high voltage modulator, an XL5 klystron developed by SLAC, a cavity based SLED type pulse compressor, the necessary low level rf system including rf diagnostics and interlocks and the surrounding vacuum, cooling and controls infrastructure. The system is designed to produce up to 50 MW rf pulses of 1500 ns pulse width and 50 Hz repetition rate. After pulse compression, up to 100 MW of rf power at 250 ns pulse width will be available in the structure test bunker. This paper describes in more detail this setup and the process of commissioning which is necessary to arrive at the design performance.

  4. The General-Purpose Heat Source Radioisotope Thermoelectric Generator: Power for the Galileo and Ulysses missions

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Hemler, R.J.; Peterson, J.R.

    1986-01-01

    Electrical power for NASA's Galileo mission to Jupiter and ESA's Ulysses mission to explore the polar regions of the Sun will be provided by General-Purpose Heat Source Radioisotope Thermo-electric Generators (GPHS-RTGs). Building upon the successful RTG technology used in the Voyager program, each GPHS-RTG will provide at least 285 W(e) at beginning-of-mission. The design concept has been proven through extensive tests of an electrically heated Engineering Unit and a nuclear-heated Qualification Unit. Four flight generators have been successfully assembled and tested for use on the Galileo and Ulysses spacecraft. All indications are that the GPHS-RTGs will meet or exceed the power requirement of the missions

  5. A Series-LC-Filtered Active Trap Filter for High Power Voltage Source Inverter

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2016-01-01

    Passive trap filters are widely used in high power Voltage Source Inverters (VSI) for the switching harmonic attenuation. The usage of the passive trap filters requires clustered and fixed switching harmonic spectrum, which is not the case for low pulse-ratio or Variable Switching Frequency (VSF...... current control of the auxiliary converter, which can be challenging considering that the switching harmonics have very high orders. In this paper, an Active Trap Filter (ATF) based on output impedance shaping is proposed. It is able to bypass the switching harmonics by providing nearly zero output...... impedance. A series-LC-filter is used to reduce the power rating and synthesize the desired output impedance of the ATF. Compared with the existing approaches, the compensated frequency range is greatly enlarged. Also, the current reference is simply set to zero, which reduces the complexity of the control...

  6. RF power sources for 5--15 TeV linear colliders

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1996-09-01

    After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed

  7. Critical experiments in support of the CNPS [Compact Nuclear Power Source] program

    International Nuclear Information System (INIS)

    Hansen, G.E.; Audas, J.H.; Martin, E.R.; Pederson, R.A.; Spriggs, G.D.; White, R.H.

    1988-01-01

    Zero-power static and kinetic measurements have been made on a mock-up of the Compact Nuclear Power Source (CNPS), a graphite moderated, graphite reflected, U(19.9% 235 U) fueled reactor design. Critical configurations were tracked from a first clean configuration (184 most central fuel channels filled and all control rod and heat pipe channels empty) to a fully loaded configuration (all 492 fuel channels filled, core-length stainless steel pipe in the twelve heat-pipe channels, and approximately half-core-length boron carbide in the outer 4 control rod channels. Reactor physics data such as material worths and neutron lifetime are presented only for the clean and fully loaded configurations

  8. Methods of thermal power extraction from nuclear sources for meeting the consumer system demands

    International Nuclear Information System (INIS)

    Sellej, J.

    1985-01-01

    The technical design is discussed of heat extraction from nuclear power plants and heating plants. Variant technical designs are discussed of hot water and steam supply, including the basic aspects of nuclear safety. Hot water supplies are technically provided by heat exchanger units connected to turbines, or by heating turbines. The advantages and disadvantages of the two designs are discussed. The possibility of heat extraction by steam from the nuclear power plant is provided by steam exchangers, i.e., steam exchanger cascades, the so-called inserted steam circuit. Supplies of steam from nuclear sources, as against supplies of hot water have not yet been technically resolved with regard to safety, design and economic benefit. Nuclear heating plants have also been designed for hot water supply, but not yet for steam supply. (Pu)

  9. The vulnerabilities of the power-grid system: renewable microgrids as an alternative source of energy.

    Science.gov (United States)

    Meyer, Victor; Myres, Charles; Bakshi, Nitin

    2010-03-01

    The objective of this paper is to analyse the vulnerabilities of current power-grid systems and to propose alternatives to using fossil fuel power generation and infrastructure solutions in the form of microgrids, particularly those from renewable energy sources. One of the key potential benefits of microgrids, apart from their inherent sustainability and ecological advantages, is increased resilience. The analysis is targeted towards the context of business process outsourcing in India. However, much of the research on vulnerabilities has been derived from the USA and as such many of the examples cite vulnerabilities in the USA and other developed economies. Nevertheless, the vulnerabilities noted are to a degree common to all grid systems, and so the analysis may be more broadly applicable.

  10. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. M., E-mail: jared.johnson@ttu.edu; Reale, D. V.; Garcia, R. S.; Cravey, W. H.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J. [Center for Pulsed Power and Power Electronics Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Krile, J. T. [Department of Electromagnetics and Sensor Systems, Naval Surface Warfare Center - Dahlgren Division, Dahlgren, Virginia 22448 (United States)

    2016-05-15

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  11. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  12. Estimated population exposure from nuclear power production and other radiation sources

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1976-01-01

    Estimates are given of the total radiation dose from all forms of ionizing radiation resulting from nuclear power reduction. A power consumption of 1kW per head of population, derived entirely from nuclear energy, would increase the average radiation exposure of the whole population from 100mrem per year from natural sources (plus about 40mrem per year from medical procedures and other artificial causes) by about 6mrem per year. The genetically signifificant component of this increase would be about 4mrem per year. Available estimates of harm from radiation would indicate that this would give a risk per year per million of population of about 1 fatal induced malignancy, about the same number of malignancies fully treatable by operation, and, after many generations, about the same number of inherited defects, of greater or less severity, per year. Accidental injuries, particularly in constructional and mining work, would cause an estimated 1 fatality and 50 other accidents annually. Indications are given of the number of fatalities and accidents involved in equal power production by alternative methods, and of the value and limitations of such numerical comparisons in reaching decisions on the development of future power programmes

  13. Basis for the power supply reliability study of the 1 MW neutron source

    International Nuclear Information System (INIS)

    McGhee, D.G.; Fathizadeh, M.

    1993-01-01

    The Intense Pulsed Neutron Source (IPNS) upgrade to 1 MW requires new power supply designs. This paper describes the tools and the methodology needed to assess the reliability of the power supplies. Both the design and operation of the power supplies in the synchrotron will be taken into account. To develop a reliability budget, the experiments to be conducted with this accelerator are reviewed, and data is collected on the number and duration of interruptions possible before an experiment is required to start over. Once the budget is established, several accelerators of this type will be examined. The budget is allocated to the different accelerator systems based on their operating experience. The accelerator data is usually in terms of machine availability and system down time. It takes into account mean time to failure (MTTF), time to diagnose, time to repair or replace the failed components, and time to get the machine back online. These estimated times are used as baselines for the design. Even though we are in the early stage of design, available data can be analyzed to estimate the MTTF for the power supplies

  14. DESIGN OF DYNAMIC VOLTAGE RESTORER TO ENHANCE POWER QUALITY RELYING ON RENEWABLE SOURCE

    Directory of Open Access Journals (Sweden)

    Haider M. Umran

    2018-05-01

    Full Text Available Power quality improvement of low voltage grid is a great challenge that confronts the sophisticated power applications, because their performance is highly sensitive to the quality of power supply. Dynamic Voltage Restorer (DVR used widely as an efficient and skillful device to adjust electrical disturbances of the distribution grids. This paper introduces an overview of the components of the 3-phase dynamic voltage restorer and design its own control circuit. The performance of DVR was developed on the basis of the appropriate selection of Photovoltaic (PV module instead of the present conventional designs. Through this design, the need of series converter (DVR for the current from an electrical grid will end and the problems of power losses will curb. The PV-module is selected to meet the requirements of the DVR during voltage sag/swell on voltage line. The proposed system is mimicked in MATLAB software/Simulink and the findings are presented to prove the success of the design in terms of: Full congruence of the load voltage waveform with source voltage waveform, attaining 0.77% of THD analysis for the load voltage and the waveforms of PV system.

  15. Production of High Intracavity UV Power From a CW Laser Source

    Science.gov (United States)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  16. Power angle control of grid-connected voltage source converter in a wind energy application

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-31

    In this thesis, the connection of a voltage source converter to the grid in a wind energy application is examined. The possibility of using a cheap control system without grid current measurements, is investigated. The control method is based on controlling the voltage angle of the inverter, which governs the active power flow. The highest frequency of the power variation, coming from wind turbine, is approx. 5 Hz. Since the proposed control method easily can handle such power variations it is very well suited for wind turbine applications. The characteristics of the system depend on the DC-link capacitor, the grid filter inductance and resistance. Large values of the resistance damp the system well but increase the energy losses. A high inductance leads to a reduced harmonic level on the grid but makes the system slower. By using feed-forward of the generator/rectifier current signal, the performance is increased compared to an ordinary PI-control. Combining the Linear Quadratic (LQ) control method with Kalman filtered input signals, a robust control method with a good performance is obtained. The LQ controller controls both the phase displacement angle and the modulation index, resulting in higher bandwidth, and the typical power angle resonance at the grid frequency disappears. 22 refs, 109 figs, 14 tabs

  17. Risk factors during construction of power plants using renewable energy sources

    Directory of Open Access Journals (Sweden)

    Nefedova Lyudmila Veniaminovna

    2016-12-01

    Full Text Available The authors consider main characteristics of modern development of renewable energy sources (RES. It is dedicated that there are some technical and economic barriers to the widespread use of renewable energy. For example, RES are inconstancy in time and space and have low density of energy flow. High capital intensity and cost price, long-term construction, a considerable degree of different kinds of risk, lack of competitiveness with hydrocarbon species generation in the existing regulatory environment are also inherent to RES. The role of the regulatory framework is shown according to perspective plans of construction of power plants using renewable energy sources. The main requirements which are applied to measures of state support of construction industry of renewable energy development are formulated. Current condition of construction industry of RES in Russia is assessed. The problems of risks which arise during construction of renewable energy facilities according to results of practical use of RES are discussed. And it is rather important to use stage assessment for the construction phase of the project during risk analysis of construction of alternative energy sources. The main groups of RES risks are described. The importance of regulatory and resource risks for effective development of renewable energy in Russia according to the method of strategic planning with the identification of the adverse effects of gradation factors are determined. The analysis of financial risks types and methods of its management during construction power generation projects based on different types of renewable energy resources are made. In the end of the article the authors make a conclusion, that the development of projects for the construction of power plants with the use of innovative technical solutions to ensure minimal risks to the environment and safe operation in various climatic conditions is a priority.

  18. On-site A.C. electric power sources for 900 MWe French nuclear power reactors: reliability and importance for safety

    Energy Technology Data Exchange (ETDEWEB)

    Milhem, J. L.; Gros, G. [Commissariat a l' Energie Atomique, Institut de Protection et Surete Nucleaire, Departement d' Analyse de Surete, B.P. No. 6, 92260 Fontenay-aux-Roses (France)

    1986-02-15

    After presenting briefly the new provisions laid down by the Electricite de France to meet a total electrical power loss, the main elements of the probabilistic study concerning the corresponding risk described: reliability data of internal sources used, results of risk Improvement brought by the new measures, importance for Internal source before and after Implementation of the new measures. (authors)

  19. On-site A.C. electric power sources for 900 MWe french nuclear power reactors: reliability and importances for safety

    International Nuclear Information System (INIS)

    Milhem, J.L.; Gros, G.

    1985-10-01

    After presenting briefly the new provisions laid down by the Electricite de France to meet a total electrical power loss, the main elements of the probabilistic study concerning the corresponding risk are described: reliability data of internal sources used, results of risk improvement brought by the new measures, importance for internal source before and after implementation of the new measures

  20. High-power explosive magnetic energy sources for thermonuclear and physical applications (overview)

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, V K [All-Russian Scientific Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    High-power energy sources unavailable up to now are needed to carry out any one project on inertially confined controlled thermonuclear fusion (CTF). Considerable advances have been made in the area of explosive magnetic generators (EGG) as for their output characteristics (high power combined with high energy content). To develop the concept of magnetic cumulation proposed by A.D. Sakharov in 1951, two new approaches to increasing EMC fast operation by two orders (from tens of microseconds to tenths of microseconds) and increasing at the same time the current pulse amplitude by more than one order, were proposed at VNIIEF in the early sixties. The concept aimed at solving the CTF problem by target magnetic compression (MACO) under the effect of an fast-increasing field was proposed (1972) based on VNIIEF achievements, discussed (1976) at the USSR Academy of Sciences and published (1979). The key physical questions are analyzed, the problems to be solved are posed and the results achieved in the experiments with fast-operating high-power EMGs, fast-opening switches, transmitting lines and insulation systems are discussed here. The results obtained in experiments on liner acceleration as well as those on preliminary plasma magnetization and heating, carried out at the constructed EMGs, are discussed briefly. The conclusion is reached that the MACO system is the most suitable one to provide the ignition because the designing of high-power energy sources to be used in this system is practically complete and the concept itself does not need any intermediate transformations of one type of energy into another always accompanied by a decrease in total efficiency. (author). 4 tabs., 14 figs., 21 refs.

  1. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  2. Characteristics of a lithium-thionyl chloride battery as a memory back-up power source

    Science.gov (United States)

    Iwamaru, T.; Uetani, Y.

    An Li/SOCl 2 battery of R6 size (ER6C) has been evaluated as a memory back-up power source for CMOS RAM. The working voltage is 3.6 V and the discharge capacity is 1900 mA h on a 1OK-ohm load. The cell exhibits satisfactory working voltage and discharge capacity over the temperature range -40 °C to 85 °C. The discharge reaction mechanism has been elucidated. Cumulative self discharge during 10 years discharge at 20 μA is estimated to be 3.5%. No serious problems have been observed during abuse tests.

  3. Power sources involving ~ 300W PEMFC fuel cell stacks cooled by different media

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2017-01-01

    Full Text Available Two constructions of ~300W PEMFC stacks, cooled by different media, were analysed. An open-cathode ~300W PEMFC stack cooled by air (Horizon, Singapore and a PEMFC F-42 stack cooled by a liquid medium (Schunk, Germany were chosen for all of the investigations described in this paper. The potential for the design and construction of power sources involving fuel cells, as well as of a hybrid system (fuel cell-lithium battery for mobile and stationary applications, is presented and discussed. The impact of certain experimental parameters on PEMFC stack performance is analysed and discussed.

  4. High-power beam-based coherently enhanced THz radiation source

    Directory of Open Access Journals (Sweden)

    Yuelin Li (李跃林

    2008-08-01

    Full Text Available We propose a compact Smith-Purcell radiation device that can potentially generate high average power THz radiation with high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that, with a beam current of 1 mA, it is feasible to generate hundreds of watts of narrow-band THz radiation at a repetition rate of 1 MHz.

  5. The width of jets in powerful edge-brightened extragalactic double radio sources

    International Nuclear Information System (INIS)

    Banhatti, D.G.

    1987-01-01

    The widths of primary and secondary jets are derived from a sample of 14 double hotspots in powerful extended extragalactic double radio sources. In the model employed, the primary jet extends from the core to the more compact primary hotspot and the secondary jet emerges from the primary hotspot and dissipates to form the diffuse secondary hotspot. Mean values of hotspot size/jet extent imply that the primary and secondary jets, if free, must be 2 0 and > 27 0 wide, respectively. (author)

  6. Characteristics of a lithium-thionyl chloride battery as a memory back-up power source

    Energy Technology Data Exchange (ETDEWEB)

    Iwamaru, T.; Uetani, Y.

    1987-05-01

    An Li/SOCl/sub 2/ battery of R6 size (ER6C) has been evaluated as a memory back-up power source for CMOS RAM. The working voltage is 3.6 V and the discharge capacity is 1900 mA h on a 10K-ohm load. The cell exhibits satisfactory working voltage and discharge capacity over the temperature range -40/sup 0/C to 85/sup 0/C. The discharge reaction mechanism has been elucidated. Cumulative self discharge during 10 years discharge at 20 ..mu..A is estimated to be 3.5%. No serious problems have been observed during abuse tests.

  7. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    International Nuclear Information System (INIS)

    Rupke, David S. N.; Veilleux, Sylvain

    2013-01-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z –1 , and the highest velocities (2000-3000 km s –1 ) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  8. Means for controlling operation of power sources associated with an axial tomographic system

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described having scanner means normally in an off-condition where all associated power sources are electrically isolated from the units driven thereby. It also includes means for activating the scanner means to establish an on-condition, control means including means to measure one or more system parameters when the scanner means is in an on-condition and to determine if the measured parameters are within predetermined limits, and means for maintaining the on-condition only if the control means is properly operational and all measured system parameters are within the predetermined limits

  9. Windows Developer Power Tools Turbocharge Windows development with more than 170 free and open source tools

    CERN Document Server

    Avery, James

    2007-01-01

    Software developers need to work harder and harder to bring value to their development process in order to build high quality applications and remain competitive. Developers can accomplish this by improving their productivity, quickly solving problems, and writing better code. A wealth of open source and free software tools are available for developers who want to improve the way they create, build, deploy, and use software. Tools, components, and frameworks exist to help developers at every point in the development process. Windows Developer Power Tools offers an encyclopedic guide to m

  10. A Heuristic Approach to Distributed Generation Source Allocation for Electrical Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    M. Sharma

    2010-12-01

    Full Text Available The recent trends in electrical power distribution system operation and management are aimed at improving system conditions in order to render good service to the customer. The reforms in distribution sector have given major scope for employment of distributed generation (DG resources which will boost the system performance. This paper proposes a heuristic technique for allocation of distribution generation source in a distribution system. The allocation is determined based on overall improvement in network performance parameters like reduction in system losses, improvement in voltage stability, improvement in voltage profile. The proposed Network Performance Enhancement Index (NPEI along with the heuristic rules facilitate determination of feasible location and corresponding capacity of DG source. The developed approach is tested with different test systems to ascertain its effectiveness.

  11. High-power, solid-state rf source for accelerator cavities

    International Nuclear Information System (INIS)

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 μs and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures

  12. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  13. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    International Nuclear Information System (INIS)

    Konarek, E.; Coulas, B.; Sarvinis, J.

    2016-01-01

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  14. Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power

    Science.gov (United States)

    Baum, Stefi A.; Zirbel, Esther L.; O'Dea, Christopher P.

    1995-09-01

    of the total energy output from the AGNs into jet kinetic energy versus radiant energy than do FR 2 sources. If this interpretation is correct, then this suggests that there is a fundamental difference in the central engine and/or in the immediate "accretion region" around the engine in FR 1 and FR 2 radio galaxies. We note also the absence of FR 1 sources with nuclear broad line regions and suggest that the absence of the BLR is tied to the absence of the "isotropic" nuclear UV continuum source in FR 1 sources. We put forth the possibility that the FR 1/FR 2 dichotomy (i.e., the observed differences in the properties of low- and high-power radio sources) is due to qualitative differences in the structural properties of the central engines in these two types of sources. Following early work by Rees et al. (1982), we suggest the possibility that FR 1 sources are produced when the central engine is fed at a lower accretion rate, leading to the creation of a source in which the ratio of radiant to jet bulk kinetic energy is low, while FR 2 sources are produced when the central engine is fed at a higher accretion rate, causing the central engine to deposit a higher fraction of its energy in radiant energy. We further suggest the possibility that associated differences in the spin properties of the central black hole between FR 1 (lower spin) and FR 2 (higher spin) sources may be responsible for the different collimation properties and Mach numbers of the jets produced by these two types of radio-loud galaxies. This scenario, although currently clearly speculative, is nicely consistent with our current picture of the triggering, feeding, environments, and evolution of powerful radio galaxies. This model allows for evolution of these properties with time for example, the mass accretion rate and BH spin may decline with time causing an FR 2 radio source or quasar to evolve into a FR 1 radio source.

  15. Safe management of sealed radioactive sources at Karachi nuclear power complex

    International Nuclear Information System (INIS)

    Tahir, T.B.; Qamar, A.

    2000-01-01

    This paper describes the conditioning of sealed radioactive sources, carried out at the Karachi Nuclear Power Complex (KNPC) in co-operation with the IAEA. The radioactive sources were radium needles of various size, used by various radiotherapy units in different hospitals throughout the country. For some time the use of radium needles had been abandoned and they were stored in hospitals awaiting proper disposal. Since their storage conditions were not ideal and there was a potential of leakage of radioactive material into the environment, it was decided to condition and store them safely. A significant logistic effort was required to identify these sources, bring them to a central facility and condition them according to current international standards. Various steps were involved in conditioning the sources: place it in a stainless steel capsule, weld the capsule, test it for a leak, place the capsule in a lead shielded package, put and seal the shielded package in a concrete-lined steel drum and finally store it at the waste storage facility. A total amount of about 1500 mg of Radium needles were conditioned. Radiation exposure during the entire operation was within acceptable limits. (author)

  16. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    Science.gov (United States)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  17. The Reviewing of Distributed Power Sources Impact on Fallout’s Localization in 22 kV Network

    Directory of Open Access Journals (Sweden)

    Peter Bracinik

    2008-01-01

    Full Text Available The aim of this paper is to point out some facts that will occur by fault localization in 22 kV networks after the implementation of distributed power sources, especially wind power plants. This paper describes possible connection of these sources into power system in regard to their rated output. It also presents short theoretical background for short circuit calculation in 22 kV network. Then several examples explaining how the point of wind power plant connection can influence network’s operation during short-circuits and consequential fault’s localization are described in the second part of this paper

  18. Direct Power Control for Three-Phase Two-Level Voltage-Source Rectifiers Based on Extended-State Observation

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo

    2016-01-01

    This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent characte......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...

  19. AnalysisThe Availability of Using Concentrated Solar Power (CSP as Electricity Source in Al-Hilla City

    Directory of Open Access Journals (Sweden)

    Wisam Shamkhi Jaber

    2017-03-01

    Full Text Available The needing of using clean energy increases every year because of the negative impact of emissions from electricity power plant and to reduce the costs of generating power by using natural energies like solar, wind, and other sources. The availability of using solar energy as source of producing electricity in Al-Hilla city by using Concentrating Solar Power (CSP was investigated in this research. The major parameters in this study were the city position, and the annually amount of solar received, also, number of charts related to solar parameters for the management of CSP were derived and showed in this research. The using of CSP as electricity power can be important solution to force the problem of high cost of electricity power fuel needed and the lack of power produced because of increasing of power consumed specially in summer season.

  20. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    Science.gov (United States)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of