WorldWideScience

Sample records for combustion engineering nuclear

  1. Combustion Engineering adjusts to slump in nuclear orders

    International Nuclear Information System (INIS)

    Masters, R.

    1980-01-01

    It is three years since Combustion Engineering (C-E) received an order for a nuclear steam system supplier and it could be three or four years before a new order is placed. Although C-E will not work through its current backlog until the late 1990s, the lack of new business and the needs for backfitting are having a major impact on the way the company operates. C-E's determination to stay in the nuclear business is as strong as ever. (author)

  2. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  3. Inherently safe nuclear-driven internal combustion engines

    International Nuclear Information System (INIS)

    Alesso, P.; Chow, Tze-Show; Condit, R.; Heidrich, J.; Pettibone, J.; Streit, R.

    1991-01-01

    A family of nuclear driven engines is described in which nuclear energy released by fissioning of uranium or plutonium in a prompt critical assembly is used to heat a working gas. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled from 100 MW on up. 7 refs., 3 figs

  4. ABB.-Combustion Engineering's Experience in Nuclear Power Plant Engineering and Construction in Korea

    International Nuclear Information System (INIS)

    Veris, James W.

    1992-01-01

    The Yonggwang Nuclear Project is a milestone project for the Korean Nuclear Industry. The Project has the two objectives of obtaining self-reliance in all aspects of nuclear technology and of constructing two modern nuclear power plants under the leadership of Korean companies acting as prime contractors. ABB.-Combustion Engineering 1000 MW System 80+ TM was chosen in 1987 as the NSLS design to meet these two objectives. This paper summarizers the significant experiences and lessons learned through the first four years of the Project as well as identifying implications for such future projects. The unique challenges of the project are identified and an evaluation of the experiences in the technology, self-reliance program and in the design and manufacturing processes will be made

  5. Advanced light water reactor program at ABB-Combustion Engineering Nuclear Power

    International Nuclear Information System (INIS)

    Cahn, H.

    1990-01-01

    To meet the needs of Electric Utilities ordering nuclear power plants in the 1990s, ABB-Combustion Engineering is developing two designs which will meet EPRI consensus requirements and new licensing issues. The System 80 Plus design is an evolutionary pressurized water reactor plant modelled after the successful System 80 design in operation in Palo Verde and under construction in Korea. System Plus is currently under review by the US Nuclear Regulatory Commission with final design approval expected in 1991 and design certification in 1992. The Safe Integral Reactor (SIR) plant is a smaller facility with passive safety features and modular construction intended for design certification in the late 1990s. (author)

  6. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  7. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  8. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  9. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  10. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  11. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  12. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  13. Staged combustion with piston engine and turbine engine supercharger

    Science.gov (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  14. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  15. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  16. Standard technical specifications combustion engineering plants

    International Nuclear Information System (INIS)

    1992-09-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS) for Combustion Engineering Plants. The improved STS wee developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document, Volume 1, contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Sections 3.4--3.9 of the improved STS

  17. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  18. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  19. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  20. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  1. Carburetor for internal combustion engines

    Science.gov (United States)

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  2. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  3. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  4. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  5. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  6. Standard Technical Specifications, Combustion Engineering plants

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (M) for Combustion Engineering (CE) Plants and documents the positions of the Nuclear Regulatory Commission based on the CE Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. This document Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS

  7. Standard Technical Specifications, Combustion Engineering plants

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for Combustion Engineering (CE) Plants and documents the positions of the Nuclear Regulatory Commission based on the CE Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved SM. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. This document Volume 3 contains the Bases for Sections 3.4--3.9 of the improved M

  8. Engineering opportunities in nuclear engineering

    International Nuclear Information System (INIS)

    Walton, D.G.

    1980-01-01

    The pattern of education and training of Nuclear Engineers in the UK is outlined under the headings; degree courses for professional engineers, postgraduate courses, education of technician engineers. Universities which offer specific courses are stated and useful addresses listed. (UK)

  9. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  10. Internal combustion engines history - a review

    International Nuclear Information System (INIS)

    Gaviria Rios, Jorge Enrique; Mora Guzman, Jorge Hernan; Agudelo, John Ramiro

    2002-01-01

    In this article, a chronological analysis of the technologies and events that any way influenced in the evolution of the internal combustion engine is done everything it through the observation of the works carried out for scientific empiric and engineers whose technical and conceptual value meant the motivation of other people for the search of a better development in this engineering field

  11. Fuel accountability and control at Combustion Engineering, Inc

    International Nuclear Information System (INIS)

    Kersteen, G.C.

    1978-01-01

    Combustion Engineering, Inc. has recently developed and installed an automated data collection, data processing system for the accounting and control of special nuclear material. The system uses a variety of data collection techniques and some relatively new data processing ideas. The next few pages describe the Fuel Accountability and Control System

  12. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  13. Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Vito, D.J.

    1980-12-01

    The Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors (CE-STS) is a generic document prepared by the US NRC for use in the licensing process of current Combustion Engineering Pressurized Water Reactors. The CE-STS sets forth the limits, operating conditions, and other requirements applicable to nuclear reactor facility operation as set forth by Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public. The document is revised periodically to reflect current licensing requirements

  14. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  15. Science review of internal combustion engines

    International Nuclear Information System (INIS)

    Taylor, Alex M.K.P.

    2008-01-01

    Internal combustion engines used in transportation produce about 23% of the UK's carbon dioxide emission, up from 14% in 1980. The current science described in this paper suggests that there could be 6-15% improvements in internal combustion fuel efficiency in the coming decade, although filters to meet emission legislation reduce these gains. Using these engines as hybrids with electric motors produces a reduction in energy requirements in the order of 21-28%. Developments beyond the next decade are likely to be dominated by four topics: emission legislation and emission control, new fuels, improved combustion and a range of advanced concepts for energy saving. Emission control is important because current methods for limiting nitrogen oxides and particulate emissions imply extra energy consumption. Of the new fuels, non-conventional fossil-derived fuels are associated with larger greenhouse gas emissions than conventional petroleum-based fuels, while a vehicle propelled by fuel cells consuming non-renewable hydrogen does not necessarily offer an improvement in emissions over the best hybrid internal combustion engines. Improved combustion may be developed for both gasoline and diesel fuels and promises better efficiency as well as lower noxious emissions without the need for filtering. Finally, four advanced concepts are considered: new thermodynamic cycles, a Rankine bottoming cycle, electric turbo-compounding and the use of thermoelectric devices. The latter three all have the common theme of trying to extract energy from waste heat, which represents about 30% of the energy input to an internal combustion engine

  16. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  17. Simulation Of The Internal-Combustion Engine

    Science.gov (United States)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  18. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  19. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  20. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  1. Fatigue of internal combustion engines

    Science.gov (United States)

    Dumanois, P

    1924-01-01

    The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.

  2. Stratified charge rotary engine combustion studies

    Science.gov (United States)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  3. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  4. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  5. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  6. Combustion engine. [for air pollution control

    Science.gov (United States)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  7. Plutonium, nuclear fuel; Le plutonium, combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires, Saclay

    1960-07-01

    A review of the physical properties of metallic plutonium, its preparation, and the alloys which it forms with the main nuclear metals. Appreciation of its future as a nuclear fuel. (author) [French] Apercu sur les proprietes physiques du plutonium metallique, sa preparation, ses alliages avec les principaux metaux nucleaires. Consideration sur son avenir en tant que combustible nucleaire. (auteur)

  8. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  9. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  10. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  11. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  12. Deformation analysis of rotary combustion engine housings

    Science.gov (United States)

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  13. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  14. The Rotary Combustion Engine: a Candidate for General Aviation. [conferences

    Science.gov (United States)

    1978-01-01

    The state of development of the rotary combustion engine is discussed. The nonturbine engine research programs for general aviation and future requirements for general aviation powerplants are emphasized.

  15. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  16. Starting apparatus for internal combustion engines

    Science.gov (United States)

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  17. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  18. Engine combustion network (Ecn) : characterization and comparison of boundary conditions for different combustion vessels

    NARCIS (Netherlands)

    Meijer, M.; Somers, L.M.T.; Johnson, J.; Naber, J.; Lee, S.Y.; Malbec, L.M.; Bruneaux, G.; Pickett, L.M.; Bardi, M.; Payri, R.; Bazyn, T.

    2012-01-01

    The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels and/or performing computational fluid dynamics (CFD) simulation, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray

  19. Fuel injection apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, H; Kobayashi, H; Nagata, S

    1975-01-07

    A fuel injection apparatus for a rapid cut of fuel supply to internal combustion engines during deceleration is described. The fuel cut is achieved by an electromagnetic switch. The number of engine revolutions are determined by the movement of cam shafts, and one of the cam shafts is made of electroconductive and nonconductive materials which generate an intermittent electrical signal to the magnetic switch. The device can cut the fuel in any deceleration condition, therefore it is more advantageous than fuel injection utilizing the intake load variation which can operate only under certain deceleration conditions.

  20. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  1. Benchmarking the internal combustion engine and hydrogen

    International Nuclear Information System (INIS)

    Wallace, J.S.

    2006-01-01

    The internal combustion engine is a cost-effective and highly reliable energy conversion technology. Exhaust emission regulations introduced in the 1970's triggered extensive research and development that has significantly improved in-use fuel efficiency and dramatically reduced exhaust emissions. The current level of gasoline vehicle engine development is highlighted and representative emissions and efficiency data are presented as benchmarks. The use of hydrogen fueling for IC engines has been investigated over many decades and the benefits and challenges arising are well-known. The current state of hydrogen-fueled engine development will be reviewed and evaluated against gasoline-fueled benchmarks. The prospects for further improvements to hydrogen-fueled IC engines will be examined. While fuel cells are projected to offer greater energy efficiency than IC engines and zero emissions, the availability of fuel cells in quantity at reasonable cost is a barrier to their widespread adaptation for the near future. In their current state of development, hydrogen fueled IC engines are an effective technology to create demand for hydrogen fueling infrastructure until fuel cells become available in commercial quantities. During this transition period, hydrogen fueled IC engines can achieve PZEV/ULSLEV emissions. (author)

  2. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  3. Dictionary of nuclear engineering

    International Nuclear Information System (INIS)

    Sube, R.

    1985-01-01

    This dictionary covers nuclear engineering defined in its general sense as applied nuclear physics: industrial and other applications of nuclear power, isotopes and ionizing radiation, nuclear materials, nuclear facilities and nuclear weapons together with their scientific and technological fundamentals. During the compilation of terms, great attention was only given to generally valid basic expressions and to special terms where these occurred in all four languages. A great number of textbooks and monographs, as well as specialist journals covering many years, have been evaluated. Detailed attention has been paid to standards. Of importance in nuclear engineering are the international standards of the International Atomic Energy Organization (including the terminology employed by the International Nuclear Information System INIS), the International Organization of Standardization, the Council for Mutual Economic Assistance, the World Energy Conference, the International Electrical Engineering Commission, and also a great many national standards which, unfortunately, frequently deviate from one another as regards definition and, in particular, designation. (orig.)

  4. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    Science.gov (United States)

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  5. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  6. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  7. Nuclear ship engineering simulator

    International Nuclear Information System (INIS)

    Itoh, Yasuyoshi; Kusunoki, Tsuyoshi; Hashidate, Koji

    1991-01-01

    The nuclear ship engineering simulator, which analyzes overall system response of nuclear ship numerically, is now being developed by JAERI as an advanced design tool with the latest computer technology in software and hardware. The development of the nuclear ship engineering simulator aims at grasping characteristics of a reactor plant under the situation generated by the combination of ocean, a ship hull and a reactor. The data from various tests with the nuclear ship 'MUTSU' will be used for this simulator to modulate and verify its functions of reproducing realistic response of nuclear ship, and then the simulator will be utilized for the research and development of advanced marine reactors. (author)

  8. Facts in nuclear engineering

    International Nuclear Information System (INIS)

    Buenemann, D.

    1979-07-01

    This compilation of facts has been published on behalf of Kerntechnische Gesellschaft (Society for Nuclear Engineering), as a basis for the discussion between promoters and opponents of nuclear power. It intends to make the nuclear discussion less emotional by providing relevant data material. (orig./HP) [de

  9. ANALYSIS OF INTERNAL COMBUSTION ENGINE WITH A NEW CONCEPT OF POROUS MEDIUM COMBUSTION FOR THE FUTURE CLEAN ENGINE

    Directory of Open Access Journals (Sweden)

    Ashok A Dhale

    2010-01-01

    Full Text Available At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous combustion in internal combustion engines. This concept used the porous medium combustion technique and is called "PM-engine". It is shown that the PM combustion technique can be applied to internal combustion engines. Theoretical considerations are presented for internal combustion engines, indicating that an overall improvement in thermal efficiency can be achieved for the PM-engine. This is explained and general performance of the new PM-engines is demonstrated for a single cylinder, water cooled, direct injection diesel engine. Verification of experiments at primary stage is described that were carried out as a part of the present study.

  10. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  11. Bulkhead insert for an internal combustion engine

    Science.gov (United States)

    Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.; Thibault, Mark W.; Ervin, James Douglas; Boileau, James Maurice; McKeough, Bryan

    2017-08-01

    An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions define at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.

  12. Nuclear engineering vocabulary

    International Nuclear Information System (INIS)

    Dumont, X.; Andrieux, C.

    2001-01-01

    The members of the CSTNIN - the Special Commission for Nuclear Engineering Terminology and Neology - have just produced a Nuclear Engineering Vocabulary, published by SFEN. A 120-page document which, to date, includes 400 nuclear engineering terms or expressions. For each term or expression, this Glossary gives: the primary and secondary subject field in which it is applied, a possible abbreviation, its definition, a synonym if appropriate, any relevant comments, any associated word(s), the English equivalent, its status on the date of publication of the Glossary. (author)

  13. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  14. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  15. FY2014 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. FY2016 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  17. FY2015 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Vehicle Technologies Office, Washington, DC (United States); Gravel, Roland M. [Vehicle Technologies Office, Washington, DC (United States); Howden, Kenneth C. [Vehicle Technologies Office, Washington, DC (United States); Breton, Leo [Vehicle Technologies Office, Washington, DC (United States)

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  18. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  19. Introduction to nuclear engineering

    International Nuclear Information System (INIS)

    Gylys, J.

    1997-01-01

    The textbook, which is the first book in Lithuanian on this subject generalises information on key aspects of nuclear engineering. Specialists in nuclear power for Ignalina NPP and for the infrastructure of nuclear energy sector of Lithuania are prepared at Kaunas University of Technology. The textbooks the students and lecturers have been using to-date were mostly in other languages than Lithuanian and they have not been adapted for teaching in Lithuania's higher educational establishments. This textbook is useful also to anyone who is interested in the issues and future prospects of nuclear power. It contains the chapters on nuclear reactions, theory of nuclear reactors, nuclear reactors kinetics, neutronic analysis, thermalhydraulic calculations of nuclear reactors operation and description of the construction of Ignalina NPP. (author)

  20. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  1. Dynamic neutron radiography of a combustion engine

    International Nuclear Information System (INIS)

    Brunner, J.; Hillenbach, A.; Schillinger, B.

    2004-01-01

    Dynamic neutron radiography is a non-destructive testing method, which made big steps in the last years. Depending on the neutron flux, the object and the detector a time resolution down to 50 ms is possible. In the case of repetitive processes the object can be synchronized with the detector and better statistics in the image can be obtained by adding radiographies of the same phase. By delaying the trigger signal a radiography movie can be composed with a time resolution down to 100 μs. A combustion engine is an ideal sample for the explained technique, because the motor block of metal is relatively easy to penetrate, while oil and fuel attenuate the thermal neutron beam much stronger. Various experiments were performed at ILL and PSI. Soon the tomography station ANTARES at FRM-II will be ready for measurements. (author)

  2. Impact of workstations on criticality analyses at ABB combustion engineering

    International Nuclear Information System (INIS)

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F.

    1993-01-01

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bit word size and function as the computer servers and network administrative CPUS, providing a virtual memory system

  3. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  4. E25 stratified torch ignition engine emissions and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio

    2016-01-01

    Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.

  5. Introduction to nuclear engineering

    International Nuclear Information System (INIS)

    Bouchard, J.; Deffain, J.P.; Gouchet, A.

    2007-01-01

    This book is an introductory course to the technology of nuclear reactors, it is based on lectures given to students engaged in nuclear engineering curricula. A brief historical account of nuclear power is given in which Three Miles Island and Chernobyl accidents appear to be the main milestones because of their big impacts on the way to apprehend the safety in the design of a reactor for the first and on the public controversy of nuclear energy for the second. All the concepts and knowledge required to understand the design of a reactor and how it operates, are described: radioactivity, nuclear safety, irradiation effects on materials, uranium enrichment, reactor kinetics, fission products poisoning,... This book is made up of 4 parts: 1) nuclear power, 2) types of power nuclear reactors (PWR, BWR and fast reactors), 3) the fuel cycle, and 4) neutronics basics. (A.C.)

  6. Hydrogen Generation, Combustibility and Mitigation in Nuclear Power Plant Systems

    International Nuclear Information System (INIS)

    Talha, K.A.; El-Sheikh, B.M.; Gad El-Mawla, A.S.

    2003-01-01

    The nuclear power plant is provided with features to insure safety. The engineered safety features (ESFs) are devoted to set operating conditions under accident conditions. If ESFs fail to apply in some accidents, this would lead to what called severe accidents, and core damage. In this case hydrogen will be generated from different sources particularly from metal-water reactions. Since the containment is the final barrier to protect the environment from the release of radioactive materials; its integrity should not be threatened. In recent years, hydrogen concentration represents a real problem if it exceeds the combustibility limits. This work is devoted to calculate the amount of hydrogen to be generated, indelicate its combustibility and how to inertize the containment using different gases to maintain its integrity and protect the environment from the release of radioactive materials

  7. Variable compression ratio device for internal combustion engine

    Science.gov (United States)

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  8. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  9. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  10. Nuclear engineering vocabulary

    International Nuclear Information System (INIS)

    2006-01-01

    The terms, expressions and definitions presented in this booklet come from the works carried out by the French specialized commission of nuclear engineering terminology and neology. This selection of terms cannot be found, in general, in classical dictionaries, or can be found but with a different meaning than the one used in nuclear engineering. All terms and expressions contained in this booklet have been already published in different issues of the Official Journal of the French Republic. This publication makes their use mandatory in replacement of foreign language equivalents inside all government services and public buildings. (J.S.)

  11. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  12. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  13. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  14. Combustion and operating characteristics of spark-ignition engines

    Science.gov (United States)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  15. Computational Study of Stratified Combustion in an Optical Diesel Engine

    KAUST Repository

    Jaasim, Mohammed; Hernandez Perez, Francisco; Vallinayagam, R.; Vedharaj, S.; Johansson, Bengt; Im, Hong G.

    2017-01-01

    Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics

  16. A computational study of free-piston diesel engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2009-07-15

    This paper investigates the in-cylinder gas motion, combustion process and nitrogen oxide formation in a free-piston diesel engine and compares the results to those of a conventional engine, using a computational fluid dynamics engine model. Enhanced radial gas flow (squish and reverse squish) around top dead centre is found for the free-piston engine compared to a conventional engine, however it is found that this has only minor influence on the combustion process. A higher heat release rate from the pre-mixed combustion phase due to an increased ignition delay was found, along with potential reductions in nitrogen oxides emissions formation for the free-piston engine. (author)

  17. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    Science.gov (United States)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  18. Welding in nuclear engineering

    International Nuclear Information System (INIS)

    1982-01-01

    The 3rd international conference 'Welding in nuclear engineering', organized in 1978 by the Deutscher Verband fuer Schweisstechnik e.V., was, like the two foregoing conferences in 1970 and 1974, an absolute success. The noteworthy echo to this meeting in the international technical world - the number of 650 participants from 26 countries is self-evidence - and this fact, was for the Deutscher Verband fuer Schweisstechnik e.V. occasion and at the same time an obligation now to follow in the same way, the meeting that was started 12 years ago, by organizing the international conference 'Welding in nuclear engineering'. The conference this year offers in addition to the two plenary session lectures, 34 short reports and a further 28 single contributions in the form of two poster-sessions. Unfortunately, it was again not possible to accept all the papers submitted because the conference was limited to 2 days only. Nevertheless, the papers will offer a representative cross-section through the total range of welding engineering. In particular, the poster session, which take place for the first time within the scope of a meeting organized by the Working Group 'Welding in Nuclear Engineering', should contribute to the aim that this time again the discussions will form the main point of the conference. (orig./RW) [de

  19. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  20. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  1. Determination of combustion parameters using engine crankshaft speed

    Science.gov (United States)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  2. Ducted combustion chamber for direct injection engines and method

    Science.gov (United States)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  3. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  4. Neutrons and Nuclear Engineering

    International Nuclear Information System (INIS)

    Ekkebus, Allen E.

    2007-01-01

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop (http://neutrons.ornl.gov/workshops/nst2/), several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons for Materials Science and Engineering educational symposium (http://neutrons.ornl.gov/workshops/edsym2007). It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcratornl.gov

  5. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  6. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  7. Metallurgy for nuclear engineering

    International Nuclear Information System (INIS)

    Kozlov, A.F.

    1986-01-01

    Principal ways of development in metallurgy and metallurgical equipment on nuclear engineering plants are discussed. A great attention is paid to changing welded structures for casted and forged ones. These measures give the possibility to increase reliability of NPP components and decrease labour content. The following processing procedures have been introduced: vacuum carbon reduction providing small amount of nonmetallic inclusions in reactor vessel steel; manufacturing steel large-size castings (360 and 420 t) for WWER vessels; rolling at plate mill 5000 etc

  8. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  9. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  10. The Combination of Internal-Combustion Engine and Gas Turbine

    Science.gov (United States)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  11. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  12. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  13. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  14. A Review of Heavy-Fueled Rotary Engine Combustion Technologies

    Science.gov (United States)

    2011-05-01

    Triangle Park, NC, 2009. 17. Shimizu, R.; Tadokoro, T.; Nakanishi, T.; Funamoto, J. Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance...2000. 102. Schock, H.; Hamady, F.; Somerton , C. Stratified Charge Rotary Engine Combustion Studies; NASA-CR-197985; National Aeronautics and

  15. EDWARDS' REFERENCE CYCLE FOR INTERNAL AND EXTERNAL COMBUSTION ENGINES

    OpenAIRE

    A. E. Piir

    2014-01-01

    Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.

  16. Powertrain sizing of electrically supercharged internal combustion engine vehicles

    NARCIS (Netherlands)

    Murgovski, N.; Marinkov, S.; Hilgersom, D.; de Jager, B.; Steinbuch, M.; Sjöberg, J.

    2015-01-01

    We assess the concept of electrically supercharged internal combustion engines, where the supercharger, consisting of a compressor and an electric motor, draws electric power from a buffer (a battery or a supercapacitor). In particular, we investigate the scenario of downsizing the engine, while

  17. Carbon/Carbon Pistons for Internal Combustion Engines

    Science.gov (United States)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  18. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  19. Engine combustion control at low loads via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  20. Combustion mode switching with a turbocharged/supercharged engine

    Science.gov (United States)

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  1. Engine combustion control at low loads via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage

    2017-12-26

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  2. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz; Waqas, Muhammad; Naser, Nimal; Singh, Eshan; Roberts, William L.; Chung, Suk-Ho; Sarathy, Mani

    2016-01-01

    to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion

  3. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  4. Hydrogen-oxygen powered internal combustion engine

    Science.gov (United States)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  5. History of nuclear engineering curricula

    International Nuclear Information System (INIS)

    Murphy, G.

    1975-01-01

    With the realization that nuclear energy had a vast potential for peacetime development, universities throughout the country began to develop courses in nuclear energy. A pioneering educational effort was necessary because there was an inadequate number of trained faculty, no established curricula, no textbooks, and very little suitable equipment. Nevertheless, by the early 1950's, several programs in nuclear science and engineering were beginning to provide instruction to potential nuclear engineers. At that time, the American Society for Engineering Education (ASEE) established a nuclear committee to cooperate with the U. S. Atomic Energy Commission (AEC) in nuclear education matters. With the financial support of the AEC, textbook material was developed, faculty training programs were instituted, and funds were made available for equipment. Because of the large interest shown in the field, many colleges and universities began to develop nuclear engineering curricula. After a few years, the need arose for general guidelines in curricular development. This led to the development of a Committee on Objective Criteria in Nuclear Engineering Education in which ASEE and the American Nuclear Society cooperated with the support of AEC. The committee report emphasized basic science, nuclear energy concepts, and nuclear technology, which have continued to be the significant components of a nuclear engineering curriculum. The last ten years have brought increased emphasis on BS programs, the introduction of extensive computer-based instruction, and an increasing emphasis on the engineering aspects of nuclear reactor power systems

  6. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  7. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  8. Experimental studies of thermal preparation of internal combustion engine

    Science.gov (United States)

    Karnaukhov, N. N.; Merdanov, Sh M.; V, Konev V.; Borodin, D. M.

    2018-05-01

    In conditions of autonomous functioning of road construction machines, it becomes necessary to use its internal sources. This can be done by using a heat recovery system of an internal combustion engine (ICE). For this purpose, it is proposed to use heat accumulators that accumulate heat of the internal combustion engine during the operation of the machine. Experimental studies have been carried out to evaluate the efficiency of using the proposed pre-start thermal preparation system, which combines a regular system based on liquid diesel fuel heaters and an ICE heat recovery system. As a result, the stages of operation of the preheating thermal preparation system, mathematical models and the dependence of the temperature change of the antifreeze at the exit from the internal combustion engine on the warm-up time are determined.

  9. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  10. Laboratory Test of Reciprocating Internal Combustion Engines

    Science.gov (United States)

    2016-02-04

    Control Module (ECM) torque horsepower engine speed boost turbocharger throttle injector power curve...13 2.4 Calibration ............................................................................. 14...Control Units (ECU). Originally, diesel engines were naturally aspirated, but most have evolved to include forced induction devices (turbochargers

  11. Researches on direct injection in internal-combustion engines

    Science.gov (United States)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  12. Nuclear engineering in the linelight

    International Nuclear Information System (INIS)

    Blumentritt, G.; Schwaar, L.

    1979-01-01

    An insight is given into the state of art of nuclear engineering considering only essential problems. The subject is covered under the following headings: (1) the way to nuclear fission, (2) detectors for nuclear radiation, (3) measuring systems for nuclear radiation, (4) radioisotopes in industry, (5) aids in medicine, (6) radiation absorption and its utilization, (7) use of radioisotopes in research, (8) the chain reaction in a nuclear reactor, (9) power from nuclear power plants, (10) pressurized water reactors (PWR), (11) high-temperature reactors (HTGR), (12) fast breeder reactors (FBR), (13) nuclear energetics - a new branch of industry, (14) nuclear explosions, (15) nuclear research at Rossendorf, and (16) the energy of the future. An appendix includes definitions of terms used in nuclear engineering. The book is written for a wide circle of readers who are interested in the peaceful uses of nuclear energy

  13. Choosing nuclear engineering: A survey of nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Shillenn, J.K.; Klevans, E.H.

    1988-01-01

    Maintaining a reliable pool of qualified nuclear engineering graduates depends on the ability of nuclear engineering undergraduate programs to recruit students. With the prospect of declining enrollments in nuclear engineering it is important for nuclear engineering programs to know what factors influence students to choose nuclear engineering as an undergraduate major and why they choose a particular undergraduate program. This type of information can be very important to nuclear engineering programs that develop recruiting strategies. To provide some insight into this area, a questionnaire was designed and given to undergraduate nuclear engineering students at Pennsylvania State University. The purpose of the survey was to provide information on the reasons that students picked nuclear engineering as a career and chose to attend Penn State. The questionnaire was given to 27 students in their junior year during the spring semester of 1987 and again to 35 junior students during the spring semester of 1988. There was little difference except as noted between the two groups on their responses to the questionnaire. A partial listing of the survey results is provided

  14. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov (United States)

    , storage, and disposal. Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Components and Systems Improving battery performance, economics, and safety for transportation. Batteries Sciences and Engineering Chemical Sciences Geosciences Fusion Energy Sciences Advanced Scientific Computing

  15. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Science.gov (United States)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  16. Dictionary of combustion engineering and heating engineering. Pt. 1. Woerterbuch der Feuerungs- und Heizungstechnik. T. 1. - Encyclopedie de la technique de combustion et de chauffage. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Katz, M

    1984-01-01

    The dictionary lists technical terms of the fields of combustion engineering and heating engineering. The heating engineering part was kept as short as possible; only those terms are listed, that are directly or indirectly related to combustion engineering. Contents: Definitions, standard nomenclature, burner systems, treatment systems, burner components, dictionary, SI-units, drawings with translations. 26 figs.

  17. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  18. Combustion and Fuels in Gas Turbine Engines

    Science.gov (United States)

    1988-06-01

    English and French) AGARD Advisory Report 150. Results of WG 09 (February 1980) Through Flow Calculations in Axial Turbomachines AGARD Advisory Report 175...Averaging Techniques in Non-Uniform Internal Flows AGARD Advisory Report 182 (in English and French). Results of WG 14 (June/August 1983) Producibility...A linear regression was used to develop an expression for the change in combustion efficiency relatice to Aoa. 1 an O4 a 0.t T, 0.0274 aTar f:a

  19. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  20. Risks in nuclear engineering

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1982-01-01

    The German nuclear power plant risk assessment study has not contributed to a higher degree of acceptance of light-water reactors among the general public. One reason is the fact that its predictions are much too inaccurate, and the consequences from severe accidents, regardless of their possibly extremely small likelihood, speak for themselves. The work still to be done in Phase B of the risk analysis will only be useful, if the safety factors in risk assessments can be drastically increased. The results of the risk analysis cannot be used in legislation or the administration of justice, because they are too incomplete and inaccurate. Scientific findings in risk analysis show that new designs and new components complicate objective judgement of changes in reactor safety engineering considerably. Every change in the required precautionary safety measures must be carefully considered, and if need be tested under the appropriate conditions. (orig./HSCH) [de

  1. Knocking in an Internal-combustion Engine

    Science.gov (United States)

    Sokolik, A; Voinov, A

    1940-01-01

    The question remains open of the relation between the phenomena of knocking in the engine and the explosion wave. The solution of this problem is the object of this paper. The tests were conducted on an aircraft engine with a pyrex glass window in the cylinder head. Photographs were then taken of various combinations of fuels and conditions.

  2. Electrostatic fuel conditioning of internal combustion engines

    Science.gov (United States)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  3. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  4. Holographic aids for internal combustion engine flow studies

    Science.gov (United States)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  5. Results of measurements of emission from internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Jovanovska, Vangelica

    1999-01-01

    A mathematical model for solving the emission from internal combustion engines on the cross roads are made. The exhausted pipes from vehicles are substituted with a pipe in a centre of the cross road. This model is proved with measurement made on vehicles in the city of Bitola (Macedonia). (Author)

  6. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  7. DESIGNING AND PROTOTYPING OF AN ALTERNATIVE ELLIPTIC INTERNAL COMBUSTION ENGINE

    OpenAIRE

    AKSOY, Nadir; İÇİNGÜR, Yakup

    2010-01-01

    ABSTRACTIn the conventional internal combustion engines, the elements of linear movement cause the friction power to increase the manufacturing economy to deteriorate and also cause vibration. The diameter of intake valves, which is smaller than the diameter of the cylinder, causes the volumetric efficiency to decrease. In the two stroke engines, in which the number of work per cycle is increased, power output per unit volume (kW/liter) is higher; however, specific fuel consumption decreases ...

  8. Thermal Loss Determination for a Small Internal Combustion Engine

    Science.gov (United States)

    2014-03-27

    an engine driven compressor (supercharger) or by means of an exhaust turbine driven compressor (turbocharger). The compressed air has a higher density...low and high adjustment screws were screwed in (leaned) or out (enrich) as needed to bring the air /fuel mixture closer to stoichiometric conditions...THERMAL LOSS DETERMINATION FOR A SMALL INTERNAL COMBUSTION ENGINE THESIS Joshua A. Rittenhouse, Captain, USAF AFIT-ENY-14-M-41 DEPARTMENT OF THE AIR

  9. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  10. COMBUSTION STAGE NUMERICAL ANALYSIS OF A MARINE ENGINE

    Directory of Open Access Journals (Sweden)

    DOREL DUMITRU VELCEA

    2016-06-01

    Full Text Available The primary goal of engine design is to maximize each efficiency factor, in order to extract the most power from the least amount of fuel. In terms of fluid dynamics, the volumetric and combustion efficiency are dependent on the fluid dynamics in the engine manifolds and cylinders. Cold flow analysis involves modeling the airflow in the transient engine cycle without reactions. The goal is to capture the mixture formation process by accurately accounting for the interaction of moving geometry with the fluid dynamics of the induction process. The changing characteristics of the air flow jet that tumbles into the cylinder with swirl via intake valves and the exhaust jet through the exhaust valves as they open and close can be determined, along with the turbulence production from swirl and tumble due to compression and squish. The target of this paper was to show how, by using the reverse engineering techniques, one may replicate and simulate the functioning conditions and parameters of an existing marine engine. The departing information were rather scarce in terms of real processes taking place in the combustion stage, but at the end we managed to have a full picture of the main parameters evolution during the combustion phase inside this existing marine engine

  11. ATWS analyses. Analysis of anticipated transients without reactor scram in Combustion Engineering NSSS's

    International Nuclear Information System (INIS)

    1976-05-01

    Results are presented of analyses of the transient thermal-hydraulic conditions and radiological release consequences which would occur in power plants which employ a Combustion Engineering Nuclear Steam Supply System during Anticipated Transients Without Scram due to a lack of insertion of the Control Element Assemblies upon signals for automatic or manual reactor shutdown. The transients analyzed include all events which meet the criterion to be considered as anticipated at least once in the plant lifetime with automatic reactor shutdown

  12. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  13. Computational Study of Stratified Combustion in an Optical Diesel Engine

    KAUST Repository

    Jaasim, Mohammed

    2017-03-28

    Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics provide valuable information, the high fidelity simulations with matched parametric conditions improve fundamental understanding of relevant physical and chemical processes by accessing additional observables such as the local mixture distribution, intermediate species concentrations, and detailed chemical reaction rates. Commercial software, CONVERGE™, was used as the main simulation tool, with the Reynolds averaged Navier-Stokes (RANS) turbulence model and the multi-zone (SAGE) combustion model to compute the chemical reaction terms. SOI is varied from late compression ignition (CI) to early partially premixed combustion (PPC) conditions. The simulation results revealed a stronger correlation between fuel injection timing and combustion phasing for late SOI conditions, whereas the combustion phasing starts to decouple from SOI for early SOI cases. The predictions are consistent with the experimental observations, in terms of the overall trends in combustion and emission characteristics, while the high fidelity simulations provided further insights into the effects of mixture stratifications resulting from different SOI conditions.

  14. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M T; Kaario, O T [VTT Energy, Espoo (Finland)

    1998-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  15. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  16. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    There is an increasing global focus on reducing emissions of greenhouse gases. For the automotive industry this means reducing CO2 emissions of the vehicles manufactured, which is synonymous with reducing their fuel consumption or adapting them for using renewable fuels. This thesis is based on a project aimed at improving the efficiency of gasoline engines in the lower load/speed region. The focus was mainly on a combustion strategy called homogeneous charge compression ignition (HCCI), but also on homogeneous lean and stratified lean spark-ignited combustion. In contrast to traditional stoichiometric spark-ignited combustion, HCCI can operate with diluted mixtures, which leads to better cycle efficiency, smaller pumping losses and smaller heat losses. However, at relatively high loads, HCCI combustion becomes excessively rapid, generating in-cylinder pressure oscillations (ringing), which are perceived as noise by the human ear. The main objective of the project was to identify ways to avoid this ringing behaviour in order to increase the upper load limit of HCCI. This is vital to avoid the need for mode switches to spark-ignited combustion at higher loads and to operate the engine as much as possible in the more effective HCCI mode. The strategy for reducing ringing investigated most extensively in the project was charge stratification, achieved by injecting part of the fuel late in the compression stroke. Available literature on effects of this strategy gave conflicting indications, both positive and negative effects have been reported, depending on the type of fuel and engine used. It was soon found that the strategy is effective for reducing ringing, but with resulting increases of NOX emissions. Further, in order for the strategy to be effective, global air/fuel ratios must not be much leaner than stoichiometric. The increases in NOX emissions were countered by shifting the ratio towards stoichiometric using exhaust gas recirculation (EGR), allowing a three

  17. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  18. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P J; Gu, F; Ball, A D [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1998-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  19. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  20. Co-Optimization of Internal Combustion Engines and Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to be realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.

  1. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.J.; Gu, F.; Ball, A.D. [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1997-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  2. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  3. Fuels for internal-combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    1925-10-23

    To reduce knocking in internal-conbustion engines, the fuel is mixed with a small quantity, for instance 10 percent, of the hydrocarbon obtained by extracting with liquid sulfur dioxide hydrocarbon material, such as mineral oil fractions, coal tar and lignite tar distillates of higher boiling point, for example distillates boiling between 150 and 300/sup 0/C.

  4. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  5. Control of internal combustion engines and hybrid engines; Regelung von Verbrennungsmotoren und Hybridantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [TU Darmstadt (Germany). Forschungsgruppe Regelungstechnik und Prozessautomatisierung

    2007-07-15

    In the development of internal combustion engines, there are increasingly rigid specifications for further reduction of consumption, exhaust and noise emissions, better specific performance, lower weight, and good driving characteristics. The contributions in this special issue provide an insight into the many aspects of internal combustion engine and hybrid engine control. The editors of at journal took care to select interesting papers presented at the 3. VDI/VDE-GMA conference AUTOREG 2006. They show how control and mechatronics support the high demands on functionality in motor car engineering. (orig.)

  6. Future combustion methods for biomethane powered tractor engines

    International Nuclear Information System (INIS)

    Prehn, Sascha; Harndorf, Horst; Wichmann, Volker; Beberdick, Wolfgang

    2016-01-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  7. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  8. Modeling of a bioethanol combustion engine under different operating conditions

    International Nuclear Information System (INIS)

    Hedfi, Hachem; Jedli, Hedi; Jbara, Abdessalem; Slimi, Khalifa

    2014-01-01

    Highlights: • Bioethanol/gasoline blends’ fuel effects on engine’s efficiency, CO and NOx emissions. • Fuel consumption and EGR optimizations with respect to estimated engine’s work. • Ignition timing and blends’ effects on engine’s efficiency. • Rich mixture, gasoline/bioethanol blends and EGR effects on engine’s efficiency. - Abstract: A physical model based on a thermodynamic analysis was designed to characterize the combustion reaction parameters. The time-variations of pressure and temperature required for the calculation of specific heat ratio are obtained from the solution of energy conservation equation. The chemical combustion of biofuel is modeled by an overall reaction in two-steps. The rich mixture and EGR were varied to obtain the optimum operating conditions for the engine. The NOx formation is modeled by using an eight-species six-step mechanism. The effect of various formation steps of NOx in combustion is considered via a phenomenological model of combustion speed. This simplified model, which has been validated by the most available published results, is used to characterize and control, in real time, the impact of biofuel on engine performances and NOx emissions as well. It has been demonstrated that a delay of the ignition timing leads to an increase of the gas mixture temperature and cylinder pressure. Furthermore, it has been found that the CO is lower near the stoichiometry. Nevertheless, we notice that lower rich mixture values result in small NOx emission rates

  9. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  10. Fluidization in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, D; Venugopalan, Ramani; Vijay, P L [Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fluidization technique has not been fully exploited in nuclear industries mainly due to lack of open literature or unawareness of its applications. Hence in this paper a detailed range of applications of fluidization in uranium extraction, nuclear fuel material preparation, fuel reprocessing and waste disposal is highlighted. A fluidized bed nuclear reactor concept is also presented. The need of fluidization for process improvement and modernization in nuclear programmes is stressed. (author). 40 refs., 3 figs.

  11. Experimental results with hydrogen fueled internal combustion engines

    Science.gov (United States)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  12. Fuel injection system for internal combustion engines. Kraftstoffeinspritzsystem fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, U.

    1990-09-13

    A fuel injection system for an internal combustion engine is provided with a fuel supply line (13) and at least one electromagnetically actuated fuel injection valve (14) for apportioning a quantity of fuel for injection. A connection muzzle (24) coming from the valve body (23) juts into an opening (22) in the suction pipe (21) of the internal combustion engine. The end of the injection valve opposite the connecting muzzle (24) is connected with the fuel supply line via a fuel entry. The valve body (23) is enclosed by a casing (25) in order to provide the conditions required for a warm start. An annulus (31) extending over a large part of the axial length of the valve remains between the casing and the valve body (23). The annulus (31) communicates with the fuel flow through the fuel supply line (13) via an afflux and an efflux opening (32, 33) (Fig. 1).

  13. Minimal algorithm for running an internal combustion engine

    Science.gov (United States)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  14. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    Science.gov (United States)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  15. Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…

  16. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  17. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    distributions of PLII signals help understand the soot distributions within diesel/ biodiesel flames. In addition, planar laser-induced Figure 1. Transported ...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 9/14/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll This project investigated biodiesel ...emissions testing. 1 FINAL REPORT Project title: Understanding combustion and soot formation in biodiesel fuelled diesel engines Lead Institute and

  18. Introduction to nuclear facilities engineering

    International Nuclear Information System (INIS)

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  19. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  20. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  1. ENEN - European nuclear engineering network

    International Nuclear Information System (INIS)

    Comsa, Olivia; Paraschiva, M.V.; Banutoiu, Maria

    2002-01-01

    The paper presents the main objectives and expected results of European Project FP5 - ENEN - 'European Nuclear Engineering Network'. The underlying objective of the work is safeguarding the nuclear knowledge and expertise through the preservation of higher nuclear engineering education. Co-operation between universities and universities and research centres, will entail a better use of dwindling teaching capacity, scientific equipment and research infrastructure. 'Today, the priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. Taken together, these circumstances create a significantly different situation from three to four decades ago when much of the present competence base was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement age. These competence issues need to be addressed at Community level and a well designed Community research and training programme should play a role that is more important than ever before. This is an area where the concept of an European research area should be further explored'. The outcome from this project should be a clear road map for the way ahead in nuclear engineering education in Europe. The underlying objective of the concerted action is the preservation of nuclear knowledge and expertise through the preservation of higher nuclear engineering education. 'Many diverse technologies, currently serving nations world-wide, would be affected by an inadequate number of future nuclear scientists and engineers. Nuclear technology is widespread and multidisciplinary: nuclear and reactor physics, thermal hydraulics and mechanics, material science, chemistry, health science, information technology and a variety of other areas. Yet the advancement of this technology, with all its associated benefits, will be threatened if not curtailed unless the

  2. Non-combustible nuclear radiation shields with high hydrogen content

    International Nuclear Information System (INIS)

    Hall, W.C.; Peterson, J.M.

    1978-01-01

    The invention relates to compositions, methods of production, and uses of non-combustible nuclear radiation shields, with particular emphasis on those containing a high concentration of hydrogen atoms, especially effective for moderating neutron energy by elastic scatter, dispersed as a discontinuous phase in a continuous phase of a fire resistant matrix

  3. Characterising Combustion in Diesel Engines : Using parameterised finite stage cylinder process models

    NARCIS (Netherlands)

    Ding, Y.

    2011-01-01

    Characterising combustion of diesel engines is not only necessary when researching the instantaneous combustion phenomena but also when investigating the change of the combustion process under variable engine operating conditions. An effective way to achieve this goal is to parameterize the

  4. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  5. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  6. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  7. Study of advanced rotary combustion engines for commuter aircraft

    Science.gov (United States)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  8. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Science.gov (United States)

    2010-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers...

  9. Turbulence-combustion interaction in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Bencherif Mohamed

    2014-01-01

    Full Text Available The experimental measures of chemical species and turbulence intensity during the closed part of the engine combustion cycle are today unattainable exactly. This paper deals with numerical investigations of an experimental direct injection Diesel engine and a commercial turbocharged heavy duty direct injection one. Simulations are carried out with the kiva3v2 code using the RNG (k-ε model. A reduced mechanism for n-heptane was adopted for predicting auto-ignition and combustion processes. From the calibrated code based on experimental in-cylinder pressures, the study focuses on the turbulence parameters and combustion species evolution in the attempt to improve understanding of turbulence-chemistry interaction during the engine cycle. The turbulent kinetic energy and its dissipation rate are taken as representative parameters of turbulence. The results indicate that chemistry reactions of fuel oxidation during the auto-ignition delay improve the turbulence levels. The peak position of turbulent kinetic energy coincides systematically with the auto-ignition timing. This position seems to be governed by the viscous effects generated by the high pressure level reached at the auto-ignition timing. The hot regime flame decreases rapidly the turbulence intensity successively by the viscous effects during the fast premixed combustion and heat transfer during other periods. It is showed that instable species such as CO are due to deficiency of local mixture preparation during the strong decrease of turbulence energy. Also, an attempt to build an innovative relationship between self-ignition and maximum turbulence level is proposed. This work justifies the suggestion to determine otherwise the self-ignition timing.

  10. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  11. Dynamic estimator for determining operating conditions in an internal combustion engine

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  12. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  13. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  14. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  15. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    OpenAIRE

    Weerasinghe, Rohitha; Hounsham, Sandra

    2017-01-01

    Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders [1]. Dependable data for small steam expanders will allow us to predict on their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Wankel Engines, with its lower resistance properties at small scale provide excellent contenders for bottoming cycle expanders. Present paper is based on results of experiments carried ...

  16. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  17. Nuclear industry will be short of engineers

    International Nuclear Information System (INIS)

    Yates, M.

    1990-01-01

    This article discusses the potential shortage of nuclear engineers due to reduction of educational and training facilities and difficulty in attracting minorities into nuclear engineering. The article reports on recommendations from the National Research Council Nuclear Education Study Committee on attracting minorities to nuclear engineering, increasing DOE fellowships, funding for research and development, involvement of utilities and vendors, and support of the American Nuclear Society's advocacy of nuclear engineering education

  18. Computation and Analysis of EGR Mixing in Internal Combustion Engine Manifolds

    OpenAIRE

    Sakowitz, Alexander

    2013-01-01

    This thesis deals with turbulent mixing processes occurring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the fresh intake air, reducing the oxygen con- centration of the combustion gas and thus the peak combustion temperatures. This temperature decrease results in a reduction of NOx emissions. When applying EGR...

  19. Biogas utilization as flammable for internal combustion engine

    International Nuclear Information System (INIS)

    Cardenas, H.

    1995-01-01

    In this work the energetic potential stored in form of generated biogas of organic industrial wastes treatment is analyzed. Biogas utilization as flammable at internal combustion engine coupled to electrical energy generating is studied in the Wastewater Treatment Plant of Bucaramanga city (Colombia). This Plant was designed for 160.000 habitants treatment capacity, 1300 m3/h wealth, 170 BDO/m3 residues concentration and 87% process efficiency. The plant generate 2.000 m3/d of biogas. In laboratory trials was worked with biogas originating from Treatment Plant, both without purifying and purified, and the obtained results were compared with both yields determined with 86-octanes gasoline and natural gas. The analysis of pollutant by-products generated in combustion process as leak gases, present corrosive compounds and not desirable. elements in biogas composition are included

  20. Cylinder head seal for piston engines especially internal combustion engines. Zylinderkopfdichtung fuer Hubkolbenmaschinen, insbesondere Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.; Winter, J.

    1991-01-17

    The invention concerns a cylinder head seal for reciprocating piston engines especially internal combustion engines and preferentially those with cylinder sleeves. With performances of internal combustion engines encreasing all the time it is becoming more and more difficult to seal the cylinder heat. The invention proposes a ring seal whose sides are plastically deformed when the cylinder headed screws are tightened. The inner deformations of the cylinder head resulting from the pressure forces inside the cylinder are compensated by means of elastic spring action of the combustion chamber sealing ring. The dimension of land, groove and sides are matched in such a way as to prevent any seal squeezing during plastification which would result in a deformation of the cylinder sleeve. The ring can therefore be set directly into the centering of the cylinder sleeve. Separate centering devices are not required.

  1. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  2. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  3. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011

    Energy Technology Data Exchange (ETDEWEB)

    Wade C. Adams

    2011-12-09

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  4. Confirmatory Survey Results For Portions Of The ABB Combustion Engineering Site In Windsor, Connecticut During The Fall Of 2011

    International Nuclear Information System (INIS)

    Adams, Wade C.

    2011-01-01

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  5. Experimental analysis of IMEP in a rotary combustion engine

    Science.gov (United States)

    Schock, H. J.; Rice, W. J.; Meng, P. R.

    1981-01-01

    A real time indicated mean effective pressure measurement system is described which is used to judge proposed improvements in cycle efficiency of a rotary combustion engine. This is the first self-contained instrument that is capable of making real time measurements of IMEP in a rotary engine. Previous methods used require data recording and later processing using a digital computer. The unique features of this instrumentation include its ability to measure IMEP on a cycle by cycle, real time basis and the elimination of the need to differentiate volume function in real time. Measurements at two engine speeds (2000 and 3000 rpm) and a full range of loads are presented, although the instrument was designed to operate to speeds of 9000 rpm.

  6. Multiple fuel supply system for an internal combustion engine

    Science.gov (United States)

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  7. Accreditation of nuclear engineering programs

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1989-01-01

    The American Nuclear Society (ANS) Professional Development and Accreditation Committee (PDAC) has the responsibility for accreditation of engineering and technology programs for nuclear and similarly named programs. This committee provides society liaison with the Accreditation Board for Engineering and Technology (ABET), is responsible for the appointment and training of accreditation visitors, nomination of members for the ABET Board and Accreditation Commissions, and review of the criteria for accreditation of nuclear-related programs. The committee is composed of 21 members representing academia and industry. The ABET consists of 19 participating bodies, primarily professional societies, and 4 affiliate bodies. Representation on ABET is determined by the size of the professional society and the number of programs accredited. The ANS, as a participating body, has one member on the ABET board, two members on the Engineering Accreditation Commission, and one on the Technology Accreditation Commission. The ABET board sets ABET policy and the commissions are responsible for accreditation visits

  8. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  9. Training in nuclear engineering companies

    International Nuclear Information System (INIS)

    Perezagua, R. L.

    2013-01-01

    The importance of training is growing in all business areas and fields and especially in hi-tech companies like engineering firms. Nuclear projects are highly multidisciplinary and, even in the initial awarding and pre-construction phases, need to be staffed with personnel that is well-prepared and highly-qualified in areas that, in most cases, are not covered by university studies. This article examines the variables that influence the design of specific training for nuclear projects in engineering firms, along with new training technologies (e-learning) and new regulatory aspects (IS-12). (Author)

  10. Mathematical Model of Piston Ring Sealing in Combustion Engine

    Directory of Open Access Journals (Sweden)

    Koszałka Grzegorz

    2015-01-01

    Full Text Available This paper presents a mathematical model of piston-rings-cylinder sealing (TPC of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The paper contains descriptions of: assumptions used for developing the model, the model itself, its numerical solution as well as its computer application for carrying out simulation tests.

  11. The future of nuclear engineering

    International Nuclear Information System (INIS)

    Beeden, Jeffrey

    2003-01-01

    Today, nuclear power refers to the splitting of large uranium atoms into smaller atoms with a net release of energy. Tomorrow, nuclear power will refer to the combining of hydrogen into larger atoms with a net release of energy. Nuclear power's future is fusion. The Mechanical Engineers of tomorrow will need to be familiar with the process of creating and harnessing the energy from a fusion reaction. During the oil shortage in the 1970's, America scrambled to initiate alternative methods of producing power. Nuclear fusion was one of them. As time passes, the solution to the world's energy crisis presses the countries of the world to find alternative forms of energy; nuclear fusion may contain the answer. In the near future, the field of fusion will open up and a new wave of engineers will flood into this field. Mechanical engineers will lead the way with advances in materials, computational fluid dynamics, finite element analysis for thermal and structural systems, and heat transfer designs to optimize nuclear fusion reactors and power plants. All this effort is in anticipation of creating a sustained fusion reaction that can generate enough heat to transfer to steam in order to generate electric power to sustain the fusion reaction and introduce power to the grid. (author)

  12. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  13. Tabulated chemical kinetics for efficient and detailed simulations of diesel engine combustion

    NARCIS (Netherlands)

    Bekdemir, C.

    2012-01-01

    Efficient and detailed computational tools to simulate engine combustion are of great importance. The internal combustion engine will remain the primary mean for transportation in the decades to come. Especially diesel engines are, and become increasingly more, popular because of their high

  14. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  15. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  16. Motor vehicles and internal combustion engines; Kraftfahrwesen und Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Bargende, M.; Wiedemann, J. [eds.

    1999-07-01

    The book comprises the papers presented at the 3rd Stuttgart symposium. It reviews the state of the art in science and engineering and outlines future perspectives in the fields of motor vehicles and internal combustion engines. As the conference, the book comprises three sections: 'Engines' on DI spark ignition engines and diesel engines, mixing, combustion and exhaust purification. 'Motor cars' discusses acoustics and aeroacoustics, aerodynamics and wind tunnel technology, comfort, driving gear and stability control. 'Motor vehicle systems' contains papers on thermomanagement, control and automation, real-time applications in motor car simulation, software tools in the control systems development process, and simulation in motor vehicle systems development. Finally, the plenary paper 'Fuel cells, a solution for non-polluting motor car drives' by Dr.-Ing. F. Panik is also contained in the book. [German] Das vorliegende Buch enthaelt die Vortraege des 3. Stuttgarter Symposiums. Es gibt einen Ueberblick ueber den aktuellen Stand von Wissenschaft und Technik und zeigt zukuenftige Perspektiven im Bereich Kraftfahrwesen und Verbrennungsmotoren. Entsprechend der Tagung gliedert sich das Buch in drei Teile. Teil 1 'Motoren' besteht aus Vortraegen ueber Ottomotoren mit Direkteinspritzung und Dieselmotoren, Gemischbildung, Verbrennung und Abgasnachbehandlung, Analyse, Simulation und Motorkomponenten. Teil 2 'Kraftfahrzeuge' enthaelt Arbeiten ueber Fahrzeugakustik und Aeroakustik, Fahrzeug-Aerodynamik und Windkanaltechnik, Fahrzeugkomfort, Fahrwerk und Fahrdynamik. Teil 3 'Kraftfahrzeugsystemtechnik' enthaelt Beitraege ueber Thermomanagement, Regelungs- und Automatisierungstechnik, Echtzeitanwendungen in der Kfz-Simulationstechnik, Softwaretools im Steuergeraete-Entwicklungsprozess und Simulation in der Kraftfahrzeug-Systementwicklung. Der abschliessende Plenarvortrag des Symposiums &apos

  17. Development of an empirical correlation for combustion durations in spark ignition engines

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2004-01-01

    Development of an empirical correlation for combustion duration is presented. For this purpose, the effects of variations in compression ratio engine speed, fuel/air equivalence ratio and spark advance on combustion duration have been determined by means of a quasi-dimensional SI engine cycle model previously developed by the authors. Burn durations at several engine operating conditions were calculated from the turbulent combustion model. Variations of combustion duration with each operating parameter obtained from the theoretical results were expressed by second degree polynomial functions. By using these functions, a general empirical correlation for the burn duration has been developed. In this correlation, the effects of engine operating parameters on combustion duration were taken into account. Combustion durations predicted by means of this correlation are in good agreement with those obtained from experimental studies and a detailed combustion model

  18. The mathematics of nuclear engineering

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1982-01-01

    The mathematics of nuclear engineering is considered with especial reference to the problems of; the representation of the transformation of matter at the nuclear level by radioactive decay and neutron transmutation, the problem of the distribution of neutrons and other particles as a transport theory problem including some of the approximation methods used in this problem, particularly diffusion theory with particular emphasis on steady-state problems, time-dependent reactor kinetic and control, and the longer term changes involved with the nuclear fuel cycle both within and without the reactor itself. (U.K.)

  19. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen [Institute of Power and Energy Engineering, Harbin Engineering University, No. 145-1, Nantong Street, Nangang District, Harbin 150001 (China); Litak, Grzegorz [Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  20. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    Science.gov (United States)

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  1. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    International Nuclear Information System (INIS)

    Yang, Li-Ping; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions

  2. Study of Second Generation Biofuels in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Dhandapani

    2012-07-01

    fuel, vis-a-vis neat diesel fuel (DF). The CO, THC, smoke and TPM emissions were reduced significantly, while NOx emissions were somewhat higher with BD blended fuels compared to neat FT fuel. The reductions in CO, THC, smoke and TPM emissions with BD blends were mainly due to the oxygen content in the BD blended fuel, while the increases in NOx emissions with BD fuels were due to advances in injection timing, higher percentages of fatty acids with double bonds in the carbon chain and higher heat release in the pre-mixed combustion. Secondly, a four-stroke, single-cylinder, naturally-aspirated (NA), direct-injection (DI) diesel engine with 8 BHP at 1500 rpm coupled with water-cooled, eddy current dynamometer was used for the experiments. Ethanol (5% by volume) was injected into the intake manifold by the port injection method with the assistance of a mechanical fuel injection pump. Therefore, the volumetric blending percentages of ethanol, BD and diesel fuels (E:D:JME) are (0:100:0), (5:95:0), (5:75:20), (5:55:40), (5:35:60), (5:15:80) (5:0:95) and (0:0:100) respectively. Ethanol pre-mixed with intake air, assisted in improving combustion in both diesel and the JME blends. The addition of ethanol to high-viscosity Jatropha methyl ester (JME) through port injection is investigated in order to determine its effect on the fuels viscosity and thereby on the diesel engine performance. In addition to viscosity alteration, the impact of ethanol addition on combustion characteristics such as combustion duration, ignition delay and emissions levels from diesel engines fuelled with blends of ethanol, diesel and JME was studied in particular. It was found that blending of oxygenated fuels with diesel modifies the chemical structure and physical properties which in turn, alter the engines operating conditions, combustion parameters and emissions levels. However, the injection of only 5% ethanol through port injection allows for up to 25% blending of diesel with biofuels, while

  3. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    International Nuclear Information System (INIS)

    Ho, R J; Yusoff, M Z; Palanisamy, K

    2013-01-01

    Stringent emission policy has put automotive research and development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R and D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NO x ) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  4. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Science.gov (United States)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  5. Introduction to nuclear test engineering

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Paquette, D.L.

    1982-01-01

    The basic information in this report is from a vu-graph presentation prepared to acquaint new or prospective employees with the Nuclear Test Engineering Division (NTED). Additional information has been added here to enhance a reader's understanding when reviewing the material after hearing the presentation, or in lieu of attending a presentation

  6. Nuclear engineering terms and definitions

    International Nuclear Information System (INIS)

    1981-01-01

    The most important nuclear engineering's terms and definitions are given in this standard. The definitions take into account the Austrian Regulations for Radiation Protection, for and pertinent ISO and DIN-Standards as also the OENORM A7006 and OENORM A6601. (M.T.)

  7. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  8. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  9. Impact of Fuel Type on the Internal Combustion Engine Condition

    Directory of Open Access Journals (Sweden)

    Zdravko Schauperl

    2012-07-01

    Full Text Available The paper studies the influence of liquefied petroleum gas as alternative fuel on the condition of the internal combustion engine. The traffic, energy, economic and ecological influence as well as the types of fuel are studied and analyzed in an unbiased manner, objectively, and in detail, and the obtained results are compared with the condition of the engine of a vehicle powered by the stipulated fuel, petrol Eurosuper 95. The study was carried out on two identical passenger cars with one being fitted with gas installation. The obtained results show that properly installed gas installations in vehicles and the usage of LPG have no significant influence on the driving performances, but they affect significantly the ecological and economic parameters of using passenger cars.

  10. A dynamic analysis of rotary combustion engine seals

    Science.gov (United States)

    Knoll, J.; Vilmann, C. R.; Schock, H. J.; Stumpf, R. P.

    1984-01-01

    Real time work cell pressures are incorporated into a dynamic analysis of the gas sealing grid in Rotary Combustion Engines. The analysis which utilizes only first principal concepts accounts for apex seal separation from the crochoidal bore, apex seal shifting between the sides of its restraining channel, and apex seal rotation within the restraining channel. The results predict that apex seals do separate from the trochoidal bore and shift between the sides of their channels. The results also show that these two motions are regularly initiated by a seal rotation. The predicted motion of the apex seals compares favorably with experimental results. Frictional losses associated with the sealing grid are also calculated and compare well with measurements obtained in a similar engine. A comparison of frictional losses when using steel and carbon apex seals has also been made as well as friction losses for single and dual side sealing.

  11. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  12. Automatic compression adjusting mechanism for internal combustion engines

    Science.gov (United States)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  13. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  14. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)

    International Nuclear Information System (INIS)

    Vaja, Iacopo; Gambarotta, Agostino

    2010-01-01

    This paper describes a specific thermodynamic analysis in order to efficiently match a vapour cycle to that of a stationary Internal Combustion Engine (ICE). Three different working fluids are considered to represent the main classes of fluids, with reference to the shape of the vapour lines in the T-s diagram: overhanging, nearly isoentropic and bell shaped. First a parametric analysis is conducted in order to determine optimal evaporating pressures for each fluid. After which three different cycles setups are considered: a simple cycle with the use of only engine exhaust gases as a thermal source, a simple cycle with the use of exhaust gases and engine cooling water and a regenerated cycle. A second law analysis of the cycles is performed, with reference to the available heat sources. This is done in order to determine the best fluid and cycle configuration to be employed, the main parameters of the thermodynamic cycles and the overall efficiency of the combined power system. The analysis demonstrates that a 12% increase in the overall efficiency can be achieved with respect to the engine with no bottoming; nevertheless it has been observed that the Organic Rankine Cycles (ORCs) can recover only a small fraction of the heat released by the engine through the cooling water.

  15. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  16. Combustion response to acoustic perturbation in liquid rocket engines

    Science.gov (United States)

    Ghafourian, Akbar

    An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall

  17. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Paul C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictive engine simulation is summarized.

  18. Career Development in Nuclear Engineering

    International Nuclear Information System (INIS)

    Sibbens, G.

    2015-01-01

    In the eighties it was not common for girls to study engineering. But a few young girls have always been fascinated by science and technical applications and dared to go for a gender untypical education. What are these female engineers doing today? This paper describes the career development of a woman, who completed her Master of Science in Nuclear Engineering, found first a job in an international company as cooperator in the research group of radiation physics and later as head of technical support and quality assurance of medical systems and then succeeded in a competition to be recruited at the European Commission (EC). There she started as an assistant for the primary standardisation of radionuclides and high-resolution alpha-particle spectrometry including the preparation of radioactive sources in the radionuclide metrology sector at the Institute for Reference Materials and Measurements of the European Commission’s Joint Research Centre and consequently published her work in scientific journals. Today, 29 years later, I am the laboratory responsible for the preparation and characterisation of nuclear targets at EC-JRC-IRMM, leading a team that has unique know-how in the preparation of thin film deposits (called targets) tailor-made for nuclear physics measurements at the EC–JRC–IRMM and international accelerator sites. High quality measurements of nuclear data and materials are being asked for in the context of nuclear safety, minimisation of high level nuclear waste and safeguards and security. The different steps of my career development and the repeated process of managing learning, work, family and leisure are presented. The career path across different jobs and responsibilities and the career progress via a certification training programme are also explained to encourage the next generation of female professionals to continue playing a vital role in nuclear science and technology. (author)

  19. Nuclear piston engine and pulsed gaseous core reactor power systems

    International Nuclear Information System (INIS)

    Dugan, E.T.

    1976-01-01

    The investigated nuclear piston engines consist of a pulsed, gaseous core reactor enclosed by a moderating-reflecting cylinder and piston assembly and operate on a thermodynamic cycle similar to the internal combustion engine. The primary working fluid is a mixture of uranium hexafluoride, UF 6 , and helium, He, gases. Highly enriched UF 6 gas is the reactor fuel. The helium is added to enhance the thermodynamic and heat transfer characteristics of the primary working fluid and also to provide a neutron flux flattening effect in the cylindrical core. Two and four-stroke engines have been studied in which a neutron source is the counterpart of the sparkplug in the internal combustion engine. The piston motions which have been investigated include pure simple harmonic, simple harmonic with dwell periods, and simple harmonic in combination with non-simple harmonic motion. The results of the conducted investigations indicate good performance potential for the nuclear piston engine with overall efficiencies of as high as 50 percent for nuclear piston engine power generating units of from 10 to 50 Mw(e) capacity. Larger plants can be conceptually designed by increasing the number of pistons, with the mechanical complexity and physical size as the probable limiting factors. The primary uses for such power systems would be for small mobile and fixed ground-based power generation (especially for peaking units for electrical utilities) and also for nautical propulsion and ship power

  20. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines

    International Nuclear Information System (INIS)

    Su, LiWang; Li, XiangRong; Zhang, Zheng; Liu, FuShui

    2014-01-01

    Highlights: • A new combustion system named FSCS for DI diesel engines was proposed. • Fuel/air mixture formation was improved for the application of FSCS. • The FSCS showed a good performance on emission characteristics. - Abstract: To optimize the fuel/air mixture formation and improve the environmental effect of direct injection (DI) diesel engines, a new forced swirl combustion system (FSCS) was proposed concerned on unique design of the geometric shape of the combustion chamber. Numerical simulation was conducted to verify the combustion and emission characteristics of the engines with FSCS. The fuel/air diffusion, in-cylinder velocity distribution, turbulent kinetic energy and in-cylinder temperature distribution were analyzed and the results shown that the FSCS can increase the area of fuel/air diffusion and improve the combustion. The diesel engine with FSCS also shown excellent performance on emission. At full load condition, the soot emission was significantly reduced for the improved fuel/air mixture formation. There are slightly difference for the soot and NO emission between the FSCS and the traditional omega combustion system at lower load for the short penetration of the fuel spray

  1. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  2. Low Temperature Combustion in a Heavy Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ehleskog, Malin

    2012-07-01

    In recent years, there have been major efforts to reduce engine emissions and fuel consumption. The studies described in this thesis were conducted with the aim of identifying methods for reducing harmful engine-out emissions of soot and nitrogen oxides (NOx) under high load without increasing fuel consumption. The first part of the project focused on low temperature combustion using very high levels of EGR. It was found that very low soot and NOx emissions could be achieved at low loads. Unfortunately, these conditions resulted in high fuel consumption as well as high emissions of HC and CO. The increased emissions could be mitigated by optimising the timing of the SOI and increasing the injection pressure, but the high fuel consumption remained problematic. Intermediate levels of EGR can be used to increase the ignition delay and thereby achieve partially premixed combustion. When soot and NOx emissions are plotted against the amount of EGR, there is an intersection point at which the soot emissions are just beginning to increase but the recirculated exhaust gas has greatly reduced the NOx emissions. At this point, the HC and CO emissions and the fuel consumption remain acceptably low. If the onset of the increased soot emissions could be shifted to a higher EGR level or if the peak soot emissions could be reduced in magnitude, the tradeoff between soot and NOx emissions at intermediate EGR levels could be improved. By increasing the charge air pressure, the size of the soot bump is reduced and the point of intersection between the soot and NOx curves is shifted to a higher EGR percentage. The soot-NOx tradeoff can also be improved by increasing the injection pressure to reduce the soot peak while using EGR levels that are high enough to suppress NOx formation. To further investigate the potential of partially premixed combustion, the effects of varying the timing of late inlet valve closure were investigated. The results show that reducing the effective

  3. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  4. Recurrence plot for parameters analysing of internal combustion engine

    Science.gov (United States)

    Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.

    2015-11-01

    In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.

  5. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  6. Final Technical Report; NUCLEAR ENGINEERING RECRUITMENT EFFORT

    Energy Technology Data Exchange (ETDEWEB)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-07-02

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  7. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  8. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-01-01

    Full Text Available Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders (Stobart and Weerasinghe, 2006. Dependable data for small steam expanders will allow us to predict their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Present paper is based on results of experiments carried out on small scale Wankel and two-stroke reciprocating engines as air expanders and as steam expanders. A test facility developed at Sussex used for measurements is comprised of a torque, power and speed measurements, electronic actuation of valves, synchronized data acquisition of pressure, and temperatures of steam and inside of the engines for steam and internal combustion cycles. Results are presented for four engine modes, namely, reciprocating engine in uniflow steam expansion mode and air expansion mode and rotary Wankel engine in steam expansion mode and air expansion mode. The air tests will provide base data for friction and motoring effects whereas steam tests will tell how effective the engines will be in this mode. Results for power, torque, and p-V diagrams are compared to determine the change in performance from air expansion mode to steam expansion mode.

  9. Nuclear Engineering Academic Programs Survey, 2004

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2005-01-01

    This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2004. It also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 31 U.S. universities in 2004

  10. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  11. Development of teaching material to integrate GT-POWER into combustion courses for IC engine simulations.

    Science.gov (United States)

    2009-02-01

    The main objective of this project was to develop instructional engineering projects that utilize the newly-offered PACE software GT-POWER for engine simulations in combustion-related courses at the Missouri University of Science and Technology. Stud...

  12. BS degree in nuclear engineering or a nuclear option

    International Nuclear Information System (INIS)

    Williams on, T.G.

    1988-01-01

    Many nuclear engineering educators are concerned about the health of nuclear engineering academic departments. As part of a review of the BS nuclear engineering degree program at the University of Virginia, the authors surveyed several local utilities with operating nuclear plants about their needs for nuclear engineering graduates. The perception of many of the utility executives about a nuclear engineering degree and about a nuclear option in another engineering curriculum does not agree with the way the authors view these two degrees. The responses to two of the survey questions were of particular interest: (1) does your company have a preference between nuclear engineering graduates and graduates in other fields with a nuclear option? (2) what do you consider to be a minimum level of education in nuclear engineering for a nuclear option in mechanical engineering? All of the four utilities that were surveyed stated a preference for mechanical or electrical engineers with a nuclear option, although two indicated that there are certain jobs for which a nuclear engineering graduate is desired

  13. Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion

    International Nuclear Information System (INIS)

    Chen, Zheng; Yang, Feng; Xue, Shuo; Wu, Zhenkuo; Liu, Jingping

    2015-01-01

    Highlights: • Effects of 0–50% n-butanol addition on GDI engine are experimentally studied. • Higher n-butanol fractions increase combustion pressure and fasten burning rate. • Higher n-butanol fractions increase BSFC but improve BTE. • Higher n-butanol fractions enhance combustion stability but increase knock intensity. • Higher n-butanol fractions reduce exhaust temperature and NOx emissions. - Abstract: An experimental study was carried out on a turbocharged gasoline direct injection (GDI) engine fueled by n-butanol/gasoline blends. Effects of n-butanol percents (15%, 30%, and 50%) on combustion and performance of the engine operating on stoichiometric combustion condition were discussed and also compared with pure gasoline in this paper. The results indicate that n-butanol/gasoline blends increase combustion pressure and pressure rise rate, fasten burning rate, and shorten ignition delay and combustion duration, as compared to pure gasoline. Moreover, these trends are impacted more evidently with increased n-butanol fraction in the blends. In addition, higher n-butanol percent of gasoline blends increase combustion temperature but decrease the temperature in the later stage of expansion stroke, which contributes to the control of exhaust temperature at high-load. With regards to engine performance, higher n-butanol percent in the blends results in increased brake specific fuel consumption (BSFC) and higher brake thermal efficiency (BTE). However, higher n-butanol addition helps to improve combustion stability but shows slightly higher knock possibility in high-load. In that case, the knock trend could be weakened by retarding ignition timing. Moreover, higher n-butanol addition significantly decreases NOx emissions, but it increases CO emissions obviously.

  14. Surrogate fuel formulation for light naphtha combustion in advanced combustion engines

    KAUST Repository

    Ahmed, Ahfaz

    2015-03-30

    Crude oil once recovered is further separated in to several distinct fractions to produce a range of energy and chemical products. One of the less processed fractions is light naphtha (LN), hence they are more economical to produce than their gasoline and diesel counterparts. Recent efforts have demonstrated usage of LN as transportation fuel for internal combustion engines with slight modifications. In this study, a multicomponent surrogate fuel has been developed for light naphtha fuel using a multi-variable nonlinear constrained optimization scheme. The surrogate, consisting of palette species n-pentane, 2-methylhexane, 2-methylbutane, n-heptane and toluene, was validated against the LN using ignition quality tester following ASTM D6890 methodology. Comparison of LN and the surrogate fuel demonstrated satisfactory agreement.

  15. Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine

    OpenAIRE

    Avinash Alagumalai

    2015-01-01

    Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17....

  16. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Science.gov (United States)

    2010-10-01

    ... and vehicles with certain electronic equipment when transported by aircraft or vessel. When an... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles, mechanical...

  17. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  18. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  19. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    OpenAIRE

    S. Sendilvelan; S.Mohanamurugan

    2011-01-01

    Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA) in a Homogeneous Charge Compression Ignition (HCCI) engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combus...

  20. Ignition system for an internal combustion engine with rotary system

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, P A

    1977-05-18

    In the Wankel engine, the sparking plugs spark three times per rotation of the rotor and are never cooled by the incoming mixture. This constant high temperature environment necessitates the use of special sparking plugs. The covered top of the sparking plug is particularly liable to carbon deposits. This invention makes it possible to use sparking plugs on the rotor, without the disadvantages due to the use of high voltage. Further, the use of distributors or mechanical devices determining the ignition timing is no longer necessary. The fuel/air mixture is ignited in a combustion chamber, which is limited by first and second components moving relative to one another in repeated cycles. A generator device is fitted to the first components and an ignition device to the second components. The magnetic flux linking takes place in a predetermined area of the relative movement between the first and second components in a repeated cycle. An ignition signal is produced in the combustion chamber by the magnetic flux linking.

  1. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Trevor S [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Xu Hongming [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Richardson, Steve [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Wyszynski, Miroslaw L [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom); Megaritis, Thanos [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom)

    2006-07-15

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  2. Standard technical specifications for combustion engineering pressurized water reactors

    International Nuclear Information System (INIS)

    1979-08-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Combustion Engineering plants currently being reviewed for an Operating License. Two separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident

  3. Exhaust gas turbocharger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.; Dommes, W.; Gerwig, W.

    1982-01-21

    The invention aimes at the heat protection of a turbocharger for internal combustion engines. The turbine is feeded with exhaust gas and drives the shaft of a compressor. For resolving this problem a thermal shield has been installed on the backside of the turbine. The shaft is sealed with an elastic gasket ring. This gasket avoids the deposition of dust and dirt. As a consequence of this constructive measure a growth of tinder and oxides can be avoided as well as the deposition of dirt. A constant reflection factor is ensured. The thermal shield can be manufactured of thin sheet with a nickel surface and can fastened with distance pieces on the backside of the turbine case. Furthermore it is possible to use a ceramic heat shield.

  4. Internal combustion engines fueled by natural gas-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akansu, S.O.; Kahraman, N. [Erciyes University, Kayseri (Turkey). Engineering Faculty; Dulger, Z. [Kocaeli University (Turkey). Engineering Faculty; Veziroglu, T.N. [University of Miami, Coral Gables, FL (United States). College of Engineering

    2004-11-01

    In this study, a survey of research papers on utilization of natural gas-hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO{sub 2}, and CO emissions decrease with increasing H{sub 2}, but NO{sub x} emissions generally increase. If a catalytic converter is used, NO{sub x} emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H{sub 2} amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using. (author)

  5. Nuclear engineering dictionary. Woerterbuch Kerntechnik

    Energy Technology Data Exchange (ETDEWEB)

    Sube, R

    1985-01-01

    This dictionary treats the subject field of nuclear engineering as a field of applied nuclear physics: Industrial and other applications of nuclear energy, isotopes and ionizing radiation, and their, scientific-technical bases. Emphasis is placed on the terminology of the nuclear fuel cycle. Other applications of nuclear energy include military applications, nuclear fusion technology, and plasma physics, as well as methods and equipment of isotope and radiation technology, without the aspects of biological applications. High-energy physics is also excluded. The terminology presented primarily covers general and basic concepts, special terms have been included as far as available and ascertainable in all four languages. For selection of terms, numerous textbooks and monographies have been searched and compared, as well as various subject-related journals which have been regularly scanned for years. Standards have been a main source of information, as e.g. the international standards of the IAEA (including the INIS terminology), of the ISO, of the COMECON, and of the World Energy Conference and the IEC. Numerous national standards have been evaluated in search for definitions and designations. Users will appreciate the introduction of subject-field codes indicating the main field of usage of a term. Explanations and other hints are numerous and extensive in order to clearly define the terms chosen from other, similar terms, and in order to show homonyms.

  6. Computational intelligence in nuclear engineering

    International Nuclear Information System (INIS)

    Uhrig, Robert E.; Hines, J. Wesley

    2005-01-01

    Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several Changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations

  7. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  8. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  9. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  10. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Science.gov (United States)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  11. Standard technical specifications: Combustion engineering plants. Volume 1, Revision 1: Specifications

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS

  12. An injection limiting thrustor control device for internal combustion engines

    International Nuclear Information System (INIS)

    Givaudan, B.

    1993-01-01

    The aim of this device is the automatic limitation, without any command circuit, of the injection in large diesel engines (16 or 20 cylinders) during a compressed air assisted start-up. The thrustor is driven directly by the compressed air. The limitation may be extended and regulated by the means of valves. Application to start-up of diesel generating sets for nuclear power plants

  13. Nuclear engineering enrollments and degrees, 1994: Appendixes

    International Nuclear Information System (INIS)

    1995-05-01

    This survey is designed to include those programs sponsored by the Department of Energy. The survey is designed to include those programs offering a major in nuclear engineering or course work equivalent to a major in other engineering disciplines that prepare the graduates to perform as nuclear engineers. This survey provides data on nuclear engineering enrollments and degrees for use in labor market analyses, information on education programs for students, and information on new graduates to employers, government agencies, academia and professional societies

  14. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  15. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  16. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    Science.gov (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  17. Lean-burn stratified combustion at gasoline engines; Magere Schichtverbrennung beim Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Breitbach, Hermann [Daimler AG, Stuttgart (Germany). Entwicklung Einspritzung und Betriebsstoffe; Waltner, Anton [Daimler AG, Stuttgart (Germany). Verbrennungsentwicklung Pkw-Ottomotoren; Landenfeld, Tilo [Robert Bosch GmbH, Schwieberdingen (Germany). Hochdruckeinspritzung Piezo; Porten, Guido [Robert Bosch GmbH, Schwieberdingen (Germany). Systementwicklung Benzindirekteinspritzung

    2013-05-01

    Spray-guided lean-burn combustion is an integral part of the Mercedes-Benz technology strategy for highly efficient and clean gasoline engines. With regard to the excellent fuel efficiency combined with outstanding specific power, a good combustion system robustness and the low particulate emissions, the concept offers a very good cost/benefit ratio especially for the Euro 6 emission legislation. Thus, Mercedes-Benz believes, that the sprayguided lean-burn combustion offers the by far highest future viability of gasoline engine combustion systems.

  18. Combustion aided by a glow plug in diesel engines under cold idling conditions

    OpenAIRE

    Li, Qile

    2016-01-01

    Glow plugs are widely used to promote the desired cold start and post-cold start combustion characteristics of light duty diesel engines. The importance of the glow plug becomes more apparent when the compression ratio is low. An experimental investigation of combustion initiation and development aided by the glow plug has been carried out on a single cylinder HPCR DI diesel engine with a low compression ratio of 15.5:1. High speed imaging of combustion initiated by the glow plug in a combust...

  19. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  20. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  1. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  2. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  3. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  4. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  5. Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Bernardo; Novella, Ricardo; Garcia, Antonio; Gargar, Kevin [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia, ES, Campus de Vera, s/n, Edificio 6D. Camino de Vera s/n, 46022 Valencia (Spain)

    2010-02-15

    In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime. The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition. The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC (unburn-hydrocarbons) pollutant emissions. The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines. (author)

  6. Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [United Arab Emirates Univ., Dept. of Mechanical Engineering, Al-Ain (United Arab Emirates)

    2003-03-01

    Combustion pressure rise rate and thermal efficiency data are measured and presented for a dual fuel engine running on a dual fuel of Diesel and compressed natural gas and utilizing exhaust gas recirculation (EGR). The maximum pressure rise rate during combustion is presented as a measure of combustion noise. The experimental investigation on the dual fuel engine revealed the noise generated from combustion and the thermal efficiency at different EGR ratios. A Ricardo E6 Diesel version engine is converted to run on a dual fuel of Diesel and compressed natural gas and having an exhaust gas recycling system is used throughout the work. The engine is fully computerized, and the cylinder pressure data and crank angle data are stored in a PC for offline analysis. The effects of EGR ratio, engine speeds, loads, temperature of recycled exhaust gases, intake charge pressure and engine compression ratio on combustion noise and thermal efficiency are examined for the dual fuel engine. The combustion noise and thermal efficiency of the dual fuel engine are found to be affected when EGR is used in the dual fuel engine. (Author)

  7. 4+ Dimensional nuclear systems engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2009-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in

  8. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... heat load is only present for a short time of the total engine cycle, it is a severe thermal load on the piston surface. At the same time, cooling of the piston crown is generally more complicated than cooling of the other components of the combustion chamber. This can occasionally cause problems...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...

  9. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  10. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In opposed-piston folded-cranktrain diesel engines, the relative movement rules of opposed-pistons, combustion chamber components and injector position are different from those of conventional diesel engines. The combustion and heat release characteristics of an opposed-piston folded-cranktrain diesel engine under different operating conditions were investigated. Four phases: ignition delay, premixed combustion, diffusion combustion and after combustion are used to describe the heat release process of the engine. Load changing has a small effect on premixed combustion duration while it influences diffusion combustion duration significantly. The heat release process has more significant isochoric and isobaric combustion which differs from the conventional diesel engine situation, except at high exhaust pressure and temperature, due to its two-stroke and uniflow scavenging characteristics. Meanwhile, a relatively high-quality exhaust heat energy is produced in opposed-piston folded-cranktrain diesel engines.

  11. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  12. US nuclear engineering education: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.

  13. US Nuclear Engineering Education: Status and prospects

    International Nuclear Information System (INIS)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs

  14. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Dept. of Mechanical Engineering

    2004-02-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters. (author)

  15. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2004-01-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters

  16. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  17. From fuel to wheel: how modern fuels behave in combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, S.; Muether, M.; Fricke, F. [RWTH Aachen (Germany). Inst. for Combustion Engines; Kolbeck, A. [FEV Motorentechnik GmbH und Co KG, Aachen (Germany)

    2007-07-01

    Fuel consumption/CO{sub 2}-emission reduction for spark-ignited (SI) gasoline engines and pollutant emission reduction for compression-ignited (CI) Diesel engines remain the major challenges for future combustion engine research and development. Currently a variety of technological developments is followed. The fuel has significant influence on the fuel injection and mixing, the self-ignition behaviour and the subsequent combustion process, and hence has considerable impact on the engine conversion efficiency and the emission characteristics. Therefore, a very promising approach to improve the engine efficiency and to lower the pollutant emission is to optimize the fuel composition. Several diesel-like fuels with varying aromatic concentrations (mono-, di-, tri- and total aromatics) and oxygenating components have already shown potential for soot reduction in diesel engines, which is of interest when looking at future biofuel components, which will most likely have particular higher oxygen content. 2nd generation biofuels, e.g. ethanol for SI engines and Fischer-Tropsch diesel for CI engines, have already demonstrated their positive influence on the engine performance, when the combustion system is specifically adapted. The full potential for future high efficient and low emission combustion systems can only be exploited by a simultaneous optimisation of the fuel and the internal combustion engine. (orig.)

  18. The University of Utah Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jevremovic, T.; McDonald, L. IV; Schow, R.

    2016-01-01

    As of 2014, the University of Utah Nuclear Engineering Program (UNEP) manages and maintains over 7,000 ft 2 (~650 m 2 ) nuclear engineering facilities that includes 100 kW TRIGA Mark I and numerous laboratories such as radiochemistry, microscopy, nuclear forensics, nuclear medicine, radiation detection and instrumentation laboratories. The UNEP offers prestigious educational and training programs in the field of faculty reserach: reactor physics, reactor design and operation, advanced numerical modeling and visualizations in radiation transport, radiochemistry, nuclear forensics, radiation detection and detector designs, signal processing, nuclear medicine, nuclear space and nuclear robotic’s engineering and radiological sciences. With the state-of-the-art nuclear instrumentation and state-of-the-art numerical modeling tools, reserach reactor and modernized educational and training programs, we positioned ourselves in the last five years as the fastest growing national nuclear engineering program attracting the students from many disciplines such as but not limited to: chemical engineering, civil engineering, environmental engineering, chemistry, physics, astronomy, medical sciences, and others. From 2012, we uniquely developed and implemented the nuclear power plants’ safety culture paradigm that we use for day-to-day operation, management and maintenance of our facilities, as well as train all our students at undergraduate and graduate levels of studies. We developed also a new distance-learning approaches in sharing knowledge about experiential learning based on no-cost internet-tools combined with the use of mobile technologies. (author)

  19. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  20. Numerical study of heat transfer and combustion in IC engine with a porous media piston region

    International Nuclear Information System (INIS)

    Zhou, Lei; Xie, Mao-Zhao; Luo, Kai Hong

    2014-01-01

    Based on superadiabatic combustion in porous medium (PM), the porous medium engine as a new combustion concept is proposed to achieve high combustion efficiency and low emissions. In this paper, an axisymmetric model with detailed chemistry and two-temperature treatment is implemented into a variant of the KIVA-3V code to simulate the working process of the PM engine. Comparisons with the same engine but without PM are conducted. Temperature evolution of the PM and its effects are discussed in detail. Key factors affecting heat transfer, combustion and emissions of the PM engine, such as porosity, the initial PM temperature and equivalence ratio, are analyzed. The results show that the characteristics of heat transfer, emissions and combustion of the PM engine are superior to the engine without PM, providing valuable support for the PM engine concept. In particular, the PM engine is shown to sustain ultra lean combustion. - Graphical abstract: In the PM engine, a PM reactor is mounted on the piston head as shown in Fig. 1 which shows the schematic diagram of the computational domain. The heat exchange process between PM material and compressed air increases with upward motion of piston at compression stroke. At the TDC, almost all the air is compressed and closed to PM volume, meanwhile, the fuel is injected into PM chamber to achieve homogenization combustion. - Highlights: •Two-temperature treatment studies the working process of the PM engine. •Self-balancing temperature of the PM determines the continued and stable work. •Stronger heat exchange occurs between gas and PM with smaller porosity. •The PM engine can have lower levels of NO x , unburnt HC and CO emissions

  1. A numerical study on the effect of various combustion bowl parameters on the performance, combustion, and emission behavior on a single cylinder diesel engine.

    Science.gov (United States)

    Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai

    2018-01-01

    A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.

  2. Numerical study of influence of biofuels on the combustion characteristics and performance of aircraft engine system

    International Nuclear Information System (INIS)

    Zhou, Li; Liu, Zeng-wen; Wang, Zhan-xue

    2015-01-01

    The atomization and combustion flowfield of the combustion chamber with swirl-nozzle were simulated using different biofuels; the thermodynamic cycle of the aircraft engine system were also analyzed, influences of biofuels on the combustion characteristics and performance of aircraft engine system were explored. Results show that viscosity and caloric value are key factors affecting the atomization and combustion characteristics of biofuels, and then dominate the distribution of the temperature and NO concentration. Due to the characteristic of low viscosity and low caloric value for biofuels adopted, the biofuels accumulate near the head of combustion chamber, and the corresponding NO emission is lower than that it has for conventional kerosene. When biofuels with low caloric value are used under the operation condition which is same as the condition for the conventional kerosene, lower turbine inlet temperature, lower thrust and higher specific fuel consumption would be achieved for the aircraft engine. - Highlights: • Influences of biofuels properties on combustion characteristic are explored. • Effects of biofuels on cycle parameters of aircraft engine are discussed. • Viscosity and caloric value are key factors affecting combustion of biofuels. • NO emission becomes lower when biofuels with low caloric value is adopted. • The performance of aircraft engine becomes worse for biofuels with low caloric value.

  3. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    Science.gov (United States)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  4. Clean Air Act Standards and Guidelines for Energy, Engines, and Combustion

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the energy, engines, and combustion industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  5. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  6. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System

    Directory of Open Access Journals (Sweden)

    Rafał Ślefarski

    2018-02-01

    Full Text Available Application of a pre-combustion chamber (PCC ignition system is one of the methods to improve combustion stability and reduce toxic compounds emission, especially NOx. Using PCC allows the operation of the engine at lean combustion conditions or the utilization of low calorific gaseous fuels such as syngas or biogas. The paper presents the results of an experimental study of the combustion process in two stroke, large bore, stationary gas engine GMVH 12 equipped with two spark plugs (2-SP and a PCC ignition system. The experimental research has been performed during the normal operation of the engine in an industrial compression station. It was observed that application of PCC provides less cycle-to-cycle combustion variation (more than 10% and nitric oxide and carbon monoxide emissions decreased to 60% and 26% respectively. The total hydrocarbon (THC emission rate is 25% higher for the engine equipped with PCC, which results in roughly two percent engine efficiency decrease. Another important criterion of engine retrofitting was the PCC location in the engine head. The experimental results show that improvement of engine operating parameters was recorded only for a configuration with one port offset by 45° from the axis of the main chamber. The study of the ignition delay angle and equivalence ratio in PCC did not demonstrate explicit influence on engine performance.

  7. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  8. Combustion phasing for maximum efficiency for conventional and high efficiency engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2014-01-01

    Highlights: • Combustion phasing for max efficiency is a function of engine parameters. • Combustion phasing is most affected by heat transfer, compression ratio, burn duration. • Combustion phasing is less affected by speed, load, equivalence ratio and EGR. • Combustion phasing for a high efficiency engine was more advanced. • Exergy destruction during combustion as functions of combustion phasing is reported. - Abstract: The importance of the phasing of the combustion event for internal-combustion engines is well appreciated, but quantitative details are sparse. The objective of the current work was to examine the optimum combustion phasing (based on maximum bmep) as functions of engine design and operating variables. A thermodynamic, engine cycle simulation was used to complete this assessment. As metrics for the combustion phasing, both the crank angle for 50% fuel mass burned (CA 50 ) and the crank angle for peak pressure (CA pp ) are reported as functions of the engine variables. In contrast to common statements in the literature, the optimum CA 50 and CA pp vary depending on the design and operating variables. Optimum, as used in this paper, refers to the combustion timing that provides the maximum bmep and brake thermal efficiency (MBT timing). For this work, the variables with the greatest influence on the optimum CA 50 and CA pp were the heat transfer level, the burn duration and the compression ratio. Other variables such as equivalence ratio, EGR level, engine speed and engine load had a much smaller impact on the optimum CA 50 and CA pp . For the conventional engine, for the conditions examined, the optimum CA 50 varied between about 5 and 11°aTDC, and the optimum CA pp varied between about 9 and 16°aTDC. For a high efficiency engine (high dilution, high compression ratio), the optimum CA 50 was 2.5°aTDC, and the optimum CA pp was 7.8°aTDC. These more advanced values for the optimum CA 50 and CA pp for the high efficiency engine were

  9. European master degree in nuclear engineering

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2003-01-01

    In order to preserve and to improve the quality of nuclear engineering education and training in Europe, as well to ensure the safe and economic operation of nuclear power plants, the European Nuclear Engineering Network Program (ENEN) started in 2002. It is a program aiming to establish and maintain a set of criteria for specific curricula of nuclear engineering education, in particular, for an European Master Degree in Nuclear Engineering (EMNE). The ENEN program is financed by the FP5 and has the wide support of IAEA, OECD and EU Commission departments dealing with the nuclear engineering knowledge management. The promising results up to now determined the creation of the Asian Nuclear Engineering Network (ANEN) in July 2003 and of the World Nuclear University (WNU) starting in September 2003. The paper presents the future structure of EMNE which will allow the harmonization of the curricula of the universities of Europe until the Bologna Convention will be fully accepted and operational in all European countries. The ENEN program has taken into consideration the curricula of 22 universities and research centres from 15 different European countries and proposed a feasible scheme which allows the undergraduates with a weak to strong nuclear background to continue their graduate education in the nuclear engineering field towards EMNE. As one of the contractors of this program, University 'Politehnica' of Bucharest brings its contribution and actively takes part in all activities establishing the EMNE. (author)

  10. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  11. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    Science.gov (United States)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  12. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  13. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  14. Analysis the ECFM-3Z Combustion Model for Simulating the Combustion Process and Emission Characteristics in a HSDI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2015-12-01

    Full Text Available An advanced CFD simulation has been performed to analyze the ECFM-3Z (Extended Coherent Flame Model-3Z combustion model for simulating the combustion process and emission characteristics in a high speed direct injection (HSDI diesel engine. A four cylinders, HSDI diesel engine based on a Ford production engine with a 2nd generation Delphi common rail fuel injection system has been modeled in this research. 3D CFD simulation was carried out from intake valve closing (IVC to exhaust valve opening (EVO. A good agreement of calculated and measured in-cylinder pressure trace as well as pollutant formation trends could be observed for all investigated operating points. Based on the confidence gained from validation, the study is extended to evaluate the effect of fuel injection timing on engine performance and emissions. For this purpose, a comprehensive study of the effect of injection timing with respect to performance and emissions has been considered. Three main injection timing, (1 2.65 BTDC, (2 0.65 BTDC and (3 1.35 ATDC, all with 30 crank angle pilot separations has been used to investigate the effect of the injection timing. The results show that the current methodology can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.

  15. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2016-03-01

    Full Text Available Oxygen enriched combustion is one of the attractive combustion technologies to control pollution and improve combustion in diesel engines. An experimental test was conducted on a single cylinder direct injection diesel engine to study the impact of oxygen enrichment on pollution and performance parameters by increasing the oxygen concentration of intake air from 21 to 27% by volume. The tests results show that the combustion process was improved as there is an increase in thermal efficiency of 4 to 8 percent and decrease in brake specific fuel consumption of 5 to 12 percent. There is also a substantial decrease in unburned hydro carbon, carbon mono-oxide and smoke density levels to the maximum of 40, 55 and 60 percent respectively. However, there is a considerable increase in nitrogen oxide emissions due to increased combustion temperature and extra oxygen available which needs to be addressed.

  16. Academic nuclear engineering education - the Dutch way

    International Nuclear Information System (INIS)

    Wallerbos, E.J.M.; Geemert, R. van

    1997-01-01

    The academic nuclear engineering educational program in the Netherlands aims not only to give students a thorough knowledge of reactor physics but also to train them in practical skills and presentation techniques. These three aspects are important to become a successful nuclear engineer. (author)

  17. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  18. Lifecycle management for nuclear engineering project documents

    International Nuclear Information System (INIS)

    Zhang Li; Zhang Ming; Zhang Ling

    2010-01-01

    The nuclear engineering project documents with great quantity and various types of data, in which the relationships of each document are complex, the edition of document update frequently, are managed difficultly. While the safety of project even the nuclear safety is threatened seriously by the false documents and mistakes. In order to ensure the integrality, veracity and validity of project documents, the lifecycle theory of document is applied to build documents center, record center, structure and database of document lifecycle management system. And the lifecycle management is used to the documents of nuclear engineering projects from the production to pigeonhole, to satisfy the quality requirement of nuclear engineering projects. (authors)

  19. Thermal hydraulics in undergraduate nuclear engineering education

    International Nuclear Information System (INIS)

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  20. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  1. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  2. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  3. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  4. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    Science.gov (United States)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  5. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    International Nuclear Information System (INIS)

    Zhen, Dong; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew; Wang, Tie

    2013-01-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation. (paper)

  6. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  7. Current status of nuclear engineering education

    International Nuclear Information System (INIS)

    Palladino, N.J.

    1975-01-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of the present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs

  8. Air-steam hybrid engine : an alternative to internal combustion.

    Science.gov (United States)

    2011-03-01

    In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...

  9. Experimental study of combustion noise radiation during transient turbocharged diesel engine operation

    International Nuclear Information System (INIS)

    Giakoumis, Evangelos G.; Dimaratos, Athanasios M.; Rakopoulos, Constantine D.

    2011-01-01

    Diesel engine noise radiation has drawn increased attention in recent years since it is associated with the passengers' and pedestrians' discomfort, a fact that has been acknowledged by the manufacturers and the legislation in many countries. In the current study, experimental tests were conducted on a truck, turbocharged diesel engine in order to investigate the mechanism of combustion noise emission under various transient schedules experienced during daily driving conditions, namely acceleration and load increase. To this aim, a fully instrumented test bed was set up in order to capture the development of key engine and turbocharger variables during the transient events. Analytical diagrams are provided to explain the behavior of combustion noise radiation in conjunction with cylinder pressure (spectrum), turbocharger and governor/fuel pump response. Turbocharger lag was found to be the main cause for the noise spikes during all test cases examined, with the engine injection timing calibration and the slow adjustment of cylinder wall temperature to the new fueling conditions playing a vital role. The analysis was extended with a quasi-steady approximation of transient combustion noise using steady-state maps, in order to better highlight the effect of dynamic engine operation on combustion noise emissions. -- Highlights: → Studying the effects of acceleration and load increase on the combustion noise radiation from a turbocharged diesel engine. → Turbocharger lag was the most notable contributor for the behavior of combustion noise radiation. → Turbocharged diesel engine behaves noisier at acceleration compared with the steady-state operation. → Fuel limiter, governing and engine injection timing calibration play a decisive role on the emission of combustion noise. → Transient noise radiation was smoothed the slower the acceleration and the smaller the demanded speed increase.

  10. Effects of exhaust gas recirculation in diesel engines featuring late PCCI type combustion strategies

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.

    2015-01-01

    Highlights: • The effects that a high EGR rate can have on PCCI type combustion strategies have been analyzed. • The dependence of engine emissions and combustion noise on EGR has been addressed. • The time histories of the main in-cylinder variables have been plotted for different EGR rates. - Abstract: The influence of exhaust gas recirculation (EGR) has been analyzed considering experimental results obtained from a Euro 5 diesel engine calibrated with an optimized pilot-main double injection strategy. The engine features a late premixed charge compression ignition (PCCI) type combustion mode. Different steady-state key-points that are representative of the engine application in a passenger car over the New European Driving Cycle (NEDC) have been studied. The engine was fully instrumented to obtain a complete overview of the most important variables. The pressure time history in the combustion chamber has been measured to perform calculations with single and three-zone combustion diagnostic models. These models allow the in-cylinder emissions and the temperature of the burned and unburned zones to be evaluated as functions of the crankshaft angle. The EGR mass fraction was experimentally varied within the 0–50% range. The results of the investigation have shown the influence that high EGR rates can have on intake and exhaust temperatures, in-cylinder pressure and heat release rate time histories, engine-out emissions (CO, HC, NO_x, soot), brake specific fuel consumption and combustion noise for a PCCI type combustion strategy. The outputs of the diagnostic models have been used to conduct a detailed analysis of the cause-and-effect relationships between the EGR rate variations and the engine performance. Finally, the effect of the EGR on the cycle-to-cycle variability of the engine torque has been experimentally investigated.

  11. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  12. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  13. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME – water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600 rpm and 4 bar BMEP load conditions. The fuel injection and combustion processes were observed and analysed using endoscopes and a digital camera. The temperature distribution in the combustion chamber was analysed quantitatively using the two-colour method. The injection and combustion phenomena were described and compared.A way to reduce NOX formation in the combustion chamber of diesel engines by adding water in the combustion zone was presented. Evaporating water efficiently lowers the peak flame temperature and the temperature in the post-flame zone. For diesel engines, there is an exponential relationship between NOX emissions and peak combustion temperatures. The energy needed to vaporize the water results in lower peak temperatures of the combusted gases, with a consequent reduction in nitrogen oxide formation. The experimental results show up to 50 % NOX emission reduction with the use of 30% water in an RME emulsion, with unchanged engine performance.

  14. Lean hydrous and anhydrous bioethanol combustion in spark ignition engine at idle

    International Nuclear Information System (INIS)

    Chuepeng, Sathaporn; Srisuwan, Sudecha; Tongroon, Manida

    2016-01-01

    Highlights: • Anhydrous ethanol burns fastest in uncalibrated engine at equal equivalence ratio. • The leaner hydrous ethanol combustion tends to elevate the COV in imep. • Hydrous ethanol consumption was 10% greater than anhydrous ethanol at ϕ = 0.67 limit. • Optimizing alternative fuel engine at idle for stability and emission is suggested. - Abstract: The applications of anhydrous bioethanol to substitute or replace gasoline fuel have shown to attain benefits in terms of engine thermal efficiency, power output and exhaust emissions from spark ignition engines. A hydrous bioethanol has also been gained more attention due to its energy and cost effectiveness. The main aim of this work is to minimize fuel quantity injected to the intake ports of a four-cylinder engine under idle condition. The engine running with hydrous ethanol undergoes within lean-burn condition as its combustion stability is analyzed using an engine indicating system. Coefficient of variation in indicated mean effective pressure is an indicator for combustion stability with hydrocarbon and carbon monoxide emission monitoring as a supplement. Anhydrous ethanol burns faster than hydrous ethanol and gasoline in the uncalibrated engine at the same fuel-to-air equivalence ratio under idle condition. The leaner hydrous ethanol combustion tends to elevate the coefficient of variation in indicated mean effective pressure. The experimental results have found that the engine consumes greater hydrous ethanol by 10% on mass basis compared with those of anhydrous ethanol at the lean limit of fuel-to-air equivalence ratio of 0.67. The results of exhaust gas analysis were compared with those predicted by chemical equilibrium analysis of the fuel-air combustion; the resemble trends were found. Calibrating the alternative fueled engine for fuel injection quantity should be accomplished at idle with combustion stability and emissions optimization.

  15. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  16. Numerical Study on the Performance Characteristics of Hydrogen Fueled Port Injection Internal Combustion Engine

    OpenAIRE

    Rosli A. Bakar; Mohammed K. Mohammed; M. M. Rahman

    2009-01-01

    This study was focused on the engine performance of single cylinder hydrogen fueled port injection internal combustion engine. GT-Power was utilized to develop the model for port injection engine. One dimensional gas dynamics was represented the flow and heat transfer in the components of the engine model. The governing equations were introduced first, followed by the performance parameters and model description. Air-fuel ratio was varied from stoichiometric limit to a lean limit and the rota...

  17. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  18. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  19. Air fuel ratio detector corrector for combustion engines using adaptive neurofuzzy networks

    Directory of Open Access Journals (Sweden)

    Nidhi Arora

    2013-07-01

    Full Text Available A perfect mix of the air and fuel in internal combustion engines is desirable for proper combustion of fuel with air. The vehicles running on road emit harmful gases due to improper combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines to control amount of air going inside the combustion chamber, which requires constant monitoring. A model is proposed in this paper to alleviate combustion process. The method involves recording the time-varying flow of fuel components in combustion chamber. A Fuzzy Neural Network is trained for around 40 fuels to ascertain the required amount of air to form a standard mix to produce non-harmful gases and about 12 fuels are used for testing the network’s performance. The network then adaptively determines the additional/subtractive amount of air required for proper combustion. Mean square error calculation ensures the effectiveness of the network’s performance.

  20. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  1. Cycle-to-cycle fluctuation of combustion in a spark-ignition engine; Hibana tenka engine no nensho hendo

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, Y; Yoshiyama, S; Tomita, E; Hamagami, T [Okayama University, Okayama (Japan); Otsubo, H [Yammer Diesel Engine Co. Ltd. Tokyo (Japan)

    1997-10-01

    In a homogeneous charge spark-ignition engine, the duration of early stage of combustion is a dominant factor for determining the fluctuation of mean effective pressure. And the early stage of combustion varies with the equivalence ratio and turbulence characteristics of the mixture. In this study, the fluctuations of 1% combustion duration and indicated mean effective pressure Pmi were computed as the function of fluctuations both in the equivalence ratio {phi} of the mixture and in the turbulence characteristics of the cylinder charge. And effects of the spark timing {theta}ig and {phi} on the cycle-to-cycle fluctuation in Pmi were investigated. 16 refs., 6 figs.

  2. Performance of a supercharged direct-injection stratified-charge rotary combustion engine

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1990-01-01

    A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.

  3. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2017-12-01

    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  4. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  5. Hydrogen enrichment of an internal combustion engine via closed loop thermochemical recuperation

    NARCIS (Netherlands)

    Zwitserlood, J.G.; Hofman, T.; Erickson, P.A.

    2013-01-01

    Hydrogen enrichment in an internal combustion engine can greatly improve efficiency and at the same time reduce emissions without the need for extensive engine modifications. One option for a hydrogen source for the enrichment is actively producing hydrogen on-board the vehicle through steam

  6. Convex modeling and sizing of electrically supercharged internal combustion engine powertrain

    NARCIS (Netherlands)

    Marinkov, S.; Murgovski, N.; de Jager, B.

    2016-01-01

    This paper investigates a concept of an electrically supercharged internal combustion engine powertrain. A supercharger consists of an electric motor and a compressor. It draws its power from an electric energy buffer (e.g., a battery) and helps the engine during short-duration high-power demands.

  7. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Broerman, III, Eugene L.; Bourn, Gary D [Laramie, WY

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  8. Experimental study of fuel composition impact on PCCI combustion in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; Luijten, C.C.M.; Somers, L.M.T.; Kalghatgi, G.T.; Albrecht, B.A.

    2011-01-01

    Premixed Charge Compression Ignition (PCCI) is a combustion concept that holds the promise of combining emission levels of a spark-ignition engine with the efficiency of a compression-ignition engine. In a short term scenario, PCCI would be used in the lower load operating range only, combined with

  9. Software engineers and nuclear engineers: teaming up to do testing

    International Nuclear Information System (INIS)

    Kelly, D.; Cote, N.; Shepard, T.

    2007-01-01

    The software engineering community has traditionally paid little attention to the specific needs of engineers and scientists who develop their own software. Recently there has been increased recognition that specific software engineering techniques need to be found for this group of developers. In this case study, a software engineering group teamed with a nuclear engineering group to develop a software testing strategy. This work examines the types of testing that proved to be useful and examines what each discipline brings to the table to improve the quality of the software product. (author)

  10. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Ng, Jo-Han; Ahmad, Solehin; Rajoo, Srithar

    2015-01-01

    Highlights: • Diesel engine test using palm biodiesel and diesel at varying speed and load. • Palm biodiesel shows better performance at late stage of cycle evolution. • Oxygen in palm biodiesel fuel improves local combustion at late stage of combustion. • Emissions of NO are lower at low and medium operating speed for palm biodiesel. • Formulation of trend guide for performance and emissions characteristics for light-duty diesel engines. - Abstract: This paper presents an investigation of oxygenated neat palm biodiesel in a direct injection single cylinder diesel engine in terms of ignition, combustion and emissions characteristics. Conventional non-oxygenated diesel fuel is compared as baseline. The engine testing is performed between the operating speed of 2000–3000 rpm and load of up to 3 bar of brake mean effective pressure. From it, a total of 50 experiment cases are tested to form a comprehensive operational speed-load contour map for ignition and combustion; while various engine-out emissions such as NO, CO, UHCs and CO 2 are compared based on fuel type-speed combinations. The ignition and combustion evolution contour maps quantify the absolute ignition delay period and elucidate the difference between that of palm biodiesel and fossil diesel. Although diesel has shorter ignition delay period by up to 0.6 CAD at 3000 rpm and burns more rapidly at the start of combustion, combustion of palm biodiesel accelerates during the mid-combustion phase and overtakes diesel in the cumulative heat release rates (HRR) prior to the 90% cumulative HRR. This can be attributed to the oxygen contained in palm biodiesel assisting in localized regions of combustion. In terms of performance, the oxygenated nature of palm biodiesel provided mixed performances with improved thermal efficiency and increased brake specific fuel consumption, due to the improved combustion and lower calorific values, respectively. Emission measurements show that NO for palm biodiesel is

  11. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  12. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  13. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  14. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  15. Application of LES for Analysis of Unsteady Effects on Combustion Processes and Misfires in DISI Engine

    Directory of Open Access Journals (Sweden)

    Goryntsev D.

    2013-10-01

    Full Text Available Cycle-to-cycle variations of combustion processes strongly affect the emissions, specific fuel consumption and work output. Internal combustion engines such as Direct Injection Spark-Ignition (DISI are very sensitive to the cyclic fluctuations of the flow, mixing and combustion processes. Multi-cycle Large Eddy Simulation (LES analysis has been used in order to characterize unsteady effects of combustion processes and misfires in realistic DISI engine. A qualitative analysis of the intensity of cyclic variations of in-cylinder pressure, temperature and fuel mass fraction is presented. The effect of ignition probability and analysis of misfires are pointed out. Finally, the fuel history effects along with the effect of residual gas on in-cylinder pressure and temperature as well as misfires are discussed.

  16. Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets

    International Nuclear Information System (INIS)

    Sen, A.K.; Litak, G.; Finney, C.E.A.; Daw, C.S.; Wagner, R.M.

    2010-01-01

    In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel-air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel-air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel-air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.

  17. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    Science.gov (United States)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  18. A Mixing Based Model for DME Combustion in Diesel Engines

    DEFF Research Database (Denmark)

    Bek, Bjarne H.; Sorenson, Spencer C.

    1998-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combus-tion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  19. A mixing based model for DME combustion in diesel engines

    DEFF Research Database (Denmark)

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  20. A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram

    Directory of Open Access Journals (Sweden)

    Tomić Miroljub V.

    2008-01-01

    Full Text Available In this paper a simplified procedure of an internal combustion engine in-cylinder pressure record analysis has been presented. The method is very easy for programming and provides quick evaluation of the gas temperature and the rate of combustion. It is based on the consideration proposed by Hohenberg and Killman, but enhances the approach by involving the rate of heat transferred to the walls that was omitted in the original approach. It enables the evaluation of the complete rate of heat released by combustion (often designated as “gross heat release rate” or “fuel chemical energy release rate”, not only the rate of heat transferred to the gas (which is often designated as “net heat release rate”. The accuracy of the method has been also analyzed and it is shown that the errors caused by the simplifications in the model are very small, particularly if the crank angle step is also small. A several practical applications on recorded pressure diagrams taken from both spark ignition and compression ignition engine are presented as well.

  1. The Relation between Gas Flow and Combustibility using Actual Engine (Basic Experiment of Gas Flow and Combustibility under Low Load Condition)

    OpenAIRE

    田坂, 英紀; 泉, 立哉; 木村, 正寿

    2003-01-01

    Abstract ###Consideration of the global environment problems by exhaust gas is becoming important in recent years. ###Especially about internal combustion engine, social demand has been increasing about low pollution, high ###efficiency and so on. Controlling gas flow in cylinder becomes the key getting good combustion state in ###various driving states. ###The purpose of the research is analysis about the relation between gas flow and combustibility in the cylinder. ###So we measured gas flo...

  2. Nuclear engineering in the National Polytechnic Institute

    International Nuclear Information System (INIS)

    Del Valle G, E.

    2008-12-01

    In the National Polytechnic Institute the bachelor degree in physics and mathematics, consists of 48 subjects in the common trunk. For the nuclear engineering option, from the fifth semester undergoing 9 specific areas within the Nuclear Engineering Department : introduction to nuclear engineering, power cycles thermodynamics, heat transfer, two courses of nuclear reactors theory, two of nuclear engineering, one course of laboratory and other of radiation protection. There is also a master in nuclear engineering aims train human resources in the area of power and research nuclear reactors to meet the needs of the nuclear industry in Mexico, as well as train highly qualified personnel in branches where are used equipment involving radiation and radioisotopes tale as Medicine, Agriculture and Industry. Among its compulsory subjects are: radiation interaction with the matter, measurements laboratory, reactor physics I and II, reactor engineering, reactor laboratory and thesis seminar. Optional, are: engineering of the radiation protection, computers in the nuclear engineering, nuclear systems dynamics, power plants safety, flow in two phases, reliability and risk analysis, nuclear power systems design, neutron transport theory. Many graduates of this degree have been and are involved in various phases of the nuclear project of Laguna Verde. The Nuclear Engineering Department has a subcritical nuclear reactor of light water and natural uranium and one isotopic source of Pu-Be neutrons of 5 Ci. It also has a multichannel analyzers, calibrated sources of alpha, beta and gamma radiation, a gamma spectrometer of high resolution and low background, a specialized library and one data processing center. In relation particularly to radiation protection, it is clear that there is a lack of specialists, as reflected in radiological control problems in areas such as medicine and industry. Given this situation, it is perceived to be required post-graduate studies at Master and Ph

  3. Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen

    Science.gov (United States)

    Hardi, Justin S.; Traudt, Tobias; Bombardieri, Cristiano; Börner, Michael; Beinke, Scott K.; Armbruster, Wolfgang; Nicolas Blanco, P.; Tonti, Federica; Suslov, Dmitry; Dally, Bassam; Oschwald, Michael

    2018-06-01

    The Combustion Dynamics group in the Rocket Propulsion Department at the German Aerospace Center (DLR), Lampoldshausen, strives to advance the understanding of dynamic processes in cryogenic rocket engines. Leveraging the test facilities and experimental expertise at DLR Lampoldshausen, the group has taken a primarily experimental approach to investigating transient flows, ignition, and combustion instabilities for over one and a half decades. This article provides a summary of recent achievements, and an overview of current and planned research activities.

  4. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  5. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz

    2016-10-17

    Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.

  6. Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Mehdi Ali Ehyaei

    2016-03-01

    Full Text Available Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

  7. PWR radiation fields at combustion engineering plants through mid-1985: Final report

    International Nuclear Information System (INIS)

    Barshay, S.S.; Beineke, T.A.; Bradshaw, R.W.

    1987-01-01

    This report presents the results of the initial phase of the EPRI-PWR Standard Radiation Monitoring Program (SRMP) for PWR nuclear power plants with Nuclear Steam Supply Systems supplied by Combustion Engineering, Inc. The purposes of the SRMP are to provide reliable, consistent and systematic measurements of the rate of radiation-field buildup at operating PWR's; and to use that information to identify opportunities for radiation control and the consequent reduction of occupational radiation exposure. The report includes radiation surveys from seven participating power plants. These surveys were conducted at well-defined locations on the reactor coolant loop piping and steam generators, and/or inside the steam generator channel heads. In most cases only one survey is available from each power plant, so that conclusions about the rate of radiation-field buildup are not possible. Some observations are made about the distribution pattern of radiation levels within the steam generator channel heads and around the reactor coolant loops. The report discusses the relationship between out-of-core radiation fields (as measured by the SRMP) and: the pH of the reactor coolant, the concentration of lithium hydroxide in the reactor coolant, and the frequency of changes in reactor power level. In order to provide data for possible future correlations of these parameters with the SRMP radiation-field data, the report summarizes information available from participating plants on primary coolant pH, and on the frequency of changes in reactor power level. 12 refs., 22 figs., 7 tabs

  8. Control of combustion generated emissions from spark ignition engines: a review

    International Nuclear Information System (INIS)

    Mansha, M.; Shahid, E.M.; Qureshi, A.H.

    2012-01-01

    For the past several decades automobiles have been a major source of ground level emissions of various pollutants like CO, HC, NO/sub x/, SO/sub x/ CO/sub 2/, etc. Due to their dangerous effects on human health, vegetation and on climate, various pre combustion, in-cylinder and post. combustion techniques have been tried for their abatement. This paper reviews all of the workable measures taken so far to controlling the combustion generated emissions from 4-stroke Spark Ignition Vehicular Engines ever since the promulgation of emission control legislation/standards and their subsequent enforcement in the late 1960s. (author)

  9. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2013-12-01

    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  10. Towards the European Nuclear Engineering Education Network

    International Nuclear Information System (INIS)

    Mavko, B.; Giot, M.; Sehgal, B.R.; Goethem, G. Van

    2003-01-01

    Current priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. The situation today is significantly different than it was three to four decades ago when much of the present competence base in nuclear sciences was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement. To preserve nuclear knowledge and expertise through the higher nuclear engineering education in the 5 th framework program of the European Commission the project ENEN (European Nuclear Engineering Education Network) was launched, since the need to keep the university curricula in nuclear sciences and technology alive has been clearly recognized at European level. As the follow up of this project an international nuclear engineering education consortium of universities with partners from the nuclear sector is presently in process of being established This association called ENEN has as founding members: 14 universities and 8 research institutes from 17 European countries. (author)

  11. Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.; Giakoumis, E.G.

    2008-01-01

    A previously developed and validated zero-dimensional, multi-zone, thermodynamic combustion model for the prediction of spark ignition (SI) engine performance and nitric oxide (NO) emissions has been extended to include second-law analysis. The main characteristic of the model is the division of the burned gas into several distinct zones, in order to account for the temperature and chemical species stratification developed in the burned gas during combustion. Within the framework of the multi-zone model, the various availability components constituting the total availability of each of the multiple zones of the simulation are identified and calculated separately. The model is applied to a multi-cylinder, four-stroke, turbocharged and aftercooled, natural gas (NG) SI gas engine running on synthesis gas (syngas) fuel. The major part of the unburned mixture availability consists of the chemical contribution, ranging from 98% at the inlet valve closing (IVC) event to 83% at the ignition timing of the total availability for the 100% load case, which is due to the presence of the combustible fuel. On the contrary, the multiple burned zones possess mainly thermomechanical availability. Specifically, again for the 100% load case, the total availability of the first burned zone at the exhaust valve opening (EVO) event consists of thermomechanical availability approximately by 90%, with similar percentages for all other burned zones. Two definitions of the combustion exergetic efficiency are used to explore the degree of reversibility of the combustion process in each of the multiple burned zones. It is revealed that the crucial factor determining the thermodynamic perfection of combustion in each burned zone is the level of the temperatures at which combustion occurs in the zone, with minor influence of the whole temperature history of the zone during the complete combustion phase. The availability analysis is extended to various engine loads. The engine in question is

  12. Nuclear industry prepares fore shortage of engineers

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    It is predicted that the Canadian nuclear industry will experience a shortage of qualified personnel within the next five to ten years. The reasons for this prediction are as follows: enrollment in engineering courses, particularly five courses in nuclear engineering has been declining; immigration can no longer be expected to fill the gap; the workforce is aging. Solutions may include promotional campaigns, student employment programs, and educating workers to a professional level

  13. Education of nuclear engineering in Japan

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Yamamuro, Nobuhiro

    1979-01-01

    The research Committee of Nuclear Engineering Education has two working groups. One group has carried out surveyes on the curriculums of nuclear engineering course of universities in Japan and the activities of graduates in the industrial worlds. The other group conducted an investigation on the present status of energy education in senior high schools. This is an interim report on the activity of the research committee. (author)

  14. The combustion system of the MAN 20V35/44G gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Markus; Auer, Matthias; Stiesch, Gunnnar [MAN Diesel and Turbo SE, Augsburg (Germany)

    2013-05-15

    The new gas engine 20V35/44G by MAN Diesel and Turbo SE has a power output of 10.6 MW. The high effective efficiency level of 48.4 % as well as numerous technical innovations allow an environmentally-friendly, economical and reliable engine operation. Key to achieve this is the combustion system, which has been optimised during advanced engineering by means of modern simulation tools and extensive single-cylinder tests. (orig.)

  15. Internal combustion engine with rotary valve assembly having variable intake valve timing

    Science.gov (United States)

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  16. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines

    Science.gov (United States)

    2014-06-20

    was used [9]. Compression ignition (CI) engines rely on auto - ignition to initiate combustion during an engine cycle. During intake, only air flows...9 Figure 2: Four-stroke IC engine cycle. (a) Intake stroke (b) Compression stroke (c) Ignition (d) Power...CAD crank angle degrees CI compression ignition COTS commercial off the shelf CoV coefficient of variance DAQ data acquisition system DI

  17. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)

  18. Nuclear operations summary Engineering organization for Plowshare nuclear operations

    Energy Technology Data Exchange (ETDEWEB)

    Broadman, Gene A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The availability of nuclear explosives for peaceful projects has given the engineer a new dimension in his thinking. He can now seek methods of adapting Plowshare to a variety of industrial applications. The full potential of the Plowshare Program can only be attained when industry begins to use nuclear explosives on a regular basis, for economically sound projects. It is the purpose of this paper to help the engineer familiarize himself with Plowshare technology to hasten the day when 'Plowsharee goes commercial'. An engineering project utilizing nuclear exposives ordinarily involves three main phases: Phase I (a) The theoretical and empirical analysis of effects. (b) Projected economic and/or scientific evaluation. (c) A safety analysis. Phase II (a) Field construction. (b) Safe detonation of the nuclear explosive. (c) Data acquisition. Phase III The evaluation and/or exploitation of the results. This paper will be restricted to Phase II, referred to collectively as the 'nuclear operation'.

  19. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  20. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  1. Investigation on combustion parameters of palm biodiesel operating with a diesel engine

    Directory of Open Access Journals (Sweden)

    M.H.M. Yasin

    2015-12-01

    Full Text Available Biodiesel is a renewable and decomposable fuel which is derived from edible and non-edible oils. It has different properties compared to conventional diesel but can be used directly in diesel engines. Different fuel properties characterise different combustion-phasing parameters such as cyclic variations of Indicated Mean Effective Pressure (IMEP and maximum pressure (Pmax. In this study, cyclic variations of combustion parameters such as IMEP and Pmax were investigated using a multi-cylinder diesel engine operating with conventional diesel and palm biodiesel. The experiments were conducted using different engine loads; 20, 40, and 60% at a constant engine speed of 2500 rpm. The coefficient of variation (COV and standard deviation of parameters were used to evaluate the cyclic variations of the combustion phasing parameters for the test fuels at specific engine test conditions. It was observed that palm biodiesel has lower COV IMEP compared to conventional diesel but is higher in COV Pmax at higher engine loads respectively. In addition, palm biodiesel tends to have a higher recurrence for the frequency distribution for maximum pressure. It can be concluded from the study that the fuel properties of palm biodiesel have influenced most of the combustion parameters.

  2. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    Science.gov (United States)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  3. Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu

    2016-01-01

    To construct an effective method to analyze the combustion process of dual fuel engines at low loads, effects of combustion boundaries on the combustion process of an electronically controlled diesel natural gas dual-fuel engine at low loads were investigated. Three typical combustion modes, including h, m and n, appeared under different combustion boundaries. In addition, the time-sequenced characteristic and the heat release rate-imbalanced characteristic were found in the dual fuel engine combustion process. To quantify these characteristics, two quantitative indicators, including the TSC (time-sequenced coefficient) and the HBC (HRR-balanced coefficient) were defined. The results show that increasing TSC and HBC can decrease HC (hydrocarbon) emissions and improve the BTE (brake thermal efficiency) significantly. The engine with the n combustion mode can obtain the highest BTE and the lowest HC emissions, followed by m, and then h. However, the combustion process of the engine will deteriorate sharply if boundary conditions are not strictly controlled in the n combustion mode. Based on the n combustion mode, advancing the start of diesel injection significantly, using large EGR (exhaust gas recirculation) rate and appropriately intake throttling can effectively reduce HC emissions and improve the BTE of dual fuel engines at low loads with relatively high natural gas PES (percentage energy substitution). - Highlights: • We reported three typical combustion modes of a dual-fuel engine at low loads. • Time-sequenced characteristic was put forward and qualified. • HRR-imbalanced characteristic was put forward and qualified. • Three combustion modes appeared as equivalence ratio/diesel injection timing varied. • The engine performance varied significantly with different combustion mode.

  4. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  5. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  6. FORMALIZATION OF DIESEL ENGINE OPERATION CONSIDERING THE EVALUATION OF VELOCITY DURING THE COMBUSTION PROCESSES

    Directory of Open Access Journals (Sweden)

    V. P. Litvinenko

    2015-10-01

    Full Text Available Purpose. Under modern conditions the applying methods and design models as well as the evaluation of the operational characteristics of diesel engines do not completely take into consideration the specifics of the combustion processes. In part, such situation is characterized by the complexity of considering of varied by its nature processes that haven’t been completely investigated. In this context it is necessary to find the new methods and models which would provide relatively simple solutions through the use of integrated factors based on the analysis of parameters of diesel engines. Methodology. The proposed algorithms for the estimating of the combustion process in the form of volumetric and linear velocities is based on the well-known parameters of power and mean effective pressure and allows to compare the efficiency of their behavior in various versions of diesel engines. Findings. The author specified that the volumetric / linear velocity ratio is characterized by some strength and depends on the geometric dimensions of the cylinder-piston group. Due to the assumptions it has become possible to consider the operation of a diesel engine as a system comprising: 1 the subsystem that provides the possibility of obtaining the thermal energy; 2 the subsystem providing the thermal energy transformation; 3 the subsystem that provides the necessary diesel engine power depending on terms of combustion of air-fuel mixture. Originality. The author of the paper proposed the indices of volumetric and linear combustion velocity of air-fuel mixture in the engine cylinder, that allow to obtain the comparative value in different modifications taking into account the possible choice of optimum ratio. Practical value. The usage of indices of volumetric and linear velocities of the combustion processes in the engine cylinder combined with a mathematical model will simplify the method of diesels calculating. Parametric indices of the mentioned velocities

  7. Engineering development in nuclear power plant construction

    International Nuclear Information System (INIS)

    Guenther, P.

    1979-01-01

    Proceeding from the up-to-now experience in the erection of nuclear power stations, especially of the first and second unit of the Greifswald nuclear power plant, the following essential aspects of the development of constructional engineering are discussed: (1) constructional features and criteria, (2) organizational management, (3) current status and problems in prelimary operations, and (4) possibilities of further expenditure reductions in constructing nuclear power stations

  8. Lean-rich axial stage combustion in a can-annular gas turbine engine

    Science.gov (United States)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.

  9. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    Science.gov (United States)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  10. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  11. Equipment for heating the exhaust gases of internal combustion engines in order to improve afterburning

    Energy Technology Data Exchange (ETDEWEB)

    Masaki,

    1976-04-15

    The device described here serves to heat exhaust gases of internal combustion engines by heat exchange with hot gases and also, in cold engines, to raise the temperature of the fuel-air mixture drawn in by the engine. The device is installed next to the outlet opening of the engine. It consists of a burner to generate the hot gas, as well as a heat exchanger permitting heat supply to the exhaust gases and a hot-gas line leading to the intake line. Heating of the air is taken in leads to a better atomization of the mixture and thus to improved combustion. Heating of the exhaust gases improves afterburning. The burner generating the hot gas is shut off when the normal operational temperature of the engine is reached. The temperature is controlled by means of a temperature sensor installed in the device.

  12. Thermodynamic energy and exergy analysis of three different engine combustion regimes

    International Nuclear Information System (INIS)

    Li, Yaopeng; Jia, Ming; Chang, Yachao; Kokjohn, Sage L.; Reitz, Rolf D.

    2016-01-01

    Highlights: • Energy and exergy distributions of three different combustion regimes are studied. • CDC demonstrates the highest utilization efficiency of heat transfer and exhaust. • HCCI achieves the highest energy and exergy efficiencies over CDC and RCCI. • HCCI and RCCI demonstrate lower exergy destruction than CDC. • Combustion temperature, rate, duration and regime affect exergy destruction. - Abstract: Multi-dimensional models were coupled with a detailed chemical mechanism to investigate the energy and exergy distributions of three different combustion regimes in internal combustion engines. The results indicate that the 50% heat release point (CA50) considerably affects fuel efficiency and ringing intensity (RI), in which RI is used to quantify the knock level. Moreover, the burn duration from the 10% heat release point (CA10) to CA50 dominates RI, and the position of 90% heat release point (CA90) affects fuel efficiency. The heat transfer losses of conventional diesel combustion (CDC) strongly depend on the local temperature gradient, while it is closely related to the heat transfer area for homogeneous charge compression ignition (HCCI) and reactivity controlled compression ignition (RCCI). Among the three combustion regimes, CDC has the largest utilization efficiency for heat transfer and exhaust energy due to its higher temperature in the heat transfer layer and higher exhaust pressure and temperature. The utilization efficiency of heat transfer and exhaust in RCCI is less affected by the variation of CA50 compared to those in CDC and HCCI. Exergy destruction is closely related to the homogeneity of in-cylinder temperature and equivalence ratio during combustion process, the combustion temperature, the chemical reaction rate, and the combustion duration. Under the combined effect, HCCI and RCCI demonstrate lower exergy destruction than CDC at the same load. Overall, the variations of the exergy distribution for the three combustion regimes

  13. Nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1982-01-01

    In discussing nuclear engineering education in the United States it is shown that the most critical issue facing the nuclear engineering education community today is enrolment in a time of increasing demand for graduate engineers. Related to the issue of enrolment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of a competitive job market, of maintaining research facilities and developing new ones, and of determining the directions of educational efforts in the future. (U.K.)

  14. Effects of ethanol on combustion and emissions of a gasoline engine operating with different combustion modes

    OpenAIRE

    Ojapah, MM; Zhao, H; Zhang, Y

    2016-01-01

    The introduction of fuel economy and CO2 emission legislations for passenger cars in many countries and regions has spurred the research and development of more efficient gasoline engines. The pumping loss at part-load operations is a major factor for the higher fuel consumption of spark ignition (SI) gasoline engines than the diesel engines. Various approaches have been identified to reduce the pumping loss at part-load operations, leading to improved fuel economy, including Early Intake Val...

  15. The engineering function in Scottish Nuclear

    International Nuclear Information System (INIS)

    Grant, J.

    1991-01-01

    The work of the Engineering and Development Division of Scottish Nuclear is described in this article. This company, formed since the privatization of electricity generation in the United Kingdom, owns and operates the two Hunterston Magnox reactors and the Torness Advanced Gass Cooled Reactors. Principle responsibilities such as maintaining safety standards, formulating policy for radioactive waste disposal and decommissioning and optimally controlling the nuclear generation cycle are outlined. Objectives for the next five years are identified and explained separately. The experience, knowledge and expertise of engineering staff is stressed as being of key importance to the future success of Scottish Nuclear. (UK)

  16. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)], E-mail: tony.roskilly@ncl.ac.uk

    2009-01-15

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator.

  17. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    International Nuclear Information System (INIS)

    Mikalsen, R.; Roskilly, A.P.

    2009-01-01

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator

  18. Investigation of diesel engine for low exhaust emissions with different combustion chambers

    Directory of Open Access Journals (Sweden)

    Ghodke Pundlik R.

    2015-01-01

    Full Text Available Upcoming stringent Euro-6 emission regulations for passenger vehicle better fuel economy, low cost are the key challenges for engine development. In this paper, 2.2L, multi cylinder diesel engine have been tested for four different piston bowls designed for compression ratio of CR 15.5 to improve in cylinder performance and reduce emissions. These combustion chambers were verified in CFD at two full load points. 14 mode points have been derived using vehicle model run in AVL CRUISE software as per NEDC cycle based on time weightage factor. Base engine with compression ratio CR16.5 for full load performance and 14-mode points on Engine test bench was taken as reference for comparison. The bowl with flat face on bottom corner has shown reduction 25% and 12 % NOx emissions at 1500 and 3750 rpm full load points at same level of Soot emissions. Three piston bowls were tested for full load performance and 14 mode points on engine test bench and combustion chamber ‘C’ has shown improvement in thermal efficiency by 0.8%. Combinations of cooled EGR and combustion chamber ‘C’ with geometrical changes in engine have reduced exhaust NOx, soot and CO emissions by 22%, 9 % and 64 % as compared to base engine at 14 mode points on engine test bench.

  19. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  20. Mobile filters in nuclear engineering

    International Nuclear Information System (INIS)

    Meuter, R.

    1979-01-01

    The need for filters with high efficiencies which may be used at any place originated in nuclear power plants. Filters of this type, called Filtermobil, have been developed by Sulzer. They have been used successfully in nuclear plants for several years. (orig.) [de

  1. Investigation on the lean combustion performance of a hydrogen-enriched n-butanol engine

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng

    2017-01-01

    Highlights: • H_2 addition avails improving thermal efficiency of n-butanol engines. • Lean burn limit of n-butanol engine is extended by H_2 addition. • H_2 addition shortens the n-butanol engine combustion duration. • HC and CO from the n-butanol engine are decreased by H_2 addition. - Abstract: n-Butanol is a feasible fuel candidate for spark-ignition engines. The current paper carried out an experiment to explore effects of hydrogen addition on further improving the performance of a n-butanol engine under the part load and lean conditions. Within the test, the engine intake pressure and speed were respectively kept at 61.5 kPa and 1400 rpm. The volumetric fractions of hydrogen in the total intake gas (hydrogen + air) were constrained at 0 and 3%, respectively. Under a certain hydrogen blending level, the global excess air ratio of in-cylinder charge which was changed from the stoichiometric to near the lean burn limit was adjusted by varying the n-butanol injection duration. The experimental results confirmed that the brake thermal efficiency was heightened and the lean burn limit was extended after the hydrogen addition. Besides, compared with the pure n-butanol combustion, the hydrogen enrichment enables the engine to gain dropped ignition delay and rapid combustion duration. Moreover, CO and HC from the pure n-butanol engine were reduced by the hydrogen addition. NOx were generally reduced when the excess air ratio was raised. This suggested that NOx from the hydrogen-enriched butanol engine could also be controlled by lean combustion.

  2. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  3. Proceedings of the Scientific Meeting in Nuclear Instrumentation Engineering

    International Nuclear Information System (INIS)

    Achmad Suntoro; Rony Djokorayono; Ferry Sujatno; Utaja

    2010-11-01

    The Proceeding of the Scientific Meeting in Nuclear Instrumentation Engineering held on Nov, 30, 2010 by the Centre for Nuclear Instrumentation Engineering - National Nuclear Energy Agency. The Proceedings of the Scientific Contains 40 papers Consist of Nuclear Instrumentation Engineering for Industry, Environment, and Nuclear Facilities. (PPIKSN)

  4. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  5. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  6. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  7. Development and validation of spray models for investigating diesel engine combustion and emissions

    Science.gov (United States)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and

  8. A statistical model for combustion resonance from a DI diesel engine with applications

    Science.gov (United States)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  9. COMBUSTION ANALYSIS OF A CNG DIRECT INJECTION SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    A. Rashid A. Aziz

    2010-12-01

    Full Text Available An experimental study was carried out on a dedicated compressed natural gas direct injection (CNG-DI engine with a compression ratio (CR of 14 and a central injection system. Several injection timing parameters from early injection timing (300 BTDC to partial direct injection (180 BTDC to full direct injection (120 BTDC were investigated. The 300 BTDC injection timing experiment was carried out to simulate the performance of a port injection engine and the result is used as a benchmark for engine performance. The full DI resulted in a 20% higher performance than the early injection timing for low engine speeds up to 2750 rpm. 180 BTDC injection timing shows the highest performance over an extensive range of engine speed because it has a similar volumetric efficiency to full DI. However, the earlier injection timing allowed for a better air–fuel mixing and gives superior performance for engine speeds above 4500 rpm. The engine performance could be explained by analysis of the heat release rate that shows that at low and intermediate engine speeds of 2000 and 3000, the full DI and partial DI resulted in the fastest heat release rate whereas at a high engine speed of 5000 rpm, the simulated port injection operation resulted in the fastest heat release rate.

  10. Radiation hazards of nuclear engineering

    International Nuclear Information System (INIS)

    Oster, H.

    1981-01-01

    The basic mechanisms and principles of nuclear power plants are discussed, since their knowledge is mandatory for the understanding of the true risk associated with nuclear technology. Differences between predictable and catastrophic accidents are compared, terms which have been frequently confused to the extent that the public has become unjustifiably and irresponsibly alarmed. A description of the jobs and their responsibilities is also given. Known accidents are reported and the role of the physician in the care of accidents and the scheduling of emergency situations is described. Finally, the usefullness, necessity and risk associated with nuclear power are discussed. (orig.) [de

  11. Internal combustion engines in stationary installations for the efficient use of energy. VDI-meeting at Stuttart

    Energy Technology Data Exchange (ETDEWEB)

    Titl, A

    1976-11-01

    The efficient use of stationary internal combustion engines for energy supply is discussed: the state of technology and the scientific significance of internal combustion engines; thermal power coupling with unit-type thermal power plants which supply current as well as heat; and operational experience with unit-type thermal power plants for living districts, sport centers, industries etc.

  12. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  13. Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline

    Directory of Open Access Journals (Sweden)

    Musaab O. El-Faroug

    2016-11-01

    Full Text Available This paper reviews the serviceability of hydrous ethanol as a clean, cheap and green renewable substitute fuel for spark ignition engines and discusses the comparative chemical and physical properties of hydrous ethanol and gasoline fuels. The significant differences in the properties of hydrous ethanol and gasoline fuels are sufficient to create a significant change during the combustion phase of engine operation and consequently affect the performance of spark-ignition (SI engines. The stability of ethanol-gasoline-water blends is also discussed. Furthermore, the effects of hydrous ethanol, and its blends with gasoline fuel on SI engine combustion characteristics, cycle-to-cycle variations, engine performance parameters, and emission characteristics have been highlighted. Higher water solubility in ethanol‑gasoline blends may be obviously useful and suitable; nevertheless, the continuous ability of water to remain soluble in the blend is significantly affected by temperature. Nearly all published engine experimental results showed a significant improvement in combustion characteristics and enhanced engine performance for the use of hydrous ethanol as fuel. Moreover, carbon monoxide and oxides of nitrogen emissions were also significantly decreased. It is also worth pointing out that unburned hydrocarbon and carbon dioxide emissions were also reduced for the use of hydrous ethanol. However, unregulated emissions such as acetaldehyde and formaldehyde were significantly increased.

  14. Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine

    International Nuclear Information System (INIS)

    Ghazimirsaied, Ahmad; Koch, Charles Robert

    2012-01-01

    Highlights: ► Misfire reduction in a combustion engine based on chaotic theory methods. ► Chaotic theory analysis of cyclic variation of a HCCI engine near misfire. ► Symbol sequence approach is used to predict ignition timing one cycle-ahead. ► Prediction is combined with feedback control to lower HCCI combustion variation. ► Feedback control extends the HCCI operating range into the misfire region. -- Abstract: Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic variations. Variation of consecutive cycles of θ Pmax (the crank angle of maximum cylinder pressure over an engine cycle) for a Primary Reference Fuel engine is analyzed near misfire operation for five test points with similar conditions but different octane numbers. The return map of the time series of θ Pmax at each combustion cycle reveals the deterministic and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic approach is used to predict θ Pmax one cycle-ahead. Predicted θ Pmax has similar dynamical behavior to the experimental measurements. Based on this cycle ahead prediction, and using fuel octane as the input, feedback control is used to stabilize the instability of θ Pmax variations at this engine condition near misfire.

  15. Experimental study of hydrogen as a fuel additive in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Saanum, Inge

    2008-07-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NO{sub x}, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO{sub 2} are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emissions of harmful gases and lower CO{sub 2} emissions. This thesis treats various topics that are relevant when using blends of fuels in different internal combustion engine technologies, with a particular focus on using hydrogen as a fuel additive. The topics addressed are especially the ones that impact the environment, such as emissions of harmful gases and thermal efficiency (fuel consumption). The thesis is based on experimental work performed at four different test rigs: 1. A dynamic combustion rig with optical access to the combustion chamber where spark ignited premixed combustion could be studied by means of a Schlieren optical setup and a high speed video camera. 2. A spark ignition natural gas engine rig with an optional exhaust gas recycling system. 3. A 1-cylinder diesel engine prepared for homogeneous charge compression ignition combustion. 4. A 6-cylinder standard diesel engine The engine rigs were equipped with cylinder pressure sensors, engine dynamometers, exhaust gas analyzers etc. to enable analyses of the effects of different fuels. The effect of hydrogen blended with methane and natural gas in spark ignited premixed combustion was investigated in the dynamic combustion rig and in a natural gas engine. In the dynamic combustion rig, the effect of hydrogen added to methane on the flame speed and the flame structure was investigated at elevated pressure and temperature. A considerable increase in the flame speed was observed when adding 30 vol

  16. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  17. A nuclear engineer's ethical responsibility to society

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1989-01-01

    Chernobyl notwithstanding, this paper seeks to illustrate why, on numerous fronts, nuclear technology provides the safest, cleanest and most effective method of base-load power generation. In particular it seeks to demonstrate that, despite the strident rhetoric and media exposure given to the anti-nuclear lobby, the technology is fundamental to the quality of life and the equitable sharing of energy by the year 2000. Therefore, the safety and technological superiority of the nuclear fuel cycle together with its high technology peripheral benefits both societal and fiscal are viewed as an ever increasing challenge and motivation which constitutes a major part of the nuclear engineer's ethical responsibility to society

  18. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Froelund, K.

    1997-11-01

    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  19. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  20. Assessment of the Potential Impact of Combustion Research on Internal Combustion Engine Emission and Fuel Consumption

    Science.gov (United States)

    1979-01-01

    A review of the present level of understanding of the basic thermodynamic, fluid dynamic, and chemical kinetic processes which affect the fuel economy and levels of pollutant exhaust products of Diesel, Stratified Charge, and Spark Ignition engines i...

  1. Current challenges for education of nuclear engineers. Beyond nuclear basics

    International Nuclear Information System (INIS)

    Schoenfelder, Christian

    2014-01-01

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  2. Current challenges for education of nuclear engineers. Beyond nuclear basics

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, Christian [AREVA GmbH, Offenbach (Germany). Training Center

    2014-07-15

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  3. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  4. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  5. Efficiency of a new internal combustion engine concept with variable piston motion

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2014-01-01

    Full Text Available This paper presents simulation of working process in a new IC engine concept. The main feature of this new IC engine concept is the realization of variable movement of the piston. With this unconventional piston movement it is easy to provide variable compression ratio, variable displacement and combustion during constant volume. These advantages over standard piston mechanism are achieved through synthesis of the two pairs of non-circular gears. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of IC engines. For this paper Ricardo/WAVE software was used, which provides a fully integrated treatment of time-dependent fluid dynamics and thermodynamics by means of onedimensional formulation. The results obtained herein include the efficiency characteristic of this new heat engine concept. The results show that combustion during constant volume, variable compression ratio and variable displacement have significant impact on improvement of fuel consumption.

  6. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment. 1915.136 Section 1915.136 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related Equipment §...

  7. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  8. COOPERATIVE MODE OF ELECTRIC MOTOR AND INTERNAL COMBUSTION ENGINE OPERATION IN THE CONVERSION HYBRID CAR

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-12-01

    Full Text Available In the given article the authors proposed a method to control the car, which is converted into a hybrid one. The electric motor and combustion engine operate alternately in the car. They proposed a device for implementing this method and a circuit design for the device in question. They also calculated the dynamics of the vehicle under the joint acceleration.

  9. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  10. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  11. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  12. Use of a perfume composition as a fuel for internal combustion engines

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to fuel compositions containing perfume fractions, that is to say compositions of fragrance materials, and to the use of such perfume fractions containing fuel compositions to provide a fuel for internal combustion engines and burners. According to the present fuel

  13. The analysis of mechanical integrity in gas turbine engines subjected to combustion instabilities

    NARCIS (Netherlands)

    Altunlu, A.C.

    2013-01-01

    Stringent regulations have been introduced towards reducing pollutant emissions and preserving our environment. Lowering NOx emissions is one of the main targets of industrial gas turbine engines for power generation. The combustion zone temperature is one of the critical parameters, which is

  14. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hickson, Allister; Phillips, Al; Morales, Gene

    2007-01-01

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  15. Ionization in the Knock Zone of an Internal-combustion Engine

    Science.gov (United States)

    Hasting, Charles E

    1940-01-01

    The ionization in the knock zone of an internal-combustion engine was investigated. A suspected correlation between the intensity of knock and the degree of ionization was verified and an oscillation in the degree of ionization corresponding in frequency to the knock vibrations in the cylinder pressure was observed.

  16. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    OpenAIRE

    A. SONTHALIA; C. RAMESHKUMAR; U. SHARMA; A. PUNGANUR; S. ABBAS

    2015-01-01

    Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported fro...

  17. Waste heat recovery systems for internal combustion engines: classification and benefits

    OpenAIRE

    Marchenko, A.; Samoilenko, D.; Adel Hamzah, Ali; Adel Hamzah, Omar

    2014-01-01

    Recent trend about the best ways of using the deployable sources of energy in to useful work in order to reduce the rate of consumption of fossil fuel as well as pollution. Out of all the available sources, the internal combustion engines are the major consumer of fossil fuel around the globe. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste ...

  18. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  19. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  20. Experimental investigations on controlled auto-ignition combustion in a four-stroke gasoline engine

    OpenAIRE

    Oakley, Aaron John

    2001-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The effects of air and exhaust gas dilution on the CAI combustion of a range of fuels including three gasoline compositions, four primary reference fuels, and two alcohols are experimentally investigated using a single cylinder research engine. Two of the three gasolines tested are manufactured from standard gasoline during engine operation by a novel fuel system, designed to improve the per...

  1. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    Science.gov (United States)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  2. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  3. Exhaust Composition in a Small Internal Combustion Engine Using FTIR Spectroscopy

    Science.gov (United States)

    2015-06-18

    consumption of intake charge by mass xv CAD crank angle degrees CI compression ignition COTS commercial o↵ the shelf CoV coecient of variance C... ignition (SI) and compression ignition (CI). A spark ignition engine ignites the fuel-air mixture via an electric arc across a spark plug located in...two-stroke engines that operate at very high speeds. The heat of combustion is transferred to a fine wire that remains hot enough to auto - ignite the

  4. Modeling the effects of late cycle oxygen enrichment on diesel engine combustion and emissions

    International Nuclear Information System (INIS)

    Mather, D. K.; Foster, D. E.; Poola, R. B.; Longman, D. E.; Chanda, A.; Vachon, T. J.

    2002-01-01

    A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NO(sub x) emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NO(sub x) emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NO(sub x) through controlled enhancement of in-cylinder mixing. These studies have shown that this window occurs during the late combustion cycle, from 20 to 60 crank angle degrees after top-dead-center. During this time, the combustion chamber temperatures are sufficiently high that soot oxidation increases in response in increased mixing, but the temperature is low enough that NO(sub x) reactions are quenched. The effect of the oxygen composition of the injected air is studied for the range of compositions between 21% and 30% oxygen by volume. This is the range of oxygen enrichment that is practical to produce from an air separation membrane. Simulations showed that this level of oxygen enrichment is insufficient to provide an additional benefit by either increasing the level of soot oxidation or prolonging the window of opportunity for increasing soot oxidation through enhanced mixing

  5. An experimental investigation of the combustion process of a heavy-duty diesel engine enriched with H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liew, C.; Li, H.; Nuszkowski, J.; Liu, S.; Gatts, T.; Atkinson, R.; Clark, N. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106 (United States)

    2010-10-15

    This paper investigated the effect of hydrogen (H{sub 2}) addition on the combustion process of a heavy-duty diesel engine. The addition of a small amount of H{sub 2} was shown to have a mild effect on the cylinder pressure and combustion process. When operated at high load, the addition of a relatively large amount of H{sub 2} substantially increased the peak cylinder pressure and the peak heat release rate. Compared to the two-stage combustion process of diesel engines, a featured three-stage combustion process of the H{sub 2}-diesel dual fuel engine was observed. The extremely high peak heat release rate represented a combination of diesel diffusion combustion and the premixed combustion of H{sub 2} consumed by multiple turbulent flames, which substantially enhanced the combustion process of H{sub 2}-diesel dual fuel engine. However, the addition of a relatively large amount of H{sub 2} at low load did not change the two-stage heat release process pattern. The premixed combustion was dramatically inhibited while the diffusion combustion was slightly enhanced and elongated. The substantially reduced peak cylinder pressure at low load was due to the deteriorated premixed combustion. (author)

  6. The changing face of nuclear engineering education

    International Nuclear Information System (INIS)

    Poston, J.W.

    1991-01-01

    Nuclear engineering education in the US is in a near-crisis situation. Most academic programs are small with limited enrollments and faculty. Some of these programs are being absorbed into larger academic units, while others are being terminated. The number of identifiable academic programs has dropped dramatically over the last several years, and there is genuine concern that this downward trend will continue. The recent report by the National Academy of Sciences highlights the problems, needs, and prospects for nuclear engineering education in this country. At the same time, some programs appear to be relatively healthy and somewhat secure. A closer look at these programs indicates that there has been an evolution in the approach taken by these survivors toward both their academic and research programs. This paper discusses the approaches taken at Texas A and M University over the last 8 to 10 years to strengthen the Department of Nuclear Engineering

  7. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  8. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, Wayne [Cummins, Inc., Columbus, IN (United States); Rutland, Chris [Univ. of Wisconsin, Madison, WI (United States); Rohlfing, Eric [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Singh, Gurpreet [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; McIlroy, Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-03-03

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accounts for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not

  9. The realization and analysis of a new thermodynamic cycle for internal combustion engine

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2011-01-01

    Full Text Available This paper presents description and thermodynamic analysis of a new thermodynamic cycle. Realization of this new cycle is possible to achieve with valveless internal combustion engine with more complete expansion. The main purpose of this new IC engine is to increase engines’ thermal efficiency. The engine was designed so that the thermodynamic changes of the working fluid are different than in conventional engines. Specific differences are reflected in a more complete expansion of the working fluid (the expansion stroke is larger than compression stroke, valveless gas flowing and complete discharge of residual combustion products from the combustion chamber. In this concept, the movement of the piston is different than in conventional piston mechanisms. The results obtained herein include the efficiency characteristics of irreversible reciprocating new engine cycle which is very similar to Miller cycle. The results show that with this thermodynamic cycle engine has higher efficiency than with the standard Otto cycle. In this article, the patent application material under number 2008/607 at the Intellectual Property Office of the Republic of Serbia was used.

  10. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  11. Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jarniel García Morales

    2016-12-01

    Full Text Available In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10 and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.. The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine.

  12. Creating mechanisms of toxic substances emission of combustion engines

    OpenAIRE

    Jankowski Antoni; Kowalski Mirosław

    2015-01-01

    The paper analyses the mechanisms of creation of toxic exhaust gases, which mainly derived from inexact fuel metering and improper air-fuel mixture preparation. The paper describes the process of creating toxic components in the exhaust gases of piston engines during engine operation, and impact on the emission of these components determining the composition of the fuel mixture determined equivalence factor Φ. The principal mechanisms of formation of toxic exhaust gases, in particular nitroge...

  13. Standard technical specifications: Combustion engineering plants. Volume 3, Revision 1: Bases (Sections 3.4--3.9)

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS

  14. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, B.R.; Schaefer, A.; Goethem, G. van; D'haeseleer, W.

    2004-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. It appears that within the European university education and training network, nuclear engineering is presently sufficiently covered, although somewhat fragmented. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding a.o. from public and private is to be re-established. More, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The European master in nuclear engineering guarantees a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programmes offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master programme consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programmes. A second important issue identified is Continued Professional Development. In order to achieve the objectives and practical goals described above, the ENEN association was formed. This international, non-profit association is be considered as a step towards a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. (author)

  15. Exporting nuclear engineering and the industry's viewpoint

    International Nuclear Information System (INIS)

    Barthelt, K.

    1986-01-01

    Nuclear energy offers all possibilities to reduce the energy problems in the world which arise with the world-wide increasing population and the energy demand connected with it. The Federal Republic of Germany lives on the exports of refined technical methods which also include nuclear engineering. The exports of nuclear engineering should lead to a technology transfer with guidance and training on an equal basis between the industrial and developing countries. The preconditions of exporting nuclear-technical systems are a well-functioning domestic market and a certain support by the government, especially with regard to giving guarantees for the special exports risks of these big projects. On the other hand, exports are also needed in order to be able to continue providing high-level technology for the domestic market. (UA) [de

  16. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Simona Silvia; Tornatore, Cinzia; Machitto, Luca; Valentino, Gerardo; Corcione, Felice Esposito [Istituto Motori-CNR, Naples (Italy)

    2012-07-01

    Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Fuel injections both in closed valve and open valve conditions were considered. Comparisons between the parameters related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more advanced spark timing without knocking occurrence. The duration of injection for Butanol blends was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects including the emission of ultrafine carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions. (orig.)

  17. System and method for conditioning intake air to an internal combustion engine

    Science.gov (United States)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  18. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine

    Science.gov (United States)

    Saikumar, G. R. Bharath

    2018-04-01

    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  19. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-04-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  20. The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications

    Directory of Open Access Journals (Sweden)

    Rongkun Pan

    2017-10-01

    Full Text Available To safely mine coal, engineers must prevent gas combustion and explosions, as well as seek feasible and reasonable techniques to control for these types of incidents. This paper analyzes the causes and characteristics of methane combustion and explosions. Water mist is proposed to prevent and control methane combustion in an underground confined space. We constructed an experiment platform to investigate the suppression of methane combustion using water mist for different conditions. The experimental results showed that water mist is highly effective for methane flame inhibition. The flame was extinguished with water mist endothermic cooling. However, the annular regions of water vapor around the fire played a vital role in flame extinction. Water from the evaporating mist replaces the oxygen available to the fuel. Additionally, the time required for fuel ignition is prolonged. For these reasons, the water particle action to flame surface is reinforced and the fuel’s reaction with air is delayed. As a result, flame stretching and disturbances occur, which serve to extinguish the flame. Engineering application tests were carried out in the goaf, drill hole and upper-corner to investigate the prevention and control of methane gas combustion, with the results showing a good application effect.

  1. Development of Novel Fe-Based Coating Systems for Internal Combustion Engines

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.; Dröder, K.; Hoffmeister, H.-W.; Mahlfeld, G.; Schläfer, T.

    2018-02-01

    Nowadays, combustion engines are the most common way to power vehicles. Thereby, losses occur due to cooling, exhaust gas and friction. With regard to frictional losses, highest potentials for optimization can be found in the tribological system of the inner surface of combustion chamber and piston ring. Besides friction, corrosive stress increases, e.g., due to utilization of exhaust gas recovery. In order to save energy, reduce emissions and enhance the life span of combustion engines, the demand for innovative coating material systems, especially for the inner surface of combustion chamber, increases. This study focuses on the development of innovative iron-based coating materials for the combustion chamber. As a first step, the plasma transferred wire arc and rotating single wire arc (RSW) technologies were compared using 0.8% C-steel as a reference. Subsequently, RSW was used for coating deposition using an innovative iron-based feedstock material. In order to improve wear and corrosion resistance, boron and chromium were added to the feedstock material. After deposition, different honing topographies were manufactured and compared under tribological load. Furthermore, electrochemical corrosion tests were conducted using an electrolyte simulating the exhaust gas concentrate. Especially with regard to corrosion, the novel coating system FeCrBMn showed promising results.

  2. The world nuclear power engineering. 1998 year

    International Nuclear Information System (INIS)

    Preobrazhenskaya, L.B.

    2000-01-01

    The purpose of this article consists in the analysis of the state and prospects of the world nuclear power engineering development. The data on the ratio and value of electrical energy obtained at the NPPs in the world in 1998, the specific capital expenditures on the NPPs construction by 2005, the forecast for the capacity of all NPPs by 2020 are presented. The progress in developing nuclear power engineering conditioned by improvement of the NPPs operation, optimization of their life-cycle and developing of new NPPs projects is noted [ru

  3. Social engineering awareness in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman bin Aslan; Mohamad Safuan bin Sulaiman; Abdul Muin bin Abdul Rahman

    2010-01-01

    Social engineering is the best tools to infiltrate an organization weakness. It can go bypass the best fire wall or Intrusion Detection System (IDS) the organization ever had, effectively. Nuclear Malaysia staffs should aware of this technique as information protection it is not only depends on paper and computer. This paper consist a few test cases including e mail, dump ster diving, phishing, malicious web content, and impersonation to acknowledge all Nuclear Malaysia staffs about the method, effect and prevention of social engineering. (author)

  4. Education in nuclear engineering in Slovakia

    International Nuclear Information System (INIS)

    Slugen, V.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD..) study as well as via specialised training courses in a frame of continuous education system. (author)

  5. Nuclear engineering enrollments and degrees, 1981

    International Nuclear Information System (INIS)

    Little, J.R.; Shirley, D.L.

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 73 US institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented here are historical data for the last decade, which provide information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  6. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  7. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  8. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  9. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, David [Alstom Power Inc., Windsor, CT (United States)

    2013-03-01

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design.

  10. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  11. Numerical modeling of spray combustion in DI diesel engine using partially stirred reactor (PaSR) model

    International Nuclear Information System (INIS)

    Khaleghi, H.; Hosseini, S.M.

    2003-01-01

    In recent years special attention has been paid to the topic of diesel engine combustion. Various combustion models are used in CFD codes. In this paper Partially Stirred Reactor (PaSR) model, one of the newest turbulent combustion models, is introduced. This model has been employed in conjunction with the non-iterative PISO algorithm to calculate spray combustion in an axi-symmetric, direct injection diesel engine. Qualitative consideration of the results shows very good agreement with physical expectations and other numerical and experimental results. (author)

  12. Design of a single cylinder optical access to the combustion engine Scania D12

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Juergen

    2000-11-01

    In this work a maximum optical access to a diesel engine is developed. The combustion-process in the engine should be representative to the one in a standard engine, so the geometry of the combustion chamber is modified as little as possible. A Scania single cylinder, 2-litre engine was subjected to modifications allowing the optical access. Solutions to these problems are obtained by using the method of Product-Development, mainly based on the literature by Prof Dr.-Ing. Birkhofer at the Technical University of Darmstadt, Germany. An optical engine design of the Bowditch type was the chosen main working principle. This engine contains an extended cylinder, partly made of glass, a glass piston-crown and a mirror placed inside the extended piston. The laser sheet is led into the combustion chamber through the glass part of the cylinder, then gets reflected inside the combustion chamber and is led through the glass piston crown and via the mirror out of the engine. A redesign of the valve-train, using extended push-rods, is necessary. The demand to examine the combustion at Top-Dead-Centre (TDC) and the necessity of supporting the glass, give the reasons to do work on the cylinder head. This in return brings sealing problems, which have been solved. Another problem that occurs with that type of engine is that is has to run without oil-lubrication. Piston rings made of Rylon are used to solve this problem. A special feature of the engine that has been constructed here is that the inner surface of the glass may be cleaned without removing the cylinder head. This is obtained by a construction with a movable cylinder. In cleaning-state the cylinder is driven up and down together with the piston, while the head is supported by an outer structure. When running the engine, the cylinder is fixed to the structure. Furthermore this report contains the necessary calculations and integrity assessments on the critical parts of the construction. All calculations, except the

  13. A Thermoelectric Generator Replacing Radiator for Internal Combustion Engine Vehicles

    Directory of Open Access Journals (Sweden)

    Shiho Kim

    2011-12-01

    Full Text Available We have proposed and developed a low temperature thermoelectric generator (TEG using engine water coolant of light-duty vehicles. Experimental results from test vehicle, of which engine size is about 2.0 liters, show that fabricated prototype Thermoelectric Generator generates more than 75W for driving condition of 80 km/hour, and output power is about 28W during idle condition. The proposed TEG can replace conventional radiator without additional water pumps or mechanical devices except for basic components of legacy water cooling system of radiator.

  14. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  15. Influence of biofuels usage in internal combustion engines of agricultural tractors on output parametrs

    Directory of Open Access Journals (Sweden)

    Tomáš Šmerda

    2010-01-01

    Full Text Available Application of alternative fuels brings the social benefits in terms of reducing dependence on oil industry and its products as well as decreasing of damage of the environment together with using of na­tu­ral resources, especially in field of renewable energy resources. The use of biofuels is the most important part of energy strategy in European Union, whose member states have agreed the content of biofuels will achieve 5.75% of the total energy sum of fuel for transport purposes in 2010. Operation of internal combustion engine fueled by RME brings environmental benefits as described several authors in analysis of the life cycle. The contribution deals with technical difficulties of the RME usage in internal combustion engine used in agricultural tractors. Different fuel causes different process of combustion which means changes in output power and pollution. The aim of this experiment was to determine these effects. Experimental work was divided into two parts according to various fuel systems. The first tractor was equipped with mechanical injection system, the second one was provided with common-rail fuel system. The test procedures consisted of measurement of power- torque curves where the engine load was created by Eddy current dynamometer. Exhaust gas analyzer sampled the pollution of carbon monoxide, carbon dioxide and hydrocarbons as the most important indicators of combustion process.

  16. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... on filters and a sorbent was used for collection of vapour phase aromatic compounds. The filters and sorbent were analysed for polycyclic aromatic hydrocarbons (PAH) formed during combustion. The measurements showed that there was no significant increase in particulate PAH emissions due to the tar compounds...

  17. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  18. Modifying intake flow to increase EGR tolerance in an Internal Combustion Engine

    Science.gov (United States)

    Rubio, Daniel; Drabo, Mebougna; Puzinauskas, Paul

    2010-11-01

    The worldwide effort to reduce vehicle emissions and increase fuel efficiencies has continuously intensified as the need to improve air quality and reduce fuel consumption becomes more acute. Exhaust gas recirculation (EGR) is a method that has long been employed to reduce combustion temperatures and therefore reduce thermal NOx formation and accommodate higher compression ratios and more optimum combustion phasing for improved efficiency. Generally the effective EGR level as a percent of trapped charge is limited by its affect on combustion stability. Inducing flow structures such as swirl, squish and tumble in the trapped charge have proven to extend this EGR limit in homogeneous charge spark-ignited engines at part load, but this enhancement has not been significantly studied at full loads in such engines. This research explored modifying the intake flow into an engine to create tumble and evaluate its effect at high loads in such engines. This exploration included characterizing the flow on a steady flow bench and quantifying the results using engine dynamometer tests.

  19. Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2017-01-01

    Full Text Available The paper presents results of experimental investigation of cocombustion process of biodiesel (B100 blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2. It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP. Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine.

  20. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  1. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  2. Computational experience with a three-dimensional rotary engine combustion model

    Science.gov (United States)

    Raju, M. S.; Willis, E. A.

    1990-04-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  3. Computational fluid dynamics applied to flows in an internal combustion engine

    Science.gov (United States)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  4. Possibilities of Monitoring the Technical Condition of the Combustion Engine with Starter Load Current

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This article deals with the verification of relations between the electric current of engine starter and tightness of the combustion chamber and the possibility of its use for the evaluation of the state in terms of engine wear. Engine wear is closely related to the quality of fuel combustion and also with the amount of produced harmful emissions. On this basis, it would be possible to extend the technical requirements of the protocol OBD to include the indirect control of engine wear. To meet the objectives set out above measurement was carried out by a petrol engine, which was located in the vehicle Škoda Felicia Combi GLX 1.3 The whole measurement was divided into several parts. The first measurement was carried out on the abovementioned motor without simulating leakage. The second measurement was performed when the leakage of one cylinder was simulated. Simulated leakage was conducted at removing the spark plugs. Other measurements simulated “mild” leak of the whole engine – all cylinders. Leakage was implemented by loosing all the spark plugs about 8 turns against full tightening with the appropriate torque. The last, fourth measurement simulates a “large” leaks of engine cylinders. This leakage was induced by removing all the spark plugs from all cylinders. As the measurement results showed leakage of one cylinder, and also the whole engine is reflected not only in the individual amplitude of the starter current, but also the shape of the entire curve.

  5. Experimental setup for combustion characteristics in a diesel engine using derivative fuel from biomass

    International Nuclear Information System (INIS)

    Andi Mulkan; Zainal, Z.A.

    2006-01-01

    Reciprocating engines are normally run on petroleum fuels or diesel fuels. Unfortunately, energy reserves such as gas and oil are decreasing. Today, with renewable energy technologies petroleum or diesel can be reduced and substituted fully or partly by alternative fuels in engine. The objective of this paper is to setup the experimental rig using producer gas from gasification system mix with diesel fuel and fed to a diesel engine. The Yanmar L60AE-DTM single cylinder diesel engine is used in the experiment. A 20 kW downdraft gasifier has been developed to produce gas using cut of furniture wood used as biomass source. Air inlet of the engine has been modified to include the producer gas. An AVL quartz Pressure Transducer P4420 was installed into the engine head to measure pressure inside the cylinder of the engine. Several test were carried out on the downdraft gasifier system and diesel engine. The heating value of the producer gas is about 4 MJ/m 3 and the specific biomass fuel consumption is about 1.5 kg/kWh. Waste cooking oil (WCO) and crude palm oil (CPO) were used as biomass fuel. The pressure versus crank angle diagram for using blend of diesel are presented and compared with using diesel alone. The result shows that the peak pressure is higher. The premixed combustion is lower but have higher mixing controlled combustion. The CO and NO x emission are higher for biomass fuel

  6. Knock characteristics of dual-fuel combustion in diesel engines ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    system of a natural gas engine is some what different from that of the liquid fuel ... encoder. Magnetic speed sensor. Transducer. Figure 1. Illustration of system. .... Natural gas is fumigated during the induction stroke and some quantity of pilot ...

  7. Adaptive system of supplying lubricant to the internal combustion engine

    Science.gov (United States)

    Barylnikova, E. P.; Kulakov, A. T.; Kulakov, O. A.

    2017-09-01

    This paper assesses the impact of reducing the pressure in the lubrication system on the failures of the crankshaft bearings. The method of adapting lubricating system of the diesel engine as the wear in operation and depending on the operation modes.

  8. Modeling Diesel engine combustion using pressure dependent Flamelet Generated Manifolds

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2011-01-01

    Flamelet Generated Manifolds (FGMs) are constructed and applied to simulations of a conventional compression ignition engine cycle. To study the influence of pressure and temperature variations on the ignition process after the compression stroke, FGMs with several pressure levels are created. These

  9. The Low Load Limit of Gasoline Partially Premixed Combustion (PPC) - Experiments in a Light Duty Diesel Engine

    OpenAIRE

    Borgqvist, Patrick

    2013-01-01

    The decreasing oil supply, more stringent pollutant legislations and strong focus on decreasing carbon dioxide emissions drives the research of more efficient and clean combustion engines. One such combustion engine concept is Homogeneous Charge Compression Ignition (HCCI) which potentially achieves high efficiency and low NOx and soot emissions. One practical realization of HCCI in SI engines is to use a variable valve train to trap hot residual gases in order to increase the temperature of ...

  10. Educating nuclear engineers at German universities

    International Nuclear Information System (INIS)

    Knorr, J.

    1995-01-01

    Nuclear technology is a relatively young university discipline. Yet, as a consequence of the declining public acceptance of the peaceful use of nuclear power, its very existence is already being threatened at many universities. However, if Germany needs nuclear power, which undoubtedly is the case, highly qualified, committed experts are required above all. Nuclear technology develops internationally. Consequently, also university education must meet international standards. Generally, university education has been found to be the most effective way of increasing the number of scientific and engineering personnel. Nuclear techniques have meanwhile found acceptance in many other scientific disciplines, thus advancing those branches of science. Teaching needs research; like research in nucelar technology at the national research centers, also the universities are suffering massive financial disadvantages. Research is possible only if outside funds are solicited, which increase dependency and decreases basic research. (orig.) [de

  11. Optimization of combustion chamber geometry for natural gas engines with diesel micro-pilot-induced ignition

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Tie; Ge, Linlin; Ogawa, Hideyuki

    2016-01-01

    Highlights: • Combustion chamber geometry is optimized to reduce the HC/CO emissions. • CFD model is calibrated against the spray visualization and engine bench test data. • Design space is explored by the multi-objective NSGA-II with Kriging meta-model. • HC and CO emissions are respectively reduced by 56.47% and 33.55%. - Abstract: Smokeless, low nitrogen oxides (NOx), and high thermal efficiency have been achieved through the lean-burn concept for natural gas engine with diesel micro-pilot-induced ignition (MPII). However, the combustion chamber is usually not specialized for natural gas combustion, and increases in the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are still a challenge for this type of engines. This paper describes optimization of the combustion chamber geometry to reduce the HC and CO emissions and improve the combustion efficiency in the MPII natural gas engine. The 3-D computational fluid dynamics (CFD) simulation model coupled with a chemical reaction mechanism is described. The temporal development of the short-pulsed diesel spray in a high pressure constant-volume vessel is measured and used to calibrate the spray model in the CFD simulation. The simulation models are validated by the experimental data of the in-cylinder pressure trace, apparent heat release rate (AHRR) and exhaust gas emissions from a single-cylinder MPII natural gas engine. To generate the various combustion chamber geometries, the bowl outline is parameterized by the two cubic Bezier curves while keeping the compression ratio constant. The available design space is explored by the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) with Kriging-based meta-model. With the optimization, the HC and CO emissions are reduced by 56.47% and 33.55%, respectively, while the NOx emissions, the maximum rate of pressure rise and the gross indicated thermal efficiency that are employed as the constraints are slightly improved. Finally, the

  12. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali; Khalilpour, Rajab; Abbas, Ali; Lai, Zhiping

    2013-01-01

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  13. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali

    2013-08-05

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  14. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  15. Vibration survey of internal combustion engines for use on unmanned air vehicles

    International Nuclear Information System (INIS)

    Duanis, B.

    1998-01-01

    This paper describes the method, the procedure and data results of engine vibration test which is carried out on engines for use on unmanned air vehicles. The paper focuses on the testing of rotating propulsion systems powered by an internal combustion engine which is composed of main rotating components such as the alternator, gearbox, propeller , dampers and couplings. Three measurement methods for measuring torsional and lateral vibrations are presented: a. Gear tooth pulse signal. b. Shaft Strain Gage. c. Laser Displacement Sensors The paper also presents data from tests which were performed using each method and discusses the applications, the advantages and disadvantages of each method

  16. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, E.; Kawahara, N. [Okayama Univ., Okayama (Japan); Roy, M.M. [Rajshahi Univ. of Engineering and Technology, Rajshahi (Bangladesh)

    2009-07-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N{sub 2} dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  17. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    International Nuclear Information System (INIS)

    Tomita, E.; Kawahara, N.; Roy, M.M.

    2009-01-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N 2 dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  18. Start up system for hydrogen generator used with an internal combustion engine

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  19. Exporting nuclear engineering and the government's viewpoint

    International Nuclear Information System (INIS)

    Schill, H.

    1986-01-01

    The reasons for the government's positive attitude to nuclear engineering exports are explained, especially with regard to them being a compensation of the decreasing domestic demand. The federal government considers such exports to be necessary and correct for economical and energy-political reasons. Their contribution reaches from accompanying measures to the provision of state guarantees of export financing activities. (UA) [de

  20. Current situation of nuclear engineering education

    International Nuclear Information System (INIS)

    Queral, C.; Minguez, E.

    2001-01-01

    The last few years have seen a growing concern with the decreasing number of suitably qualified engineers and university graduates in the field of Nuclear Technology. The gap between supply and demand is now a fact in several countries, and for the reason the international community has prepared several reports on the issue that are summarized here. (Author) 4 refs