WorldWideScience

Sample records for combining nmr residual

  1. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study

  2. NMR and Chemometric Characterization of Vacuum Residues and Vacuum Gas Oils from Crude Oils of Different Origin

    Directory of Open Access Journals (Sweden)

    Jelena Parlov Vuković

    2015-03-01

    Full Text Available NMR spectroscopy in combination with statistical methods was used to study vacuum residues and vacuum gas oils from 32 crude oils of different origin. Two chemometric metodes were applied. Firstly, principal component analysis on complete spectra was used to perform classification of samples and clear distinction between vacuum residues and vacuum light and heavy gas oils were obtained. To quantitatively predict the composition of asphaltenes, principal component regression models using areas of resonance signals spaned by 11 frequency bins of the 1H NMR spectra were build. The first 5 principal components accounted for more than 94 % of variations in the input data set and coefficient of determination for correlation between measured and predicted values was R2 = 0.7421. Although this value is not significant, it shows the underlying linear dependence in the data. Pseudo two-dimensional DOSY NMR experiments were used to assess the composition and structural properties of asphaltenes in a selected crude oil and its vacuum residue on the basis of their different hydrodynamic behavior and translational diffusion coefficients. DOSY spectra showed the presence of several asphaltene aggregates differing in size and interactions they formed. The obtained results have shown that NMR techniques in combination with chemometrics are very useful to analyze vacuum residues and vacuum gas oils. Furthermore, we expect that our ongoing investigation of asphaltenes from crude oils of different origin will elucidate in more details composition, structure and properties of these complex molecular systems.

  3. Peptides containing internal residues of pyroglutamic acid: proton NMR characteristics

    International Nuclear Information System (INIS)

    Khan, S.A.

    1986-01-01

    The proton NMR characteristics of internal pyroglutamic acid (Glp; 5-oxoproline) residues in seven tripeptides of the general structure Boc-Xxx-Glp-Yyy-NH 2 were studied. In general, the chemical shifts of several diagnostic protons moved downfield on going from the Glu-containing peptides (Boc-Xxx-Glu-Yyy-NH 2 ) to the corresponding Glp-containing peptides. The C-2 proton of the Xxx residue was shifted by about 1.1 ppm. The N-2 proton of the Yyy residue was shifted by about 0.5 ppm. The C-2 proton of the Glx residue itself was shifted by about 0.5 ppm. One of the Glx C-3 protons was also shifted by about 0.5 ppm, but the other remained essentially unchanged. Finally, the Glx C-4 protons were shifted by about 0.3 ppm. Internal Glu residues are readily converted chemically into internal Glp residues. This conversion also occurs as a side reaction during HP cleavage of the protecting group from Glu(OBzl) residues. The spontaneous fragmentation of serum proteins C3, C4 and λ 2 -macroglobulin under denaturing conditions is probably due to regioselective hydrolysis of an internal Glp residue formed in each of these proteins upon denaturation. These proton NMR characteristics may be useful in establishing the presence of internal Glp residues in synthetic and natural peptides

  4. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

    Directory of Open Access Journals (Sweden)

    Fen Yue

    2018-04-01

    Full Text Available Hydrothermal carbonization (HTC is a valuable approach to convert furfural residue (FR into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc. especially 1D selective gradient total correlation spectroscopy (TOCSY NMR were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. Keywords: NMR, Hydrothermal carbonization, Furfural residue, Stock process water

  5. J-UNIO protocol used for NMR structure determination of the 206-residue protein NP-346487.1 from Streptococcus pneumoniae TIGR4

    Energy Technology Data Exchange (ETDEWEB)

    Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Geralt, Michael; Serrano, Pedro; Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    The NMR structure of the 206-residue protein NP-346487.1 was determined with the J-UNIO protocol, which includes extensive automation of the structure determination. With input from three APSY-NMR experiments, UNIO-MATCH automatically yielded 77 % of the backbone assignments, which were interactively validated and extended to 97 %. With an input of the near-complete backbone assignments and three 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra, automated side chain assignment with UNIO-ATNOS/ASCAN resulted in 77 % of the expected assignments, which was extended interactively to about 90 %. Automated NOE assignment and structure calculation with UNIO-ATNOS/CANDID in combination with CYANA was used for the structure determination of this two-domain protein. The individual domains in the NMR structure coincide closely with the crystal structure, and the NMR studies further imply that the two domains undergo restricted hinge motions relative to each other in solution. NP-346487.1 is so far the largest polypeptide chain to which the J-UNIO structure determination protocol has successfully been applied.

  6. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.

    Science.gov (United States)

    Erich, Sarah; Schill, Sandra; Annweiler, Eva; Waiblinger, Hans-Ulrich; Kuballa, Thomas; Lachenmeier, Dirk W; Monakhova, Yulia B

    2015-12-01

    The increased sales of organically produced food create a strong need for analytical methods, which could authenticate organic and conventional products. Combined chemometric analysis of (1)H NMR-, (13)C NMR-spectroscopy data, stable-isotope data (IRMS) and α-linolenic acid content (gas chromatography) was used to differentiate organic and conventional milk. In total 85 raw, pasteurized and ultra-heat treated (UHT) milk samples (52 organic and 33 conventional) were collected between August 2013 and May 2014. The carbon isotope ratios of milk protein and milk fat as well as the α-linolenic acid content of these samples were determined. Additionally, the milk fat was analyzed by (1)H and (13)C NMR spectroscopy. The chemometric analysis of combined data (IRMS, GC, NMR) resulted in more precise authentication of German raw and retail milk with a considerably increased classification rate of 95% compared to 81% for NMR and 90% for IRMS using linear discriminate analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach

    Energy Technology Data Exchange (ETDEWEB)

    Sinnige, Tessa; Houben, Klaartje [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Pritisanac, Iva [Physical and Theoretical Chemistry Laboratory (United Kingdom); Renault, Marie [Institute of Pharmacology and Structural Biology (France); Boelens, Rolf; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-04-15

    The β-barrel assembly machinery (BAM) is involved in folding and insertion of outer membrane proteins in Gram-negative bacteria, a process that is still poorly understood. With its 790 residues, BamA presents a challenge to current NMR methods. We utilized a “divide and conquer” approach in which we first obtained resonance assignments for BamA’s periplasmic POTRA domains 4 and 5 by solution NMR. Comparison of these assignments to solid-state NMR (ssNMR) data obtained on two BamA constructs including the transmembrane domain and one or two soluble POTRA domains suggested that the fold of POTRA domain 5 critically depends on the interface with POTRA 4. Using specific labeling schemes we furthermore obtained ssNMR resonance assignments for residues in the extracellular loop 6 that is known to be crucial for BamA-mediated substrate folding and insertion. Taken together, our data provide novel insights into the conformational stability of membrane-embedded, non-crystalline BamA.

  8. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  9. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction.

    Science.gov (United States)

    Boiteau, Rene M; Hoyt, David W; Nicora, Carrie D; Kinmonth-Schultz, Hannah A; Ward, Joy K; Bingol, Kerem

    2018-01-17

    We introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS²), and NMR into a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter out the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture, and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana . The NMR/MS² approach is well suited to the discovery of new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.

  10. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  11. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy

    International Nuclear Information System (INIS)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, M.; Kuby, S.A.; Mildvan, A.S.

    1988-01-01

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme, appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase, with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of β-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% α-helix, 38% β-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possible due to disorder, it can be fit by using methods developed on well-characterized globular proteins. The CD spectrum is best fit by assuming the presence of at most 13% α-helix in the peptide, 24 +/- 2% β-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformation changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assess by CD

  12. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    Science.gov (United States)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  13. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.

    Science.gov (United States)

    Nakazawa, Yasumoto; Asakura, Tetsuo

    2003-06-18

    Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.

  14. Solution NMR structure and inhibitory effect against amyloid-β fibrillation of Humanin containing a D-isomerized serine residue

    Energy Technology Data Exchange (ETDEWEB)

    Alsanousi, Nesreen [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sugiki, Toshihiko, E-mail: sugiki@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Furuita, Kyoko; So, Masatomo; Lee, Young-Ho; Fujiwara, Toshimichi [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kojima, Chojiro, E-mail: kojima-chojiro-xk@ynu.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2016-09-02

    Humanin comprising 24 amino acid residues is a bioactive peptide that has been isolated from the brain tissue of patients with Alzheimer's disease. Humanin reportedly suppressed aging-related death of various cells due to amyloid fibrils and oxidative stress. There are reports that the cytoprotective activity of Humanin was remarkably enhanced by optical isomerization of the Ser14 residue from L to D form, but details of the molecular mechanism remained unclear. Here we demonstrated that Humanin D-Ser14 exhibited potent inhibitory activity against fibrillation of amyloid-β and remarkably higher binding affinity for amyloid-β than that of the Humanin wild-type and S14G mutant. In addition, we determined the solution structure of Humanin D-Ser14 by nuclear magnetic resonance (NMR) and showed that D-isomerization of the Ser14 residue enables drastic conformational rearrangement of Humanin. Furthermore, we identified an amyloid-β-binding site on Humanin D-Ser14 at atomic resolution by NMR. These biophysical and high-resolution structural analyses clearly revealed structure–function relationships of Humanin and explained the driving force of the drastic conformational change and molecular basis of the potent anti-amyloid-β fibrillation activity of Humanin caused by D-isomerization of the Ser14 residue. This is the first study to show correlations between the functional activity, tertiary structure, and partner recognition mode of Humanin and may lead to elucidation of the molecular mechanisms of the cytoprotective activity of Humanin. - Highlights: • Humanin D-Ser14 showed the strongest inhibitory activity against Aβ40 fibrillation. • NMR structure of Humanin D-Ser14 was determined in alcohol/water mixture solution. • Humanin D-Ser14 directly bound Aβ40 stronger than Humanin wild-type and Humanin S14G. • Aβ40 and zinc ion binding sites of Humanin D-Ser14 were identified. • Structure around Ser14 of Humanin is critical for Aβ40 binding and

  15. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.

    Science.gov (United States)

    Seegerer, Andreas; Nitschke, Philipp; Gschwind, Ruth M

    2018-06-18

    Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Direct methods and residue type specific isotope labeling in NMR structure determination and model-driven sequential assignment

    International Nuclear Information System (INIS)

    Schedlbauer, Andreas; Auer, Renate; Ledolter, Karin; Tollinger, Martin; Kloiber, Karin; Lichtenecker, Roman; Ruedisser, Simon; Hommel, Ulrich; Schmid, Walther; Konrat, Robert; Kontaxis, Georg

    2008-01-01

    Direct methods in NMR based structure determination start from an unassigned ensemble of unconnected gaseous hydrogen atoms. Under favorable conditions they can produce low resolution structures of proteins. Usually a prohibitively large number of NOEs is required, to solve a protein structure ab-initio, but even with a much smaller set of distance restraints low resolution models can be obtained which resemble a protein fold. One problem is that at such low resolution and in the absence of a force field it is impossible to distinguish the correct protein fold from its mirror image. In a hybrid approach these ambiguous models have the potential to aid in the process of sequential backbone chemical shift assignment when 13 C β and 13 C' shifts are not available for sensitivity reasons. Regardless of the overall fold they enhance the information content of the NOE spectra. These, combined with residue specific labeling and minimal triple-resonance data using 13 C α connectivity can provide almost complete sequential assignment. Strategies for residue type specific labeling with customized isotope labeling patterns are of great advantage in this context. Furthermore, this approach is to some extent error-tolerant with respect to data incompleteness, limited precision of the peak picking, and structural errors caused by misassignment of NOEs

  17. Solution structure of the 45-residue ATP-binding peptide of adenylate kinase as determined by 2-D NMR, FTIR, and CD spectroscopy

    International Nuclear Information System (INIS)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, E.M.; Kuby, S.A.; Mildyan, A.S.

    1986-01-01

    In the X-ray structure of adenylate kinase residues 1-45 exist as 47% α-helix, 29% β-structure (strands and turns) and 24% coil. The solution structure of a synthetic peptide corresponding to residues 1-45, which constitutes the MgATP binding site was studied by 3 independent spectroscopic methods. Globularity of the peptide was shown by its broad NMR resonances which narrow upon denaturation, and by its ability to bind MgATP with similar affinity and conformation as the intact enzyme does. COSY and NOESY NMR methods at 250 and 500 MHz reveal proximities among NH, Cα, and Cβ protons indicative of >20% α-helix, and >20% β-structure. Correlation of regions of secondary structure with the primary sequence by 2D NMR indicates at least one α-helix (res. 23 to 29) and two β-strands (res. 12 to 15 and 34 to 38). The broad amide I band in the deconvoluted FTIR spectrum could be fit as the sum of 4 peaks due to specific secondary structures, yielding ≤=45% α-helix, ≤=40% β-structure and ≥=15% coil. The CD spectrum, from 185-250 nm, interpreted with a 3-parameter basis set, yielded 20 +/- 5% α=helix, and ≤=20% β-structure. The solution structure of peptide 1-45 thus approximates that of residues 1-45 in the crystal

  18. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  19. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-01-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  20. De novo protein structure determination using sparse NMR data

    International Nuclear Information System (INIS)

    Bowers, Peter M.; Strauss, Charlie E.M.; Baker, David

    2000-01-01

    We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with ∼1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined

  1. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  2. NMR investigations of molecular dynamics

    Science.gov (United States)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  3. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  4. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  5. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    International Nuclear Information System (INIS)

    Lu Chunfeng; Wang Yimei; Sheng Zhiguo; Liu Gang; Fu Ze; Zhao Jing; Zhao Jun; Yan Xianzhong; Zhu Benzhan; Peng Shuangqing

    2010-01-01

    A metabonomic approach using 1 H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. 1 H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary 1 H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  6. Probing the Structure and Dynamics of Proteins by Combining Molecular Dynamics Simulations and Experimental NMR Data.

    Science.gov (United States)

    Allison, Jane R; Hertig, Samuel; Missimer, John H; Smith, Lorna J; Steinmetz, Michel O; Dolenc, Jožica

    2012-10-09

    NMR experiments provide detailed structural information about biological macromolecules in solution. However, the amount of information obtained is usually much less than the number of degrees of freedom of the macromolecule. Moreover, the relationships between experimental observables and structural information, such as interatomic distances or dihedral angle values, may be multiple-valued and may rely on empirical parameters and approximations. The extraction of structural information from experimental data is further complicated by the time- and ensemble-averaged nature of NMR observables. Combining NMR data with molecular dynamics simulations can elucidate and alleviate some of these problems, as well as allow inconsistencies in the NMR data to be identified. Here, we use a number of examples from our work to highlight the power of molecular dynamics simulations in providing a structural interpretation of solution NMR data.

  7. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    Science.gov (United States)

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  8. Two-dimensional 1H NMR experiments show that the 23-residue magain in antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution

    International Nuclear Information System (INIS)

    Gesell, Jennifer; Zasloff, Michael; Opella, Stanley J.

    1997-01-01

    Magainin2 is a 23-residue antibiotic peptide that disrupts the ionic gradient across certain cell membranes. Two-dimensional 1H NMR spectroscopy was used to investigate the structure of the peptide in three of the membrane environments most commonly employed in biophysical studies. Sequence-specific resonance assignments were determined for the peptide in perdeuterated dodecylphosphocholine (DPC) and sodium dodecylsulfate micelles and confirmed for the peptide in 2,2,2-trifluoroethanol solution. The secondary structure is shown to be helical in all of the solvent systems. The NMR data were used as a set of restraints for a simulated annealing protocol that generated a family of three-dimensional structures of the peptide in DPC micelles, which superimposed best between residues 4 and 20. For these residues, the mean pairwise rms difference for the backbone atoms is 0.47 ± 0.10A from the average structure. The calculated peptide structures appear to be curved,with the bend centered at residues Phe12 and Gly13

  9. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  10. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  11. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2012-01-01

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  12. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2012-03-21

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  13. Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors.

    Science.gov (United States)

    Wyss, Daniel F; Wang, Yu-Sen; Eaton, Hugh L; Strickland, Corey; Voigt, Johannes H; Zhu, Zhaoning; Stamford, Andrew W

    2012-01-01

    Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade. We review here how we have used highly structure-driven fragment-based approaches to complement more traditional lead discovery to tackle high priority targets and those struggling for leads. Combining biomolecular nuclear magnetic resonance (NMR), X-ray crystallography, and molecular modeling with structure-assisted chemistry and innovative biology as an integrated approach for FBDD can solve very difficult problems, as illustrated in this chapter. Here, a successful FBDD campaign is described that has allowed the development of a clinical candidate for BACE-1, a challenging CNS drug target. Crucial to this achievement were the initial identification of a ligand-efficient isothiourea fragment through target-based NMR screening and the determination of its X-ray crystal structure in complex with BACE-1, which revealed an extensive H-bond network with the two active site aspartate residues. This detailed 3D structural information then enabled the design and validation of novel, chemically stable and accessible heterocyclic acylguanidines as aspartic acid protease inhibitor cores. Structure-assisted fragment hit-to-lead optimization yielded iminoheterocyclic BACE-1 inhibitors that possess desirable molecular properties as potential therapeutic agents to test the amyloid hypothesis of Alzheimer's disease in a clinical setting.

  14. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  15. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    Science.gov (United States)

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  16. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  17. Position of residues in transmembrane peptides with respect to the lipid bilayer: A combined lipid NOEs and water chemical exchange approach in phospholipid bicelles

    International Nuclear Information System (INIS)

    Glover, Kerney Jebrell; Whiles, Jennifer A.; Vold, Regitze R.; Melacini, Giuseppe

    2002-01-01

    The model transmembrane peptide P16 was incorporated into small unaligned phospholipid bicelles, which provide a 'native-like' lipid bilayer compatible with high-resolution solution NMR techniques. Using amide-water chemical exchange and amide-lipid cross-relaxation measurements, the interactions between P16 and bicelles were investigated. Distinctive intermolecular NOE patterns observed in band-selective 2D-NOESY spectra of bicellar solutions with several lipid deuteration schemes indicated that P16 is preferentially interacting with the 'bilayered' region of the bicelle rather than with the rim. Furthermore, when amide-lipid NOEs were combined with amide-water chemical exchange cross-peaks of selectively 15 N-labeled P16 peptides, valuable information was obtained about the position of selected residues relative to the membrane-water interface. Specifically, three main classes were identified. Class I residues lie outside the bilayer and show amide-water exchange cross-peaks but no amide-lipid NOEs. Class II residues reside in the bilayer-water interface and show both amide-water exchange cross-peaks and amide-lipid NOEs. Class III residues are embedded within the hydrophobic core of the membrane and show no amide-water exchange cross-peaks but strong amide-lipid NOEs

  18. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  19. NMR Characterization of Flavanone Naringenin 7-O-Glycoside Diastereomer

    Directory of Open Access Journals (Sweden)

    SUN Li-juan

    2017-12-01

    Full Text Available To discriminate R and S flavanone glycoside using NMR, the mixture of R and S naringenin 7-O-glycoside was first isolated from Gleditsia sinensis. 1H and 13C NMR data of the mixture were recorded with 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC in DMSO-d6 solution. The two diastereomers were then separated with chiral chromatographic isolation, with their absolute configurations determined by circular dichroism. To avoid the disturbance of protons from glucose residues to dihydroflavonoid, 1H NMR spectra were acquired for pure R and S naringenin 7-O-glycoside and their mixture in CD3CN. The two diastereomers showed the largest proton chemical shift differences at the end group of glucose residue (H-1" with a chemical shift difference of 9.4 Hz. The OH-5 proton showed a chemical shift difference of 5.8 Hz. The chemical shift of the three protons on ring C were all influenced by configuration.

  20. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  1. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  2. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    Science.gov (United States)

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  3. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    International Nuclear Information System (INIS)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam; Gabel, Frank; Sattler, Michael

    2013-01-01

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  4. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  5. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Directory of Open Access Journals (Sweden)

    Julia Asencio-Hernández

    Full Text Available There is growing evidence that bisphenol A (BPA, a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER, estrogen-related receptor (ERR and androgen receptor (AR. BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD, which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

  6. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emel Maden; Güntert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2015-09-15

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  7. A combined rheology and time domain NMR approach for determining water distributions in protein blends

    NARCIS (Netherlands)

    Dekkers, Birgit L.; Kort, de Daan W.; Grabowska, Katarzyna J.; Tian, Bei; As, Van Henk; Goot, van der Atze Jan

    2016-01-01

    We present a combined time domain NMR and rheology approach to quantify the water distribution in a phase separated protein blend. The approach forms the basis for a new tool to assess the microstructural properties of phase separated biopolymer blends, making it highly relevant for many food and

  8. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune [Tokyo Metropolitan Univ., Tokyo (Japan)

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  9. Use of NMR spectroscopy in combination with pattern recognition techniques for elucidation of origin and adulteration of foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Standal, Inger Beate

    2009-07-01

    Consumers and food authorities are, to an increasing extent, concerned about factors such as the origin of food, how it is produced, and if it is healthy and safe. There are methods for general quality control to map the safety and nutritional value; however there is a need for suitable analytical methods to verify information such as the production method (wild/farmed), geographical origin, species, and process history of foods. This thesis evaluates the applicability of using nuclear magnetic resonance (NMR) spectroscopy combined with pattern recognition techniques for authentication of foodstuffs. Fish and marine oils were chosen as materials. 13C NMR was applied to authenticate marine oils and muscle lipids of both fatty and lean fish, according to production method (wild/farmed), geographical origin, species, and process history. 1H NMR was applied on low molecular weight compounds extracted from cod muscle to authenticate fish according to species and processing conditions. 13C NMR combined with pattern recognition techniques enabled the differentiation of marine oils according to wild/farmed and geographical origin of the raw material. It is suggested that this was mainly due to the different diets of the fish from which the oil was produced. It was also possible to authenticate marine oils according to species, and to say something about the level of mixtures detectable. The Sn-2 position specificity of fatty acids in triacylglycerols was shown to be an important characteristic to separate oils of different species. Esterified fish oil (concentrates) could easily be differentiated from natural fish oil by their 13C NMR profile. (Author)

  10. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    Directory of Open Access Journals (Sweden)

    Robert Kalescky

    2016-04-01

    Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  11. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  12. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  13. NMR study of hexanucleotide d(CCGCGG)2 containing two triplet repeats of fragile X syndrome

    International Nuclear Information System (INIS)

    Monleon, Daniel; Esteve, Vicent; Celda, Bernardo

    2003-01-01

    Long repeated stretches of d(CCG) and tri-nucleotide are crucial mutations that cause hereditary forms of mental retardation (fragile X-syndrome). Moreover, the alternating (CG) di-nucleotide is one of the candidates for Z-DNA conformation. Solution NMR structure of d(CCGCGG) 2 has been solved and is discussed. The determined NMR solution structure is a distorted highly bent B-DNA conformation with increased flexibility in both terminal residues. This conformation differs significantly from the Z-DNA tetramer structure reported for the same hexamer in the crystal state at similar ionic strength by Malinina and co-workers. Crystal structure of d(CCGCGG) 2 at high salt concentration includes a central alternating tetramer in Z-DNA conformation, while the initial cytosine swings out and forms a Watson-Crick base-pair with the terminal guanine of a symmetry-related molecule. In solution, NMR data for sugar ring puckering combined with restrained molecular dynamics simulations starting from a Z-DNA form show that terminal furanose residues could adopt the conformation required for aromatic bases swinging out. Therefore, tetramer formation could be considered possible once the hexanucleotide had previously adopted the Z-DNA form. This work gives some insight into correlations between anomalous crystal structures and their accessibility in the solution state

  14. Comprehensive profiling and marker identification in non-volatile citrus oil residues by mass spectrometry and nuclear magnetic resonance.

    Science.gov (United States)

    Marti, Guillaume; Boccard, Julien; Mehl, Florence; Debrus, Benjamin; Marcourt, Laurence; Merle, Philippe; Delort, Estelle; Baroux, Lucie; Sommer, Horst; Rudaz, Serge; Wolfender, Jean-Luc

    2014-05-01

    The detailed characterization of cold-pressed lemon oils (CPLOs) is of great importance for the flavor and fragrance (F&F) industry. Since a control of authenticity by standard analytical techniques can be bypassed using elaborated adulterated oils to pretend a higher quality, a combination of advanced orthogonal methods has been developed. The present study describes a combined metabolomic approach based on UHPLC-TOF-MS profiling and (1)H NMR fingerprinting to highlight metabolite differences on a set of representative samples used in the F&F industry. A new protocol was set up and adapted to the use of CPLO residues. Multivariate analysis based on both fingerprinting methods showed significant chemical variations between Argentinian and Italian samples. Discriminating markers identified in mixtures belong to furocoumarins, flavonoids, terpenoids and fatty acids. Quantitative NMR revealed low citropten and high bergamottin content in Italian samples. The developed metabolomic approach applied to CPLO residues gives some new perspectives for authenticity assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.

    Science.gov (United States)

    Lu, George J; Son, Woo Sung; Opella, Stanley J

    2011-04-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano

    NARCIS (Netherlands)

    Exarchou, V.; Godejohann, M.; Beek, van T.A.; Gerothanassis, I.P.; Vervoort, J.J.M.

    2003-01-01

    Structure elucidation of natural products usually relies on a combination of NMR spectroscopy with mass spectrometry whereby NMR trails MS in terms of the minimum sample amount required. In the present study, the usefulness of on-line solid-phase extraction (SPE) in LC-NMR for peak storage after the

  17. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    Science.gov (United States)

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular Dynamics and Morphology of High Performance Elastomers and Fibers by Solid State NMR

    Science.gov (United States)

    2016-06-30

    nuclear magnetic resonance (ssNMR) spectroscopy to investigate the chemical structure and physical state of the residual phosphorous in PBO fiber...ssNMR) spectroscopy to investigate the chemical structure and physical state of the residual phosphorous in PBO fiber, which has been long suspected to...Jason Cain, Jian H. Yu, David Veysset, Keith A. Nelson . Probing the Influence of Molecular Dynamics of Matrix Elastomers on Ballistic Impact Back-face

  19. Structure determination of the single glycan of rabbit serotransferrin by methylation analysis and 360 MHz 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Leger, D.; Tordera, V.; Spik, G.; Dorland, L.; Haverkamp, J.; Vliegenthart, J.F.G.

    1978-01-01

    The glycopeptide fraction of rabbit serotransferrin (STF) has been investigated applying an original method for the determination of glycan primary structure combining monosaccharide determination, permethylation and 360 MHz 1 H NMR. It is concluded that the highly purified rabbit transferrin contains only 1 glycan chain/molecule. A heterogeneity of the glycan moiety in the sialic acid residues was observed on isolation by paper electrophoresis of a disialylglycopeptide G-1 and a monosialylglycopeptide 2. The primary structure of glycopeptide G-1 deduced on the basis of the data of carbohydrate composition, permethylation analysis and 360 MHz 1 H NMR spectroscopy is identical to the primary structure of human serotransferrin glycan and the glycopeptide G-2 was shown by 1 H NMR spectroscopy, to be a mixture of two isomeric monosialylglycopeptides. (Auth.)

  20. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  2. Combined Role of Two Tryptophane Residues of α-Factor Pheromone

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Young [Yeungnam Univ., Gyungsan (Korea, Republic of); Hong, Nam Joo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-02-15

    Amide analogs of tridecapeptide α-factor (WHWLQLKPGQPMYCONH{sub 2}) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide [Ala{sup 3}]α-factor amide (2) and [Aib{sup 3}]α-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one [Ala{sup 1}]α-factor amide (1) and [Aib{sup 1}]α-factor amide (4), reflecting that Trp{sup 3} may plays more important role than Trp{sup 1} for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of α-factor ligand to activation of Ste2p through interaction with residue Tyr{sup 266} and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, [Ala{sup 1,3}]α-factor amide (3), [Aib{sup 1,3}]α-factor amide (6), [D-Trp{sup 3}]α-factor amide (8) and [des-Trp{sup 1},Phe{sup 3}]α-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10.

  3. Combined Role of Two Tryptophane Residues of α-Factor Pheromone

    International Nuclear Information System (INIS)

    Hong, Eun Young; Hong, Nam Joo

    2013-01-01

    Amide analogs of tridecapeptide α-factor (WHWLQLKPGQPMYCONH 2 ) of Saccharomyces cerevisiae, in which Trp at position 1 and 3 were replaced with other residues, were synthesized to ascertain whether cooperative interactions between two Trp residues occurred upon binding with its receptor. Analogs containing Ala or Aib at position 3 of the peptide [Ala 3 ]α-factor amide (2) and [Aib 3 ]α-factor amide (5) exhibited greater decreases in bioactivity than analogs with same residue at position one [Ala 1 ]α-factor amide (1) and [Aib 1 ]α-factor amide (4), reflecting that Trp 3 may plays more important role than Trp 1 for agonist activity. Analogs containing Ala or Aib in both position one and three 3, 6 exhibited complete loss of bioactivity, emphasizing both the essential role and the combined role of two indole rings for triggering cell signaling. In contrast, double substituted analog with D-Trp in both positions 9 exhibited greater activity than single substituted analog with D-Trp 8 or deleted analog 7, reflecting the combined contribution of two tryptophane residues of α-factor ligand to activation of Ste2p through interaction with residue Tyr 266 and importance of the proper parallel orientation of two indole rings for efficient triggering of signal G protein coupled activation. Among ten amide analogs, [Ala 1,3 ]α-factor amide (3), [Aib 1,3 ]α-factor amide (6), [D-Trp 3 ]α-factor amide (8) and [des-Trp 1 ,Phe 3 ]α-factor amide (10) were found to have antagonistic activity. Analogs 3 and 6 showed greater antagonistic activity than analogs 8 and 10

  4. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  5. Determination of unreacted monomers in restorative dental resins based on dimethacrylate by NMR hydrogen; Determinacao do teor de monomero residual em resinas restauradoras a base de dimetacrilatos por RMN de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Ivo Carlos; Miranda Junior, Walter G. [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Materiais Dentarios]. E-mail: ivo@fo.usp.br; Tavares, Maria Ines B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    The presence of unreacted monomers after photo-activation of dental composites causes mechanical and biological properties to decrease and could be detected by NMR analysis. The aim of this study was to evaluate the percentage of leachable monomers of light-cured composites under the effect of variations of exposure time of photo activation by nuclear magnetic resonance of hydrogen in solution (NMR{sup 1}H). The composite resins tested Z250 and Fill Magic obtained similar values of unreacted monomers (%) at photo curing time suggested by the manufacturer and values were also lower than Durafill and A110 concentrations. From the NMR results, one day extractable time was efficient to quantify the amount of residual monomers in the dental composites tested, unless for Durafill composite. (author)

  6. Structure determination of the single glycan of rabbit serotransferrin by methylation analysis and 360 MHz /sup 1/H NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leger, D; Tordera, V; Spik, G [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France); Dorland, L; Haverkamp, J; Vliegenthart, J F.G. [Rijksuniversiteit Utrecht (Netherlands)

    1978-09-15

    The glycopeptide fraction of rabbit serotransferrin (STF) has been investigated applying an original method for the determination of glycan primary structure combining monosaccharide determination, permethylation and 360 MHz /sup 1/H NMR. It is concluded that the highly purified rabbit transferrin contains only 1 glycan chain/molecule. A heterogeneity of the glycan moiety in the sialic acid residues was observed on isolation by paper electrophoresis of a disialylglycopeptide G-1 and a monosialylglycopeptide 2. The primary structure of glycopeptide G-1 deduced on the basis of the data of carbohydrate composition, permethylation analysis and 360 MHz /sup 1/H NMR spectroscopy is identical to the primary structure of human serotransferrin glycan and the glycopeptide G-2 was shown by /sup 1/H NMR spectroscopy, to be a mixture of two isomeric monosialylglycopeptides.

  7. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings.

    Science.gov (United States)

    Al-Hashimi, Hashim M; Gosser, Yuying; Gorin, Andrey; Hu, Weidong; Majumdar, Ananya; Patel, Dinshaw J

    2002-01-11

    Ground-state dynamics in RNA is a critical precursor for structural adaptation observed ubiquitously in protein-RNA recognition. A tertiary conformational analysis of the stem-loop structural element in the transactivation response element (TAR) from human immunodeficiency virus type 1 (HIV-I) RNA is presented using recently introduced NMR methods that rely on the measurement of residual dipolar couplings (RDC) in partially oriented systems. Order matrix analysis of RDC data provides evidence for inter-helical motions that are of amplitude 46(+/-4) degrees, of random directional character, and that are executed about an average conformation with an inter-helical angle between 44 degrees and 54 degrees. The generated ensemble of TAR conformations have different organizations of functional groups responsible for interaction with the trans-activator protein Tat, including conformations similar to the previously characterized bound-state conformation. These results demonstrate the utility of RDC-NMR for simultaneously characterizing RNA tertiary dynamics and average conformation, and indicate an avenue for TAR complex formation involving tertiary structure capture. Copyright 2001 Academic Press.

  8. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  9. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  10. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  11. Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach

    International Nuclear Information System (INIS)

    Amniai, Laziza; Lippens, Guy; Landrieu, Isabelle

    2011-01-01

    Highlights: → pThr231 of the Tau protein is necessary for the binding of the AT180 antibody. → pSer235 of the Tau protein does not interfere with the AT180 recognition of pThr231. → Epitope mapping is efficiently achieved by combining NMR and FRET spectroscopy. -- Abstract: We present here the characterization of the epitope recognized by the AT180 monoclonal antibody currently used to define an Alzheimer's disease (AD)-related pathological form of the phosphorylated Tau protein. Some ambiguity remains as to the exact phospho-residue(s) recognized by this monoclonal: pThr231 or both pThr231 and pSer235. To answer this question, we have used a combination of nuclear magnetic resonance (NMR) and fluorescence spectroscopy to characterize in a qualitative and quantitative manner the phospho-residue(s) essential for the epitope recognition. Data from the first step of NMR experiments are used to map the residues bound by the antibodies, which were found to be limited to a few residues. A fluorophore is then chemically attached to a cystein residue introduced close-by the mapped epitope, at arginine 221, by mutagenesis of the recombinant protein. The second step of Foerster resonance energy transfer (FRET) between the AT180 antibody tryptophanes and the phospho-Tau protein fluorophore allows to calculate a dissociation constant Kd of 30 nM. We show that the sole pThr231 is necessary for the AT180 recognition of phospho-Tau and that phosphorylation of Ser235 does not interfere with the binding.

  12. BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions

    International Nuclear Information System (INIS)

    Markley, John L.; Ulrich, Eldon L.; Berman, Helen M.; Henrick, Kim; Nakamura, Haruki; Akutsu, Hideo

    2008-01-01

    We describe the role of the BioMagResBank (BMRB) within the Worldwide Protein Data Bank (wwPDB) and recent policies affecting the deposition of biomolecular NMR data. All PDB depositions of structures based on NMR data must now be accompanied by experimental restraints. A scheme has been devised that allows depositors to specify a representative structure and to define residues within that structure found experimentally to be largely unstructured. The BMRB now accepts coordinate sets representing three-dimensional structural models based on experimental NMR data of molecules of biological interest that fall outside the guidelines of the Protein Data Bank (i.e., the molecule is a peptide with 23 or fewer residues, a polynucleotide with 3 or fewer residues, a polysaccharide with 3 or fewer sugar residues, or a natural product), provided that the coordinates are accompanied by representation of the covalent structure of the molecule (atom connectivity), assigned NMR chemical shifts, and the structural restraints used in generating model. The BMRB now contains an archive of NMR data for metabolites and other small molecules found in biological systems

  13. Experiments and strategies for the assignment of fully13 C/15N-labelled polypeptides by solid state NMR

    International Nuclear Information System (INIS)

    Straus, Suzana K.; Bremi, Tobias; Ernst, Richard R.

    1998-01-01

    High-resolution heteronuclear NMR correlation experiments and strategies are proposed for the assignment of fully 13 C/ 15 N-labelled polypeptides in the solid state. By the combination of intra-residue and inter-residue 13 C- 15 N correlation experiments with 13 C- 13 C spin-diffusion studies, it becomes feasible to partially assign backbone and side-chain resonances in solid proteins. The performance of sequences using 15 N instead of 13 C detection is evaluated regarding sensitivity and resolution for a labelled dipeptide (L-Val-L-Phe). The techniques are used for a partial assignment of the 15 N and 13 C resonances in human ubiquitin

  14. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  15. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Lawrence P., E-mail: mcintosh@chem.ubc.ca; Naito, Daigo; Baturin, Simon J.; Okon, Mark; Joshi, Manish D. [University of British Columbia, Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, Life Sciences Centre (Canada); Nielsen, Jens E. [University College Dublin, School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute (Ireland)

    2011-09-15

    NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK{sub A} values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain {sup 13}C{sup {gamma}} nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have revisited the formalism for the ionization equilibria of two coupled acidic residues. In general, fitting NMR-monitored pH titration curves for such a system will only yield the two macroscopic pK{sub A} values that reflect the combined effects of both deprotonation reactions. However, through the use of mutations complemented with ionic strength-dependent measurements, we are able to extract the four microscopic pK{sub Ai} values governing the branched acid/base equilibria of Glu78 and Glu172 in BcX. These data, confirmed through theoretical calculations, help explain the pH-dependent mechanism of this model GH11 xylanase by demonstrating that the kinetically determined pK{sub A} values and hence catalytic roles of these two residues result from their electrostatic coupling.

  16. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations

    International Nuclear Information System (INIS)

    McIntosh, Lawrence P.; Naito, Daigo; Baturin, Simon J.; Okon, Mark; Joshi, Manish D.; Nielsen, Jens E.

    2011-01-01

    NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK A values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain 13 C γ nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have revisited the formalism for the ionization equilibria of two coupled acidic residues. In general, fitting NMR-monitored pH titration curves for such a system will only yield the two macroscopic pK A values that reflect the combined effects of both deprotonation reactions. However, through the use of mutations complemented with ionic strength-dependent measurements, we are able to extract the four microscopic pK Ai values governing the branched acid/base equilibria of Glu78 and Glu172 in BcX. These data, confirmed through theoretical calculations, help explain the pH-dependent mechanism of this model GH11 xylanase by demonstrating that the kinetically determined pK A values and hence catalytic roles of these two residues result from their electrostatic coupling.

  17. Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR

    Directory of Open Access Journals (Sweden)

    José I. Santos

    2015-01-01

    Full Text Available Lignin-rich residues from the cellulose-based industry are traditionally incinerated for internal energy use. The future biorefineries that convert cellulosic biomass into biofuels will generate more lignin than necessary for internal energy use, and therefore value-added products from lignin could be produced. In this context, a good understanding of lignin is necessary prior to its valorization. The present study focused on the characterization of lignin-rich residues from biochemical ethanol production, including steam explosion, saccharification, and fermentation, of wheat straw and olive tree pruning. In addition to the composition and purity, the lignin structures (S/G ratio, interunit linkages were investigated by spectroscopy techniques such as FTIR and 2D-NMR. Together with the high lignin content, both residues contained significant amounts of carbohydrates, mainly glucose and protein. Wheat straw lignin showed a very low S/G ratio associated with p-hydroxycinnamates (p-coumarate and ferulate, whereas a strong predominance of S over G units was observed for olive tree pruning lignin. The main interunit linkages present in both lignins were β-O-4′ ethers followed by resinols and phenylcoumarans. These structural characteristics determine the use of these lignins in respect to their valorization.

  18. Complete resonance assignment for the polypeptide backbone of interleukin 1β using three-dimensional heteronuclear NMR spectroscopy

    International Nuclear Information System (INIS)

    Driscoll, P.C.; Clore, G.M.; Marion, D.; Gronenborn, A.M.; Wingfield, P.T.

    1990-01-01

    The complete sequence-specific assignment of the 15 N and 1 H backbone resonances of the NMR spectrum of recombinant human interleukin 1β has been obtained by using primarily 15 N- 1 H heteronuclear three-dimensional (3D) NMR techniques in combination with 15 N- 1 H heteronuclear and 1 H homonuclear two-dimensional NMR. The fingerprint region of the spectrum was analyzed by using a combination of 3D heteronuclear 1 H Hartmann-Hahn 15 N- 1 H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1 H nuclear Overhauser 15 N- 1 H multiple quantum coherence (3D NOESY-HMQC) spectroscopies. The authors show that the problems of amide NH and C α H chemical shift degeneracy that are prevalent for proteins of the size are readily overcome by using the 3D heteronuclear NMR technique. A doubling of some peaks in the spectrum was found to be due to N-terminal heterogeneity of the 15 N-labeled protein, corresponding to a mixture of wild-type and des-Ala-1-interleukin 1β. The complete list of 15 N and 1 H assignments is given for all the amide NH and C α H resonances of all non-proline residues, as well as the 1 H assignments for some of the amino acid side chains. This first example of the sequence-specific assignment of a protein using heteronuclear 3D NMR provides a basis for further conformational and dynamic studies of interleukin 1β

  19. NMR spectroscopic studies of membrane-bound biological systems

    International Nuclear Information System (INIS)

    Hohlweg, W.

    2013-01-01

    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  20. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  1. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    Energy Technology Data Exchange (ETDEWEB)

    Zuiderweg, Erik R. P., E-mail: zuiderwe@umich.edu; Bagai, Ireena [The University of Michigan Medical School, Department of Biological Chemistry (United States); Rossi, Paolo [Rutgers University, Center for Integrative Proteomics Research (United States); Bertelsen, Eric B. [Arbor Communications, Inc. (United States)

    2013-10-15

    For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 Multiplication-Sign 10{sup 260} possible assignments. In 'EZ-ASSIGN', the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281-298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592-610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335-344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested.

  2. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    International Nuclear Information System (INIS)

    Zuiderweg, Erik R. P.; Bagai, Ireena; Rossi, Paolo; Bertelsen, Eric B.

    2013-01-01

    For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 × 10 260 possible assignments. In “EZ-ASSIGN”, the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281–298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592–610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335–344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested

  3. Variations of NMR signals by hyperpolarization and ultrasound; Variation von NMR-Signalen durch Hyperpolarisation und Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Engelbertz, A.

    2006-07-01

    In this thesis it is described how p-NMR can be applied to metals with verlo low hydrogen concentrations and how a combination of ultrasound and NMR can lead to an improvement of the measureing method. As examples measurements on H{sub 2}O and ethanol are described. (HSI)

  4. Vivaldi: Visualization and validation of biomacromolecular NMR structures from the PDB

    Science.gov (United States)

    Hendrickx, Pieter M S; Gutmanas, Aleksandras; Kleywegt, Gerard J

    2013-01-01

    We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi), a web-based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model-validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non-expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc. PMID:23180575

  5. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  6. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shasha [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhu, Yuanrong, E-mail: zhuyuanrong07@mails.ucas.ac.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wu, Fengchang, E-mail: wufengchang@vip.skleg.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Meng, Wei [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); He, Zhongqi [USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124 (United States); Giesy, John P. [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-10-01

    Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by H{sub 2}O, 0.1 M NaOH and 1.0 M HCl, combined with {sup 13}C and {sup 31}P NMR spectroscopy, was developed and used to characterize organic carbon (C) and phosphorus (P) in six aquatic plants collected from Tai Lake (Ch: Taihu), China. Organic matter, determined by total organic carbon (TOC), was unequally distributed in H{sub 2}O (21.2%), NaOH (29.9%), HCl (3.5%) and residual (45.3%) fractions. For P in debris of aquatic plants, 53.3% was extracted by H{sub 2}O, 31.9% by NaOH, and 11% by HCl, with 3.8% in residual fractions. Predominant OM components extracted by H{sub 2}O and NaOH were carbohydrates, proteins and aliphatic acids. Inorganic P (P{sub i}) was the primary form of P in H{sub 2}O fractions, whereas organic P (P{sub o}) was the primary form of P in NaOH fractions. The subsequent HCl fractions extracted fewer species of C and P. Some non-extractable carbohydrates, aromatics and metal phytate compounds remained in residual fractions. Based on sequential extraction and NMR analysis, it was proposed that those forms of C (54.7% of TOC) and P (96.2% of TP) in H{sub 2}O, NaOH and HCl fractions are potentially released to overlying water as labile components, while those in residues are stable and likely preserved in sediments of lakes. These results will be helpful in understanding internal loading of nutrients from debris of aquatic macrophytes and their recycling in lakes. - Highlights: • Sequential fractionation combined with NMR analysis was applied on aquatic plants. • Labile and stable C and P forms in aquatic plants were characterized. • 54.7% of OM and 96.2% of P in aquatic plants are potentially available. • 45.3% of OM and 3.8% of P in aquatic

  7. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  8. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    Science.gov (United States)

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  9. Smartnotebook: A semi-automated approach to protein sequential NMR resonance assignments

    International Nuclear Information System (INIS)

    Slupsky, Carolyn M.; Boyko, Robert F.; Booth, Valerie K.; Sykes, Brian D.

    2003-01-01

    Complete and accurate NMR spectral assignment is a prerequisite for high-throughput automated structure determination of biological macromolecules. However, completely automated assignment procedures generally encounter difficulties for all but the most ideal data sets. Sources of these problems include difficulty in resolving correlations in crowded spectral regions, as well as complications arising from dynamics, such as weak or missing peaks, or atoms exhibiting more than one peak due to exchange phenomena. Smartnotebook is a semi-automated assignment software package designed to combine the best features of the automated and manual approaches. The software finds and displays potential connections between residues, while the spectroscopist makes decisions on which connection is correct, allowing rapid and robust assignment. In addition, smartnotebook helps the user fit chains of connected residues to the primary sequence of the protein by comparing the experimentally determined chemical shifts with expected shifts derived from a chemical shift database, while providing bookkeeping throughout the assignment procedure

  10. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  11. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution

  12. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  13. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  14. APSY-NMR for protein backbone assignment in high-throughput structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Herrmann, Torsten [Université de Lyon, Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1 (France); Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

  15. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    Science.gov (United States)

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  16. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo [University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (Finland) (Italy); University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Finland) (Italy); Murshudov, Garib N., E-mail: garib@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Luchinat, Claudio, E-mail: garib@mrc-lmb.cam.ac.uk [University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (Finland) (Italy); University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Finland) (Italy)

    2014-04-01

    Paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and diamagnetic residual dipolar couplings can now be used in the program REFMAC5 from CCP4 as structural restraints together with X-ray crystallographic data. These NMR restraints can reveal differences between solid state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably ‘ideal’ geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.

  17. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences

    International Nuclear Information System (INIS)

    Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo; Murshudov, Garib N.; Luchinat, Claudio

    2014-01-01

    Paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and diamagnetic residual dipolar couplings can now be used in the program REFMAC5 from CCP4 as structural restraints together with X-ray crystallographic data. These NMR restraints can reveal differences between solid state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably ‘ideal’ geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state

  18. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  20. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  1. Effect of industrial residue combinations on availability of elements

    Energy Technology Data Exchange (ETDEWEB)

    Brännvall, Evelina, E-mail: evelina.brannvall@ltu.se [Waste Science and Technology, Luleå University of Technology, 97187 Luleå (Sweden); Zamora, Carles Belmonte [Waste Science and Technology, Luleå University of Technology, 97187 Luleå (Sweden); Sjöblom, Rolf [Waste Science and Technology, Luleå University of Technology, 97187 Luleå (Sweden); Tekedo AB, Spinnarvägen 10, 611 37 Nyköping (Sweden); Kumpiene, Jurate [Waste Science and Technology, Luleå University of Technology, 97187 Luleå (Sweden)

    2014-07-15

    Highlights: • Beneficial combination of fly ash and biosolids. • Nutrient availability increase. • Potentially toxic element availability decrease. • Measured element availability was differed from the calculated leaching potential. - Abstract: Industrial residues, such as fly ashes and biosolids, contain elements (e.g., N, P, K, S, Ca and Zn) that make them a viable alternative for synthetic fertilizers in forestry and agriculture. However, the use of these materials is often limited due to the presence of potentially toxic substances. It is therefore necessary to assess and, when warranted, modify the chemical and physical form of these and similar waste materials before any advantages are taken of their beneficial properties. Biofuel fly ash, municipal solid waste incineration (MSWI) fly ash, biosolids, peat, peat residues and gypsum board waste were combined in various proportions, and this resulted in increased leaching of N, P, S, Cu and Mn, but decreased leaching of Ca, K, Mg, Cr, Fe, Ni, Zn, Al, As and Pb. Chemical fractionation revealed that elements Ca, K, Mg, S and Mn were predominantly exchangeable, while the rest of the elements were less mobile. Cadmium was mostly exchangeable in MSWI fly ash, but less mobile in biofuel fly ash mixtures. Recycling of MSWI fly ash in the mixtures with fertilizers is considerably less attractive, due to the high levels of salts and exchangeable Cd.

  2. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy

    Science.gov (United States)

    Sborgi, Lorenzo; Ravotti, Francesco; Dandey, Venkata P.; Dick, Mathias S.; Mazur, Adam; Reckel, Sina; Chami, Mohamed; Scherer, Sebastian; Huber, Matthias; Böckmann, Anja; Egelman, Edward H.; Stahlberg, Henning; Broz, Petr; Meier, Beat H.; Hiller, Sebastian

    2015-01-01

    Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms. PMID:26464513

  3. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    Science.gov (United States)

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  4. Molecular dynamics computer simulations based on NMR data

    International Nuclear Information System (INIS)

    Vlieg, J. de.

    1989-01-01

    In the work described in this thesis atom-atom distance information obtained from two-dimensional cuclear magnetic resonance is combined with molecular dynamics simulaitons. The simulation is used to improve the accuracy of a structure model constructed on the basis of NMR data. During the MD refinement the crude NMR structure is simultaneously optimized with respect to the atomic interaction function and to the set of atom-atom distances or other NMR information. This means that insufficient experimental data is completed with theoretical knowledge and the combination will lead to more reliable structures than would be obtained from one technique alone. (author). 191 refs.; 17 figs.; 12 schemes; 22 tabs

  5. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    Science.gov (United States)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  6. Detection and assignment of phosphoserine and phosphothreonine residues by {sup 13}C-{sup 31}P spin-echo difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Lawrence P., E-mail: mcintosh@chem.ubc.ca; Kang, Hyun-Seo; Okon, Mark [University of British Columbia, Department of Biochemistry (Canada); Nelson, Mary L.; Graves, Barbara J. [University of Utah, Department of Oncological Sciences, Huntsman Cancer Institute (United States); Brutscher, Bernhard [CNRS, CEA, UJF, Institut de Biologie Structurale Jean-Pierre Ebel (France)], E-mail: bernhard.brutscher@ibs.fr

    2009-01-15

    A simple NMR method is presented for the identification and assignment of phosphorylated serine and threonine residues in {sup 13}C- or {sup 13}C/{sup 15}N-labeled proteins. By exploiting modest ({approx}5 Hz) 2- and 3-bond {sup 13}C-{sup 31}P scalar couplings, the aliphatic {sup 1}H-{sup 13}C signals from phosphoserines and phosphothreonines can be detected selectively in a {sup 31}P spin-echo difference constant time {sup 1}H-{sup 13}C HSQC spectrum. Inclusion of the same {sup 31}P spin-echo element within the {sup 13}C frequency editing period of an intraHNCA or HN(CO)CA experiment allows identification of the amide {sup 1}H{sup N} and {sup 15}N signals of residues (i) for which {sup 13}C{sup {alpha}}(i) or {sup 13}C{sup {alpha}}(i - 1), respectively, are coupled to a phosphate. Furthermore, {sup 31}P resonance assignments can be obtained by applying selective low power cw {sup 31}P decoupling during the spin-echo period. The approach is demonstrated using a PNT domain containing fragment of the transcription factor Ets-1, phosphorylated in vitro at Thr38 and Ser41 with the MAP kinase ERK2.

  7. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    Science.gov (United States)

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  8. Investigation of residual stresses in thick-walled vessels with combination of autofrettage and wire-winding

    International Nuclear Information System (INIS)

    Sedighi, M.; Jabbari, A.H.

    2013-01-01

    Wire-winding and autofrettage processes can be used to introduce beneficial residual stress in the cylinder of thick-walled pressure vessels. In both techniques, internal residual compressive stress will increase internal pressure capacity, improve fatigue life and reduce fatigue crack initiation. The purpose of this paper is to analyze the effects of wire-winding on an autofrettaged thick-walled vessel. Direct method which is a modified Variable Material Properties (VMP) method has been used in order to calculate residual stresses in an autofrettaged vessel. Since wire-winding is done after autofrettage process, the tangent and/or Young's modulus could be changed. For this reason, a new wire-winding method based on Direct Method is introduced. The obtained results for wire-wound autofrettaged vessels are validated by finite element method. The results show that by using this approach, the residual hoop stresses in a wire-wound autofrettaged vessel have a more desirable distribution in the cylinder. -- Highlights: • Combination of autofrettage and wire-winding in pressure vessels has been presented. • A new method based on Direct method is presented for wire-winding process. • Residual hoop stresses are compared in vessels cylinders for different cases. • The residual hoop stress has a more desirable stress distribution. • The benefits of the combined vessel are highlighted in comparison with single cases

  9. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR.

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Aguilera-Saez, Luis Manuel; Gómez-Caravaca, Ana María; Verardo, Vito; Fernández-Gutiérrez, Alberto; Fernández, Ignacio; Arráez-Román, David

    2018-06-01

    Annona cherimola Mill. (cherimoya) has widely been used as food crop. The leaves of this tree possess several health benefits, which are, in general, attributed mainly to its bioactive composition. However, literature concerning a comprehensive characterization based on a combined approach, which consists of nuclear magnetic resonance (NMR) and high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS), from these leaves is scarce. Thus, the aim of this work was to study the polar profile of full extracts of cherimoya leaves by using these tools. Thus, a total of 77 compounds have been characterized, 12 of which were identified by both techniques. Briefly, 23 compounds were classified as amino acids, organic acids, carbohydrates, cholines, phenolic acid derivatives, and flavonoids by NMR, while 66 metabolites were divided into sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, and other polar compounds by HPLC-TOF-MS. It is worth mentioning that different solvent mixtures were tested and the total phenolic content in the extracts quantified (TPC via HPLC-TOF-MS). The tendency observed was EtOH/water 80/20 (v/v) (17.0 ± 0.2 mg TPC/g leaf dry weight (d.w.)) ≥ acetone/water 70/30 (v/v) (16.1 ± 0.7 mg TPC/g leaf d.w.) > EtOH/water 70/30 (v/v) (14.0 ± 0.3 mg TPC/g leaf d.w.) > acetone/water 80/20 (v/v) (13.5 ± 0.4 mg TPC/g leaf d.w.). Importantly, flavonoids derivatives were between 63 and 76% of the TPC in those extracts. Major compounds were sucrose, glucose (α and β), and proline, and chlorogenic acid and rutin for NMR and HPLC-TOF-MS, respectively. Graphical abstract The combined use of LC-HRMS and NMR is a potential synergic combination for a comprehensive metabolite composition of cherimoya leaves.

  10. Residual Cardiovascular Risk in Diabetic Patients: The Role of Fibrate Statin Combination

    Directory of Open Access Journals (Sweden)

    Angelos Liontos

    2014-10-01

    Full Text Available Patients with Type 2 diabetes mellitus (T2DM have increased cardiovascular disease (CVD risk. The use of statins significantly reduces the rate of CVD events but many T2DM patients, especially those with mixed dyslipidaemia (MD, have residual CVD risk. The use of fibrates, which improve triglyceride and high-density lipoprotein cholesterol levels, is beneficial for the treatment of patients with MD. Evidence from the Action to Control Cardiovascular Risk in Diabetes (ACCORD Lipid study showed a possible beneficial effect on CVD events of the addition of fenofibrate (FF to statin treatment in patients with T2DM and atherogenic MD. Furthermore, FF has been associated with slowing of the progression of early diabetic retinopathy. The combination of statin with a fibrate may improve the residual CVD risk and microvascular complications of patients with T2DM. However, trials specifically designed to assess the effects of fibrate-statin combination on cardiovascular outcomes in patients with T2DM are missing.

  11. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  12. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  13. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps

    International Nuclear Information System (INIS)

    Mishra, Subrata H.; Frueh, Dominique P.

    2015-01-01

    Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to C α and C β separately, produces 4D correlation maps directly correlating methyl groups to amide groups. Optimal correlation maps are obtained by extracting residue-specific regions, applying derivative to the dimensions subject to covariance, and multiplying 4D maps stemming from different 3D spectra. The latter procedure rescues weak signals that may be missed in traditional assignment procedures. Using these covariance correlation maps, nearly all assigned isoleucine, leucine, and valine amide resonances of a 52 kDa nonribosomal peptide synthetase cyclization domain were paired with their corresponding methyl groups

  14. A combined NMR and XRD study of AFI and AEL type molecular sieves

    NARCIS (Netherlands)

    Peeters, M.P.J.; Ven, van de L.J.M.; Haan, de J.W.; Hooff, van J.H.C.

    1993-01-01

    Calcined dehydrated AlPO4-5 was studied by x-ray powder diffraction, 31P MAS, and 27Al double-resonance (DOR) NMR. Three crystallog. different sites can be distinguished in the structure of dehydrated AlPO4-5 in the ratio 1:1:1. The obsd. splitting of the NMR spectra is correlated to the line width

  15. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    International Nuclear Information System (INIS)

    Santos, J.V. dos; Mangrich, A.S.; Pereira, B.F.; Pillon, C.N.; Bonagamba, T.J.

    2013-01-01

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand 13 C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO 2+ correlated positively with uronic acid-type hydrophilic organic structures, determined from the 13 C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  16. Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel

    International Nuclear Information System (INIS)

    Ishii, Yoshitaka; Markus, Michelle A.; Tycko, Robert

    2001-01-01

    Water-soluble biological macromolecules can be weakly aligned by dissolution in a strained, hydrated gel such as cross-linked polyacrylamide, an effect termed 'strain-induced alignment in a gel' (SAG). SAG induces nonzero nuclear magnetic dipole-dipole couplings that can be measured in high-resolution NMR spectra and used as structural constraints. The dependence of experimental 15 N- 1 H dipolar couplings extracted from two-dimensional heteronuclear single quantum coherence (HSQC) spectra on several properties of compressed polyacrylamide, including the extent of compression, the polyacrylamide concentration, and the cross-link density, is reported for the B1 immunoglobulin binding domain of streptococcal protein G (protein G/B1, 57 residues). It is shown that the magnitude of macromolecular alignment can be widely varied by adjusting these properties, although the orientation and asymmetry of the alignment tensor are not affected significantly. The dependence of the 15 N relaxation times T 1 and T 2 of protein G/B1 on polyacrylamide concentration are also reported. In addition, the results of 15 N relaxation and HSQC experiments on the RNA binding domain of prokaryotic protein S4 from Bacillus stearothermophilus (S4 Δ41, residues 43-200) in a compressed polyacrylamide gel are presented. These results demonstrate the applicability of SAG to proteins of higher molecular weight and greater complexity. A modified in-phase/anti-phase (IPAP) HSQC technique is described that suppresses natural-abundance 15 N background signals from amide groups in polyacrylamide, resulting in cleaner HSQC spectra in SAG experiments. The mechanism of protein alignment in strained polyacrylamide gels is contrasted with that in liquid crystalline media

  17. High-resolution bacterial growth inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antibacterial constituents in Chinese plants used to treat snakebites

    DEFF Research Database (Denmark)

    Liu, Yueqiu; Nielsen, Mia; Stærk, Dan

    2014-01-01

    Bacillus subtilis, Staphylococcus aureus, Escherichia coli or Pseudomonas aeruginosa. The biochromatograms demonstrated that tannins play a main role for the bacterial growth inhibition observed for all above-mentioned plants except for Polygonum cuspidatum. Furthermore, the high-resolution bacterial...... growth inhibition profiling combined with HPLC–HRMS–SPE–NMR allowed fast identification of three non-tannin active compounds, i.e., piceid, resveratrol and emodin from ethanol extract of Polygonum cuspidatum. Conclusion The high-resolution bacterial growth inhibition profiling allowed fast pinpointing...... of constituents responsible for the bioactivity, e.g., either showing tannins being the main bacterial growth inhibitors as observed for the majority of the active plants, or combined with HPLC–HRMS–SPE–NMR for fast structural identification of non-tannin constituents correlated with antibacterial activity....

  18. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  19. Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands.

    Science.gov (United States)

    Pascal, Christine; Paté, Franck; Cheynier, Véronique; Delsuc, Marc-André

    2009-09-01

    Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline-rich proteins, which are natively unfolded proteins. A human salivary proline-rich protein, namely IB-5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan-3-ol in green tea, were studied here. Circular dichroism experiments showed that IB-5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB-5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB-5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB-5/EGCG aggregates.

  20. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    Science.gov (United States)

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-09-09

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.

  1. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  2. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G A; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  4. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts

    International Nuclear Information System (INIS)

    Swain, Monalisa; Atreya, Hanudatta S.

    2009-01-01

    Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1 H α and 13 C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment

  5. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  6. Structural study of pyrones by NMR

    International Nuclear Information System (INIS)

    Mandarino, D.G.

    1985-01-01

    Extracts of two species of Aniba, designed Aniba-SA (light petroleum extract) and Aniba-SB (benzene extract), afforded by chromatographic fraccionation some compounds. The isolated compounds were identified using spectrometric data and C 13 -NMR coupled and decompled spectra of pyrones were registered. Measurement of the heteronuclear residual coupling by irradiation proton frequency off-resonance was used for distinguish C-5, C-7 and C-8 carbons of the pyrones SB-1, SB-3, SB-4 and SB-5. (M.J.C.) [pt

  7. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  8. Characterization of nylon 6/poly(propylene oxide) polymeric mixture by combined NMR techniques

    International Nuclear Information System (INIS)

    Costa, Dilma Alves; Oliveira, Clara Marize F.; Tavares, Maria Ines B.

    1995-01-01

    Polymeric mixtures aim to improve physical or chemical properties of materials. This mixtures can be compatible or not. The compatibility between polymers determine changes of properties. This work has presented a detailed study where nylon 6 and poly(propylene oxide) mixture was analysed by 13 C NMR in the solid state, and NMR spectra were shown and explained. The molecular mobility as well as the compatibility have been observed and discussed

  9. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    Science.gov (United States)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  10. Polysaccharides of algae. Pt. 37. Characterization of hybrid structure of substituted agarose from Polysiphonia morrowii (Rhodophyta, Rhodomelaceae) using. beta. -agarase and /sup 13/C-NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Usov, A.I.; Ivanova, E.G.

    1987-09-01

    Structure of gel-forming galactan from Polysiphonia morrowii was analysed using bacterial ..beta..-agarase and /sup 13/C-nuclear magnetic resonance (/sup 13/C-NMR) spectroscopy. The polysaccharide was shown to contain: a) blocks composed of agarobiose residues, partly 6-O-methylated and 6-sulfated, which are sensitive to enzymolysis; b) extended blocks composed of agarobiose 6-sulfate residues, which are resistant to ..beta..-agarase action. The latter blocks contain also ..beta..-D-galactopyranosyl-(1->4)-..cap alpha..-L-galactopyranose 6.6'-disulfate residues (biogenetic precursors of agarobiose 6-sulfate), which are hardly detectable by /sup 13/C-NMR spectrum of the starting polysaccharide. Action of alkali on the enzyme-resistant fraction afforded a polysaccharide preparation having /sup 13/C-NMR spectrum of agarose 6-sulfate.

  11. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  12. 1H-NMR urinalysis

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Yamaguchi, Shuichi

    1988-01-01

    In an effort to examine the usefulness of 1 H-nuclear magnetic resonance (NMR) urinalysis in the diagnosis of congenital metabolic disorders, 70 kinds of urinary metabolites were analysed in relation to the diagnosis of inborn errors of amino acid and organic acid disorders. Homogated decoupling (HMG) method failed to analyze six metabolites within the undetectable range. When non-decoupling method (NON), in which the materials are dissolved in dimethyl sulfoxide, was used, the identification of signals became possible. The combination of HMG and NON methods was, therefore, considered to identify all of the metabolites. When the urine samples, which were obtained from patients with hyperglycerolemia, hyperornithinemia, glutaric acidemia type II, or glycerol kinase deficiency, were analysed by using both HMG and NON methods, abnormally increased urinary metabolites were detected. 1 H-NMR urinalysis, if used in the combination of HMG and NON methods, may allow simultanenous screening of inborn errors of metabolism of amino acid and organic acid disorders. (Namekawa, K.)

  13. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Moberg, Per; Nilsson, Stefan; Ståhl, Annelie; Eriksson, Anna-Carin; Glaser, Elzbieta; Mäler, Lena

    2004-03-05

    We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.

  14. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    LeMaster, D.M. [Northwestern Univ., Evanston, IL (United States)

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  15. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  16. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann

    2016-01-01

    When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been...... investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-in-lignin model compounds. Comparison of 29Si SP/MAS NMR spectra revealed differences...

  17. Solid state 13 C NMR quantitative study of wood tar pitches

    International Nuclear Information System (INIS)

    Prauchner, Marcos Juliano; Pasa, Vanya Marcia Duarte; Menezes, Sonia Maria Cabral de

    1999-01-01

    In this work, solid-state 13 C NMR is used with other techniques to characterize Eucalyptus tar pitches and to follow their polymerization reactions. The pitches are the residues of distillation (about 50% m;m) of the tar generated in Eucalyptus slow pyrolysis for charcoal production in metal industry

  18. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  19. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae)

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Moresco, Henrique H.; Tahtah, Yousof

    2015-01-01

    , and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC–HRMS–SPE–NMR. This led to identification...

  20. Residues in cottonseed oil and cake resulting from the combined application of DDT and dimethoate

    International Nuclear Information System (INIS)

    El Zorgani, G.A.; Ahmed, M.M.

    1981-01-01

    Cotton plants were treated with a combination of DDT and dimethoate under conditions of local agricultural practice to study the fate and magnitude of both chemicals in the cottonseed and related products. GLC and nuclear (using 14 C-DDT) techniques were used. DDT residues in the crude oil averaged 0.115 mg/kg; mainly as p,p'-DDT while residues in the cake were not detected. Dimethoate and dimethoxon in the crude oil were 0.13 and 0.01 mg/kg respectively. The cake contained 0.14 mg/kg dimethoate and 0.01 mg/kg dimethoxon. By simulating commercial oil processing in the laboratory using 14 C-DDT fortified oil samples it was found that alkali treatment and bleaching removed only 7% of the total residue, while deodorization effected removal of 40-50% of the residue. (author)

  1. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  2. Synthesis and proton-NMR studies of oligonucleotides containing an apurinic (AP) site

    International Nuclear Information System (INIS)

    Raap, J.; Dreef, C.E.; van der Marel, G.A.; van Boom, J.H.; Hilbers, C.W.

    1987-01-01

    In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for [d-CpS(pCpG)2]2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to [d-CpS(pCpG)2]2 as well as to [d-CpGpCpG]1 was investigated

  3. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Savorani, Francesco; Rasmussen, Morten Arendt; Mikkelsen, Mette Skau

    2013-01-01

    This paper outlines the advantages and disadvantages of using high throughput NMR metabolomics for nutritional studies with emphasis on the workflow and data analytical methods for generation of new knowledge. The paper describes one-by-one the major research activities in the interdisciplinary...... metabolomics platform and highlights the opportunities that NMR spectra can provide in future nutrition studies. Three areas are emphasized: (1) NMR as an unbiased and non-destructive platform for providing an overview of the metabolome under investigation, (2) NMR for providing versatile information and data...... structures for multivariate pattern recognition methods and (3) NMR for providing a unique fingerprint of the lipoprotein status of the subject. For the first time in history, by combining NMR spectroscopy and chemometrics we are able to perform inductive nutritional research as a complement to the deductive...

  4. Structural characterization of asphaltenes from vacuum residue distillation

    International Nuclear Information System (INIS)

    Silva, Ronaldo C.; Seidl, Peter R.; Menezes, Sonia M.C. de; Teixeira, Marco A.G.

    2001-01-01

    The aim of this work was to do structural characterization of asphaltenes from different vacuum residues distillation. Several average molecular parameters using some analytical techniques were obtained and these techniques were: nuclear magnetic resonance ( 1 H and 13 C NMR), elemental analysis (C,H,N,O and S content), Fourier transform infrared (FT-IR), vapor pressure osmometry and gel permeation chromatography. Particularly from NMR, some important molecular parameters were obtained, such as aromatic carbon fraction, aliphatic carbons fraction, alkyl substituted aromatic carbons, unsubstituted aromatic carbons, etc. Molecular modeling will be employed to build the structure of asphaltenes using the experimental data. (author)

  5. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    Science.gov (United States)

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-05

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases.

  6. A new method for weakening the combined effect of residual errors on multibeam bathymetric data

    Science.gov (United States)

    Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue

    2014-12-01

    Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.

  7. NMR structural studies of oligosaccharides and other natural products

    DEFF Research Database (Denmark)

    Kjærulff, Louise

    produce secondary metabolites for signaling and competing against other organisms, and these molecules are important in drug discovery due to their inherent biological activities. From a marine Photobacterium (P. halotolerans) we isolated the solonamides and the ngercheumicins, two families of cyclic...... through the nJCH correlation, this experiment has exciting applications for configurational assignment of e.g. carbohydrates and for residual dipolar couplings. Identification of known molecules and discovery of novel molecules are other important applications of NMR spectroscopy. Bacteria and fungi....... fijiensis, was also investigated for production of novel secondary metabolites, and a new pyranonigrin (E) was isolated and structure elucidated by NMR spectroscopy along with JBIR-74 and decumbenone A, two known metabolites previously isolated from Aspergillus and Penicillium species. Oligosaccharides...

  8. Identifying inter-residue resonances in crowded 2D {sup 13}C-{sup 13}C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yimin; Cross, Timothy A. [Florida State University, Department of Chemistry and Biochemistry (United States); Fu Riqiang, E-mail: rfu@magnet.fsu.edu [National High Magnet Field Lab (United States)

    2013-07-15

    The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional {sup 13}C-{sup 13}C chemical shift correlation spectra is presented. With the analyses of {sup 13}C-{sup 13}C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly {sup 13}C labeled protein that are consistent with the high resolution structure of the M2 (22-62) protein (Sharma et al., Science 330(6003):509-512, 2010)

  9. Remeasuring HEWL pKa values by NMR spectroscopy 

    DEFF Research Database (Denmark)

    Webb, Helen; Tynan-Connolly, Barbara Mary; Lee, Gregory M

    2011-01-01

    Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured by track......Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured...... by tracking the NMR chemical shifts of several reporter nuclei versus sample pH. However, careful analysis of these curves is needed to extract residue-specific pK(a) values since pH-dependent chemical shift changes can arise from many sources, including through-bond inductive effects, through-space electric...... protonated carbons and protons in this protein. We extracted pK(a) values from the resulting titration curves using standard fitting methods, and compared these values to each other, and with those measured previously by ¹H NMR (Bartik et al., Biophys J 1994;66:1180–1184). This analysis gives insights...

  10. Calorimetric, FTIR and 1H NMR measurements in combination with DFT calculations for monitoring solid-state changes of dynamics of sibutramine hydrochloride.

    Science.gov (United States)

    Pajzderska, Aleksandra; Chudoba, Dorota M; Mielcarek, Jadwiga; Wąsicki, Jan

    2012-10-01

    Two forms of sibutramine hydrochloride, monohydrate and anhydrous, have been investigated by calorimetric methods, Fourier transform infrared (FTIR) absorption and (1) H nuclear magnetic resonance (NMR) measurements as well as by density functional theory (DFT) of vibrational frequencies and infrared intensities, calculations of steric hindrances and Monte Carlo simulations. The results of FTIR spectra combined with DFT calculations permitted identification of the bands corresponding to the dynamics and vibrations of water molecules. NMR study and Monte Carlo simulations revealed the occurrence of reorientation jumps of the methyl groups in sibutramine cation and also revealed that the reorientation of isopropyl group is possible only in sibutramine monohydrate hydrochloride. The hydration of sibutramine hydrochloride causes a change in the conformation of sibutramine cation. Copyright © 2012 Wiley-Liss, Inc.

  11. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  12. NMR as a probe metabolic disorders in disease and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yushmanov, Victor E [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Chemical Physics

    1994-12-31

    The effects of malignant tumors, chemical and physical factors (toxic agents, ionizing radiation) as well as of their treatment on tissue metabolism were studied by NMR imaging. The importance of NMR is highlighted since it enables to a better understanding of molecular mechanisms of diseases and therapeutic interventions, in addition to the analysis of metabolic disorders in human beings. Combined with the studies of experimental animal pathologies, may constitute a base for new types of NMR-diagnosis in vivo 10 refs.

  13. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  14. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  15. Recent advances in solid state NMR and its application to ceramics

    International Nuclear Information System (INIS)

    Maekawa, Hideki

    2006-01-01

    The basic principles of solid state NMR are explained. Four application examples contained amorphous glass, determination of defects of oxide crystal, nano particle and ionic materials. The structure of inorganic glass is measured by 29 Si, 11 B, 31 P and 23 Na NMR and Magic Angle Spinning NMR (MAS-NMR), chemical species near hydrogen by Cross-Polarization Magic Angle Spinning (CP/MAS) method, and hydrogen by Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) and MAS-NMR. Hydrous and anhydrous silicate glass with condensed 17 O was measured by 17 O Multi Quantum Magic Angle Spinning (MQ/MAS). 27 Al in slags was analyzed by 27 Al 5Q-MAS. 89 Y NMR spectrum of YSZ (Yttria Stabilization Zirconia, Y 2 O 3 -ZrO 2 ) was explained. The ion transfer phenomena in the electrolyte are observed directly by the solid state NMR. (S.Y.)

  16. Determination of unreacted monomers in restorative dental resins based on dimethacrylate by NMR hydrogen

    International Nuclear Information System (INIS)

    Correa, Ivo Carlos; Miranda Junior, Walter G.; Tavares, Maria Ines B.

    2001-01-01

    The presence of unreacted monomers after photo-activation of dental composites causes mechanical and biological properties to decrease and could be detected by NMR analysis. The aim of this study was to evaluate the percentage of leachable monomers of light-cured composites under the effect of variations of exposure time of photo activation by nuclear magnetic resonance of hydrogen in solution (NMR 1 H). The composite resins tested Z250 and Fill Magic obtained similar values of unreacted monomers (%) at photo curing time suggested by the manufacturer and values were also lower than Durafill and A110 concentrations. From the NMR results, one day extractable time was efficient to quantify the amount of residual monomers in the dental composites tested, unless for Durafill composite. (author)

  17. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    International Nuclear Information System (INIS)

    Saewen, Elin; Huttunen, Eine; Zhang Xue; Yang Zhennai; Widmalm, Goeran

    2010-01-01

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 → , in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M w = 62 kDa, corresponding to 64 repeating units in the EPS.

  18. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  19. Rearrangement of the distal pocket accompanying E7 His → Gln substitution in elephant carbonmonoxy- and oxymyoglobin: 1H NMR identification of a new aromatic residue in the heme pocket

    International Nuclear Information System (INIS)

    Yu, L.P.; La Mar, G.N.; Mizukami, H.

    1990-01-01

    Two-dimensional 1 H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO 2 ). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO 2 resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The CζH proton of the Phe CD4 was found to move toward the iron of the heme by ∼4 angstrom relative to the position in sperm whale MbCO, requiring minimally a 3-angstrom movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His → Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties

  20. Combined solid state and solution NMR studies of {alpha},{epsilon}-{sup 15}N labeled bovine rhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Karla; Lehner, Ines [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Dhiman, Harpreet Kaur [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de; Klein-Seetharaman, Judith [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Khorana, H. Gobind [Massachusetts Institute of Technology, Departments of Biology and Chemistry (United States)], E-mail: khorana@mit.edu

    2007-04-15

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of {alpha},{epsilon}-{sup 15}N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state {sup 13}C,{sup 15}N-REDOR and HETCOR experiments of all possible {sup 13}C'{sub i-1} carbonyl/{sup 15}N{sub i}-tryptophan isotope labeled amide pairs, and H/D exchange {sup 1}H,{sup 15}N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone {sup 15}N nuclei and partially to their bound protons. {sup 1}H,{sup 15}N chemical shift assignment was achieved for indole side chains of Trp35{sup 1.30} and Trp175{sup 4.65}. {sup 15}N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175{sup 4.65} at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin.

  1. Solution NMR Structures of Oxidized and Reduced Ehrlichia chaffeensis thioredoxin: NMR-Invisible Structure Owing to Backbone Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Myler, Peter J.

    2018-01-02

    Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, the 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.

  2. Determination of the residue levels of nicarbazin and combination nicarbazin-narasin in broiler chickens after oral administration

    Science.gov (United States)

    da Silva, Guilherme Resende; de Assis, Débora Cristina Sampaio; Cançado, Silvana de Vasconcelos

    2017-01-01

    The depletion times of the anticoccidial nicarbazin administered individually and of nicarbazin and narasin administered in combination were evaluated by determining the presence and levels of 4,4'-dinitrocarbanilide (DNC), the marker residue for nicarbazin, and narasin residues in the muscle tissues of broiler chickens subjected to a pharmacological treatment. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was used. The results showed the presence of all anticoccidial residues; however, the DNC levels were higher when the nicarbazin was administered individually than when it was used in association with narasin throughout the experimental period. After six days of withdrawal, the DNC level following nicarbazin administration alone was lower than the maximum residue level (MRL) of 200 μg kg-1. However, when the nicarbazin was co-administered with narasin, the concentrations of DNC were lower than the MRL after four days of withdrawal. These results may be justified because the dosage of nicarbazin, when administrated individually, is greater than when it is used in combination with narasin. The levels of narasin were lower than the MRL of 15 μg kg-1 throughout the evaluation period. It was concluded that nicarbazin is rapidly metabolized from the broiler muscles up to six days of withdrawal since the DNC levels were lower than the maximum residue level (MRL) and the concentrations of narasin were lower than the MRL throughout the evaluation period. PMID:28750013

  3. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-08-15

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  4. Mobility of drugs in lipid membranes by NMR

    International Nuclear Information System (INIS)

    Yoshii, Noriyuki; Okamura, Emiko

    2011-01-01

    Mobility of drugs and biomembrane constituents is a key to elucidate the membrane transport mechanism in the cell. Lipid bilayer membrane is a dynamic structure where molecules are always fluctuating under physiological conditions. The mechanism of drug transport is related to the molecular dynamics in such soft, fluid membrane interface. To gain insight into molecular movements in membranes, we develop a noninvasive method to monitor dynamics properties of drugs and lipid components in membranes by applying multinuclear high-resolution solution NMR in combination with the pulsed-field-gradient (PFG) technique. We have quantified the diffusivity, the kinetics of membrane binding, and the bound fraction of the drug in situ by using large unilamellar vesicles of egg phosphatidylcholine as model cell membranes. The combination of 1D and PFG NMR serves to quantify the kinetics of membrane binding where the bound and the free components are unable to distinguish because of the rapid exchange on the NMR timescale. A small-sized 5-fluorouracil and fluorinated bisphenol A are used as model drug. (author)

  5. Sequence-specific 1H NMR assignments and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Breg, J.N.; Boelens, R.; George, A.V.E.; Kaptein, R.

    1989-01-01

    The Arc repressor of bacteriophage P22 is a DNA binding protein that does not belong to any of the known classes of such proteins. The authors have undertaken a 1 H NMR study of the protein with the aim of elucidating its three-dimensional structure in solution and its mode of binding of operator DNA. Here the authors present the 1 H nuclear magnetic resonance (NMR) assignments of all backbone protons an most of the side-chain protons of Arc repressor. Elements of secondary structure have been identified on the basis of networks of characteristics sequential and medium-range nuclear Overhauser enhancements (NOEs). Two α-helical regions have been found in the peptide regions 16-29 and 35-45. The ends of the helices could not yet be firmly established and could extend to residue 31 for the first helix and to residue 49 for the second. Immediately before the first helix, between residues 8 and 14, a region is present with β-sheet characteristics dominated by a close proximity of the α-protons of residues 9 and 13. Because of the dimeric nature of the protein there are still two possible ways in which the NOEs in the β-sheet region can be interpreted. While the data presently do not allow an unambiguous choice between these two possibilities, some evidence is discussed that favors the latter (β-sheet between monomers). Since the N-terminal region of Arc is responsible for the sequence-specific recognition of its operator, the findings suggest the existence of a DNA binding motif in which a β-sheet region is present

  6. Enhanced coagulation for improving coagulation performance and reducing residual aluminum combining polyaluminum chloride with diatomite.

    Science.gov (United States)

    Hu, Wenchao; Wu, Chunde

    2016-01-01

    The feasibility of using enhanced coagulation, which combined polyaluminum chloride (PAC) with diatomite for improving coagulation performance and reducing the residual aluminum (Al), was discussed. The effects of PAC and diatomite dosage on the coagulation performance and residual Al were mainly investigated. Results demonstrated that the removal efficiencies of turbidity, dissolved organic carbon (DOC), and UV254 were significantly improved by the enhanced coagulation, compared with PAC coagulation alone. Meaningfully, the five forms of residual Al (total Al (TAl), total dissolved Al (TDAl), dissolved organic Al (DOAl), dissolved monomeric Al (DMAl), and dissolved organic monomeric Al (DOMAl)) all had different degrees of reduction in the presence of diatomite and achieved the lowest concentrations (0.185, 0.06, 0.053, 0.014, and 0 mg L(-1), respectively) at a PAC dose of 15 mg L(-1) and diatomite dose of 40 mg L(-1). In addition, when PAC was used as coagulant, the majority of residual Al existed in dissolved form (about 31.14-70.16%), and the content of DOMAl was small in the DMAl.

  7. Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.

    Science.gov (United States)

    Liu, J; Prakash, O; Cai, M; Gong, Y; Huang, Y; Wen, L; Wen, J J; Huang, J K; Krishnamoorthi, R

    1996-02-06

    The solution structure of recombinant Cucurbita maxima trypsin inhibitor-V (rCMTI-V), whose N-terminal is unacetylated and carries an extra glycine residue, was determined by means of two-dimensional (2D) homo and 3D hetero NMR experiments in combination with a distance geometry and simulated annealing algorithm. A total of 927 interproton distances and 123 torsion angle constraints were utilized to generate 18 structures. The root mean squared deviation (RMSD) of the mean structure is 0.53 A for main-chain atoms and 0.95 A for all the non-hydrogen atoms of residues 3-40 and 49-67. The average structure of rCMTI-V is found to be almost the same as that of the native protein [Cai, M., Gong, Y., Kao, J.-L., & Krishnamoorthi, R. (1995) Biochemistry 34, 5201-5211]. The backbone dynamics of uniformly 15N-labeled rCMTI-V were characterized by 2D 1H-15N NMR methods. 15N spin-lattice and spin-spin relaxation rate constants (R1 and R2, respectively) and [1H]-15N steady-state heteronuclear Overhauser effect enhancements were measured for the peptide NH units and, using the model-free formalism [Lipari, G., & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559, 4559-4570], the following parameters were determined: overall tumbling correlation time for the protein molecule (tau m), generalized order parameters for the individual N-H vectors (S2), effective correlation times for their internal motions (tau e), and terms to account for motions on a slower time scale (second) due to chemical exchange and/or conformational averaging (R(ex)). Most of the backbone NH groups of rCMTI-V are found to be highly constrained ((S2) = 0.83) with the exception of those in the binding loop (residues 41-48, (S2) = 0.71) and the N-terminal region ((S2) = 0.73). Main-chain atoms in these regions show large RMSD values in the average NMR structure. Residues involved in turns also appear to have more mobility ((S2) = 0.80). Dynamical properties of rCMTI-V were compared with those of two other

  8. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins

    Science.gov (United States)

    Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi

    2017-12-01

    Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.

  9. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    Science.gov (United States)

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Combination of capillary GC, GC/MS and 13C-NMR for the characterization of the rhizome oil of Piper betle L. (Piperaceae) from Vietnam

    NARCIS (Netherlands)

    Thanh, L.; Dung, N.X.; Bighelli, A.; Casanova, J.; Leclercq, P.A.

    1997-01-01

    The essential oil from the rhizomes of Piper betle L. (betel), collected around Hue, was obtained in 0.20% yield. The oil was examined by a combination of capillary GC and GC/MS. 13C-NMR studies confirmed the structure assignments proposed by retention data and mass spectra of the components with a

  11. Flow units from integrated WFT and NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  12. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    Science.gov (United States)

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  13. Solution structures of α-conotoxin G1 determined by two-dimensional NMR spectroscopy

    International Nuclear Information System (INIS)

    Pardi, A.; Galdes, A.; Florance, J.; Maniconte, D.

    1989-01-01

    Two-dimensional NMR data have been used to generate solution structures of α-conotoxin G1, a potent peptide antagonist of the acetylcholine receptor. Structural information was obtained in the form of proton-proton internuclear distance constraints, and initial structures were produced with a distance geometry algorithm. Energetically more favorable structures were generated by using the distance geometry structures as input for a constrained energy minimization program. The results of both of these calculations indicate that the overall backbone conformation of the molecule is well-defined by the NMR data whereas the side-chain conformations are generally less well-defined. The main structural features derived from the NMR data were the presence of tight turns centered on residues Pro 5 and Arg 9 . The solution structures are compared with previous proposed models of conotoxin G1, and the NMR data are interpreted in conjunction with chemical modification studies and structural properties of other antagonists of the acetylcholine receptor to gain insight into structure-activity relationships in these peptide toxins

  14. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  15. Modified Mitchell osteotomy alone does not have higher rate of residual metatarsalgia than combined first and lesser metatarsal osteotomy

    Directory of Open Access Journals (Sweden)

    Shu-Jung Chen

    2015-04-01

    Full Text Available Transfer metatarsalgia (TM is a common forefoot disorder secondary to hallux valgus (HV. Some authors suggest that a combined lesser metatarsal osteotomy while undergoing HV surgery improves metatarsalgia, whereas others concluded that isolated HV corrective osteotomy can improve symptomatic metatarsalgia. The main purpose of this retrospective study was to compare clinical outcomes in patients with and without combined lesser metatarsal osteotomy while receiving HV correction surgery. We retrospectively reviewed the patients who underwent osteotomy for HV correction between January 2000 and December 2010. All patients underwent HV correction with modified Mitchell osteotomy. Clinical evaluations including the American Orthopaedic Foot and Ankle Society score and residual metatarsalgia were assessed, and radiographic measurements were carried out. Sixty-five patients (83 feet meeting the selection criteria were enrolled. Thirty feet receiving a combined lesser metatarsal osteotomy were classified as the combined surgery (CS group, and the others were classified as the control (CN group (53 feet. The overall rate of persistent symptomatic metatarsalgia was 19.28% after operative treatment. There were six feet with residual metatarsalgia in the CS group, and 10 feet in the CN group. There was no significant difference in the rate of persistent symptoms between the two groups (p = 0.9. According to this result, modified Mitchell osteotomy alone did not have a higher rate of residual metatarsalgia than CS. We also found that the average recovery rate of TM was about 80.7% and those patients whose preoperative HV angle was > 30° had the higher risk of residual metatarsalgia after surgery.

  16. C-13 NMR spectroscopy of plasma reduces interference of hypertriglyceridemia in the H-1 NMR detection of malignancy

    International Nuclear Information System (INIS)

    Fossell, E.T.; Hall, F.M.; McDonagh, J.

    1991-01-01

    The authors have previously described the application of water-suppressed proton nuclear magnetic resonance (H-1 NMR) spectroscopy of plasma for detection of malignancy. Subsequently, hypertriglyceridemia has been identified as a source of false positive results. Here is described a confirmatory, adjunctive technique -analysis of the carbon-13 (C-13) NMR spectrum of plasma- which also identifies the presence of malignancy but is not sensitive to the plasma triglyceride level. Blinded plasma samples from 480 normal donors and 208 patients scheduled for breast biopsy were analyzed by water-suppressed H-1 and C-13 NMR spectroscopy. Triglyceride levels were also measured. Among the normal donors, there were 38 individuals with hypertriglyceridemia of whom 18 had results consistent with malignancy by H-1 NMR spectroscopy. However, the C-13 technique reduced the apparent H-1 false positive rate from 7.0 to 0.6 percent. Similarly, in the breast biopsy cohort, C-13 reduced the false positive rate from 2.8 to 0.9 percent. Furthermore, the accuracy of the combined H-1/C-13 test in this blinded study was greater than 96 percent in 208 patients studied. (author). 27 refs.; 5 figs.; 4 tabs

  17. Synergistic effect of the simultaneous chemometric analysis of {sup 1}H NMR spectroscopic and stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data: Application to wine analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monakhova, Yulia B., E-mail: yul-monakhova@mail.ru [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012 (Russian Federation); Godelmann, Rolf [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Hermann, Armin [Landesuntersuchungsamt -Institut für Lebensmittelchemie und Arzneimittelprüfung, Emy-Roeder-Straße 1, Mainz 55129 (Germany); Kuballa, Thomas [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred [Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Rutledge, Douglas N. [AgroParisTech, UMR 1145, Ingénierie Procédés Aliments, 16 rue Claude Bernard, Paris F-75005 (France)

    2014-06-23

    Highlights: • {sup 1}H NMR profilings of 718 wines were fused with stable isotope analysis data (SNIF-NMR, {sup 18}O, {sup 13}C). • The best improvement was obtained for prediction of the geographical origin of wine. • Certain enhancement was also obtained for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data). • Independent component analysis was used as an alternative chemometric tool for classification. - Abstract: It is known that {sup 1}H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when {sup 1}H NMR profiles are fused with stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data. Variable selection based on clustering of latent variables was performed on {sup 1}H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with {sup 1}H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60–70% correct prediction and {sup 1}H NMR data alone in 82–89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of {sup 1}H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well.

  18. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Saewen, Elin [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden); Huttunen, Eine; Zhang Xue [University of Helsinki, Department of Food Technology (Finland); Yang Zhennai [Northeast Agricultural Research Center of China, Center of Agro-food Technology (China); Widmalm, Goeran, E-mail: gw@organ.su.s [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden)

    2010-06-15

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: {yields} 3)[{alpha}-d-Glcp-(1 {yields} 4)]-{beta}-d-Galp-(1 {yields} 4)-{beta}-d-Glcp-(1 {yields} 4)[{beta}-d-Galf-(1 {yields} 6)]-{beta}-d-Glcp-(1 {yields} 6)-{beta}-d-Glcp-(1 {sup {yields}}, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M{sub w} = 62 kDa, corresponding to 64 repeating units in the EPS.

  19. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  20. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  1. Database proton NMR chemical shifts for RNA signal assignment and validation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Shawn; Heng Xiao [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce@onemoonscientific.com [University of Maryland, Baltimore County, Department of Chemistry and Biochemistry (United States); Summers, Michael F., E-mail: summers@hhmi.umbc.edu [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States)

    2013-01-15

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4{sup 3} possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA {sup 1}H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  2. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel; Kermagoret, Anthony; Callens, Emmanuel; Florian, Pierre A.; Massiot, Dominique; Lesage, Anne; Copé ret, Christophe; Delbecq, Franç oise; Rozanska, Xavier; Sautet, Philippe

    2012-01-01

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  3. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel

    2012-04-18

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  4. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  5. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A fragment separator at LBL for beta-NMR experiment

    International Nuclear Information System (INIS)

    Matsuta, K.; Ozawa, A.; Nojiri, Y.; Minamisono, T.; Fukuda, M.; Kitagawa, A.; Ohtsubo, T.; Momota, S.; Fukuda, S.; Matsuo, Y.; Takechi, H.; Minami, I.; Sugimoto, K.; Tanihata, I.; Omata, K.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    1992-03-01

    The Beam 44 fragment separator was built at the Bevalac of LBL for NMR studies of beta emitting nuclei. 37 K, 39 Ca, and 43 Ti fragments originating from 40 Ca and 46 Ti primary beams were separated by the separator for NMR studies on these nuclei. Nuclear spin polarization was created in 39 Ca and 43 Ti using the tilted foil technique (TFT), and the magnetic moment of 43 Ti was deduced. Fragment polarization was measured for 37 K and 39 Ca emitted to finite deflection angles. The Beam 44 fragment separator in combination with a proper polarization technique, such as TFT or fragment polarization, has been very effective for such NMR studies

  7. NMR characterization of pituitary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions

  8. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    Science.gov (United States)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  9. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    Science.gov (United States)

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. © 2013 John Wiley & Sons A/S.

  10. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    2010-08-01

    Full Text Available In this study, residual stresses in heat treated specimen were measured by using ESPI (Electronic Speckle-Pattern Interferometry combined with the hole-drilling method. The specimen, made of SUS 304 austenitic stainless steel, was quenched and water cooled to room temperature. Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process. As a result, the thermal stress fields were obtained from both the experiment and the numerical simulation. By comparision of stress fields, results from the experimental method and numerical simulation well agreed to each other, therefore, it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  11. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings - an assessment of the interrelation of NMR restraints

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Pernille Rose; Axelsen, Jacob Bock [University of Copenhagen, Institute of Molecular Biology (Denmark); Lerche, Mathilde Hauge [Amersham Health (Sweden); Poulsen, Flemming M. [University of Copenhagen, Institute of Molecular Biology (Denmark)], E-mail: fmp@apk.molbio.ku.dk

    2004-01-15

    We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on {sup 1}H{sup N}-{sup 15}N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of {sup 13}CO-{sup 13}C{sup {alpha}} and {sup 15}N-{sup 13}CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 A resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

  12. Genotype evaluation of cowpea seeds (Vigna unguiculata) using 1H qNMR combined with exploratory tools and solid-state NMR.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-01-01

    The ultimate aim of this study was to apply a non-targeted chemometric analysis (principal component analysis and hierarchical clustering analysis using the heat map approach) of NMR data to investigate the variability of organic compounds in nine genotype cowpea seeds, without any complex pre-treatment. In general, both exploratory tools show that Tvu 233, CE-584, and Setentão genotypes presented higher amount mainly of raffinose and Tvu 382 presented the highest content of choline and least content of raffinose. The evaluation of the aromatic region showed the Setentão genotype with highest content of niacin/vitamin B3 whereas Tvu 382 with lowest amount. To investigate rigid and mobile components in the seeds cotyledon, 13 C CP and SP/MAS solid-state NMR experiments were performed. The cotyledon of the cowpea comprised a rigid part consisting of starch as well as a soft portion made of starch, fatty acids, and protein. The variable contact time experiment suggests the presence of lipid-amylose complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Solid state NMR sequential resonance assignments and conformational analysis of the 2x10.4 kDa dimeric form of the Bacillus subtilis protein Crh

    Energy Technology Data Exchange (ETDEWEB)

    Boeckmann, Anja [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France)], E-mail: a.bockmann@ibcp.fr; Lange, Adam [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Galinier, Anne [Institut de Biologie Structurale et Microbiologie, C.N.R.S UPR 9043 (France); Luca, Sorin [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Giraud, Nicolas; Juy, Michel [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Heise, Henrike [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Montserret, Roland; Penin, Francois [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Baldus, Marc [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany)], E-mail: maba@mpibpc.mpg.de

    2003-12-15

    Solid state NMR sample preparation and resonance assignments of the U-[{sup 13}C,{sup 15}N] 2x10.4 kDa dimeric form of the regulatory protein Crh in microcrystalline, PEG precipitated form are presented. Intra- and interresidue correlations using dipolar polarization transfer methods led to nearly complete sequential assignments of the protein, and to 88% of all {sup 15}N, {sup 13}C chemical shifts. For several residues, the resonance assignments differ significantly from those reported for the monomeric form analyzed by solution state NMR. Dihedral angles obtained from a TALOS-based statistical analysis suggest that the microcrystalline arrangement of Crh must be similar to the domain-swapped dimeric structure of a single crystal form recently solved using X-ray crystallography. For a limited number of protein residues, a remarkable doubling of the observed NMR resonances is observed indicative of local static or dynamic conformational disorder. Our study reports resonance assignments for the largest protein investigated by solid state NMR so far and describes the conformational dimeric variant of Crh with previously unknown chemical shifts.

  14. KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Iwahara, Junji; Koshiba, Seizo; Tomizawa, Tadashi; Tochio, Naoya; Guentert, Peter; Kigawa, Takanori; Yokoyama, Shigeyuki

    2007-01-01

    The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure

  15. Determination of the torsion angles of alanine and glycine residues of model compounds of spider silk (AGG){sub 10} using solid-state NMR methods

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Jun; Ohgo, Kosuke; Komatsu, Kohei; Kubota, Ayumi; Asakura, Tetsuo [Tokyo University of Agriculture and Technology, Department of Biotechnology (Japan)], E-mail: asakura@cc.tuat.ac.jp

    2003-02-15

    Spiders synthesize several kinds of silk fibers. In the primary structure of spider silk, one of the major ampullate (dragline, frame) silks, spidroin 1, and flagelliform silk (core fibers of adhesive spiral), there are common repeated X-Gly-Gly (X = Ala, Leu, Pro, Tyr, Glu, and Arg) sequences, which are considered to be related to the elastic character of these fibers. In this paper, two dimensional spin diffusion solid-state NMR under off magic angle spinning (OMAS), {sup 13}C chemical shift contour plots, and Rotational Echo DOuble Resonance (REDOR) were applied to determine the torsion angles of one Ala and two kinds of Gly residues in the Ala-Gly-Gly sequence of {sup 13}C=O isotope-labeled (Ala-Gly-Gly){sub 10}. The torsion angles were determined to be ({phi}, {psi}) = (-90 deg., 150 deg.) within an experimental error of {+-}10 deg. for each residue. This conformation is characterized as 3{sub 1} helix which is in agreement with the structure proposed from the X-ray powder diffraction pattern of poly(Ala-Gly-Gly). The 3{sub 1} helix of (Ala-Gly-Gly){sub 10} does not change by formic acid treatment although (Ala-Gly){sub 15} easily changes from the silk I conformation (the structure of Bombyx mori silk fibroin before spinning in the solid state) to silk II conformation (the structure of the silk fiber after spinning) by such treatment. Thus, the 3{sub 1} helix conformation of (Ala-Gly-Gly){sub 10} is considered very stable. Furthermore, the torsion angles of the 16th Leu residue of (Leu-Gly-Gly){sub 10} were also determined as ({phi}, {psi}) = (-90 deg., 150 deg.) and this peptide is also considered to take 3{sub 1} helix conformation.

  16. Use of acetimidation in the NMR identification of neurophysin lysine protons

    International Nuclear Information System (INIS)

    Sardana, V.; Breslow, E.

    1986-01-01

    Acetimidation of the two lysine residues of neurophysin (NP) results in localized changes in the proton magnetic resonance spectrum, allowing identification of lysine side-chain resonances. Neither peptide-binding nor protein self-association appeared to be significantly altered by acetimidation. Additionally, no significant effect of either peptide-binding or self-association on lysine epsilon-CH 2 protons was seen. However, dimerization-induced NMR changes in the 1.6-1.8 ppm region, associated with lysine β,γ,σ protons, were altered in the acetimidated protein. In particular, while the spectrum of the acetimidated NP monomer was almost identical to that of the native protein, a shoulder at 1.72 ppm in the native protein dimer was shifted upfield in the modified dimer. Additionally the direction of NMR shifts in the 1.6-1.8 ppm region normally associated with peptide binding to the NP dimer appeared to be reversed in the acetimidated protein. Binding-induced and dimerization-induced changes in all other regions of the spectrum were identical in the native and modified proteins. These results suggest that one or both NP lysine residues may be near the dimer subunit interface and indicate an effect of peptide-binding on lysine side-chain environment

  17. NMR, water and plants

    International Nuclear Information System (INIS)

    As, H. van.

    1982-01-01

    This thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and other body fluids in human and animals. The method is based on a pulse sequence of equidistant π pulses in combination with a linear magnetic field gradient. (Auth.)

  18. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    Science.gov (United States)

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  19. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  20. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G

    International Nuclear Information System (INIS)

    Cai Ling; Kosov, Daniel S.; Fushman, David

    2011-01-01

    We performed density functional calculations of backbone 15 N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245–253, 2009) to compute 15 N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15 N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15 N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.

  1. A 13C{31P} REDOR NMR Investigation of the Role of Glutamic Acid Residues in Statherin-Hydroxyapatite Recognition

    Science.gov (United States)

    Ndao, Moise; Ash, Jason T.; Breen, Nicholas F.; Goobes, Gil; Stayton, Patrick S.; Drobny, Gary P.

    2011-01-01

    The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acids – D1, E4, and E5 – are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized 13C{31P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the δ-carboxyl 13C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and 31P spins of the phosphate groups at the HAP surface. 13C{31P} REDOR studies of glutamic-5-13C acid incorporated at positions E4 and E26 indicate a 13C–31P distance of more than 6.5 Å between the side chain carboxyl 13C spin of E4 and the closest 31P in the HAP surface. In contrast, the carboxyl 13C spin at E5 has a much shorter 13C–31P internuclear distance of 4.25±0.09 Å, indicating that the carboxyl group of this side chain interacts directly with the surface. 13C T1ρ and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces. PMID:19678690

  2. NMR-CT scanner

    International Nuclear Information System (INIS)

    Kose, Katsumi; Sato, Kozo; Sugimoto, Hiroshi; Sato, Masataka.

    1983-01-01

    A brief explanation is made on the imaging methods for a practical diagnostic NMR-CT scanner : A whole-body NMR-CT scanner utilizing a resistive magnet has been developed by Toshiba in cooperation with the Institute for Solid State Physics, the University of Tokyo. Typical NMR-CT images of volunteers and patients obtained in the clinical experiments using this device are presented. Detailed specifications are also shown about the practical NMR-CTs which are to be put on the market after obtaining the government approval. (author)

  3. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis

    International Nuclear Information System (INIS)

    Lutterotti, L.; Chateigner, D.; Ferrari, S.; Ricote, J.

    2004-01-01

    Advanced thin films for today's industrial and research needs require highly specialized methodologies for a successful quantitative characterization. In particular, in the case of multilayer and/or unknown phases a global approach is necessary to obtain some or all the required information. A full approach has been developed integrating novel texture and residual stress methodologies with the Rietveld method (Acta Cryst. 22 (1967) 151) (for crystal structure analysis) and it has been coupled with the reflectivity analysis. The complete analysis can be done at once and offers several benefits: the thicknesses obtained from reflectivity can be used to correct the diffraction spectra, the phase analysis help to identify the layers and to determine the electron density profile for reflectivity; quantitative texture is needed for quantitative phase and residual stress analyses; crystal structure determination benefits of the previous. To achieve this result, it was necessary to develop some new methods, especially for texture and residual stresses. So it was possible to integrate them in the Rietveld, full profile fitting of the patterns. The measurement of these spectra required a special reflectometer/diffractometer that combines a thin parallel beam (for reflectivity) and a texture/stress goniometer with a curved large position sensitive detector. This new diffraction/reflectivity X-ray machine has been used to test the combined approach. Several spectra and the reflectivity patterns have been collected at different tilting angles and processed at once by the special software incorporating the aforementioned methodologies. Some analysis examples will be given to show the possibilities offered by the method

  4. NMR Studies of the Structure and Function of the HIV-1 5′-Leader

    Directory of Open Access Journals (Sweden)

    Sarah C. Keane

    2016-12-01

    Full Text Available The 5′-leader of the human immunodeficiency virus type 1 (HIV-1 genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.

  5. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  6. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  7. Two- and three-dimensional proton NMR studies of apo-neocarzinostatin

    International Nuclear Information System (INIS)

    Xiaolian Gao; Burkhart, W.

    1991-01-01

    Neocarzinostatin (NCS) is an antitumor protein from Streptomyces carzinostaticus that is identical in apo-protein sequence with mitomalcin (MMC) from Streptomyces malayensis. The authors describe the use of apo-NCS as a model system for applying combined two-and three-dimensional (2D and 3D) proton NMR spectroscopy to the structure determination of proteins without isotope labeling. Strategies aimed at accurately assigning overlapped 2D cross-peaks by using semiautomated combined 2D and 3D data analysis are developed. Using this approach, they have assigned 99% of the protons, including those of the side chains, and identified about 1,270 intra- and interresidue proton-proton interactions (fixed distances are not included) in apo-NCS. Comparing these results with those reported recently on 2D NMR studies of apo-NCS demonstrated advantages of proton 3D NMR spectroscopy in protein spectral assignments. They are able to obtain more complete proton resonance and secondary structural assignments and find several misassignments in the earlier report. Strategies utilized in this work should be useful for developing automation procedures for spectral assignments

  8. Nuclear magnetic resonance spectroscopic and isotopic analysis of carbonized residues from subarctic Canadian prehistoric pottery

    International Nuclear Information System (INIS)

    Sherriff, B.L.; Tisdale, M.A.; Sayer, B.G.; Schwarcz, H.P.; Knyf, M.

    1995-01-01

    Late prehistoric pottery is found in abundance at archaeological sites around Southern Indian Lake. Black residues, found on the two dominant vessel forms, flat plates and round pots, are presumed to be the remains of prehistoric meals. 13 C cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy (CPMAS NMR) and 13 C and 15 N isotopic ratios and C/N ratios are used to reconstruct prehistoric diet and to shed light on possible uses for the plates. Samples of foods were cooked in clay pots, on a wood fire, to simulate the conditions of burning that could have produced the residue. Decomposition of carbohydrates, protein, and fat during cooking is studied with 13 C CPMAS NMR, and the effect of cooking on isotopic and C/N ratios documented. Predominantly fish and fat were cooked in the pots, whereas the residues from plates contain a greater proportion of fat and could have been used as frying pans or possibly as fat-burning lamps placed on the ashes of a wood fire. (Author)

  9. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  10. Bioefficacy, residue dynamics and safety assessment of the combination fungicide trifloxystrobin 25% + tebuconazole 50%-75 WG in managing early blight of tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Saha, Sujoy; Purath, Ahammed Shabeer Thekkum; Jadhav, Manjusha R; Loganathan, M; Banerjee, Kaushik; Rai, A B

    2014-01-01

    This paper reports the in vitro and in vivo bioefficacy of a combination fungicide trifloxystrobin (25%) + tebuconazole (50%) against early blight disease of tomato (Lycopersicon esculentum Mill.) caused by Alternaria solani and their corresponding pre-harvest intervals (PHI) with reference to the maximum residue limits (European Union). Bioefficacy of the test fungicide combination revealed that in vitro conditions manifested the best control (75.1%) at 350 mg kg(-1) against 76.2% control under field conditions. A sample preparation method based on ethyl acetate extraction and estimation by LC-MS multiple reaction monitoring (MRM) was validated in tomato fruits at 0.01 mg/kg and dissipation studies were conducted in field at single and double doses. The residues of both the compounds on all the sampling days were below the European Union maximum residue limits (EU-MRLs) and the maximum permissible intakes (MPIs) were calculated on the basis of prescribed acceptable daily intake (ADI). The combined bioefficacy and residue dynamics information will support label-claim of this fungicide combination for the management of early blight in tomato.

  11. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba

    OpenAIRE

    Napolitano, José G.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2012-01-01

    The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H-COSY data, in combination with 1H iterative Full Spin Analysis (HiFSA). The computational analysis of discrete spin systems allowed a ...

  12. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  13. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  14. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    International Nuclear Information System (INIS)

    Liu Aizhuo; Riek, Roland; Wider, Gerhard; Schroetter, Christine von; Zahn, Ralph; Wuethrich, Kurt

    2000-01-01

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15 N, 13 C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15 N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15 N relaxation rates of unfolded polypeptides in high resolution constant-time [ 1 H, 15 N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15 N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  15. Covariance NMR Processing and Analysis for Protein Assignment.

    Science.gov (United States)

    Harden, Bradley J; Frueh, Dominique P

    2018-01-01

    During NMR resonance assignment it is often necessary to relate nuclei to one another indirectly, through their common correlations to other nuclei. Covariance NMR has emerged as a powerful technique to correlate such nuclei without relying on error-prone peak peaking. However, false-positive artifacts in covariance spectra have impeded a general application to proteins. We recently introduced pre- and postprocessing steps to reduce the prevalence of artifacts in covariance spectra, allowing for the calculation of a variety of 4D covariance maps obtained from diverse combinations of pairs of 3D spectra, and we have employed them to assign backbone and sidechain resonances in two large and challenging proteins. In this chapter, we present a detailed protocol describing how to (1) properly prepare existing 3D spectra for covariance, (2) understand and apply our processing script, and (3) navigate and interpret the resulting 4D spectra. We also provide solutions to a number of errors that may occur when using our script, and we offer practical advice when assigning difficult signals. We believe such 4D spectra, and covariance NMR in general, can play an integral role in the assignment of NMR signals.

  16. Carbon-13 solid state NMR studies in the aromatization of residual coals from hydropyrolised cellulose; Estudo por {sup 13} C RMN em estado solido da aromatizacao em carvoes residuais de celulose hidropirolisada

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J.D.; Luengo, C.A. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica; Snape, C.A. [Dept. Pure and Apllied Chemistry, Glasgow (United Kingdom)

    1997-12-31

    Pure cellulose was pyrolyzed is a fixed-bed reactor under hydrogen pressure (hydropyrolysis). Residual chars were collected and analysed by solid state nmr {sup 13} C (CP-MAS) and elemental. Hydrophyrolysis parameters such as final temperature in the range of 300 to 520 deg C and hydrogen pressure from 5 to 100 atm gave different char samples. CP-MAS spectra were obtained in a BRUKER MSL-100 spectrometer. The results showed that the aromatic and aliphatic fractions had strong dependence with temperature and no influence with pressure. Elemental analysis indicated the carbon content increased more with temperature than the pressure increasing. (author) 6 refs., 2 figs., 2 tabs.

  17. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  18. Characterizing Radiation-Aged Polysiloxane-Silica Composites: Identifying Changes in Network Topology via 1H NMR

    International Nuclear Information System (INIS)

    Mayer, B.; Chinn, S.C.; Maxwell, R.S.; Reimer, J.

    2008-01-01

    Characterizing and quantifying changes in elastomeric materials upon exposure to harsh environments is important in the estimation of device lifetimes. Nuclear magnetic resonance (NMR) spectroscopy has been used effectively in the analysis of such materials and has proved to be both sensitive to micro- and macroscopic changes associated with material 'aging'. Traditional analyses, however, rely on empirical formulae containing a large number of (often arbitrary) independent variables. This ambiguity can be circumvented largely by developing models of NMR observables that are based on basic polymer physics. We compare two such models, one previously published and one derived herein, along with empirical expressions that describe the proton transverse magnetization decay associated with complex polymer networks. One particular extracted parameter, the proton-proton residual dipolar coupling (RDC), can be directly related to network topology, and a comparison of the extracted RDCs reveals high consistency among the models. An expression derived from the properties of a static Gaussian chain can minimize the number of parameters necessarily to describe the solid-like, networked proton population to a single independent parameter, the average residual dipolar coupling, D avg .

  19. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane.

    Directory of Open Access Journals (Sweden)

    Rathi Saravanan

    Full Text Available BACKGROUND: Antimicrobial peptides (AMPs play important roles in the innate defense mechanism. The broad spectrum of activity of AMPs requires an efficient permeabilization of the bacterial outer and inner membranes. The outer leaflet of the outer membrane of Gram negative bacteria is made of a specialized lipid called lipopolysaccharide (LPS. The LPS layer is an efficient permeability barrier against anti-bacterial agents including AMPs. As a mode of protection, LPS can induce self associations of AMPs rendering them inactive. Temporins are a group of short-sized AMPs isolated from frog skin, and many of them are inactive against Gram negative bacteria as a result of their self-association in the LPS-outer membrane. PRINCIPAL FINDINGS: Using NMR spectroscopy, we have determined atomic resolution structure and characterized localization of temporin-1Ta or TA (FLPLIGRVLSGIL-amide in LPS micelles. In LPS micelles, TA adopts helical conformation for residues L4-I12, while residues F1-L3 are found to be in extended conformations. The aromatic sidechain of residue F1 is involved in extensive packing interactions with the sidechains of residues P3, L4 and I5. Interestingly, a number of long-range NOE contacts have been detected between the N-terminal residues F1, P3 with the C-terminal residues S10, I12, L13 of TA in LPS micelles. Saturation transfer difference (STD NMR studies demonstrate close proximity of residues including F1, L2, P3, R7, S10 and L13 with the LPS micelles. Notably, the LPS bound structure of TA shows differences with the structures of TA determined in DPC and SDS detergent micelles. SIGNIFICANCE: We propose that TA, in LPS lipids, forms helical oligomeric structures employing N- and C-termini residues. Such oligomeric structures may not be translocated across the outer membrane; resulting in the inactivation of the AMP. Importantly, the results of our studies will be useful for the development of antimicrobial agents with a

  20. Quantitative produced water analysis using mobile 1H NMR

    International Nuclear Information System (INIS)

    Wagner, Lisabeth; Fridjonsson, Einar O; May, Eric F; Stanwix, Paul L; Graham, Brendan F; Carroll, Matthew R J; Johns, Michael L; Kalli, Chris

    2016-01-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1 H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1 H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1 H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1–30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography. (paper)

  1. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations

    Science.gov (United States)

    Baxa, Michael C.; Haddadian, Esmael J.; Jumper, John M.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    The loss of conformational entropy is a major contribution in the thermodynamics of protein folding. However, accurate determination of the quantity has proven challenging. We calculate this loss using molecular dynamic simulations of both the native protein and a realistic denatured state ensemble. For ubiquitin, the total change in entropy is TΔSTotal = 1.4 kcal⋅mol−1 per residue at 300 K with only 20% from the loss of side-chain entropy. Our analysis exhibits mixed agreement with prior studies because of the use of more accurate ensembles and contributions from correlated motions. Buried side chains lose only a factor of 1.4 in the number of conformations available per rotamer upon folding (ΩU/ΩN). The entropy loss for helical and sheet residues differs due to the smaller motions of helical residues (TΔShelix−sheet = 0.5 kcal⋅mol−1), a property not fully reflected in the amide N-H and carbonyl C=O bond NMR order parameters. The results have implications for the thermodynamics of folding and binding, including estimates of solvent ordering and microscopic entropies obtained from NMR. PMID:25313044

  2. Identification of Radical Scavenging Compounds in Rhaponticum carthamoides by Means of LC-DAD-SPE-NMR

    NARCIS (Netherlands)

    Miliauskas, G.; Beek, van T.A.; Waard, de P.; Venskutonis, R.P.; Sudhölter, E.J.R.

    2005-01-01

    A hyphenated LC-DAD-SPE-NMR setup in combination with on-line radical scavenging detection has been applied for the identification of radical scavenging compounds in extracts of Rhaponticum carthamoides. After NMR measurements, the pure compounds were infused into a mass spectrometer. The technique

  3. 1H-NMR of human blood lipids in cases of malignant and benign tumors

    International Nuclear Information System (INIS)

    Yushmanov, V.E.; Kotrikadze, N.G.; Pershin, A.D.; Dzhishkariani, O.S.; Tsartsidze, M.A.; Lomsadze, B.A.; Sibel'dina, L.A.

    1989-01-01

    High resolution 1 H-NMR (360MH z ) combined with thin-layer chromatography was used to study profile and molecular structure changes of inverted micelles of human blood developing in patients with malignant and benign tumors of the breast and uterus. Alterations were demonstrated in relative intensities of some lipid NMR peaks in tumor, as compared to normal blood. Changes in blood - lipid levels, e.g. cholesterol, in tumor affect lipid structural and dynamical status thus elucidating NMR-regularities obtained

  4. Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, a cecropin-type antibacterial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Yagi-Utsumi, Maho [Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787 (Japan); Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Yamaguchi, Yoshiki [Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Advanced Science Institute, RIKEN, Wako 351-0198 (Japan); Boonsri, Pornthip [Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787 (Japan); Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Iguchi, Takeshi [Bioscience Research Laboratory, Fujiya Co., Ltd., Hadano, Kanagawa 257-0031 (Japan); Okemoto, Kazuo [Department of Biochemistry and Cell Biology, National Institute of Infectious Disease, Tokyo 162-8640 (Japan); Natori, Shunji [National Institute of Agrobiological Sciences, Tsukuba 305-8602 (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787 (Japan); Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); The Glycoscience Institute, Ochanomizu University, Tokyo 135-0064 (Japan); GLYENCE Co., Ltd., Nagoya 474-0858 (Japan)

    2013-02-08

    Highlights: ► Recombinant sarcotoxin IA was successfully produced with {sup 13}C- and {sup 15}N-labeling. ► Sarcotoxin IA adopts an N-terminal α-helix upon binding to lipid A-embedding micelles. ► Two lysine residues are involved in lipid A-mediated antibacterial activities. -- Abstract: Sarcotoxin IA is a 39-residue cecropin-type peptide from Sarcophaga peregrina. This peptide exhibits antibacterial activity against Gram-negative bacteria through its interaction with lipid A, a core component of lipopolysaccharides. To acquire detailed structural information on this specific interaction, we performed NMR analysis using bacterially expressed sarcotoxin IA analogs with {sup 13}C- and {sup 15}N-labeling along with lipid A-embedding micelles composed of dodecylphosphocholine. By inspecting the stable isotope-assisted NMR data, we revealed that the N-terminal segment (Leu3–Arg18) of sarcotoxin IA formed an amphiphilic α-helix upon its interaction with the aqueous micelles. Furthermore, chemical shift perturbation data indicated that the amino acid residues displayed on this α-helix were involved in the specific interaction with lipid A. On the basis of these data, we successfully identified Lys4 and Lys5 as key residues in the interaction with lipid A and the consequent antibacterial activity. Therefore, these results provide unique information for designing chemotherapeutics based on antibacterial peptide structures.

  5. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  7. Reactivity of Athabasca residue and of its SARA fractions during residue hydroconversion

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, J.; Danial-Fortain, P.; Gauthier, T.; Merdrignac, I. [IFP-Lyon, Vermaison (France); Budzinski, H. [Bordeaux Univ. (France). ISM-LPTC, UMR CNRS

    2009-07-01

    Residue conversion processes are becoming increasingly important because of the declining market for residual fuel oil and a greater demand for middle distillates. Ebullated-bed hydroconversion is a commercially proven technology for converting heavy feedstocks with high amounts of impurities. The process enables the conversion of atmospheric or vacuum residues at temperatures up to 440 degrees C, and at liquid hourly space velocity (LHSV) conditions in the range of 0.15 to 0.5 per hour. A 540 degrees C conversion of up to 80 weight per cent can be achieved under these conditions. This paper reported on a research study conducted at IFP Lyon in which the residue hydroconversion in a large-scale ebullated bed bench unit was investigated to determine the impact of operating conditions and feed properties on yield and product qualities. Hydrogen was added to the feed in the bench units to keep a high hydrogen partial pressure and favour the catalytic hydroconversion reactions. In a typical test, the reactor was fed with 50 g of feedstock and 0.45 g of crushed equilibrium industrial NiMo catalyst, pressurized hydrogen and quickly heated at the reaction temperature. This paper also discussed the conversion of Athabasca bitumen residue in the large-scale pilot plant and also in the small scale batch reactor. The effect of operating temperature and space velocity was examined. The reactivity of the saturates, aromatics, resins and asphaltenes (SARA) fractions of the bitumen was studied separately in order to better understand the conversion mechanisms and reactivities. The Athabasca bitumen feed and SARA fractions were also analyzed in terms of standard petroleum analysis, SARA fractionation, elemental analysis, size exclusion chromatography (SEC) and 13C NMR. Hydroconversion experiments were conducted in the batch unit at different reaction temperatures and reaction times. A comparison of small-scale batch results with those obtained with the continuous large-scale bench

  8. 31P-NMR study of human pyrimidine 5'-nucleotidase deficient erythrocytes

    International Nuclear Information System (INIS)

    Higaki, Tsuyoshi; Kagimoto, Tadashi; Nagata, Koichi; Tanase, Sumio; Morino, Yoshimasa; Takatsuki, Kiyoshi

    1982-01-01

    Metabolic disorder of nucleotides in human pyrimidine 5'-nucleotidase (P5N) deficient erythrocytes was studied by 31 P-NMR with high resolution. Identification by combination of high-speed liquid chromatography revealed two-fold increases from the normal in the spectra in the α-, β- and γ-zones of nucleoside triphosphates of P5N deficient erythrocytes, 2,3-diphosphoglycerate shifted to the 0.3 ppm low magnetic field and signals of NAD and UDP-sugars(s) in the diphosphodiester zone. These results were obtained from the 31 P-NMR spectrum about one hour after blood sampling, indicating the high utility of this NMR for the diagnosis of P5N deficiency. (Chiba, N.)

  9. Simultaneous acquisition of three NMR spectra in a single ...

    Indian Academy of Sciences (India)

    Simultaneous acquisition of three NMR spectra in a single experiment ... set, which is based on a combination of different fast data acquisition techniques such as G-matrix ..... The sign and intensity of the CHn resonance depends on the delay.

  10. Functional tuning of the catalytic residue pKa in a de novo designed esterase.

    Science.gov (United States)

    Hiebler, Katharina; Lengyel, Zsófia; Castañeda, Carlos A; Makhlynets, Olga V

    2017-09-01

    AlleyCatE is a de novo designed esterase that can be allosterically regulated by calcium ions. This artificial enzyme has been shown to hydrolyze p-nitrophenyl acetate (pNPA) and 4-nitrophenyl-(2-phenyl)-propanoate (pNPP) with high catalytic efficiency. AlleyCatE was created by introducing a single-histidine residue (His 144 ) into a hydrophobic pocket of calmodulin. In this work, we explore the determinants of catalytic properties of AlleyCatE. We obtained the pK a value of the catalytic histidine using experimental measurements by NMR and pH rate profile and compared these values to those predicted from electrostatics pK a calculations (from both empirical and continuum electrostatics calculations). Surprisingly, the pK a value of the catalytic histidine inside the hydrophobic pocket of calmodulin is elevated as compared to the model compound pK a value of this residue in water. We determined that a short-range favorable interaction with Glu 127 contributes to the elevated pK a of His 144 . We have rationally modulated local electrostatic potential in AlleyCatE to decrease the pK a of its active nucleophile, His 144 , by 0.7 units. As a direct result of the decrease in the His 144 pK a value, catalytic efficiency of the enzyme increased by 45% at pH 6. This work shows that a series of simple NMR experiments that can be performed using low field spectrometers, combined with straightforward computational analysis, provide rapid and accurate guidance to rationally improve catalytic efficiency of histidine-promoted catalysis. Proteins 2017; 85:1656-1665. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....

  12. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection.

    Science.gov (United States)

    Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S; Ames, James B

    2010-02-23

    The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A. transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multiangle light scattering, and (15)N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven alpha-helices (alpha1, L8-L23; alpha2, D27-F36; alpha3, R46-V62; alpha4, A73-M78; alpha5, D84-S100; alpha6, R107-L125; alpha7, M131-E141) that adopt an overall main-chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108, and C97/C117 and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141, and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (alpha7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139, and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, and V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.

  13. 31P NMR imaging of solid bone with solid echoes combined with refocused gradients

    International Nuclear Information System (INIS)

    Li, L.; Utah Univ., Salt Lake City, UT; Kruger, R.A.

    1990-01-01

    This note on 31 p NMR imaging presents some observations of the solid echoes acquired from solid bone and how the proposed solid echo imaging method can be employed to obtain the 31 images of solid bone. (UK)

  14. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    Science.gov (United States)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  15. Conformation of dehydropentapeptides containing four achiral amino acid residues – controlling the role of L-valine

    Directory of Open Access Journals (Sweden)

    Michał Jewgiński

    2014-03-01

    Full Text Available Structural studies of pentapeptides containing an achiral block, built from two dehydroamino acid residues (ΔZPhe and ΔAla and two glycines, as well as one chiral L-Val residue were performed using NMR spectroscopy. The key role of the L-Val residue in the generation of the secondary structure of peptides is discussed. The obtained results suggest that the strongest influence on the conformation of peptides arises from a valine residue inserted at the C-terminal position. The most ordered conformation was found for peptide Boc-Gly-ΔAla-Gly-ΔZPhe-Val-OMe (3, which adopts a right-handed helical conformation.

  16. Theory of NMR probe design

    International Nuclear Information System (INIS)

    Schnall, M.D.

    1988-01-01

    The NMR probe is the intrinsic part of the NMR system which allows transmission of a stimulus to a sample and the reception of a resulting signal from a sample. NMR probes are used in both imaging and spectroscopy. Optimal probe design is important to the production of adequate signal/moise. It is important for anyone using NMR techniques to understand how NMR probes work and how to optimize probe design

  17. NMR structure of the glucose-dependent insulinotropic polypeptide fragment, GIP(1-30)amide

    International Nuclear Information System (INIS)

    Alana, Inigo; Hewage, Chandralal M.; G. Malthouse, J. Paul; Parker, Jeremy C.; Gault, Victor A.; O'Harte, Finbarr P.M.

    2004-01-01

    Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic β-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length α-helical conformation between residues F 6 and A 28 . This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists

  18. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba.

    Science.gov (United States)

    Napolitano, José G; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2012-08-01

    The complete and unambiguous (1)H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive (1)H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d(6) were obtained through the examination of 1D (1)H NMR and 2D (1)H,(1)H-COSY data, in combination with (1)H iterative full spin analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the (1)H NMR signals in terms of chemical shifts (δ(H)) and spin-spin coupling constants (J(HH)), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA-generated (1)H fingerprints to reproduce experimental (1)H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of (1)H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise (1)H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Vuister, G.W.; Boelens, R.; Padilla, A.; Kleywegt, G.J.; Kaptein, R.

    1990-01-01

    The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by high-resolution NMR spectroscopy. Here, the authors present strategies for the assignment of protein resonances from homonuclear nonselective 3D NOE-HOHAHA spectra. A notation for connectivities between protons, corresponding to cross peaks in 3D spectra, is introduced. They show how spin systems can be identified by tracing cross-peak patterns in cross sections perpendicular to the three frequency axes. The observable 3D sequential connectivities in proteins are tabulated, and estimates for the relative intensities of the corresponding cross peaks are given for α-helical and β-sheet conformations. Intensities of the cross peaks in the 3D spectrum of pike III paravalbumin follow the predictions. The sequential-assignment procedure is illustrated for loop regions, extended and α-helical conformations for the residues Ala 54-Leu 63 of paravalbumin. NOEs that were not previously identified in 2D spectra of paravalbumin due to overlap are found

  20. Quantification of radiation induced crosslinking in a commercial, toughened silicone rubber, TR-55, by 1H MQ-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Chinn, S; Alviso, C; Harvey, C A; Giuliani, J; Wilson, T; Cohenour, R

    2008-11-10

    Radiation induced degradation in a commercial, filled silicone composite has been studied by SPME/GC-MS, DMA, DSC, swelling, and Multiple Quantum NMR. Analysis of volatile and semivolatile species indicates degradation via decomposition of the peroxide curing catalyst and radiation induced backbiting reactions. DMA, swelling, and spin-echo NMR analysis indicate a increase in crosslink density of near 100% upon exposure to a cumulative dose of 250 kGray. Analysis of the sol-fraction via Charlseby-Pinner analysis indicates a ratio of chain scission to crosslinking yields of 0.38, consistent with the dominance of the crosslinking observed by DMA, swelling and spin-echo NMR and the chain scissioning reactions observed by MS analysis. Multiple Quantum NMR has revealed a bimodal distribution of residual dipolar couplings near 1 krad/sec and 5 krad/sec in an approximately 90:10 ratio, consistent with bulk network chains and chains associated with the filler surface. Upon exposure to radiation, the mean {Omega}{sub d} for both domains and the width of both domains both increased. The MQ NMR analysis provided increase insight into the effects of ionizing radiation on the network structure of silicone polymers.

  1. NMR in clinical practice

    International Nuclear Information System (INIS)

    Smith, F.W.

    1987-01-01

    The development of NMR for clinical use has been complicated by a number of controversies, the largest of these being the question of what is the optimum field strength for proton imaging. Many workers believe that diagnostically useful images can only be produced at high field strength (i.e. 0.5 - 2.0 T), where in fact diagnostically useful images are made using field strengths of as low as 0.02 T. Because the method is more complex than X-ray CT, which relies on the measurement of only one parameter, tissue density, many new users have difficulty in selecting the correct imaging pulse sequence to provide the most useful image for diagnosis. NMR imaging pulse sequence may be selected to produce images of the proton density, T/sub 1/ or T/sub 2/ signals, or combinations of them. When this facility is used, images which are T/sub 1/ or T/sub 2/ weighted can be selected. Inversion-recovery sequences are more appropriate for imaging the abdomen where by selecting a short TR interval the signal from subcutaneous fat, which is the major cause of image artefact in abdominal imaging, is suppressed thereby improving image quality. The use of surface receiver coils, which are applied closely to the area of the body being examined is becoming more widespread and is of particular value when examining the orbits, facial structures, neck, breast, spine and limbs. The use of these coils together with a discussion of patient selection for NMR imaging, image interpretation and data storage follow

  2. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH.

    Science.gov (United States)

    Wang, Xiaojuan; Butterly, Clayton R; Baldock, Jeff A; Tang, Caixian

    2017-06-01

    Residues differing in quality and carbon (C) chemistry are presumed to contribute differently to soil pH change and long-term soil organic carbon (SOC) pools. This study examined the liming effect of different crop residues (canola, chickpea and wheat) down the soil profile (0-30cm) in two sandy soils differing in initial pH as well as the long-term stability of SOC at the amended layer (0-10cm) using mid-infrared (MIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. A field column experiment was conducted for 48months. Chickpea- and canola-residue amendments increased soil pH at 0-10cm in the Podzol by up to 0.47 and 0.36units, and in the Cambisol by 0.31 and 0.18units, respectively, at 48months when compared with the non-residue-amended control. The decomposition of crop residues was greatly retarded in the Podzol with lower initial soil pH during the first 9months. The MIR-predicted particulate organic C (POC) acted as the major C sink for residue-derived C in the Podzol. In contrast, depletion of POC and recovery of residue C in MIR-predicted humic organic C (HOC) were detected in the Cambisol within 3months. Residue types showed little impact on total SOC and its chemical composition in the Cambisol at 48months, in contrast to the Podzol. The final HOC and resistant organic C (ROC) pools in the Podzol amended with canola and chickpea residues were about 25% lower than the control. This apparent priming effect might be related to the greater liming effect of these two residues in the Podzol. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exploring translocation of proteins on DNA by NMR

    International Nuclear Information System (INIS)

    Marius Clore, G.

    2011-01-01

    While an extensive body of knowledge has accumulated on the structures of transcription factors, DNA and their complexes from both NMR and crystallography, much less is known at a molecular level regarding the mechanisms whereby transcription factors locate their specific DNA target site within an overwhelming sea of non-specific DNA sites. Indirect kinetic data suggested that three processes are involved in the search procedure: jumping by dissociation of the protein from the DNA followed by re-association at another site, direct transfer from one DNA molecule or segment to another, and one-dimensional sliding. In this brief perspective I summarize recent NMR developments from our laboratory that have permitted direct characterization of the species and molecular mechanisms involved in the target search process, including the detection of highly transient sparsely-populated states. The main tool in these studies involves the application of paramagnetic relaxation enhancement, supplemented by z-exchange spectroscopy, lineshape analysis and residual dipolar couplings. These studies led to the first direct demonstration of rotation-coupled sliding of a protein along the DNA and the direct transfer of a protein from one DNA molecule to another without dissociating into free solution.

  4. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  5. Chemical Analysis of Organic Residues Found in Hellenistic Time Amphorae from SE Bulgaria

    Science.gov (United States)

    Zlateva, B.; Rangelov, M.

    2015-05-01

    We have used IR spectroscopy, 1H NMR spectroscopy, high-performance liquid chromatography and thin-layer chromatography to study the composition of resin residues found in 22 amphorae from Apollonia Pontika (SE Bulgaria). In particular this analysis of the resin residues was aimed at discovering the content of the amphorae and to verify the hypothesis on the transport of wine, named "Retsina". Additionally this hypothesis has been confirmed by a similar analysis of the modern resin sample from Aleppo pine (Pinus Halepensis) growing in the Attica region (Greece).

  6. NMR in a crystallography-based high-throughput protein structure-determination environment

    International Nuclear Information System (INIS)

    Wüthrich, Kurt

    2010-01-01

    As an introduction to three papers on comparisons of corresponding crystal and NMR solution structures determined by the Joint Center for Structural Genomics (JCSG), an outline is provided of the JCSG strategy for combined use of the two techniques. A special commentary addresses the potentialities of the concept of ‘reference crystal structures’, which is introduced in the following three papers. An introduction is provided to three papers which compare corresponding protein crystal and NMR solution structures determined by the Joint Center for Structural Genomics (JCSG). Special mention is made of the JCSG strategy for combined use of the two techniques, and of potential applications of the concept of ‘reference crystal structures’, which is introduced in the following three papers

  7. Surface characterization of hydrophobic core-shell QDs using NMR techniques

    Science.gov (United States)

    Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi

    2018-02-01

    Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.

  8. Novel NMR tools to study structure and dynamics of biomembranes.

    Science.gov (United States)

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  9. NMR and computational study of Ba8CuxGe46-x clathrate semiconductors

    International Nuclear Information System (INIS)

    Chen, Jing-Han; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-01-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba 8 Cu x Ge 46-x is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition

  10. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    Science.gov (United States)

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  11. Dual High-Resolution α-Glucosidase and Radical Scavenging Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Minor and Major Constituents Directly from the Crude Extract of Pueraria lobata

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Qinglei, Sun

    2015-01-01

    The crude methanol extract of Pueraria lobata was investigated by dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with hyphenated HPLC-HRMS-SPE-NMR. Direct analysis of the crude extract without preceding purification was facilitated by combining chromatograms...... from two analytical-scale HPLC separations of 120 and 600 μg on-column, respectively. High-resolution α-glucosidase and radical scavenging profiles were obtained after microfractionation of the eluate in 96-well microplates. This allowed full bioactivity profiling of individual peaks in the HPLC...... chromatogram of the crude methanol extract. Subsequent HPLC-HRMS-SPE-NMR analysis allowed identification of 21 known compounds in addition to two new compounds, i.e., 3′-methoxydaidzein 8-C-[α-d-apiofuranosyl-(1→6)]-β-d-glucopyranoside and 6″-O-malonyl-3′-methoxydaidzin, as well as an unstable compound...

  12. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Balbach, John J. [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Yang Jun; Weliky, David P. [Michigan State University, Department of Chemistry (United States); Steinbach, Peter J. [National Institutes of Health, Center for Molecular Modeling, Center for Information Technology (United States); Tugarinov, Vitali; Anglister, Jacob [Weizmann Institute of Science, Department of Structural Biology (Israel); Tycko, Robert [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2000-04-15

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5{beta}, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with {sup 15}N labels at the {eta} nitrogen positions of arginine side chains and {sup 13}C labels at glycine carbonyl positions and {sup 13}C-detected {sup 13}C-{sup 15}N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5{beta} complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of {phi} and {psi} backbone dihedral angles in the RP135/0.5{beta} complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect {sup 13}C-{sup 15}N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.

  13. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    International Nuclear Information System (INIS)

    Balbach, John J.; Yang Jun; Weliky, David P.; Steinbach, Peter J.; Tugarinov, Vitali; Anglister, Jacob; Tycko, Robert

    2000-01-01

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5β, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15 N labels at the η nitrogen positions of arginine side chains and 13 C labels at glycine carbonyl positions and 13 C-detected 13 C- 15 N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5β complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of φ and Ψ backbone dihedral angles in the RP135/0.5β complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13 C- 15 N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations

  14. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Science.gov (United States)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  15. DNA nanotubes for NMR structure determination of membrane proteins.

    Science.gov (United States)

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  16. Combining specificity determining and conserved residues improves functional site prediction

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2009-06-01

    Full Text Available Abstract Background Predicting the location of functionally important sites from protein sequence and/or structure is a long-standing problem in computational biology. Most current approaches make use of sequence conservation, assuming that amino acid residues conserved within a protein family are most likely to be functionally important. Most often these approaches do not consider many residues that act to define specific sub-functions within a family, or they make no distinction between residues important for function and those more relevant for maintaining structure (e.g. in the hydrophobic core. Many protein families bind and/or act on a variety of ligands, meaning that conserved residues often only bind a common ligand sub-structure or perform general catalytic activities. Results Here we present a novel method for functional site prediction based on identification of conserved positions, as well as those responsible for determining ligand specificity. We define Specificity-Determining Positions (SDPs, as those occupied by conserved residues within sub-groups of proteins in a family having a common specificity, but differ between groups, and are thus likely to account for specific recognition events. We benchmark the approach on enzyme families of known 3D structure with bound substrates, and find that in nearly all families residues predicted by SDPsite are in contact with the bound substrate, and that the addition of SDPs significantly improves functional site prediction accuracy. We apply SDPsite to various families of proteins containing known three-dimensional structures, but lacking clear functional annotations, and discusse several illustrative examples. Conclusion The results suggest a better means to predict functional details for the thousands of protein structures determined prior to a clear understanding of molecular function.

  17. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rasia, Rodolfo M. [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France); Lescop, Ewen [CNRS, Institut de Chimie des Substances Naturelles (France); Palatnik, Javier F. [Universidad Nacional de Rosario, Instituto de Biologia Molecular y Celular de Rosario, Facultad de Ciencias Bioquimicas y Farmaceuticas (Argentina); Boisbouvier, Jerome, E-mail: jerome.boisbouvier@ibs.fr; Brutscher, Bernhard, E-mail: Bernhard.brutscher@ibs.fr [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France)

    2011-11-15

    It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less than 24 h on a single aligned protein sample, greatly improves convergence of the Rosetta-NMR protocol, allowing for overnight fold calculation of small proteins. We demonstrate the performance of our fast fold calculation approach for ubiquitin as a test case, and for two RNA-binding domains of the plant protein HYL1. Structure calculations based on simulated RDC data highlight the importance of an accurate and precise set of several complementary RDCs as additional input restraints for high-quality de novo structure determination.

  18. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  19. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  20. Photochemically induced dynamic nuclear polarization NMR study of yeast and horse muscle phosphoglycerate kinase

    International Nuclear Information System (INIS)

    Scheffler, J.E.; Cohn, M.

    1986-01-01

    A photochemically induced dynamic nuclear polarization (photo-CIDNP) study of yeast and horse muscle phosphoglycerate kinase with flavin dyes was undertaken to identify the histidine, tryptophan, and tyrosine resonances in the aromatic region of the simplified 1 H NMR spectra of these enzymes and to investigate the effect of substrates on the resonances observable by CIDNP. Identification of the CIDNP-enhanced resonances with respect to the type of amino acid residue has been achieved since only tyrosine yields emission peaks and the dye 8-aminoriboflavin enhances tryptophan but not histidine. By use of the known amino acid sequences and structures derived from X-ray crystallographic studies of the enzymes from the two species, assignment of the specific residues in the protein sequences giving rise to the CIDNP spectra was partially achieved. In addition, flavin dye accessibility was used to probe any changes in enzyme structure induced by substrate binding. The accessibility of a tyrosine to photoexcited flavin is reduced in the presence of MgATP. Since the tyrosine residues are located some distance from the MgATP binding site of the catalytic center, it is proposed either that this change is due to a distant conformational change or that a second metal-ATP site inferred from other studies lies close to one of the tyrosines. Horse muscle phosphoglycerate kinase exhibits seven resonances by CIDNP NMR. The addition of 3-phosphoglycerate and MgATP results in the appearance of two additional resonances in the CIDNP spectrum due to a histidine residue that is inaccessible to flavin in both the enzyme alone and its binary complex with 3-phosphoglycerate. The CIDNP spectra are consistent with the suggestions that binding of 3-phosphoglycerate alone is insufficient to effect domain movement and that binding of both substrates are required for conversion of the horse muscle enzyme to its catalytically active form

  1. Paramagnetic NMR investigation of dendrimer-based host-guest interactions.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available In this study, the host-guest behavior of poly(amidoamine (PAMAM dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE was observed between TEMPO-NH₂, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems.

  2. Nuclear Magnetic Resonance (NMR Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Rahima Khatun

    Full Text Available This study describes the NMR-based method to determine the limit of quantitation (LOQ and limit of detection (LOD of cholesterol, a process-related impurity in the replication-deficient Herpes Simplex Virus (HSV type 2 candidate vaccine HSV529. Three signature peaks from the 1D 1H NMR of a cholesterol reference spectrum were selected for the identification of cholesterol. The LOQ for a cholesterol working standard was found to be 1 μg/mL, and the LOD was found to be 0.1 μg/mL. The identity of cholesterol, separated from the formulation of growth supplement by thin layer chromatography (TLC, was confirmed by 1D 1H NMR and 2D 1H-13C HSQC NMR. The three signature peaks of cholesterol were detected only in a six-times concentrated sample of HSV529 candidate vaccine sample and not in the single dose HSV529 vaccine sample under similar experimental conditions. Taken together, the results demonstrated that NMR is a direct method that can successfully identify and quantify cholesterol in viral vaccine samples, such as HSV529, and as well as in the growth supplement used during the upstream stages of HSV529 manufacturing. Keywords: Herpes simplex virus type 2 (HSV-2, Viral vaccine, NMR, Residuals, LOD and LOQ, TLC, Growth supplement

  3. 1H NMR studies of human lysozyme: Spectral assignment and comparison with hen lysozyme

    International Nuclear Information System (INIS)

    Redfield, C.; Dobson, C.M.

    1990-01-01

    Complete main-chain (NH and αCH) 1 H NMR assignments are reported for the 130 residues of human lysozyme, along with extensive assignments for side-chain protons. Analysis of 2-D NOESY experiments shows that the regions of secondary structure for human lysozyme in solution are essentially identical with those found previously in a similar study of hen lysozyme and are in close accord with the structure of the protein reported previously from x-ray diffraction studies in the crystalline state. Comparison of the chemical shifts, spin-spin coupling constants, and hydrogen exchange behavior are also consistent with closely similar structures for the two proteins in solution. In a number of cases specific differences in the NMR parameters between hen and human lysozymes can be correlated with specific differences observed in the crystal structures

  4. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    Science.gov (United States)

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding.

    Science.gov (United States)

    Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence

    2011-10-01

    LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.

  6. High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-diabetic compounds in Eremanthus crotonoides (Asteraceae)

    DEFF Research Database (Denmark)

    Lana e Silva, Eder; Felipe Revoredo Lobo, Jonathas; Vinther, Joachim Møllesøe

    2016-01-01

    with an inhibitory concentration (IC50) of 34.5 μg/mL towards α-glucosidase was investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of six α-glucosidase inhibitors, namely quercetin (16), trans-tiliroside (17), luteolin (19), quercetin-3.......93 and 5.20 μM, respectively. This is the first report of the α-glucosidase inhibitory activity of compounds 20, 26, and 29, and the findings support the important role of Eremanthus species as novel sources of new drugs and/or herbal remedies for treatment of type 2 diabetes....

  7. In situ NMR and modeling studies of nitroxide mediated copolymerization of styrene and n-butyl acrylate

    NARCIS (Netherlands)

    Hlalele, L.; Klumperman, L.

    2011-01-01

    The combination of in situ1H NMR and in situ31P NMR was used to study the nitroxide mediated copolymerization of styrene and n-butyl acrylate. The alkoxyamine MAMA-DEPN was employed to initiate and mediate the copolymerization. The nature of the ultimate/terminal monomer units of dormant polymer

  8. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    International Nuclear Information System (INIS)

    Shang, Jiwu; Zhang, Yihe; Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai; Chu, Paul K.; Ye, Zhengfang; Xing, Jing

    2011-01-01

    Highlights: ► The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2′-dithiodiethanol. ► The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. ► The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR). FTIR and GC–MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2′-dithiodiethanol which have potential applications in petroleum drilling because of their S–S and/or C–S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  9. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jiwu [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Yihe, E-mail: zyh@cugb.edu.cn [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ye, Zhengfang [Department of Environmental Engineering, Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Peking University, Beijing 100871 (China); Xing, Jing [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2 Prime -dithiodiethanol. Black-Right-Pointing-Pointer The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. Black-Right-Pointing-Pointer The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). FTIR and GC-MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2 Prime -dithiodiethanol which have potential applications in petroleum drilling because of their S-S and/or C-S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  10. Characterization of polyacrylamide-stabilized Pf1 phage liquid crystals for protein NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trempe, Jean-Francois; Morin, Frederick G.; Xia Zhicheng; Marchessault, Robert H.; Gehring, Kalle [McGill University, Department of Biochemistry and Department of Chemistry (Canada)], E-mail: kalle@bri.nrc.ca

    2002-01-15

    A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the {sup 2}H NMR water signal and by the measurement of {sup 1}H-{sup 15}N residual dipolar couplings (RDC) in the archeal translation elongation factor 1{beta}. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample.

  11. Characterization of polyacrylamide-stabilized Pf1 phage liquid crystals for protein NMR spectroscopy

    International Nuclear Information System (INIS)

    Trempe, Jean-Francois; Morin, Frederick G.; Xia Zhicheng; Marchessault, Robert H.; Gehring, Kalle

    2002-01-01

    A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the 2 H NMR water signal and by the measurement of 1 H- 15 N residual dipolar couplings (RDC) in the archeal translation elongation factor 1β. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample

  12. Nmrglue: an open source Python package for the analysis of multidimensional NMR data.

    Science.gov (United States)

    Helmus, Jonathan J; Jaroniec, Christopher P

    2013-04-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  13. Nmrglue: an open source Python package for the analysis of multidimensional NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Helmus, Jonathan J., E-mail: jjhelmus@gmail.com [Argonne National Laboratory, Environmental Science Division (United States); Jaroniec, Christopher P., E-mail: jaroniec@chemistry.ohio-state.edu [Ohio State University, Department of Chemistry and Biochemistry (United States)

    2013-04-15

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.comhttp://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  14. Nmrglue: an open source Python package for the analysis of multidimensional NMR data

    International Nuclear Information System (INIS)

    Helmus, Jonathan J.; Jaroniec, Christopher P.

    2013-01-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.comhttp://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  15. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    International Nuclear Information System (INIS)

    Skinner, Simon P.; Fogh, Rasmus H.; Boucher, Wayne; Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W.

    2016-01-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  16. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P.; Fogh, Rasmus H. [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom); Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom)

    2016-10-15

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  17. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  18. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  19. Solid-state NMR chemical-shift perturbations indicate domain reorientation of the DnaG primase in the primosome of Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Gardiennet, Carole [Université de Lorraine, CNRS, CRM2, UMR 7036 (France); Wiegand, Thomas [ETH Zurich, Physical Chemistry (Switzerland); Bazin, Alexandre [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Cadalbert, Riccardo [ETH Zurich, Physical Chemistry (Switzerland); Kunert, Britta; Lacabanne, Denis [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Gutsche, Irina [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), CNRS, IBS, CEA, IBS (France); Terradot, Laurent, E-mail: l.terradot@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France)

    2016-03-15

    We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.

  20. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  1. Structural characterization of supramolecular assemblies by {sup 13}C spin dilution and 3D solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam, E-mail: adla@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)

    2013-01-15

    {sup 13}C spin diluted protein samples can be produced using [1-{sup 13}C] and [2-{sup 13}C]-glucose (Glc) carbon sources in the bacterial growth medium. The {sup 13}C spin dilution results in favorable {sup 13}C spectral resolution and polarization transfer behavior. We recently reported the combined use of [1-{sup 13}C]- and [2-{sup 13}C]-Glc labeling to facilitate the structural analysis of insoluble and non-crystalline biological systems by solid-state NMR (ssNMR), including sequential assignment, detection of long-range contacts and structure determination of macromolecular assemblies. In solution NMR the beneficial properties of sparsely labeled samples using [2-{sup 13}C]-glycerol ({sup 13}C labeled C{alpha} sites on a {sup 12}C diluted background) have recently been exploited to provide a bi-directional assignment method (Takeuchi et al. in J Biomol NMR 49(1):17-26, 2011 ). Inspired by this approach and our own recent results using [2-{sup 13}C]-Glc as carbon sources for the simplification of ssNMR spectra, we present a strategy for a bi-directional sequential assignment of solid-state NMR resonances and additionally the detection of long-range contacts using the combination of {sup 13}C spin dilution and 3D NMR spectroscopy. We illustrate our results with the sequential assignment and the collection of distance restraints on an insoluble and non-crystalline supramolecular assembly, the Salmonella typhimurium type III secretion system needle.

  2. Comparison of NMR and crystal structures for the proteins TM1112 and TM1367

    International Nuclear Information System (INIS)

    Mohanty, Biswaranjan; Serrano, Pedro; Pedrini, Bill; Jaudzems, Kristaps; Geralt, Michael; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    determination by NMR and by X-ray diffraction, respectively. The results thus obtained show that NMR structure calculations with the new automated UNIO software used by the JCSG compare favorably with those from a more labor-intensive and time-intensive interactive procedure. An intriguing observation is that the ‘bundles’ of two TM1112 or three TM1367 molecules in the asymmetric unit of the crystal structures mimic the behavior of the bundles of 20 conformers used to represent the NMR solution structures when comparing global r.m.s.d. values calculated either for the polypeptide backbone, the core residues with solvent accessibility below 15% or all heavy atoms

  3. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  4. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    Science.gov (United States)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  5. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    residues bound to the [4Fe-4S]3+/2+ cluster have been performed using one-dimensional NOE and exchange spectroscopy experiments. 1H-NMR hyperfine shifts and relaxation rates of cluster-bound Cys β-CH2 protons indicate that in the [4Fe-4S]3+ cluster one iron ion can be formally described as Fe(III), while......Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...... longitudinal relaxation rates of Cys β-CH2 protons in HiPIPs from six different sources as a function of the Fe-S-Cβ-Cα dihedral angle, indicate that the major contribution is due to a dipolar metal-centered mechanism, with a non-negligeable contribution from a ligand-centered dipolar mechanism which involves...

  6. Fundamentals of a moderate thermocracking-deep deasphalting combined process of Karamay vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Zhiming, X; Tonghua, L.; Suogi, Z.; Renan, W. [University of Petroleum, State Key Laboratory of Heavy Oil Processing, Beijing (China); Lailong, L.; Zhen, L. [Karamay Petrochemical Company, Petrochemical Research Institute, Karamay (China)

    2004-07-01

    Thermocracking of heavy oil vacuum residue was carried out to determine the optimum conditions for the thermal cracking of Karamay vacuum residue prior to coke formation. The vacuum residue and the cracked residue after distillation were separated using supercritical fluid extraction and fractionation techniques. Sixteen and thirteen fractions and non-extractable end cuts respectively were separated, and their properties, compositions and average structures determined. Solubility parameters of the end cuts were measured, and those of the fractions calculated. The solubility parameter of the end cut of distilled residue was found to have greatly increased. It was determined that when the difference of the end cut and the extractable fractions amounts to 6.37MPa1/2, in the case of Karamay vacuum residue coke will deposit under thermocracking conditions. Based on the results of a series of solvent deep deasphalting experiments, a scheme for vacuum residue thermocracking and deasphalting of the cracked residue was proposed.

  7. HPLC-NMR revisited: Using time-slice HPLC-SPE-NMR with database assisted dereplication

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Wubshet, Sileshi Gizachew; Nyberg, Nils

    2013-01-01

    Time based trapping of chromatographically separated compounds on to solid-phase extraction cartridges (SPE) and subsequent elution to NMR-tubes was done to emulate the function of HPLC–NMR for dereplication purposes. Sufficient mass sensitivity was obtained by the use of a state-of-the-art HPLC......–SPE–NMR-system with a cryogenically cooled probe head, designed for 1.7 mm NMR-tubes. The resulting 1H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts......, is described and the code included as Supplementary Information. Two mixtures of natural products was used to test the approach; one extract of Carthamus oxyacantha (wild safflower) containing an array of spiro compounds and one extract of the endophytic fungus Penicillum namyslowski containing griseofulvin...

  8. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  9. 13C NMR Chemical Shifts of the Triclinic and Monoclinic Crystal forms of Valinomycin

    International Nuclear Information System (INIS)

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M.; Grant, David M.

    2004-01-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state 13 C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, δ iso , for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, δ 22 . Additionally it was found that the smallest shift component, δ 33 , for the L-lactic acid (L-Lac) and D-α-hydroxyisovaleric acid (D-Hyi) C α -O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the δ 33 component that governs the behavior of δ iso in these alpha carbons

  10. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  11. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13 C line widths and <0.5 ppm 15 N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  12. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  13. Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.

    Science.gov (United States)

    Takeda, Mitsuhiro; Chang, Chung-ke; Ikeya, Teppei; Güntert, Peter; Chang, Yuan-hsiang; Hsu, Yen-lan; Huang, Tai-huang; Kainosho, Masatsune

    2008-07-18

    The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.

  14. High-resolution NMR structure of the antimicrobial peptide protegrin-2 in the presence of DPC micelles

    Energy Technology Data Exchange (ETDEWEB)

    Usachev, K. S., E-mail: k.usachev@kpfu.ru; Efimov, S. V.; Kolosova, O. A.; Filippov, A. V.; Klochkov, V. V. [Kazan Federal University (Russian Federation)

    2015-04-15

    PG-1 adopts a dimeric structure in dodecylphosphocholine (DPC) micelles, and a channel is formed by the association of several dimers but the molecular mechanisms of the membrane damage by non-α-helical peptides are still unknown. The formation of the PG-1 dimer is important for pore formation in the lipid bilayer, since the dimer can be regarded as the primary unit for assembly into the ordered aggregates. It was supposed that only 12 residues (RGGRL-CYCRR-RFCVC-V) are needed to endow protegrin molecules with strong antibacterial activity and that at least four additional residues are needed to add potent antifungal properties. Thus, the 16-residue protegrin (PG-2) represents the minimal structure needed for broad-spectrum antimicrobial activity encompassing bacteria and fungi. As the peptide conformation and peptide-to-membrane binding properties are very sensitive to single amino acid substitutions, the solution structure of PG-2 in solution and in a membrane mimicking environment are crucial. In order to find evidence if the oligomerization state of PG-1 in a lipid environment will be the same or not for another protegrins, we investigate in the present work the PG-2 NMR solution structure in the presence of perdeuterated DPC micelles. The NMR study reported in the present work indicates that PG-2 form a well-defined structure (PDB: 2MUH) composed of a two-stranded antiparallel β-sheet when it binds to DPC micelles.

  15. Targeted natural product isolation guided by HPLC-SPE-NMR: Constituents of Hubertia species

    DEFF Research Database (Denmark)

    Sprogoe, K.; Staek, D.; Jager, A.K.

    2007-01-01

    -hydroxyphenyl)acetyl]quinic acid (3), was performed. Finally, targeted isolation of 1 was achieved by SPE fractionation and preparative HPLC, followed by evaluation of its antioxidant and antimicrobial activity. In contrast to chlorogenic acid and 3,5-di-O-caffeoylquinic acid, which act as antioxidants...... full or partial identification of all major extract constituents and demonstrated the presence of unusual quinic acid derivatives containing the (1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetyl residue that exhibit strongly coupled ABXY patterns, the parameters of which were obtained by spin simulations....... Using homo- and heteronuclear 2D NMR data acquired in the HPLC-SPE-NMR mode, complete structure determination of three new natural products, i.e., 3,5-di-O-caffeoyl-4-O-[(1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetyl]quini c acid (1), its 2-hydroxy derivative (2), and 3,5-di-O-caffeoyl-4-O-[(4...

  16. A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  17. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    Science.gov (United States)

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.

  19. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    International Nuclear Information System (INIS)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G.; Boffo, Elisangela F.; Figueira, Glyn M.

    2012-01-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, 1 H HR-MAS NMR and 1 H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  20. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques

    DEFF Research Database (Denmark)

    Calcutta, Antonello; Jessen, Christian M; Behrens, Manja Annette

    2012-01-01

    induced by unfolding of an integral membrane protein, namely TFE-induced unfolding of KcsA solubilized by the n-dodecyl ß-d-maltoside (DDM) surfactant is investigated by the recently introduced GPS-NMR (Global Protein folding State mapping by multivariate NMR) (Malmendal et al., PlosONE 5, e10262 (2010......)) along with dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). GPS-NMR is used as a tool for fast analysis of the protein unfolding processes upon external perturbation, and DLS and SAXS are used for further structural characterization of the unfolding states. The combination allows...

  1. Computer simulation of FT-NMR multiple pulse experiment

    Science.gov (United States)

    Allouche, A.; Pouzard, G.

    1989-04-01

    Using the product operator formalism in its real form, SIMULDENS expands the density matrix of a scalar coupled nuclear spin system and simulates analytically a large variety of FT-NMR multiple pulse experiments. The observable transverse magnetizations are stored and can be combined to represent signal accumulation. The programming language is VAX PASCAL, but a MacIntosh Turbo Pascal Version is also available.

  2. Lysine as helix C-capping residue in a synthetic peptide.

    Science.gov (United States)

    Esposito, G; Dhanapal, B; Dumy, P; Varma, V; Mutter, M; Bodenhausen, G

    1997-01-01

    The structure of the synthetic peptide CH3CO(Leu-Ser-Leu-Leu-Leu-Ser-Leu)3Lys-NH2 in trifluoroethanol/water 60/40 (volume ratio) was characterized by two-dimensional nmr spectroscopy. The peptide, closely related to the amphiphilic helix models designed by W. F. De-Grado and co-workers to mimic protein ion channels [(1988) Science, Vol. 240, p. 1177-1181], folds into a regular helix spanning residues 1-20. Evidence for a helix C-terminal capping conformation, involving the terminal lysine residue, was observed from Overhauser effects and checked for consistency by restrained molecular dynamics simulations. The side-chain amino group of Lys22 forms a hydrogen bond with the carbonyl of Leu18, and the distorted helical geometry of the terminal dipeptide allows the inclusion of a water bridge between the backbone NH of the Lys22 residue and the carbonyls of Leu19 and Ser20.

  3. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Wiese, Stefanie

    2016-01-01

    -glucosidase inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC–HRMS–SPE–NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling...... as fatty acids – with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode....

  4. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    Science.gov (United States)

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Study of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method

    Science.gov (United States)

    Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun

    2014-04-01

    This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.

  6. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  7. Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif

    International Nuclear Information System (INIS)

    Lai, Chaohua; Wu, Minhao; Li, Pan; Shi, Chaowei; Tian, Changlin; Zang, Jianye

    2010-01-01

    Zinc finger motif contains a zinc ion coordinated by several conserved amino acid residues. Yeast Sgf73 protein was identified as a component of SAGA (Spt/Ada/Gcn5 acetyltransferase) multi-subunit complex and Sgf73 protein was known to contain two zinc finger motifs. Sgf73(1-104), containing the first zinc finger motif, was necessary to modulate the deubiquitinase activity of SAGA complex. Here, Sgf73(1-104) was over-expressed using bacterial expression system and purified for solution NMR (nuclear magnetic resonance) structural studies. Secondary structure and site-specific relaxation analysis of Sgf73(1-104) were achieved after solution NMR backbone assignment. Solution NMR and circular dichroism analysis of Sgf73(1-104) after zinc ion removal using chelation reagent EDTA (ethylene-diamine-tetraacetic acid) demonstrated that zinc ion was required to maintain stable conformation of the zinc finger motif.

  8. High-throughput authentication of edible oils with benchtop Ultrafast 2D NMR.

    Science.gov (United States)

    Gouilleux, B; Marchand, J; Charrier, B; Remaud, G S; Giraudeau, P

    2018-04-01

    We report the use of an Ultrafast 2D NMR approach applied on a benchtop NMR system (43 MHz) for the authentication of edible oils. Our results demonstrate that a profiling strategy based on fast 2D NMR spectra recorded in 2.4 min is more efficient than the standard 1D experiments to classify oils from different botanical origins, since 1D spectra on the same samples suffer from strong peak overlaps. Six edible oils with different botanical origins (olive, hazelnut, sesame, rapeseed, corn and sunflower) have been clearly discriminated by PCA analysis. Furthermore, we show how this approach combined with a PLS model can detect adulteration processes such as the addition of hazelnut oil into olive oil, a common fraud in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of Ganghwa Mugwort in Combination with Ascorbic Acid for the Reduction of Residual Nitrite in Pork Sausage during Refrigerated Storage

    Science.gov (United States)

    Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Kim, Cheon-Jei

    2014-01-01

    The application of ganghwa mugwort (GM), ascorbic acid (AC), and their combinations for reduction of residual nitrite contents was analyzed in pork sausages during storage of 28 d. Six treatments of pork sausages contained the following: Control (no antioxidant added), AC (0.05% AC), GM 0.1 (0.1% GM), GM 0.2 (0.2% GM), AC+GM 0.1 (0.05% AC + 0.1% GM) and AC+GM 0.2 (0.05% AC + 0.2% GM). Results showed that the mixture of 0.05% AC and 0.2% GM was most effective for reducing thiobarbituric acid reactive substances (TBARS) and residual nitrite contents than the control and GM added sausages alone (pcolor values of all treatments were significantly affected by adding GM (either alone or with AC). Additionally, the total color difference (ΔE) and hue angle (H°) values of treatments added with GM were higher than those of the control as the amount of GM increased (p0.05). Our results showed possible applications of antioxidant combination, for preventing the lipid oxidation and decreasing the residual nitrite levels of meat products. PMID:26760936

  10. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  11. A probabilistic approach for validating protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Wang Bowei; Wang, Yunjun; Wishart, David S.

    2010-01-01

    It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3-6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called 'Probabilistic Approach for protein Nmr Assignment Validation (PANAV)' and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAVhttp://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.

  12. Synergistic Applications of MD and NMR for the Study of Biological Systems

    Directory of Open Access Journals (Sweden)

    Olivier Fisette

    2012-01-01

    same time, theoretical and computational approaches gain in reliability and their field of application widens. In this short paper, we discuss recent advances in the areas of solution nuclear magnetic resonance (NMR spectroscopy and molecular dynamics (MD simulations that were made possible by the combination of both methods, that is, through their synergistic use. We present the main NMR observables and parameters that can be computed from simulations, and how they are used in a variety of complementary applications, including dynamics studies, model-free analysis, force field validation, and structural studies.

  13. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  14. An improved ultrafast 2D NMR experiment: Towards atom-resolved real-time studies of protein kinetics at multi-Hz rates

    International Nuclear Information System (INIS)

    Gal, Maayan; Kern, Thomas; Schanda, Paul; Frydman, Lucio; Brutscher, Bernhard

    2009-01-01

    Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1 H- 15 N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds

  15. Targeted natural product isolation guided by HPLC-SPE-NMR: constituents of Hubertia species.

    Science.gov (United States)

    Sprogøe, Kennett; Staerk, Dan; Jäger, Anna K; Adsersen, Anne; Hansen, Steen Honoré; Witt, Matthias; Landbo, Anne-Katrine R; Meyer, Anne S; Jaroszewski, Jerzy W

    2007-09-01

    The hyphenated technique, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-SPE-NMR), has been applied for rapid identification of novel natural products in crude extracts of Hubertia ambavilla and Hubertia tomentosa. The technique allowed full or partial identification of all major extract constituents and demonstrated the presence of unusual quinic acid derivatives containing the (1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetyl residue that exhibit strongly coupled ABXY patterns, the parameters of which were obtained by spin simulations. Using homo- and heteronuclear 2D NMR data acquired in the HPLC-SPE-NMR mode, complete structure determination of three new natural products, i.e., 3,5-di-O-caffeoyl-4-O-[(1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetyl]quinic acid (1), its 2-hydroxy derivative (2), and 3,5-di-O-caffeoyl-4-O-[(4-hydroxyphenyl)acetyl]quinic acid (3), was performed. Finally, targeted isolation of 1 was achieved by SPE fractionation and preparative HPLC, followed by evaluation of its antioxidant and antimicrobial activity. In contrast to chlorogenic acid and 3,5-di-O-caffeoylquinic acid, which act as antioxidants, compound 1 proved at the same conditions to possess prooxidant activity in an assay evaluating the oxidation of human low-density lipoprotein induced by Cu(2+).

  16. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  17. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  18. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    International Nuclear Information System (INIS)

    Assink, Roger A.; Celina, Mathias C.; Dunbar, Timothy D.; Alam, Todd M.; Clough, Roger Lee; Gillen, Kenneth T.

    2000-01-01

    The authors have shown that the hydroperoxide species in γ-irradiated 13 C-polyethylene can be directly observed by 13 C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions

  19. NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds

    KAUST Repository

    Zhang, Xiaoming

    2016-03-16

    Spin-orbit coupling (SOC) is expected to partly determine the topologically nontrivial electronic structure of heavy half-Heusler ternary compounds. However, to date, attempts to experimentally observe either the strength of SOC or how it modifies the bulk band structure have been unsuccessful. By using bulk-sensitive nuclear magnetic resonance (NMR) spectroscopy combined with first-principles calculations, we reveal that 209Bi NMR isotropic shifts scale with relativity in terms of the strength of SOC and average atomic numbers, indicating strong relativistic effects on NMR parameters. According to first-principles calculations, we further claim that nuclear magnetic shieldings from relativistic p1/2 states and paramagnetic contributions from low-lying unoccupied p3/2 states are both sensitive to the details of band structures tuned by relativity, which explains why the hidden relativistic effects on band structure can be revealed by 209Bi NMR isotropic shifts in topologically nontrivial half-Heusler compounds. Used in complement to surface-sensitive methods, such as angle resolved photon electron spectroscopy and scanning tunneling spectroscopy, NMR can provide valuable information on bulk electronic states.

  20. NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds

    KAUST Repository

    Zhang, Xiaoming; Hou, Zhipeng; Wang, Yue; Xu, Guizhou; Shi, Chenglong; Liu, EnKe; Xi, Xuekui; Wang, Wenhong; Wu, Guangheng; Zhang, Xixiang

    2016-01-01

    Spin-orbit coupling (SOC) is expected to partly determine the topologically nontrivial electronic structure of heavy half-Heusler ternary compounds. However, to date, attempts to experimentally observe either the strength of SOC or how it modifies the bulk band structure have been unsuccessful. By using bulk-sensitive nuclear magnetic resonance (NMR) spectroscopy combined with first-principles calculations, we reveal that 209Bi NMR isotropic shifts scale with relativity in terms of the strength of SOC and average atomic numbers, indicating strong relativistic effects on NMR parameters. According to first-principles calculations, we further claim that nuclear magnetic shieldings from relativistic p1/2 states and paramagnetic contributions from low-lying unoccupied p3/2 states are both sensitive to the details of band structures tuned by relativity, which explains why the hidden relativistic effects on band structure can be revealed by 209Bi NMR isotropic shifts in topologically nontrivial half-Heusler compounds. Used in complement to surface-sensitive methods, such as angle resolved photon electron spectroscopy and scanning tunneling spectroscopy, NMR can provide valuable information on bulk electronic states.

  1. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Science.gov (United States)

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  2. Two-dimensional NMR studies of squash family inhibitors. Sequence-specific proton assignments and secondary structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    Science.gov (United States)

    Krishnamoorthi, R; Gong, Y X; Lin, C L; VanderVelde, D

    1992-01-28

    The solution structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III*) was investigated by two-dimensional proton nuclear magnetic resonance (2D NMR) spectroscopy. CMTI-III*, prepared by reacting CMTI-III with trypsin which cleaved the Arg5-Ile6 peptide bond, had the two fragments held together by a disulfide linkage. Sequence-specific 1H NMR resonance assignments were made for all the 29 amino acid residues of the protein. The secondary structure of CMTI-III*, as deduced from NOESY cross peaks and identification of slowly exchanging hydrogens, contains two turns (residues 8-12 and 24-27), a 3(10)-helix (residues 13-16), and a triple-stranded beta-sheet (residues 8-10, 29-27, and 21-25). This secondary structure is similar to that of CMTI-I [Holak, T. A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648], which has a Glu instead of a Lys at position 9. Sequential proton assignments were also made for the virgin inhibitor, CMTI-III, at pH 4.71, 30 degrees C. Comparison of backbone hydrogen chemical shifts of CMTI-III and CMTI-III* revealed significant changes for residues located far away from the reactive-site region as well as for those located near it, indicating tertiary structural changes that are transmitted through most of the 29 residues of the inhibitor protein. Many of these residues are functionally important in that they make contact with atoms of the enzyme in the trypsin-inhibitor complex, as revealed by X-ray crystallography [Bode, W., Greyling, H. J., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 285-292].(ABSTRACT TRUNCATED AT 250 WORDS)

  3. New Computational Approaches for NMR-based Drug Design: A Protocol for Ligand Docking to Flexible Target Sites

    International Nuclear Information System (INIS)

    Gracia, Luis; Speidel, Joshua A.; Weinstein, Harel

    2006-01-01

    NMR-based drug design has met with some success in the last decade, as illustrated in numerous instances by Fesik's ''ligand screening by NMR'' approach. Ongoing efforts to generalize this success have led us to the development of a new paradigm in which quantitative computational approaches are being integrated with NMR derived data and biological assays. The key component of this work is the inclusion of the intrinsic dynamic quality of NMR structures in theoretical models and its use in docking. A new computational protocol is introduced here, designed to dock small molecule ligands to flexible proteins derived from NMR structures. The algorithm makes use of a combination of simulated annealing monte carlo simulations (SA/MC) and a mean field potential informed by the NMR data. The new protocol is illustrated in the context of an ongoing project aimed at developing new selective inhibitors for the PCAF bromodomains that interact with HIV Tat

  4. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  5. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    International Nuclear Information System (INIS)

    Ekman, D.R.; Teng, Q.; Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T.; Collette, T.W.

    2007-01-01

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D 1 H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D 1 H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of 1 H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 μg/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish

  6. Natural abundant solid state NMR studies in designed tripeptides for differentiation of multiple conformers.

    Science.gov (United States)

    Jayanthi, S; Chatterjee, Bhaswati; Raghothama, S

    2009-10-01

    Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro-(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro-(L)Pro-(L)Phe-OMe (2), and Piv-(D)Pro-(L)Pro-(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The (13)C spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C(beta) and C(gamma) carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all trans form across the di-Proline segment. The results are in agreement with the X-ray analysis. Solid state (15)N resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. (1)H chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between (1)H--(13)C. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

  7. A novel strategy for NMR resonance assignment and protein structure determination

    International Nuclear Information System (INIS)

    Lemak, Alexander; Gutmanas, Aleksandras; Chitayat, Seth; Karra, Murthy; Farès, Christophe; Sunnerhagen, Maria; Arrowsmith, Cheryl H.

    2011-01-01

    The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution – especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.

  8. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V H , V L , and C L domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with 13 C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with [1- 13 C]Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how 13 C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule

  9. Computer simulation of FT-NMR multiple pulse experiment

    International Nuclear Information System (INIS)

    Allouche, A.; Pouzard, G.

    1989-01-01

    Using the product operator formalism in its real form, SIMULDENS expands the density matrix of a scalar coupled nuclear spin system and simulates analytically a large variety of FT-NMR multiple pulse experiments. The observable transverse magnetizations are stored and can be combined to represent signal accumulation. The programming language is VAX PASCAL, but a MacIntosh Turbo Pascal Version is also available. (orig.)

  10. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  11. Solution structure of the 3'-5' cyclic dinucleotide d. A combined NMR, UV melting, and molecular mechanics study

    International Nuclear Information System (INIS)

    Blommers, M.J.J.; Haasnoot, C.A.G.; Walters, J.A.L.I.; van der Marel, G.A.; van Boom, J.H.; Hilbers, C.W.

    1988-01-01

    The 3'-5' cyclic dinucleotide d 1 H and 13 C NMR experiments, UV-melting experiments, and molecular mechanics calculations. The 1 H and 13 C NMR spectra were analyzed by means of 2-dimensional NMR experiments. J-Coupling analysis of the 1D and 2D 1 H and 13 C spectra was used to determine the conformation of the ring systems in the molecule. It appeared that at low temperature (283 K) the deoxyribose sugars adopt a N-type conformation. The geometry is best described by an intermediate between the 3 2 T and 3 E forms. In addition, the authors were able to derive all other torsion angles in the phosphate backbone ring system, i.e., α + , β/sup t/, γ + , δ (=89/degrees/), ε/sup t/ and /zeta/ + . When the molecule is subjected to an energy minimization procedure (using the program AMBER), the sugar ring system retains, practically speaking, the torsion angles found from the NMR experiments, while the torsion angles around the glycosidic bond adopt a value of 175/degrees/ in the minimum energy conformation. UV-melting experiments indicate that two molecules can form a dimer in which the adenine bases are intercalated. The feasibility of this structure is indicated by molecular mechanics calculations. At higher temperatures the dimer is converted into separate monomers. In the monomer form the sugars exhibit S-pucker 20% of the time. Concomitantly with the conversion of the N- to the S-conformation, the torsion angles α and γ change

  12. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  13. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  14. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  15. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  16. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  17. Characterization of the residual structure in the unfolded state of the Delta 131 Delta fragment of staphylococcal nuclease

    DEFF Research Database (Denmark)

    Francis, C. J.; Lindorff-Larsen, Kresten; Best, R. B.

    2006-01-01

    dynamics simulations to characterise the residual structure of the 131 fragment of staphylococcal nuclease under physiological conditions. Our findings indicate that 131 under these conditions shows a tendency to form transiently hydrophobic clusters similar to those present in the native state of wild......The determination of the conformational preferences in unfolded states of proteins constitutes an important challenge in structural biology. We use inter-residue distances estimated from site-directed spin-labeling NMR experimental measurements as ensemble-averaged restraints in all-atom molecular...

  18. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR.

    Science.gov (United States)

    Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S

    2017-03-01

    The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and

  19. Tannin fingerprinting in vegetable tanned leather by solid state NMR spectroscopy and comparison with leathers tanned by other processes.

    Science.gov (United States)

    Romer, Frederik H; Underwood, Andrew P; Senekal, Nadine D; Bonnet, Susan L; Duer, Melinda J; Reid, David G; van der Westhuizen, Jan H

    2011-01-28

    Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²⁷Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.

  20. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  1. Solution conformation and dynamics of a tetrasaccharide related to the LewisX antigen deduced by NMR relaxation measurements

    International Nuclear Information System (INIS)

    Poveda, Ana; Asensio, Juan Luis; Martin-Pastor, Manuel; Jimenez-Barbero, Jesus

    1997-01-01

    1 H-NMR cross-relaxation rates and nonselective longitudinal relaxation times have been obtained at two magnetic fields (7.0 and 11.8 T) and at a variety of temperatures for the branched tetrasaccharide methyl 3-O-α-N-acetyl-galactosaminyl-β-galactopyranosyl-(1 → 4)[3-O-α-fucosyl] -glucopyranoside (1), an inhibitor of astrocyte growth. In addition, 13 C-NMR relaxation data have also been recorded at both fields. The 1 H-NMR relaxation data have been interpreted using different motional models to obtain proton-proton correlation times. The results indicate that the GalNAc and Fuc rings display more extensive local motion than the two inner Glc and Gal moieties, since those present significantly shorter local correlation times. The 13 C-NMR relaxation parameters have been interpreted in terms of the Lipari-Szabo model-free approach. Thus, order parameters and internal motion correlation times have been deduced. As obtained for the 1 H-NMR relaxation data, the two outer residues possess smaller order parameters than the two inner rings. Internal correlation times are in the order of 100 ps. The hydroxymethyl groups have also different behaviour,with the exocyclic carbon on the glucopyranoside unit showing the highestS 2 . Molecular dynamics simulations using a solvated system have also been performed and internal motion correlation functions have been deduced from these calculations. Order parameters and interproton distances have been compared to those inferred from the NMR measurements. The obtained results are in fair agreement with the experimental data

  2. Inverse problem for in vivo NMR spatial localization

    International Nuclear Information System (INIS)

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs

  3. Inverse problem for in vivo NMR spatial localization

    Energy Technology Data Exchange (ETDEWEB)

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.

  4. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  5. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation

    DEFF Research Database (Denmark)

    Zheng, Hong; Lorenzen, J.K.; Astrup, A.

    2016-01-01

    We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD) on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA). A significant effect of dairy...... metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate...

  6. Effect of the perfluorodecalin residue on macular subretinal treated by internal limiting membrane peeling combined with 38G casing needle

    Directory of Open Access Journals (Sweden)

    Xiao-Bo Wang

    2014-11-01

    Full Text Available AIM: To observe the effect of the treatment to the perfluorodecalin residue on macular subretinal by internal limiting membrane(ILMpeeling combined with 38G casing needle.METHODS: Twenty-nine cases(29 eyesof retinal reattachment and with perfluorodecalin residual on the macular subretinal, selected in Xiamen Eye Center from January 2008 to October 2013, were divided into group A(14 cases, 14 eyesand group B(15 cases, 15 eyesrandomly. In group A, after removal of silicone oil, perfluorodecalin liquids at the macular subretinal directly were aspirated by 38G casing needle. In group B, after removal of silicone oil, ILM was dyed and peeled completely to the range of 4PD approximately. Then the perfluorodecalin liquids at the macular subretinal were aspirated by 38G casing needle. All cases of both groups were filled with filtered air. After 1wk, the case with macular hole found by OCT was exchanged by air-fluid and filled with 16% C3F8. The best corrected visual acuity(BCVAof two groups of patients was observed after 4, 8, 24wk. OCT was reviewed to observe whether there were perfluorodecalin residue on the macular subretinal, formation of macular hole and macular morphological changes, retinal detachment.RESULTS: BCVA was improved in both groups after 4, 8, 24wk. And the value of BCVA improvedin group B was better than that in group A(PCONCLUSION: ILM peeling combined with 38G casing needle can aspirate completely the perfluorodecalin residual on macular. There were not caused macular hole and retinal detachment. This method is an safe, effective and minimally invasive surgical technique to protect the macular function.

  7. NMR studies of the solution conformation and dynamics of the tyrocidine peptide antibiotics

    International Nuclear Information System (INIS)

    Zhou, N.

    1985-01-01

    The tyrocidine B and tyrocidine C 1 H NMR spectra in DMSO-d 6 were assigned by using 2D 1 H- 1 H correlation spectroscopy and 1D double resonance experiments. Based on the proton chemical shifts, 3 J/sub NH-Nα/ coupling constants, the chemical shift temperature dependence, and 1D and 2D 1 H- 1 H NOE values, a backbone conformation consisting of an anti-parallel β-pleated sheet, a type I β-turn and a type II' β-turn was suggested for both tyrocidines B and C. Seven out of ten side chains were determined to exist predominantly in one classical Chi 1 rotamer; while the residues Val 1 and Leu 3 had two Chi 1 rotamers which were significantly populated. Chi 2 angles were determined for residues Phe 4 , Trp 6 , DPhe 7 (D Trp 7 ) and Asn 8 . The natural abundance 13 C spectra of tyrocidine B and tyrocidine C were assigned by using 1 H- 13 C correlation spectroscopy. A study of the effect of soluble paramagnetic nitroxide compounds on tyrocidine A proton T 1 values were performed which confirmed the proposed tyrocidine A conformation. It also proved that these nitroxide compounds are very useful in studying proton solvent exposure, and therefore in delineating hydrogen bonding. A proton NMR study of the opioid peptide dynorphin-(1-13) in aqueous solution was reported which was consistent with a non-ordered molecule in the solution

  8. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  9. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-18

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observed ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.

  10. Structural and Nutritional Properties of Pasta from Triticum monococcum and Triticum durum Species. A Combined ¹H NMR, MRI, and Digestibility Study.

    Science.gov (United States)

    Pasini, Gabriella; Greco, Fulvia; Cremonini, Mauro A; Brandolini, Andrea; Consonni, Roberto; Gussoni, Maristella

    2015-05-27

    The aim of the present study was to characterize the structure of two different types of pasta, namely Triticum turgidum ssp. durum (cv. Saragolla) and Triticum monococcum ssp. monococcum (cv. Monlis), under different processing conditions. MRI analysis and NMR spectroscopy (i.e., T1 and T2 NMR relaxation times and diffusion parameters) were conducted on pasta, and (1)H NMR spectroscopic analysis of the chemical compounds released by pasta samples during the cooking process was performed. In addition, starch digestibility (enzimatically determined) was also investigated. The NMR results indicated that Saragolla pasta has a more compact structure, ascribed to pasta network and in particular to different technological gluten properties, that mainly determine the lower ability of Monlis pasta in binding water. These results correlate well with the lower rate of starch hydrolysis measured for Monlis pasta compared to Saragolla when both are dried at high temperature.

  11. Combination of ¹H NMR- and GC-MS-based metabonomics to study on the toxicity of Coptidis Rhizome in rats.

    Directory of Open Access Journals (Sweden)

    Yuting Zhou

    Full Text Available BACKGROUND: Coptidis Rhizome (CR, widely applied to treat with heat and toxicity, is one of the most commonly used traditional Chinese medicine (TCM, however, an extensive dosage can induce toxicity. Diarrhea is one of the most frequent side effects of CR treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, metabonomics was combined with the multivariate statistical analysis to discover the endogenous metabolites which related to the diarrheal induced by CR. The male Sprague-Dawley rats were dosed with 4.95 g CR/kg weight. Urine samples were collected at day -1 (before treatment, and days 14 and 21 for NMR analysis. Serum and tissues were collected at day 14 for GC-MS analysis and histopathological examination, respectively. The urine and serum metabolic profiles provided clearer distinction between CR-treated group and control group, which was confirmed by body weight change and diarrhea. Through multivariate statistical analysis, 12 marker metabolites from ¹H NMR and 8 ones from GC-MS have been found. Among those metabolites, hippurate, acetate, alanine, glycine and glutamate are likely to break the balance of gut microbiota, whereas, lactate and 2-ketoisovalerate showed association with energy metabolism. Meanwhile, we observed that the CR-induced toxicity will recover when the treatment was stopped. CONCLUSIONS/SIGNIFICANCE: These results suggest that the main reason for the CR-associated diarrhea might be disturbance in the normal gut microbiota. This metabonomics approach may provide an effective way to study the alteration of gut microbiota, which is expected to find broader application in other drug-induced gastrointestinal reaction assessment.

  12. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  13. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional 1H NMR analyses fo the antigen-antibody interactions

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji

    1991-01-01

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C H 1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides 1 H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2'-H and Tyr C3',5'-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed

  14. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR.

    Science.gov (United States)

    Liu, Bingrui; Kongstad, Kenneth T; Wiese, Stefanie; Jäger, Anna K; Staerk, Dan

    2016-07-15

    Crude chloroform, ethanol and acetone extracts of nineteen seaweed species were screened for their antioxidant and α-glucosidase inhibitory activity. Samples showing more than 60% α-glucosidase inhibitory activity, at a concentration of 1 mg/ml, were furthermore investigated using high-resolution α-glucosidase inhibition profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC-HRMS-SPE-NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling a Trolox equivalent antioxidant capacity of 135 and 108 mM Troloxmg(-1) extract, respectively. HR-bioassay/HPLC-HRMS-SPE-NMR showed the α-glucosidase inhibitory activity of A. nodosum, F. vesoculosus, Laminaria digitata, Laminaria japonica and Undaria pinnatifida to be caused by phlorotannins as well as fatty acids - with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Metabolomic NMR fingerprinting: an exploratory and predictive tool

    OpenAIRE

    Lauri, Ilaria

    2014-01-01

    Metabolomics is the comprehensive assessment of low molecular weight organic metabolites within biological system. The identification and characterization of several chemical species, or metabolic fingerprinting, is an emergent approach in metabolomics field that provides a valuable “snapshot” of metabolic profiles. This approach is finding an increasing number of applications in many areas including cancer research, drug discovery and food science. The combined use of NMR spectroscopy, data ...

  16. Genotype evaluation of cowpea seeds (Vigna unguiculata) using 1H qNMR combined with exploratory tools and solid-state NMR

    DEFF Research Database (Denmark)

    Alves Filho, Elenilson G.; Silva, Lorena M. A.; Teofilo, Elizita M.

    2017-01-01

    The ultimate aim of this study was to apply a non-targeted chemometric analysis (principal component analysis and hierarchical clustering analysis using the heat map approach) of NMR data to investigate the variability of organic compounds in nine genotype cowpea seeds, without any complex pre-tr...

  17. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  18. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  19. NMR evidence of charge fluctuations in multiferroic CuBr2

    Science.gov (United States)

    Wang, Rui-Qi; Zheng, Jia-Cheng; Chen, Tao; Wang, Peng-Shuai; Zhang, Jin-Shan; Cui, Yi; Wang, Chao; Li, Yuan; Xu, Sheng; Yuan, Feng; Yu, Wei-Qiang

    2018-03-01

    We report combined magnetic susceptibility, dielectric constant, nuclear quadruple resonance (NQR), and zero-field nuclear magnetic resonance (NMR) measurements on single crystals of multiferroics CuBr2. High quality of the sample is demonstrated by the sharp magnetic and magnetic-driven ferroelectric transition at {T}{{N}}={T}{{C}}≈ 74 K. The zero-field 79Br and 81Br NMR are resolved below T N. The spin-lattice relaxation rates reveal charge fluctuations when cooled below 60 K. Evidences of an increase of NMR linewidth, a reduction of dielectric constant, and an increase of magnetic susceptibility are also seen at low temperatures. These data suggest an emergent instability which competes with the spiral magnetic ordering and the ferroelectricity. Candidate mechanisms are discussed based on the quasi-one-dimensional nature of the magnetic system. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11374364), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University, China (Grant No. 14XNLF08).

  20. Sorbate Transport in Carbon Molecular Sieve Membranes and FAU/EMT Intergrowth by Diffusion NMR

    Directory of Open Access Journals (Sweden)

    John J. Low

    2012-02-01

    Full Text Available In this paper we present and discuss selected results of our recent studies of sorbate self-diffusion in microporous materials. The main focus is given to transport properties of carbon molecular sieve (CMS membranes as well as of the intergrowth of FAU-type and EMT-type zeolites. CMS membranes show promise for applications in separations of mixtures of small gas molecules, while FAU/EMT intergrowth can be used as an active and selective cracking catalyst. For both types of applications diffusion of guest molecules in the micropore networks of these materials is expected to play an important role. Diffusion studies were performed by a pulsed field gradient (PFG NMR technique that combines advantages of high field (17.6 T NMR and high magnetic field gradients (up to 30 T/m. This technique has been recently introduced at the University of Florida in collaboration with the National Magnet Lab. In addition to a more conventional proton PFG NMR, also carbon-13 PFG NMR was used.

  1. Reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor-V: function, thermodynamic stability, and NMR solution structure.

    Science.gov (United States)

    Cai, M; Gong, Y; Prakash, O; Krishnamoorthi, R

    1995-09-26

    Reactive-site (Lys44-Asp45 peptide bond) hydrolyzed Cucurbita maxima trypsin inhibitor-V (CMTI-V*) was prepared and characterized: In comparison to the intact form, CMTI-V* exhibited markedly reduced inhibitory properties and binding affinities toward trypsin and human blood coagulation factor XIIa. The equilibrium constant of trypsin-catalyzed hydrolysis, Khyd, defined as [CMTI-V*]/[CMTI-V], was measured to be approximately 9.4 at 25 degrees C (delta G degrees = -1.3 kcal.mol-1). From the temperature dependence of delta G degrees, the following thermodynamic parameters were estimated: delta H degrees = 1.6 kcal.mol-1 and delta S degrees = 9.8 eu. In order to understand the functional and thermodynamic differences between the two forms, the three-dimensional solution structure of CMTI-V* was determined by a combined approach of NMR, distance geometry, and simulated annealing methods. Thus, following sequence-specific and stereospecific resonance assignments, including those of beta-, gamma-, delta-, and epsilon-hydrogens and valine methyl hydrogens, 809 interhydrogen distances and 123 dihedral angle constraints were determined, resulting in the computation and energy-minimization of 20 structures for CMTI-V*. The average root mean squared deviation in position for equivalent atoms between the 20 individual structures and the mean structure obtained by averaging their coordinates is 0.67 +/- 0.15 A for the main chain atoms and 1.19 +/- 0.23 A for all the non-hydrogen atoms of residues 5-40 and residues 48-67.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Dehydration/hydration of granular beds for thermal storage applications: a combined NMR and temperature study

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    For heat/cold storage systems a granular bed of salt hydrates is studied during dehydration/hydration. The water density in these beds are measured with help of NMR. Diffusion based dehydration of a granular bed of Na2SO4·10H2O is shown to be internally limited as larger grains dehydrate faster than

  3. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    Science.gov (United States)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  4. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  5. Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Fisher, Quentin

    2015-01-01

    Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity and pore size is derived for a porous medium with a homogeneous pore size, whereas...... the pore sizes in tight sandstones can range from nm to μm. Nuclear magnetic resonance (NMR) transverse relaxation was used to estimate a pore size distribution for 63 samples of Rotliegend sandstone. The surface relaxation parameter required to relate NMR to pore size is estimated by combination of NMR...

  6. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional sup 1 H NMR analyses fo the antigen-antibody interactions

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-03-19

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C{sub H}1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides {sup 1}H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2{prime}-H and Tyr C3{prime},5{prime}-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed.

  7. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-07-02

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with {sup 13}C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with (1-{sup 13}C)Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how {sup 13}C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule.

  8. Application of NMR Spectroscopy in the Analysis of Petroleum Derivatives and Products

    Directory of Open Access Journals (Sweden)

    Parlov Vuković, J.

    2012-11-01

    Full Text Available Complex chemical composition and physical properties of oil and fuel make their complete cha racterization very difficult. Components present in oil and oil products differ in structure, size, po larity and functionality. The presence and structure of specific hydrocarbons in final products depend on the processing procedure and type of the fuel. In order to predict or improve fuel pro perties it is necessary to determine its composition. Thus, new and more sophisticated analytical methods and procedures are constantly being developed. NMR spectroscopy plays a significant role in analysis and identification of complex hydrocarbon mixtures of petroleum and petroleum products. In this review, we describe the application of NMR spectroscopy for analyzing gasoline and diesel fuels. Hence, by using NMR spectroscopy it is possible to determine gasoline composition and presence of benzene and oxygenates, as well as some important physical characteristics of gasoli ne such as the research octane number. An application of different NMR techniques made it pos sible to characterize diesel fuels and middle oil distillates from various refineries. Data so obtained can be used in combination with statistical methods to predict fuel properties and to monitor pro- duction processes in the petroleum industry. NMR spectroscopy has proven useful in analysis of FAME which has recently been used as an ecologically acceptable alternative fuel. Furthermore, techniques such as CP/MAS for characterization of solid state oil-geochemical samples are inclu- ded. Also, possibilities of using NMR spectroscopy in the analysis of polymeric additives are di- scussed.

  9. Camphor: a good model for illustrating NMR techniques; Canfora: um bom modelo para ilustrar tecnicas de RMN

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Julliane Diniz; Leal, Katia Zaccur [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Fisico-Quimica]. E-mail: kzl@rmn.uff.br; Seidl, Peter Rudolf [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Azeredo, Rodrigo Bagueira de V. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Kleinpeter, Erich [Universitaet Potsdam (Germany). Chemisches Institut

    2007-07-01

    The use of Nuclear Magnetic Resonance spectroscopy to establish the three-dimensional structures of molecules is an important component of modern Chemistry courses. The combination of techniques that can be used for this purpose is conveniently illustrated by their application to the camphor molecule. This paper presents applications of several techniques used in NMR spectral interpretation in an increasing order of complexity. The result of individual experiments is illustrated in order to familiarize the user with the way connectivity through bonds and through space is established from 1D/2D-NMR spectra and molecular stereochemistry is determined from different NMR experiments. (author)

  10. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lawrence R. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Walker, S. Michael [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Ward, Joy K. [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Nicora, Carrie D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Bingol, Kerem [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-09-16

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.

  11. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    Science.gov (United States)

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  12. Proton NMR Studies of a Large Protein. pH, Substrate Titrations, and NOESY Experiments with Perdeuterated Yeast Phosphoglycerate Kinase Containing [ 1H]Histidine Residues

    Science.gov (United States)

    Pappu, K. M.; Serpersu, E. H.

    Fully deuterated yeast phosphoglycerate kinase ([ 2H]PGK) was prepared biosynthetically with only histidine side chains of normal ( 1H) isotopic composition. The 1H NMR spectrum of this enzyme([ 1H]His[ 2H]PGK) showed that the histidine side chains are clearly visible as sharp signals. Thus detailed structural studies by 1H NMR became feasible with isotope-hybrid phosphoglycerate kinase which is otherwise too large ( Mr ˜ 46,000) for conventional 1H NMR studies. Proton signals of bound substrates were visible in the 1H NMR spectrum even with a substrate-to-enzyme ratio of less than 1/2 (mol/mol). The 2D NOESY spectrum of enzyme-MgdATP-glycerol 3-phosphate complex showed that, although protein concentration was very high (1.5 m M), no intraprotein cross peaks were observed other than those of intraresidue histidine NOE cross peaks. In addition, intrasubstrate NOEs and intermolecular NOEs between histidine and substrate protons were visible at a 1.5/1 substrate/enzyme (mol/mol) ratio. Paramagnetic effects of a substrate analog, Cr(III)ATP, on some of the histidine side chains indicated that the formation of the ternary enzyme-substrate complex causes large conformational changes in the enzyme.

  13. Solution conformation and dynamics of a tetrasaccharide related to the Lewis{sup X} antigen deduced by NMR relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Ana [Universidad Autonoma de Madrid, Servicio Interdepartamental de Investigacion (Spain); Asensio, Juan Luis; Martin-Pastor, Manuel; Jimenez-Barbero, Jesus [Instituto de Quimica Organica, CSIC, Grupo de Carbohidratos (Spain)

    1997-07-15

    {sup 1}H-NMR cross-relaxation rates and nonselective longitudinal relaxation times have been obtained at two magnetic fields (7.0 and 11.8 T) and at a variety of temperatures for the branched tetrasaccharide methyl 3-O-{alpha}-N-acetyl-galactosaminyl-{beta}-galactopyranosyl-(1{sup {yields}}4)[3-O-{alpha}-fucosyl] -glucopyranoside (1), an inhibitor of astrocyte growth. In addition, {sup 13}C-NMR relaxation data have also been recorded at both fields. The {sup 1}H-NMR relaxation data have been interpreted using different motional models to obtain proton-proton correlation times. The results indicate that the GalNAc and Fuc rings display more extensive local motion than the two inner Glc and Gal moieties, since those present significantly shorter local correlation times. The{sup 13}C-NMR relaxation parameters have been interpreted in terms of the Lipari-Szabo model-free approach. Thus, order parameters and internal motion correlation times have been deduced. As obtained for the{sup 1}H-NMR relaxation data, the two outer residues possess smaller order parameters than the two inner rings. Internal correlation times are in the order of 100 ps. The hydroxymethyl groups have also different behaviour,with the exocyclic carbon on the glucopyranoside unit showing the highestS{sup 2}. Molecular dynamics simulations using a solvated system have also been performed and internal motion correlation functions have been deduced from these calculations. Order parameters and interproton distances have been compared to those inferred from the NMR measurements. The obtained results are in fair agreement with the experimental data.

  14. NMR magnetization exchange dynamics for three spin-1/2 systems

    International Nuclear Information System (INIS)

    Demco, D.E.; Filip, X.; Filip, C.

    1997-01-01

    The magnetization exchange dynamics in one-dimensional NMR exchange experiments performed with static samples is analyzed for the relevant case of three spin systems. The magnetization decays recorded in the experiments performed with different chemical shift filters for the short mixing times are derived analytically. In this regime the decay rates depend on the dipolar coupling between the spins belonging to different functional groups. The predictions of the theoretical model are compared with the magnetization exchange data obtained for cross-linked poly(styrene-co-butadiene) samples. The residual dipolar coupling between the functional CH- and CH2-groups of butadiene are measured from the magnetization exchange experiments in the short mixing time regime. (authors)

  15. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Frank H.; Riepl, Hubert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Maurer, Till [Boehringer Ingelheim Pharma GmbH and Co. KG, Analytical Sciences Department (Germany); Gronwald, Wolfram [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Neidig, Klaus-Peter [Bruker BioSpin GmbH, Software Department (Germany); Kalbitzer, Hans Robert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)], E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de

    2007-12-15

    Protein-protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation {delta}{delta}{sub comb}. In this paper different procedures (published and non-published) to calculate {delta}{delta}{sub comb} are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.

  17. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining "1H NMR metabolomics and conventional biochemical assays

    International Nuclear Information System (INIS)

    Cappello, Tiziana; Brandão, Fátima; Guilherme, Sofia; Santos, Maria Ana; Maisano, Maria; Mauceri, Angela; Canário, João; Pacheco, Mário; Pereira, Patrícia

    2016-01-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  18. High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.

    Science.gov (United States)

    Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio

    2015-01-01

    In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.

  19. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  20. Rifampicin sensitivity of residual RNA synthesis in Escherichia coli cells exposed to ultraviolet radiation and combined ultraviolet and γ radiations

    International Nuclear Information System (INIS)

    Prakash, R.K.; Netrawali, M.S.; Pradhan, D.S.

    1976-01-01

    UV-irradiation prevents rifampicin inhibition of the initiation of RNA synthesis by E.coli cells, but such rifampicin insensitivity is not exhibited by the residual RNA synthesis in γ-irradiated cells. Studies of the rate of [ 3 H]-uridine incorporation by E.coli cells at various times of incubation have been used to show that when γ-irradiation was given either before or after UV-irradiation of cells, the observed rifampicin insensitivity of residual RNA synthesis in the UV-irradiated cells was obliterated. RNA synthesis in cells subjected to combined exposures of UV- and γ-radiations was lowered to a lesser extent than that in the cells exposed to UV-irradiation alone. Possible mechanisms are discussed. (U.K.)

  1. Rifampicin sensitivity of residual RNA synthesis in Escherichia coli cells exposed to ultraviolet radiation and combined ultraviolet and. gamma. radiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, R K; Netrawali, M S; Pradhan, D S [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1976-09-01

    UV-irradiation prevents rifampicin inhibition of the initiation of RNA synthesis by E.coli cells, but such rifampicin insensitivity is not exhibited by the residual RNA synthesis in ..gamma..-irradiated cells. Studies of the rate of (/sup 3/H)-uridine incorporation by E.coli cells at various times of incubation have been used to show that when ..gamma.. irradiation was given either before or after uv-irradiation of cells, the observed rifampicin insensitivity of residual RNA synthesis in the uv-irradiated cells was obliterated. RNA synthesis in cells subjected to combined exposures of uv- and ..gamma..-radiations was lowered to a lesser extent than that in the cells exposed to uv-irradiation alone. Possible mechanisms are discussed.

  2. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

    International Nuclear Information System (INIS)

    Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles

    2003-01-01

    We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms

  3. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  4. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  5. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    Science.gov (United States)

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  6. Determination of authenticity, regional origin, and vintage of Slovenian wines using a combination of IRMS and SNIF-NMR analyses.

    Science.gov (United States)

    Ogrinc, N; Kosir, I J; Kocjancic, M; Kidric, J

    2001-03-01

    The authenticity and geographical origin of wines produced in Slovenia were investigated by a combination of IRMS and SNIF-NMR methods. A total of 102 grape samples of selected wines were carefully collected in three different wine-growing regions of Slovenia in 1996, 1997, and 1998. The stable isotope data were evaluated using principal component analysis (PCA) and linear discriminant analysis (LDA). The isotopic ratios to discriminate between coastal and continental regions are the deuterium/hydrogen isotopic ratio of the methylene site in the ethanol molecule (D/H)(II) and delta(13)C values; including also delta(18)O values in the PCA and LDA made possible separation between the two continental regions Drava and Sava. It was found that delta(18)O values are modified by the meteorological events during grape ripening and harvest. The usefulness of isotopic parameters for detecting adulteration or watering and to assess the geographical origin of wines is improved only when they are used concurrently.

  7. Analysis of the mechanical properties and characterization by solid state 13 C NMR of recycled EVA copolymer/silica composites

    International Nuclear Information System (INIS)

    Stael, Giovanni Chaves; Rocha, Marisa Cristina Guimaraes

    2005-01-01

    The incorporation of micrometer sized silica particles on poly (ethylene-co-vinyl acetate) - EVA - residues from the footwear industry was evaluated. The effects of the processing parameters - temperature and mixing ratio - on the mechanical behavior of molded plates of neat recycled EVA and EVA/silica composites were also investigated. The mechanical properties measured by the tensile test, the fractographic analysis by scanning electron microscopy (SEM), and the 13 C Nuclear Magnetic Resonance (NMR) showed a reduced EVA to silica compatibility. Therefore, incorporation of untreated silica to recycled EVA copolymer produced a slight decrease on the mechanical performance of EVA/silica composites in respect to neat EVA copolymer. The NMR analysis also shows that the crosslinking process on recycled EVA may be occurring at the carbonyl group. (author)

  8. Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures

    International Nuclear Information System (INIS)

    Berjanskii, Mark; Zhou Jianjun; Liang Yongjie; Lin Guohui; Wishart, David S.

    2012-01-01

    In protein X-ray crystallography, resolution is often used as a good indicator of structural quality. Diffraction resolution of protein crystals correlates well with the number of X-ray observables that are used in structure generation and, therefore, with protein coordinate errors. In protein NMR, there is no parameter identical to X-ray resolution. Instead, resolution is often used as a synonym of NMR model quality. Resolution of NMR structures is often deduced from ensemble precision, torsion angle normality and number of distance restraints per residue. The lack of common techniques to assess the resolution of X-ray and NMR structures complicates the comparison of structures solved by these two methods. This problem is sometimes approached by calculating “equivalent resolution” from structure quality metrics. However, existing protocols do not offer a comprehensive assessment of protein structure as they calculate equivalent resolution from a relatively small number (<5) of protein parameters. Here, we report a development of a protocol that calculates equivalent resolution from 25 measurable protein features. This new method offers better performance (correlation coefficient of 0.92, mean absolute error of 0.28 Å) than existing predictors of equivalent resolution. Because the method uses coordinate data as a proxy for X-ray diffraction data, we call this measure “Resolution-by-Proxy” or ResProx. We demonstrate that ResProx can be used to identify under-restrained, poorly refined or inaccurate NMR structures, and can discover structural defects that the other equivalent resolution methods cannot detect. The ResProx web server is available at http://www.resprox.cahttp://www.resprox.ca.

  9. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  10. Clinical application and evaluation of the diagnostic significance of NMR-tomography

    International Nuclear Information System (INIS)

    Bielke, G.; Higer, P.

    1987-01-01

    Aim of the project was the clinical application and evaluation of the diagnostic significance of NMR-tomography. About 3 000 patients have been examined especially with diseases of the brain. In 75% of all cases pathological findings could be detected. A subgroup of these patients was used for comprehensive studies with regard to tissue characterization based on the calculation of relaxation time parameters. With methods of image processing and classification techniques we tried to get a clear correlation between combined NMR-parameters and human tissue types. The results show that this procedure is able to improve the detectibility and the association to finding groups and tumorgradings in certain cases. (orig./ECB) With 134 refs., 17 tabs., 86 figs [de

  11. NMR and computational study of Ba{sub 8}Cu{sub x}Ge{sub 46-x} clathrate semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Han, E-mail: jhchen@tamu.edu; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-04-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba{sub 8}Cu{sub x}Ge{sub 46-x} is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition.

  12. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs

  13. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  14. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR.

    Science.gov (United States)

    Li, R; Rajan, R; Wong, W C V; Reid, D G; Duer, M J; Somovilla, V J; Martinez-Saez, N; Bernardes, G J L; Hayward, R; Shanahan, C M

    2017-12-14

    Non-enzymatic glycation of extracellular matrix with (U- 13 C 5 )-d-ribose-5-phosphate (R5P), enables in situ 2D ssNMR identification of many deleterious protein modifications and crosslinks, including previously unreported oxalamido and hemiaminal (CH 3 -CH(OH)NHR) substructures. Changes in charged residue proportions and distribution may be as important as crosslinking in provoking and understanding harmful tissue changes.

  15. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  16. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  17. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  18. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.

    1986-01-01

    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  19. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  20. Solution NMR investigation of the CD95/FADD homotypic death domain complex suggests lack of engagement of the CD95 C terminus.

    Science.gov (United States)

    Esposito, Diego; Sankar, Andrew; Morgner, Nina; Robinson, Carol V; Rittinger, Katrin; Driscoll, Paul C

    2010-10-13

    We have addressed complex formation between the death domain (DD) of the death receptor CD95 (Fas/APO-1) with the DD of immediate adaptor protein FADD using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and size-exclusion chromatography with in-line light scattering. We find complexation to be independent of the C-terminal 12 residues of CD95 and insensitive to mutation of residues that engage in the high-order clustering of CD95-DD molecules in a recently reported crystal structure obtained at pH 4. Differential NMR linewidths indicate that the C-terminal region of the CD95 chains remains in a disordered state and (13)C-methyl TROSY data are consistent with a lack of high degree of symmetry for the complex. The overall molecular mass of the complex is inconsistent with that in the crystal structure, and the complex dissociates at pH 4. We discuss these findings using sequence analysis of CD95 orthologs and the effect of FADD mutations on the interaction with CD95. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Tannin Fingerprinting in Vegetable Tanned Leather by Solid State NMR Spectroscopy and Comparison with Leathers Tanned by Other Processes

    Directory of Open Access Journals (Sweden)

    Jan H. van der Westhuizen

    2011-01-01

    Full Text Available Solid state 13C-NMR spectra of pure tannin powders from four different sources – mimosa, quebracho, chestnut and tara – are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan.  Groups of signals indicative of the source, and type (condensed vs. hydrolyzable of tannin used in the manufacture are well resolved in the spectra of the finished leathers.  These fingerprints are compared with those arising from leathers tanned with other common tanning agents.  Paramagnetic chromium (III tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III structures. Aluminium (III and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The 27Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.

  2. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  3. FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldelli, Mauro; Carlon, Azzurra; Ravera, Enrico; Parigi, Giacomo, E-mail: parigi@cerm.unifi.it; Luchinat, Claudio, E-mail: luchinat@cerm.unifi.it [University of Florence, CERM and Department of Chemistry “Ugo Schiff” (Italy)

    2015-01-15

    Pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) arising from the presence of paramagnetic metal ions in proteins as well as RDCs due to partial orientation induced by external orienting media are nowadays routinely measured as a part of the NMR characterization of biologically relevant systems. PCSs and RDCs are becoming more and more popular as restraints (1) to determine and/or refine protein structures in solution, (2) to monitor the extent of conformational heterogeneity in systems composed of rigid domains which can reorient with respect to one another, and (3) to obtain structural information in protein–protein complexes. The use of both PCSs and RDCs proceeds through the determination of the anisotropy tensors which are at the origin of these NMR observables. A new user-friendly web tool, called FANTEN (Finding ANisotropy TENsors), has been developed for the determination of the anisotropy tensors related to PCSs and RDCs and has been made freely available through the WeNMR ( http://fanten-enmr.cerm.unifi.it:8080 http://fanten-enmr.cerm.unifi.it:8080 ) gateway. The program has many new features not available in other existing programs, among which the possibility of a joint analysis of several sets of PCS and RDC data and the possibility to perform rigid body minimizations.

  4. 40 CFR 180.106 - Diuron; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Diuron; tolerances for residues. 180... Diuron; tolerances for residues. (a) General. Tolerances are established for the combined residues of the herbicide diuron, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and its metabolites convertible to 3,4...

  5. Microfabricated inserts for magic angle coil spinning (MACS wireless NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Vlad Badilita

    Full Text Available This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS, accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii given the high spinning rates (tens of kHz involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.

  6. A Solid-State Deuterium NMR and SFG Study of the Side Chain Dynamics of Peptides Adsorbed onto Surfaces

    Science.gov (United States)

    Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.

    2011-01-01

    The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755

  7. Structural studies of the 5'-phenazinium-tethered matched and G-A-mismatched DNA duplexes by NMR spectroscopy.

    Science.gov (United States)

    Maltseva, T; Sandström, A; Ivanova, I M; Sergeyev, D S; Zarytova, V F; Chattopadhyaya, J

    1993-05-01

    The mechanism through which modified oligo-DNA analogues act as antisense repressors at the transcriptional and translational level of gene expression is based on the information content in the nucleotide sequence which is determined by the specific base pairing. The efficiency of such action is largely determined by the stability of the duplex formed between the oligonucleotide reagent and the target sequence and also by the mismatched base pairing, such as G-A, that occurs during replication or recombination. We herein report that the phenazinium (Pzn)-tethered matched duplex p(d(TGTTTGGC)):(Pzn)-p(d(CCAAACA)) (III) (Tm = 50 degrees C) has a much larger stability than the parent matched duplex p(d(TGTTTGGC)):p(d(CCAAACA)) (I) (Tm = 30 degrees C). On the other hand, the Pzn-tethered G-A-mismatched duplex p(d(TGTTTGGC)):(Pzn)-p(d(ACAAACA)) (IV) (Tm = 34 degrees C) is only slightly more stable than its parent mismatched duplex p(d(TGTTTGGC)):p(d(ACAAACA)) (Tm = 25 degrees C). A detailed 500 MHz NMR study and constrained MD refinements of NMR-derived structures have been undertaken for the DNA duplexes (I), (II), (III) and (IV) in order to understand the structural basis of stabilization of Pzn-tethered matched DNA duplex (delta Tm = 20 degrees C) compared to mismatched duplex (delta Tm = 9 degrees C). Assignment of the 1H-NMR (500 MHz) spectra of the duplexes has been carried out by 2D NOESY, HOHAHA and DQF-COSY experiments. The torsion angles have been extracted from the J-coupling constants obtained by simulation of most of the DQF-COSY cross-peaks using program SMART. The solution structure of the duplexes were assessed by an iterative hybride relaxation matrix method (MORASS) combined with NOESY distances and torsion angles restrained molecular dynamics (MD) using program Amber 4.0. The standard Amber 4.0 force-field parameters were used for the oligonucleotide in conjunction with the new parameters for Pzn residue which was obtained by full geometry

  8. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  9. Assessment of Potential Capacity Increases at Combined Heat and Power Facilities Based on Available Corn Stover and Forest Logging Residues

    Directory of Open Access Journals (Sweden)

    Donald L. Grebner

    2013-08-01

    Full Text Available Combined Heat and Power (CHP production using renewable energy sources is gaining importance because of its flexibility and high-energy efficiency. Biomass materials, such as corn stover and forestry residues, are potential sources for renewable energy for CHP production. In Mississippi, approximately 4.0 MT dry tons of woody biomass is available annually for energy production. In this study, we collected and analyzed 10 years of corn stover data (2001–2010 and three years of forest logging residue data (1995, 1999, and 2002 in each county in Mississippi to determine the potential of these feed stocks for sustainable CHP energy production. We identified six counties, namely Amite, Copiah, Clarke, Wayne, Wilkinson and Rankin, that have forest logging residue feedstocks to sustain a CHP facility with a range of capacity between 8.0 and 9.8 MW. Using corn stover alone, Yazoo and Washington counties can produce 13.4 MW and 13.5 MW of energy, respectively. Considering both feedstocks and based on a conservative amount of 30% available forest logging residue and 33% corn stover, we found that 20 counties have adequate supply for a CHP facility with a capacity of 8.3 MW to 19.6 MW.

  10. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  11. Insights into the interaction between nucleoid-associated proteins H ha and H-NS by NMR and fluorescence anisotropy

    International Nuclear Information System (INIS)

    Cordeiro, T.N.; Garcia, J.; Pons, M.

    2005-01-01

    NMR and fluorescence anisotropy are both valuable tools for studying bio molecular interactions. NMR can provide structural insights at atomic resolution. Still, it can be wisely complemented by lower-resolution biophysical techniques, such as fluorescence anisotropy. In this article we report the combination of NMR and fluorescence anisotropy in establishing novel structure-function insights into the interaction between two bacterial nucleoid-associated proteins, H ha and H-NS. H ha (H-NS) complexes are known to play an important role in modulating the expression of some environmentally regulated genes that confer survival advantage in a particular growth condition. (author)

  12. Insights into the interaction between nucleoid-associated proteins H ha and H-NS by NMR and fluorescence anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, T.N.; Garcia, J. [Institut de Recerca Biomedica-Parc Cientific de (Spain). Lab. of Biomolecular NMR; Pons, M. [Universitat de Barcelona (Spain). Dept. de Quimica Organica]. E-mail: mpons@ub.edu

    2005-07-01

    NMR and fluorescence anisotropy are both valuable tools for studying bio molecular interactions. NMR can provide structural insights at atomic resolution. Still, it can be wisely complemented by lower-resolution biophysical techniques, such as fluorescence anisotropy. In this article we report the combination of NMR and fluorescence anisotropy in establishing novel structure-function insights into the interaction between two bacterial nucleoid-associated proteins, H ha and H-NS. H ha (H-NS) complexes are known to play an important role in modulating the expression of some environmentally regulated genes that confer survival advantage in a particular growth condition. (author)

  13. Application of random coherence order selection in gradient-enhanced multidimensional NMR

    International Nuclear Information System (INIS)

    Bostock, Mark J.; Nietlispach, Daniel

    2016-01-01

    Development of multidimensional NMR is essential to many applications, for example in high resolution structural studies of biomolecules. Multidimensional techniques enable separation of NMR signals over several dimensions, improving signal resolution, whilst also allowing identification of new connectivities. However, these advantages come at a significant cost. The Fourier transform theorem requires acquisition of a grid of regularly spaced points to satisfy the Nyquist criterion, while frequency discrimination and acquisition of a pure phase spectrum require acquisition of both quadrature components for each time point in every indirect (non-acquisition) dimension, adding a factor of 2 N -1 to the number of free- induction decays which must be acquired, where N is the number of dimensions. Compressed sensing (CS) ℓ 1 -norm minimisation in combination with non-uniform sampling (NUS) has been shown to be extremely successful in overcoming the Nyquist criterion. Previously, maximum entropy reconstruction has also been used to overcome the limitation of frequency discrimination, processing data acquired with only one quadrature component at a given time interval, known as random phase detection (RPD), allowing a factor of two reduction in the number of points for each indirect dimension (Maciejewski et al. 2011 PNAS 108 16640). However, whilst this approach can be easily applied in situations where the quadrature components are acquired as amplitude modulated data, the same principle is not easily extended to phase modulated (P-/N-type) experiments where data is acquired in the form exp (iωt) or exp (-iωt), and which make up many of the multidimensional experiments used in modern NMR. Here we demonstrate a modification of the CS ℓ 1 -norm approach to allow random coherence order selection (RCS) for phase modulated experiments; we generalise the nomenclature for RCS and RPD as random quadrature detection (RQD). With this method, the power of RQD can be extended

  14. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Guillaume; Crublet, Elodie [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France); Hamelin, Olivier [CNRS (France); Gans, Pierre; Boisbouvier, Jérôme, E-mail: jerome.boisbouvier@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-09-28

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D{sub 2}O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d{sub 10}. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  15. KinImmerse: Macromolecular VR for NMR ensembles

    Directory of Open Access Journals (Sweden)

    Vinson E Claire

    2009-02-01

    Full Text Available Abstract Background In molecular applications, virtual reality (VR and immersive virtual environments have generally been used and valued for the visual and interactive experience – to enhance intuition and communicate excitement – rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case. Methods The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE. Results In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs. Conclusion The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis.

  16. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  17. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Directory of Open Access Journals (Sweden)

    Pontil Massimiliano

    2009-10-01

    Full Text Available Abstract Background Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (ΔΔG measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots" at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. Results We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which ΔΔG ≥ 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. Conclusion We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been

  18. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    Energy Technology Data Exchange (ETDEWEB)

    Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States); Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States)

    2015-05-15

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living {sup 15}N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through {sup 15}N–{sup 15}N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish {sup 15}N–{sup 15}N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments.

  19. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    Science.gov (United States)

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  20. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    International Nuclear Information System (INIS)

    Gopinath, T.; Mote, Kaustubh R.; Veglia, Gianluigi

    2015-01-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15 N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through 15 N– 15 N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish 15 N– 15 N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments

  1. Two-dimensional NMR studies of squash family inhibitors. Sequence-specific proton assignments and secondary structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III

    Energy Technology Data Exchange (ETDEWEB)

    Krisnamoorthi, R.; Yuxi Gong; Chanlan Sun Lin (Kansas State Univ., Manhattan (United States)); VanderVelde, D. (Univ. of Kansas, Lawrence (United States))

    1992-01-28

    The solution structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III*) was investigated by two-dimensional proton nuclear magnetic resonance (2D NMR) spectroscopy. CMTI-III*, prepared by reacting CMTI-III with trypsin which cleaved the Arg5-Ile6 peptide bond, had the two fragments held together by a disulfide linkage. Sequence-specific {sup 1}H NMR resonance assignments were made for all the 29 amino acid residues of the protein. The secondary structure of CMTI-III*, as deduced from NOESY cross peaks and identification of slowly exchanging hydrogens, contains two turns, a 3{sub 10}-helix, and a triple-stranded {beta}-sheet. Sequential proton assignments were also made for the virgin inhibitor, CMTI-III, at pH 4.71, 30C. Comparison of backbone hydrogen chemical shifts of CMTI-III and CMTI-III* revealed significant changes for residues located far away from the reactive-site region as well as for those located near it, indicating tertiary structural changes that are transmitted through most of the 29 residues of the inhibitor protein. These chemical shift changes were relatively small compared to changes that occurred upon hydrolysis of the reactive-site peptide bond between Arg 5 and Ile6 in CMTI-III.

  2. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups

    Science.gov (United States)

    Cody, George D.; Alexander, Conel M. O.'D.

    2005-02-01

    Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group's IOM. The fraction of aromatic carbon increases as CR2 meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp 3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.

  3. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH

    International Nuclear Information System (INIS)

    Volk, Jochen; Herrmann, Torsten; Wuethrich, Kurt

    2008-01-01

    MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness

  4. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  5. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  6. NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation

    Directory of Open Access Journals (Sweden)

    Bruix Marta

    2010-01-01

    Full Text Available Abstract Background Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. Results We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. Conclusions These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role.

  7. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining {sup 1}H NMR metabolomics and conventional biochemical assays

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Tiziana, E-mail: tcappello@unime.it [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Brandão, Fátima, E-mail: fatimabrandao@ua.pt [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Guilherme, Sofia; Santos, Maria Ana [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Maisano, Maria; Mauceri, Angela [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Canário, João [Centro de Química Estrutural, Instítuto Superíor Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Pacheco, Mário; Pereira, Patrícia [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-04-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione + oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to

  8. Structural consequences of the natural substitution, E9K, on reactive-site-hydrolyzed squash (Cucurbita maxima) trypsin inhibitor (CMTI), as studied by two-dimensional NMR.

    Science.gov (United States)

    Krishnamoorthi, R; Lin, C L; VanderVelde, D

    1992-06-02

    Sequence-specific hydrogen-1 NMR assignments were made to all of the 29 amino acid residues of reactive-site-hydrolyzed Cucurbita maxima trypsin inhibitor I (CMTI-I*) by the application of two-dimensional NMR (2D NMR) techniques, and its secondary structural elements (two tight turns, a 3(10)-helix, and a triple-stranded beta-sheet) were identified on the basis of short-range NOESY cross peaks and deuterium-exchange kinetics. These secondary structural elements are present in the intact inhibitor [Holak, T. A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648] and are unaffected by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6, in accordance with the earlier conclusion reached for CMTI-III* [Krishnamoorthi, R., Gong, Y.-X., Lin, C. S., & VanderVelde, D. (1992) Biochemistry 31, 898-904]. Chemical shifts of backbone hydrogen atoms, peptide NH's, and C alpha H's, of CMTI-I* were compared with those of the intact inhibitor, CMTI-I, and of the reactive-site-hydrolyzed, natural, E9K variant, CMTI-III*. Cleavage of the Arg5-Ile6 peptide bond resulted in changes of chemical shifts of most of the backbone atoms of CMTI-I, in agreement with the earlier results obtained for CMTI-III. Comparison of chemical shifts of backbone hydrogen atoms of CMTI-I* and CMTI-III* revealed no changes, except for residues Glu9 and His25. However, the intact forms of the same two proteins, CMTI-I and CMTI-III, showed small but significant perturbations of chemical shifts of residues that made up the secondary structural elements of the inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Structure and motion of phospholipids in human plasma lipoproteins. A 31P NMR study

    International Nuclear Information System (INIS)

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J.

    1990-01-01

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using 31 P NMR. Lateral diffusion coefficients, D T , obtained from the viscosity dependence of the 31 P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL 2 , HDL 3 ), and egg PC/TO microemulsions at 25 degree C, for VLDL at 40 degree C, and for LDL at 45 degree C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, Δσ, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the 31 P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL 3 has been obtained from the temperature dependence of the 31 P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL 3 and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs

  10. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  11. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  12. NMR spectroscopy study of agar-based polymers electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, R.I.; Tambelli, C.E. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos; Raphael, E. [Universidade Federal de Sao Joao del-Rey (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Silva, I.D.A.; Magon, C.J.; Donoso, J.P. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This communication presents the results of preparation and characterization of transparent films obtained from agar and acetic acid. The films were characterized by electrochemical impedance spectroscopy (EIS) and nuclear magnetic resonance (NMR). The film formed by agar (Sigma Aldrich) was dispersed in water and kept under stirring and heating at 100 deg C. Next, glycerol, formaldehyde and different quantities of acetic acid (25 and 50 wt%) were added to this solution. The obtained solution was placed on a glass plate and left to dry for 48 hours in oven at 50 deg C to obtain the films, which were kept under vacuum before characterization. The ionic conductivity of the films display an Arrhenius behavior with activation energy E{sub a} = 78 (25 wt% of acetic acid) and E{sub a} = 87 kJ/mol (50 wt% of acetic acid). The conductivity values were 3:0 X 10{sup -6} and 1:2 X 10{sup -4} S/cm at room temperature and 4:4 X 10{sup -4} and 1:5 X 10{sup -3}S/cm at 70 deg C, for the 25 and 50 wt% of acetic acid respectively. To investigate the mechanism of protonic conduction in the polymer proton conductor proton NMR measurements were performed in the temperature range 200-370 K. The {sup 1}H-NMR results exhibit the qualitative feature associated with the proton mobility, namely the presence of well defined {sup 1}H spin-lattice relaxation maxima at 300 K. Activation energy of the order of 40 kJ/mol was obtained from the {sup 1}H-NMR line narrowing data. The ionic conductivity of the film combined with their transparency, flexibility, homogeneity and good adhesion to the glasses or metals indicate that agar-based SPEs are promising materials for used on optoelectronic applications. (author)

  13. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  14. The energizing of a NMR superconducting coil by a superconducting rectifier

    International Nuclear Information System (INIS)

    Sikkenga, J.; ten Kate, H.H.J.; van der Klundert, L.J.M.; Knoben, J.; Kraaij, G.J.; Spuorenberg, C.J.G.

    1985-01-01

    NMR magnets require a good homogeneity within a certain volume and an excellent field stability. The homogeneity can be met using a superconducting shim coil system. The field stability requires a constant current, although in many cases the current decay time constant is too low, due to imperfections in the superconducting wire and joints. This can be overcome using a rectifier. The rectifier can also be used to load the coil. The combination and interaction of the superconducting NMR coil (2.0 Tesla and 0.35 m cold bore) and the rectifier (20 W / 1 kA) is tested. The safety of the system is discussed. The shim coil system can compensate the strayfield of the rectifier. The field decay compensation will be discussed

  15. Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

    OpenAIRE

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Introduction. Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining 1H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. Methods. We treated rats wit...

  16. A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells

    Science.gov (United States)

    Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Acharya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J. S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; Degrado, William F.

    2017-09-01

    The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide.

  17. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-11-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg-1 and 2318 to 8395 mg kg-1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.

  18. Analysis of the mechanical properties and characterization by solid state 13C NMR of recycled EVA copolymer/silica composites

    Directory of Open Access Journals (Sweden)

    Giovanni Chaves Stael

    2005-09-01

    Full Text Available The incorporation of micrometer sized silica particles on poly (ethylene-co-vinyl acetate - EVA - residues from the footwear industry was evaluated. The effects of the processing parameters - temperature and mixing ratio - on the mechanical behavior of molded plates of neat recycled EVA and EVA/silica composites were also investigated. The mechanical properties measured by the tensile test, the fractographic analysis by scanning electron microscopy (SEM, and the 13C Nuclear Magnetic Resonance (NMR showed a reduced EVA to silica compatibility. Therefore, incorporation of untreated silica to recycled EVA copolymer produced a slight decrease on the mechanical performance of EVA/silica composites in respect to neat EVA copolymer. The NMR analysis also shows that the crosslinking process on recycled EVA may be occurring at the carbonyl group.

  19. Integrative NMR for biomolecular research

    International Nuclear Information System (INIS)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L.

    2016-01-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  20. Integrative NMR for biomolecular research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-04-15

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download{sub p}ackages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  1. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  2. Quantifying protein dynamics in the ps–ns time regime by NMR relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Griselda; LeMaster, David M., E-mail: david.lemaster@health.ny.gov [University at Albany - SUNY, Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health (United States)

    2016-11-15

    Both {sup 15}N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide {sup 15}N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T{sub 1} and T{sub 1ρ} experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz {sup 1}H, differential residue-specific {sup 15}N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific {sup 15}N CSA values. Experimental access to such differential residue-specific {sup 15}N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.

  3. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  4. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  5. Combination of QuEChERS and DLLME for GC-MS determination of pesticide residues in orange samples.

    Science.gov (United States)

    Andraščíková, Mária; Hrouzková, Svetlana; Cunha, Sara C

    2013-01-01

    A new method combining QuEChERS (quick, easy, cheap, effective, rugged and safe) and DLLME (dispersive liquid-liquid microextraction) followed by gas chromatography-mass spectrometry with selected ion monitoring (SIM) was developed for the simultaneous determination of 19 pesticides from nine chemical groups exhibiting or suspected to exhibit endocrine-disrupting properties in orange samples. Acetonitrile extract obtained from QuEChERS extraction was used for DLLME as dispersive solvent and carbon tetrachloride as extractive solvent to increase the enrichment factor of the extraction procedure. The effect of several extraction parameters, such as volume extract achieved by the QuEChERS method and subsequently used for DLLME, selection of extractive solvent and its volume, was tested. Under optimum conditions, good linearity, satisfactory recoveries and repeatability were obtained. Limits of quantification (LOQs) achieved (ranging from 0.02 to 47 ng/g) were below the maximum residue limits established by the European Union. The proposed method was applied to the monitoring of pesticide residue levels in oranges commercialised in Portugal.

  6. Structure and Dynamics Studies of Cytolytic Peptides in Lipid Bilayers using NMR Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Sara Krogh

    2015-01-01

    different and cytolytic peptides were investigated in this work. The peptides were SPF-5506-A4 from Trichoderma sp, Conolysin-Mt1 from Conus mustelinus, and Alamethicin from Trichoderma viride. The studies employed solution and solid-state NMR spectroscopy in combination with different biophysical methods...

  7. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2

    International Nuclear Information System (INIS)

    Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin; Maier, Elke; Zweckstetter, Markus; Griesinger, Christian; Benz, Roland; Becker, Stefan; Lange, Adam

    2015-01-01

    The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles

  8. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2

    Energy Technology Data Exchange (ETDEWEB)

    Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin [Max Planck Institute for Biophysical Chemistry (Germany); Maier, Elke [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Zweckstetter, Markus; Griesinger, Christian [Max Planck Institute for Biophysical Chemistry (Germany); Benz, Roland [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Becker, Stefan; Lange, Adam, E-mail: alange@fmp-berlin.de [Max Planck Institute for Biophysical Chemistry (Germany)

    2015-04-15

    The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles.

  9. Application of NMR Screening Methods with 19F Detection to Fluorinated Compounds Bound to Proteins

    Directory of Open Access Journals (Sweden)

    Kazuo Furihata

    2017-12-01

    Full Text Available The combinational use of one-dimensional (1D NMR-based screening techniques with 1H and 19F detections were applied to a human serum albumin–diflunisal complex. Since most NMR screening methods observe 1H spectra, the overlapped 1H signals were unavailable in the binding epitope mapping. However, the NMR experiments with 19F detection can be used as an effective complementary method. For the purpose of identifying the 1H and 19F binding epitopes of diflunisal, this paper carries out a combinatorial analysis using 1H{1H} and 19F{1H} saturation transfer difference experiments. The differences of the 1H-inversion recovery rates with and without target irradiation are also analyzed for a comprehensive interpretation of binding epitope mapping.

  10. Rapid prediction of multi-dimensional NMR data sets

    International Nuclear Information System (INIS)

    Gradmann, Sabine; Ader, Christian; Heinrich, Ines; Nand, Deepak; Dittmann, Marc; Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J.; Engelhard, Martin; Baldus, Marc

    2012-01-01

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such “in silico” data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  11. Rapid prediction of multi-dimensional NMR data sets

    Energy Technology Data Exchange (ETDEWEB)

    Gradmann, Sabine; Ader, Christian [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Heinrich, Ines [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Nand, Deepak [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Dittmann, Marc [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J. [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Engelhard, Martin [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2012-12-15

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such 'in silico' data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  12. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  13. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Energy Technology Data Exchange (ETDEWEB)

    Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  14. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic-angle Spinning NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana E.

    2011-08-04

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein-dependent and dynein-independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable to structural characterization by conventional structural biology techniques owing to their large size, low solubility, and crystallization difficulties. Here, we report magic-angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner, LC8-based protein assemblies. We have established site-specific backbone and side-chain resonance assignments for the majority of the residues of LC8, and show TALOS+-predicted torsion angles ø and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein–protein interactions in larger systems that cannot be determined by conventional structural studies.

  15. Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil

    Science.gov (United States)

    Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen

    2017-04-01

    Mucilage is mainly produced at the root tips and has a high water holding capacity derived from highly hydrophilic gel-forming substances. The objective of the MUCILAGE project is to understand the mechanistic role of mucilage for the regulation of water supply for plants. Our subproject investigates the chemical and physical properties of mucilage as pure gel and mixed with soil. 1H-NMR Relaxometry and PFG NMR represent non-intrusive powerful methods for soil scientific research by allowing quantification of the water distribution as well as monitoring of the water mobility in soil pores and gel phases.Relaxation of gel water differs from the one of pure water due to additional interactions with the gel matrix. Mucilage in soil leads to a hierarchical pore structure, consisting of the polymeric biohydrogel network surrounded by the surface of soil particles. The two types of relaxation rates 1/T1 and 1/T2 measured with 1H-NMR relaxometry refer to different relaxation mechanisms of water, while PFG-NMR measures the water self-diffusion coefficient. The objective of our study is to distinguish in situ water in gel from pore water in a simplified soil system, and to determine how the "gel effect" affects both relaxation rates and the water self-diffusion coefficient in porous systems. We demonstrate how the mucilage concentration and the soil solution alter the properties of water in the respective gel phases and pore systems in model soils. To distinguish gel-inherent processes from classical processes, we investigated the variations of the water mobility in pure chia mucilage under different conditions by using 1H-NMR relaxometry and PFG NMR. Using model soils, the signals coming from pore water and gel water were differentiated. We combined the equations describing 1H-NMR relaxation in porous systems and our experimental results, to explain how the presence of gel in soil affects 1H-NMR relaxation. Out of this knowledge we propose a method, which determines in

  16. Anatomising proton NMR spectra with pure shift 2D J-spectroscopy: A cautionary tale

    Science.gov (United States)

    Kiraly, Peter; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A.

    2017-09-01

    Analysis of proton NMR spectra has been a key tool in structure determination for over 60 years. A classic tool is 2D J-spectroscopy, but common problems are the difficulty of obtaining the absorption mode lineshapes needed for accurate results, and the need for a 45° shear of the final 2D spectrum. A novel 2D NMR method is reported here that allows straightforward determination of homonuclear couplings, using a modified version of the PSYCHE method to suppress couplings in the direct dimension. The method illustrates the need for care when combining pure shift data acquisition with multiple pulse methods.

  17. Conformation of antifreeze glycoproteins as determined from conformational energy calculations and fully assigned proton NMR spectra

    International Nuclear Information System (INIS)

    Bush, C.A.; Rao, B.N.N.

    1986-01-01

    The 1 H NMR spectra of AFGP's ranging in molecular weight from 2600 to 30,000 Daltons isolated from several different species of polar fish have been measured. The spectrum of AFGP 1-4 from Pagothenia borchgrevinki with an average of 30 repeating subunits has a single resonance for each proton of the glycotripeptide repeating unit, (ala-[gal-(β-1→3) galNAc-(α--O-]thr-ala)/sub n/. Its 1 H NMR spectrum including resonances of the amide protons has been completely assigned. Coupling constants and nuclear Overhauser enhancements (n.O.e.) between protons on distant residues imply conformational order. The 2600 dalton molecular weight glycopeptides (AFGP-8) have pro in place of ala at certain specific points in the sequence and AFGP-8R of Eleginus gracilis has arg in place of one thr. The resonances of pro and arg were assigned by decoupling. The resonances of the carboxy and amino terminals have distinct chemical shifts and were assigned in AFGP-8 of Boreogadus saida by titration. n.O.e. between α--protons and amide protons of the adjacent residue (sequential n.O.e.) were used in assignments of additional resonances and to assign the distinctive resonances of thr followed by pro. Conformational energy calculations on the repeating glycotripeptide subunit of AFGP show that the α--glucosidic linkage has a fixed conformation while the β--linkage is less rigid. A conformational model for AFGP 1-4, which is based on the calculations has the peptide in an extended left-handed helix with three residues per turn similar to polyproline II. The model is consistent with CD data, amide proton coupling constants, temperature dependence of amide proton chemical shifts

  18. 1H NMR studies of plastocyanin from Scenedesmus obliquus: Complete sequence-specific assignment, secondary structure analysis, and global fold

    International Nuclear Information System (INIS)

    Moore, J.M.; Chazin, W.J.; Wright, P.E.; Powls, R.

    1988-01-01

    Two-dimensional 1 H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight β-strands, one short segment of helix, five reverse turns, and five loops. The β-strands may be arranged into two βsheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key β-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified

  19. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  20. NMR imaging of osteoarticular pathology

    International Nuclear Information System (INIS)

    Frocrain, L.; Duvauferrier, R.; Gagey, N.

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states [fr

  1. Discrimination of sugarcane according to cultivar by 1H NMR and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alves Filho, Elenilson G.; Silva, Lorena M.A.; Choze, Rafael; Liao, Luciano M. [Laboratorio de Ressonancia Magnetica Nuclear, Instituto de Quimica, Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Honda, Neli K.; Alcantara, Glaucia B. [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil)

    2012-07-01

    Several technologies for the development of new sugarcane cultivars have mainly focused on the increase in productivity and greater disease resistance. Sugarcane cultivars are usually identified by the organography of the leaves and stems, the analysis of peroxidase and esterase isoenzyme activities and the total soluble protein as well as soluble solid content. Nuclear magnetic resonance (NMR) associated with chemometric analysis has proven to be a valuable tool for cultivar assessment. Thus, this article describes the potential of chemometric analysis applied to 1H high resolution magic angle spinning (HRMAS) and NMR in solution for the investigation of sugarcane cultivars. For this purpose, leaves from eight different cultivars of sugarcane were investigated by {sup 1}H NMR spectroscopy in combination with chemometric analysis. The approach shows to be a useful tool for the distinction and classification of different sugarcane cultivars as well as to access the differences on its chemical composition. (author)

  2. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    International Nuclear Information System (INIS)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki; Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi; Dohmae, Naoshi; Takio, Koji; Sakamoto, Hiroshi; Shimura, Yoshiro

    2000-01-01

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5- 2 H]uridine phosphoramidite, and synthesized a series of 2 H-labeled RNAs, in which all of the uridine residues except one were replaced by [5- 2 H]uridine in the target sequence, GU 8 C. By observing the H5-H6 TOCSY cross peaks of the series of 2 H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU 2 GU 8 , AU 8 , and UAU 8 , were assigned by comparison with those of GU 8 C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex

  3. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki [University of Tokyo, Department of Biophysics and Biochemistry, Graduate School of Science (Japan); Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi [Chiba Institute of Technology, Department of Industrial Chemistry (Japan); Dohmae, Naoshi; Takio, Koji [Institute of Physical and Chemical Research (RIKEN) (Japan); Sakamoto, Hiroshi [Kobe University, Department of Biology, Faculty of Science (Japan); Shimura, Yoshiro [Biomolecular Engineering Research Institute (Japan)

    2000-06-15

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-{sup 2}H]uridine phosphoramidite, and synthesized a series of {sup 2}H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-{sup 2}H]uridine in the target sequence, GU{sub 8}C. By observing the H5-H6 TOCSY cross peaks of the series of {sup 2}H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU{sub 2}GU{sub 8}, AU{sub 8}, and UAU{sub 8}, were assigned by comparison with those of GU{sub 8}C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.

  4. Development and applications of quantitative NMR spectroscopy

    International Nuclear Information System (INIS)

    Yamazaki, Taichi

    2016-01-01

    Recently, quantitative NMR spectroscopy has attracted attention as an analytical method which can easily secure traceability to SI unit system, and discussions about its accuracy and inaccuracy are also started. This paper focuses on the literatures on the advancement of quantitative NMR spectroscopy reported between 2009 and 2016, and introduces both NMR measurement conditions and actual analysis cases in quantitative NMR. The quantitative NMR spectroscopy using an internal reference method enables accurate quantitative analysis with a quick and versatile way in general, and it is possible to obtain the precision sufficiently applicable to the evaluation of pure substances and standard solutions. Since the external reference method can easily prevent contamination to samples and the collection of samples, there are many reported cases related to the quantitative analysis of biologically related samples and highly scarce natural products in which NMR spectra are complicated. In the precision of quantitative NMR spectroscopy, the internal reference method is superior. As the quantitative NMR spectroscopy widely spreads, discussions are also progressing on how to utilize this analytical method as the official methods in various countries around the world. In Japan, this method is listed in the Pharmacopoeia and Japanese Standard of Food Additives, and it is also used as the official method for purity evaluation. In the future, this method will be expected to spread as the general-purpose analysis method that can ensure traceability to SI unit system. (A.O.)

  5. Application of 13C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions

    Directory of Open Access Journals (Sweden)

    Takuya Hishinuma

    2015-04-01

    Full Text Available Solid-state 13C nuclear magnetic resonance (NMR spectroscopy was applied to coarse woody debris (CWD in different stages of decomposition and collected from forest floor of a subtropical, a cool temperate, and a subalpine forest in Japan. The purpose was to test its applicability to characterize organic chemical composition of CWD of broad-leaved and coniferous trees from different climatic conditions. O-alkyl-C, mainly representing carbohydrates, was the predominant component of CWD at the three sites, accounting for 43.5-58.1% of the NMR spectra. Generally, the relative area under the signals for aromatic-C and phenolic-C, mainly representing lignin, increased, whereas the relative area for O-alkyl-C decreased, as the decay class advanced. The relative area under NMR chemical shift regions was significantly correlated with the chemical properties examined with proximate analyses. That is, O-alkyl-C and di-O-alkyl-C NMR signal areas were positively correlated with the volumetric density of CWD and the content of total carbohydrates. Methoxyl-C, aromatic-C, phenolic-C, carboxyl-C, and carbonyl-C were positively correlated with the contents of acid-unhydrolyzable residues (lignin, tannins, and cutin and nitrogen. Lignin-C calculated from NMR signals increased, and polysaccharide-C decreased, with the decay class of CWD at the three study sites. A review of previous studies on 13C NMR spectroscopy for decomposing CWD suggested further needs of its application to broad-leaved trees from tropical and subtropical regions.

  6. Study on the Effects of Oligo chitosan and Bioliquifert on Two Rice Mutants, NMR 151 and NMR 152

    International Nuclear Information System (INIS)

    Shakinah Salleh; Faiz Ahmad; Sobri Hussein

    2016-01-01

    Nuclear Malaysia has successfully developed two new rice mutants namely NMR 151 and NMR 152. In addition, Nuclear Malaysia has also successfully developed Oligo chitosan and liquid bio fertilizer (Bioliquifert). Oligo chitosan acts as elicitor that has been proven to be very effective in controlling disease infections and improving yield productivity. Bioliquifert on the other hand is a mixture of microbes containing major nutrient-providing microorganisms. The objective of this study is to observe the effects of Oligo chitosan and Bioliquifert on rice mutants, NMR 151 and NMR 152. The treatment was applied on 14 day old seedlings of MR 219, NMR 151 and NMR 152 sowed in 20 cm pots containing silty clay from the paddy soil of Tanjung Karang, Selangor. The seedlings were then placed in the greenhouse at Nuclear Malaysia until it reaches 110 days old. Study was conducted in a Complete Randomized Design (CRD) with 3 replications was used and each replication consisted of three plants. All treatments received compound and single dressing fertilizer as recommended by National Rice Production Package except for Treatment 2 and 3, in which Treatment 2 received Oligo chitosan and Bioliquifert while Treatment 3 only received Bioliquifert. Results on plant height, number of tiller and plant fresh weight are not significantly different for all cultivar except for seed dry weight of NMR 152 and MR 219. (author)

  7. Exploring the trigger sequence of the GCN4 coiled-coil: Biased molecular dynamics resolves apparent inconsistencies in NMR measurements

    Science.gov (United States)

    Missimer, John H; Dolenc, Jožica; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-01-01

    Trigger sequences are indispensable elements for coiled-coil formation. The monomeric helical trigger sequence of the yeast transcriptional activator GCN4 has been investigated recently using several solution NMR observables including nuclear Overhauser enhancement (NOE) intensities and 3J(HN,HCα)-coupling constants, and a set of 20 model structures was proposed. Constrained to satisfy the NOE-derived distance bounds, the NMR model structures do not appear to reproduce all the measured 3J(HN-HCα)-coupling constant values, indicating that the α-helical propensity is not uniform along the GCN4 trigger sequence. A recent methodological study of unrestrained and restrained molecular dynamics (MD) simulations of the GCN4 trigger sequence in solution showed that only MD simulations incorporating time-averaged NOE distance restraints and instantaneous or local-elevation 3J-coupling restraints could satisfy the entire set of the experimental data. In this report, we assess by means of cluster analyses the model structures characteristic of the two simulations that are compatible with the measured data and compare them with the proposed 20 NMR model structures. Striking characteristics of the MD model structures are the variability of the simulated configurations and the indication of entropic stability mediated by the aromatic N-terminal residues 17Tyr and 18His, which are absent in the set of NMR model structures. PMID:20954244

  8. Characterization of liquid products from the co-cracking of ternary and quaternary mixture of petroleum vacuum residue, polypropylene, Samla coal and Calotropis Procera

    Energy Technology Data Exchange (ETDEWEB)

    M. Ahmaruzzaman; D.K. Sharma [Indian Institute of Technology Delhi, New Delhi (India). Centre for Energy Studies

    2008-08-15

    The co-cracking of the petroleum vacuum residue (XVR) with polypropylene (PP), Samla coal (SC) and Calotropis procera (CL) has been carried out in a batch reactor under isothermal conditions at atmospheric pressure. The liquids obtained by co-cracking have been characterized by Fourier transform infrared spectroscopy, high performance liquid chromatography, {sup 1}H nuclear magnetic resonance (NMR), {sup 13}C NMR, gel permeation chromatography (GPC), and inductively coupled argon plasma analyses. It was found that the liquid products obtained from the co-cracking of ternary and quaternary mixtures of the petroleum vacuum residue with polypropylene, coal and C. procera contained less than 1 ppm of Ni and V. The HPLC analyses indicates that the liquids obtained from the cracking of ternary mixture of XVR+PP+CL were mainly aliphatic in nature (saturates content 87.4%). NMR analyses showed that the aromatic carbon contents decreased (15.0%) in the liquid products derived from the co-cracking of quaternary mixtures of XVR+PP+SC+CL compared to their theoretical averages (taking the averages of aromatic carbon contents of the liquids from XVR, PP, SC and CL individually). The overall results indicated that there exists a definite interaction of reactive species when XVR, PP, SC and CL were co-cracked together. 27 refs., 5 tabs.

  9. Whole-core analysis by 13C NMR

    International Nuclear Information System (INIS)

    Vinegar, H.J.; Tutunjian, P.N.; Edelstein, W.A.; Roemer, P.B.

    1991-01-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance 13 C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. 13 C NMR can be used in cores where the 1 H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. 13 C/ 1 H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good 13 C signal/noise ratio (SNR) is obtained within minutes, while 1 H spectra are obtained in seconds. NMR measurements have been made of the 13 C and 1 H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the 13 C and 1 H signal per unit volume is constant within about 3.5%. For heavy crudes, the 13 C and 1 H density measured by NMR is reduced by the shortening of spin-spin relaxation time. 13 C and 1 H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60 degrees API), and alkanes (C 5 through C 16 ) with viscosities at 77 degrees F ranging from 0.5 cp to 2.5 x 10 7 cp. The 13 C and 1 H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The 13 C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled 13 C NMR is shown to be insensitive to kerogen; thus, 13 C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the 13 C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon

  10. NMR spectroscopy up to 35.2T using a series-connected hybrid magnet.

    Science.gov (United States)

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M; Gor'kov, Peter L; Brey, William W; Lendi, Pietro; Schiano, Jeffrey L; Bird, Mark D; Dixon, Iain R; Toth, Jack; Boebinger, Gregory S; Cross, Timothy A

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7 Li lock sample doped with paramagnetic MnCl 2 . The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1 H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    International Nuclear Information System (INIS)

    Peters, Fabian; Maestre-Martinez, Mitcheell; Leonov, Andrei; Kovačič, Lidija; Becker, Stefan; Boelens, Rolf; Griesinger, Christian

    2011-01-01

    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large residual dipolar couplings and pseudocontact shifts that could be measured easily and agreed very well with the protein structure. We show that Cys-Ph-TAHA can be used to label large proteins that are biochemically challenging such as the Lac repressor in a 90 kDa ternary complex with DNA and inducer.

  12. A Promising Material by Using Residue Waste from Bisphenol A Manufacturing to Prepare Fluid-Loss-Control Additive in Oil Well Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Zhi-Lei Zhang

    2013-01-01

    Full Text Available The residues mixture from Bisphenol A manufacturing process was analyzed. Fourier transform infrared (FTIR spectroscopy, gas chromatography-mass spectrometry (GC-MS, and nuclear magnetic resonance (NMR were used to characterize the residues. The results indicated that the residues were complex mixture of several molecules. 3-(2-Hydroxyphenyl-1,1,3-trimethyl-2,3-dihydro-1H-inden-5-ol and phenol were the main components of the residues. The technical feasibility of using it as phenol replacement in fluid-loss-control additive production was also investigated. The fluid-loss-control capacity of the novel additive was systematically investigated. It was discovered that the well fluid-loss performance of the prepared additive can be achieved, especially at high temperature.

  13. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  14. Recommendations of the wwPDB NMR Validation Task Force

    Science.gov (United States)

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  15. Experimental and theoretical NMR studies of interaction between phenylalanine derivative and egg yolk lecithin.

    Science.gov (United States)

    Wałęsa, Roksana; Ptak, Tomasz; Siodłak, Dawid; Kupka, Teobald; Broda, Małgorzata A

    2014-06-01

    The interaction of phenylalanine diamide (Ac-Phe-NHMe) with egg yolk lecithin (EYL) in chloroform was studied by (1)H and (13)C NMR. Six complexes EYL-Ac-Phe-NHMe, stabilized by N-H···O or/and C-H···O hydrogen bonds, were optimized at M06-2X/6-31G(d,p) level. The assignment of EYL and Ac-Phe-NHMe NMR signals was supported using GIAO (gauge including atomic orbital) NMR calculations at VSXC and B3LYP level of theory combined with STO-3Gmag basis set. Results of our study indicate that the interaction of peptides with lecithin occurs mainly in the polar 'head' of the lecithin. Additionally, the most probable lecithin site of H-bond interaction with Ac-Phe-NHMe is the negatively charged oxygen in phosphate group that acts as proton acceptor. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Fourier transform NMR

    International Nuclear Information System (INIS)

    Hallenga, K.

    1991-01-01

    This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs

  17. CONNJUR spectrum translator: an open source application for reformatting NMR spectral data.

    Science.gov (United States)

    Nowling, Ronald J; Vyas, Jay; Weatherby, Gerard; Fenwick, Matthew W; Ellis, Heidi J C; Gryk, Michael R

    2011-05-01

    NMR spectroscopists are hindered by the lack of standardization for spectral data among the file formats for various NMR data processing tools. This lack of standardization is cumbersome as researchers must perform their own file conversion in order to switch between processing tools and also restricts the combination of tools employed if no conversion option is available. The CONNJUR Spectrum Translator introduces a new, extensible architecture for spectrum translation and introduces two key algorithmic improvements. This first is translation of NMR spectral data (time and frequency domain) to a single in-memory data model to allow addition of new file formats with two converter modules, a reader and a writer, instead of writing a separate converter to each existing format. Secondly, the use of layout descriptors allows a single fid data translation engine to be used for all formats. For the end user, sophisticated metadata readers allow conversion of the majority of files with minimum user configuration. The open source code is freely available at http://connjur.sourceforge.net for inspection and extension.

  18. CONNJUR spectrum translator: an open source application for reformatting NMR spectral data

    Energy Technology Data Exchange (ETDEWEB)

    Nowling, Ronald J.; Vyas, Jay [University of Connecticut Health Center, Department of Molecular, Microbial and Structural Biology (United States); Weatherby, Gerard [Western New England College, Department of Computer Science/Information Technology (United States); Fenwick, Matthew W. [University of Connecticut Health Center, Department of Molecular, Microbial and Structural Biology (United States); Ellis, Heidi J. C. [Western New England College, Department of Computer Science/Information Technology (United States); Gryk, Michael R., E-mail: gryk@uchc.edu [University of Connecticut Health Center, Department of Molecular, Microbial and Structural Biology (United States)

    2011-05-15

    NMR spectroscopists are hindered by the lack of standardization for spectral data among the file formats for various NMR data processing tools. This lack of standardization is cumbersome as researchers must perform their own file conversion in order to switch between processing tools and also restricts the combination of tools employed if no conversion option is available. The CONNJUR Spectrum Translator introduces a new, extensible architecture for spectrum translation and introduces two key algorithmic improvements. This first is translation of NMR spectral data (time and frequency domain) to a single in-memory data model to allow addition of new file formats with two converter modules, a reader and a writer, instead of writing a separate converter to each existing format. Secondly, the use of layout descriptors allows a single fid data translation engine to be used for all formats. For the end user, sophisticated metadata readers allow conversion of the majority of files with minimum user configuration. The open source code is freely available at http://connjur.sourceforge.nethttp://connjur.sourceforge.net for inspection and extension.

  19. Solution NMR study of the yeast cytochrome c peroxidase: cytochrome c interaction

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Alexander N., E-mail: ovolkov@vub.ac.be; Nuland, Nico A. J. van [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-07-15

    Here we present a solution NMR study of the complex between yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP), a paradigm for understanding the biological electron transfer. Performed for the first time, the CcP-observed heteronuclear NMR experiments were used to probe the Cc binding in solution. Combining the Cc- and CcP-detected experiments, the binding interface on both proteins was mapped out, confirming that the X-ray structure of the complex is maintained in solution. Using NMR titrations and chemical shift perturbation analysis, we show that the interaction is independent of the CcP spin-state and is only weakly affected by the Cc redox state. Based on these findings, we argue that the complex of the ferrous Cc and the cyanide-bound CcP is a good mimic of the catalytically-active Cc-CcP compound I species. Finally, no chemical shift perturbations due to the Cc binding at the low-affinity CcP site were observed at low ionic strength. We discuss possible reasons for the absence of the effects and outline future research directions.

  20. Quality of sour cherry juice of different clones and cultivars (Prunus cerasus L.) determined by a combined sensory and NMR spectroscopic approach

    DEFF Research Database (Denmark)

    Clausen, Morten Rahr; Pedersen, Bjarne Hjelmsted; Bertram, Hanne Christine S.

    2011-01-01

    Juice was manufactured from seven different sour cherry clones/cultivars and evaluated by quantitative descriptive sensory analysis and 1H NMR spectroscopy. The sensory evaluation showed a large variation in several sensory attributes between the sour cherry clones/cultivars, which could be divided...... into two groups on the basis of both the sensory data and the NMR spectroscopic data. These groups were closely related to the genetic background of the clones. Kelleris clones were distinctly different from Stevnsberry and Fanal clones. Hence, 1H NMR spectroscopic data seem to correlate with sensory...... quality of different sour cherry clones. In addition, malic acid was the most important metabolite for modeling the two highly correlated sensory attributes sweetness and sourness, whereas the glucose content had a slight effect and the fructose content had no impact on sweetness/sourness. Other...

  1. Analysis of the mechanical properties and characterization by solid state {sup 13} C NMR of recycled EVA copolymer/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Stael, Giovanni Chaves [Observatorio Nacional, Rio de Janeiro, RJ (Brazil)]. E-mail: stael@on.br; Rocha, Marisa Cristina Guimaraes [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Instituto Politecnico; Menezes, Sonia Maria Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Quimica; D' Almeida, Jose Roberto Morais; Ruiz, Naira Machado da Silva [Pontificia Universidade Catolica do Rio de Janeiro, RJ (Brazil)

    2005-07-15

    The incorporation of micrometer sized silica particles on poly (ethylene-co-vinyl acetate) - EVA - residues from the footwear industry was evaluated. The effects of the processing parameters - temperature and mixing ratio - on the mechanical behavior of molded plates of neat recycled EVA and EVA/silica composites were also investigated. The mechanical properties measured by the tensile test, the fractographic analysis by scanning electron microscopy (SEM), and the {sup 13} C Nuclear Magnetic Resonance (NMR) showed a reduced EVA to silica compatibility. Therefore, incorporation of untreated silica to recycled EVA copolymer produced a slight decrease on the mechanical performance of EVA/silica composites in respect to neat EVA copolymer. The NMR analysis also shows that the crosslinking process on recycled EVA may be occurring at the carbonyl group. (author)

  2. Novel determination of the total phenolic content in crude plant extracts by the use of 1H NMR of the -OH spectral region

    International Nuclear Information System (INIS)

    Nerantzaki, A.A.; Tsiafoulis, C.G.; Charisiadis, P.; Kontogianni, V.G.; Gerothanassis, I.P.

    2011-01-01

    A novel method for the determination of the total phenolic content using 1 H NMR spectroscopy in the -OH spectral region is presented. The use of DMSO-d 6 , which is an aprotic and strongly hydrogen bonding solvent, allows the 'appearance' of the relative sharp resonances of phenolic hydroxyl protons in the region of 8-14 ppm. The determination of the total phenolic -OH content requires three steps: (i) a 1D 1 H NMR spectrum is obtained in DMSO-d 6 ; (ii) a subsequent 1D 1 H NMR spectrum is recorded with irradiation of the residual water signal which results in the elimination or reduction of the phenolic -OH groups, due to proton exchange; and (iii) 1D 1 H NMR spectra are recorded with the addition of a progressively increased amount of salt, NaHCO 3 , which results in extensive linebroadening of the COOH resonances thus allowing the discrimination of the phenolic from the carboxylic acid signals. Integration, with respect to the internal standard TSP-d 4 , of the signal resonances between 14 and 8 ppm in spectrum (i) which are either eliminated or reduced in intensity in steps (ii) and (iii) allows the quantitation of the total phenolic content. The method was applied to model compounds, a mixture of them and several extracts of natural products. The results of the proposed 1 H NMR method were compared to the Folin-Ciocalteu (FC) reagent method. Additionally, since 1 H NMR refers to the total phenolic hydroxyl protons, a reaction factor, A e , is proposed that corresponds to the hydroxyl reactivity. The 1 H NMR method is rapid and accurate bearing the inherent advantages of the NMR spectroscopy and can be applied directly in complex extracts. Furthermore, it can be applied in a wide range of matrixes from crude plant extracts and food products to biological samples.

  3. NMR relaxation and phase transitions in solid methane and deuterated derivatives

    International Nuclear Information System (INIS)

    Putten, D. van der.

    1984-01-01

    This thesis describes an investigation of properties of solid methane at high pressure (till 10 kbar) with temperatures ranging from 2 until 100 K. The high inverse moment of inertia of the molecule combined with low ordering potentials gives rise to properties for which quantum effects play an important role: e.g. the transition temperature to a partially ordered phase shows an isotope effect of 35% when CH 4 protons are substituted by deuterons. Interpretation of NMR properties of solid methane also show quantum effects. First, a helium cryostat is developed and described and NMR results for CH 4 , CH 2 D 2 and CD 4 are given. The influence of discrete tunnel states on the spin-lattice relaxation is studied theoretically. Application of group theory has simplified the calculations considerably. (G.J.P.)

  4. Mobile sequences in the pyruvate dehydrogenase complex, the E2 component, the catalytic domain and the 2-oxogluturate dehydrogenase complex of Azotobacter vinelandii, as detected by 600 MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Hanemaaijer, R.; Vervoort, J.; Westphal, A.H.; Kok, A. de.; Veeger, C.

    1988-01-01

    600 MHz 1 H-NMR spectroscopy demonstrates that the pyruvate dehydrogenase complex of Azotobacter vinelandii contains regions of the polypeptide chain with intramolecular mobility. This mobility is located in the E 2 component and can probably be ascribed to alanine-proline-rich regions that link the lipoyl sibdiomains to each other as well as to the E 1 and E 3 binding domain. In the catalytic domain of E 2 which is thought to form a compact, rigid core, also conformational flexibility is observed. It is conceivable that the N-terminal region of the catalytic domain, which contains many alanine residues, is responsible for the observed mobility. In the low-field region of the 1 H-NMR spectrum of E 2 specific resonances are found, which can be ascribed to mobile phenylalanine, histidine and/or tyrosine residues which are located in the E 1 and E 3 binding domain that links the lipoyl domain to the catalytic domain. In the 1 H-NMR spectrum of the intact complex, these resonances cannot be observed, indicating a decreased mobility of the E 1 and E 3 binding domain. (author). 24 refs.; 2 figs

  5. Carbon-13 NMR of flavinoids

    International Nuclear Information System (INIS)

    Agrawal, P.K.

    1989-01-01

    The present book has been written with the objective of introducing the organic chemists with the conceptual and experimental basis required for interpretation of 13 C NMR spectra of a flavonoid and to a discussion of general usefulness of the technique in solving flavonoid structural problem. After a brief general introduction to the essential aspects of flavonoids and 13 C NMR spectroscopy, considerable emphasis has been placed in chapter 2 on the various experimental methods and the interpretation of spectral details which enable individual resonance lines to be associated with the appropriate carbons in a molecule. The whole bulk of the literature, published on 13 C NMR of flavonoids in the major journals upto 1986 alongwith some recent references of 1987 has been classified in several categories such as: flavonoids, isflavonoids, other flavonoids, flavonoid glycosides, chalconoids and flavanoids. Each category constitutes a chapter. Finally the last chapter is devoted largely to a discussion for the differentiation of various categories and subcategories of flavonoids and for the establishment of aromatic substitution pattern in these compounds. It should be emphasized that the book is a data book and only concerned with the actual analysis of 13 C NMR spectra, thus a reasonable familiarity with basic instrumentation of 13 C NMR and general pattern of nuclear chemical shifts has been assumed. (author). refs.; figs.; tabs

  6. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  7. BcL-xL Conformational Changes upon Fragment Binding Revealed by NMR

    Science.gov (United States)

    Aguirre, Clémentine; ten Brink, Tim; Walker, Olivier; Guillière, Florence; Davesne, Dany; Krimm, Isabelle

    2013-01-01

    Protein-protein interactions represent difficult but increasingly important targets for the design of therapeutic compounds able to interfere with biological processes. Recently, fragment-based strategies have been proposed as attractive approaches for the elaboration of protein-protein surface inhibitors from fragment-like molecules. One major challenge in targeting protein-protein interactions is related to the structural adaptation of the protein surface upon molecular recognition. Methods capable of identifying subtle conformational changes of proteins upon fragment binding are therefore required at the early steps of the drug design process. In this report we present a fast NMR method able to probe subtle conformational changes upon fragment binding. The approach relies on the comparison of experimental fragment-induced Chemical Shift Perturbation (CSP) of amine protons to CSP simulated for a set of docked fragment poses, considering the ring-current effect from fragment binding. We illustrate the method by the retrospective analysis of the complex between the anti-apoptotic Bcl-xL protein and the fragment 4′-fluoro-[1,1′-biphenyl]-4-carboxylic acid that was previously shown to bind one of the Bcl-xL hot spots. The CSP-based approach shows that the protein undergoes a subtle conformational rearrangement upon interaction, for residues located in helices 2, 3 and the very beginning of 5. Our observations are corroborated by residual dipolar coupling measurements performed on the free and fragment-bound forms of the Bcl-xL protein. These NMR-based results are in total agreement with previous molecular dynamic calculations that evidenced a high flexibility of Bcl-xL around the binding site. Here we show that CSP of protein amine protons are useful and reliable structural probes. Therefore, we propose to use CSP simulation to assess protein conformational changes upon ligand binding in the fragment-based drug design approach. PMID:23717610

  8. Information content of long-range NMR data for the characterization of conformational heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Andrałojć, Witold [University of Florence, Center for Magnetic Resonance (CERM) (Italy); Berlin, Konstantin; Fushman, David, E-mail: fushman@umd.edu [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States); Luchinat, Claudio, E-mail: luchinat@cerm.unifi.it; Parigi, Giacomo; Ravera, Enrico [University of Florence, Center for Magnetic Resonance (CERM) (Italy); Sgheri, Luca [CNR, Istituto per le Applicazioni del Calcolo, Sezione di Firenze (Italy)

    2015-07-15

    Long-range NMR data, namely residual dipolar couplings (RDCs) from external alignment and paramagnetic data, are becoming increasingly popular for the characterization of conformational heterogeneity of multidomain biomacromolecules and protein complexes. The question addressed here is how much information is contained in these averaged data. We have analyzed and compared the information content of conformationally averaged RDCs caused by steric alignment and of both RDCs and pseudocontact shifts caused by paramagnetic alignment, and found that, despite the substantial differences, they contain a similar amount of information. Furthermore, using several synthetic tests we find that both sets of data are equally good towards recovering the major state(s) in conformational distributions.

  9. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    Science.gov (United States)

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  10. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  11. NMR spectroscopy of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Shevchenko, G.G.

    1985-12-01

    The authors consider the scope for using H 1 and C 13 NMR spectroscopy to describe the products from coal pyrolysis and hydrogenization. The accuracy of the structural information provided by the best NMR methods is also considered. The stuctural parameters derived from H 1 and C 13 NMR spectra are presented. Results demonstrate the high accuracy and sensitivity of the structural information provided by H 1 AND C 13 NMR spectra for coal products. There are substantial structural differences between the soluble products from medium-temperature coking of Cheremkhov coal and high-speed pyrolysis of Kan-Acha coal, and also differences in behavior during hydrogenation. These differences are related to the structure of the organic matter in the initial coal and to differences in the pyrolysis mechanisms.

  12. 19F NMR spectroscopy in monitoring fluorinated-solvent regeneration

    International Nuclear Information System (INIS)

    Ogorodnikov, V.D.; Bordunov, V.V.

    1987-01-01

    Extensive use is made of solvents such as trichloroethylene, freon-133, and perchloroethylene because they are good solvents for inorganic, plant, and animal greases, while the solvents can be recovered and there is no fire hazard. In this paper, the authors examined methods to monitor spent solution regeneration rapidly and with high accuracy. The authors tested perfluorinated telomeric alcohols as solvents for cleaning engineering components which have melting points of 60-120 degrees celsius. The higher working temperatures and the increased energy consumption are disadvantages of these solvents, but these are compensated for by the scope for using them virtually in the solid, liquid, and vapor states. The authors' proposed technology is based on solvents with melting points over 40 degrees celsius which produce virtually no wastes. The telomeric alcohols are recovered after cooling to normal conditions by separation from the oil by filtration and centrifugation, and they can be used in the next purification cycle. When the solvents have been regenerated, the petroleum products such as industrial oils can be reused for their original purpose. However, quantitative data are required on the solvent contents in the oil and the oil contents in the solvent in order to determine the degree of regeneration and the modes to be used. The authors have also proposed a quantitative method of determining traces of these alcohols in oils and residual oils in the solvent by fluorine NMR. All measurements were made with a BS497 NMR spectrometer

  13. A characterization NMR of secondary metabolites from lichen Parmotrema praesorediosum

    Science.gov (United States)

    Azman, Anis Asmi; Khalid, Rozida; Bakar, Muntaz Abu

    2018-04-01

    The research study was carried out to extract, isolate and characterize the secondary metabolites of lichen Parmotrema praesorediosum. Most of the lichen samples were obtained from betel nut trees and needle flowers which were collected from 17 different places around UKM Bangi campus. Each lichen sample was dried before being grinded and extracted in methanol for nine days. This process was repeated three times at room temperature. Subsequently, the resulting residues were filtered to obtain the crude extracts and further analysed using Thin Layer Chromatography (TLC) and Vacuum Column Chromatography (VLC). In order to derive the pure compounds, the isolation step was proceeded using Radial Chromatography (RC). These isolated compounds were determined by Nuclear Magnetic Resonances (NMR) and identified as methyl haematomatte (1), methyl chlorohaematomatte (2) and methyl β-orsellinate (3).

  14. Structural investigation of molten fluorides of nuclear interest by NMR and XAFS spectroscopies

    International Nuclear Information System (INIS)

    Pauvert, Olivier

    2009-01-01

    In the frame of the renewal of the different nuclear plans, the molten salt reactor is one of the six concepts of reactors of 4. generation. This reactor has the particularity to use a liquid fuel based on LiF-ThF 4 mixtures. In order to develop and to optimize this concept, it is important to characterize the structure of the melt and to describe its physical and chemical properties. Our work has been based on the study of the system MF-ZrF 4 (M = Li, Na, K) selected as a model of ThF 4 based systems. We have combined two spectroscopic techniques, the Nuclear Magnetic Resonance and the X-ray Absorption at high temperature, with molecular dynamics calculations. We particularly focused on the local environments of the fluorine and the zirconium. In order to interpret the NMR data obtain in the molten state, we performed a preliminary study on zirconium halides and rare earth and alkali fluoro zirconates using the 91 Zr solid-state NMR at very high magnetic fields. New correlations between structural parameters and NMR data have been established. At high temperature, in MF-ZrF 4 melts we have shown the coexistence of three different kind of Zr-based complexes with different proportions depending on the amount of ZrF 4 and on the nature of the alkali. Depending on the ZrF 4 content, three kinds of fluorine have been characterized: form free fluorines at low amount of zirconium fluorides, fluorines involved in Zr-based complexes and bridging fluorines at higher ZrF 4 content. This original and innovative approach of molten fluorides mixtures, combining NMR and EXAFS at high temperature with molecular dynamics calculations, is very efficient to describe their speciation and thus their fluoro-acidity. (author)

  15. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  16. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  17. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  18. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    International Nuclear Information System (INIS)

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear

  19. PSYCHE Pure Shift NMR Spectroscopy.

    Science.gov (United States)

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...