WorldWideScience

Sample records for column design retention

  1. RETENTION TIME EFFECT ON METAL REMOVAL BY PEAT COLUMNS

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E

    2007-02-28

    The potential use of a peat bed to treat the H-12 Outfall discharge to bring it to new compliance limits was previously investigated and reported utilizing a 7 hour retention time. The influence of retention time (contact time) of water with peat moss on the removal of copper from the water was investigated under laboratory conditions using vertical flow peat moss columns. Reduction of the necessary retention time has a large influence on the design sizing of any peat bed that would be constructed to treat the H-12 discharge on a full scale basis. Retention times of 5 hours, 3 hours and 1 hour were tested to determine the copper removal by the peat columns using vertical flow. Water samples were collected after 4, 8, 12, and 16 water volumes had passed through the columns and analyzed for a suite of metals, with quantitative emphasis on copper. Laboratory results indicated that copper removal was very high at each of the 3 retention times tested, ranging from 99.6 % removal at 5 and 3 hours to 98.8% removal at 1 hour. All these values are much lower that the new compliance limit for the outfall. The results also indicated that most divalent metals were removed to their normal reporting detection limit for the analytical methods used, including zinc. Lead levels in the H-12 discharge used in this study were below PQL in all samples analyzed. While each of the retention times studied removed copper very well, there were indications that 1 hour is probably too short for an operational, long-term facility. At that retention time, there was about 6% compaction of the peat in the column due to the water velocity, and this may affect long term hydraulic conductivity of the peat bed. At that retention time, copper concentration in the effluent was higher than the other times tested, although still very low. Because of the potential compacting and somewhat reduced removal efficiency at a 1 hour retention time, it would be prudent to design to at least a 3 hour retention

  2. Characterization of retentivity of reversed phase liquid chromatography columns.

    Science.gov (United States)

    Ying, P T; Dorsey, J G

    1991-03-01

    There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".

  3. A simple, fast, and accurate thermodynamic-based approach for transfer and prediction of gas chromatography retention times between columns and instruments Part III: Retention time prediction on target column.

    Science.gov (United States)

    Hou, Siyuan; Stevenson, Keisean A J M; Harynuk, James J

    2018-03-27

    This is the third part of a three-part series of papers. In Part I, we presented a method for determining the actual effective geometry of a reference column as well as the thermodynamic-based parameters of a set of probe compounds in an in-house mixture. Part II introduced an approach for estimating the actual effective geometry of a target column by collecting retention data of the same mixture of probe compounds on the target column and using their thermodynamic parameters, acquired on the reference column, as a bridge between both systems. Part III, presented here, demonstrates the retention time transfer and prediction from the reference column to the target column using experimental data for a separate mixture of compounds. To predict the retention time of a new compound, we first estimate its thermodynamic-based parameters on the reference column (using geometric parameters determined previously). The compound's retention time on a second column (of previously determined geometry) is then predicted. The models and the associated optimization algorithms were tested using simulated and experimental data. The accuracy of predicted retention times shows that the proposed approach is simple, fast, and accurate for retention time transfer and prediction between gas chromatography columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. NOx retention in scrubbing column

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.E.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F.

    1988-07-01

    During the UO 2 dissolution in nitric acid, some different species of NO x are released. The off gas can either be refluxed to the dissolver or be released and retained on special columns. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scubber columns containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evalution before and after scrubbing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum adsorption in the scrubber columns. (author) [pt

  5. Thorough investigation of the retention mechanisms and retention behavior of amides and sulfonamides on amino column in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Jovanović, Marko; Stojanović, Biljana Jančić

    2013-08-02

    In this paper detailed analysis of a mixture of four amides (tropicamide, nicotinamide, tiracetam, and piracetam) and six sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, sulfafurazole, furosemide, and bumetanide) on aminopropyl column in hydrophilic interaction chromatography (HILIC) was carried out. Since, there are no papers on the topic of the assessment of the contribution of ion-exchange retention mechanism involved in the separation of the acidic compounds on aminopropyl column in HILIC mode, the authors utilized the retention data of the acidic sulfonamides for this purpose. Next, broad range of the aqueous buffer concentrations in the mobile phase was examined providing the separation under either HILIC or RP conditions. Turning points between these two mechanisms were determined and then the fitting of the experimental data in the localized and non-localized adsorption models in both RP and HILIC regions was assessed. Since not many papers in the literature were dealing with the estimation of factor influence on the retention behavior of neutral and acidic compounds on aminopropyl column in HILIC, Box-Behnken design and Response Surface Methodology were applied. On the basis of the obtained data, ten quadratic models were proposed and their adequacy was confirmed using ANOVA test. Furthermore, retention data was graphically evaluated by the construction of 3D response surface plots. Finally, good predictive ability of the suggested models was proved with five additional verification experiments. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode.

    Science.gov (United States)

    Illa, Xavi; De Malsche, Wim; Gardeniers, Han; Desmet, Gert; Romano-Rodríguez, Albert

    2010-11-01

    Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have been fabricated via hot embossing and pressure-assisted thermal bonding. Separations of a mixture of four coumarins using varying mobile phase compositions have been monitored to study the relation between the retention factor and the ratio of organic solvent in the aqueous mobile phase. Moreover, the linear relation between the retention and the surface/volume ratio predicted in theory has been observed, achieving retention factors up to k=2.5. Under the same retentive conditions, minimal reduced plate height values of h(min)=0.4 have been obtained at retention factors of k=1.2. These experimental results are compared with the case of non-porous and porous silicon pillars. Similar results for the plate heights are achieved while retention factors are higher than the non-porous silicon column and considerably smaller than the porous pillar column, given the non-porous nature of the used cyclo olefin polymer. The feasibility of using this polymer column as an alternative to the pillar array silicon columns is corroborated.

  7. Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode

    NARCIS (Netherlands)

    Illa, Xavi; de Malsche, Wim; Gardeniers, Johannes G.E.; Desmet, Gert; Romano-Rodriguez, Albert

    2010-01-01

    Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have

  8. The Effect of Column and Eluent Fluorination on the Retention and Separation of non-Fluorinated Amino Acids and Proteins by HPLC

    Science.gov (United States)

    Joyner, Katherine; Wang, Weizhen; Yu, Yihua Bruce

    2011-01-01

    The effect of column and eluent fluorination on the retention and separation of non-fluorinated amino acids and proteins in HPLC is investigated. A side-by-side comparison of fluorocarbon column and eluents (F-column and F-eluents) with their hydrocarbon counterparts (H-column and H-eluents) in the separation of a group of 33 analytes, including 30 amino acids and 3 proteins, is conducted. The H-column and the F-column contain the n-C8H17 group and n-C8F17 group, respectively, in their stationary phases. The H-eluents include ethanol (EtOH) and isopropanol (ISP) while the F-eluents include trifluoroethanol (TFE) and hexafluorosopropanol (HFIP). The 2 columns and 4 eluents generated 8 (column, eluent) pairs that produce 264 retention time data points for the 33 analytes. A statistical analysis of the retention time data reveals that although the H-column is better than the F-column in analyte separation and H-eluents are better than F-eluents in analyte retention, the more critical factor is the proper pairing of column with eluent. Among the conditions explored in this project, optimal retention and separation is achieved when the fluorocarbon column is paired with ethanol, even though TFE is the most polar one among the 4 eluents. This result shows fluorocarbon columns have much potential in chromatographic analysis and separation of non-fluorinated amino acids and proteins. PMID:21318121

  9. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase

    Energy Technology Data Exchange (ETDEWEB)

    D' Archivio, Angelo Antonio, E-mail: angeloantonio.darchivio@univaq.it [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2009-07-30

    Previously, retention of 26 pesticides in the reversed-phase column Gemini (Phenomenex) and water-acetonitrile mobile phase was modelled using a feed-forward artificial neural network (ANN) learned by error back-propagation, accounting for both the effect of solute structure and mobile phase composition. To this end, log K{sub ow} of solutes and four quantum chemical molecular descriptors (the dipole moment, the mean polarizability, the anisotropy of the polarizability and an hydrogen-bonding descriptor based on the atomic charges located on the acid and basic functional groups) and acetonitrile % (v/v) in the eluent (%ACN) were used as ANN inputs. The above ANN-based approach is here tested on further five similar octadecylsiloxane-bonded columns in water-acetonitrile mobile phase within the %ACN range 30-70%. A quite good predictive performance evaluated on three external solutes in the whole %ACN range is observed, prediction errors being lower than {+-}0.1 log k units or slightly higher although still within {+-}0.15 log k units. On the other hand, multilinear regression used in place of ANN provides a more diffuse and non-uniform residual distribution for all the investigated columns. ANN multiple-column retention prediction is attempted by adding to the above variables a column descriptor defined as the average retention of calibration solutes extrapolated to 100% water. This more general model is built using 16 solutes and five 5-{mu}m columns in calibration, while its predictive performance is tested on the remaining 10 compounds. Under these conditions, prediction errors are generally within {+-}0.2 log k units regardless of the kind of column. The possibility of cross-column prediction is evaluated by column leave-one-out cross-validation within the five 5-{mu}m stationary phases and on a 4-{mu}m external column. This analysis reveals that accuracy of retention prediction for unknown solutes in unknown columns is acceptable provided that the external

  10. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio

    2009-01-01

    Previously, retention of 26 pesticides in the reversed-phase column Gemini (Phenomenex) and water-acetonitrile mobile phase was modelled using a feed-forward artificial neural network (ANN) learned by error back-propagation, accounting for both the effect of solute structure and mobile phase composition. To this end, log K ow of solutes and four quantum chemical molecular descriptors (the dipole moment, the mean polarizability, the anisotropy of the polarizability and an hydrogen-bonding descriptor based on the atomic charges located on the acid and basic functional groups) and acetonitrile % (v/v) in the eluent (%ACN) were used as ANN inputs. The above ANN-based approach is here tested on further five similar octadecylsiloxane-bonded columns in water-acetonitrile mobile phase within the %ACN range 30-70%. A quite good predictive performance evaluated on three external solutes in the whole %ACN range is observed, prediction errors being lower than ±0.1 log k units or slightly higher although still within ±0.15 log k units. On the other hand, multilinear regression used in place of ANN provides a more diffuse and non-uniform residual distribution for all the investigated columns. ANN multiple-column retention prediction is attempted by adding to the above variables a column descriptor defined as the average retention of calibration solutes extrapolated to 100% water. This more general model is built using 16 solutes and five 5-μm columns in calibration, while its predictive performance is tested on the remaining 10 compounds. Under these conditions, prediction errors are generally within ±0.2 log k units regardless of the kind of column. The possibility of cross-column prediction is evaluated by column leave-one-out cross-validation within the five 5-μm stationary phases and on a 4-μm external column. This analysis reveals that accuracy of retention prediction for unknown solutes in unknown columns is acceptable provided that the external column is not very

  11. Retention of nitrous gases in scrubber columns

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.C.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F. de

    1988-01-01

    During the UO 2 dissolution in nitric acid, some different species of NO (sub)x are released. The off gas can either be refluxed to the dissolver or be released and retained on special colums. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scrubber colums containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evaluation before and after scrubing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum absorption in the scrubber columns. (author) [pt

  12. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    Science.gov (United States)

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  13. Center column design of the PLT

    International Nuclear Information System (INIS)

    Citrolo, J.; Frankenberg, J.

    1975-01-01

    The center column of the PLT machine is a secondary support member for the toroidal field coils. Its purpose is to decrease the bending moment at the nose of the coils. The center column design was to have been a stainless steel casting with the toroidal field coils grouped around the casting at installation, trapping it in place. However, the castings developed cracks during fabrication and were unsuitable for use. Installation of the coils proceeded without the center column. It then became necessary to redesign a center column which would be capable of installation with the toroidal field coils in place. The final design consists of three A-286 forgings. This paper discusses the final center column design and the influence that new knowledge, obtained during the power tests, had on the new design

  14. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column.

    Science.gov (United States)

    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro

    2015-01-01

    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported.

  15. Modeling retention and selectivity as a function of pH and column temperature in liquid chromatography.

    Science.gov (United States)

    Gagliardi, Leonardo G; Castells, Cecilia B; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2006-08-15

    In reversed-phase liquid chromatography (RPLC), the retention of weak acids and bases is a sigmoidal function of the mobile-phase pH. Therefore, pH is a key chromatographic variable to optimize retention and selectivity. Furthermore, at an eluent pH close to the pKa of the solute, the dependence of ionization of the buffer and solute on temperature can be used to improve chromatographic separations involving ionizable solutes by an adequate handling of column temperature. In this paper, we derive a general equation for the prediction of the retentive behavior of ionizable compounds upon simultaneous changes in mobile-phase pH and column temperature. Four experiments, two limiting pH values and two temperatures, provide the input data that allow predictions in the whole range of these two variables, based on the thermodynamic fundamentals of the involved equilibria. Also, the study demonstrates the significant role that the choice of the buffer compound would have on selectivity factors in RPLC at temperatures higher than 25 degrees C.

  16. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions

    Directory of Open Access Journals (Sweden)

    Farrokhian Firouzi Ahmad

    2015-06-01

    Full Text Available Study of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.

  18. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Description of the Retention and Peak Profile for Chromolith Columns in Isocratic and Gradient Elution Using Mobile Phase Composition and Flow Rate as Factors

    Directory of Open Access Journals (Sweden)

    Elsa Cabo-Calvet

    2014-11-01

    Full Text Available The effect of the modifier concentration and flow rate on the chromatographic performance of a second generation Chromolith® RP-18e column, under isocratic and gradient elution with acetonitrile-water mixtures, was examined using four sulphonamides as probe compounds. The acetonitrile concentration was varied between 5 and 55% (v/v, and the flow rate between 0.1 and 5.0 mL/min, keeping the other factors constant. The changes in both retention and peak profile were modelled, and used to build simple plots, where the logarithm of the retention factor was represented against the modifier concentration (in gradient elution, against the initial modifier concentration, and the half-widths or widths against the retention time (in gradient elution, against the time at the column outlet. A particular plot was needed for describing the retention of each sulphonamide, but due to the similar interaction kinetics, a unique plot described the changes in the half-widths for all four sulphonamides. The changes in retention with the flow showed that allegedly in the second generation Chromolith, the column deformation observed for the first generation Chromolith, with the applied pressure at increasing flow, is decreased.

  20. Establishing column batch repeatability according to Quality by Design (QbD) principles using modeling software.

    Science.gov (United States)

    Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre

    2015-04-10

    Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Practical column design guide

    CERN Document Server

    Nitsche, M

    2017-01-01

    This book highlights the aspects that need to be considered when designing distillation columns in practice. It discusses the influencing parameters as well as the equations governing them, and presents several numerical examples. The book is intended both for experienced designers and for those who are new to the subject.

  2. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].

    Science.gov (United States)

    Li, R; Di, Z M; Chen, G L

    2001-09-01

    The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3

  3. The influence of salt chaotropicity, column hydrophobicity and analytes' molecular properties on the retention of pramipexole and its impurities.

    Science.gov (United States)

    Vemić, Ana; Kalinić, Marko; Erić, Slavica; Malenović, Anđelija; Medenica, Mirjana

    2015-03-20

    The aim of this study was to examine the interaction of the chaotropic salts of different position in Hofmeister series (CF3COONa, NaClO4, NaPF6) added to the mobile phase with the stationary phases of different hydrophobicity (C8 and C18 XTerra(®) columns), as well as their common influence on the retention behavior of pramipexole and its structurally related impurities. The extended thermodynamic approach enabled the understanding of the underlying separation mechanism. Comparing six different column-salt systems it was observed that general system hydrophobicity presented by salt chaotropicity and column hydrophobicity favors stationary phase ion-pairing over the ion-pair formation in the eluent. Further, an attempt was made to describe the influence of analytes' nature on their retention behavior in such chromatographic systems. An analysis is performed in order to select and elucidate the molecular descriptors (electrostatical, quantum-chemical, geometrical, topological, and constitutional) that best explain the experimental evidence and findings obtained by the thermodynamic approach. The results of this analysis suggest that analytes' charge distribution and its complementarity to the structure of the electric double layer formed on the surface of the stationary phase upon the addition of chaotropic additives can be useful for understanding the differences in retention of structurally related analytes. These findings provide a novel understanding of the interactions between all the components of the chromatographic system containing chaotropic additive and a good basis for further investigations suggesting the development of generally applicable predictors in structure-retention relationship studies in related chromatographic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  5. Design of zeolite ion-exchange columns for wastewater treatment

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1991-01-01

    Oak Ridge National Laboratory plans to use chabazite zeolites for decontamination of wastewater containing parts-per-billion levels of 90 Sr and 137 Cs. Treatability studies indicate that such zeolites can remove trace amounts of 90 Sr and 137 Cs from wastewater containing high concentrations of calcium and magnesium. These studies who that zeolite system efficiency is dependent on column design and operating conditions. Previous results with bench-scale, pilot-scale, and near-full-scale columns indicate that optimized design of full-scale columns could reduce the volume of spent solids generation by one-half. The data indicate that shortcut scale-up methods cannot be used to design columns to minimize secondary waste generation. Since the secondary waste generation rate is a primary influence on process cost effectiveness, a predictive mathematical model for column design is being developed. Equilibrium models and mass-transfer mechanisms are being experimentally determined for isothermal multicomponent ion exchange (Ca, Mg, Na, Cs, and Sr). Mathematical models of these data to determine the breakthrough curves for different column configurations and operating conditions will be used to optimize the final design of full-scale treatment plant. 32 refs., 6 figs., 3 tabs

  6. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn

    2011-09-23

    The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. On the optimal design of risk retention in securitisation

    Directory of Open Access Journals (Sweden)

    Metin Kaptan

    2011-09-01

    Full Text Available This paper examines the optimal design of retention in securitisation, in order to maximize welfare of screening per unit of retention, assuming that screening is costly and that the bank intends to securitise its loans. In contrast to the focus of previous literature on tranche retention, we deviate from the constitutional mechanisms of tranche retention to present a pareto-optimal method of tranche retention. Unlike the current ad-hoc-regulations, we derive the optimal design of retention from a utility maximization problem. We show that the level of retention per tranche should be dependent on the rate of credit default, i.e. the higher the rate of default, the higher the optimal rate of retention required to provide an incentive to screen carefully. From this approach, it follows that the rate of retention per tranche should be higher, the higher the position within the ranking order of subordination. Accordingly, the efficiency of tranche retention can be enhanced, reducing the level of retention required to maintain a given level of screening-effort. This retention design entails a recovery of the bank’s equity capital, thereby increasing liquidity and lending capacities.

  8. Evaluations of Mechanisms for Pu Uptake and Retention within Spherical Resorcinol-Formaldehyde Resin Columns

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-15

    The unexpected uptake and retention of plutonium (Pu) onto columns containing spherical resorcinol-formaldehyde (sRF) resin during ion exchange testing of Cs (Cs) removal from alkaline tank waste was observed in experiments at both the Pacific Northwest National Laboratory (PNNL) and the Savannah River National Laboratory (SRNL). These observations have raised concern regarding the criticality safety of the Cs removal unit operation within the low-activity waste pretreatment system (LAWPS). Accordingly, studies have been initiated at Washington River Protection Solutions (WRPS), who manages the operations of the Hanford Site tank farms, including the LAWPS, PNNL, and elsewhere to investigate these findings. As part of these efforts, PNNL has prepared the present report to summarize the laboratory testing observations, evaluate these phenomena in light of published and unpublished technical information, and outline future laboratory testing, as deemed appropriate based on the literature studies, with the goal to elucidate the mechanisms for the observed Pu uptake and retention.

  9. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    Science.gov (United States)

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  10. column frame for design of reinforced concrete sway frames

    African Journals Online (AJOL)

    adminstrator

    design of slender reinforced concrete columns in sway frames according .... concrete,. Ac = gross cross-sectional area of the columns. Step 3: Effective Buckling Length Factors. The effective buckling length factors of columns in a sway frame shall be computed by .... shall have adequate resistance to failure in a sway mode ...

  11. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    Science.gov (United States)

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Design and control of integrated chromatography column sequences.

    Science.gov (United States)

    Andersson, Niklas; Löfgren, Anton; Olofsson, Marianne; Sellberg, Anton; Nilsson, Bernt; Tiainen, Peter

    2017-07-01

    To increase the productivity in biopharmaceutical production, a natural step is to introduce integrated continuous biomanufacturing which leads to fewer buffer and storage tanks, smaller sizes of integrated unit operations, and full automation of the operation. The main contribution of this work is to illustrate a methodology for design and control of a downstream process based on integrated column sequences. For small scale production, for example, pre-clinical studies, integrated column sequences can be implemented on a single chromatography system. This makes for a very efficient drug development platform. The proposed methodology is composed of four steps and is governed by a set of tools, that is presented, that makes the transition from batch separations to a complete integrated separation sequence as easy as possible. This methodology, its associated tools and the physical implementation is presented and illustrated on a case study where the target protein is separated from impurities through an integrated four column sequence. This article shows that the design and control of an integrated column sequence was successfully implemented for a tertiary protein separation problem. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:923-930, 2017. © 2017 American Institute of Chemical Engineers.

  13. Laser incising of wood: Impregnation of columns with water-soluble dye

    International Nuclear Information System (INIS)

    Hattori, N.; Ando, K.; Kitayama, S.; Nakamura, Y.

    1994-01-01

    To know whether or not laser incising is a useful pre-treatment technique in impregnating a chemical fluid into lumber, pin holes were made in columns of hinoki (Chamaecyparis obtusa Endl.), sugi (Cryptomeria japonica D. Don), karamatsu (Larix leptolepis Gordon) and douglas-fir (Pseudo-tsuga menziesii Franco) with 1.7 kW CO2 laser, and a water-soluble dye was impregnated into these columns with a local pressure impregnation device. Retentions, and lengths and widths of penetrations from each hole were measured quantitatively. Referring to the results of the preparatory experiment mentioned above, incising patterns for sugi and douglas-fir were designed, and the same water-soluble dye was impregnated into the laser-incised columns as well as into non-incised ones with the vacuum-pressure method to obtain penetrated layers with the target depths completely. As a result, a retention of 200 kg/m3 of dye could be achieved for a column of douglas-fir even if it is a species difficult to impregnate. The penetrated layer also could be formed completely at the depth of the laser incision. Therefore, it is concluded that laser incising can be used for the pre-treatment before impregnation of wood columns. (author)

  14. Temperature-assisted On-column Solute Focusing: A General Method to Reduce Pre-column Dispersion in Capillary High Performance Liquid Chromatography

    Science.gov (United States)

    Groskreutz, Stephen R.; Weber, Stephen G.

    2014-01-01

    Solvent-based on-column focusing is a powerful and well known approach for reducingthe impact of pre-column dispersion in liquid chromatography. Here we describe an orthogonal temperature-based approach to focusing called temperature-assisted on-column solute focusing (TASF). TASF is founded on the same principles as the more commonly used solvent-based method wherein transient conditions are created thatlead to high solute retention at the column inlet. Combining the low thermal mass of capillary columns and the temperature dependence of solute retentionTASF is used effectivelyto compress injection bands at the head of the column through the transient reduction in column temperature to 5 °C for a defined 7 mm segment of a 6 cm long 150 μm I.D. column. Following the 30 second focusing time, the column temperature is increased rapidly to the separation temperature of 60 °C releasing the focused band of analytes. We developed a model tosimulate TASF separations based on solute retention enthalpies, focusing temperature, focusing time, and column parameters. This model guides the systematic study of the influence of sample injection volume on column performance.All samples have solvent compositions matching the mobile phase. Over the 45 to 1050 nL injection volume range evaluated, TASF reducesthe peak width for all soluteswith k’ greater than or equal to 2.5, relative to controls. Peak widths resulting from injection volumes up to 1.3 times the column fluid volume with TASF are less than 5% larger than peak widths from a 45 nL injection without TASF (0.07 times the column liquid volume). The TASF approach reduced concentration detection limits by a factor of 12.5 relative to a small volume injection for low concentration samples. TASF is orthogonal to the solvent focusing method. Thus, it canbe used where on-column focusing is required, but where implementation of solvent-based focusing is difficult. PMID:24973805

  15. Design of fixed-bed ion exchange columns for wastewater treatment

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1990-01-01

    Oak Ridge National Laboratory plans to use chabazite zeolites for decontamination of process wastewater which contains ppb levels of Sr-90 and Cs-137. Treatability studies have indicated that chabazite zeolites have high selectivities and loadings for removal of trace amounts of Cs-137 and Sr-90 from wastewater containing high concentrations of calcium and magnesium. These studies also indicated that the efficiency of the zeolite system is dependent on the column design and operating conditions. Results from 20-mL, 566-L, and 3,760-L column tests indicated that the optimized design of full-scale columns could halve the generation rate of loaded zeolite. The corresponding annual waste disposal costs for loaded zeolite generated at the ORNL plant varied from $80,000 to $170,000 based on the present disposal charges of $1400/m 3 indicating that design of zeolite ion exchange systems for minimization of secondary waste is imperative. This report summarizes the results of study to model multicomponent ion-exchange columns. 7 refs., 10 figs., 5 tabs

  16. Design of fixed-bed ion exchange columns for wastewater treatment

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1990-01-01

    Oak Ridge National Laboratory plans to use chabazite zeolites for decontamination of process wastewater which contains ppb levels of Sr-90 and Cs-137. Treatability studies have indicated that chabazite zeolites have high selectivities and loadings for removal of trace amounts of Cs-137 and Sr-90 from wastewater containing high concentrations of calcium and magnesium. These studies also indicated that the efficiency of the zeolite system is dependent on the column design and operating conditions. Results from 20-mL, 566-L, and 3,760-L column tests indicated that the optimized design of full-scale columns could halve the generation rate of loaded zeolite. The corresponding annual waste disposal costs for loaded zeolite generated at the ORNL plant varied from $80,000 to $170,000 based on the present disposal charges of $1400/m 3 indicating that design of zeolite ion exchange systems for minimization of secondary waste is imperative. This report summarizes the results of a study to model multicomponent ion-exchange columns. 7 refs., 10 figs., 5 tabs

  17. Mixed retention mechanism of proteins in weak anion-exchange chromatography.

    Science.gov (United States)

    Liu, Peng; Yang, Haiya; Geng, Xindu

    2009-10-30

    Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.

  18. Tools for Reactive Distillation Column Design: Graphical and Stage-to-Stage Computation Methods

    DEFF Research Database (Denmark)

    Sanchez Daza, O.; Cisneros, Eduardo Salvador P.; Hostrup, Martin

    2001-01-01

    Based on the element mass balance concept, a graphical design method and a stage-to-stage multicomponent design method for reactive distillation columns have been developed. For distillation columns comprising reactive and non-reactive stages, a simple design strategy based on reactive and non......-reactive bubble point calculations is proposed. This strategy tracks the conversion and temperature between the feed and the end stages of the column. An illustrative example highlights the verification of the design strategy through rigorous simulation....

  19. Adiabatic packed column supercritical fluid chromatography using a dual-zone still-air column heater.

    Science.gov (United States)

    Helmueller, Shawn C; Poe, Donald P; Kaczmarski, Krzysztof

    2018-02-02

    An approach to conducting SFC separations under pseudo-adiabatic condition utilizing a dual-zone column heater is described. The heater allows for efficient separations at low pressures above the critical temperature by imposing a temperature profile along the column wall that closely matches that for isenthalpic expansion of the fluid inside the column. As a result, the efficiency loss associated with the formation of radial temperature gradients in this difficult region can be largely avoided in packed analytical scale columns. For elution of n-octadecylbenzene at 60 °C with 5% methanol modifier and a flow rate of 3 mL/min, a 250 × 4.6-mm column packed with 5-micron Kinetex C18 particles began to lose efficiency (8% decrease in the number of theoretical plates) at outlet pressures below 142 bar in a traditional forced air oven. The corresponding outlet pressure for onset of excess efficiency loss was decreased to 121 bar when the column was operated in a commercial HPLC column heater, and to 104 bar in the new dual-zone heater operated in adiabatic mode, with corresponding increases in the retention factor for n-octadecylbenzene from 2.9 to 6.8 and 14, respectively. This approach allows for increased retention and efficient separations of otherwise weakly retained analytes. Applications are described for rapid SFC separation of an alkylbenzene mixture using a pressure ramp, and isobaric separation of a cannabinoid mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Final design and construction issues of the TAPIRO epithermal column

    International Nuclear Information System (INIS)

    Burn, K.W.; Casalini, L.; Nava, E.; Tinti, R.; Martini, S.; Mondini, D.; Rosi, G.

    2006-01-01

    The construction of the epithermal column for clinical trials at the 5 kW fast reactor TAPIRO (ENEA, Casaccia, Italy) has been completed, the experimental bunker in the reactor hall has been designed and the beam characterisation will shortly be underway. As has been reviewed at the last two ICNCT conferences, the low power of the neuron source and the relatively distant patient position outside the reactor shield led to a column design with certain characteristics. One consequence is the employment of a collimator containing lead of high purity with the resultant problems of mechanical construction. Another is the substantial neutron leakage from the column outside the aperture into the experimental bunker. Furthermore the absence of a gamma shield has led to an electron dose to the skin. This is resolved with an electron shield of aluminium. Here the construction and final design issues are discussed and the state of the project is presented. (author)

  1. Ideal versus real automated twin column recycling chromatography process.

    Science.gov (United States)

    Gritti, Fabrice; Leal, Mike; McDonald, Thomas; Gilar, Martin

    2017-07-28

    The full baseline separation of two compounds (selectivity factors αchromatography is used to confirm that the speed-resolution performance of the TCRSP is intrinsically superior to that of the single-column process. This advantage is illustrated in this work by developing an automated TCRSP for the challenging separation of two polycyclic aromatic hydrocarbon (PAH) isomers (benzo[a]anthracene and chrysene) in the reversed-phase retention mode at pressure smaller than 5000psi. The columns used are the 3.0mm×150mm column packed with 3.5μm XBridge BEH-C 18 material (α=1.010) and the 3.0mm or 4.6mm×150mm columns packed with the same 3.5μm XSelect HSST 3 material (α=1.025). The isocratic mobile phase is an acetonitrile-water mixture (80/20, v/v). Remarkably, significant differences are observed between the predicted retention times and efficiencies of the ideal TCRSP (given by the number of cycles multiplied by the retention time and efficiency of one column) and those of the real TCRSP. The fundamental explanation lies in the pressure-dependent retention of these PAHs or in the change of their partial molar volume as they are transferred from the mobile to the stationary phase. A revisited retention and efficiency model is then built to predict the actual performance of real TCRSPs. The experimental and calculated resolution data are found in very good agreement for a change, Δv m =-10cm 3 /mol, of the partial molar volume of the two PAH isomers upon transfer from the acetonitrile-water eluent mixture to the silica-C 18 stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design of an ion exchange column for plutonium recovery

    International Nuclear Information System (INIS)

    Araujo, J.A. de; Matsuda, H.T.; Santos Tome Lobao, A. dos; Quesada, A.C.

    1994-01-01

    An ion exchange column design for plutonium recovering from scraps of the MOX fuel elements fabrication is presented. The proposed column is constructed in 304 stainless steel and borosilicate glass provided of heating-jacket and temperature control and pressure relief devices. Safety aspects required for alpha emitters handling have been also considered. The design and construction were performed totally at Brazilian Institute for Energetic and Nuclear Research. The equipment will be used in the plutonium separation step as a part of an installation named Facilidad Alfa at the Centro Atomico de Constituyentes-CNEA/Buenos Aires, where other processes, including dissolution denitration by microwaves and final steps of MOX pellets re-fabrication will be performed. (author). 4 refs, 3 figs

  3. Refreshment topics II: Design of distillation columns

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2006-01-01

    Full Text Available For distillation column design it is necessary to define all the variable parameters such as component concentrations in different streams temperatures, pressures, mass and energy flow, which are used to represent the separation process of some specific system. They are related to each other according to specific laws, and if the number of such parameters exceeds the number of their relationships, in order to solve a problem some of them must be specified in advance or some constraints assumed for the mass balance, the balance of energy, phase equilibria or chemical equilibria. Knowledge of specific elements which are the constituents of a distillation unit must be known to define the number of design parameters as well as some additional apparati also necessary to realize the distilation. Each separate apparatus might be designed and constructed only if all the necessary and variable parameters for such a unit are defined. This is the right route to solve a distilation unit in many different cases. The construction of some distillation unit requires very good knowledge of mass, heat and momentum transfer phenomena. Moreover, the designer needs to know which kind of apparatus will be used in the distillation unit to realize a specific production process. The most complicated apparatus in a rectification unit is the distillation column. Depending on the complexity of the separation process one, two or more columns are often used. Additional equipment are heat exchangers (reboilers, condensers, cooling systems, heaters, separators, tanks for reflux distribution, tanks and pumps for feed transportation, etc. Such equipment is connected by pipes and valves, and for the normal operation of a distillation unit other instruments for measuring the flow rate, temperature and pressure are also required. Problems which might arise during the determination and selection of such apparati and their number requires knowledge of the specific systems which must

  4. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    Science.gov (United States)

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  5. Column selectivity in reversed-phase liquid chromatography I. A general quantitative relationship.

    Science.gov (United States)

    Wilson, N S; Nelson, M D; Dolan, J W; Snyder, L R; Wolcott, R G; Carr, P W

    2002-07-05

    Retention factors k have been measured for 67 neutral, acidic and basic solutes of highly diverse molecular structure (size, shape, polarity, hydrogen bonding, pKa, etc.) on 10 different C18 columns (other conditions constant). These data have been combined with k values from a previous study (86 solutes, five different C8 and C18 columns) to develop a six-term equation for the correlation of retention as a function of solute and column. Values of k can be correlated with an accuracy of +/- 1-2% (1 standard deviation). This suggests that all significant contributions to column selectivity have been identified (and can be measured) for individual alkyl-silica columns which do not have an embedded polar group. That is, columns of the latter kind can be quantitatively characterized in terms of selectivity for use in the separation of any sample.

  6. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  7. Small Column Ion Exchange Design and Safety Strategy

    International Nuclear Information System (INIS)

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-01-01

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV(reg s ign)IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  8. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    Science.gov (United States)

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Improvement for the design of packed moving bed adsorption column

    International Nuclear Information System (INIS)

    Xiao Wei

    2014-01-01

    The problems needed to pay attention to in the physical design of packed moving bed adsorption column were presented. The design of key parts such as the inlet and outlet of liquid phase and gas phase were improved. The expected effect was achieved by the improvement. (author)

  10. Design concept of control system for cryogenic distillation columns of fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1993-09-01

    Control systems were designed for cryogenic distillation columns in the main fuel cycle and the breeder blanket interface systems of fusion reactors. Three basic control modes were proposed for the column whose top product was more important; the column whose bottom product is more important; and the column having a feed back stream. The key component in the important product stream was selected for each column, and the analysis method for measurement of this key component was discussed. Some of the columns need the gas chromatography as the analysis instrument of the control system. The time required for the measurement of product purity by the gas chromatography considerably affects the stability of the control system. A significant conclusion is that permissible time is about 20 min. It is possible to complete the measurement within 20 minute by the gas chromatography. The gas chromatography is applicable for the control system of the column. (author)

  11. Exploring the effect of mesopore size reduction on the column performance of silica-based open tubular capillary columns.

    Science.gov (United States)

    Hara, Takeshi; Futagami, Shunta; De Malsche, Wim; Baron, Gino V; Desmet, Gert

    2018-06-01

    We report on a modification in the hydrothermal treatment process of monolithic silica layers used in porous-layered open tubular (PLOT) columns. Lowering the temperature from the customary 95 °C to 80 °C, the size of the mesopores reduced by approximately about 35% from 12-13.5 nm to 7.5-9 nm, while the specific pore volume essentially remains unaltered. This led to an increase of the specific surface area (SA) of about 40%, quasi-independent of the porous layer thickness. The increased surface area provided a corresponding increase in retention, somewhat more (48%) than expected based on the increase in SA for the thin layer columns, and somewhat less than expected (34%) for the thick layer columns. The recipes were applied in 5 μm i.d.-capillaries with a length of 60 cm. Efficiencies under retained conditions amounted up to N = 137,000 for the PLOT column with a layer thickness (d f ) of 300 nm and to N = 109,000 for the PLOT column with d f  = 550 nm. Working under conditions of similar retention, the narrow pore/high SA columns produced with the new 80 °C recipe generated the same number of theoretical plates as the wide pore size/low SA columns produced with the 95 °C recipe. This shows the 80 °C-hydrothermal treatment process allows for an increase in the phase ratio of the PLOT columns without affecting their intrinsic mass transfer properties and separation kinetics. This is further corroborated by the fact that the plate height curves generated with the new and former recipe can both be well-fitted with the Golay-Aris equation without having to change the intra-layer diffusion coefficient. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The role of sidestream recycle in hydrogen isotope separation and column cascade design

    International Nuclear Information System (INIS)

    Sherman, R.H.; Taylor, D.J.; Yamanishi, T.; Enoeda, M.; Konishi, S.; Okuno, K.

    1994-01-01

    Sidestream recycle combined with sidestream equilibration is important in hydrogen isotopic distillation processes because it offers a means to reduce the number of columns required for the extraction of pure homonuclear species. This directly implies simpler systems, reduced control problems, and reduce material inventories. Measurements were recently completed for a single distillation column using feed compositions (∼50--50 D-T) and product flows similar to those expected in an ITER type device wit recycle of an equilibrated sidestream withdrawn from the column. Dynamic studies were conducted with flowrates changing as might be expected for typical Tokamak operations. These experimental results are compared with computer simulations of the dynamic process. The impact of these sidestream recycle studies on the design of isotope separation systems is discussed, especially with respect to column design, tritium inventory, dynamic performance, stability, and system control

  13. Direct Down-scale Experiments of Concentration Column Designs for SHINE Process

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-01

    Argonne is assisting SHINE Medical Technologies in their efforts to become a domestic Mo-99 producer. The SHINE accelerator-driven process uses a uranyl-sulfate target solution for the production of fission-product Mo-99. Argonne has developed a molybdenum recovery and purification process for this target solution. The process includes an initial Mo recovery column followed by a concentration column to reduce the product volume from 15-25 L to < 1 L prior to entry into the LEU Modified Cintichem (LMC) process for purification.1 This report discusses direct down-scale experiments of the plant-scale concentration column design, where the effects of loading velocity and temperature were investigated.

  14. Computer-Aided Construction at Designing Reinforced Concrete Columns as Per Ec

    Science.gov (United States)

    Zielińska, M.; Grębowski, K.

    2015-02-01

    The article presents the authors' computer program for designing and dimensioning columns in reinforced concrete structures taking into account phenomena affecting their behaviour and information referring to design as per EC. The computer program was developed with the use of C++ programming language. The program guides the user through particular dimensioning stages: from introducing basic data such as dimensions, concrete class, reinforcing steel class and forces affecting the column, through calculating the creep coefficient taking into account the impact of imperfection depending on the support scheme and also the number of mating members at load shit, buckling length, to generating the interaction curve graph. The final result of calculations provides two dependence points calculated as per methods of nominal stiffness and nominal curvature. The location of those points relative to the limit curve determines whether the column load capacity is assured or has been exceeded. The content of the study describes in detail the operation of the computer program and the methodology and phenomena which are indispensable at designing axially and eccentrically the compressed members of reinforced concrete structures as per the European standards.

  15. Fluid dynamics of packed columns principles of the fluid dynamic design of columns for gas/liquid and liquid/liquid systems

    CERN Document Server

    Mackowiak, Jerzy

    2010-01-01

    This book describes the basic design principles of columns equipped with modern lattice packings and structured packed beds, as generally used in industry. It provides support to engineers as well as graduate students in their daily design work.

  16. Analysis and design of column reinforced masonry and concrete walls

    International Nuclear Information System (INIS)

    Doyle, J.M.; Roy, S.B.; Fang, S.J.

    1983-01-01

    Fundamental frequencies, maximum moments and maximum shear forces are determined as a function of the governing parameters, for several different boundary conditions. The quantities are obtained for uniform panels, for walls with openings typical of doorways and other penetrations, and for panels having a region of degraded stiffness. In addition to the internal forces and moment due to out-of-plane action, the stresses due to in-plane loading are also found. From the results curves are constructed which allow for easy computation of flexural frequency, and bending moments and shears due to dynamic loads normal to the wall. Furthermore, based on the studies of panels with geometric or material discontinuities, corrections to results for uniform panels are found which can be used if openings or weakened areas exist in the wall. Several conclusions are presented concerning effects on behavior due to varied column location, critical stiffness ratio for columns to be effective, and the effect of openings on overall behavior. A number of design recommendations are presented. While the motivation for the study came from the need to design masonry walls, the analysis results are applicable to solid concrete walls reinforced by vertical columns. (orig./HP)

  17. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bottenus, Courtney LH [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-22

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.

  18. Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments

    Science.gov (United States)

    Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming

    2013-04-01

    Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.

  19. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    Science.gov (United States)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.

  20. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column: it is avoided to withdraw side streams as products or feeds of down stream columns: and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns. (author)

  1. Approaches to characterise chromatographic column performance based on global parameters accounting for peak broadening and skewness.

    Science.gov (United States)

    Baeza-Baeza, J J; Pous-Torres, S; Torres-Lapasió, J R; García-Alvarez-Coque, M C

    2010-04-02

    Peak broadening and skewness are fundamental parameters in chromatography, since they affect the resolution capability of a chromatographic column. A common practice to characterise chromatographic columns is to estimate the efficiency and asymmetry factor for the peaks of one or more solutes eluted at selected experimental conditions. This has the drawback that the extra-column contributions to the peak variance and skewness make the peak shape parameters depend on the retention time. We propose and discuss here the use of several approaches that allow the estimation of global parameters (non-dependent on the retention time) to describe the column performance. The global parameters arise from different linear relationships that can be established between the peak variance, standard deviation, or half-widths with the retention time. Some of them describe exclusively the column contribution to the peak broadening, whereas others consider the extra-column effects also. The estimation of peak skewness was also possible for the approaches based on the half-widths. The proposed approaches were applied to the characterisation of different columns (Spherisorb, Zorbax SB, Zorbax Eclipse, Kromasil, Chromolith, X-Terra and Inertsil), using the chromatographic data obtained for several diuretics and basic drugs (beta-blockers). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography

    Science.gov (United States)

    Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.

    2010-12-01

    Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point

  3. A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times.

    Science.gov (United States)

    McGinitie, Teague M; Ebrahimi-Najafabadi, Heshmatollah; Harynuk, James J

    2014-02-21

    A new method for calibrating thermodynamic data to be used in the prediction of analyte retention times is presented. The method allows thermodynamic data collected on one column to be used in making predictions across columns of the same stationary phase but with varying geometries. This calibration is essential as slight variances in the column inner diameter and stationary phase film thickness between columns or as a column ages will adversely affect the accuracy of predictions. The calibration technique uses a Grob standard mixture along with a Nelder-Mead simplex algorithm and a previously developed model of GC retention times based on a three-parameter thermodynamic model to estimate both inner diameter and stationary phase film thickness. The calibration method is highly successful with the predicted retention times for a set of alkanes, ketones and alcohols having an average error of 1.6s across three columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Building Store Satisfaction Centred on Customer Retention in Clothing Retailing: Store Design and Ease of Shopping

    Directory of Open Access Journals (Sweden)

    Gulden Turhan

    2016-01-01

    Full Text Available The study’s research model suggests that store design and ease of shopping are associated with customer retention through a mediated pathway in which store design and ease of shopping influence perceived store satisfaction, which in turn, influences customer retention. This survey was administered to two separate clothing stores offered to either females or males (in total, 533 participants. Using structural equation modelling methodology, data was analysed to explain the interrelations among the variables in the model. The results of an empirical study of a sample of store shoppers revealed that store design and ease of shopping influence customer retention in an indirect way through customer perception of satisfaction with the store. In building store satisfaction that is centred on customer retention, store design and shopping ease differ in their relative influences. This difference is high for females, but for men as low as to be considered negligible in males. As a result, improving customers’ perceptions of store design and ease of shopping is a way to ensure store satisfaction support customer retention. The results of the study provide a new insight into the relationships by suggesting indirect effects of shopping ease and store design on consumer retention by their impacts on store satisfaction, rather than direct effects.

  5. Building Store Satisfaction Centred on Customer Retention in Clothing Retailing: Store Design and Ease of Shopping

    Directory of Open Access Journals (Sweden)

    Gulden Turhan

    2014-01-01

    Full Text Available The study’s research model suggests that store design and ease of shopping are associated with customer retention through a mediated pathway in which store design and ease of shopping influence perceived store satisfaction, which in turn, influences customer retention. This survey was administered to two separate clothing stores offered to either females or males (in total, 533 participants. Using structural equation modelling methodology, data was analysed to explain the interrelations among the variables in the model. The results of an empirical study of a sample of store shoppers revealed that store design and ease of shopping influence customer retention in an indirect way through customer perception of satisfaction with the store. In building store satisfaction that is centred on customer retention, store design and shopping ease differ in their relative influences. This difference is high for females, but for men as low as to be considered negligible in males. As a result, improving customers’ perceptions of store design and ease of shopping is a way to ensure store satisfaction support customer retention. The results of the study provide a new insight into the relationships by suggesting indirect effects of shopping ease and store design on consumer retention by their impacts on store satisfaction, rather than direct effects.

  6. Retention and effective diffusion of model metabolites on porous graphitic carbon.

    Science.gov (United States)

    Lunn, Daniel B; Yun, Young J; Jorgenson, James W

    2017-12-29

    The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A study of retention characteristics and quality control of nutraceuticals containing resveratrol and polydatin using fused-core column chromatography.

    Science.gov (United States)

    Fibigr, Jakub; Šatínský, Dalibor; Solich, Petr

    2016-02-20

    A new high-performance liquid chromatography method using fused-core column for fast separation of resveratrol and polydatin has been developed and used for quality control of nutraceuticals with resveratrol and polydatin content. Retention characteristics (log k) were studied under different conditions on C-18, RP-Amide C-18, Phenyl-hexyl, Pentafluorophenyl (F5) and Cyano stationary phases for both compounds. The effect of the volume fraction of acetonitrile on a retention factors log k of resveratrol and polydatin were evaluated. The optimal separation conditions for resveratrol, polydatin and internal standard p-nitrophenol were found on the fused-core column Ascentis Express ES-Cyano (100×3.0mm), particle size 2.7μm, with mobile phase acetonitrile/water solution with 0.5% acetic acid pH 3 (20:80, v/v) at a flow rate of 1.0mL/min and at 60°C. The detection wavelength was set at 305nm. Under the optimal chromatographic conditions, good linearity with regression coefficients in the range (r=0.9992-0.9998; n=10) for both compounds was achieved. Commercial samples of nutraceuticals were extracted with methanol using ultrasound bath for 15min. A 5μL sample volume of the filtered solution was directly injected into the HPLC system. Accuracy of the method defined as a mean recovery was in the range 83.2-107.3% for both nutraceuticals. The intraday method precision was found satisfactory and relative standard deviations of sample analysis were in the range 0.8-4.7%. The developed method has shown high sample throughput during sample preparation process, modern separation approach, and short time (3min) of analysis. The results of study showed that the declared content of resveratrol and polydatin varied widely in different nutraceuticals according the producers (71.50-115.00% of declared content). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Influence of pressure on the properties of chromatographic columns. II. The column hold-up volume.

    Science.gov (United States)

    Gritti, Fabrice; Martin, Michel; Guiochon, Georges

    2005-04-08

    The effect of the local pressure and of the average column pressure on the hold-up column volume was investigated between 1 and 400 bar, from a theoretical and an experimental point of view. Calculations based upon the elasticity of the solids involved (column wall and packing material) and the compressibility of the liquid phase show that the increase of the column hold-up volume with increasing pressure that is observed is correlated with (in order of decreasing importance): (1) the compressibility of the mobile phase (+1 to 5%); (2) in RPLC, the compressibility of the C18-bonded layer on the surface of the silica (+0.5 to 1%); and (3) the expansion of the column tube (columns packed with the pure Resolve silica (0% carbon), the derivatized Resolve-C18 (10% carbon) and the Symmetry-C18 (20% carbon) adsorbents, using water, methanol, or n-pentane as the mobile phase. These solvents have different compressibilities. However, 1% of the relative increase of the column hold-up volume that was observed when the pressure was raised is not accounted for by the compressibilities of either the solvent or the C18-bonded phase. It is due to the influence of the pressure on the retention behavior of thiourea, the compound used as tracer to measure the hold-up volume.

  9. Peer Mentor Program for the General Chemistry Laboratory Designed to Improve Undergraduate STEM Retention

    Science.gov (United States)

    Damkaci, Fehmi; Braun, Timothy F.; Gublo, Kristin

    2017-01-01

    We describe the design and implementation of an undergraduate peer mentor program that can overlay an existing general chemistry laboratory and is designed to improve STEM student retention. For the first four freshman cohorts going through the program, year-to-year retention improved by a four-year average of 20% for students in peer-mentored…

  10. Scientific method by argumentation design: learning process for maintaining student’s retention

    Science.gov (United States)

    Siswanto; Yusiran; Asriyadin; Gumilar, S.; Subali, B.

    2018-03-01

    The purpose of this research describes the effect of scientific methods designed by argumentation in maintaining retention of pre-service physics teachers (students) in mechanical concept. This learning consists of five stages including the first two stages namely observing and questioning. While the next three stages of reasoning, trying, and communicating are made of argumentation design. To know the effectiveness of treatment, students are given pre-test and post-test in one time. On the other hand, students were given advanced post-test to know the durability of retention as many as four times in four months. The results show that there was mean difference between pre-test and post-test based on the Wilcoxon test (z = -3.4, p=0.001). While the effectiveness of treatment is in the high category based on normalized gain values ( = 0.86). Meanwhile, mean difference of all post-test is significantly different based on Analysis of Varian (F = 365.63, p = 0.00). However, in the fourth month, students retention rates began to stabilize based on Tuckey’s HSD (p=0.074) for comparison of mean difference between fourth and fifth post-test. Overall, learning designed can maintain students retention within 4 months after the learning finish.

  11. Two approaches for sequential extraction of radionuclides in soils: batch and column methods

    International Nuclear Information System (INIS)

    Vidal, M.; Rauret, G.

    1993-01-01

    A three-step sequential extraction designed by Community Bureau of Reference (BCR) is applied to two types of soil (sandy and sandy-loam) which had been previously contaminated with a radionuclide aerosol containing 134 Cs, 85 Sr and 110m Ag. This scheme is applied using both batch and column methods. The radionuclide distribution obtained with this scheme depends both on the method and on soil type. Compared with the batch method, column extraction is an inadvisable method. Kinetic aspects seem to be important, especially in the first and third fractions. The radionuclide distribution shows that radiostrontium has high mobility, radiocaesium is highly retained by clay minerals whereas Fe/Mn oxides and organic matter have an important role in radiosilver retention. (Author)

  12. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  13. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    Science.gov (United States)

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  14. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves.

    Science.gov (United States)

    Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio

    2018-04-27

    Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Controlling retention, selectivity and magnitude of EOF by segmented monolithic columns consisting of octadecyl and naphthyl monolithic segments--applications to RP-CEC of both neutral and charged solutes.

    Science.gov (United States)

    Karenga, Samuel; El Rassi, Ziad

    2011-04-01

    Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Second dimension column ensemble pressure tuning in comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Sharif, Khan M; Kulsing, Chadin; Junior, Ademario I da Silva; Marriott, Philip J

    2018-02-09

    A pressure tunable (PT) coupled column ensemble has been implemented for the second dimension ( 2 D) separation in comprehensive two dimensional gas chromatography (GC×PTGC). This process requires two columns to be connected by a pressure junction, as a replacement for a single narrow bore, short column in 2 D. Various 2 D 1 and 2 D 2 columns may be selected to provide complementary selectivity (polarity) compared to the 1 D column. The tunable residence time arising from differential pressure drop in each 2 D column results in a tunable fractional contribution of each column in the 2 D separation. A sample mixture comprising different chemical classes, including alkanes and alcohols, is used to identify the feasibility and extent of selectivity tuning possible in GC×PTGC. The column length is also varied due to the imposed challenge of wraparound in the PT coupled column system as pressures are adjusted in the 2 D separation. Different experimental parameters, stationary phase materials and column lengths have been applied to investigate and understand the separation behaviour of the 2 D PT coupled column GC×GC system. Results are discussed considering analyte retention time, peak width, linear velocity and the contribution of each 2 D column. A specific and unexpected example of GC×GC separation was demonstrated where the peak positions of polar and apolar compounds could almost swap their 2 D retention position by application of PT. Kerosene was analysed as an example of complex sample analysis by GC×PTGC system. This process is shown to be a practical approach for altering different stationary phase selectivities in a single 2 D arrangement in GC×GC. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A rational and economical seismic design of beam columns in steel frames

    International Nuclear Information System (INIS)

    Gupta, A.K.; Fang, S.-J.; Chu, S.-L.

    1977-01-01

    In the present study, a new rational procedure is used in which simultaneous variation in various response quantities is predicted. For designing the beam column section according to the AISC Manual of Steel Construction, one has to know the values of the axial force, the moment about x and y axes at the two ends, and the maximum moments about x, y axes near the center of the beam column, which altogether constitutes seven response quantities of interest for each beam column element. Normally, seven equivalent modes will be required to represent the response. However, by designing the two end sections and the intermediate section independently one can consider three equivalent modes for each section, thus simplifying the problem a great deal. An existing computer program is used for the implementation of the proposed method. Results for typical example problems have been presented. It is shown that savings up to 42% in the steel cross-sectional area can be obtained depending upon combination of various forces and moments. The propposed method is 'exact' within the existing assumptions of the SRSS (square root of the sum of the squares) or the double sum method

  19. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    Science.gov (United States)

    2014-12-01

    Precast Concrete Beam - Column Connection ...ERDC TR-14-12 December 2014 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam - Column Connection ...systems in order to develop a methodology and obtain basic insight for predicting the brittle failure of precast beam - column connections under

  20. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  1. 7 CFR 800.147 - Maintenance and retention of records on delegations, designations, contracts, and approval of...

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Maintenance and retention of records on delegations, designations, contracts, and approval of scale testing organizations. 800.147 Section 800.147 Agriculture... and Forms (general) § 800.147 Maintenance and retention of records on delegations, designations...

  2. Design of reinforced areas of concrete column using quadratic polynomials

    Science.gov (United States)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  3. The design of a new concept chromatography column.

    Science.gov (United States)

    Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew

    2011-12-21

    Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.

  4. HPLC-CUPRAC post-column derivatization method for the determination of antioxidants: a performance comparison between porous silica and core-shell column packing.

    Science.gov (United States)

    Haque, Syed A; Cañete, Socrates Jose P

    2018-01-01

    An HPLC method employing a post-column derivatization strategy using the cupric reducing antioxidant capacity reagent (CUPRAC reagent) for the determining antioxidants in plant-based materials leverages the separation capability of regular HPLC approaches while allowing for detection specificity for antioxidants. Three different column types, namely core-shell and porous silica including two chemically different core-shell materials (namely phenyl-hexyl and C18), were evaluated to assess potential improvements that could be attained by changing from a porous silica matrix to a core-shell matrix. Tea extracts were used as sample matrices for the evaluation specifically looking at catechin and epigallocatechin gallate (EGCG). Both the C18 and phenyl-hexyl core-shell columns showed better performance compared to the C18 porous silica one in terms of separation, peak shape, and retention time. Among the two core-shell materials, the phenyl-hexyl column showed better resolving power compared to the C18 column. The CUPRAC post-column derivatization method can be improved using core-shell columns and suitable for quantifying antioxidants, exemplified by catechin and EGCG, in tea samples.

  5. Considerations regarding design of ion exchange columns for applications in heavy water nuclear reactors- a comprehensive review

    International Nuclear Information System (INIS)

    Joginder Kumar; Nema, M.K.

    2000-01-01

    In nuclear reactor applications the principal role of the purification system is to maintain a satisfactory chemistry of moderator and coolant which are different at various stages of reactor operations e.g. during reactor start up, for removal of neutron poison from the moderator, the purification flows are much different compared to steady state operation of the reactor. In order to cater to varying requirements regarding purification load, optimisation in connection with ion exchange column design plays an important role and becomes very challenging in Heavy Water Nuclear Reactors mainly due to the fact that heavy water is very very expensive. In this paper a comprehensive review is made for various designs adopted so far regarding IX column in Indian PHWRs of 220 MWe size for normal operations. Design and operating experience regarding large size IX column used for occasional needs during dilute chemical decontamination of 220 MWe PHWRs is also discussed. The experience regarding development testing of the proposed design of ion exchange column for 500 MWe PHWRs is also discussed

  6. Novel Design for Centrifugal Countercurrent Chromatography: II. Studies on Novel Geometries of Zigzag Toroidal Tubing

    Science.gov (United States)

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal column using a zigzag pattern has been improved in both retention of the stationary phase and peak resolution. To further improve the retention of stationary phase and peak resolution, a series of novel geometric designs of tubing (plain, mid-clamping, flattened and flat-twisted tubing) was evaluated their performance in CCC. The results showed that the tubing which was flattened vertically against centrifugal force (vert-flattened tubing) produced the best peak resolution among them. Using vert-flattened tubing a series of experiments was performed to study the effects of column capacity and sample size. The results indicated that a 0.25 ml capacity column is ideal for analysis of small amount samples. PMID:20454530

  7. Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution

    Energy Technology Data Exchange (ETDEWEB)

    Suphanit, B. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Pracha Utit Rd., Tungkru, Bangkok 10140 (Thailand)

    2010-03-15

    The internally heat-integrated distillation column (HIDiC) is a complex column configuration which is more energy efficient than the equivalent conventional column or the distillation column with direct vapor recompression scheme (VRC). Exploiting the heat integration between two diabatic sections operating at different pressures of the HIDiC can greatly enhance the energy performance of the system. On the other hand, the design and optimization of HIDiC is more difficult than those of the conventional distillation column or the column with VRC. The former involves many design parameters, and the most critical one is the pressure ratio between both diabatic sections. However, the heat distribution along the diabatic sections is also another significant factor not yet thoroughly investigated. In this work, two typical distribution schemes, i.e. uniform heat transfer area and uniform heat distribution, are studied by applying a novel approach to solve the simulation problem in Aspen Plus 2004.1. The comparison of both distributing schemes is discussed via two widely-used case studies, namely benzene-toluene separation and propylene-propane splitter. (author)

  8. Evaluation of 131I retention in several adsorbers

    International Nuclear Information System (INIS)

    Catanoso, Marcela F.; Osso Junior, Joao Alberto

    2011-01-01

    Several iodine radioisotopes are used in nuclear medicine for treatment and diagnostic purposes. The radioisotope 131 I is used both in diagnosis and therapy due to its physical characteristics of decay by β - and its γ-ray emissions suitable for diagnosis. It is routinely produced at IPEN through the irradiation of TeO 2 targets in the IEA-R1m nuclear reactor. After the irradiation, the 131 I is separated by dry distillation, where the targets are put in an oven, heated at 760 deg C for 2 hours and the 131 I, volatile, is carried by an O 2 gas stream. The aim of this work was to evaluate the retention and elution of 131 I samples produced at IPEN in several adsorbers as part of a project aiming the purification of these radioisotopes, allowing the labeling of biomolecules. Samples of 131 I were used for retention and elution studies with the following adsorbers: commercial cartridges, anionic resin columns and cationic resin column. The results showed that Ag cartridges and anionic resins Dowex 1X8, Dowex 3 and IRA 400 had a great iodine retention but no elution after using specific eluents. The QMA light, acid alumina, neutral alumina and cationic resin Dowex 50WX4 showed high retention and elution and QMA plus and cationic resin Dowex 50WX8 and Dowex 50WX12 had a good retention but lower elution. Regarding to the better retention and elution, Ag cartridges and resins showed a higher percentage of iodine retention but lower elution yield and QMA light, acid and neutral alumina cartridges showed better results. (author)

  9. Admittance Scanning for Whole Column Detection.

    Science.gov (United States)

    Stamos, Brian N; Dasgupta, Purnendu K; Ohira, Shin-Ichi

    2017-07-05

    Whole column detection (WCD) is as old as chromatography itself. WCD requires an ability to interrogate column contents from the outside. Other than the obvious case of optical detection through a transparent column, admittance (often termed contactless conductance) measurements can also sense changes in the column contents (especially ionic content) from the outside without galvanic contact with the solution. We propose here electromechanically scanned admittance imaging and apply this to open tubular (OT) chromatography. The detector scans across the column; the length resolution depends on the scanning velocity and the data acquisition frequency, ultimately limited by the physical step resolution (40 μm in the present setup). Precision equal to this step resolution was observed for locating an interface between two immiscible liquids inside a 21 μm capillary. Mechanically, the maximum scanning speed was 100 mm/s, but at 1 kHz sampling rate and a time constant of 25 ms, the highest practical scan speed (no peak distortion) was 28 mm/s. At scanning speeds of 0, 4, and 28 mm/s, the S/N for 180 pL (zone length of 1.9 mm in a 11 μm i.d. column) of 500 μM KCl injected into water was 6450, 3850, and 1500, respectively. To facilitate constant and reproducible contact with the column regardless of minor variations in outer diameter, a double quadrupole electrode system was developed. Columns of significant length (>1 m) can be readily scanned. We demonstrate its applicability with both OT and commercial packed columns and explore uniformity of retention along a column, increasing S/N by stopped-flow repeat scans, etc. as unique applications.

  10. Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings

    Science.gov (United States)

    Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.

    2018-04-01

    Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.

  11. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  12. Retention of radium from thermal waters on sand filters and adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Elejalde, C. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain)]. E-mail: inpelsac@bi.ehu.es; Herranz, M. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Legarda, F. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Romero, F. [Dpto. de Ingenieria Quimica y del Medio Ambiente, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Baeza, A. [Dpto. de Fisica, Facultad de Veterinaria, Universidad de Extremadura, Avda. Universidad s/n, 10071 Caceres (Spain)

    2007-06-18

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  13. Retention of radium from thermal waters on sand filters and adsorbents

    International Nuclear Information System (INIS)

    Elejalde, C.; Herranz, M.; Idoeta, R.; Legarda, F.; Romero, F.; Baeza, A.

    2007-01-01

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research

  14. Chromatographic efficiency of polar capillary columns applied for the analysis of fatty acid methyl esters by gas chromatography.

    Science.gov (United States)

    Waktola, Habtewold D; Mjøs, Svein A

    2018-04-01

    The chromatographic efficiency that could be achieved in temperature-programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    Science.gov (United States)

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. ( Anogeissus leiocarpus ) timber columns

    African Journals Online (AJOL)

    A procedure for designing axially loaded Ayin (Anogeissus leiocarpus) wood column or strut has been investigated. Instead of the usual categorization of columns into short, intermediate and slender according to the value of slenderness ratio, a continuous column formula representing the three categories was derived.

  17. Retention behavior of resorcinarene-based cavitands on C8 and C18 stationary phases.

    Science.gov (United States)

    Bartó, Endre; Prauda, Ibolya; Kilár, Ferenc; Kiss, Ibolya; Felinger, Attila

    2015-09-01

    The understanding of the retention behavior of large molecules is an area of interest in liquid chromatography. Resorcinarene-based cavitands are cavity-shaped cyclic oligomers that can create host-guest interactions. We have investigated the chromatographic behavior of two types of cyclic tetramers as analytes in high-performance liquid chromatography. The experiments were performed at four different temperatures (15, 25, 35, 45°C) on two types of reversed stationary phases (C8 and C18 ) from two different manufacturers. We have found a huge difference between the retention of resorcinarenes and cavitands. In some cases, the retention factor of cavitands was even a hundred times larger than the retention factor of resorcinarenes. The retention of methylated derivates was two to four times larger compared to that of demethylated compounds on every column. The opposite retention behavior of the resorcinarenes and cavitands on the two types of stationary phases showed well the difference of the selectivity of the XTerra and BDS Hypersil columns. The retention mechanism was studied by the thermodynamic parameters calculated from the van't Hoff equation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cr(VI) retention and transport through Fe(III)-coated natural zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gaoxiang [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Zhaohui, E-mail: li@uwp.edu [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Libing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Hanson, Renee; Leick, Samantha; Hoeppner, Nicole [Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2012-06-30

    Graphical abstract: Breakthrough curves of Cr(VI) from columns packed with raw zeolite (a) and Fe(III)-zeolite (b). The solid line in (b) is the HYDRUS-1D fit to the observed data with adsorption term only, while the dashed line in (b) includes a reduction term in the HYDRUS-1D fit. Highlights: Black-Right-Pointing-Pointer Zeolite modified with Fe(III) could be used for adsorption and retention of Cr(VI). Black-Right-Pointing-Pointer The Fe present on zeolite was in an amorphous Fe(OH){sub 3} form. Black-Right-Pointing-Pointer A Cr(VI) adsorption capacity of 82 mg/kg was found on Fe(III)-zeolite. Black-Right-Pointing-Pointer A Cr(VI) retardation factor of 3 or 5 was determined from column and batch studies. - Abstract: Cr(VI) is a group A chemical based on the weight of evidence of carcinogenicity. Its transport and retention in soils and groundwater have been studied extensively. Zeolite is a major component in deposits originated from volcanic ash and tuff after alteration. In this study, zeolite aggregates with the particle size of 1.4-2.4 mm were preloaded with Fe(III). The influence of present Fe(III) on Cr(VI) retention by and transport through zeolite was studied under batch and column experiments. The added Fe(III) resulted in an enhanced Cr(VI) retention by the zeolite with a capacity of 82 mg/kg. The Cr(VI) adsorption on Fe(III)-zeolite followed a pseudo-second order kinetically and the Freundlich adsorption isotherm thermodynamically. Fitting the column experimental data to HYDRUS-1D resulted in a retardation factor of 3 in comparison to 5 calculated from batch tests at an initial Cr(VI) concentration of 3 mg/L. The results from this study showed that enhanced adsorption and retention of Cr(VI) may happen in soils derived from volcanic ash and tuff that contains significant amounts of zeolite with extensive Fe(III) coating.

  19. Evaluation of {sup 131}I retention in several adsorbers

    Energy Technology Data Exchange (ETDEWEB)

    Catanoso, Marcela F.; Osso Junior, Joao Alberto, E-mail: marcela.forli@gmail.co, E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Diretoria de Radiofarmacia

    2011-07-01

    Several iodine radioisotopes are used in nuclear medicine for treatment and diagnostic purposes. The radioisotope {sup 131}I is used both in diagnosis and therapy due to its physical characteristics of decay by {beta}{sup -} and its {gamma}-ray emissions suitable for diagnosis. It is routinely produced at IPEN through the irradiation of TeO{sub 2} targets in the IEA-R1m nuclear reactor. After the irradiation, the {sup 131}I is separated by dry distillation, where the targets are put in an oven, heated at 760 deg C for 2 hours and the {sup 131}I, volatile, is carried by an O{sub 2} gas stream. The aim of this work was to evaluate the retention and elution of {sup 131}I samples produced at IPEN in several adsorbers as part of a project aiming the purification of these radioisotopes, allowing the labeling of biomolecules. Samples of {sup 131}I were used for retention and elution studies with the following adsorbers: commercial cartridges, anionic resin columns and cationic resin column. The results showed that Ag cartridges and anionic resins Dowex 1X8, Dowex 3 and IRA 400 had a great iodine retention but no elution after using specific eluents. The QMA light, acid alumina, neutral alumina and cationic resin Dowex 50WX4 showed high retention and elution and QMA plus and cationic resin Dowex 50WX8 and Dowex 50WX12 had a good retention but lower elution. Regarding to the better retention and elution, Ag cartridges and resins showed a higher percentage of iodine retention but lower elution yield and QMA light, acid and neutral alumina cartridges showed better results. (author)

  20. Plant-Scale Concentration Column Designs for SHINE Target Solution Utilizing AG 1 Anion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop SHINE, an accelerator-driven process that will utilize a uranyl-sulfate solution for the production of fission product Mo-99. An integral part of the process is the development of a column for the separation and recovery of Mo-99, followed by a concentration column to reduce the product volume from 15-25 L to <1 L. Argonne has collected data from batch studies and breakthrough column experiments to utilize the VERSE (Versatile Reaction Separation) simulation program (Purdue University) to design plant-scale product recovery and concentration processes.

  1. Process monitor design for an extraction column: an application of estimation/detection

    International Nuclear Information System (INIS)

    Candy, J.V.; Emmert, R.A.; Patterson, G.K.

    1979-03-01

    The NRC Safeguards Program at LLL is directed toward developing a methodology for assessing the effectiveness of material control and accounting systems at processing/reprocessing facilities for special nuclear material. The methodology under development requires many types of mathematical models including performance models of safeguard components. Included in the class of safeguard components are real-time measurement systems which incorporate on-line estimators/detectors for the timely detection of material losses. Performance modeling generally involves mathematical model development and simulation of the physical process being measured. This report discusses the development of material estimator designs for a liquid--liquid extraction column using a reprocessing application. These designs are applicable to any processing unit which can be adequately represented by linear or nonlinear models in state space form. Although this work is discussed in the context of a plutonium extraction column, it is representative of two classes of safeguard components which are generic to any fuel cycle involving chemical separations/purifications

  2. COLUMN2 - A computer program for simulating migration

    International Nuclear Information System (INIS)

    Nielsen, O.J.; Bo, P.; Carlsen, L.

    1985-10-01

    COLUMN2 is a 1D FORTRAN77 computer program designed for studies of the effects of various physicochemical processes on migration. It solves the solute transport equation and cant take into account dispersion, sorption, ion exchange, first and second order homogeneous chemical reactions. Spacial variations of input pulses and retention factors are possible. The method of solution is based on a finite difference discretion followed by the application of the method of characteristics and two separate grid systems. This report explains the mathematical and numerical methods used, describes the necessary input, contains a number of test examples, provides a listing of the program and explains how to acquire the program, adapt it to other computers and run it. This report serves as a manual for the program. (author)

  3. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  4. Optimal synthesis and design of extractive distillation systems for bioethanol separation: From simple to complex columns

    DEFF Research Database (Denmark)

    Errico, M.; Rong, B. G.; Tola, G.

    2013-01-01

    Bioethanol has been considered as a green fuel and a valid alternative to reduce the dependence on fossil distillates. The development of an optimal separation process is considered as a key element in the design of an efficient process able to be cost effective and competitive. Despite many....... The subspace of simple distillation configurations was generated considering the possibility to employ partial or total condensers to transfer the non-product mixtures between the columns, moreover different numbers of columns are considered. Once the most promising sequences are obtained, the complex columns...... considering the total condenser and reboiler duty as energy index. The capital costs and the solvent consumption are also taken into account in the final selection. Among all the complex configurations considered the two-column sequence can reduce the capital cost above 10% compared to the best simple column...

  5. A simple method for HPLC retention time prediction: linear calibration using two reference substances.

    Science.gov (United States)

    Sun, Lei; Jin, Hong-Yu; Tian, Run-Tao; Wang, Ming-Juan; Liu, Li-Na; Ye, Liu-Ping; Zuo, Tian-Tian; Ma, Shuang-Cheng

    2017-01-01

    Analysis of related substances in pharmaceutical chemicals and multi-components in traditional Chinese medicines needs bulk of reference substances to identify the chromatographic peaks accurately. But the reference substances are costly. Thus, the relative retention (RR) method has been widely adopted in pharmacopoeias and literatures for characterizing HPLC behaviors of those reference substances unavailable. The problem is it is difficult to reproduce the RR on different columns due to the error between measured retention time (t R ) and predicted t R in some cases. Therefore, it is useful to develop an alternative and simple method for prediction of t R accurately. In the present study, based on the thermodynamic theory of HPLC, a method named linear calibration using two reference substances (LCTRS) was proposed. The method includes three steps, procedure of two points prediction, procedure of validation by multiple points regression and sequential matching. The t R of compounds on a HPLC column can be calculated by standard retention time and linear relationship. The method was validated in two medicines on 30 columns. It was demonstrated that, LCTRS method is simple, but more accurate and more robust on different HPLC columns than RR method. Hence quality standards using LCTRS method are easy to reproduce in different laboratories with lower cost of reference substances.

  6. Design and implementation of a micron-sized electron column fabricated by focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Wicki, Flavio, E-mail: flavio.wicki@physik.uzh.ch; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-01-15

    We have designed, fabricated and tested a micron-sized electron column with an overall length of about 700 microns comprising two electron lenses; a micro-lens with a minimal bore of 1 micron followed by a second lens with a bore of up to 50 microns in diameter to shape a coherent low-energy electron wave front. The design criteria follow the notion of scaling down source size, lens-dimensions and kinetic electron energy for minimizing spherical aberrations to ensure a parallel coherent electron wave front. All lens apertures have been milled employing a focused ion beam and could thus be precisely aligned within a tolerance of about 300 nm from the optical axis. Experimentally, the final column shapes a quasi-planar wave front with a minimal full divergence angle of 4 mrad and electron energies as low as 100 eV. - Highlights: • Electron optics • Scaling laws • Low-energy electrons • Coherent electron beams • Micron-sized electron column.

  7. Retention-Oriented Curricular Design

    Science.gov (United States)

    Milanovic, Ivana; Eppes, Tom A.; Girouard, Janice; Townsend, Lee

    2010-01-01

    This paper presents a retention-oriented approach to the educational value stream within the STEM undergraduate area. Faced with several strategic challenges and opportunities, a Flex Advantage Plan was developed to enhance the undergraduate engineering technology programs and better utilize the curricular flexibilities inherent in the current…

  8. Purex pulse column designs for capacity factor of 3.0 to 3.5

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, G.L.

    1955-04-12

    This memorandum indicates the Purex-Plant pulse-column and pulse- generator revisions which would be required to assure an instantaneous capacity of 25 tons U/day with a 20% capacity safety margin under Purex HW {number_sign}3 Flowsheet conditions. (The use of the Purex HW {number_sign}4 Flowsheet (6) with the revised columns would be expected to increase the capacity to 29 or 30 tons U/day.) The indicated design changes are recorded here for study and for possible reference if need for increased production capacity should arise. No recommendation for adoption at this time is made.

  9. HPLC retention thermodynamics of grape and wine tannins.

    Science.gov (United States)

    Barak, Jennifer A; Kennedy, James A

    2013-05-08

    The effect of grape and wine tannin structure on retention thermodynamics under reversed-phase high-performance liquid chromatography conditions on a polystyrene divinylbenzene column was investigated. On the basis of retention response to temperature, an alternative retention factor was developed to approximate the combined temperature response of the complex, unresolvable tannin mixture. This alternative retention factor was based upon relative tannin peak areas separated by an abrupt change in solvent gradient. Using this alternative retention factor, retention thermodynamics were calculated. Van't Hoff relationships of the natural log of the alternative retention factor against temperature followed Kirchoff's relationship. An inverse quadratic equation was fit to the data, and from this the thermodynamic parameters for tannin retention were calculated. All tannin fractions exhibited exothermic, spontaneous interaction, with enthalpy-entropy compensation observed. Normalizing for tannin size, distinct tannin compositional effects on thermodynamic parameters were observed. The results of this study indicate that HPLC can be valuable for measuring the thermodynamics of tannin interaction with a hydrophobic surface and provides a potentially valuable alternative to calorimetry. Furthermore, the information gathered may provide insight into understanding red wine astringency quality.

  10. PERFORMANCE INDICES TO DESIGN A MULTICOMPONENT BATCH DISTILLATION COLUMN USING A SHORTCUT METHOD

    Directory of Open Access Journals (Sweden)

    A. Narvaes-Garcia

    2015-06-01

    Full Text Available AbstractIn this paper, three quality or performance indices (Luyben's capacity factor, total annual costs, and annual profit were applied for the design of a batch distillation column working at variable reflux. This work used the Fenske-Underwood-Gilliland short-cut method to solve a problem of four components (benzene, toluene, ethyl-benzene, and ortho-xylene that needed to be separated and purified to a mole fraction of 0.97 or better. The performance of the system was evaluated using distillation columns with 10, 20, 30, 40 and 50 theoretical stages with a boil-up vapor flow set at 100 kmol/h. It was found that the annual profit was the best quality index, while the best case for variable reflux was the column with 50 stages. It was confirmed that the best case always required a reflux ratio close to the minimum.

  11. Semi-automated 86Y purification using a three-column system

    International Nuclear Information System (INIS)

    Park, Luke S.; Szajek, Lawrence P.; Wong, Karen J.; Plascjak, Paul S.; Garmestani, Kayhan; Googins, Shawn; Eckelman, William C.; Carrasquillo, Jorge A.; Paik, Chang H.

    2004-01-01

    The separation of 86 Y from 86 Sr was optimized by a semi-automated purification system involving the passage of the target sample through three sequential columns. The target material was dissolved in 4 N HNO 3 and loaded onto a Sr-selective (Sr-Spec) column to retain the 86 Sr. The yttrium was eluted with 4 N HNO 3 onto the second Y-selective (RE-Spec) column with quantitative retention. The RE-Spec column was eluted with a stepwise decreasing concentration of HNO 3 to wash out potential metallic impurities to a waste container. The eluate was then pumped onto an Aminex A5 column with 0.1 N HCl and finally with 3 N HCl to collect the radioyttrium in 0.6-0.8 mL with a >80% recovery. This method enabled us to decontaminate Sr by 250,000 times and label 30 μ g of DOTA-Biotin with a >95% yield

  12. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    Science.gov (United States)

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Design of spiral fin type condenser for hydrogen cryogenic distillation column

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Nishi, Masataka; Yamanishi, Toshihiko

    2005-08-01

    The purpose of this paper is the proposal of new concept condenser for hydrogen cryogenic distillation column of Hydrogen Isotope Separation System (ISS) in a fusion reactor, and the establishment of numerical evaluation method of the hydrogen isotope inventory in the condenser. A large amount of hydrogen isotopes including high concentration of tritium, radioactive hydrogen isotope, has been handled in the cryogenic distillation column. Therefore, from the safety point of view, cryogenic coolant tube was commonly arranged to surround the condensed area to prevent the mixing of tritium into the coolant. This inevitable arrangement leads the difficulty in the minimization of the condenser. The scale of condenser has influence on the scale of the ISS and its earthquake-resistance. The spiral fin type condenser, which introduces fins inside it and in coolant tube to enhance heat exchange, is proposed as a new concept condenser for hydrogen cryogenic distillation column to miniaturize the condenser. The volume of spiral fin type condenser is estimated to become less than half of that of coil tube type condenser currently in use. Accordingly, it is found that the adoption of spiral fin type condenser realizes the significant miniaturization of the ISS. Moreover, the numerical evaluation method of the hydrogen isotope inventory in the condenser is proposed. The validity of this method was confirmed by the experimental data. The synthetic design of the condenser for the hydrogen cryogenic distillation column is achieved by the combination of the proposed new concept condenser with the numerical evaluation method of the hydrogen isotope inventory. (author)

  14. Enhancing retention of partial dentures using elastomeric retention rings

    Directory of Open Access Journals (Sweden)

    Kakkirala Revathi

    2015-01-01

    Full Text Available This report presents an alternative method for the retention of partial dentures that relies on the engagement of tooth undercuts by a lining material. The lab procedures are also presented. A new maxillary and mandibular acrylic partial dentures were fabricated using elastomeric retention technique for a partially dentate patient. A partially dentate man reported difficulty in retaining his upper removable partial denture (RPD. The maxillary RPD was designed utilizing elastomeric retention technique. During follow-up, it was necessary to replace the retention rings due to wear. The replacement of the retention rings, in this case, was done through a chairside reline technique. Elastomeric retention technique provides exceptionally good retention can be indicated to stabilize, cushion, splint periodontally involved teeth, no enough undercut for clasps, eliminate extractions, single or isolated teeth.

  15. Thermodynamic-based retention time predictions of endogenous steroids in comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Silva, Aline C A; Ebrahimi-Najafadabi, Heshmatollah; McGinitie, Teague M; Casilli, Alessandro; Pereira, Henrique M G; Aquino Neto, Francisco R; Harynuk, James J

    2015-05-01

    This work evaluates the application of a thermodynamic model to comprehensive two-dimensional gas chromatography (GC × GC) coupled with time-of-flight mass spectrometry for anabolic agent investigation. Doping control deals with hundreds of drugs that are prohibited in sports. Drug discovery in biological matrices is a challenging task that requires powerful tools when one is faced with the rapidly changing designer drug landscape. In this work, a thermodynamic model developed for the prediction of both primary and secondary retention times in GC × GC has been applied to trimethylsilylated hydroxyl (O-TMS)- and methoxime-trimethylsilylated carbonyl (MO-TMS)-derivatized endogenous steroids. This model was previously demonstrated on a pneumatically modulated GC × GC system, and is applied for the first time to a thermally modulated GC × GC system. Preliminary one-dimensional experiments allowed the calculation of thermodynamic parameters (ΔH, ΔS, and ΔC p ) which were successfully applied for the prediction of the analytes' interactions with the stationary phases of both the first-dimension column and the second-dimension column. The model was able to predict both first-dimension and second-dimension retention times with high accuracy compared with the GC × GC experimental measurements. Maximum differences of -8.22 s in the first dimension and 0.4 s in the second dimension were encountered for the O-TMS derivatives of 11β-hydroxyandrosterone and 11-ketoetiocholanolone, respectively. For the MO-TMS derivatives, the largest discrepancies were from testosterone (9.65 ) for the first-dimension retention times and 11-keto-etiocholanolone (0.4 s) for the second-dimension retention times.

  16. Design of pulsed perforated-plate columns for industrial scale mass transfer applications - present experience and the need for a model based approach

    International Nuclear Information System (INIS)

    Roy, Amitava

    2010-01-01

    Mass transfer is a vital unit operation in the processing of spent nuclear fuel in the backend of closed fuel cycle and Pulsed perforated plate extraction columns are used as mass transfer device for more than five decades. The pulsed perforated plate column is an agitated differential contactor, which has wide applicability due to its simplicity, high mass transfer efficiency, high through put, suitability for maintenance free remote operation, ease of cleaning/decontamination and cost effectiveness. Design of pulsed columns are based on a model proposed to describe the hydrodynamics and mass transfer. In equilibrium stage model, the HETS values are obtained from pilot plant experiments and then scaled empirically to design columns for industrial application. The dispersion model accounts for mass transfer kinetics and back-mixing. The drop population balance model can describe complex hydrodynamics of dispersed phase, that is, drop formation, break-up and drop-to-drop interactions. In recent years, significant progress has been made to model pulsed columns using CFD, which provides complete mathematical description of hydrodynamics in terms of spatial distribution of flow fields and 3D visualization. Under the condition of pulsation, the poly-dispersed nature of turbulent droplet swarm renders modeling difficult. In the absence of industry acceptance of proposed models, the conventional chemical engineering practice is to use HETS-NTS concept or HTU-NTU approach to design extraction columns. The practicability of HTU-NTU approach has some limitations due to the lack of experimental data on individual film mass transfer coefficients. Presently, the HETS-NTS concept has been used for designing the columns, which has given satisfactory performance. The design objective is mainly to arrive at the diameter and height of the mass transfer section for a specific plate geometry, fluid properties and pulsing condition to meet the intended throughput (capacity) and mass

  17. Design and research of seal structure for thermocouple column assembly

    International Nuclear Information System (INIS)

    Rao Qiqi; Li Na; Zhao Wei; Ma Zhigang

    2015-01-01

    The new seal structure was designed to satisfy the function of thermocouple column assembly and the reactor structure. This seal structure uses the packing graphite ring and adopts the self-sealing principle. Cone angle is brought to the seal face of seal structure which is conveniently to assembly and disassembly. After the sealing principle analysis and stress calculation of graphite ring which adopt the cone angle, the cone angle increases the radial force of seal structure and improves the seal effect. The stress analysis result shows the seal structure strength satisfies the regulation requirement. The cold and hot function test results shows the sealing effect is good, and the design requirement is satisfied. (authors)

  18. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  19. Relevance of 1,2,5,6,9,10-hexabromocyclododecane diastereomer structure on partitioning properties, column-retention and clean-up procedures.

    Science.gov (United States)

    Mariussen, Espen; Haukås, Marianne; Arp, Hans Peter H; Goss, Kai-Uwe; Borgen, Anders; Sandanger, Torkjel M

    2010-02-26

    To optimize clean-up procedures for the analysis of alpha-, beta-, and gamma-hexabromocyclododecanes (HBCD) in environmental and biological extracts, their retention behavior on silica gel and florisil was investigated using diverse mobile-phase solvents and accounting for matrix effects. The beta-diastereomer, relative to the alpha- and gamma-diastereomers, is substantially retained on both florisil and silica gel regardless of the solvent used. The beta-diastereomer is therefore prone to undergo selective loss during clean-up. This sequence is counterintuitive to sequences based on reverse-phase chromatography with a C18-column, in which the alpha- (and not the beta-) isomer is eluted first when using a polar solvent. There has been some discrepancy regarding the structures of these diastereomers in the literature, with structures based on X-ray crystallography only becoming recently available. Based on these X-ray crystal structures, physical-chemical properties (the octanol-water partitioning constant, the Henry's law constant, subcooled liquid vapour pressures and subcooled liquid water solubilities) of the HBCD diastereomers were estimated using the quantum-chemistry based software COSMOtherm, and were found to differ from previously calculated values using different structures (e.g. log K(aw) for alpha-, beta-, and gamma-HBCD are here estimated to be -8.3, -9.3 and -8.2 respectively). Hypothesis relating differences in structure to physical-chemical properties and retention sequences are presented. The extra retention of the beta-diastereomer on silica gel and florisil is likely because it can form both greater specific (i.e. polar) and non-specific (i.e. non-polar) interactions with surfaces than the other diastereomers. Non-specific interactions can also account for the counter-intuitive elution orders with C(18)-reverse-phase chromatography. These results indicate that care should be taken when isolating HBCDs and other molecular diastereomers from

  20. [Analysis of hydrogen isotopes by gas chromatography using a MnCl2 coated γ-Al2O3 capillary packed column].

    Science.gov (United States)

    Chen, Ping; Fu, Xiaolong; Hu, Peng; Xiao, Chengjian; Ren, Xingbi; Xia, Xiulong; Wang, Heyi

    2017-07-08

    The conventional packed column gas chromatographic analysis of hydrogen isotopes has low column efficiency, broad peak and long retention time. In this work, a γ -Al 2 O 3 with MnCl 2 coated capillary packed column was tested at cryogenic temperature. The systematic column efficiency analysis and the hydrogen isotopes analytical technique research had been carried out. The results showed that, the γ -Al 2 O 3 with MnCl 2 coating could greatly improve the surface degree of order, pore structure and adsorption properties. Also the o -H 2 peak and p -H 2 peak were eluted in a single area. The γ -Al 2 O 3 with MnCl 2 coating was packed into a 0.53 mm inner diameter and 1.0 m long fused silica capillary column. It had a good linear relationship used this column with thermal conductivity detector (TCD) to detect the volume concentrations of hydrogen isotopes from 1 to 10 mL/L, and the relative error was less than 5% for low concentration sample testing. For H 2 , HD and D 2 , the retention times can be shortened to 39, 46 and 60 s, respectively. The limits of detection were reduced to 0.046, 0.067 and 0.072 mL/L, respectively. Compared with conventional packed column, capillary packed column had sharper peak form, higher separation degree of adjacent components, shorter retention time and lower detection limits. The above results indicate that the capillary packed column with TCD detector can be used for fast detection of low concentration of hydrogen isotopes and their online analysis.

  1. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    Science.gov (United States)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  2. Design of a Cryogenic Distillation Column for JET Water Detritiation System for Tritium Recovery

    International Nuclear Information System (INIS)

    Parracho, A.I.; Camp, P.; Dalgliesh, P.; Hollingsworth, A.; Lefebvre, X.; Lesnoj, S.; Sacks, R.; Shaw, R.; Smith, R.; Wakeling, B.

    2015-01-01

    A Water Detritiation System (WDS) is currently being designed and manufactured to be installed in the Active Gas Handling System (AGHS) of JET, currently the largest magnetic fusion experiment in the world. JET has been designed and built to study fusion operating conditions with the plasma fuelling done by means of a deuterium-tritium gas mixture. AGHS is a plant designed and built to safely process gas mixtures and impurities containing tritium recovered from the JET torus exhaust gases. Tritium is removed from these gas mixtures and recycled. Tritium depleted gases are sent to Exhaust Detritiation System (EDS) for final tritium removal prior to discharge into the environment. In EDS, tritium and tritiated species are catalytically oxidized into water, this tritiated water is then adsorbed onto molecular sieve beds (MSB). After saturation the MSBs are heated and the water is desorbed and collected for tritium recovery. The WDS facility is designed to recover tritium from water with an average activity of 1.9 GBq/l, and is able to process water with activities of 85 GBq/l and higher. Tritiated water is filtered and supplied to the electrolyser where the water is converted into gaseous oxygen and tritiated hydrogen. The hydrogen stream is first purified by selective diffusion through membranes of palladium alloy and then is fed to two cryogenic distillation columns (CD). These operate in parallel or in series depending on the water activity. In the CD columns, hydrogen isotopes containing tritium are recovered as the bottom product and hydrogen, the top product, is safely discarded to a stack. The CD columns are foreseen to have a throughput between 200 and 300 mole/h of hydrogen isotopes vapour and they operate at approximately ≈21.2K and 105 kPa. The design of the CD columns will be presented in this work. This work has been carried out within the framework of the Contract for the Operation of the JET Facilities and has received funding from the European Union

  3. Review of design codes of concrete encased steel short columns under axial compression

    Directory of Open Access Journals (Sweden)

    K.Z. Soliman

    2013-08-01

    Full Text Available In recent years, the use of encased steel concrete columns has been increased significantly in medium-rise or high-rise buildings. The aim of the present investigation is to assess experimentally the current methods and codes for evaluating the ultimate load behavior of concrete encased steel short columns. The current state of design provisions for composite columns from the Egyptian codes ECP203-2007 and ECP-SC-LRFD-2012, as well as, American Institute of Steel Construction, AISC-LRFD-2010, American Concrete Institute, ACI-318-2008, and British Standard BS-5400-5 was reviewed. The axial capacity portion of both the encased steel section and the concrete section was also studied according to the previously mentioned codes. Ten encased steel concrete columns have been investigated experimentally to study the effect of concrete confinement and different types of encased steel sections. The measured axial capacity of the tested ten composite columns was compared with the values calculated by the above mentioned codes. It is concluded that non-negligible discrepancies exist between codes and the experimental results as the confinement effect was not considered in predicting both the strength and ductility of concrete. The confining effect was obviously influenced by the shape of the encased steel section. The tube-shaped steel section leads to better confinement than the SIB section. Among the used codes, the ECP-SC-LRFD-2012 led to the most conservative results.

  4. Design Oriented Model for the Assessment of T-Shaped Beam-Column Joints in Reinforced Concrete Frames

    Directory of Open Access Journals (Sweden)

    Antonio Bossio

    2017-12-01

    Full Text Available Beam-column joints represent very important elements of reinforced concrete (RC structures. In fact, beams and columns, at the boundary, generate internal forces acting on concrete core and on reinforcement bars with a very high gradient. To fully understand the seismic performances and the failure modes of T-shaped beam-column joints (external corner-positioned in RC structures, a simplified analytical model of joint behaviour is proposed and theoretical simulations have been performed. The model is based on the solution of a system of equilibrium equations of cracked joint portions designed to evaluate internal stresses at different values of column shear forces. The main aim of the proposed model is to identify the strength hierarchy. Limit values of different internal stresses allow us to detect the occurrence of different failure modes (namely the failure of the cracked joint, the bond failure of passing through bars, and the flexural/shear failures of columns or beams associated with column shear forces; the smaller one represents the capacity of the joint. The present work, focusing on T-shaped joints, could represent a useful tool for designers to quantify the performance of new structures or of existing ones. In fact, such a tool allows us to push an initial undesired failure mode to a more appropriate one to be evaluated. Finally, some experimental results of tests available in literature are reported, analysed, and compared to the predictions of the proposed model (by means of a worked example and of some international codes. The outcomes confirm that failure modes and corresponding joint capacities require an analytical model, like the proposed one, to be accurately predicted.

  5. Practical issues relating to soil column chromatography for sorption parameter determination.

    Science.gov (United States)

    Bi, Erping; Schmidt, Torsten C; Haderlein, Stefan B

    2010-08-01

    Determination of sorption distribution coefficients (K(d)) of organic compounds by a dynamic soil column chromatography (SCC) method was developed and validated. Eurosoil 4, quartz, and alumina were chosen as exemplary packing materials. Heterocyclic aromatic compounds were selected in the validation of SCC. The prerequisites of SCC with regard to column dimension, packing procedure, and sample injection volume are discussed. Reproducible soil column packing was achieved by addition of a pre-column and an HPLC pump for subsequent compression of the packed material. Various methods to determine retention times from breakthrough curves are discussed and the use of the half mass method is recommended. To dilute soil with inert material can prevent column-clogging and help to complete experiments in a reasonable period of time. For the chosen probe compounds, quartz rather than alumina proved a suitable dilution material. Non-equilibrium issue can be overcome by conducting the experiments under different flowrates and/or performing numerical simulation. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Peak distortion in the column liquid chromatographic determination of omeprazole dissolved in borax buffer.

    Science.gov (United States)

    Arvidsson, T; Collijn, E; Tivert, A M; Rosén, L

    1991-11-22

    Injection of a sample containing omeprazole dissolved in borax buffer (pH 9.2) into a reversed-phase liquid chromatographic system consisting of a mixture of acetonitrile and phosphate buffer (pH 7.6) as the mobile phase and a C18 surface-modified silica as the solid phase resulted under special conditions in split peaks of omeprazole. The degree of peak split and the retention time of omeprazole varied with the concentration of borax in the sample solution and the ionic strength of the mobile phase buffer as well as with the column used. Borax is eluted from the column in a broad zone starting from the void volume of the column. The retention is probably due to the presence of polyborate ions. The size of the zone varies with the concentration of borax in the sample injected. In the borax zone the pH is increased compared with the pH of the mobile phase, and when omeprazole (a weak acid) is co-eluting in the borax zone its retention is affected. In the front part and in the back part of the borax zone, pH gradients are formed, and these gradients can induce the peak splitting. When the dissolving medium is changed to a phosphate buffer or an ammonium buffer at pH 9 no peak distortion of omeprazole is observed.

  7. Characterization of a chromatographic column for the production of 90Sr

    International Nuclear Information System (INIS)

    Fornaciari Iljadica, Maria C.; Furnari, Juan C.; Cohen, Isaac M.

    2003-01-01

    The experiments carried out with the objective of developing a method for 90 Sr production, associated to that of 99 Mo from 235 U fission, which is routinely performed at Centro Atomico Ezeiza, Comision Nacional de Energia Atomica, are described. The project consists of strontium separation from a nitric solution containing uranium and a variety of fission products, by retention and subsequent elution in selective chromatographic columns. Both these columns and the conditions for their use in a routine production process have been characterized. The experiments show good Sr-Ba separation, high concentration of activity for the obtained 90 Sr, and minimal losses; in addition, the non-existence of significant radiation damage, as a limiting factor of the separative capacity of the columns, has been verified. (author)

  8. Retention time prediction in temperature-​programmed, comprehensive two-​dimensional gas chromatography: Modeling and error assessment

    NARCIS (Netherlands)

    Barcaru, A.; Anroedh-Sampat, A.; Janssen, H.-G.; Vivó-Truyols, G.

    2014-01-01

    In this paper we present a model relating exptl. factors (column lengths, diams. and thickness, modulation times, pressures and temp. programs) with retention times. Unfortunately, an anal. soln. to calc. the retention in temp. programmed GC×GC is impossible, making thus necessary to perform a

  9. Design and assembling of a moving bed column to operate with ion exchange resin

    International Nuclear Information System (INIS)

    Franca Junior, J.M.; Abrao, A.

    1976-01-01

    A new moving bed column specially designed to operate with ion exchange resins in such peculiar situations where there is gas evolution is reported. The second part reports the use of the column in the preparation of nuclear grade ammonium uranyl tricarbonate (AUTC), from crude uranyl nitrate solution. Uranium-VI is binded into a strong cationic ion exchanger and then eluted with (NH 4 ) 2 CO 3 . The final product is crystallized from the eluate by simply cooling down the temperature to 5 0 or by addition of ethanol. Loading of resin with uranyl ion, its elution with ammonium carbonate and the crystallization of AUTC is described [pt

  10. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    Energy Technology Data Exchange (ETDEWEB)

    Busigin, A. [NITEK USA Inc., Ocala, FL (United States)

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  11. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1998-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  12. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  13. Successful Surgical Treatment for Elephantiasis Nostras Verrucosa Using a New Designed Column Flap.

    Science.gov (United States)

    Han, Hyun Ho; Lim, Soo Yeon; Oh, Deuk Young

    2015-09-01

    Elephantiasis nostras verrucosa is a chronic lymphedema that causes enlarged and disfigured extremities. There are plenty of treatment options. However, there is no complete treatment. Preventive or symptomatic therapy is the basis for treating elephantiasis. In this article, we report a case of elephantiasis nostras verrucosa treated successfully by surgical reconstruction using a newly designed column flap. © The Author(s) 2015.

  14. Heat Transfer Analysis for a Fixed CST Column

    International Nuclear Information System (INIS)

    Lee, S.Y.

    2004-01-01

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant

  15. Unsaturated hydraulic conductivity of sandy soil columns packed to different bulk densities and water uptake by plantroots

    NARCIS (Netherlands)

    Rossi-Pisa, P.

    1978-01-01

    This paper describes a laboratory metbod used to determine both the soil moisture retention curve and the unsaturated hydraulic conductivity in soil columns under transient flow conditions during evaporation.

  16. Geochemical modelling. Column 2: a computer program for simulation of migration

    International Nuclear Information System (INIS)

    Nielsen, O.J.; Carlsen, L.; Bo, P.

    1985-01-01

    COLUMN2 is a 1D FORTRAN77 computer program designed for studies of the effects of various physicochemical processes on migration. It solves the solute transport equation and can take into account dispersion, sorption, ion exchange, first and second order homogeneous chemical reactions. Spatial variations of input pulses and retention factors are possible. The method of solution is based on a finite difference discretion followed by the application of the method of characteristics and two separate grid systems. This report explains the mathematical and numerical methods used, describes the necessary input, contains a number of test examples, provides a listing of the program and explains how to acquire the program, adapt it to other computers and run it. This report serves as a manual for the program

  17. Use of laminar chromatographic methods for determination of separation conditions in column extraction chromatography

    International Nuclear Information System (INIS)

    Ghersini, G.; Cerrai, E.

    1978-01-01

    Possibilities of using laminar chromatographic methods (paper and thin-layer chromatography) to determine optimal separation conditions in column extraction chromatography are analysed. Most of the given laminar methods are presented as Rf-spectra, i.e. as dependences of Rf found experimentally on eluating solution component concentration. Interrelation between Rf and distribution coefficients of corresponding liquid extraction systems and retention volumes of chromatographic columns is considered. Literature data on extraction paper and thin-layer chromatography of elements with various immovable phases are presented

  18. Combination of Slag, Limestone and Sedimentary Apatite in Columns for Phosphorus Removal from Sludge Fish Farm Effluents

    Directory of Open Access Journals (Sweden)

    Florent Chazarenc

    2010-08-01

    Full Text Available Laboratory scale studies have repeatedly reported high P-retention in slag, a by-product of the steel manufacturing industry. Thus, it has emerged as a potential material to increase P-removal from constructed wetlands (CWs. However, several limitations were highlighted by field experiments, including the high pH of treated water and clogging. We hypothesized that the addition of sedimentary rocks to slag would preserve P-removal properties while reducing the pH of treated water. Four 2.5 L-columns were filled with 100% apatite (column A; a 50% weight each mixture of limestone with apatite (column B; 10% steel slag located at the inlet, plus 45% limestone mixed with 45% apatite (column C; and a mixture of steel slag (10%, limestone (45% apatite (45% (column D. A synthetic effluent (26 mg P/L and a reconstituted sludge fish farm effluent containing 97 mg/L total suspended solids (TSS, 220 mg/L chemical oxygen demand (COD and 23.5 mg P/L phosphorus (P were applied sequentially during 373 and 176 days, under saturated flow conditions and 12–24 hours hydraulic residence time (HRT, respectively. Treatment performance, P-removal, pH and calcium (Ca2+ were monitored. Results indicated that columns that contained 10% weight steel slag resulted in a higher P retention capacity than the columns without steel slag. The highest P removal was achieved in column C, containing a layer of slag in the inlet zone, 45% apatite and 45% limestone. Feeding the columns with a reconstituted fish farm effluent led to biofilm development, but this had little effect on the P-removal. A combination of slag and sedimentary rocks represents a promising filtration material that could be useful downstream of CWs to further increase P-removal.

  19. An investigation of the retention of some radioelements on natural fibers

    International Nuclear Information System (INIS)

    Sanad, W.; El-Naggar, I.; Souka, N.

    1993-01-01

    The retention of radio-Eu, Go, Cs and Sr, at the tracer level, on raw fibers produced from hemp, linen and Jute plants was investigated. The study was conducted from different media including: sea and tap waters, sodium chloride and nitric acid solutions of different Ph. The percentage retention and elution, on prolonged contact, varied from one element to another depending on conditions. Extraction chromatography columns, using these fibers as supporting material were also experimented. Results were discussed together with possible applications. 7 tabs

  20. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency.

    Science.gov (United States)

    Mermillod-Blondin, Florian; Simon, Laurent; Maazouzi, Chafik; Foulquier, Arnaud; Delolme, Cécile; Marmonier, Pierre

    2015-09-15

    Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below

  1. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    Science.gov (United States)

    Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme

    2017-01-01

    Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040

  2. NON-LINEAR ANALYSIS OF AN EXPERIMENTAL JOINT OF COLUMN AND BEAMS OF ARMED CONCRETE-STEEL COLUMN FOR FRAME

    Directory of Open Access Journals (Sweden)

    Nelson López

    2017-12-01

    Full Text Available In this research, the nonlinear behavior of a real-scale experimental joint (node is studied, consisting of three reinforced concrete elements, one column and two beams joined to a structural steel column at the upper level. In the numerical analysis the model of the union was analyzed in the inelastic range, this model was elaborated with the finite element program based on fibers, SeismoStruct to analyze as a function of time, the traction and compression efforts in the confined area and not confined area of the concrete column and in the longitudinal reinforcement steel, as well as verification of the design of the base plate that joins the two columns. The results showed that tensile stresses in the unconfined zone surpassed the concrete breaking point, with cracking occurring just below the lower edge of the beams; in the confined area the traction efforts were much lower, with cracks occurring later than in the non-confined area. The concrete column-steel column joint behaved as a rigid node, so the elastic design was consistent with the calculation methodology of base plates for steel columns.

  3. Guide-Plane Retention in Designing Removable Partial Dentures.

    Science.gov (United States)

    Mothopi-Peri, Matshediso; Owen, C Peter

    To compare the influence of abutment teeth guide planes and guiding surfaces on retention of a removable partial denture (RPD). Extracted teeth embedded into a maxillary cast in the first premolar and second molar positions simulated two bounded saddles. Acrylic resin RPDs were made with no guide planes, then with guide planes, then with guiding surfaces added to directly contact the guide planes. The maximum loads on removal from the cast were recorded. There was a significant increase in retention force of 1.6 times when only guide planes were present and of 10.2 times when guiding surfaces intimately contacted the guide planes. The retention of acrylic resin RPDs can be substantially increased by making their guiding surfaces intimately contact the guide planes of the teeth.

  4. Design, analysis and application of innovative composite PR connections between steel beams and CFT columns

    International Nuclear Information System (INIS)

    Hu, Jong Wan; Leon, Roberto T; Choi, Eunsoo

    2011-01-01

    In this research, three structural design concepts are integrated: the use of composite concrete-filled tube (CFT) columns, the use of partially restrained (PR) connections and the introduction of innovative materials (shape memory alloys) in the connection design. These concepts are used to enhance the robustness and performance of composite-special moment frames. These innovative connections intend to exploit the recentering properties of super-elastic SMA tension bars, the energy dissipation capacity of low-carbon steel bars and the toughness of CFT columns. PR-CFT connection prototypes were designed based on a hierarchy of strength models for each connection component. Simplified user joint elements based on the mechanical modeling approach were formulated in an effort to simulate the realistic behavior of bolted connections. The application of new connections to low-rise PR composite frames is illustrated by designing four buildings in both 2D and 3D for the western US region. The performance of these composite frames was compared with those with conventional welded frames in terms of strength, ductility and recentering behavior. In all three areas, frames with the PR composite connections showed superior performance. This is due primarily to the capability of this system to redistribute inter-story drift more evenly through the height of the frame

  5. A Design Method for the Tension Side of Statically Loaded, Bolted Beam-to-Column Connections

    NARCIS (Netherlands)

    Zoetemeijer, P.

    1974-01-01

    In this paper a design method for the tension side of statically loaded, bolted beam-to-column connections is developed based on the plastic behaviour of the flanges and the bolts under the assumption that the plastification is large enough to allow the adoption of the most favourable static

  6. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing.

    Science.gov (United States)

    Groskreutz, Stephen R; Horner, Anthony R; Weber, Stephen G

    2015-07-31

    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of pre-column dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Reliability assessment of slender concrete columns at the stability failure

    Science.gov (United States)

    Valašík, Adrián; Benko, Vladimír; Strauss, Alfred; Täubling, Benjamin

    2018-01-01

    The European Standard for designing concrete columns within the use of non-linear methods shows deficiencies in terms of global reliability, in case that the concrete columns fail by the loss of stability. The buckling failure is a brittle failure which occurs without warning and the probability of its formation depends on the columns slenderness. Experiments with slender concrete columns were carried out in cooperation with STRABAG Bratislava LTD in Central Laboratory of Faculty of Civil Engineering SUT in Bratislava. The following article aims to compare the global reliability of slender concrete columns with slenderness of 90 and higher. The columns were designed according to methods offered by EN 1992-1-1 [1]. The mentioned experiments were used as basis for deterministic nonlinear modelling of the columns and subsequent the probabilistic evaluation of structural response variability. Final results may be utilized as thresholds for loading of produced structural elements and they aim to present probabilistic design as less conservative compared to classic partial safety factor based design and alternative ECOV method.

  8. Rapid quantification of imidazolium-based ionic liquids by hydrophilic interaction liquid chromatography: Methodology and an investigation of the retention mechanisms.

    Science.gov (United States)

    Hawkins, Cory A; Rud, Anna; Guthrie, Margaret L; Dietz, Mark L

    2015-06-26

    The separation of nine N,N'-dialkylimidazolium-based ionic liquids (ILs) by an isocratic hydrophilic interaction high-performance liquid chromatographic method using an unmodified silica column was investigated. The chosen analytical conditions using a 90:10 acetonitrile-ammonium formate buffer mobile phase on a high-purity, unmodified silica column were found to be efficient, robust, and sensitive for the determination of ILs in a variety of solutions. The retention window (k' = 2-11) was narrower than that of previous methods, resulting in a 7-min runtime for the nine IL homologues. The lower limit of quantification of the method, 2-3 μmol L(-1), was significantly lower than those reported previously for HPLC-UV methods. The effects of systematically modifying the IL cation alkyl chain length, column temperature, and mobile-phase water and buffer content on solute retention were examined. Cation exchange was identified as the dominant retention mechanism for most of the solutes, with a distinct (single methylene group) transition to a dominant partitioning mode at the highest solute polarity. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification.

    Science.gov (United States)

    Lesellier, Eric; Tchapla, Alain

    2005-12-23

    This paper describes a new test designed in subcritical fluid chromatography (SFC) to compare the commercial C18 stationary phase properties. This test provides, from a single analysis of carotenoid pigments, the absolute hydrophobicity, the silanol activity and the steric separation factor of the ODS stationary phases. Both the choice of the analytical conditions and the validation of the information obtained from the chromatographic measurements are detailed. Correlations of the carotenoid test results with results obtained from other tests (Tanaka, Engelhard, Sander and Wise) performed both in SFC and HPLC are discussed. Two separation factors, calculated from the retention of carotenoid pigments used as probe, allowed to draw a first classification diagram. Columns, which present identical chromatographic behaviors are located in the same area on this diagram. This location can be related to the stationary phase properties: endcapping treatments, bonding density, linkage functionality, specific area or silica pore diameter. From the first classification, eight groups of columns are distinguished. One group of polymer coated silica, three groups of polymeric octadecyl phases, depending on the pore size and the endcapping treatment, and four groups of monomeric stationary phases. An additional classification of the four monomeric groups allows the comparison of these stationary phases inside each group by using the total hydrophobicity. One hundred and twenty-nine columns were analysed by this simple and rapid test, which allows a comparison of columns with the aim of helping along their choice in HPLC.

  10. Micro-fabricated semi-packed column for gas chromatography by using functionalized parylene as a stationary phase

    International Nuclear Information System (INIS)

    Nakai, T; Nishiyama, S; Shuzo, M; Delaunay, J-J; Yamada, I

    2009-01-01

    The conformal coating of effective stationary phases onto micro-fabricated columns having complex geometries such as semi-packed columns poses a real challenge. Here, we report for the first time the conformal coating of a semi-packed column with amino-functionalized parylene diX-AM (poly-aminomethyl-[2,2]-paracyclophane), which was found to be an effective stationary-phase material for the chromatography of short-retention-time compounds. A semi-packed column (consisting of a zigzag array of 30 µm square micro-pillars in a 1.0 m long, 180 µm wide and 230 µm deep channel) and an open tubular column (1.0 m long, 160 µm wide and 230 µm deep channel) used for comparison purposes were micro-fabricated on silicon that was subsequently coated with diX-AM parylene and thermally bonded. The chromatograms recorded on a commercial gas chromatograph demonstrated the usefulness of the conformal diX-AM coating as a stationary phase for semi-packed columns. The separation efficiency of the semi-packed column was found to be more than ten times that of the open tubular column

  11. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    Science.gov (United States)

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Cyclic behavior of non-seismically designed interior reinforced concrete beam-column connections

    Directory of Open Access Journals (Sweden)

    Amorn Pimanmas

    2008-05-01

    Full Text Available This paper presents a test of non-seismically detailed reinforced concrete beam-column connections under reversedcyclic load. The tested specimens represented those of the actual mid-rise reinforced concrete frame buildings, designedaccording to the non-seismic provisions of the ACI building code. The evaluation of 10 existing reinforced concrete frameswas conducted to identify key structural and geometrical indices. It was found that there existed correlation VS structuraland geometrical characteristics and the column tributary area. Hence, the column tributary area was chosen as a parameterfor classifying the specimens. The test results showed that specimens representing small and medium column tributary areafailed by brittle joint shear, while specimen representing large column tributary area failed by ductile flexure, even thoughno ductile seismic details were provided.

  13. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.

    Science.gov (United States)

    Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C

    2017-01-17

    Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.

  14. Column, particularly extraction column, for fission and/or breeder materials

    International Nuclear Information System (INIS)

    Vietzke, H.; Pirk, H.

    1980-01-01

    An absorber rod with a B 4 C insert is situated in the long extraction column for a uranyl nitrate solution or a plutonium nitrate solution. The geometrical dimensions are designed for a high throughput with little corrosion. (DG) [de

  15. A Simple Approach for Demonstrating Soil Water Retention and Field Capacity

    Science.gov (United States)

    Howard, A.; Heitman, J. L.; Bowman, D.

    2010-01-01

    It is difficult to demonstrate the soil water retention relationship and related concepts because the specialized equipment required for performing these measurements is unavailable in most classrooms. This article outlines a low-cost, easily visualized method by which these concepts can be demonstrated in most any classroom. Columns (62.5 cm…

  16. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wu, Weimin; Criddle, Craig S.

    2015-01-01

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  17. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weimin [Stanford Univ., CA (United States); Criddle, Craig S. [Stanford Univ., CA (United States)

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  18. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    International Nuclear Information System (INIS)

    Crancon, P.; Pili, E.; Charlet, L.

    2010-01-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the 238 U initially present in the soil column and 233 U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  19. Fire response of composite columns subject to sway

    DEFF Research Database (Denmark)

    Virdi, Kuldeep

    Composite columns, using profiled steel sections encased in concrete or steel tubes filled with concrete, are increasingly used in practice taking advantage of speed of erection as well as offering cost-effective solutions. While the design of braced and unbraced composite columns under ambient...... conditions is adequately covered in the relevant standard, Eurocode 4, simplified design of unbraced composite columns for the fire limit state has not been included. Recognising this, a collaborative research project was undertaken with funding from the Research Fund for Coal and Steel. The paper describes...... the scope of the project which covered control tests under ambient conditions, carried out by the author while at City University London. Other aspects covered in the project included fire tests carried out by CTICM in France, on isolated columns and on two frames designed by Leibniz Universität Hannover...

  20. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases.

    Science.gov (United States)

    Gupta, Vipul; Beirne, Stephen; Nesterenko, Pavel N; Paull, Brett

    2018-01-16

    Effect of column geometry on the liquid chromatographic separations using 3D printed liquid chromatographic columns with in-column polymerized monoliths has been studied. Three different liquid chromatographic columns were designed and 3D printed in titanium as 2D serpentine, 3D spiral, and 3D serpentine columns, of equal length and i.d. Successful in-column thermal polymerization of mechanically stable poly(BuMA-co-EDMA) monoliths was achieved within each design without any significant structural differences between phases. Van Deemter plots indicated higher efficiencies for the 3D serpentine chromatographic columns with higher aspect ratio turns at higher linear velocities and smaller analysis times as compared to their counterpart columns with lower aspect ratio turns. Computational fluid dynamic simulations of a basic monolithic structure indicated 44%, 90%, 100%, and 118% higher flow through narrow channels in the curved monolithic configuration as compared to the straight monolithic configuration at linear velocities of 1, 2.5, 5, and 10 mm s -1 , respectively. Isocratic RPLC separations with the 3D serpentine column resulted in an average 23% and 245% (8 solutes) increase in the number of theoretical plates as compared to the 3D spiral and 2D serpentine columns, respectively. Gradient RPLC separations with the 3D serpentine column resulted in an average 15% and 82% (8 solutes) increase in the peak capacity as compared to the 3D spiral and 2D serpentine columns, respectively. Use of the 3D serpentine column at a higher flow rate, as compared to the 3D spiral column, provided a 58% reduction in the analysis time and 74% increase in the peak capacity for the isocratic separations of the small molecules and the gradient separations of proteins, respectively.

  1. Hydrophilic interaction liquid chromatography in analysis of granisetron HCl and its related substances. Retention mechanisms and method development.

    Science.gov (United States)

    Maksić, Jelena; Tumpa, Anja; Stajić, Ana; Jovanović, Marko; Rakić, Tijana; Jančić-Stojanović, Biljana

    2016-05-10

    In this paper separation of granisetron and its two related substances in HILIC mode is presented. Separation was done on silica column derivatized with sulfoalkylbetaine groups (ZIC-HILIC). Firstly, retention mechanisms were assessed whereby retention factors of substances were followed in wide range of acetonitrile content (80-97%), at constant concentration of aqueous buffer (10mM) as well as at constant pH value of 3.0. Further, in order to developed optimal HILIC method, Design of Experiments (DoE) methodology was applied. For optimization full factorial design 3(2) was employed. Influence of acetonitrile content and ammonium acetate concentration were investigated while pH of the water phase was kept at 3.3. Adequacy of obtained mathematical models was confirmed by ANOVA. Optimization goals (α>1.15 and minimal run time) were accomplished with 94.7% of acetonitrile in mobile phase and 70 mM of ammonium acetate in water phase. Optimal point was in the middle of defined Design Space. In the next phase, robustness was experimetally tested by Rechtschaffen design. The investigated factors and their levels were: acetonitrile content (±1%), ammonium acetate molarity in water phase (±2 mM), pH value of water phase (±0.2) and column temperature (±4 °C). The validation scope included selectivity, linearity, accuracy and precision as well as determination of limit of detection (LOD) and limit of quantification (LOQ) for the related substances. Additionally, the validation acceptance criteria were met in all cases. Finally, the proposed method could be successfully utilized for estimation of granisetron HCl and its related substances in tablets and parenteral dosage forms, as well as for monitoring degradation under various stress conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Novel tandem column method for the rapid isolation of radiostrontium from human urine

    International Nuclear Information System (INIS)

    Hawkins, Cory A.; Shkrob, Ilya A.; Mertz, Carol J.; Dietz, Mark L.; Kaminski, Michael D.

    2012-01-01

    Highlights: ► Method for separation and preconcentration of radiostrontium from human urine. ► Recoveries >98%, concentration factor of ca. 50, processing time of nearly 1 h. ► Retention model developed to assist optimization of separations on Diphonix ® column. ► Semi-automated sample preparation device developed. - Abstract: A method has been developed for the isolation of strontium from human urine for subsequent determination in sample volumes as low as 5–20 mL. This method involves the acidification of the sample using methanesulfonic acid and its decolorization using charcoal, treatment of the filtrate with Diphonix ® resin, and subsequent concentration of strontium on Sr resin. Data from retention model simulations provided the initial conditions which were then optimized by actual column separations. Diphonix ® resin was shown to be effective at removing alkali metal ions from the urine matrix under conditions that retain higher valence ions. The suggested processing method provides 99% recovery of Sr 2+ , a concentration factor of 50, and an expected per sample processing time of less than 1 h.

  3. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Clark, E.A.

    1992-01-01

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  4. Effects of Irregular Bridge Columns and Feasibility of Seismic Regularity

    Science.gov (United States)

    Thomas, Abey E.

    2018-05-01

    Bridges with unequal column height is one of the main irregularities in bridge design particularly while negotiating steep valleys, making the bridges vulnerable to seismic action. The desirable behaviour of bridge columns towards seismic loading is that, they should perform in a regular fashion, i.e. the capacity of each column should be utilized evenly. But, this type of behaviour is often missing when the column heights are unequal along the length of the bridge, allowing short columns to bear the maximum lateral load. In the present study, the effects of unequal column height on the global seismic performance of bridges are studied using pushover analysis. Codes such as CalTrans (Engineering service center, earthquake engineering branch, 2013) and EC-8 (EN 1998-2: design of structures for earthquake resistance. Part 2: bridges, European Committee for Standardization, Brussels, 2005) suggests seismic regularity criterion for achieving regular seismic performance level at all the bridge columns. The feasibility of adopting these seismic regularity criterions along with those mentioned in literatures will be assessed for bridges designed as per the Indian Standards in the present study.

  5. The use of phospholipid modified column for the determination of lipophilic properties in high performance liquid chromatography.

    Science.gov (United States)

    Godard, Tal; Grushka, Eli

    2011-03-04

    A new chromatographic stationary phase obtained by coating a reversed phase amide column with phosphatidylcholine based liposomes solution to yield a phospholipid modified column (PLM). The modification is achieved by the dynamic coating method which recycles the coating solution through the column in a closed loop for a period of 24 h. The chromatographic properties of the new column have changed significantly as compared to the original amide column due to the phospholipid coating. A good correlation was observed between n-octanol/water logP values and the logarithm of the retention factor obtained on the PLM column for a large number of solutes. In addition the PLM column was characterized using the linear solvation energy relationship (LSER). The values of the LSER system constants for the PLM column were calculated and were found to be very close to those of the n-octanol/water extraction system thus suggesting that the PLM column can be used for the estimation of n-octanol/water partition coefficient and serve as a possible alternative to the shake-flask method for lipophilicity determination. In addition, the results suggest that the PLM column can provide an alternative to other phospholipid-based column such as the IAM and the DPC columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Study of column construction and tritium inventory of cryogenic distillation columns for tritium plant of a fusion reactor

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Okuno, Kenji

    1996-11-01

    Cryogenic distillation column system is believed to be best for large throughput of hydrogen isotope separation. The major disadvantage of the system is a large tritium inventory in liquid phase. From a viewpoint of safety of a fusion reactor, it is important to establish the design method of minimized the tritium inventory. Anumerical study to investigate the possible design improvement to reduce inventory while maintaining separation performance was conducted. The design conditions are based on ITER DDD report, and details are as follows, 1) Exhaust stream with less than 50 Ci/y loss of tritium, 2) 99.9% purity D2, and 3) 90% purity T2. 4) total inventory with less than 100g. In the design of ITER to process 32 mol/hr, 4 columns (3 of 4 columns make closed loop) are best and total inventory is 94g. Particularly recent design of ITER to process 320 mol/hr requires additional efforts to minimize the inventory. The simulation also suggests it is effective to reduce inventory to draw two different purity product streams. (author)

  7. Synthesis of boronate-functionalized organic-inorganic hybrid monolithic column for the separation of cis-diol containing compounds at low pH.

    Science.gov (United States)

    Zhao, Heqing; Lyu, Haixia; Qin, Wenfei; Xie, Zenghong

    2018-04-01

    In this work, an organic-inorganic hybrid boronate affinity monolithic column was prepared via "one-pot" process using 4-vinylphenylboronic acid as organic monomer and divinylbenzene as cross-linker. The effects of reaction temperature, solvents and composition of organic monomers on the column properties (e.g. morphology, permeability, and mechanical stability) were investigated. A series of test compounds including small neutral molecules, aromatic amines, and cis-diol compounds were used to evaluate the retention behaviors of the prepared hybrid monolithic column. The results demonstrated that the prepared hybrid monolith exhibited mixed-interactions including hydrophilicity, cation exchange, and boronate affinity interaction. The run-to-run, day-to-day and batch-to-batch reproducibilities of the prepared hybrid monolith for thiourea's retention time were satisfactory with the relative standard deviations (RSDs) less than 0.09, 1.45 and 4.05% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design of Steel Beam-Column Connections

    Directory of Open Access Journals (Sweden)

    Bogatinoski Z.

    2014-05-01

    Full Text Available In this paper a theoretical and experimental research of the steel beam-column connections is presented. Eight types of specimens were being researched, composed of rigid and semi-rigid connections from which 4 connections are with IPE - profile and 4 connections with tube's section for the beam. From the numerical analysis of the researched models, and especially from the experimental research at the Laboratory for Structures in the Faculty of Mechanical Engineering - Skopje, specific conclusions were received that ought to have theoretical and practical usage for researchers in this area of interest.

  9. Lance water injection tests adjacent to the 281-3H retention basin at the Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Freifeld, B.; Myer, L.; Moridis, G.; Cook, P.; James, A.; Pellerin, L.; Pruess, K.

    1996-09-01

    A pilot-scale field demonstration of waste isolation using viscous- liquid containment barriers has been planned for the 281-3H retention basin at the Savannah River Site, Aiken, SC. The 281-3H basin is a shallow retention/seepage basin contaminated mainly by radionuclides. The viscous-liquid containment barrier utilizes the permeation of liquid grout to either entomb the contaminants within a monolithic grout structure or to isolate the waste by drastically reducing the permeability, of the soils around the plume. A clear understanding of the hydrogeologic setting of the retention basin is necessary for proper design of the viscous liquid barrier. To aid in the understanding of the hydrogeology of the 281-3H retention basin, and to obtain critical parameters necessary for grout injection design, a series of tests were undertaken in a region immediately adjacent to the basin. The objectives of the LWIT were: 1. To evaluate the general performance of the Lance Injection Technique for grout emplacement at the site, including the range and upper limits of injection pressures, the flow rates applicable for site conditions, as well as the mechanical forces needed for lance penetration. 2. To obtain detailed information on the injectability of the soils immediately adjacent to the H-area retention basin. 3. To identify any high permeability zones suitable for injection and evaluate their spatial distribution. 4. To perform ground penetrating radar (GPR) to gain information on the structure of the soil column and to compare the results with LWIT data. This report will focus on results pertinent to these objectives

  10. Soil Water Retention Curve

    Science.gov (United States)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  11. Temperature programmed retention indices : calculation from isothermal data Part 2: Results with nonpolar columns

    NARCIS (Netherlands)

    Curvers, J.M.P.M.; Rijks, J.A.; Cramers, C.A.M.G.; Knauss, K.; Larson, P.

    1985-01-01

    The procedure for calculating linear temperature programmed indices as described in part 1 has been evaluated using five different nonpolar columns, with OV-1 as the stationary phase. For fourty-three different solutes covering five different classes of components, including n-alkanes and

  12. The design of central column protection tiles for the TCV tokamak

    International Nuclear Information System (INIS)

    Pitts, R.A.; Chavan, R.; Moret, J.M.

    1999-01-01

    The large variety of plasma shapes produced in the TCV tokamak places unique demands on the plasma facing surfaces. In particular, the central column graphite armour tiles are solicited during the creation of all TCV plasmas and function as power handling surfaces for both limited and diverted discharges. The higher power flux densities accompanying the addition of electron cyclotron heating systems have necessitated a new, optimized, design for these tiles. The optimization process and the subsequent new tile design are described. A basic 'two point' model of the scrape-off layer plasma in conjunction with TCV equilibrium reconstructions and a simplified representation of the local magnetic field line geometry are used to impose simulated power flux densities onto a parametric toroidal tile contour. The thermo-mechanical response of the tile is then investigated via full 3-D finite element simulations accounting for the non-linear temperature dependence of the graphite thermal diffusivity and radiation from the tile surface. The final design choice is a compromise between the requirements for adequate power handling for a range of magnetic configurations, the need to protect against tile edge misalignment in the presence of grazing field line angles of incidence and the space restrictions imposed by vacuum vessel design. (author)

  13. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    Science.gov (United States)

    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki

    2015-08-01

    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation and characterization of micro-cell membrane chromatographic column with N-hydroxysuccinimide group-modified silica-based porous layer open tubular capillary.

    Science.gov (United States)

    Xu, Liang; Xu, Bei; Zhao, Zhi-Yu; Yang, Hui-Ping; Tang, Cheng; Dong, Lin-Yi; Liu, Kun; Fu, Li; Wang, Xian-Hua

    2017-09-22

    Cell membrane chromatography (CMC) is an effective tool in screening active compounds from natural products and studying membrane protein interactions. Nevertheless, it always consumes a large amount of cells (e.g. 10 7 -10 8 ) for column preparation. To overcome this, micro-CMC (mCMC), that employs a silica capillary as membrane carrier, was developed. However, both CMC and mCMC suffer from short column life span (e.g. 3days), mainly due to the falling-off of cellular membranes (CMs). This has greatly limited further application of CMC and mCMC, especially when the cells are hard to obtain. To solve this, N-hydroxysuccinimide (NHS)-modified silica-based porous layer open tubular capillary was first prepared for mCMC. The NHS groups can easily react with amino groups on CMs to form a stable covalent bond under a mild condition. So, CMs immobilized on the NHS-modified capillary are less likely to fall off. To verify this, SKBR3/mCMC (Her2 positive) and BALL1/mCMC (CD20 positive) columns were prepared. Two monoclonal antibody drugs, trastuzumab (anti-Her2) and rituximab (anti-CD20), were selected as analytes to characterize the columns. As a result, NHS-modified column for mCMC can afford higher chromatographic retention than non-modified column. Besides, the column life span was significantly improved to more than 16days for SKBR3/mCMC and 14days for BALL1/mCMC, while the compared column showed a sharp decline in retention factor in first 3days. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Column properties and flow profiles of a flat, wide column for high-pressure liquid chromatography.

    Science.gov (United States)

    Mriziq, Khaled S; Guiochon, Georges

    2008-04-11

    The design and the construction of a pressurized, flat, wide column for high-performance liquid chromatography (HPLC) are described. This apparatus, which is derived from instruments that implement over-pressured thin layer chromatography, can carry out only uni-dimensional chromatographic separations. However, it is intended to be the first step in the development of more powerful instruments that will be able to carry out two-dimensional chromatographic separations, in which case, the first separation would be a space-based separation, LC(x), taking place along one side of the bed and the second separation would be a time-based separation, LC(t), as in classical HPLC but proceeding along the flat column, not along a tube. The apparatus described consists of a pressurization chamber made of a Plexiglas block and a column chamber made of stainless steel. These two chambers are separated by a thin Mylar membrane. The column chamber is a cavity which is filled with a thick layer (ca. 1mm) of the stationary phase. Suitable solvent inlet and outlet ports are located on two opposite sides of the sorbent layer. The design allows the preparation of a homogenous sorbent layer suitable to be used as a chromatographic column, the achievement of effective seals of the stationary phase layer against the chamber edges, and the homogenous flow of the mobile phase along the chamber. The entire width of the sorbent layer area can be used to develop separations or elute samples. The reproducible performance of the apparatus is demonstrated by the chromatographic separations of different dyes. This instrument is essentially designed for testing detector arrays to be used in a two-dimensional LC(x) x LC(t) instrument. The further development of two-dimension separation chromatographs based on the apparatus described is sketched.

  16. Stability of embankments over cement deep soil mixing columns

    International Nuclear Information System (INIS)

    Morilla Moar, P.; Melentijevic, S.

    2014-01-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  17. Response of steel box columns in fire conditions

    Directory of Open Access Journals (Sweden)

    Mahmood Yahyai

    2017-05-01

    Full Text Available Effect of elevated temperatures on the mechanical properties of steel, brings the importance of investigating the effect of fire on the steel structures anxiously. Columns, as the main load-carrying part of a structure, can be highly vulnerable to the fire. In this study, the behavior of steel gravity columns with box cross section exposed to fire has been investigated. These kinds of columns are widely used in common steel structures design in Iran. In current study, the behavior of such columns in fire conditions is investigated through the finite element method. To perform this, the finite element model of a steel column which has been previously tested under fire condition, was prepared. Experimental loading and boundary conditions were considered in the model and was analyzed. Results were validated by experimental data and various specimens of gravity box columns were designed according to the Iran’s steel buildings code, and modeled and analyzed using Abaqus software. The effect of width to thickness ratio of column plates, the load ratio and slenderness on the ultimate strength of the column was investigated, and the endurance time was estimated under ISO 834 standard fire curve. The results revealed that an increase in width to thickness ratio and load ratio leads to reduction of endurance time and the effect of width to thickness ratio on the ultimate strength of the column decreases with temperature increase.

  18. Picobubble enhanced column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Yu, S.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Mining Engineering

    2006-07-01

    The purpose is to study the effectiveness of picobubbles in the column flotation of -28 mesh fine coal particles. A flotation column with a picobubble generator was developed and tested for enhancing the recovery of ultrafine coal particles. The picobubble generator was designed using the hydrodynamic cavitation principle. A metallurgical and a steam coal were tested in the apparatus. The results show that the use of picobubbles in a 2in. flotation column increased the recovery of fine coal by 10 to 30%. The recovery rate varied with feed rate, collector dosage, and other column conditions. 40 refs., 8 figs., 2 tabs.

  19. Development and characterization of a novel plug and play liquid chromatography-mass spectrometry (LC-MS) source that automates connections between the capillary trap, column, and emitter.

    Science.gov (United States)

    Bereman, Michael S; Hsieh, Edward J; Corso, Thomas N; Van Pelt, Colleen K; Maccoss, Michael J

    2013-06-01

    We report the development and characterization of a novel, vendor-neutral ultra-high pressure-compatible (~10,000 p.s.i.) LC-MS source. This device is the first to make automated connections with user-packed capillary traps, columns, and capillary emitters. The source uses plastic rectangular inserts (referred to here as cartridges) where individual components (i.e. trap, column, or emitter) can be exchanged independent of one another in a plug and play manner. Automated robotic connections are made between the three cartridges using linear translation powered by stepper motors to axially compress each cartridge by applying a well controlled constant compression force to each commercial LC fitting. The user has the versatility to tailor the separation (e.g. the length of the column, type of stationary phase, and mode of separation) to the experimental design of interest in a cost-effective manner. The source is described in detail, and several experiments are performed to evaluate the robustness of both the system and the exchange of the individual trap and emitter cartridges. The standard deviation in the retention time of four targeted peptides from a standard digest interlaced with a soluble Caenorhabditis elegans lysate ranged between 3.1 and 5.3 s over 3 days of analyses. Exchange of the emitter cartridge was found to have an insignificant effect on the abundance of various peptides. In addition, the trap cartridge can be replaced with minimal effects on retention time (<20 s).

  20. Earthquake Resilient Bridge Columns Utilizing Damage Resistant Hybrid Fiber Reinforced Concrete

    OpenAIRE

    Trono, William Dean

    2014-01-01

    Modern reinforced concrete bridges are designed to avoid collapse and to prevent loss of life during earthquakes. To meet these objectives, bridge columns are typically detailed to form ductile plastic hinges when large displacements occur. California seismic design criteria acknowledges that damage such as concrete cover spalling and reinforcing bar yielding may occur in columns during a design-level earthquake. The seismic resilience of bridge columns can be improved through the use of a da...

  1. Two-column sequential injection chromatography for fast isocratic separation of two analytes of greatly differing chemical properties.

    Science.gov (United States)

    Šatínský, Dalibor; Chocholouš, Petr; Válová, Olga; Hanusová, Lucia; Solich, Petr

    2013-09-30

    This paper deals with a novel approach to separate two analytes with different chemical properties and different lipophilicity. The newly described methodology is based on the two column system that was used for isocratic separation of two analytes with very different lipophilicity-dexamethasone and cinchocaine. Simultaneous separation of model compounds cinchocaine and dexamethasone was carried under the following conditions in two-column sequential injection chromatography system (2-C SIC). A 25×4.6 mm C-18 monolithic column was used in the first dimension for retention and separation of dexamethasone with mobile phase acetonitrile:water 30:70 (v/v), flow rate 0.9 mL min(-1) and consumption of 1.7 mL. A 10×4.6 mm C-18 monolithic column with 5×4.6 mm C-18 precolumn was used in the second dimension for retention and separation of cinchocaine using mobile phase acetonitrile:water 60:40 (v/v), flow rate 0.9 mL min(-1) and consumption 1.5 mL. Whole analysis time including both mobile phase's aspirations and both column separations was performed in less than 4 min. The method was fully validated and used for determination of cinchocaine and dexamethasone in pharmaceutical otic drops. The developed 2-C SIC method was compared with HPLC method under the isocratic conditions of separation on monolithic column (25×4.6 mm C-18). Spectrophotometric detection of both compounds was performed at wavelength 240 nm. System repeatability and method precision were found in the range (0.39-3.12%) for both compounds. Linearity of determination was evaluated in the range 50-500 μg mL(-1) and coefficients of determination were found to be r(2)=0.99912 for dexamethasone and r(2)=0.99969 for cinchocaine. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. LRFD software for design and actual ultimate capacity of confined rectangular columns.

    Science.gov (United States)

    2013-04-01

    The analysis of concrete columns using unconfined concrete models is a well established practice. On the : other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear : analysis. Modern codes and...

  3. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    Directory of Open Access Journals (Sweden)

    Ramia Z. Al Bakain

    2017-01-01

    Full Text Available Retention mechanisms involved in supercritical fluid chromatography (SFC are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase, a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition. Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns’ function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components.

  4. Slender CRC Columns

    DEFF Research Database (Denmark)

    Aarup, Bendt; Jensen, Lars Rom; Ellegaard, Peter

    2005-01-01

    CRC is a high-performance steel fibre reinforced concrete with a typical compressive strength of 150 MPa. Design methods for a number of structural elements have been developed since CRC was invented in 1986, but the current project set out to further investigate the range of columns for which...

  5. Radioactive contamination mapping system detailed design report

    International Nuclear Information System (INIS)

    Bauer, R.G.; O'Callaghan, P.B.

    1996-08-01

    The Hanford Site's 100 Area production reactors released radioactively and chemically contaminated liquids into the soil column. The primary source of the contaminated liquids was reactor coolant and various waste waters released from planned liquid discharges, as well as pipelines, pipe junctions, and retention basins leaking into the disposal sites. Site remediation involves excavating the contaminated soils using conventional earthmoving techniques and equipment, treating as appropriate, transporting the soils, and disposing the soils at ERDF. To support remediation excavation, disposal, and documentation requirements, an automated radiological monitoring system was deemed necessary. The RCMS (Radioactive Contamination Mapping System) was designed to fulfill this need. This Detailed Design Report provides design information for the RCMS in accordance with Bechtel Hanford, Inc. Engineering Design Project Instructions

  6. Interaction diagrams for composite columns exposed to fire

    Directory of Open Access Journals (Sweden)

    Milanović Milivoje

    2014-01-01

    Full Text Available The bearing capacity of the cross section of composite column in fire conditions through changes in the interaction diagram 'bending moment-axialforce' were analyzed in this paper. The M-N interaction diagram presents the relationship between the intensities of the bending moment and the axial force as actions on the column cross section, or the relationship between the design value of the plastic resistance to axial compression of the total cross-section Npl, Rd and the design value of the bending moment resistance Mpl, Rd. It is well known that the temperature increase causes decrease of the load-bearing characteristics of the constitutive materials. This effect directly reflects on the reduction of the axial force and the bending moment that could be accepted by the column cross section. Interaction diagrams for three different types of column cross sections for five different maximal temperatures developed during the fire action were defined. For that purpose the software package SAFIR was used. The columns, materials and load characteristics, as well as all other terms and conditions, were taken in accordance with the relevant Eurocodes and the theory of composite columns.

  7. Estimation of RC slab-column joints effective strength using neural networks

    Directory of Open Access Journals (Sweden)

    A. A. Shah

    Full Text Available The nominal strength of slab-column joints made of highstrength concrete (HSC columns and normal strength concrete (NSC slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of column-slab joints have been investigated experimentally providing a basis for developing design provisions. However, available data does not cover all classes of concretes, reinforcements, and possible loading cases for the proper calculation of joint stresses necessary for design purposes. New numerical methods based on modern software seem to be effective and may allow reliable prediction of column-slab joint strength. The current research is focused on analysis of available experimental data on different slab-to-column joints with the aim of predicting the nominal strength of slabcolumn joint. Neural networks technique is proposed herein using MATLAB routines developed to analyze available experimental data. The obtained results allow prediction of the effective strength of column-slab joints with accuracy and good correlation coefficients when compared to regression based models. The proposed method enables the user to predict the effective design of column-slab joints without the need for conservative safety coefficients generally promoted and used by most construction codes.

  8. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  9. The handedness of historiated spiral columns.

    Science.gov (United States)

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  10. Characterize Behaviour of Emerging Pollutants in Artificial Recharge: Column Experiments - Experiment Design and Results of Preliminary Tests

    Science.gov (United States)

    Wang, H.; Carrera, J.; Ayora, C.; Licha, T.

    2012-04-01

    Emerging pollutants (EPs) have been detected in water resources as a result of human activities in recent years. They include pharmaceuticals, personal care products, dioxins, flame retardants, etc. They are a source of concern because many of them are resistant to conventional water treatment, and they are harmful to human health, even in low concentrations. Generally, this study aims to characterize the behaviour of emerging pollutants in reclaimed water in column experiments which simulates artificial recharge. One column set includes three parts: influent, reactive layer column (RLC) and aquifer column (AC). The main influent is decided to be Secondary Effluent (SE) of El Prat Wastewater Treatment Plant, Barcelona. The flow rate of the column experiment is 0.9-1.5 mL/min. the residence time of RLC is designed to be about 1 day and 30-40 days for AC. Both columns are made of stainless steel. Reactive layer column (DI 10cm * L55cm) is named after the filling material which is a mixture of organic substrate, clay and goethite. One purpose of the application of the mixture is to increase dissolve organic carbon (DOC). Leaching test in batchs and columns has been done to select proper organic substrate. As a result, compost was selected due to its long lasting of releasing organic matter (OM). The other purpose of the application of the mixture is to enhance adsorption of EPs. Partition coefficients (Kow) of EPs indicate the ability of adsorption to OM. EPs with logKow>2 could be adsorbed to OM, like Ibuprofen, Bezafibrate and Diclofenac. Moreover, some of EPs are charged in the solution with pH=7, according to its acid dissociation constant (Ka). Positively charged EPs, for example Atenolol, could adsorb to clay. In the opposite, negatively charged EPs, for example Gemfibrozil, could adsorb to goethite. Aquifer column (DI 35cm * L1.5m) is to simulate the processes taking place in aquifer in artificial recharge. The filling of AC has two parts: silica sand and

  11. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  12. Gas-chromatographic separation of hydrogen isotopes mixtures on capillary molecular sieve 5 A column at 173 K

    International Nuclear Information System (INIS)

    Bidica, N.; Preda, A.; Stanciu, V.

    2002-01-01

    Analysis of a gas mixture of hydrogen species, is not too easy because the differences in their physical-chemical properties are very small; the most different are their masses, and consequently most common analytical method appear to be the mass-spectrometry. However, the impossibility to distinguish between two ions (atomic or molecular) with the same mass renders this method as unapplicable. Another problem is the decay of tritium with production of 3 He. These disadvantages of mass-spectrometry have made that other analytical methods, like gas chromatography, to be considered and developed. Thus, there are many papers about various chromatographic columns especially prepared for hydrogen species separation but the preparation and treatment of these columns are very difficult to reproduce. Besides these, there are two other main disadvantages: column operating temperature is very low and long retention times for hydrogen species (more than half an hour) are required. However, the gas-chromatography method still remains an appropriate one. The method described in this paper was based on using a capillary molecular sieve 5A column which has been operated for this kind of separation. The retention times were relatively short, about 8-9 minutes. The carrier gas was Ne and the detector - TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. The results demonstrated a quite good efficiency for H 2 , HD, D 2 and a not very good one for orthoH 2 -paraH 2 . (authors)

  13. Leaching of Uranium from pit-water application to soil columns. Effect of vegetation, phosphate fertilizer and amendment

    International Nuclear Information System (INIS)

    Bonetto, Juan P.

    2006-01-01

    Pit-water accumulated in the San Rafael uranium (U) Mining and Processing Facility (CMFSR) poses a risk of contaminant dispersion and hinders mining labours in the flooded pits. Soil application of the pit-water may be a way of eliminating it through evapotranspiration, but it requires minimization of U migration to the subsurface water courses in order to be considered an adequate disposal practice. The pH > 7 and carbonate content of the soil may induce the formation of uranyl-carbonate complexes, which have high mobility in soils. Furthermore, its physical and chemical characteristics suggest low metal retention capabilities. A 30 cm long soil column experiment was carried out irrigating pit-water on CMFSR soil with the aim of knowing its U retention capacity, as well as the effect of a phosphate fertilizer, an organic amendment and of vegetation cover on such retention. It was concluded that soil alone was able to retain 60 % of the applied U mass in its first 3 centimeters, leaching 0,6 %. Plant presence enhanced U mobility. However, reduced leachate volume caused by higher evapotranspiration rates balanced this mobility, producing a decrease in the mass of leached U. Phosphate fertilizer incorporated to the soil increased U retention in tits upper centimeters. It also increased vegetation growth, and, accordingly, evapotranspiration in the columns. On the contrary, the use of ground plant material as soil amendment increased U migration. (author) [es

  14. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems.

    Science.gov (United States)

    Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A

    2010-08-01

    Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (prain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (prain gardens. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    Science.gov (United States)

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns.

    Science.gov (United States)

    Op de Beeck, Jeff; De Malsche, Wim; Vangelooven, Joris; Gardeniers, Han; Desmet, Gert

    2010-09-24

    We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 microm and an interpillar distance of 2.5 microm has been characterized using both a low MW tracer (FITC) and differently sized polystyrene bead samples (100, 200 and 500 nm). The reduced plate height curves that were obtained for the different investigated markers all overlapped very well, and attained a minimum value of about h(min)=0.3 (reduction based on the pillar diameter), corresponding to 1.6 microm in absolute value and giving good prospects for high efficiency separations. The obtained reduced retention time values were in fair agreement with that predicted by the Di Marzio and Guttman model for a flow between flat plates, using the minimal interpillar distance as characteristic interplate distance. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Evaluation of Colloid Retention Site Dominance in Variably Saturated Porous Media: An All Pores Pore-Scale Analysis

    Science.gov (United States)

    Morales, Veronica; Perez-Reche, Francisco; Holzner, Markus; Kinzelbach, Wolfgang

    2016-04-01

    It is well accepted that colloid and nanoparticle transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to particle immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Yet, the current understanding of the importance of particle retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which Silver particles were transported for conditions of varying water content and water chemistry. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the main locations where colloids can become retained (interfaces with the water-solid, air-water, air-solid, and air-water-solid, grain-grain contacts, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, and iii) channel widths of 3-dimensional pore-water network representations. The results presented provide a direct statistical evaluation on the significance of colloid retention by attachment to interfaces or by strainig at contact points where multiple interfaces meet.

  18. Characterizing pesticide sorption and degradation in microscale biopurification systems using column displacement experiments

    International Nuclear Information System (INIS)

    Wilde, Tineke de; Mertens, Jan; Simunek, Jirka; Sniegowksi, Kristel; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk; Spanoghe, Pieter

    2009-01-01

    Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient K f,column were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone. - Transport of pesticides in column experiments containing organic substrates

  19. Characterizing pesticide sorption and degradation in microscale biopurification systems using column displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Tineke de [Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)], E-mail: tineke.dewilde@UGent.be; Mertens, Jan [Division Soil and Water Management, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Simunek, Jirka [Department of Environmental Sciences, University of California, Riverside, CA (United States); Sniegowksi, Kristel; Ryckeboer, Jaak [Division Soil and Water Management, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Jaeken, Peter [PCF-Royal Research Station of Gorsem, De Brede Akker 13, 3800 Sint-Truiden (Belgium); Springael, Dirk [Division Soil and Water Management, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Spanoghe, Pieter [Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)

    2009-02-15

    Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient K{sub f,column} were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone. - Transport of pesticides in column experiments containing organic substrates.

  20. Complementary Set Matrices Satisfying a Column Correlation Constraint

    OpenAIRE

    Wu, Di; Spasojevic, Predrag

    2006-01-01

    Motivated by the problem of reducing the peak to average power ratio (PAPR) of transmitted signals, we consider a design of complementary set matrices whose column sequences satisfy a correlation constraint. The design algorithm recursively builds a collection of $2^{t+1}$ mutually orthogonal (MO) complementary set matrices starting from a companion pair of sequences. We relate correlation properties of column sequences to that of the companion pair and illustrate how to select an appropriate...

  1. Derringer desirability and kinetic plot LC-column comparison approach for MS-compatible lipopeptide analysis.

    Science.gov (United States)

    D'Hondt, Matthias; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Wynendaele, Evelien; De Spiegeleer, Bart

    2014-06-01

    Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B 1 , caspofungin, daptomycin and gramicidin A 1 ), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA). In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D -value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ ( P max / P exp ) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed.

  2. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.

    Science.gov (United States)

    Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui

    2006-11-03

    Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.

  3. Design and implementation of a control structure for quality products in a crude oil atmospheric distillation column.

    Science.gov (United States)

    Sotelo, David; Favela-Contreras, Antonio; Sotelo, Carlos; Jiménez, Guillermo; Gallegos-Canales, Luis

    2017-11-01

    In recent years, interest for petrochemical processes has been increasing, especially in refinement area. However, the high variability in the dynamic characteristics present in the atmospheric distillation column poses a challenge to obtain quality products. To improve distillates quality in spite of the changes in the input crude oil composition, this paper details a new design of a control strategy in a conventional crude oil distillation plant defined using formal interaction analysis tools. The process dynamic and its control are simulated on Aspen HYSYS ® dynamic environment under real operating conditions. The simulation results are compared against a typical control strategy commonly used in crude oil atmospheric distillation columns. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  5. Enrichment of heavy water in thermal-diffusion columns connected in series

    International Nuclear Information System (INIS)

    Yeh, Ho-Ming; Chen, Liu Yi

    2009-01-01

    The separation equations for enrichment of heavy water from water isotope mixture by thermal diffusion in multiple columns connected in series, have been derived based on one column design developed in previous work. The improvement in separation is achievable by operating in a double-column device, instead of in a single-column device, with the same total column length. It is also found that further improvement in separation is obtainable if a triple-column device is employed, except for operating under small total column length and low flow rate.

  6. Retention behavior of selected alkaloids in Reversed Phase micellar chromatographic systems

    Directory of Open Access Journals (Sweden)

    Petruczynik Anna

    2015-06-01

    Full Text Available In this work, the effects of sodium dodecyl sulfate (SDS concentrations on retention, separation selectivity, peak shapes and systems efficiency were investigated. Herein, the retention data for 11 alkaloids were determined on an RP18 silica column with mobile phases containing methanol as organic modifier, with acetate buffer at pH 3.5, and, subsequently, with the addition of sodium dodecyl sulfate (SDS. The results of this study indicate that the retention of alkaloids decreases with the increase of SDS concentration in the mobile phase. The increase of SDS concentration, however, leads to the significantly improvement of peak symmetry and the increase of theoretical plate number in all cases. The best system efficiency for most of the investigated alkaloids was obtained in a mobile phase containing 0.1 M SDS, while most symmetrical peaks were obtained through the addition of 0.3 M of SDS to the mobile phase.

  7. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  8. Regulatory principles, criteria and guidelines for site selection, design, construction and operation of uranium tailings retention systems

    International Nuclear Information System (INIS)

    Coady, J.R.; Henry, L.C.

    1978-01-01

    Principles, criteria and guidelines developed by the Atomic Energy Control Board for the management of uranium mill tailings are discussed. The application of these concepts is considered in relation to site selection, design and construction, operation and decommissioning of tailings retention facilities

  9. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.

    Science.gov (United States)

    Park, Soo Hyun; Talebi, Mohammad; Amos, Ruth I J; Tyteca, Eva; Haddad, Paul R; Szucs, Roman; Pohl, Christopher A; Dolan, John W

    2017-11-10

    Quantitative Structure-Retention Relationships (QSRR) are used to predict retention times of compounds based only on their chemical structures encoded by molecular descriptors. The main concern in QSRR modelling is to build models with high predictive power, allowing reliable retention prediction for the unknown compounds across the chromatographic space. With the aim of enhancing the prediction power of the models, in this work, our previously proposed QSRR modelling approach called "federation of local models" is extended in ion chromatography to predict retention times of unknown ions, where a local model for each target ion (unknown) is created using only structurally similar ions from the dataset. A Tanimoto similarity (TS) score was utilised as a measure of structural similarity and training sets were developed by including ions that were similar to the target ion, as defined by a threshold value. The prediction of retention parameters (a- and b-values) in the linear solvent strength (LSS) model in ion chromatography, log k=a - blog[eluent], allows the prediction of retention times under all eluent concentrations. The QSRR models for a- and b-values were developed by a genetic algorithm-partial least squares method using the retention data of inorganic and small organic anions and larger organic cations (molecular mass up to 507) on four Thermo Fisher Scientific columns (AS20, AS19, AS11HC and CS17). The corresponding predicted retention times were calculated by fitting the predicted a- and b-values of the models into the LSS model equation. The predicted retention times were also plotted against the experimental values to evaluate the goodness of fit and the predictive power of the models. The application of a TS threshold of 0.6 was found to successfully produce predictive and reliable QSRR models (Q ext(F2) 2 >0.8 and Mean Absolute Error<0.1), and hence accurate retention time predictions with an average Mean Absolute Error of 0.2min. Crown Copyright

  10. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P., E-mail: pierre.crancon@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Pili, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique (LGIT-OSUG), University of Grenoble-I, UMR5559-CNRS-UJF, BP53, 38041 Grenoble cedex 9 (France)

    2010-04-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the < 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean porewater velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  11. Fission-product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  12. An in vitro investigation into retention strength and fatigue resistance of various designs of tooth/implant supported overdentures.

    Science.gov (United States)

    Fatalla, Abdalbseet A; Song, Ke; Du, Tianfeng; Cao, Yingguang

    2012-02-01

    Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been available on the correlation between the attachment system selected and the overdenture support configuration. The purpose of the present study was to evaluate the retention force and fatigue resistance of three attachment systems and four support designs of overdenture prosthesis. Four lower edentulous acrylic models were prepared and eight combinations of attachments groups were investigated in the study. These included: O-Rings with mini-dental implants (MDIs), Dalbo elliptic with Dalbo Rotex and fabricated flexible acrylic attachments with both MDI and Dalbo Rotex. The study was divided into four test groups: groups A and B, controls, and groups C and D, experimental groups. Control group A contained three overdenture supports: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with Dalbo Rotex screwed in. Control group B contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with Dalbo Rotex screwed in at the same MDI position, but on the left side of the model. Experimental group C contained three overdenture support foundations: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with MDI screwed in. Experimental group D contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with MDIs screwed in at the same MDI position, but on the left side of the model. Each group was further divided into two subgroups according to attachment type used. Five samples were prepared for each group. Retention force (N) values were recorded initially (0 cycles) and after 360, 720, 1440

  13. Design data, liquid distributors and condenser for a distillation column to enrich tritium in metallic lithium

    International Nuclear Information System (INIS)

    Barnert, E.

    1984-01-01

    Tritium, one fuel component of the fusion reactor is bred from the reactors blanket material lithium. Before extracting the tritium from, for instance, metallic lithium by permeation it has to be enriched in the lithium by high temperature distillation. In this report design data for a column for high temperature distillation are given. About the testing of two distributors for small liquid quantities and of a condenser is reported. (orig.) [de

  14. Performance of zeolite scavenge column in Xe monitoring system

    International Nuclear Information System (INIS)

    Wang Qian; Wang Hongxia; Li Wei; Bian Zhishang

    2010-01-01

    In order to improve the performance of zeolite scavenge column, its ability of removal of humidity and carbon dioxide was studied by both static and dynamic approaches. The experimental results show that various factors, including the column length and diameter, the mass of zeolite, the content of water in air, the temperature rise during adsorption, and the activation effectiveness all effect the performance of zeolite column in scavenging humanity and carbon dioxide. Based on these results and previous experience, an optimized design of the zeolite column is made for use in xenon monitoring system. (authors)

  15. Design and experimental study on columns and beams connection in the precast prestressed concrete structure. Precast PC acchaku setsugo ni kansuru sekkeiho to jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, K. (Kurosawa Construction Co. Ltd., Tokyo (Japan))

    1993-07-30

    Design engineering and experimental study were made of precast PC clad connection. The clad connection method between the columns and beams is classified into bracket method, shearing key method, corbel method and reinforcing structure-jointing method, among which the corbel method is recommendable because of its simplicity without slip. The PC clad connection system is characterized by its possibility of structuring the continuous multi-rahmen structure, designing the highest strength concrete and easing the earthquake-proof design with a high toughness restoring force. The PC cable wiring method is classified into X-cross method and continuous method. The design of PC clad connection was experimentally proved by alternately loading the frame. Through the experiment, the interstory deformation angle, and stress behavior of the column and beam PC steel materials were made clear so that their destruction became able to be prevented. Also through the experiment, the interstory deformation angle and maximum column-shearing force were known at the yield point of beam, which had the frame-restoring force characteristics modeled by a trilinear elastoplastic type. 28 refs., 13 figs.

  16. On-column ligand exchange for structure-based drug design: a case study with human 11β-hydroxysteroid dehydrogenase type 1

    International Nuclear Information System (INIS)

    Qin, Wenying; Judge, Russell A.; Longenecker, Kenton L.; Solomon, Larry R.; Harlan, John E.

    2012-01-01

    An on-column ligand- and detergent-exchange method was developed to obtain ligand–protein complexes for an adamantane series of compounds with 11β-HSD1 after a variety of other complexation methods had failed. An interesting byproduct of the method was the observation of artificial trimers in the crystal structures. Successfully forming ligand–protein complexes with specific compounds can be a significant challenge in supporting structure-based drug design for a given protein target. In this respect, an on-column ligand- and detergent-exchange method was developed to obtain ligand–protein complexes of an adamantane series of compounds with 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) after a variety of other complexation methods had failed. This report describes the on-column exchange method and an unexpected byproduct of the method in which artificial trimers were observed in the structures

  17. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    Science.gov (United States)

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Modelling by partial least squares the relationship between the HPLC mobile phases and analytes on phenyl column.

    Science.gov (United States)

    Markopoulou, Catherine K; Kouskoura, Maria G; Koundourellis, John E

    2011-06-01

    Twenty-five descriptors and 61 structurally different analytes have been used on a partial least squares (PLS) to latent structure technique in order to study chromatographically their interaction mechanism on a phenyl column. According to the model, 240 different retention times of the analytes, expressed as Y variable (log k), at different % MeOH mobile-phase concentrations have been correlated with their theoretical most important structural or molecular descriptors. The goodness-of-fit was estimated by the coefficient of multiple determinations r(2) (0.919), and the root mean square error of estimation (RMSEE=0.1283) values with a predictive ability (Q(2)) of 0.901. The model was further validated using cross-validation (CV), validated by 20 response permutations r(2) (0.0, 0.0146), Q(2) (0.0, -0.136) and validated by external prediction. The contribution of certain mechanism interactions between the analytes, the mobile phase and the column, proportional or counterbalancing is also studied. Trying to evaluate the influence on Y of every variable in a PLS model, VIP (variables importance in the projection) plot provides evidence that lipophilicity (expressed as Log D, Log P), polarizability, refractivity and the eluting power of the mobile phase are dominant in the retention mechanism on a phenyl column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. design chart procedures for polygonal concrete-filled steel columns

    African Journals Online (AJOL)

    ADMIN

    hexagonal and octagonal steel-concrete composite columns subjected to ... This paper also outlines procedures that will enable preparation of ... buildings and in a variety of large-span building ... Likewise, hot-rolled steel tubes are used while ... small moderate large. Fig. 2. Possible arrangement of composite polygonal ...

  20. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.

    Science.gov (United States)

    Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R

    2009-09-18

    The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.

  1. Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid.

    Science.gov (United States)

    Shan, Yuanhong; Qiao, Lizhen; Shi, Xianzhe; Xu, Guowang

    2015-01-02

    To develop a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid, a new ionic liquid monomer was synthesized from 1-vinylimidazole and pentafluorobenzyl bromide. By employing a facile one-step copolymerization of polyhedral-oligomeric-silsesquioxane-type (POSS) cross-linking agent and the home-made ionic liquid monomer, the hybrid monolithic columns were in situ fabricated in fused-silica capillary. The morphology of monolithic column was characterized by scanning electron microscope (SEM) and the chemical composition was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and elemental analysis. Excellent mechanical stability and slight swelling propensity were exhibited which was ascribed to the rigid hybrid monolithic skeleton. Reproducibility results of run-to-run, column-to-column, batch-to-batch and day-to-day were investigated and the RSDs were less than 0.46%, 1.84%, 3.96% and 3.17%, respectively. The mixed-mode retention mechanism with hydrophobic interaction, π-π stacking, ion-exchange, electrostatic interaction and dipole-dipole interaction was explored systematically using analytes with different structure types. Satisfied separation capability and column efficiency were achieved for the analysis of small molecular compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and halogenated compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modeling Stone Columns.

    Science.gov (United States)

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  3. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    Science.gov (United States)

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. Copyright © 2015. Published by Elsevier B.V.

  4. Modeling shoreline bioremediation: Continuous flow and seawater exchange columns

    International Nuclear Information System (INIS)

    Ramstad, S.; Sveum, P.; Bech, C.; Faksness, L.G.

    1995-01-01

    This paper describes the design and use of the columns in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different additives (fish meal, stick water, and Max Bac) on biodegradation of crude oil. There is significant difference in oil degradation(nC 17 /pristane ratio) between the column with additives and those without. Open system models in this type of open column give valuable data o how the chemical and biological parameters, including oil degradation, are affected by the additives, and simultaneously by the dilutive effect of seawater washing through the sediment, and for optimizing formulations. The system is designed with a large number of units and provides a good first approximation for mesocosm studies and field experiments, thus reducing the need for large numbers of such resource-demanding experiments

  5. Optimal Design of Safety Instrumented Systems for Pressure Control of Methanol Separation Columns in the Bisphenol a Manufacturing Process

    Directory of Open Access Journals (Sweden)

    In-Bok Lee

    2016-12-01

    Full Text Available A bisphenol A production plant possesses considerable potential risks in the top of the methanol separation column, as pressurized acetone, methanol, and water are processed at an elevated temperature, especially in the event of an abnormal pressure increase due to a sudden power outage. This study assesses the potential risks in the methanol separation column through hazard and operability assessments and evaluates the damages in the case of fire and explosion accident scenarios. The study chooses three leakage scenarios: a 5-mm puncture on the methanol separation column, a 50-mm diameter fracture of a discharge pipe and a catastrophic rupture, and, simulated using Phast (Ver. 6.531, the concentration distribution of scattered methanol, thermal radiation distribution of fires, and overpressure distribution of vapor cloud explosions. Implementation of a safety-instrumented system equipped with two-out-of-three voting as a safety measure can detect overpressure at the top of the column and shut down the main control valve and the emergency shutoff valve simultaneously. By applying a safety integrity level of three, the maximal release volume of the safety relief valve can be reduced and, therefore, the design capacity of the flare stack can also be reduced. Such integration will lead to improved safety at a reduced cost.

  6. Fluid flow profile in a packed bead column using residence time curves and radiotracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana Paula F. de; Gonçalves, Eduardo Ramos; Brandão, Luis Eduardo B.; Salgado, Cesar M., E-mail: anacamiqui@gmail.com, E-mail: egoncalves@con.ufrj.br, E-mail: brandao@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Filling columns are extremely important in the chemical industry and are used for purification, separation and treatment processes of gas or liquid mixtures. The objective of this work is to study the hydrodynamics of the fluid for a characterization of aqueous phase flow patterns in the filling column, associating with the methodology of the Curves of Residence Time Distribution (RTD) to analyze and associate theoretical models that put as conditions column operating. RTD can be obtained by using the pulse-stimulus response technique which is characterized by the instantaneous injection of a radiotracer into the system input. In this work, 68Ga was used as radiotracer. Five shielded and collimated NaI (Tl) 1 x 1″ scintillator detectors were suitably positioned to record the movement of the radiotracer's path in the conveying line and filling column. Making possible the analysis of the RTD curve in the regions of interest. With the data generated by the NaI (Tl) detectors with the passage of the radiotracer in the transport line and inside the column, it was possible to evaluate the flow profile of the aqueous phase and to identify operational failures, such as internal conduit and the existence of a retention zone in the inside the column. Theoretical models were used for different flow flows: the piston flow and perfect mixing. (author)

  7. Fluid flow profile in a packed bead column using residence time curves and radiotracer techniques

    International Nuclear Information System (INIS)

    Almeida, Ana Paula F. de; Gonçalves, Eduardo Ramos; Brandão, Luis Eduardo B.; Salgado, Cesar M.

    2017-01-01

    Filling columns are extremely important in the chemical industry and are used for purification, separation and treatment processes of gas or liquid mixtures. The objective of this work is to study the hydrodynamics of the fluid for a characterization of aqueous phase flow patterns in the filling column, associating with the methodology of the Curves of Residence Time Distribution (RTD) to analyze and associate theoretical models that put as conditions column operating. RTD can be obtained by using the pulse-stimulus response technique which is characterized by the instantaneous injection of a radiotracer into the system input. In this work, 68Ga was used as radiotracer. Five shielded and collimated NaI (Tl) 1 x 1″ scintillator detectors were suitably positioned to record the movement of the radiotracer's path in the conveying line and filling column. Making possible the analysis of the RTD curve in the regions of interest. With the data generated by the NaI (Tl) detectors with the passage of the radiotracer in the transport line and inside the column, it was possible to evaluate the flow profile of the aqueous phase and to identify operational failures, such as internal conduit and the existence of a retention zone in the inside the column. Theoretical models were used for different flow flows: the piston flow and perfect mixing. (author)

  8. Thermal Analysis for Ion-Exchange Column System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  9. Permanent magnet finger-size scanning electron microscope columns

    Energy Technology Data Exchange (ETDEWEB)

    Nelliyan, K., E-mail: elenk@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-07-21

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  10. Permanent magnet finger-size scanning electron microscope columns

    International Nuclear Information System (INIS)

    Nelliyan, K.; Khursheed, A.

    2011-01-01

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  11. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2018-02-16

    A model that predicts retention for peptides using a HALO ® penta-HILIC column and gradient elution was created. Coefficients for each amino acid were derived using linear regression analysis and these coefficients can be summed to predict the retention of peptides. This model has a high correlation between experimental and predicted retention times (0.946), which is on par with previous RP and HILIC models. External validation of the model was performed using a set of H. pylori samples on the same LC-MS system used to create the model, and the deviation from actual to predicted times was low. Apart from amino acid composition, length and location of amino acid residues on a peptide were examined and two site-specific corrections for hydrophobic residues at the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multivariate analysis of chromatographic retention data as a supplementary means for grouping structurally related compounds.

    Science.gov (United States)

    Fasoula, S; Zisi, Ch; Sampsonidis, I; Virgiliou, Ch; Theodoridis, G; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-03-27

    In the present study a series of 45 metabolite standards belonging to four chemically similar metabolite classes (sugars, amino acids, nucleosides and nucleobases, and amines) was subjected to LC analysis on three HILIC columns under 21 different gradient conditions with the aim to explore whether the retention properties of these analytes are determined from the chemical group they belong. Two multivariate techniques, principal component analysis (PCA) and discriminant analysis (DA), were used for statistical evaluation of the chromatographic data and extraction similarities between chemically related compounds. The total variance explained by the first two principal components of PCA was found to be about 98%, whereas both statistical analyses indicated that all analytes are successfully grouped in four clusters of chemical structure based on the retention obtained in four or at least three chromatographic runs, which, however should be performed on two different HILIC columns. Moreover, leave-one-out cross-validation of the above retention data set showed that the chemical group in which an analyte belongs can be 95.6% correctly predicted when the analyte is subjected to LC analysis under the same four or three experimental conditions as the all set of analytes was run beforehand. That, in turn, may assist with disambiguation of analyte identification in complex biological extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Plant-wide control of coupled distillation columns with partial condensers

    International Nuclear Information System (INIS)

    Ebrahimzadeh, Edris; Baxter, Larry L.

    2016-01-01

    Highlights: • Extractive distillation system for CO_2–ethane azeotrope separation. • Control of distillation column systems that have interconnected partial condenser and total condenser columns. • Single-end temperature control of distillation columns. • Aspen Dynamics tools applied for rigorous steady-state and dynamic simulations. - Abstract: Conventional distillation control processes use vapor distillate flowrate to control column pressure and condenser heat removal to control the reflux drum level. These intuitive control systems work well for isolated columns or columns with total condensers. However, these controls are not effective when columns with partial condensers occur in series. The pressure and reflux drum level interact in such systems in ways that defeat conventional control systems, rendering them unable to maintain product purities in the presence of large feed flowrate and composition disturbances. This investigation documents a plant-wide control structure that can address this issue by controlling pressure through reflux heat removal rate and reflux drum level by reflux flow rate. This control system demonstrates its capability to handle large disturbances in throughput and feed composition through a series of Aspen simulations. This alternative system is no more complicated than the conventional system and should work on distillation columns of nearly all designs, not just the coupled partial condenser designs for which it is essential. Common natural gas processing provides a specific example of this alternative control system. Natural gas commonly includes high concentrations of CO_2 that must be removed prior to pipeline or LNG distribution. The existence of a minimum-boiling temperature azeotrope between ethane, virtually always present in natural gas, and carbon dioxide complicates the separation of CO_2 from the hydrocarbons. This separation commonly employs extractive distillation with high-molecular-weight hydrocarbons. Our

  14. Relating pressure tuned coupled column ensembles with the solvation parameter model for tunable selectivity in gas chromatography.

    Science.gov (United States)

    Sharif, Khan M; Kulsing, Chadin; Chin, Sung-Tong; Marriott, Philip J

    2016-07-15

    The differential pressure drop of carrier gas by tuning the junction point pressure of a coupled column gas chromatographic system leads to a unique selectivity of the overall separation, which can be tested using a mixture of compounds with a wide range of polarity. This study demonstrates a pressure tuning (PT) GC system employing a microfluidic Deans switch located at the mid-point of the two capillary columns. This PT system allowed variations of inlet-outlet pressure differences of the two columns in a range of 52-17psi for the upstream column and 31-11psi for the downstream column. Peak shifting (differential migration) of compounds due to PT difference are related to a first order regression equation in a Plackett-Burman factorial study. Increased first (upstream) column pressure drop makes the second column characteristics more significant in the coupled column retention behavior, and conversely increased second (downstream) column pressure drop makes the first column characteristics more apparent; such variation can result in component swapping between polar and non-polar compounds. The coupled column system selectivity was evaluated in terms of linear solvation energy relationship (LSER) parameters, and their relation with different pressure drop effects has been constructed by applying multivariate principle component analysis (PCA). It has been found that the coupled column PT system descriptors provide a result that shows a clear clustering of different pressure settings, somewhat intermediate between those of the two commercial columns. This is equivalent to that obtained from a conventional single-column GC analysis where the interaction energy contributed from the stationary phases can be significantly adjusted by choice of midpoint PT. This result provides a foundation for pressure differentiation for selectivity enhancement. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    Science.gov (United States)

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science

  16. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P.; Pili, E. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Charlet, L. [Univ Grenoble 1, Lab Geophys Interne and Tectonophys LGIT OSUG, CNRS, UJF, UMR5559, F-38041 Grenoble 9 (France)

    2010-07-01

    The transport of uranium through a sandy podsolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the {<=} 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean pore-water velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source. (authors)

  17. Does skill retention benefit from retentivity and symbolic rehearsal? - two studies with a simulated process control task.

    Science.gov (United States)

    Kluge, Annette; Frank, Barbara; Maafi, Sanaz; Kuzmanovska, Aleksandra

    2016-05-01

    Two experiments were designed to compare two symbolic rehearsal refresher interventions (imaginary practice, a hidden introspective process) and investigate the role of retentivity in skill retention. Retentivity is investigated as the ability to memorise and reproduce information and associations that were learned a short time ago. Both experiments comprised initial training (week 1), a symbolic rehearsal for the experimental group (week 2) and a retention assessment (week 3). In the first study, the experimental group received a symbolic rehearsal, while the control group received no rehearsal. In the second study, the experimental group received the same symbolic rehearsal used in study 1, enhanced with rehearsal tasks addressing human-computer interaction. The results showed that both symbolic rehearsal interventions were equally likely to mitigate skill decay. The retentivity showed medium to high correlations with skill retention in both studies, and the results suggest that subjects high in retentivity benefit more from a symbolic rehearsal refresher intervention. Practitioner Summary: Skill decay becomes a problem in situations in which jobs require the correct mastery of non-routine situations. Two experimental studies with simulated process control tasks showed that symbolic rehearsal and retentivity can significantly mitigate skill decay and that subjects higher in retentivity benefit more from refresher interventions.

  18. Associations between the Cervical Vertebral Column and Craniofacial Morphology

    DEFF Research Database (Denmark)

    Sonnesen, Ane Liselotte

    2010-01-01

    Aim. To summarize recent studies on morphological deviations of the cervical vertebral column and associations with craniofacial morphology and head posture in nonsyndromic patients and in patients with obstructive sleep apnoea (OSA). Design. In these recent studies, visual assessment of the cerv......Aim. To summarize recent studies on morphological deviations of the cervical vertebral column and associations with craniofacial morphology and head posture in nonsyndromic patients and in patients with obstructive sleep apnoea (OSA). Design. In these recent studies, visual assessment...... of the cervical vertebral column and cephalometric analysis of the craniofacial skeleton were performed on profile radiographs of subjects with neutral occlusion, patients with severe skeletal malocclusions and patients with OSA. Material from human triploid foetuses and mouse embryos was analysed histologically....... Results. Recent studies have documented associations between fusion of the cervical vertebral column and craniofacial morphology, including head posture in patients with severe skeletal malocclusions. Histological studies on prenatal material supported these findings. Conclusion. It is suggested...

  19. Highly efficient high-performance liquid chromatographic separation of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column.

    Science.gov (United States)

    Chen, Sha; Li, Xiao-Xin; Feng, Fan; Li, Sumei; Han, Jia-Hui; Jia, Zi-Yi; Shu, Lun; Somsundaran, P; Li, Jian-Rong

    2018-04-16

    In this study, the baseline separations of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column were achieved, respectively. The high selectivity for xylene isomers and phthalate acid esters was obtained with the increase of temperature and decrease of the retention time. The hydrophobicity of xylene isomers and phthalate acid esters caused the different separation time on the DUT-67(Zr) packed column. The relative standard deviation values of retention time, peak area, peak height and half peak width for five repeat separation of the xylene isomers were 0.26-0.35, 2.11-2.26, 1.51-2.03, and 0.29-0.77%, and the values of the phthalate acid esters on DUT-67(Zr) column were 0.1-0.4, 4.4-5.2, 3.9-6.3, and 0.6-2.1%, respectively. The thermodynamic properties indicated that the separation of xylene isomers was controlled by ΔH and ΔS, but the separation of phthalate acid esters was mainly controlled by ΔS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  1. Unexpected retention behavior of baicalin: Hydrophilic interaction like properties of a reversed-phase column.

    Science.gov (United States)

    Magda, Balázs; Márta, Zoltán; Imre, Tímea; Kalapos-Kovács, Bernadett; Klebovich, Imre; Fekete, Jenő; Szabó, Pál T

    2015-01-01

    The original aim of this study was to develop a method for the determination of baicalin from membrane vesicles. The unconventional chromatographic separation ("inverse gradient elution" on a reversed phase column) was due to a lucky chance, which is detailed and discussed in this study. The validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is proved to be sensitive, rapid and selective. Chromatographic separation was performed on a Zorbax SB-C8 column (250 mm × 4.6 mm, i.d.; 5 μm) with 0.1% formic acid in water and methanol by linear gradient elution. Quantification of baicalin was determined by multiple reaction monitoring (MRM) mode using electrospray ionization (ESI). The calibration curve was linear (r = 0.9987) over the concentration range from 1 to 1000 nM. The coefficient of variation and relative error of baicalin for intra- and inter-assay at three quality control (QC) levels were 2.0-10.2% and -6.1 to 6.7%, respectively. The lower limit of quantification (LLOQ) for baicalin was 1 nM (0.446 ng/ml), without preconcentration of the sample. This method was subsequently applied to vesicular transport assays of baicalin in membrane vesicles successfully. The developed method can open up new area of research in the chromatographic separation of flavonoids and their glucuronides. Copyright © 2015. Published by Elsevier B.V.

  2. FRP Composites Strengthening of Concrete Columns under Various Loading Conditions

    Directory of Open Access Journals (Sweden)

    Azadeh Parvin

    2014-04-01

    Full Text Available This paper provides a review of some of the progress in the area of fiber reinforced polymers (FRP-strengthening of columns for several loading scenarios including impact load. The addition of FRP materials to upgrade deficiencies or to strengthen structural components can save lives by preventing collapse, reduce the damage to infrastructure, and the need for their costly replacement. The retrofit with FRP materials with desirable properties provides an excellent replacement for traditional materials, such as steel jacket, to strengthen the reinforced concrete structural members. Existing studies have shown that the use of FRP materials restore or improve the column original design strength for possible axial, shear, or flexure and in some cases allow the structure to carry more load than it was designed for. The paper further concludes that there is a need for additional research for the columns under impact loading senarios. The compiled information prepares the ground work for further evaluation of FRP-strengthening of columns that are deficient in design or are in serious need for repair due to additional load or deterioration.

  3. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.

    Science.gov (United States)

    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li

    2016-06-05

    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  5. Description of design and operating procedures of small scale pulsed columns for experimental study on extraction process under abnormal conditions

    International Nuclear Information System (INIS)

    Wakamatsu, Sachio; Sato, Makoto; Kubo, Nobuo; Sakurai, Satoshi; Ami, Norio

    1990-09-01

    To study transient phenomena in a pulsed column co-decontamination process under abnormal conditions, a pair of small scale pulsed columns (effective extraction section; I.D: 25 mm, H.: 2260 mm) for extraction and scrub were installed in the laboratory. An evaporator of aqueous uranium solution was also equipped to reuse concentrated solution as the feed. This report describes several items to have been carefully treated in design, specification and operating procedure of the apparatuses for the experiments. Also described are the procedures for preparation of the feed solutions and treatments of the solutions after the experiments; back-extraction of uranium, diluent washing, alkaline washing and concentration of uranium solution. (author)

  6. Job embeddedness and nurse retention.

    Science.gov (United States)

    Reitz, O Ed; Anderson, Mary Ann; Hill, Pamela D

    2010-01-01

    Nurse retention is a different way of conceptualizing the employer-employee relationship when compared with turnover. Job embeddedness (JE), a construct based on retention, represents the sum of reasons why employees remain at their jobs. However, JE has not been investigated in relation to locale (urban or rural) or exclusively with a sample of registered nurses (RNs). The purpose of this study was to determine what factors (JE, age, gender, locale, and income) help predict nurse retention. A cross-sectional mailed survey design was used with RNs in different locales (urban or rural). Job embeddedness was measured by the score on the composite, standardized instrument. Nurse retention was measured by self-report items concerning intent to stay. A response rate of 49.3% was obtained. The typical respondent was female (96.1%), white, non-Hispanic (87.4%), and married (74.9%). Age and JE were predictive of nurse retention and accounted for 26% of the explained variance in intent to stay. Although age was a significant predictor of intent to stay, it accounted for only 1.4% of the variance while JE accounted for 24.6% of the variance of nurse retention (as measured by intent to stay). Older, more "embedded" nurses are more likely to remain employed in their current organization. Based on these findings, JE may form the basis for the development of an effective nurse retention program.

  7. The Causal Effects of Grade Retention on Behavioral Outcomes

    Science.gov (United States)

    Martorell, Paco; Mariano, Louis T.

    2018-01-01

    This study examines the impact of grade retention on behavioral outcomes under a comprehensive assessment-based student promotion policy in New York City. To isolate the causal effect of grade retention, we implement a fuzzy regression discontinuity (RD) design that exploits the fact that grade retention is largely determined by whether a student…

  8. Uncertain Buckling Load and Reliability of Columns with Uncertain Properties

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Continuous and finite element methods are utilized to determine the buckling load of columns with material and geometrical uncertainties considering deterministic, stochastic and interval models for the bending rigidity of columns. When the bending rigidity field is assumed to be deterministic, t....... for structural design, the lower bound is of crucial interest. The buckling load of fixed-free, simple-supported, pinned-fixed, fixed-fixed columns and a sample frame are calculated....

  9. Design of Batch Distillation Columns Using Short-Cut Method at Constant Reflux

    Directory of Open Access Journals (Sweden)

    Asteria Narvaez-Garcia

    2013-01-01

    Full Text Available A short-cut method for batch distillation columns working at constant reflux was applied to solve a problem of four components that needed to be separated and purified to a mole fraction of 0.97 or better. Distillation columns with 10, 20, 30, 40, and 50 theoretical stages were used; reflux ratio was varied between 2 and 20. Three quality indexes were used and compared: Luyben’s capacity factor, total annual cost, and annual profit. The best combinations of theoretical stages and reflux ratio were obtained for each method. It was found that the best combinations always required reflux ratios close to the minimum. Overall, annual profit was the best quality index, while the best combination was a distillation column with 30 stages, and reflux ratio’s of 2.0 for separation of benzene (i, 5.0 for the separation of toluene (ii, and 20 for the separation of ethylbenzene (iii and purification of o-xylene (iv.

  10. Improved focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Mui, P.H.; Szilagyi, M.

    1995-01-01

    Our earlier design procedures for constructing quadrupole columns are further expanded to include octupole corrector units and ''octupole'' deflectors with no third-order harmonics. The additional complications are finer partitioning of the plates and increased number of voltage controllers. Two sample designs, one having only the additional octupole deflectors and one having both the deflectors and the correctors, are presented and compared to our previous quadrupole system. The additional octupole components are shown to be capable of increasing the current density from 30% to more than 300% for a four-plate system, designed to focus and scan the electron beam over a circular area of 0.25 mm radius. The electron beam is assumed to have an initial divergence of ±2.3 mrad, an initial energy of 6 kV, a total energy spread of 1 eV, and a final acceleration of 30 keV. These systems are then slightly reoptimized for a superficial comparison with the commercially available column by Micrion Corporation. The numerical results indicate a potential for substantial improvements, demonstrating the power of this design procedure. Finally, a discussion is presented on how the individual components can interact with each other to reduce the various aberrations. copyright 1995 American Vacuum Society

  11. Prediction of gradient retention data for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides.

    Science.gov (United States)

    Vaňková, Nikola; Česla, Petr

    2017-02-17

    In this work, we have investigated the predictive properties of mixed-mode retention model and oligomeric mixed-mode model, taking into account the contribution of monomeric units to the retention, in hydrophilic interaction liquid chromatography. The gradient retention times of native maltooligosaccharides and their fluorescent derivatives were predicted in the oligomeric series with number of monomeric glucose units in the range from two to seven. The maltooligosaccharides were separated on a packed column with carbamoyl-bonded silica stationary phase and 15 gradient profiles with different initial and final mobile phase composition were used with the gradient times 5; 7.5 and 10min. The predicted gradient retention times were compared for calculations based on isocratic retention data and gradient retention data, which provided better accuracy of the results. By comparing two different mobile phase additives, the more accurate retention times were predicted in mobile phases containing ammonium acetate. The acidic derivatives, prepared by reaction of an oligosaccharide with 2-aminobenzoic acid or 8-aminonaphthalene-1,3,6-trisulfonic acid, provided more accurate predictions of the retention data in comparison to native oligosaccharides or their neutral derivatives. The oligomeric mixed-mode model allowed prediction of gradient retention times using only one gradient profile, which significantly speeded-up the method development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    International Nuclear Information System (INIS)

    Kazarian, Artaches A.; Sanz Rodriguez, Estrella; Deverell, Jeremy A.; McCord, James; Muddiman, David C.; Paull, Brett

    2016-01-01

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L"−"1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min"−"1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L"−"1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  13. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  14. Comparison of three different C18 HPLC columns with different particle sizes for the optimization of aflatoxins analysis.

    Science.gov (United States)

    Medina, A; Magan, N

    2012-03-15

    In this work we compared the performance of chromatography columns with particles of 5 and 3 μm with the new 2.7 μm solid core particles for the analysis of aflatoxins B1, G1, B2, and G2 using trifluoroacetic acid pre-column derivatization. Three different columns have been used and chromatographic parameters as retention time, resolution, limit of detection (LOD), limit of quantification (LOQ) were obtained from all of them and compared. The results show that comparing with the traditional columns, shorter columns (100 mm × 4.6 mm) with the new solid core particles are suitable for the analysis of these mycotoxins and allowed the reduction of the analysis time by 45.5% and 33.3% with respect to columns with particle size 5 μm (150 mm × 4.6 mm) and 3 μm (150 mm × 4.6 mm) respectively, without any detrimental effect on performance. This leads to the reduction of the analysis costs by saving on organic solvents and increasing the total number of analyses per day. The capability of these columns for analyzing samples, in different culture media, was assessed by analyzing different samples from: yeasts extract sucrose medium, corn meal agar medium and fresh hazelnut media. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Record Retention Practices among the Nation's “Most Wired” Hospitals

    OpenAIRE

    Rinehart-Thompson, Laurie A.

    2008-01-01

    This exploratory study examined health record retention practices among health information management professionals in acute care general hospitals in the United States. A descriptive research design was used, and data were collected using a self-reporting survey. Respondents answered questions about record retention policies, the responsibility of health information professionals in policy administration, record retention periods, factors that determine retention periods, and other informati...

  16. Accurate prediction of retention in hydrophilic interaction chromatography by back calculation of high pressure liquid chromatography gradient profiles.

    Science.gov (United States)

    Wang, Nu; Boswell, Paul G

    2017-10-20

    Gradient retention times are difficult to project from the underlying retention factor (k) vs. solvent composition (φ) relationships. A major reason for this difficulty is that gradients produced by HPLC pumps are imperfect - gradient delay, gradient dispersion, and solvent mis-proportioning are all difficult to account for in calculations. However, we recently showed that a gradient "back-calculation" methodology can measure these imperfections and take them into account. In RPLC, when the back-calculation methodology was used, error in projected gradient retention times is as low as could be expected based on repeatability in the k vs. φ relationships. HILIC, however, presents a new challenge: the selectivity of HILIC columns drift strongly over time. Retention is repeatable in short time, but selectivity frequently drifts over the course of weeks. In this study, we set out to understand if the issue of selectivity drift can be avoid by doing our experiments quickly, and if there any other factors that make it difficult to predict gradient retention times from isocratic k vs. φ relationships when gradient imperfections are taken into account with the back-calculation methodology. While in past reports, the accuracy of retention projections was >5%, the back-calculation methodology brought our error down to ∼1%. This result was 6-43 times more accurate than projections made using ideal gradients and 3-5 times more accurate than the same retention projections made using offset gradients (i.e., gradients that only took gradient delay into account). Still, the error remained higher in our HILIC projections than in RPLC. Based on the shape of the back-calculated gradients, we suspect the higher error is a result of prominent gradient distortion caused by strong, preferential water uptake from the mobile phase into the stationary phase during the gradient - a factor our model did not properly take into account. It appears that, at least with the stationary phase

  17. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  18. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  19. Sequence-Specific Model for Peptide Retention Time Prediction in Strong Cation Exchange Chromatography.

    Science.gov (United States)

    Gussakovsky, Daniel; Neustaeter, Haley; Spicer, Victor; Krokhin, Oleg V

    2017-11-07

    The development of a peptide retention prediction model for strong cation exchange (SCX) separation on a Polysulfoethyl A column is reported. Off-line 2D LC-MS/MS analysis (SCX-RPLC) of S. cerevisiae whole cell lysate was used to generate a retention dataset of ∼30 000 peptides, sufficient for identifying the major sequence-specific features of peptide retention mechanisms in SCX. In contrast to RPLC/hydrophilic interaction liquid chromatography (HILIC) separation modes, where retention is driven by hydrophobic/hydrophilic contributions of all individual residues, SCX interactions depend mainly on peptide charge (number of basic residues at acidic pH) and size. An additive model (incorporating the contributions of all 20 residues into the peptide retention) combined with a peptide length correction produces a 0.976 R 2 value prediction accuracy, significantly higher than the additive models for either HILIC or RPLC. Position-dependent effects on peptide retention for different residues were driven by the spatial orientation of tryptic peptides upon interaction with the negatively charged surface functional groups. The positively charged N-termini serve as a primary point of interaction. For example, basic residues (Arg, His, Lys) increase peptide retention when located closer to the N-terminus. We also found that hydrophobic interactions, which could lead to a mixed-mode separation mechanism, are largely suppressed at 20-30% of acetonitrile in the eluent. The accuracy of the final Sequence-Specific Retention Calculator (SSRCalc) SCX model (∼0.99 R 2 value) exceeds all previously reported predictors for peptide LC separations. This also provides a solid platform for method development in 2D LC-MS protocols in proteomics and peptide retention prediction filtering of false positive identifications.

  20. Soft sensor based composition estimation and controller design for an ideal reactive distillation column.

    Science.gov (United States)

    Vijaya Raghavan, S R; Radhakrishnan, T K; Srinivasan, K

    2011-01-01

    In this research work, the authors have presented the design and implementation of a recurrent neural network (RNN) based inferential state estimation scheme for an ideal reactive distillation column. Decentralized PI controllers are designed and implemented. The reactive distillation process is controlled by controlling the composition which has been estimated from the available temperature measurements using a type of RNN called Time Delayed Neural Network (TDNN). The performance of the RNN based state estimation scheme under both open loop and closed loop have been compared with a standard Extended Kalman filter (EKF) and a Feed forward Neural Network (FNN). The online training/correction has been done for both RNN and FNN schemes for every ten minutes whenever new un-trained measurements are available from a conventional composition analyzer. The performance of RNN shows better state estimation capability as compared to other state estimation schemes in terms of qualitative and quantitative performance indices. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Control characteristics of cryogenic distillation column with a feedback stream for fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1997-01-01

    The control characteristics of the cryogenic distillation column with a feedback stream have been discussed based on computer simulation results. This column plays an important role in fusion reactor. A new control system was proposed from the simulation results. The flow rate of top product is determined from the composition and flow rate of a main feed stream by a feedforward control loop. The flow rates of the feedback stream and vapor stream within the column are proportionally changed with a corresponding change of feed flow rate. The flow rate of vapor stream within the column is further adjusted to maintain product purity by a feedback control loop. The proposed system can control the product purity for a large fluctuation of feed composition, a change of feed flow rate, and an increase or decrease of the number of total theoretical stages of the column. The control system should be designed for each column by considering its operating conditions and function. The present study gives us a basic procedure for the design method of the control system of the cryogenic distillation column. (author)

  2. Implementation of Quality by Design for Formulation of Rebamipide Gastro-retentive Tablet.

    Science.gov (United States)

    Ha, Jung-Myung; Seo, Jeong-Woong; Kim, Su-Hyeon; Kim, Ju-Young; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok

    2017-11-01

    The purpose of the present study was to develop a rebamipide (RBM) gastro-retentive (GR) tablet by implementing quality by design (QbD). RBM GR tablets were prepared using a sublimation method. Quality target product profile (QTPP) and critical quality attributes (CQAs) of the RBM GR tablets were defined according to the preliminary studies. Factors affecting the CQAs were prioritized using failure mode and effects analysis (FMEA). Design space and optimum formulation were established through a mixture design. The validity of the design space was confirmed using runs within the area. The QTPP of the RBM GR tablets was the orally administered GR tablet containing 300 mg of RBM taken once daily. Based on the QTPP, dissolution rate, tablet friability, and floating property were chosen as CQAs. According to the risk assessment, the amount of sustained-release agent, sublimating material, and diluent showed high-risk priority number (RPN) values above 40. Based on the RPN, these factors were further investigated using mixture design methodology. Design space of formulations was depicted as an overlaid contour plot and the optimum formulation to satisfy the desired responses was obtained by determining the expected value of each response. The similarity factor (f2) of the release profile between predicted response and experimental response was 89.463, suggesting that two release profiles are similar. The validity of the design space was also confirmed. Consequently, we were able to develop the RBM GR tablets by implementing the QbD concept. These results provide useful information for development of tablet formulations using the QbD.

  3. Design and simulation of a 30 kV, 60 kW electron optical column for melting applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sachin; Kandaswamy, E.; Bapat, A.V., E-mail: saching@barc.gov.in [Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Electron beam offers unique advantages as a heat source for melting of refractory metals. It provides contamination free homogeneous melting with precise heat control on the melt target. This paper reports the complete electron optics design procedure for a 30 kV, 60 kW melting gun. The design objective of the electron optical column is to obtain the required power density on the target (10{sup 3}-10{sup 4} W/cm{sup 2}) using electrostatic and electromagnetic lenses. The design constrains are to minimize the high voltage discharges in the gun and beam losses in the beam transport. The challenging task of reducing the electrical discharges in the gun during high power melting with the help of twin electromagnetic lenses is presented in the paper. (author)

  4. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  5. Circulation, retention, and mixing of waters within the Weddell-Scotia Confluence, Southern Ocean: The role of stratified Taylor columns

    Science.gov (United States)

    Meredith, Michael P.; Meijers, Andrew S.; Naveira Garabato, Alberto C.; Brown, Peter J.; Venables, Hugh J.; Abrahamsen, E. Povl; Jullion, Loïc.; Messias, Marie-José

    2015-01-01

    The waters of the Weddell-Scotia Confluence (WSC) lie above the rugged topography of the South Scotia Ridge in the Southern Ocean. Meridional exchanges across the WSC transfer water and tracers between the Antarctic Circumpolar Current (ACC) to the north and the subpolar Weddell Gyre to the south. Here, we examine the role of topographic interactions in mediating these exchanges, and in modifying the waters transferred. A case study is presented using data from a free-drifting, intermediate-depth float, which circulated anticyclonically over Discovery Bank on the South Scotia Ridge for close to 4 years. Dimensional analysis indicates that the local conditions are conducive to the formation of Taylor columns. Contemporaneous ship-derived transient tracer data enable estimation of the rate of isopycnal mixing associated with this column, with values of O(1000 m2/s) obtained. Although necessarily coarse, this is of the same order as the rate of isopycnal mixing induced by transient mesoscale eddies within the ACC. A picture emerges of the Taylor column acting as a slow, steady blender, retaining the waters in the vicinity of the WSC for lengthy periods during which they can be subject to significant modification. A full regional float data set, bathymetric data, and a Southern Ocean state estimate are used to identify other potential sites for Taylor column formation. We find that they are likely to be sufficiently widespread to exert a significant influence on water mass modification and meridional fluxes across the southern edge of the ACC in this sector of the Southern Ocean.

  6. Alpha-contained laboratory scale pulse column facility for SRL

    International Nuclear Information System (INIS)

    Reif, D.J.; Cadieux, J.R.; Fauth, D.J.; Thompson, M.C.

    1980-01-01

    For studying solvent extraction processes, a laboratory-sized pulse column facility was constructed at the Savannah River Laboratory. This facility, in conjunction with existing miniature mixer-settler equipment and the centrifugal contactor facility currently under construction at SRL, provides capability for cross comparison of solvent extraction technology. This presentation describes the design and applications of the Pulse Column Facility at SRL

  7. Equipment for automatic measurement of gamma activity distribution in a column

    International Nuclear Information System (INIS)

    Kalincak, M.; Machan, V.; Vilcek, S.; Balkovsky, K.

    1978-01-01

    The design of a device for stepwise scanning of gamma activity distributions along chromatographic columns is described. In connection with a single-channel gamma spectrometer and a counting ratemeter with a recorder this device permits the resolution of a number of gamma emitters on the column, the determination of the gamma nuclide content in different chemical forms in the sample by means of column separation methods - Gel Chromatography Columns Scanning Method - and the determination of gamma nuclide distribution along the columns. The device permits the scanning of columns of up to 20 mm in diameter and 700 mm in length and continual scanning over a 450 mm column length with one clamping. With minor adaptations it is possible to scan columns up to 30 mm in diameter. The length of the scanned sections is 5 or 10 mm, the scanning time setting is arbitrary and variable activity levels and radiation energies may be measured. (author)

  8. Prediction of axial limit capacity of stone columns using dimensional analysis

    Science.gov (United States)

    Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

    2017-08-01

    Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

  9. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2016-10-05

    In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16–1.20%, RSD; n = 3) and column-to-column (0.26–2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. - Highlights: • First investigation on chromatographic selectivity of AlMA-DVB monolithic columns. • Good run-to-run/column-to-column repeatability (<3%) on AlMA-DVB monolithic columns. • Efficient separation of phenylurea herbicides and sulfonamides on AlMA-DVB columns.

  10. Experimental Verification of the Structural Glass Beam-Columns Strength

    Science.gov (United States)

    Pešek, Ondřej; Melcher, Jindřich; Balázs, Ivan

    2017-10-01

    This paper deals with experimental research of axially and laterally loaded members made of structural (laminated) glass. The purpose of the research is the evaluation of buckling strength and actual behaviour of the beam-columns due to absence of standards for design of glass load-bearing structures. The experimental research follows the previous one focusing on measuring of initial geometrical imperfections of glass members, testing of glass beams and columns. Within the frame of the research 9 specimens were tested. All of them were of the same geometry (length 2000 mm, width 200 mm and thickness 16 mm) but different composition - laminated double glass made of annealed glass or fully tempered glass panes bonded together by PVB or EVASAFE foil. Specimens were at first loaded by axial force and then by constantly increasing bending moment up to failure. During testing lateral deflections, vertical deflection and normal stresses at mid-span were measured. A maximum load achieved during testing has been adopted as flexural-lateral-torsional buckling strength. The results of experiments were statistically evaluated according to the European standard for design of structures EN 1990, appendix D. There are significant differences between specimens made of annealed glass or fully tempered glass. Differences between specimens loaded by axial forces 1 kN and 2 kN are negligible. The next step was to determine the design strength by calculation procedure based on buckling curves approach intended for design of steel columns and develop interaction criterion for glass beams-columns.

  11. A Modelling Framework for Conventional and Heat Integrated Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    of hydrocarbons such as separations of equimolar mixtures of benzene/toluene or propane/propene described by simple models, a generic, modular, model framework is presented in this work. At present, the framework is able to describe a conventional distillation column, a mechanical vapor recompression column......Diabatic operation of distillation columns can lead to signicant reductions in energy utilization and operation cost compared to conventional (adiabatic) distillation columns, at an expense of an increased complexity of design and operation. The earliest diabatic distillation conguration dates back...... to the late 70s, and various dierent congurations have appeared since. However, at present, no full-scale diabatic distillation columns are currently operating in the industry. Current studies related to alternative distillation congurations report very dierent gures for potential energy savings which...

  12. Column Liquid Chromatography.

    Science.gov (United States)

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  13. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor

    Directory of Open Access Journals (Sweden)

    Mostafa Chakir

    2017-01-01

    Full Text Available The CMOS Monolithic Active Pixel Sensor (MAPS for the International Linear Collider (ILC vertex detector (VXD expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC. This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18 μm CMOS process with a pixel pitch of 35 μm. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76 μm2. The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/−0.0787 LSB and 0.0811/−0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.

  14. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor.

    Science.gov (United States)

    Chakir, Mostafa; Akhamal, Hicham; Qjidaa, Hassan

    2017-01-01

    The CMOS Monolithic Active Pixel Sensor (MAPS) for the International Linear Collider (ILC) vertex detector (VXD) expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC). This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18  μ m CMOS process with a pixel pitch of 35  μ m. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76  μ m 2 . The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/-0.0787 LSB and 0.0811/-0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.

  15. Multi-column adsorption systems with condenser for tritiated water vapor removal

    International Nuclear Information System (INIS)

    Kotoh, Kenji; Kudo, Kazuhiko

    1996-01-01

    Two types of multi-column adsorption system are proposed as the system for removal of tritiated moisture from tritium process gases or/and handling room atmospheres. The types are of recycle use of adsorption columns, and are composed of twin or triplet columns and one condenser which is used for collecting the adsorbed moisture from columns in desorption process. The systems utilize the dry gas from a working column as the purge gas for regenerating a saturated column and appropriate an active column for recovery of the tritiated moisture passing through the condenser. Each column hence needs the additional amount of adsorbent for collecting the moisture from the condenser. In the modeling and design of an adsorption column, it is primary to estimate the necessary amount of a candidate adsorbent for its packed-bed. The performance of the proposed systems is examined here by analyzing the dependence of the necessary amount of adsorbent for their columns on process operational conditions and adsorbent moisture-adsorption characteristics. The result shows that the necessary amount is sensitive to the types of adsorption isotherm, and suggests that these systems should employ adsorbents which exhibit the Langmuir-type isotherms. (author)

  16. Seismic Performance of High-Ductile Fiber-Reinforced Concrete Short Columns

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2018-01-01

    Full Text Available This study mainly aims to investigate the effectiveness of high-ductile fiber-reinforced concrete (HDC as a means to enhance the seismic performance of short columns. Six HDC short columns and one reinforced concrete (RC short column were designed and tested under lateral cyclic loading. The influence of the material type (concrete or HDC, axial load, stirrup ratio, and shear span ratio on crack patterns, hysteresis behavior, shear strength, deformation capacity, energy dissipation, and stiffness degradation was presented and discussed, respectively. The test results show that the RC short column failed in brittle shear with poor energy dissipation, while using HDC to replace concrete can effectively improve the seismic behavior of the short columns. Compared with the RC short column, the shear strength of HDC specimens was improved by 12.6–30.2%, and the drift ratio and the energy dissipation increases were 56.9–88.5% and 237.7–336.7%, respectively, at the ultimate displacement. Additionally, the prediction model of the shear strength for RC columns based on GB50010-2010 (Chinese code can be safely adopted to evaluate the shear strength of HDC short columns.

  17. Multi-Column Experimental Test Bed Using CaSDB MOF for Xe/Kr Separation

    Energy Technology Data Exchange (ETDEWEB)

    Welty, Amy Keil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, Mitchell Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, Troy Gerry [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Processing of spent nuclear fuel produces off-gas from which several volatile radioactive components must be separated for further treatment or storage. As part of the Off-gas Sigma Team, parallel research at INL and PNNL has produced several promising sorbents for the selective capture of xenon and krypton from these off-gas streams. In order to design full-scale treatment systems, sorbents that are promising on a laboratory scale must be proven under process conditions to be considered for pilot and then full-scale use. To that end, a bench-scale multi-column system with capability to test multiple sorbents was designed and constructed at INL. This report details bench-scale testing of CaSDB MOF, produced at PNNL, and compares the results to those reported last year using INL engineered sorbents. Two multi-column tests were performed with the CaSDB MOF installed in the first column, followed with HZ-PAN installed in the second column. The CaSDB MOF column was placed in a Stirling cryocooler while the cryostat was employed for the HZ-PAN column. Test temperatures of 253 K and 191 K were selected for the first column while the second column was held at 191 K for both tests. Calibrated volume sample bombs were utilized for gas stream analyses. At the conclusion of each test, samples were collected from each column and analyzed for gas composition. While CaSDB MOF does appear to have good capacity for Xe, the short time to initial breakthrough would make design of a continuous adsorption/desorption cycle difficult, requiring either very large columns or a large number of smaller columns. Because of the tenacity with which Xe and Kr adhere to the material once adsorbed, this CaSDB MOF may be more suitable for use as a long-term storage solution. Further testing is recommended to determine if CaSDB MOF is suitable for this purpose.

  18. Seismic performance of recycled concrete-filled square steel tube columns

    Science.gov (United States)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  19. Designing Incentives for Marine Corps Cyber Workforce Retention

    Science.gov (United States)

    2014-12-01

    the workplace. In 2005, Basset-Jones and Lloyd examined the relevance of Herzberg’s (1959) two factor theory in the current work environment...Herzberg’s (1959) two factor theory of intrinsic factors with several other empirical studies which identified extrinsic factors as key motivational...answering two core research questions:  What are the critical retention issues that face the Marine Corps’ cyber workforce and what are the factors

  20. Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics.

    Science.gov (United States)

    Maboudi Afkham, Heydar; Qiu, Xuanbin; The, Matthew; Käll, Lukas

    2017-02-15

    Liquid chromatography is frequently used as a means to reduce the complexity of peptide-mixtures in shotgun proteomics. For such systems, the time when a peptide is released from a chromatography column and registered in the mass spectrometer is referred to as the peptide's retention time . Using heuristics or machine learning techniques, previous studies have demonstrated that it is possible to predict the retention time of a peptide from its amino acid sequence. In this paper, we are applying Gaussian Process Regression to the feature representation of a previously described predictor E lude . Using this framework, we demonstrate that it is possible to estimate the uncertainty of the prediction made by the model. Here we show how this uncertainty relates to the actual error of the prediction. In our experiments, we observe a strong correlation between the estimated uncertainty provided by Gaussian Process Regression and the actual prediction error. This relation provides us with new means for assessment of the predictions. We demonstrate how a subset of the peptides can be selected with lower prediction error compared to the whole set. We also demonstrate how such predicted standard deviations can be used for designing adaptive windowing strategies. lukas.kall@scilifelab.se. Our software and the data used in our experiments is publicly available and can be downloaded from https://github.com/statisticalbiotechnology/GPTime . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  1. Best practices in doctoral retention: Mentoring

    Directory of Open Access Journals (Sweden)

    Judie L. Brill

    2014-06-01

    Full Text Available  The aim of this critical literature review is to outline best practices in doctoral retention and the successful approach of one university to improve graduation success by providing effective mentorship for faculty and students alike. The focus of this literature review is on distance learning relationships between faculty and doctoral students, regarding retention, persistence, and mentoring models. Key phrases and words used in the search and focusing on mentoring resulted in over 20,000 sources. The search was narrowed to include only doctoral study and mentoring. Research questions of interest were: Why do high attrition rates exist for doctoral students? What are the barriers to retention? What are the benefits of doctoral mentoring? What programs do institutions have in place to reduce attrition? The researchers found a key factor influencing doctoral student retention and success is effective faculty mentorship. In particular, the design of a mentoring and faculty training program to increase retention and provide for success after graduation is important. This research represents a key area of interest in the retention literature, as institutions continue to search for ways to better support students during their doctoral programs and post-graduation. DOI: 10.18870/hlrc.v4i2.186

  2. Enhancing multi-component separation of aromatics with Kaibel columns and DWC

    NARCIS (Netherlands)

    Flores Landaeta, S.J.; Kiss, A.A.; Haan, de A.B.

    2012-01-01

    This study investigates novel schemes for an energy efficient separation of aromatics, based on a dividing-wall column (DWC) and a Kaibel distillation column. AspenTech Aspen Plus®was used as CAPE tool to perform rigorous simulations and optimization of the proposed designs applying a simplified

  3. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Smart controller based scaler rate-meter for gamma column scanning application

    International Nuclear Information System (INIS)

    Narender Reddy, J.; Dhanajay Reddy, Y.; Dheeraj Reddy, J.

    2001-01-01

    A smart, controller based Scaler Rate-meter with scintillation probe for Gamma column scanning has been developed and made available. Designed to have advanced features with state-of-art electronic devices, hardware features include built-in adj. HV, amplifier- SCA, controller based data acquisition card, LCD display module for visualization of, HV set, preset and elapsed times, counts/count rate, column height and other programmable parameters. User interface is through a built-in programmable key pad, for instrument control, data acquisition, storage. Powerful embedded software provides all the above functions. Unit has capability to store up to 5000 readings. Data readings stored can be downloaded into a PC/lap top to generate a plot of count rate Vs column height, which is a signature for the column under study. Scintillation Probe design facilitates connection to the main unit through a single cable, permitting lengths up to 30 meters from the main unit. (author)

  5. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  6. Conceptual analysis of single-feed heterogeneous distillation columns

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Martinez Riascos

    2015-05-01

    Full Text Available Separation in heterogeneous distillation columns is attained by interaction of two liquid and one vapor phases, interaction of three phases involves complexities due to the determination of vapor-liquid-liquid equilibrium and hence, in the design of separation units. Nevertheless, the liquid-liquid equilibrium allows developing separations that may be unfeasible by vapor-liquid equilibrium. In this way, heterogeneous azeotropic distillation is a useful operation for the separation of azeotropic and close-boiling mixtures. In this work, a new methodology for evaluating the feasibility of this process is developed. This methodology is an extension of that proposed by Castillo et al. (1998 for homogeneous systems. Operation leaves for heterogeneous systems are calculated using the concept of pinch point curves in order to establish the process feasibility. Heterogeneous columns with external decanter are considered as the only heterogeneous stage (OHED: only heterogeneous external decanter. The initialization process for the column calculation requires the selection of the distillate composition using thermodynamic criteria in order to guarantee homogeneous phases within the column. A system with industrial and academic relevance was considered as case study: water-acetic acid-amyl acetate. Results show that the developed shortcut method allows evaluating process feasibility and estimating design parameters, without the use of trial and error procedures implemented, with the aid of simulation tools.

  7. STUDY ON THE BEHAVIOUR OF PRECAST BEAM COLUMN JOINT USING STEEL PLATE CONNECTION (JPSP)

    OpenAIRE

    Parung, H.

    2012-01-01

    Joint beam column connection is the most critical part for a structure subjected to earthquake loading. This part should be designed such that any possible failure can be prevented. For a cast in situ structure, any failure in this joint can be prevented if all requirements in the design code are obeyed. For pre-cast construction, structural failure usually occurs at the beam-column connection. The research aimed at studying the strength of precast beam-column joint using steel plate as conne...

  8. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    Science.gov (United States)

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  9. Preparation and evaluation of open-tubular capillary columns modified with metal-organic framework incorporated polymeric porous layer for liquid chromatography.

    Science.gov (United States)

    Zhu, Manman; Zhang, Lingyi; Chu, Zhanying; Wang, Shulei; Chen, Kai; Zhang, Weibing; Liu, Fan

    2018-07-01

    An open tubular capillary liquid phase chromatographic column (1 m × 25 µm i.d.× 375 µm o.d.) was prepared by incorporating metal organic framework particles modified with vancomycin directly into zwitterionic polymer coating synthesized by the copolymerization of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide and N,N'-methylenebisacrylamide. The incorporation of IRMOF-3 (isoreticular metal organic framework-3) particles improved selectivity of zwitterionic polymer coating with absolute column efficiency reaching 79900 plates for p-xylene. Besides strong hydrophilic interaction, the separation of neutral, basic, and acidic compounds demonstrates that π-π stacking interaction and the coordination effect of unsaturated Zn 2+ of MOF also contribute to separation of various analytes. The RSD values (run-to-run, day-to-day, column-to-column, n = 3) of retention time of neutral compounds were less than 0.71%, 0.69% and 3.08% respectively, suggesting good repeatability. In addition, the column was applied to the analysis of the trypsin digest of bovine serum albumin, revealing the potential in separating biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Optimization of the bending stiffness of beam-to-column and column-to-foundation connections in precast concrete structures

    Directory of Open Access Journals (Sweden)

    R. R. R. COSTA

    Full Text Available Abstract This work involved the structural optimization of precast concrete rigid frames with semi-rigid beam-to-column connections. To this end, several frames were simulated numerically using the Finite Element Method. Beams and columns were modeled using bar elements and their connections were modeled using spring elements, with variable bending stiffness. The objective function was based on the search of the least stiff connection able to ensure the global stability of the building. Lastly, a connection model with optimal stiffness was adopted to design the frame. Semi-rigid beam-to-column connections with a constraint factors of 0.33 sufficed to ensure the maximum allowable horizontal displacement and bending moment of the connection, with a global stability parameter of 1.12. This confirms that even connections with low constraints generate significant gains from the structural standpoint, without affecting construction and assembly-related aspects.

  11. Artisan retention in an organisation in South Africa

    Directory of Open Access Journals (Sweden)

    Lariska van Rooyen

    2010-11-01

    Research purpose: The objective of this study was to investigate the factors that are important for artisan retention at a South African organisation. Motivation for the study: Organisations that employ artisans need to understand what the main reasons are for keeping or losing artisans from the perspective of the artisans themselves. This information can be used to plan and implement interventions to deal with artisan retention in organisations. Research design, approach and method: A qualitative design was used and a purposive sample was taken (n = 14. A biographical questionnaire was administered and semi-structured interviews were conducted to gather data from artisans. Main findings: Remuneration had the highest rank of all the factors for the retention of artisans, closely followed by development opportunities. Other factors that were perceived as important for artisan retention included equality, recognition, management and the working environment, and working relationships. Practical implications: Organisations that employ artisans should especially attend to their remuneration and development opportunities. Contribution: The results of this study add to the knowledge of why artisans remain with a specific organisation.

  12. The effect of graphic design materials on the retention level of viewers in prime time television newscasts

    OpenAIRE

    Ertep, Rifat Hakan

    1996-01-01

    Ankara : Institute of Economics and Social Sciences, Bilkent Univ., 1996. Thesis (Ph.D.) -- Bilkent University, 1996. Includes bibliographical references. This study investigates the role of graphic design materials in improving the recall and retention level of television news viewers, and examines the capacity and power of these materials to shape or distort people's perception of reality. To this end, two experiments have been conducted with the aim of providing an emp...

  13. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type

    DEFF Research Database (Denmark)

    Egemose, Sara; Sønderup, Melanie J.; Grudinina, Anna

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn...... difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds...... less than 1-2 years efficiently removed all metals, 30-40-year-old ponds only removed Pb, Ni and Zn, but steeply decreasing over the years. Physical parameters such as pond size, age and sedimentation patterns were found to play a more significant role in the removal compared with chemical parameters...

  14. Three column intermittent simulated moving bed chromatography: 3. Cascade operation for center-cut separations.

    Science.gov (United States)

    Jermann, Simon; Meijssen, Mattheus; Mazzotti, Marco

    2015-01-23

    A general design methodology for chromatographic three fraction separation by application of the three column intermittent simulated moving bed (3C-ISMB) cascade is proposed and experimentally validated by studying the purification of an intermediately retained stereoisomer of nadolol, from an equimolar mixture of its four stereoisomers. The theoretical part shows that the 3C-ISMB cascade can be easily designed by applying Triangle Theory. Moreover, a re-scaling approach for the second stage is proposed so as to account for the fact that the feed flow rates to stage 2 are generally higher as compared to stage 1 due to dilution in the latter. Scaling the columns of the second stage accordingly enables to run both stages under optimal conditions with respect to switching time and step ratio, which is an important advantage as compared to integrated ternary processes. The experimental part starts with studying the linear adsorption behavior of nadolol in heptane/ethanol/DEA on Chiralpak AD for varying ratios of heptane and ethanol. Based on that, a solvent composition of Hept/EtOH/DEA 30/70/0.3 (v/v/v) is selected and the competitive multi-component Langmuir isotherm of the quaternary mixture is determined by frontal analysis. The resulting isotherm parameters are used to design several first stage experiments aiming at removal of the most retained component. The resulting ternary intermediate product is reprocessed in several second stage experiments studying various configurations. Finally, the dilution of the intermediate product with Hept/DEA yielding a solvent composition of Hept/EtOH/DEA 60/40/0.3 (v/v/v) is examined showing that the resulting increase in retention is beneficial for final product purities. Moreover, the reduction in viscosity compensates for the dilution as it enables higher flow rates. Dilution of the intermediate product is hence the best option, yielding highest overall cascade productivity (2.10gl(-1)h(-1)) and highest product purity (97

  15. Generation of accurate peptide retention data for targeted and data independent quantitative LC-MS analysis: Chromatographic lessons in proteomics.

    Science.gov (United States)

    Krokhin, Oleg V; Spicer, Vic

    2016-12-01

    The emergence of data-independent quantitative LC-MS/MS analysis protocols further highlights the importance of high-quality reproducible chromatographic procedures. Knowing, controlling and being able to predict the effect of multiple factors that alter peptide RP-HPLC separation selectivity is critical for successful data collection for the construction of ion libraries. Proteomic researchers have often regarded RP-HPLC as a "black box", while vast amount of research on peptide separation is readily available. In addition to obvious parameters, such as the type of ion-pairing modifier, stationary phase and column temperature, we describe the "mysterious" effects of gradient slope, column size and flow rate on peptide separation selectivity. Retention time variations due to these parameters are governed by the linear solvent strength (LSS) theory on a peptide level by the value of its slope S in the basic LSS equation-a parameter that can be accurately predicted. Thus, the application of shallower gradients, higher flow rates, or smaller columns will each increases the relative retention of peptides with higher S-values (long species with multiple positively charged groups). Simultaneous changes to these parameters that each drive shifts in separation selectivity in the same direction should be avoided. The unification of terminology represents another pressing issue in this field of applied proteomics that should be addressed to facilitate further progress. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Experimental and numerical validation of the effective medium theory for the B-term band broadening in 1st and 2nd generation monolithic silica columns.

    Science.gov (United States)

    Deridder, Sander; Vanmessen, Alison; Nakanishi, Kazuki; Desmet, Gert; Cabooter, Deirdre

    2014-07-18

    Effective medium theory (EMT) expressions for the B-term band broadening in monolithic silica columns are presented at the whole-column as well as at the mesoporous skeleton level. Given the bi-continuous nature of the monolithic medium, regular as well as inverse formulations of the EMT-expressions have been established. The established expressions were validated by applying them to a set of experimental effective diffusion (Deff)-data obtained via peak parking on a number of 1st and 2nd generation monolithic silica columns, as well as to a set of numerical diffusion simulations in a simplified monolithic column representation (tetrahedral skeleton model) with different external porosities and internal diffusion coefficients. The numerically simulated diffusion data can be very closely represented over a very broad range of zone retention factors (up to k″=80) using the established EMT-expressions, especially when using the inverse variant. The expressions also allow representing the experimentally measured effective diffusion data very closely. The measured Deff/Dmol-values were found to decrease significantly with increasing retention factor, in general going from about Deff/Dmol=0.55 to 0.65 at low k″ (k″≅1.5-3.8) to Deff/Dmol=0.25 at very high k″ (k″≅40-80). These values are significantly larger than observed in fully-porous and core-shell particles. The intra-skeleton diffusion coefficient (Dpz) was typically found to be of the order of Dpz/Dmol=0.4, compared to Dpz/Dmol=0.2-0.35 observed in most particle-based columns. These higher Dpz/Dmol values are the cause of the higher Deff/Dmol values observed. In addition, it also appears that the higher internal diffusion is linked to the higher porosity of the mesoporous skeleton that has a relatively open structure with relatively wide pores. The observed (weak) relation between Dpz/Dmol and the zone retention factor appears to be in good agreement with that predicted when applying the regular

  17. Parametric soil water retention models: a critical evaluation of expressions for the full moisture range

    Science.gov (United States)

    Madi, Raneem; Huibert de Rooij, Gerrit; Mielenz, Henrike; Mai, Juliane

    2018-02-01

    Few parametric expressions for the soil water retention curve are suitable for dry conditions. Furthermore, expressions for the soil hydraulic conductivity curves associated with parametric retention functions can behave unrealistically near saturation. We developed a general criterion for water retention parameterizations that ensures physically plausible conductivity curves. Only 3 of the 18 tested parameterizations met this criterion without restrictions on the parameters of a popular conductivity curve parameterization. A fourth required one parameter to be fixed. We estimated parameters by shuffled complex evolution (SCE) with the objective function tailored to various observation methods used to obtain retention curve data. We fitted the four parameterizations with physically plausible conductivities as well as the most widely used parameterization. The performance of the resulting 12 combinations of retention and conductivity curves was assessed in a numerical study with 751 days of semiarid atmospheric forcing applied to unvegetated, uniform, 1 m freely draining columns for four textures. Choosing different parameterizations had a minor effect on evaporation, but cumulative bottom fluxes varied by up to an order of magnitude between them. This highlights the need for a careful selection of the soil hydraulic parameterization that ideally does not only rely on goodness of fit to static soil water retention data but also on hydraulic conductivity measurements. Parameter fits for 21 soils showed that extrapolations into the dry range of the retention curve often became physically more realistic when the parameterization had a logarithmic dry branch, particularly in fine-textured soils where high residual water contents would otherwise be fitted.

  18. A preliminary design and structural analysis on the central column for supporting the full 40 .deg. Sectors at tokamak in pit

    International Nuclear Information System (INIS)

    Nam, Kyoungo; Park, Hyun Ki; Kim, Dong Jin; Moon, Jaeh Wan; Kim, Byung Seok; Watson, Emma; Shaw, Robert

    2012-01-01

    The ITER Tokamak machine is composed of nine 40 .deg. sectors shaped of torus. Each 40.deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard VVTS. The VV/TFC/VVTS 40 .deg. sectors are sub assembled at assembly building respectively at sector sub assembly tool and then nine sub assembled 40 .deg. sectors are finally assembled at in-pit of Tokamak building. ITER sector assembly tools are the purpose built assembly tools to assemble nine 40 .deg. sectors into the complete ITER Tokamak machine at Tokamak in pit. Based on the design description document, final report prepared by the ITER organization (IO) and tooling requirements, Korea has carried out the conceptual and preliminary design of these assembly tools. Especially, the central column is the main tool, which is composed of some hollow cylinders, to support full nine 40 .deg. sectors at Tokamak in pit. Configuration and structural analysis of the central column are presented

  19. Mobile Learning and Student Retention

    Directory of Open Access Journals (Sweden)

    Bharat Inder Fozdar

    2007-06-01

    Full Text Available Student retention in open and distance learning (ODL is comparatively poor to traditional education and, in some contexts, embarrassingly low. Literature on the subject of student retention in ODL indicates that even when interventions are designed and undertaken to improve student retention, they tend to fall short. Moreover, this area has not been well researched. The main aim of our research, therefore, is to better understand and measure students’ attitudes and perceptions towards the effectiveness of mobile learning. Our hope is to determine how this technology can be optimally used to improve student retention at Bachelor of Science programmes at Indira Gandhi National Open University (IGNOU in India. For our research, we used a survey. Results of this survey clearly indicate that offering mobile learning could be one method improving retention of BSc students, by enhancing their teaching/ learning and improving the efficacy of IGNOU’s existing student support system. The biggest advantage of this technology is that it can be used anywhere, anytime. Moreover, as mobile phone usage in India explodes, it offers IGNOU easy access to a larger number of learners. This study is intended to help inform those who are seeking to adopt mobile learning systems with the aim of improving communication and enriching students’ learning experiences in their ODL institutions.

  20. Experimental and Numerical Study of FRP Encased Composite Concrete Columns

    Directory of Open Access Journals (Sweden)

    Mohsen Ishaghian

    2017-02-01

    Full Text Available A new type of composite column is presented and assessed through experimental testing and numerical modeling. The objective of this research is to investigate design options for a composite column without the use of ferrous materials. This is to avoid the current problem of deterioration of concrete due to expansion of rusting reinforcement members. Such a target can be achieved by replacing the steel reinforcement of concrete columns with pultruded I-shape glass FRP structural sections. The composite column utilizes a glass FRP tube that surrounds a pultruded I-section glass FRP, which is subsequently filled with concrete. The GFRP tube acts as a stay-in-place form in addition to providing confinement to the concrete. A total of four composite columns were tested under monotonic axial loading. The experimental ultimate capacity of each of the tested composite column was compared to the predicted numerical capacity using ANSYS program. The comparison showed that the predicted numerical values were in good agreement with the experimental ones.

  1. Comparison of the peak resolution and the stationary phase retention between the satellite and the planetary motions using the coil satellite centrifuge with counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives.

    Science.gov (United States)

    Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro

    2017-01-20

    Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω 1 ), the planet axis (ω 2 ) and the satellite axis (the central axis of the column) (ω 3 ) according to the following formula: ω 1 =ω 2 +ω 3 . Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3: 2: 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), and (1:4:5, v/v) for the upper mobile phase at (300:100:200rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω 2 and ω 3 under the constant revolution speed at ω 1 =300rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω 2 and ω 3 , while with the upper mobile phase these two values were sensitively varied according to the different combination of ω 2 and ω 3 . For example, when ω 2 =147 or 200rpm is used, no stationary phase was retained in the coiled column while ω 2 =150rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω 1 , ω 2 , ω 3 )=(300, 300, 0rpm) or (300, 0, 300rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300rpm) with the upper mobile phase. At lower rotation speed of ω 1 =300rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω 3 ) than by the planetary motion (ω 2 ), or ω 3 >ω 2 . The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase

  2. Nine Words - Nine Columns

    DEFF Research Database (Denmark)

    Trempe Jr., Robert B.; Buthke, Jan

    2016-01-01

    This book records the efforts of a one-week joint workshop between Master students from Studio 2B of Arkitektskolen Aarhus and Master students from the Harbin Institute of Technology in Harbin, China. The workshop employed nine action words to instigate team-based investigation into the effects o...... as formwork for the shaping of wood veneer. The resulting columns ‘wear’ every aspect of this design pipeline process and display the power of process towards an architectural resolution....

  3. Column-Oriented Database Systems (Tutorial)

    NARCIS (Netherlands)

    D. Abadi; P.A. Boncz (Peter); S. Harizopoulos

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as

  4. Natural Water Retention Measures (NWRM): from Design to Implementation through European Projects

    International Nuclear Information System (INIS)

    Magdaleno Mas, F.; Dalacamara Andres, G.

    2015-01-01

    The Centre for Applied Technique Studies (CETA) of CEDEX has been working over the last few years in different European projects related with the design and development of natural water retention measures (NWRM). These are a number of measures, boosted by the Water Unit of the Environment Directorate-General of the European Commission. with close links to green infrastructures, which try to integrate, from a multifunctional approach, different legal and technical requirements aimed at a better adaptation to extreme hydro meteorological events, environmental protection and conservation, and maintenance of ecosystem services. This paper reviews the underpinning foundations of the concept and the mechanisms for designing and implementing NWRM. It also shows the way they can be applied, by presenting different initiatives developed by CETA since 2008 in Navarra (Arga-Aragon rivers system). For fulfilling those works, CETA has collaborated with environmental and hydraulic authorities of Navarra. It has also actively cooperated with research centres, such as the Institute IMDEA Water. specifically in a European project devoted to the diffusion, assessment, and presentation of NWRM within the context of the EU River Basin Districts. (Author)

  5. Manager impact on retention of hospital staff: Part 2.

    Science.gov (United States)

    Taunton, R L; Krampitz, S D; Woods, C Q

    1989-04-01

    This is the second article in a two-part series based on a study of the impact of middle managers on retention of 71 hospital professionals. Research design, methods, and descriptive results were presented in Part 1 (March 1989). In Part 2, the impact of managers' motivation to manage, power, influence, and leadership style on retention is detailed. Recommendations for improving retention include interventions to increase employee job satisfaction and intent to stay, and to improve managers' performance and leadership.

  6. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    Science.gov (United States)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  7. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  8. Leadership training to improve nurse retention.

    Science.gov (United States)

    Wallis, Allan; Kennedy, Kathy I

    2013-05-01

    This paper discusses findings from an evaluation of a training programme designed to promote collaborative, team-based approaches to improve nurse retention within health care organizations. A year-long leadership training programme was designed and implemented to develop effective teams that could address retention challenges in a diverse set of organizations in Colorado ranging from public, private to non-profit. An evaluation, based on a combination of participant observation, group interviews, and the use of standardized tests measuring individual emotional intelligence and team dynamics was conducted to assess the effectiveness of the training programme. What role do the emotional intelligence of individual members and organizational culture play in team effectiveness? Out of five teams participating in the training programme, two performed exceptionally well, one experienced moderate success and two encountered significant problems. Team dynamics were significantly affected by the emotional intelligence of key members holding supervisory positions and by the existing culture and structure of the participating organizations. Team approaches to retention hold promise but require careful development and are most likely to work where organizations have a collaborative problem-solving environment. © 2012 Blackwell Publishing Ltd.

  9. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  10. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  11. Column-Oriented Database Systems (Tutorial)

    OpenAIRE

    Abadi, D.; Boncz, Peter; Harizopoulos, S.

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as opposed to traditional database systems that store entire records (rows) one after the other. Reading a subset of a table’s columns becomes faster, at the potential expense of excessive disk-head s...

  12. Discussion on the Influence of Various Technological Parameters on Jet Grouting Columns Geometry

    Directory of Open Access Journals (Sweden)

    Bzówka Joanna

    2015-06-01

    Full Text Available One of the most popular elements created by using jet grouting technology are columns. During designing such columns, it is a problem of estimating their shape and dimensions. The main factors that influence on columns geometry are soil characteristic and technological parameters. At the frame of Authors scientific research, following technological factors were taken into account: system of jet grouting, injection pressure, dimension of nozzles and rotation speed during injection. In the paper some results of the field tests of jet grouting columns are presented

  13. Design of punching shear for prestressed slabs with unbonded tendons on internal columns

    Directory of Open Access Journals (Sweden)

    L. A. R. Luchi

    Full Text Available ABSTRACT This paper is related to the punching shear in prestressed slabs with unbonded tendons for interior columns calculated by the codes ABNT NBR 6118:2007, ABNT NBR 6118:2014, EN 1992-1-1:2004 e ACI 318-11. To calculate the punching shear resistance the formulations of the NBR 6118:07, effective until April/2014, did not consider the compression of the concrete in the plane of the slab, due to prestressing. Just the inclined components of some tendons were considered for total load applied relief, but this fact did not generate a significant difference, compared to reinforced concrete, because the inclination angle is very close to zero. The American and European provisions consider a portion related to the compression of the concrete in the planeof the slab. Differences in the results obtained by the four design codes will be exposed, showing that the EC2:04 and the NBR6118:14 achieved the best results.

  14. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  15. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.

    2005-01-01

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  16. Improvements in solvent extraction columns

    International Nuclear Information System (INIS)

    Aughwane, K.R.

    1987-01-01

    Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)

  17. Applicability of zeolites in potassium and nitrate retention in different soil types

    Directory of Open Access Journals (Sweden)

    Pavlović Jelena B.

    2017-01-01

    Full Text Available Environmental protection and sustainable agricultural production require the use of inexpensive and environmentally acceptable soil supplements. Objectives of this study were to investigate the influence of the addition of the natural zeolite – clinoptilolite (NZ and its iron(III-modified form (FeZ on the potassium and nitrate leaching from sandy, silty loam and silty clay soils. The zeolites were added in two amounts: 0.5 (FeZ and 1.0 wt. % (NZ and FeZ. The experiments were carried out in columns organized in eight experimental systems containing unamended (control specimens and amended soils. The concentration of K+ and NO3–N in the leachates was monitored during 7 days. The obtained results indicate that the K+ and NO3–N leaching mainly depends on the soil type and pH of the soil. The NZ and FeZ addition has the highest impact on the K+ retention in the acidic sandy soil. The highest NO3–N retention is obtained with FeZ in acidic silty loam soil. The K+ leaching kinetics for all the studied soils follow the Avrami kinetics model with the parameter n < 1. This study demonstrates that NZ and FeZ can be a good soil supplement for the K+ retention for all studied soils and in the NO3–N retention for silty loam and silty clay soils. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172018

  18. Correlations between retention indices and molecular structure of their benzoyl derivatives on phenyl substituted polysiloxane stationary phases

    International Nuclear Information System (INIS)

    Pias, J.B.; Gasco, L.

    1976-01-01

    The retention indices of aliphaticalcohols of carbon number up to Csub(g), and of their benzoyl derivatives up to C 7 , were determined in columns packed with Chromosorb G (AW-DMCS-HP) coated previously with 5% methyl, and methyl phenyl polysiloxanes with increasing polarity (SE-30, OV-3, OV-7; OV-11, OV-17 and OV-25). Correlations between retention indices and chain length for 1-alcohols, 2-alcohols, 3-alcohols, 1, on -3-alcohols, 2-methyl-1-alcohols and for their corresponding benzoyl derivatives were calculated at 100, 120 and 140 0 C. In alcohols, a -CH 2 - group increases I approximately 100 units, and in their benzoyl derivatives from 80 to 100 units. Dispersion indices ΔI, and positional and structural increments of I were evaluated for -OH and benzoyl groups in terms for phase polarity and chain length. Effects of chain length, chain branching and double bond location on retention parameters were also studied. (author)

  19. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm

    International Nuclear Information System (INIS)

    Jiang, Xujia; Wang, Xueting; Tong, Meiping; Kim, Hyunjung

    2013-01-01

    The significance of biofilm on the transport and deposition behaviors of ZnO nanoparticles were examined under a series of environmentally relevant ionic strength at two fluid velocities of 4 m-d −1 and 8 m-d −1 . Biofilm enhanced nanoparticles retention in porous media under all examined conditions. The greater deposition was also observed in extracellular polymeric substances (EPS) coated surfaces by employment of quartz microbalance with dissipation (QCM-D) system. Derjaguin–Landau–Verwey–Overbeek (DLVO) failed to interpret more ZnO nanoparticles deposition on biofilm (EPS) coated silica surfaces. Chemical interaction and physical morphology of biofilm contributed to this greater deposition (retention). Biofilm affected the spacial distribution of retained ZnO nanoparticles as well. Relatively steeper slope of retained profiles were observed in the presence of biofilm, corresponding to the greater deviation from colloid filtration theory (CFT). Pore space constriction via biofilm induced more nanoparticle trapped in the column inlet, leading to greater deviations (σln k f ) from the CFT. Highlights: ► Biofilm reduced the mobility of ZnO nanoparticles in column. ► DLVO and non-DLVO interactions contributed the more nanoparticles deposition. ► Biofilm also affected the spacial distribution of ZnO nanoparticles in column. ► Greater deviation from classic filtration theory was observed with biofilm. ► Physical structure of biofilm induced greater deviation from log-linear prediction. -- Biofilm enhanced ZnO nanoparticle deposition and altered spacial distribution in porous media

  20. The Design of Sample Driver System for Gamma Irradiator Facility at Thermal Column of Kartini Reactor

    International Nuclear Information System (INIS)

    Suyamto; Tasih Mulyono; Setyo Atmojo

    2007-01-01

    The design and construction of sample driver system for gamma irradiator facility at thermal column of Kartini reactor post operation has been carried out. The design and construction is based on the space of thermal column and the sample speed rotation which has to as low as possible in order the irradiation process can be more homogeneity. The electrical and mechanical calculation was done after fixation the electrical motor and transmission system which will be applied. By the assumption that the maximum sample weight is 50 kg, the electric motor specification is decided due to its rating i.e. single phase induction motor, run capacitor type, 0.5 HP; 220 V; 3.61 A, CCW and CW, rotation speed 1430 rpm. To achieve the low load rotation speed, motor speed was reduced twice using the conical reduction gear with the reduction ratio 3.9 and thread reduction gear with the reduction ratio 60. From the calculation it is found that power of motor is 118.06 watt, speed rotation of load sample is 6.11 rpm due to the no load rotation of motor 1430 rpm. From the test by varying weight of load up to 75 kg it is known that the device can be operated in a good condition, both in the two direction with the average speed of motor 1486 rpm and load 6.3 rpm respectively. So that the slip is 0.268 % and 0.314 % for no load and full load condition. The difference input current to the motor during no load and full load condition is relative small i.e. 0.14 A. The safety factor of motor is 316 % which is correspond to the weight of load 158 kg. (author)

  1. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar

    International Nuclear Information System (INIS)

    Beesley, Luke; Marmiroli, Marta

    2011-01-01

    Water-soluble inorganic pollutants may constitute an environmental toxicity problem if their movement through soils and potential transfer to plants or groundwater is not arrested. The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). Sorption of Cd and Zn to biochar's surfaces assisted a 300 and 45-fold reduction in their leachate concentrations, respectively. Retention of both metals was not affected by considerable leaching of water-soluble carbon from biochar, and could not be reversed following subsequent leaching of the sorbant biochar with water at pH 5.5. Weakly water-soluble As was also retained on biochar's surface but leachate concentrations did not duly decline. It is concluded that biochar can rapidly reduce the mobility of selected contaminants in this polluted soil system, with especially encouraging results for Cd. - Research highlights: → The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). We highlight the following results from this study: → Large surface area and surface sorption of Cd and Zn to biochar reduces the concentrations of these metals in leachates from a contaminated soil 300 and 45-fold respectively. → Metal retention was not reversible by continued leaching of the sorbant biochar. → Biochar increased leachate pH and water-soluble carbon but this did not appear to be detrimental to its effects and may aid retention of Cd. → Although some arsenic was sorbed to biochar, leachate concentrations were not duly reduced. → Developments in micro-analyses techniques will allow more detailed exploration of the encouraging results seen here with regards to interior

  2. Research on the separation properties of empty-column gas chromatography (EC-GC) and conditions for simulated distillation (SIMDIS).

    Science.gov (United States)

    Boczkaj, Grzegorz; Kamiński, Marian

    2013-10-01

    Previous studies have revealed it is possible to separate a high-boiling mixture by gas chromatography in empty fused-silica capillary tubing rather than in columns coated with stationary phase. Chromatographic separation occurs solely on the basis of the different boiling points of the substances separated. The high similarity of such separations to those in classic distillation seems advantageous when gas chromatography is used for simulated distillation. This paper presents results from further research on the separation properties of empty fused silica tubing. The efficiency of this chromatographic system has been examined. The usefulness of such conditions has been studied for simulated distillation, i.e. to determine the boiling-point distribution of complex mixtures, mainly petroleum fractions and products, on the basis of their retention relative to reference substances. The results obtained by use of empty-column gas chromatography (EC-GC) and by use of classical simulated distillation columns have been compared for solutes of different polarity. Studies revealed boiling points determined by EC-GC were more accurate than those obtained by the standard method of simulated distillation.

  3. Preparation and evaluation of open-tubular capillary column combining a metal-organic framework and a brush-shaped polymer for liquid chromatography.

    Science.gov (United States)

    Chen, Kai; Zhang, Lingyi; Zhang, Weibing

    2018-03-30

    In this work, an open-tubular capillary liquid-phase column was prepared by modifying chain polymer on the inner surface of capillary and chemical bonding of metal organic frameworks, NH 2 -UiO-66, to the brushes of chain polymer (poly(glycidyl methacrylate)). Besides advantages of facial preparation and good permeability, the chain polymer effectively increases the modification amount of NH 2 -UiO-66 nanoparticles to increase the phase ratio of open-tubular capillary column and enhance the interactions with analytes. The results of scanning electron microscope energy-dispersive X-ray spectra indicated that NH 2 -UiO-66 nanoparticles were successfully bonded to the chain polymer. Because of the hydrophobic interaction and hydrogen bonding interaction between the analytes and the ligand of NH 2 -UiO-66, different analytes were well separated on the NH 2 -UiO-66-modified poly(glycidyl methacrylate) capillary (1.12 m × 25 μm id × 365 μm od) with the high absolute column efficiency reaching 121 477 plates, benefiting from an open-tubular column and low mass transfer resistance provided by polymer brush and metal-organic framework crystal. The relative standard deviations of the retention time for run-to-run, day-to-day, and column-to-column (n = 3) runs are below 4.28%, exhibiting good repeatability. Finally, the column was successfully applied to separation of flavonoids in licorice. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. RICE SEED TREATMENT AND RECOATING WITH POLYMERS: PHYSIOLOGICAL QUALITY AND RETENTION OF CHEMICAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    LOVANE KLEIN FAGUNDES

    2017-01-01

    Full Text Available The use of chemical seed treatment is an important tool in the protection of seedlings and has contributed to the increase of rice yield (Oryza sativa L.. The objective of this study was to evaluate the physiological quality and quantify the retention of chemical products in rice seeds treated with insecticide and fungicide coated with polymers. Six seed treatments were used: control, phytosanitary treatment and phytosanitary treatment and coating with the polymers, Florite 1127®, GV5® Solid Resin, Polyseed CF® and VermDynaseed®. The physiological quality was evaluated by the test of germination and vigor by first count tests, germination speed index, shoot length, radicle length, seedling dry mass and sand emergence. To determine the retention of the active ingredients metalaxyl-M and thiamethoxam, an equipment called extractor was used. The experiment was organized in a completely randomized design (DIC and the averages were separated by the Scott Knott test (p≤0.05. Seed treatment with the fungicide and insecticide, coated with the polymers, Florite 1127®, Solid Resin GV5®, Polyseed CF® and VermDynaseed®, did not affect the physiological quality of rice seeds. Solid Resin GV5®, Polyseed CF® and VermDynaseed® polymers were efficient at retaining thiamethoxam in the rice seeds, preventing some of the active ingredients of the insecticide from being leached through the sand columns immediately after the simulated pluvial precipitation.

  5. Exhaust properties of centre-column-limited plasmas on MAST

    International Nuclear Information System (INIS)

    Maddison, G.P.; Akers, R.J.; Brickley, C.; Gryaznevich, M.P.; Lott, F.C.; Patel, A.; Sykes, A.; Turner, A.; Valovic, M.

    2007-01-01

    The lowest aspect ratio possible in a spherical tokamak is defined by limiting the plasma on its centre column, which might therefore maximize many physics benefits of this fusion approach. A key issue for such discharges is whether loads exhausted onto the small surface area of the column remain acceptable. A first series of centre-column-limited pulses has been examined on MAST using fast infra-red thermography to infer incident power densities as neutral-beam heating was scanned from 0 to 2.5 MW. Simple mapping shows that efflux distributions on the column armour are governed mostly by magnetic geometry, which moreover spreads them advantageously over almost the whole vertical length. Hence steady peak power densities between sawteeth remained low, -2 , comparable with the target strike-point value in a reference diverted plasma at lower power. Plasma purity and normalized thermal energy confinement through the centre-column-limited (CCL) series were also similar to properties of MAST diverted cases. A major bonus of CCL geometry is a propensity for exhaust to penetrate through its inner scrape-off layer connecting to the column into an expanding outer plume, which forms a 'natural divertor'. Effectiveness of this process may even increase with plasma heating, owing to rising Shafranov shift and/or toroidal rotation. A larger CCL device could potentially offer a simpler, more economic next-step design

  6. LIQUID-LIQUID EXTRACTION COLUMNS

    Science.gov (United States)

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  7. Functional design criteria for the 242-A evaporator and PUREX [Plutonium-Uranium Extraction] Plant condensate interim retention basin

    International Nuclear Information System (INIS)

    Cejka, C.C.

    1990-01-01

    This document contains the functional design criteria for a 26- million-gallon retention basin and 10 million gallons of temporary storage tanks. The basin and tanks will be used to store 242-A Evaporator process condensate, the Plutonium-Uranium Extraction (PUREX) Plant process distillate discharge stream, and the PUREX Plant ammonia scrubber distillate stream. Completion of the project will allow both the 242-A Evaporator and the PUREX Plant to restart. 4 refs

  8. Gravity Effects on the Free Vibration of a Graphite Column

    International Nuclear Information System (INIS)

    Ki, Dong-Ok; Kim, Jong-Bum; Park, Keun-Bae; Lee, Won-Jae

    2006-01-01

    The gravity effects on the free vibration of a graphite column are studied. Graphite block is a key component of a HTGR (High Temperature Gas Cooled Reactor). The major core elements, such as the fuel blocks and neutron reflector blocks, of HTTR (High Temperature Test Reactor, Japan) and GT-MHR (Gas Turbine- Modular Helium Reactor, USA) consist of stacked hexagonal graphite blocks forming a group of columns. The vibration of the columns induced by earthquakes may lead to solid impacts between graphite blocks and structural integrity problems. The study of free vibration characteristics of the graphite block column is the first step in the core internal structure dynamic analysis. Gravity force bring a negative stiffness term to the transverse vibration analysis of heavy long column structures, and results in natural frequency reductions. Generally it is not considered in the not so tall structure cases, because the gravity term makes the analysis and design complicated. Therefore it is important to check whether the gravity effect is severe or not

  9. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2015-04-29

    Highlights: • Methacrylic acid (MAA) was used to increase hydrophilicity of polymeric monoliths. • Fast separation of phenol derivatives was achieved in 5 min using MAA-incorporated column. • Separations of aflatoxins and phenicol antibiotics were achieved using MAA-incorporated column. - Abstract: In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate–MAA ratios were investigated to prepare a series of 30% alkyl methacrylate–MAA–EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  10. The Effects of the Properties of Gases on the Design of Bubble Columns Equipped with a Fine Pore Sparger

    Directory of Open Access Journals (Sweden)

    Athanasios G. Kanaris

    2018-03-01

    Full Text Available This work concerns the performance of bubble columns equipped with porous sparger and investigates the effect of gas phase properties by conducting experiments with various gases (i.e., air, CO2, He that cover a wide range of physical property values. The purpose is to investigate the validity of the design equations, which were proposed in our previous work and can predict with reasonable accuracy the transition point from homogeneous to heterogeneous regime as well as the gas holdup and the mean Sauter diameter at the homogeneous regime. Although, the correlations were checked with data obtained using different geometrical configurations and several Newtonian and non-Newtonian liquids, as well as the addition of surfactants, the gas phase was always atmospheric air. The new experiments revealed that only the use of low-density gas (He has a measurable effect on bubble column performance. More precisely, when the low-density gas (He is employed, the transition point shifts to higher gas flow rates and the gas holdup decreases, a fact attributed to the lower momentum force exerted by the gas. In view of the new data, the proposed correlations have been slightly modified to include the effect of gas phase properties and it is found that they can predict the aforementioned quantities with an accuracy of ±15%. It has been also proved that computational fluid dynamics (CFD simulations are an accurate means for assessing the flow characteristics inside a bubble column.

  11. Flooding characteristics of pulsed-sieve plate column. Contributed Paper ED-09

    International Nuclear Information System (INIS)

    Vishnu Anand, P.; Pandey, N.K.; Rajeev, R.; Joyakin, C.V.; Kamachi Mudali, U.; Natarajan, R.

    2014-01-01

    Successful design of a pulsed sieve plate extraction column relies on profound understanding of its hydrodynamic and mass transfer characteristics. Present work outlines a comprehensive study of flooding velocity, a hydrodynamic parameter, as a function of various operating conditions of the column. Experimental studies were carried out using water-normal paraffin hydrocarbon system, under no mass transfer condition, in a pilot plant pulsed sieve plate column equipped with standard plate cartridges. Flooding velocity is characterized here as a function of phase flow ratio and pulse velocity with the aid of characteristic velocity concept together with an exponential function. Flooding points were experimentally identified with satisfactory accuracy using a quantitative method and dispersed phase hold-up was measured by online sampling. To verify the extent of applicability of some of the reported generalized flooding correlations from a design perspective, an analysis was done using our precisely generated experimental flooding data. (author)

  12. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    Science.gov (United States)

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  13. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars--an in vitro comparative study.

    Science.gov (United States)

    Veerabadhran, M M; Reddy, V; Nayak, U A; Rao, A P; Sundaram, M A

    2012-01-01

    This in vitro study was conducted to find out the effect of retentive groove, sand blasting and cement type on the retentive strength of stainless steel crowns in primary second molars. Thirty-two extracted intact human maxillary and mandibular primary second molars were embedded in aluminum blocks utilizing autopolymerising acrylic resin. After tooth preparation, the 3M stainless steel crown was adjusted to the prepared tooth. Then weldable buccal tubes were welded on the buccal and lingual surfaces of each crown as an attachment for the testing machine. A full factorial design matrix for four factors (retentive groove placement on the tooth, cement type, sandblasting and primary second molar) at two levels each was developed and the study was conducted as dictated by the matrix. The lower and upper limits for each factor were without and with retentive groove placement on the tooth, GIC and RMGIC, without and with sandblasting of crown, maxillary and mandibular second primary molar. For those teeth for which the design matrix dictated groove placement, the retentive groove was placed on the middle third of the buccal surface of the tooth horizontally and for those crowns for which sandblasting of the crowns are to be done, sandblasting was done with aluminium oxide with a particle size of 250 mm. The crowns were luted with either GIC or RMGIC, as dictated by the design matrix. Then the retentive strength of each sample was evaluated by means of an universal testing machine. The obtained data was analyzed using ANOVA for statistical analysis of the data and 't'- tests for pairwise comparison. The mean retentive strength in kg/cm 2 stainless steel crowns luted with RMGIC was 19.361 and the mean retentive strength of stainless steel crowns luted with GIC was 15.964 kg/cm 2 with a mean difference of 3.397 kg/cm 2 and was statistically significant. The mean retentive strength in kg/cm 2 of stainless steel crowns, which was not sandblasted, was 18.880 and which was

  14. Multi-Column Experimental Test Bed for Xe/Kr Separation

    International Nuclear Information System (INIS)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil; Lyon, Kevin Lawrence; Watson, Tony Leroy

    2015-01-01

    Previous research studies have shown that INL-developed engineered form sorbents are capable of capturing both Kr and Xe from various composite gas streams. The previous experimental test bed provided single column testing for capacity evaluations over a broad temperature range. To advance research capabilities, the employment of an additional column to study selective capture of target species to provide a defined final gas composition for waste storage was warranted. The second column addition also allows for compositional analyses of the final gas product to provide for final storage determinations. The INL krypton capture system was modified by adding an additional adsorption column in order to create a multi-column test bed. The purpose of this modification was to investigate the separation of xenon from krypton supplied as a mixed gas feed. The extra column was placed in a Stirling Ultra-low Temperature Cooler, capable of controlling temperatures between 190 and 253K. Additional piping and valves were incorporated into the system to allow for a variety of flow path configurations. The new column was filled with the AgZ-PAN sorbent which was utilized as the capture medium for xenon while allowing the krypton to pass through. The xenon-free gas stream was then routed to the cryostat filled with the HZ-PAN sorbent to capture the krypton at 191K. Selectivities of xenon over krypton were determined using the new column to verify the system performance and to establish the operating conditions required for multi-column testing. Results of these evaluations verified that the system was operating as designed and also demonstrated that AgZ-PAN exhibits excellent selectivity for xenon over krypton in air at or near room temperature. Two separation tests were performed utilizing a feed gas consisting of 1000 ppmv xenon and 150 ppmv krypton with the balance being made up of air. The AgZ-PAN temperature was held at 295 or 253K while the HZ-PAN was held at 191K for both

  15. Evaluation of the phase ratio for three C18 high performance liquid chromatographic columns.

    Science.gov (United States)

    Caiali, Edvin; David, Victor; Aboul-Enein, Hassan Y; Moldoveanu, Serban C

    2016-02-26

    For a chromatographic column, phase ratio Φ is defined as the ratio between the volume of the stationary phase Vst and the void volume of the column V0, and it is an important parameter characterizing the HPLC process. Although apparently simple, the evaluation of Φ presents difficulties because there is no sharp boundary between the mobile phase and the stationary phase. In addition, the boundary depends not only on the nature of the stationary phase, but also on the composition of the mobile phase. In spite of its importance, phase ratio is seldom reported for commercially available HPLC columns and the data typically provided by the vendors about the columns do not provide key information that would allow the calculation of Φ based on Vst and V0 values. A different procedure for the evaluation of Φ is based on the following formula: log k'j=a log Kow,j+log Φ, where k'j is the retention factor for a compound j that must be a hydrocarbon, Kow,j is the octanol/water partition coefficient, and a is a proportionality constant. Present study describes the experimental evaluation of Φ based on the measurement of k'j for the compounds in the homologous series between benzene and butylbenzene for three C18 columns: Gemini C18, Luna C18 both with 5 μm particles, and a Chromolith Performance RP-18. The evaluation was performed for two mobile phase systems at different proportions of methanol/water and acetonitrile/water. The octanol/water partition coefficients were obtained from the literature. The results obtained in the study provide further support for the new procedure for the evaluation of phase ratio. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mathematical simulation of column flotation in pilot scale

    International Nuclear Information System (INIS)

    Simpson, J.; Jordan, D.; Cifuentes, G.; Morales, A.; Briones, L.

    2010-01-01

    The Procemin-I area of the Centro Minero Metalurgico Tecnologia y Servicio (CIMM T and S), has a full milling and flotation pilot plant in which several experiences are developed as: optimization of circuits, plant design, procurement of operating parameters, etc. Ones of the equipment in operation is the column flotation to pilot scale, witch have a medium level of automation. The problem presented in the operation of the column flotation is the low relationship during the operation between the operating basis parameters and the metallurgical results. The mathematical models used today to estimate the metallurgical results (i.e.: concentrate, tailing, enrichment and recovery) depending on variables that are manipulated by hand according the operator experience. But the process engineer needs tools without subjective vision to obtain the best performance of the column. The method used to help the column operation was a mathematical model based on the Stepwise Regression then considering empirical relationships between operational variables and experimental results. All the mathematical relationship developed in this study have a good correlation (up 90 % of precision), except one (up 70 %) due by non regular mineralogical feed. (Author) 7 refs.

  17. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  18. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects.

    Science.gov (United States)

    Schweiger, Susanne; Jungbauer, Alois

    2018-02-16

    Small pre-packed columns are commonly used to estimate the optimum run parameters for pilot and production scale. The question arises if the experiments obtained with these columns are scalable, because there are substantial changes in extra column volume when going from a very small scale to a benchtop column. In this study we demonstrate the scalability of pre-packed disposable and non-disposable columns of volumes in the range of 0.2-20 ml packed with various media using superficial velocities in the range of 30-500 cm/h. We found that the relative contribution of extra column band broadening to total band broadening was not only high for columns with small diameters, but also for columns with a larger volume due to their wider diameter. The extra column band broadening can be more than 50% for columns with volumes larger than 10 ml. An increase in column diameter leads to high additional extra column band broadening in the filter, frits, and adapters of the columns. We found a linear relationship between intra column band broadening and column length, which increased stepwise with increases in column diameter. This effect was also corroborated by CFD simulation. The intra column band broadening was the same for columns packed with different media. An empirical engineering equation and the data gained from the extra column effects allowed us to predict the intra, extra, and total column band broadening just from column length, diameter, and flow rate. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Thermal Modeling Analysis Of CST Media In The Small Column Ion Exchange Project

    International Nuclear Information System (INIS)

    Lee, S.

    2010-01-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds

  20. Hemifield columns co-opt ocular dominance column structure in human achiasma.

    Science.gov (United States)

    Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A; Grant, Andrea N; Purington, Chris; Qiu, Cheng; Schallmo, Michael-Paul; Tjan, Bosco S

    2018-01-01

    In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T 2 -weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  2. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  3. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions.

    Science.gov (United States)

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J

    2015-07-24

    The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers

  4. Water Retention in a Small Agricultural Catchment and its Potential Improvement by Design of Water Reservoirs – A Case Study of the Bílý Potok Catchment (Czechia

    Directory of Open Access Journals (Sweden)

    Doležal Petr

    2018-03-01

    Full Text Available Water retention in the landscape is discussed in the context of conservation and improvement of both its productive and non-productive functions. We analysed the retention potential of a small agricultural catchment associated with the Bílý potok brook, investigating the possibility to improve its retention capacity and slow down the surface runoff, thus increasing the underground water resources. Method of curve numbers was used for that purposes. From results, it emerged that present maximum water retention in the Bílý potok catchment is 96.2 mm. It could increase by 101.3 mm in case of grassing about 20% arable land threatened by soil erosion. As next possibility to retain water from precipitations in landscape, capacity and transformation effect of reservoirs designed in master plans was analysed. The latest programming tools working in the GIS environment were used to assess the retention capacity of both the catchment surface and the reservoirs. Analysing master plans in the catchment, it was found that 16 designed water reservoirs (from 31 have a good potential to intercept water and transform flood discharges. In the result, priority for building of reservoirs was recommended according to their pertinence and efficiency in the studied catchment. Presented complex approach can be widely implemented, especially for better effectivity and cohesion of landscape planning and land consolidations processes.

  5. Elevator frames two columns

    OpenAIRE

    Marín Jiménez, Juan Francisco

    2015-01-01

    This project aims to solve the problem of vertical transport of charges raised by a company with the standard UNE 58-132-91/6. The purpose of this project is the industrial design of a system of load handling by a bi-columned lifting device, tractioned by flat belts and steel cables from a transport level to a different level in order to connect two different assembly lines situated at different heights. The goal of this project is lifting a 780 Kg load at a 2.400 mm height....

  6. Synthesis of focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Szilagyi, M.; Mui, P.H.

    1995-01-01

    Szilagyi and Szep have demonstrated that focusing lenses of high performances can be constructed from a column of circular plate electrodes. Later, Szilagyi modified that system to include dipole, quadrupole, and octupole components by partitioning each plate into eight equal sectors. It has already been shown that the additional quadrupole components can indeed bring about substantial improvements in the focusing of charged particle beams. In this article, that design procedure is expanded to construct columns capable of both focusing and deflecting particle beams by just introducing additional dipole components. In this new design, the geometry of the system remains unchanged. The only extra complication is the demand for more individual controls of the sector voltages. Two sample designs, one for negative ions and one for electrons, are presented showing that in both cases a ±2.3 mrad diverging beam can be focused down to a spot of less than 50 nm in radius over a scanning circular area of radius 0.25 mm. The details of the two systems are given in Sec. IV along with the source conditions. The performance of the negative ion system is found to be comparable to the published data. For the relativistic electron system, the interaction of individual components to reduce various aberrations is investigated. copyright 1995 American Vacuum Society

  7. Use of a pulsed column contactor as a continuous oxalate precipitation reactor

    International Nuclear Information System (INIS)

    Borda, Gilles; Brackx, Emmanuelle; Boisset, Laurence; Duhamet, Jean; Ode, Denis

    2011-01-01

    Research highlights: → A new type of continuous precipitating device was patented by CEA and tested with reaction between a surrogate nitrate cerium(III) or neodymium(III) and oxalate complexing agent. → Precipitate is confined in aqueous phase emulsion in tetrapropylene hydrogen and does not form deposit on the vessel walls. → Measure size of the precipitate ranges from 20 to 40 μm, it meets the process requirements to filter, and the precipitation reaction is complete. → The laboratory design can be extrapolated to an industrial uranium(IV) and minor actinide(III) coprecipitating column. - Abstract: The current objective of coprecipitating uranium, and minor actinides in order to fabricate a new nuclear fuel by direct (co)precipitation for further transmutation, requires to develop specific technology in order to meet the following requirements: nuclear maintenance, criticity, and potentially high flowrates due to global coprecipitation. A new type of device designed and patented by the CEA was then tested in 2007 under inactive conditions and with uranium. The patent is for organic confinement in a pulsed column (PC). Actually, pulsed columns have been working for a long time in a nuclear environment, as they allow high capacity, sub-critical design (annular geometry) and easy high activity maintenance. The precipitation reaction between the oxalate complexing agent and a surrogate nitrate - cerium(III) or neodymium(III) alone, or coprecipitated uranium(IV) and cerium(III) - occurs within an emulsion created in the device by these two phases flowing with a counter-current chemically inert organic phase (for example tetrapropylene hydrogen-TPH) produced by the stirring action of the column pulsator. The precipitate is confined and thus does not form deposits on the vessel walls (which are also water-repellent); it flows downward by gravity and exits the column continuously into a settling tank. The results obtained for precipitation of cerium or

  8. The Design and Development of a Regenerative Separatory Column Using Calixarenes as a Polymeric Backbone for the Purification of Water from Urine

    Science.gov (United States)

    Polk, M.

    1999-01-01

    The objective of this research project is to design calixarenes, cup-shaped molecules, with the specific binding sites to the sodium chloride and nitrogen containing components of urine, such as urea and uric acid, in urine. The following partition of the research accomplishes this objective: (1) functionalization of calixarene, (2) development of a calixarene based medium for the separatory process, (3) design of the column regeneration protocol. Work was also accomplished in the area of temperature sensitive paint (TSP). Research was undertaken to design a TSP with insulating propertites. An important part of this research project is to discover the thermal conductivity of polymers for TSP.

  9. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention

    DEFF Research Database (Denmark)

    Bruun, Esben; Petersen, C. T.; Hansen, E.

    2014-01-01

    Crop yields and yield potentials on Danish coarse sandy soils are strongly limited due to restricted root growth and poor water and nutrient retention. We investigated if biochar amendment to subsoil can improve root development in barley and significantly increase soil water retention. Spring...... barley (Hordeum vulgare cv. Anakin) was grown in soil columns (diameter: 30 cm) prepared with 25 cm topsoil, 75 cm biochar-amended subsoil, and 30 cm un-amended subsoil lowermost placed on an impervious surface. Low-temperature gasification straw-biochar (at 0, 0.50, 1.0, 2.0, and 4.0 wt%) and slow...... pyrolysis hardwood-biochar (at 2 wt%) were investigated. One wt% can be scaled up to 102 Mg/ha of char. After full irrigation and drainage, the in-situ moisture content at 30-80 cm depth increased linearly (R2 = 0.99) with straw-biochar content at a rate corresponding to 0.029 m3/m3/%. The lab determined...

  10. Retention of minority participants in clinical research studies.

    Science.gov (United States)

    Keller, Colleen S; Gonzales, Adelita; Fleuriet, K Jill

    2005-04-01

    Recruitment of minority participants for clinical research studies has been the topic of several analytical works. Yet retention of participants, most notably minority and underserved populations, is less reported and understood, even though these populations have elevated health risks. This article describes two related, intervention-based formative research projects in which researchers used treatment theory to address issues of recruitment and retention of minority women participants in an exercise program to reduce obesity. Treatment theory incorporates a model of health promotion that allows investigators to identify and control sources of extraneous variables. The authors' research demonstrates that treatment theory can improve retention of minority women participants by considering critical inputs, mediating processes, and substantive participant characteristics in intervention design.

  11. Evaluation of chromatographic columns packed with semi- and fully porous particles for benzimidazoles separation.

    Science.gov (United States)

    Gonzalo-Lumbreras, Raquel; Sanz-Landaluze, Jon; Cámara, Carmen

    2015-07-01

    The behavior of 15 benzimidazoles, including their main metabolites, using several C18 columns with standard or narrow-bore diameters and different particle size and type were evaluated. These commercial columns were selected because their differences could affect separation of benzimidazoles, and so they can be used as alternative columns. A simple screening method for the analysis of benzimidazole residues and their main metabolites was developed. First, the separation of benzimidazoles was optimized using a Kinetex C18 column; later, analytical performances of other columns using the above optimized conditions were compared and then individually re-optimized. Critical pairs resolution, analysis run time, column type and characteristics, and selectivity were considered for chromatographic columns comparison. Kinetex XB was selected because it provides the shortest analysis time and the best resolution of critical pairs. Using this column, the separation conditions were re-optimized using a factorial design. Separations obtained with the different columns tested can be applied to the analysis of specific benzimidazoles residues or other applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stability of embankments over cement deep soil mixing columns; Estabilidad de terraplenes sobre columnas de suelo-cemento

    Energy Technology Data Exchange (ETDEWEB)

    Morilla Moar, P.; Melentijevic, S.

    2014-07-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  13. Studies of column supported towers

    International Nuclear Information System (INIS)

    Chauvel, D.; Costaz, J.-L.

    1991-01-01

    As a result of a research and development programme into the civil engineering of cooling towers launched in 1978 by Electricite de France, very high cooling towers were built at Golfech and Chooz, in France, using column supports. This paper discusses the evolution of this new type of support from classical diagonal supports, presents some of the results of design calculations and survey measurements taken during construction of the shell and analyses the behaviour of the structure. (author)

  14. Strengthing of Beams and Columns using GFRP Bars

    Science.gov (United States)

    Nayak, C. B.; Tade, M. K.; Thakare, S. B., Dr.

    2017-08-01

    Nowadays infrastructure development is raising its pace. Many reinforced high concrete and masonry buildings are constructed annually around the globe. There are large numbers of structures which deteriorate or become unsafe to use because of changes in use, changes in loading condition, change in the design configuration, inferior building material used or natural calamities. Thus repairing and retrofitting of these structures for safe usage of has a great market. There are several situations in which a civil structure would require strengthening due to lack of strength, stiffness, ductility and durability. Beams, columns may be strengthened in flexure by using GFRP in tension zone. In this present work comparative study will be made with and without GFRP circular bars in a beam and column. An experiment study will be carried out to study the change in the structural behavior of beams & columns with GFRP circular bars of different thickness, varying span to depth ratio.

  15. Experimental and theoretical investigation of column - flat slab joint ductility

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Shah, A.

    2009-01-01

    Most modern seismic codes use ductility as one of the basic design parameters. Actually, ductility defines the ability of a structure or its elements to absorb energy by plastic deformations. Until the end of the previous century ductility was defined qualitatively. Most research works related to ductility are focused on structural elements' sections. This study was aimed at complex experimental and theoretical investigation of flat slab-column joints ductility. It is one of the first attempts to obtain quantitative values of joint's ductility for the case of high strength concrete columns and normal strength concrete slabs. It was shown that the flat slab-column joint is a three-dimension (3D) element and its ductility in horizontal and vertical directions are different. This is the main difference between ductility of elements and joint ductility. In case of flat slab-column joints, essential contribution to joint's ductility can be obtained due to the slab's confining effect. Based on experimental data, the authors demonstrate that flat slab-column joint's ductility depends on the joint's confining effect in two horizontal and vertical directions. Furthermore, the influence of slab load intensity and slab reinforcement ratio on the joint's ductility is performed in this study. It is also demonstrated that the effect of the ratio between the slab thickness and the column's section dimension on the ductility parameter is significant. Equations for obtaining a quantitative value of a flat slab-column joint's ductility parameter were developed.

  16. CFD simulation of alleviation of fluid back mixing by baffles in bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.K.; Peng, F.F.; Wolfe, E. [Sedgman LLC, Pittsburgh, PA (United States)

    2006-07-15

    The global back mixing of liquid in an open flotation column is harmful to mineral separations. The inclusion of baffles and packing in open columns can dampen the effects of global back mixing. A mathematical model based on the principle of fluid dynamics is helpful in designing baffled or packed columns. This paper presents a two-dimensional Euler-Lagrangian model to simulate the multiphase flow for some cases of baffled and packed columns. Fluid motion is calculated by directly solving the Navier-Stokes equations by a SIMPLE approach. Bubbles are moved in a Lagrangian frame through the interaction forces imposed by the gas-fluid coupling. The simulated results successfully reveal that the liquid back-mixing effect in the open bubble columns can be alleviated by baffles or packings.

  17. Influence of pressure and temperature on molar volume and retention properties of peptides in ultra-high pressure liquid chromatography.

    Science.gov (United States)

    Fekete, Szabolcs; Horváth, Krisztián; Guillarme, Davy

    2013-10-11

    In this study, pressure induced changes in retention were measured for model peptides possessing molecular weights between ∼1 and ∼4kDa. The goal of the present work was to evaluate if such changes were only attributed to the variation of molar volume and if they could be estimated prior to the experiments, using theoretical models. Restrictor tubing was employed to generate pressures up to 1000bar and experiments were conducted for mobile phase temperatures comprised between 30 and 80°C. As expected, the retention increases significantly with pressure, up to 200% for glucagon at around 1000bar compared to ∼100bar. The obtained data were fitted with a theoretical model and the determination coefficients were excellent (r(2)>0.9992) for the peptides at various temperatures. On the other hand, the pressure induced change in retention was found to be temperature dependent and was more pronounced at 30°C vs. 60 or 80°C. Finally, using the proposed model, it was possible to easily estimate the pressure induced increase in retention for any peptide and mobile phase temperature. This allows to easily estimating the expected change in retention, when increasing the column length under UHPLC conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Retention factors in relation to organisational commitment in medical and information technology services

    Directory of Open Access Journals (Sweden)

    Jeannette van Dyk

    2012-07-01

    Research purpose: The objectives of the study were to investigate empirically: (1 the relationship between employees’ satisfaction with organisational retention factors (measured by the Retention Factors Scale and their organisational commitment (measured by the Organisational Commitment Questionnaire and (2 whether gender, age, race and tenure groups differ significantly in terms of these variables. Motivation for the study: Medical and information technology professionals have specialised and hard to replace skills. They also have strong tendencies to leave their organisations and countries. Understanding the retention factors that will increase their organisational commitment may benefit the organisations who want to retain their valuable talent. Research design, approach and method: The researchers used a cross-sectional survey design to collect data from a purposive sample of 206 staff members who had scarce skills in a South African medical and information technology services company. Correlational and inferential statistics were computed to achieve the objectives. Main findings: The results showed that the participants’ satisfaction with retention factors has a significant relationship with their organisational commitment and that the biographical groups differ significantly in terms of the variables. Practical/managerial implications: The measured retention factors were all associated with human resource management practices that influence employees’ intentions to leave. Contribution/value-add: The results are important to managers who are interested in retaining staff who have scarce skills and provide valuable pointers for designing effective retention strategies.

  19. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  20. THE PERFORMANCE ANALYSIS OF A PACKED COLUMN : CALIBRATION OF AN ORIFICE

    Directory of Open Access Journals (Sweden)

    Aynur ŞENOL

    2003-01-01

    Full Text Available Investigations to develop data for this study were made using a pilot scale glass column of 9 cm inside diameter randomly filled to a depth of 1.90 cm with a Raschig type ring at a slightly modified geometry. The geometrical characteristics of packing are: the total area of a single particle ad = 2.3 cm2; specific area ap = 10.37 cm2/cm3; voidage ? = 0.545 m3/m3. The efficiency tests were run using trichloroethylene/n-heptane system under total reflux conditions. Using the modified versions of the Eckert flooding model and the Bravo effective area (ae approach, as well as the Onda wetted area (aw and individual mass transfer coefficient models, it has been attempted to estimate the packing efficiency theoretically. This article also deals with the design strategies attributed to a randomly packed column. Emphasis is mainly placed on the way to formulate an algorithm of designing a pilot scale column through the models being attributed to the film theory. Using the column dry pressure drop properties based on the air flowing it has been achieved a generalized flow rate approach for calibrating of an orifice through which the air passes.

  1. Minimum number of transfer units and reboiler duty for multicomponent distillation columns

    International Nuclear Information System (INIS)

    Pleşu, Valentin; Bonet Ruiz, Alexandra Elena; Bonet, Jordi; Llorens, Joan; Iancu, Petrica

    2013-01-01

    Some guidelines to evaluate distillation columns, considering only basic thermodynamic data and principles, are provided in this paper. The method allows a first insight to the problem by simple calculations, without requiring column variables to ensure rational use of energy and low environmental impact. The separation system is approached by two complementary ways: minimum and infinite reflux flow rate. The minimum reflux provides the minimum energy requirements, and the infinite reflux provides the feasibility conditions. The difficulty of separation can be expressed in terms of number of transfer units (NTU). The applicability of the method is not mathematically limited by the number of components in the mixture. It is also applicable to reactive distillation. Several mixtures, including reactive distillation, are rigorously simulated as illustrative examples, to verify the applicability of the approach. The separation of the mixtures, performed by distillation columns, is feasible if a minimum NTU can be calculated between the distillate and bottom products. Once verified the feasibility of the separation, the maximum thermal efficiency depends only on boiling point of bottom and distillate streams. The minimum energy requirements corresponding to the reboiler can be calculated from the maximum thermal efficiency, and the variation of entropy and enthalpy of mixing between distillate and bottom streams. -- Highlights: • Feasibility analysis complemented with difficulty of separation parameters • Minimum and infinite reflux simplified models for distillation columns • Minimum number of transfer units (NTU) for packed columns at early design stages • Calculation of minimum energy distillation requirements at early design stages • Thermodynamic cycle approach and efficiency for distillation columns

  2. Fast preparation of hybrid monolithic columns via photo-initiated thiol-yne polymerization for capillary liquid chromatography.

    Science.gov (United States)

    Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao

    2018-02-23

    Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration.

    Science.gov (United States)

    Zolg, Daniel Paul; Wilhelm, Mathias; Yu, Peng; Knaute, Tobias; Zerweck, Johannes; Wenschuh, Holger; Reimer, Ulf; Schnatbaum, Karsten; Kuster, Bernhard

    2017-11-01

    Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of hydrodynamic and mass transfer parameters in pulsed sieve-plate columns

    International Nuclear Information System (INIS)

    Safdari, J.

    2001-01-01

    One of the most important liquid-liquid extractor in industry is pulsed column. The pulsed columns are generally classified into the following categories: 1-Pulsed perforated-plate column. 2- Pulsed packed column. The pulsed plate column is differential contactor with the application of mechanical energy and is used for a diverse range of processes. Probably its best known application has been in the nuclear fuel industry. The pulsed plate column consists of a cylindrical shell with settling zones at the top and the bottom of the column. The liquids are fed continuously to the column (flowing counter-currently) and are removed continuously from opposite ends of the column. In this work using a pilot pulsed plate column and two different chemical systems (toluene/acetone/water and n-butyl acetate/acetone/water) various experiments are carried out. In each experiment direction of mass transfer is from organic phase (dispersed phase) into aqueous phase (continuous phase) and the continuous phase is water. The main objects of this thesis are as follow: a- Investigation of effect of operating parameters on dispersed phase hold up, volumetric overall mass transfer coefficients based on dispersed and continuous phase, extraction efficiency, pressure drop of column and flooding velocities (maximum column capacities). Obtained results in this part show that if the calorimetric flow rate of aqueous phase or pulsation intensity increase, hold up, volumetric overall mass transfer coefficients based on both two phases and extraction efficiency will increase and flooding velocities will decrease. Also results show that if volumetric flow rate of organic phase increase, hold up, volumetric mass transfer coefficients based on both two phases and pressure drop will increase and extraction efficiency and flooding velocities will decrease. b- Investigation of effect of internal circulation inside drops in designing pulsed perforated-plate column

  5. Heat integration of fractionating systems in para-xylene plants based on column optimization

    International Nuclear Information System (INIS)

    Chen, Ting; Zhang, Bingjian; Chen, Qinglin

    2014-01-01

    In this paper, the optimization of xylene fractionation and disproportionation units in a para-xylene plant is performed through a new method for systematic design based on GCC (grand composite curve) and CGCC (column grand composite curve). The distillation columns are retrofitted by CGCC firstly. Heat Integration between the columns and the background xylene separation process are then explored by GCC. We found that potential retrofits for columns suggested by CGCC provide better possibilities for further Heat Integration. The effectiveness of the retrofits is finally evaluated by means of thermodynamics and economic analysis. The results show that energy consumption of the retrofitted fractionating columns decreases by 7.13 MW. With the improved thermodynamic efficiencies, all columns operate with less energy requirements. Coupled with Heat Integration, the energy input of the para-xylene plant is reduced by 30.90 MW, and the energy outputs are increased by 17 MW and 58 MW for generation of the 3.5 MPa and 2.5 MPa steams. The energy requirement after the Heat Integration is reduced by 12% compared to the original unit. The retrofits required a fixed capital cost of 6268.91 × 10 3  $ and saved about 24790.74 × 10 3  $/year worth of steam. The payback time is approximately 0.26 year for the retrofits. - Highlights: • A new method for systematic design is proposed to improve energy saving of the PX plant in retrofit scenarios. • An optimization approach is developed to identify maximum heat recovery in distillation columns. • An efficient Heat Integration procedure of the PX plant is addressed based on the optimal retrofitted distillation columns. • The energy consumption is reduced by 12% after improvement to an industrial case

  6. Quantitative structure-retention relationship studies with immobilized artificial membrane chromatography II: partial least squares regression.

    Science.gov (United States)

    Li, Jie; Sun, Jin; He, Zhonggui

    2007-01-26

    We aimed to establish quantitative structure-retention relationship (QSRR) with immobilized artificial membrane (IAM) chromatography using easily understood and obtained physicochemical molecular descriptors and to elucidate which descriptors are critical to affect the interaction process between solutes and immobilized phospholipid membranes. The retention indices (logk(IAM)) of 55 structurally diverse drugs were determined on an immobilized artificial membrane column (IAM.PC.DD2) directly or obtained by extrapolation method for highly hydrophobic compounds. Ten simple physicochemical property descriptors (clogP, rings, rotatory bond, hydro-bond counting, etc.) of these drugs were collected and used to establish QSRR and predict the retention data by partial least squares regression (PLSR). Five descriptors, clogP, rotatory bond (RotB), rings, molecular weight (MW) and total surface area (TSA), were reserved by using the Variable Importance for Projection (VIP) values as criterion to build the final PLSR model. An external test set was employed to verify the QSRR based on the training set with the five variables, and QSRR by PLSR exhibited a satisfying predictive ability with R(p)=0.902 and RMSE(p)=0.400. Comparison of coefficients of centered and scaled variables by PLSR demonstrated that, for the descriptors studied, clogP and TSA have the most significant positive effect but the rotatable bond has significant negative effect on drug IAM chromatographic retention.

  7. Robust Geometric Control of a Distillation Column

    DEFF Research Database (Denmark)

    Kymmel, Mogens; Andersen, Henrik Weisberg

    1987-01-01

    A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....

  8. Electrochromatographic performance of graphene and graphene oxide modified silica particles packed capillary columns.

    Science.gov (United States)

    Zhao, Hongyan; Wang, Yizhou; Zhang, Danyu; Cheng, Heyong; Wang, Yuanchao

    2018-04-01

    Graphene oxide functionalized silica microspheres (GO@SiO 2 ) were synthesized based on condensation reaction between amino from aminosilica particles and carboxyl groups from GO. Reduction of GO@SiO 2 with hydrazinium hydroxide generated graphene modified silica particles (G@SiO 2 ). GO@SiO 2 and G@SiO 2 packed capillary columns for capillary electrochromatography were thereafter fabricated by pressure slurry packing with single-particle frits. GO of 0.3 mg/mL in dispersion solution for GO@SiO 2 synthesis was considered as a compromise between retaining and column efficiency whereas GO@SiO 2 of 20 mg/mL in slurries for column packing was chosen for a homogenous and tight bed. Optimum mobile phases were acquired considering both electroosmotic flow and resolution at an applied voltage of -6 kV as the following: acetonitrile/phosphate buffer (10 mM, pH 7.0), 75:25 (v/v) for polycyclic aromatic hydrocarbons and 50:50 (v/v) for aromatic compounds. A comparison was made between electrochromatographic performances for three PAHs (naphthalene, fluorene and phenanthrene) and three aromatic compounds of various polarities (toluene, aniline and phenol) on bare aminosilica, GO@SiO 2 and G@SiO 2 packed columns, which proved the contribution of alone or combinational actions of solvophobic effect and π-π electron stacking as well as hydrogen bonds to retaining behaviors by GO@SiO 2 and G@SiO 2 . Well over-run, over-day and over-column precisions (retention time: 0.3-1.4, 1.1-3.8 and 2.8-5.2%, respectively; peak area: 2.6-6.5, 4.8-8.3 and 6.5-12.6%, respectively) of GO@SiO 2 packed columns were a powerful proof for good reproducibility. Analytical characteristics of GO@SiO 2 packed capillary columns in CEC analysis of fresh water were evaluated with respect to linearity (R 2 = 0.9961-0.9989) over the range 0.1 to 100 mg/L and detection limits of 9.5 for naphthalene, 12.6 for fluorene and 16.2 μg/L for phenanthrene. Further application to fresh water increased the

  9. Retention of low-level radioacrive waste material by soil

    International Nuclear Information System (INIS)

    Essington, E.H.; Fowler, E.B.; Polzer, W.L.

    1979-01-01

    Beacuse of the wide variations in soil and waste characteristics, the degree of radionuclide retention would be expected to vary; knowledge of that variation may be of value in predicting radionuclde mobility. This report discusses results of investigations of radioactive waste/soil interactions as they relate to radionucldie retention and its variability among soils and radionuclides. In soil column leaching studies, radioactive waste solutions were applied to four different soil types; 241 Am, 88 Y, and 172 Hf were retained in the top four cm of soil with better than 90% retained by a protective surface sand layer. Less than 50% of the 85 Sr, 137 Cs, and 83 Rb was retained by the surface sand. No 88 Y, 172 Hf, 85 Sr, 137 Cs, or 83 Rb was detected by gamma counting in the leachate solutions, however, using a more sensitive analytical technique small amounts of 238 Pu, 239 240 Pu and 241 Am were found in leachates from all soils. It appears that release of this small fraction of mobile radionuclide may have a significant long-term impact on the environment. It aslo appears that reliance for attenuation of some radionuclides can not be placed solely on characteristics of the soil matrix

  10. Two generalizations of column-convex polygons

    International Nuclear Information System (INIS)

    Feretic, Svjetlan; Guttmann, Anthony J

    2009-01-01

    Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.

  11. Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils

    Directory of Open Access Journals (Sweden)

    J. N. Weitzman

    2017-05-01

    Full Text Available While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3− is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3− was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3− from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 % and buried relict A soil (14 ± 3 % horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 % horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations

  12. Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils

    Science.gov (United States)

    Weitzman, Julie N.; Kaye, Jason P.

    2017-05-01

    While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3-) is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR) in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3-) was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3- from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 %) and buried relict A soil (14 ± 3 %) horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 %) horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations in the water table at BSR which affect

  13. Developing a More Effective Recruitment and Retention Model.

    Science.gov (United States)

    Janke, Walter; Kelly, Gary

    The purpose of a project was to develop a model for more effective recruitment and retention of people of color in the Associate Degree Interior Design and Diploma Interior Design Assistant Program at Milwaukee Area Technical College (MATC), Wisconsin. During Activity One, individuals in MATC's Student Development and High School Relations…

  14. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    Science.gov (United States)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  15. Supercritical fluid chromatography of metoprolol and analogues on aminopropyl and ethylpyridine silica without any additives.

    Science.gov (United States)

    Lundgren, Johanna; Salomonsson, John; Gyllenhaal, Olle; Johansson, Erik

    2007-06-22

    Metoprolol and a number of related amino alcohols and similar analytes have been chromatographed on aminopropyl (APS) and ethylpyridine (EPS) silica columns. The mobile phase was carbon dioxide with methanol as modifier and no amine additive was present. Optimal isocratic conditions for the selectivity were evaluated based on experiments using design of experiments. A central composite circumscribed model for each column was used. Factors were column temperature, back-pressure and % (v/v) of modifier. The responses were retention and selectivity versus metoprolol. The % of modifier mainly controlled the retention on both columns but pressure and temperature could also be important for optimizing the selectivity between the amino alcohols. The compounds could be divided into four and five groups on both columns, with respect to the selectivity. Furthermore, on the aminopropyl silica the analytes were more spread out whereas on the ethylpyridine silica, due to its aromaticity, retention and selectivity were closer. For optimal conditions the column temperature and back-pressure should be high and the modifier concentration low. A comparison of the selectivity using optimized conditions show a few switches of retention order between the two columns. On aminopropyl silica an aldehyde failed to be eluted owing to Schiff-base formation. Peak symmetry and column efficiency were briefly studied for some structurally close analogues. This revealed some activity from the columns that affected analytes that had less protected amino groups, a methyl group instead of isopropyl. The tailing was more marked with the ethylpyridine column even with the more bulky alkyl substituents. Plate number N was a better measure than the asymmetry factor since some analyte peaks broadened without serious deterioration of symmetry compared to homologues.

  16. Impact limiter retention using a tape joint

    International Nuclear Information System (INIS)

    Gonzales, A.; Eakes, R.G.

    1986-01-01

    The Beneficial Uses Shipping System (BUSS) Cask employs polyurethane foam impact limiters that fit onto the ends of the cask. A foam impact limiter takes energy out of a system during a hypothetical accident condition by allowing foam crush and large deformations to occur. This, in turn, precludes high stresses or deformations from occurring to the cask. Because of the need to transmit significant amounts of heat to the environment, the BUSS cask impact limiters were designed to shield a minimum amount of the cask surface area. With this design impact limiter retention after the initial impact resulting from the 9 meter regulatory drops becomes a concern. Retention is essential to ensure the cask does not experience higher stresses during any secondary or rebound effects without impact limiters than it does during the 9 meter regulatory drop with impact limiters in place

  17. Tritium extraction from Pb-17Li by bubble columns

    International Nuclear Information System (INIS)

    Malara, C.

    1995-01-01

    Tritium extraction from the Pb-17Li liquid breeder of a fusion reactor can be efficiently carried out by bubble columns. To this aim, a mathematical model describing the complex fluid-dynamics of a bubble extractor is here presented. The model equations are made dimensionless and, together with the proper boundary conditions, numerically solved by the orthogonal collocation technique. Moreover, in order to better understand the role played by the different parameters in determining the performance of a bubble column, a closed solution of the model is obtained by introducing suitable hypotheses. A parametric analysis of the extraction efficiency of a bubble column as a function of the process parameters is carried out and, on this basis, the design of a tritium extraction system from the Pb-17Li breeder of a DEMO-type fusion reactor is proposed. 17 refs., 3 figs., 2 tabs

  18. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration

    NARCIS (Netherlands)

    Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.

    Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements

  19. Multi-column step-gradient chromatography system for automated ion exchange separations

    International Nuclear Information System (INIS)

    Rucker, T.L.

    1985-01-01

    A multi-column step-gradient chromatography system has been designed to perform automated sequential separations of radionuclides by ion exchange chromatography. The system consists of a digital programmer with automatic stream selection valve, two peristaltic pumps, ten columns, and a fraction collector. The automation allows complicated separations of radionuclides to be made with minimal analyst attention and allows for increased productivity and reduced cost of analyses. Results are reported for test separations on mixtures of radionuclides by the system

  20. Effect of Premolar Axial Wall Height on Computer-Aided Design/Computer-Assisted Manufacture Crown Retention.

    Science.gov (United States)

    Martin, Curt; Harris, Ashley; DuVall, Nicholas; Wajdowicz, Michael; Roberts, Howard Wayne

    2018-03-28

    To evaluate the effect of premolar axial wall height on the retention of adhesive, full-coverage, computer-aided design/computer-assisted manufacture (CAD/CAM) restorations. A total of 48 premolar teeth randomized into four groups (n = 12 per group) received all-ceramic CAD/CAM restorations with axial wall heights (AWH) of 3, 2, 1, and 0 mm and 16-degree total occlusal convergence (TOC). Specimens were restored with lithium disilicate material and cemented with self-adhesive resin cement. Specimens were loaded to failure after 24 hours. The 3- and 2-mm AWH specimens demonstrated significantly greater failure load. Failure analysis suggests a 2-mm minimum AWH for premolars with a TOC of 16 degrees. Adhesive technology may compensate for compromised AWH.

  1. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  3. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  4. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  5. Development of spent salt treatment technology by zeolite column system. Performance evaluation of zeolite column

    International Nuclear Information System (INIS)

    Miura, Hidenori; Uozumi, Koichi

    2009-01-01

    At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)

  6. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  7. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  8. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  9. Structural performance of circular columns confined by recycled GFRP stirrups and exposed to severe conditions

    Directory of Open Access Journals (Sweden)

    Mohamed S. Sayed

    2012-08-01

    Full Text Available Since 1980, Egyptian government investment has been directed to the infrastructure projects. Water supply and water drainage networks are among those projects which are very costly; therefore they are designed with a life span of about one hundred years. There is a new trend toward the use of durable and maintenance free systems. The “GFRP” pipes are one of the economic solutions if the project life span is taken into consideration. A number of investors currently produce the “GFRP” pipes in the Egyptian market and although they follow the latest technologies in their production lines, they still suffer 2–5% deficiency of their produced pipes which consequently regarded as rejected pipes. This percentage has a negative impact on the environmental and economical issues. This research is a trial to investigate the behavior of circular columns confined by GFRP stirrups and exposed to severe conditions. A number of waste pipes were randomly selected and sliced to be used as circular column transverse reinforcement. An experimental program consisting of ten short circular columns was designed to study the effect of corrosion, high degrees of temperature, and sulfate attack on the structural behavior of the axially loaded short circular columns. The experimental results showed that columns laterally reinforced by GFRP slices have a comparable behavior to conventionally reinforced concrete columns especially for those columns exposed to corrosion and sulfate attack.

  10. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  11. Impact of column and stationary phase properties on the productivity in chiral preparative LC.

    Science.gov (United States)

    Forssén, Patrik; Fornstedt, Torgny

    2018-03-01

    By generating 1500 random chiral separation systems, assuming two-site Langmuir interactions, we investigated numerically how the maximal productivity (P R,max ) was affected by changes in stationary phase adsorption properties. The relative change in P R,max , when one adsorption property changed 10%, was determined for each system and for each studied parameter the corresponding productivity change distribution of the systems was analyzed. We could conclude that there is no reason to have columns with more than 500 theoretical plates and larger selectivity than 3. More specifically, we found that changes in selectivity have a major impact on P R,max if it is below ∼2 and, interestingly, increasing selectivity when it is above ∼3 decreases P R,max . Increase in relative saturation capacity will have a major impact on P R,max if it is below ∼40%, but only modest above this percent. Increasing total monolayer saturation capacity, or decreasing the first eluting enantiomer's retention factor, will have a modest effect on P R,max and increased efficiency will have almost no effect at all on P R,max unless it is below ∼500 theoretical plates. Finally, we showed that chiral columns with superior analytic performance might have inferior preparative performance, or vice versa. It is, therefore, not possible to assess columns based on their analytical performance alone. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  13. Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yanping He

    2012-10-01

    Full Text Available Currently, floating wind turbines (FWTs may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP was developed for the NREL 5-MW offshore wind turbine according to site-specific environmental conditions, which are the same as the OC3-Hywind (NREL conditions. The general arrangement, main structure and mooring system were also designed and investigated through hydrodynamic and natural frequency analyses. The complete system avoids resonance through the rotor excitations. An aero-hydro-servo-elastic coupled analysis was carried out in the time domain with the numerical tool FAST. Statistics of the key parameters were obtained and analysed and comparisons to MIT/NREL TLP are made. As a result, the design requirements were shown to be satisfied, and the proposed WindStar TLP was shown to have favourable motion characteristics under extreme wind and wave conditions with a lighter and smaller structure. The new concept holds great potential for further development.

  14. Specialized moisture retention eyewear for evaporative dry eye.

    Science.gov (United States)

    Waduthantri, Samanthila; Tan, Chien Hua; Fong, Yee Wei; Tong, Louis

    2015-05-01

    To evaluate the suitablity of commercially available moisture retention eyewear for treating evaporative dry eye. Eleven patients with evaporative dry eyes were prescibed moisture retention eyewear for 3 months in addition to regular lubricant eye drops. Frequency and severity of dry eye symptoms, corneal fluorescein staining and tear break up time (TBUT) were evaluated at baseline and 3-month post-treatment. Main outcome measure was global symptom score (based on severity and frequency of dry eye symptoms on a visual analog scale) and secondary outcomes were changes in sectoral corneal fluorescein staining and tear break up time (TBUT) from pre-treatment level. There was a significant improvement in dry eye symptoms after using moisture retention eyewear for 3 months (p eyes improved significantly (p dry eye symptoms in windy, air-conditioned environments or when doing vision-related daily tasks. This study shows that moisture retention eyewear might be a valuable adjunct in management of evaporative dry eye and this new design of commercially available eyewear could have a good acceptability rate.

  15. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    Science.gov (United States)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  16. Retention among North American HIV-infected persons in clinical care, 2000-2008.

    Science.gov (United States)

    Rebeiro, Peter; Althoff, Keri N; Buchacz, Kate; Gill, John; Horberg, Michael; Krentz, Hartmut; Moore, Richard; Sterling, Timothy R; Brooks, John T; Gebo, Kelly A; Hogg, Robert; Klein, Marina; Martin, Jeffrey; Mugavero, Michael; Rourke, Sean; Silverberg, Michael J; Thorne, Jennifer; Gange, Stephen J

    2013-03-01

    Retention in care is key to improving HIV outcomes. The goal of this study was to describe 'churn' in patterns of entry, exit, and retention in HIV care in the United States and Canada. Adults contributing ≥1 CD4 count or HIV-1 RNA (HIV-lab) from 2000 to 2008 in North American AIDS Cohort Collaboration on Research and Design clinical cohorts were included. Incomplete retention was defined as lack of 2 HIV-laboratories (≥90 days apart) within 12 months, summarized by calendar year. Beta-binomial regression models were used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) of factors associated with incomplete retention. Among 61,438 participants, 15,360 (25%) with incomplete retention significantly differed in univariate analyses (P churn. In addition to the programmatic and policy implications, the findings of this study identify patient groups who may benefit from focused retention efforts.

  17. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from precolumn dispersion and volume overload when used alone or with solvent-based focusing

    Science.gov (United States)

    Groskreutz, Stephen R.; Horner, Anthony R.; Weber, Stephen G.

    2015-01-01

    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30 nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of precolumn dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis. PMID:26091787

  18. Numerical investigation of a bubble-column photo-bioreactor design for biodiesel production from microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Seo, I.H.; Lee, I.B.; Hwang, H.S.; Hong, S.W.; Bitog, J.P.; Kwon, K.S.; Choi, J.S.; Song, S.H. [Seoul National Univ., Seoul (Korea, Democratic People' s Republic of). Dept. of Rural Systems Engineering and Research Inst. for Agriculture and Life Sciences

    2010-07-01

    Biodiesel made from vegetable oil is among the most desirable of renewable energy sources because it can be a substitute for diesel oil. However, biodiesel from soybean or corn can be confronted with a food crisis. Microalgae is a new biodiesel source which contains high oil lipids with a high growth rate, and which also offers value-added products from the residue, such as cosmetics, health functional food or pharmaceuticals. Microalgae are best cultivated in photo-bioreactors (PBRs) where light, nutrients, carbon dioxide and temperature can be controlled. Despite the current availability of PBRs, only a few can be practically used for mass production. Computational fluid dynamics (CFD) was used in this study to design an optimum bubble-column PBR for mass production of microalgae. Multi-phase models including bubble movement, meshes and time step independent tests were considered to develop the 3-dimensional CFD model. Particle Image Velocimetry (PIV) tests were used to enhance and validate the model. Different types of PBRs were simulated and compared quantitatively with the microalgae's growth model.

  19. Retention factors in relation to organisational commitment in medical and information technology services

    Directory of Open Access Journals (Sweden)

    Jeannette van Dyk

    2012-02-01

    Full Text Available Orientation: Retaining staff with scarce and critical skills in the medical and information technology (IT industry has become a top priority because of skills shortages.Research purpose: The objectives of the study were to investigate empirically: (1 the relationship between employees’ satisfaction with organisational retention factors (measured by the Retention Factors Scale and their organisational commitment (measured by the Organisational Commitment Questionnaire and (2 whether gender, age, race and tenure groups differ significantly in terms of these variables.Motivation for the study: Medical and information technology professionals have specialised and hard to replace skills. They also have strong tendencies to leave their organisations and countries. Understanding the retention factors that will increase their organisational commitment may benefit the organisations who want to retain their valuable talent.Research design, approach and method: The researchers used a cross-sectional survey design to collect data from a purposive sample of 206 staff members who had scarce skills in a South African medical and information technology services company. Correlational and inferential statistics were computed to achieve the objectives.Main findings: The results showed that the participants’ satisfaction with retention factors has a significant relationship with their organisational commitment and that the biographical groups differ significantly in terms of the variables.Practical/managerial implications: The measured retention factors were all associated with human resource management practices that influence employees’ intentions to leave.Contribution/value-add: The results are important to managers who are interested in retaining staff who have scarce skills and provide valuable pointers for designing effective retention strategies.

  20. Correlations Between retention indices and molecular structure of aliphatic alcohols and of their benzoyl derivatives on phenyl substituted polysiloxane stationary phases

    International Nuclear Information System (INIS)

    Pias, J. B.; Gasco, L.

    1976-01-01

    The retention indices of aliphatic alcohols of carbon number up to C g , and of their benzoyl derivatives up to C 7 , were determined in columns packed with Chromo sorb G (AW-DMCS-HP) coated previously with 5% methyl, and methyl phenyl polysiloxanes with increasing polarity (SE-30, 0V-3, 0V-7, 0V-11, 0V-17 and OV-25). Correlations between retention indices and chain length for 1-alcohols, 2-alcohols, 3-alcohols, 1 , on -3-alcohols, 2-methyl-1-alcohols and for their corresponding benzoyl derivatives were calculated at 100, 120 and 140 degree centigree. In alcohols, a -CH 2 - group increases I approximately 100 units, and in their benzoyl derivatives from 80 to 100 units. Dispersion indices Δl , and positional and structural increments δI, were evaluated for -OH and benzoyl groups in terms of phase polarity and chain length. Effects of chain length, chain branching and double bond location on retention parameters were also studied. (Author) 23 refs

  1. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  2. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  3. Retention of anatomy knowledge by student radiographers

    International Nuclear Information System (INIS)

    Hall, A. Susanne; Durward, Brian R.

    2009-01-01

    Introduction: Anatomy has long been regarded as an integral part of the core curriculum. However, anecdotal evidence suggests that long-term retention of anatomy knowledge may be deficient. This study aims to evidence whether student radiographers demonstrate the same level of knowledge of anatomy after a period of time has elapsed and to correlate to approaches to learning and studying. Methodology: A repeated measures design was utilised to measure retention of anatomy knowledge for both MCQs and short-response answers to a Practical Radiographic Anatomy Examination; alpha value p < 0.05. Fifty-one students from levels 2 and 3 were retested after a time lapse of 10 and 22 months respectively. The students were not aware that their knowledge was being retested. Approaches to learning and studying were measured using the ASSIST inventory. Results: Statistical analysis found no difference in performance on MCQ assessment, in either the combined sample or levels 2 and 3 separately, from baseline to retention occasions; average retention rate being 99%. However, a statistical difference in performance on PRAE assessment was found, with level 2 experiencing a larger reduction in scores; retention rate of 67% compared to level 3 at 77%. The students perceived themselves to be principally strategic in their approach to learning and studying but no strong relationships were found when correlated to test scores. Conclusion: The student radiographers in this study demonstrated varied anatomy retention rates dependent on assessment method employed and time interval that had elapsed. It is recommended that diverse teaching and assessment strategies are adopted to encourage a deeper approach to learning and studying.

  4. The prediction of concentration profiles for a NIMCIX column absorbing uranium from aqueous solution

    International Nuclear Information System (INIS)

    Wright, R.S.

    1979-01-01

    A procedure is proposed for the prediction of concentration profiles for a countercurrent ion-exchange absorption column, use being made of equilibrium and kinetic data derived from small-scale batch tests. A comparison is presented between the predictions and the measured performance of a column (2,5 m in diameter) absorbing uranium from solution. The method is shown to be adequate for design purposes provided that the data used are from tests in which the solution and resin conditions approximate those for which the plant is being designed [af

  5. Performance evaluation of a rectifier column using gamma column scanning

    Directory of Open Access Journals (Sweden)

    Aquino Denis D.

    2017-12-01

    Full Text Available Rectifier columns are considered to be a critical component in petroleum refineries and petrochemical processing installations as they are able to affect the overall performance of these facilities. It is deemed necessary to monitor the operational conditions of such vessels to optimize processes and prevent anomalies which could pose undesired consequences on product quality that might lead to huge financial losses. A rectifier column was subjected to gamma scanning using a 10-mCi Co-60 source and a 2-inch-long detector in tandem. Several scans were performed to gather information on the operating conditions of the column under different sets of operating parameters. The scan profiles revealed unexpected decreases in the radiation intensity at vapour levels between trays 2 and 3, and between trays 4 and 5. Flooding also occurred during several scans which could be attributed to parametric settings.

  6. Design and calculation of tritium extraction from liquid LiPb by bubble columns for ITER

    International Nuclear Information System (INIS)

    Xie, Bo

    2009-04-01

    A mathematical model describing the complex fluid-dynamics of a bubble extractor from liquid LiPb loop for ITER is presented. A parametric analysis of the extraction efficiency of a bubble column as a function of the process parameters is carried out and the design of a bubble extractor system is proposed. On this base, a mathematical model is built by taking into consideration the kinetics of deuterium desorption from liquid LiPb alloy. The calculation data of deuterium release-behavior from liquid LiPb under different operating conditions of temperature and deuterium partial pressures and helium gas flow-rates in the liquid LiPb alloy are obtained. These results have shown that the overall re- lease process is governed by the diffusion of deuterium atoms in the LiPb and by the heterogeneous reaction at the gas-eutectic interface of the deuterium atoms recombination under the probable working temperature range. (authors)

  7. Single column and two-column H-D-T distillation experiments at TSTA

    International Nuclear Information System (INIS)

    Yamanishi, T.; Yoshida, H.; Hirata, S.; Naito, T.; Naruse, Y.; Sherman, R.H.; Bartlit, J.R.; Anderson, J.L.

    1988-01-01

    Cryogenic distillation experiments were peformed at TSTA with H-D-T system by using a single column and a two-column cascade. In the single column experiment, fundamental engineering data such as the liquid holdup and the HETP were measured under a variety of operational condtions. The liquid holdup in the packed section was about 10 /approximately/ 15% of its superficial volume. The HETP values were from 4 to 6 cm, and increased slightly with the vapor velocity. The reflux ratio had no effect on the HETP. For the wo-colunn experiemnt, dynamic behavior of the cascade was observed. 8 refs., 7 figs., 2 tabs

  8. Beam-to-Column Connections with Demountable Energy Dissipative Plates

    Directory of Open Access Journals (Sweden)

    Vasile-Mircea Venghiac

    2018-03-01

    Full Text Available The behavior of steel structures subjected to seismic actions depends directly on the connections behavior. There are two current tendencies for ensuring the structural ductility: allowing the formation of plastic hinges in the beams by using reduced beam sections or reduced web sections or by ensuring the plastic hinge formation in the connection by using dissipative elements. This paper presents a new perspective regarding the energy dissipation mechanism formation within the beam-to-column connection. The design of connections capable of dissipating large amounts of energy, with an acceptable strength and ductile behavior is a real challenge for engineers. Sustainability is a big advantage for these connections. Another big advantage is the possibility of restoring the functionality of the damaged construction in a short time interval and with reduced costs. The introduction of connections with demountable energy dissipative plates can be a step forward in designing new beam-to-column connections for steel structures.

  9. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    International Nuclear Information System (INIS)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  10. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  11. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    Science.gov (United States)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  12. Water retention in mushroom during sustainable processing

    NARCIS (Netherlands)

    Paudel, E.

    2015-01-01

    This thesis deals with the understanding of the water holding capacity of mushroom, in the context of a redesign of their industrial processing. For designing food process the retention of food quality is of the utmost importance. Water holding capacity is an important quality aspect of

  13. High Girth Column-Weight-Two LDPC Codes Based on Distance Graphs

    Directory of Open Access Journals (Sweden)

    Gabofetswe Malema

    2007-01-01

    Full Text Available LDPC codes of column weight of two are constructed from minimal distance graphs or cages. Distance graphs are used to represent LDPC code matrices such that graph vertices that represent rows and edges are columns. The conversion of a distance graph into matrix form produces an adjacency matrix with column weight of two and girth double that of the graph. The number of 1's in each row (row weight is equal to the degree of the corresponding vertex. By constructing graphs with different vertex degrees, we can vary the rate of corresponding LDPC code matrices. Cage graphs are used as examples of distance graphs to design codes with different girths and rates. Performance of obtained codes depends on girth and structure of the corresponding distance graphs.

  14. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    Science.gov (United States)

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  15. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    Science.gov (United States)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  16. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Abdul, Momen [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery and -concentration columns. Promising results are reported for both methods.

  17. EFFECTS OF COLUMN FAILURES ON THE INTERNAL FORCES OF ORTHOGONAL REINFORCED CONCRETE BUILDING FRAMES

    Directory of Open Access Journals (Sweden)

    Nilay KAYA

    2006-02-01

    Full Text Available In this study, the effects of column failures which may take place due to the special causes such as blast, vehicle impact, insufficient or deficient design, on the internal forces of orthogonal reinforced concrete building frames have been investigated. Calculations have been performed with SAP2000 structural analysis program, under static conditions. For a typical frame system, firstly, various column failure scenarios have been considered for uninfilled case and internal forces have been calculated and compared with those in the intact case. Then, similar calculations have been implemented for the case of presence of infill walls. The results of analyses have shown that the effects of column failures had condensed on the neighbor columns and beams of orthogonal frames on which the columns had been failed. Moreover, it has been determined that, while the bending moment capacities of the connected beams to the failed columns had exceeded in the bare frames, in the masonry infilled frames, walls give substantial support to the structural elements of the building, and capacities of the beams had not exceeded.

  18. Factors affecting nurse retention at an academic Magnet® hospital.

    Science.gov (United States)

    Buffington, Annsley; Zwink, Jennifer; Fink, Regina; Devine, Deborah; Sanders, Carolyn

    2012-05-01

    : The aim of this study was to examine the factors affecting the retention of registered nurses (RNs) and validate the revised Casey-Fink Nurse Retention Survey (2009). : Creating an organizational culture of retention may reduce nurse turnover. Focusing on why nurses leave and identifying factors why nurses stay are essential. : A descriptive survey design gathered data from RNs with 1 or more years of experience providing direct patient care and employed in inpatient/ambulatory settings in an acute care, academic, Magnet hospital. : There were no statistically significant relationships between nurse respondents' perceptions of work environment/support/encouragement and age or years of experience. However, there were significant differences between inpatient and ambulatory nurse responses in several key areas including job satisfaction, mentorship, and educational support. Overall, nurses reported feeling a lack of support and recognition from managers. Results provide evidence to support improved strategies to foster nurse retention.

  19. Thermal process of an air column

    International Nuclear Information System (INIS)

    Lee, F.T.

    1994-01-01

    Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler

  20. Study of the retention of radionuclides by ion-exchange resins contained in the circuits of a Pressurized Water Reactor; Etude de la retention des radionucleides dans les resines echangeuses d'ions des circuits d'une centrale nucleaire a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Gressier, F.

    2008-11-15

    Physico-chemical quality of fluids in nuclear power plant circuits must be maintained in order to limit contamination and dose rate especially when the shutdown takes place. Nevertheless, an optimum between diminishing liquid waste and limiting solid waste production has to be reached, but at affordable costs. Ion-exchange resins of purification circuits are used to fulfill this goal. In this work, different resin types have been characterized (exchange capacity, water and electrolyte sorption) and their selectivity towards Co{sup 2+}, Ni{sup 2+}, Cs{sup +} and Li{sup +} cations have been studied. We have shown that the two cation-exchange resins selectivity varies according to the nature and concentrations of their counter-ions. Moreover, flow rate (and thus hydro-kinetics) impact on species retention in a column has been characterized: the more the flow rate, the more the ionic leakage (output concentration divided by input concentration) is fast and the more the output concentration front is spread. A literature revue has enabled to put in light advantages and drawbacks of the models of interest to simulate operations of ion-exchange resins. Thus, the pure end-members mixing model associated to a non-ideality description of the resin phase based on the regular solutions model has been retained for modelling ion-exchange equilibrium. Ion-exchange kinetics has been described by mass transfer coefficients. Using the experimental results to determine model parameters, these last ones have been implemented in a speciation code CHESS, coupled with a hydrodynamic code in HYTEC. On the one hand, equilibrium experiments of ion retention have been simulated and, on the other hand, column retention tests have been modelled. Finally, selectivity variations and hydro-kinetics impacts have been simulated on some test cases so as to demonstrate the importance of taking these into account when simulating ion-exchange resins operations. (author)

  1. Retention of Mastoidectomy Skills After Virtual Reality Simulation Training

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per

    2016-01-01

    IMPORTANCE: The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR......) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training. OBJECTIVES: To determine the retention of mastoidectomy skills after VR simulation training...... with distributed and massed practice and to investigate participants' cognitive load during retention procedures. DESIGN, SETTING, AND PARTICIPANTS: A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical...

  2. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  3. The impact of policy change on job retention and advancement

    OpenAIRE

    Richard Dickins; Abigail McKnight

    2008-01-01

    This paper examines the impact of the Working Families Tax Credit (WFTC) on employment retention and advancement. The WFTC, which replaced Family Credit in October 1999, supplemented earnings of low paid workers living in low income families. It was designed to increase the financial incentive for low skilled workers to find and remain in work and in the process boost their family income. It finds evidence that WFTC increased employment retention among male recipients. WFTC does not appear to...

  4. Retention Among North American HIV–infected Persons in Clinical Care, 2000–2008

    Science.gov (United States)

    Rebeiro, Peter; Althoff, Keri N.; Buchacz, Kate; Gill, M. John; Horberg, Michael; Krentz, Hartmut; Moore, Richard; Sterling, Timothy R.; Brooks, John T.; Gebo, Kelly A.; Hogg, Robert; Klein, Marina; Martin, Jeffrey; Mugavero, Michael; Rourke, Sean; Silverberg, Michael J.; Thorne, Jennifer; Gange, Stephen J.

    2013-01-01

    Background Retention in care is key to improving HIV outcomes. Our goal was to describe “churn” in patterns of entry, exit, and retention in HIV care in the US and Canada. Methods Adults contributing ≥1 CD4 count or HIV-1 RNA (HIV-lab) from 2000–2008 in North American Cohort Collaboration on Research and Design (NA-ACCORD) clinical cohorts were included. Incomplete retention was defined as lack of 2 HIV-labs (≥90 days apart) within 12 months, summarized by calendar year. We used beta-binomial regression models to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) of factors associated with incomplete retention. Results Among 61,438 participants, 15,360 (25%) with incomplete retention significantly differed in univariate analyses (pchurn. In addition to the programmatic and policy implications, our findings identify patient groups who may benefit from focused retention efforts. PMID:23242158

  5. Picobubble column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Samuel Yu; Xiaohua Zhou; R.Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2008-01-15

    Froth flotation is widely used in the coal industry to clean -28 mesh (0.6 mm) or -100 mesh (0.15 mm) fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range, nominally 10-100 {mu}m, beyond which the flotation efficiency drops sharply. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. Experimental results have shown that the use of picobubbles in a 5-cm diameter column flotation increased the combustible recovery of a highly floatable coal by up to 10% and that of a poorly floatable coal by up to 40%, depending on the feed rate, collector dosage, and other flotation conditions. 14 refs.

  6. Design of a thermally integrated bioethanol-fueled solid oxide fuel cell system integrated with a distillation column

    Science.gov (United States)

    Jamsak, W.; Douglas, P. L.; Croiset, E.; Suwanwarangkul, R.; Laosiripojana, N.; Charojrochkul, S.; Assabumrungrat, S.

    Solid oxide fuel cell systems integrated with a distillation column (SOFC-DIS) have been investigated in this study. The MER (maximum energy recovery) network for SOFC-DIS system under the base conditions (C EtOH = 25%, EtOH recovery = 80%, V = 0.7 V, fuel utilization = 80%, T SOFC = 1200 K) yields Q Cmin = 73.4 and Q Hmin = 0 kW. To enhance the performance of SOFC-DIS, utilization of internal useful heat sources from within the system (e.g. condenser duty and hot water from the bottom of the distillation column) and a cathode recirculation have been considered in this study. The utilization of condenser duty for preheating the incoming bioethanol and cathode recirculation for SOFC-DIS system were chosen and implemented to the SOFC-DIS (CondBio-CathRec). Different MER designs were investigated. The obtained MER network of CondBio-CathRec configuration shows the lower minimum cold utility (Q Cmin) of 55.9 kW and total cost index than that of the base case. A heat exchanger loop and utility path were also investigated. It was found that eliminate the high temperature distillate heat exchanger can lower the total cost index. The recommended network is that the hot effluent gas is heat exchanged with the anode heat exchanger, the external reformer, the air heat exchanger, the distillate heat exchanger and the reboiler, respectively. The corresponding performances of this design are 40.8%, 54.3%, 0.221 W cm -2 for overall electrical efficiency, Combine Heat and Power (CHP) efficiency and power density, respectively. The effect of operating conditions on composite curves on the design of heat exchanger network was investigated. The obtained composite curves can be divided into two groups: the threshold case and the pinch case. It was found that the pinch case which T SOFC = 1173 K yields higher total cost index than the CondBio-CathRec at the base conditions. It was also found that the pinch case can become a threshold case by adjusting split fraction or operating at

  7. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  8. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  9. Study of the retention of radionuclides by ion-exchange resins contained in the circuits of a Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Gressier, F.

    2008-11-01

    Physico-chemical quality of fluids in nuclear power plant circuits must be maintained in order to limit contamination and dose rate especially when the shutdown takes place. Nevertheless, an optimum between diminishing liquid waste and limiting solid waste production has to be reached, but at affordable costs. Ion-exchange resins of purification circuits are used to fulfill this goal. In this work, different resin types have been characterized (exchange capacity, water and electrolyte sorption) and their selectivity towards Co 2+ , Ni 2+ , Cs + and Li + cations have been studied. We have shown that the two cation-exchange resins selectivity varies according to the nature and concentrations of their counter-ions. Moreover, flow rate (and thus hydro-kinetics) impact on species retention in a column has been characterized: the more the flow rate, the more the ionic leakage (output concentration divided by input concentration) is fast and the more the output concentration front is spread. A literature revue has enabled to put in light advantages and drawbacks of the models of interest to simulate operations of ion-exchange resins. Thus, the pure end-members mixing model associated to a non-ideality description of the resin phase based on the regular solutions model has been retained for modelling ion-exchange equilibrium. Ion-exchange kinetics has been described by mass transfer coefficients. Using the experimental results to determine model parameters, these last ones have been implemented in a speciation code CHESS, coupled with a hydrodynamic code in HYTEC. On the one hand, equilibrium experiments of ion retention have been simulated and, on the other hand, column retention tests have been modelled. Finally, selectivity variations and hydro-kinetics impacts have been simulated on some test cases so as to demonstrate the importance of taking these into account when simulating ion-exchange resins operations. (author)

  10. Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds.

    Science.gov (United States)

    Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K

    2009-08-01

    Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different

  11. Considerations concerning the strategy of corium retention in the reactor vessel

    International Nuclear Information System (INIS)

    2015-01-01

    Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents. More specifically, dedicated measures or devices must be implemented to avoid basemat melt-through in the reactor building. These devices must have a high level of confidence. The strategy of corium retention in the reactor vessel, if supported by appropriate research and development, makes it possible to achieve this objective. IRSN works alone or in partnerships to address all the issues associated with in-vessel corium retention. This document describes the in-vessel corium retention strategy and its limitations, along with the research programs conducted by IRSN in this area

  12. Aerosol retention in the flooded steam generator bundle during SGTR

    International Nuclear Information System (INIS)

    Lind, Terttaliisa; Dehbi, Abdel; Guentay, Salih

    2011-01-01

    Research highlights: → High retention of aerosol particles in a steam generator bundle flooded with water. → Increasing particle inertia, i.e., particle size and velocity, increases retention. → Much higher retention of aerosol particles in the steam generator bundle flooded with water than in a dry bundle. → Much higher retention of aerosol particles in the steam generator bundle than in a bare pool. → Bare pool models have to be adapted to be applicable for flooded bundles. - Abstract: A steam generator tube rupture in a pressurized water reactor may cause accidental release of radioactive particles into the environment. Its specific significance is in its potential to bypass the containment thereby providing a direct pathway of the radioactivity from the primary circuit to the environment. Under certain severe accident scenarios, the steam generator bundle may be flooded with water. In addition, some severe accident management procedures are designed to minimize the release of radioactivity into the environment by flooding the defective steam generator secondary side with water when the steam generator has dried out. To extend our understanding of the particle retention phenomena in the flooded steam generator bundle, tests were conducted in the ARTIST and ARTIST II programs to determine the effect of different parameters on particle retention. The effects of particle type (spherical or agglomerate), particle size, gas mass flow rate, and the break submergence on particle retention were investigated. Results can be summarized as follows: increasing particle inertia was found to increase retention in the flooded bundle. Particle shape, i.e., agglomerate or spherical structure, did not affect retention significantly. Even with a very low submergence, 0.3 m above the tube break, significant aerosol retention took place underlining the importance of the jet-bundle interactions close to the tube break. Droplets were entrained from the water surface with

  13. Performance of RC columns with partial length corrosion

    International Nuclear Information System (INIS)

    Wang Xiaohui; Liang Fayun

    2008-01-01

    Experimental and analytical studies on the load capacity of reinforced concrete (RC) columns with partial length corrosion are presented, where only a fraction of the column length was corroded. Twelve simply supported columns were eccentrically loaded. The primary variables were partial length corrosion in tensile or compressive zone and the corrosion level within this length. The failure of the corroded column occurs in the partial length, mainly developed from or located nearby or merged with the longitudinal corrosion cracks. For RC column with large eccentricity, load capacity of the column is mainly influenced by the partial length corrosion in tensile zone; while for RC column with small eccentricity, load capacity of the column greatly decreases due to the partial length corrosion in compressive zone. The destruction of the longitudinally mechanical integrality of the column in the partial length leads to this great reduction of the load capacity of the RC column

  14. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector

    International Nuclear Information System (INIS)

    Kaanta, Bradley C; Zhang, Xin; Chen, Hua

    2010-01-01

    The monolithic integration of a high sensitivity detector with a gas chromatography (GC) separation column creates many potential advantages over the discrete components of a traditional chromatography system. In miniaturized high-speed GC systems, component interconnections can cause crucial errors and loss of fidelity during detection and analysis. A monolithically integrated device would eliminate the need to create helium-tight interconnections, which are bulky and labor intensive. Additionally, batch fabrication of integrated devices that no longer require expensive and fragile detectors can decrease the cost of micro GC systems through economies of scale. We present the design, fabrication and operation of a monolithic GC separation column and detector. Our device is able to separate nitrogen, methane and carbon dioxide within 30 s. This method of device integration could be applied to the existing wealth of column geometries and chemistries designed for specialized applications.

  15. A stochastic view on column efficiency.

    Science.gov (United States)

    Gritti, Fabrice

    2018-03-09

    A stochastic model of transcolumn eddy dispersion along packed beds was derived. It was based on the calculation of the mean travel time of a single analyte molecule from one radial position to another. The exchange mechanism between two radial positions was governed by the transverse dispersion of the analyte across the column. The radial velocity distribution was obtained by flow simulations in a focused-ion-beam scanning electron microscopy (FIB-SEM) based 3D reconstruction from a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 particles. Accordingly, the packed bed was divided into three coaxial and uniform zones: (1) a 1.4 particle diameter wide, ordered, and loose packing at the column wall (velocity u w ), (2) an intermediate 130 μm wide, random, and dense packing (velocity u i ), and (3) the bulk packing in the center of the column (velocity u c ). First, the validity of this proposed stochastic model was tested by adjusting the predicted to the observed reduced van Deemter plots of a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 fully porous particles (FPPs). An excellent agreement was found for u i  = 0.93u c , a result fully consistent with the FIB-SEM observation (u i  = 0.95u c ). Next, the model was used to measure u i  = 0.94u c for 2.1 mm × 100 mm column packed with 1.6 μm Cortecs-C 18 superficially porous particles (SPPs). The relative velocity bias across columns packed with SPPs is then barely smaller than that observed in columns packed with FPPs (+6% versus + 7%). u w =1.8u i is measured for a 75 μm × 1 m capillary column packed with 2 μm BEH-C 18 particles. Despite this large wall-to-center velocity bias (+80%), the presence of the thin and ordered wall packing layer has no negative impact on the kinetic performance of capillary columns. Finally, the stochastic model of long-range eddy dispersion explains why analytical (2.1-4.6 mm i.d.) and capillary (columns can all be

  16. Investigating the efficiency of using the carbon fiber polymer on beam–column connection

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Eldeeb

    2016-03-01

    Full Text Available Due to the huge amount of energy induced from earthquakes, such natural hazards usually represent the most significant threat on existing and new buildings. Recently, a lot of considerable efforts were dedicated to design buildings capable of withstanding earthquakes' ground motions by utilizing lateral resisting elements, such as reinforced concrete shear walls, cores, frames, and steel bracing. Contrasting the experience gained from the previously designed guidelines and provisions for lateral resisting systems, recent studies illustrated that the existence of lateral resisting system in low-rise buildings is essential in order to resist ground motions. As such, some endeavors are directed to reinforce old buildings against seismic loads. This paper focuses on investigating the efficiency of using Carbon Fiber Polymer (CFRP sheets on the behavior of beam–column connections considering a cantilever beam with concentrated load at its free end. In addition, to complement the published data, finite element model using the computer package ANSYS was used. The additional beam–column connections in this study are classified in 4 groups (A, B, C, and D depending on the percentage of reinforcement at the bottom and top of the beam (%As. The efficiency of using CFRP was concluded; the CFRP sheet improves or decreases the efficiency of beam–column connection depending on %As in the beam. The paper investigates the influence of boundary condition, columns as hinged supports, and the efficiency of using CFRP. It is concluded that the CFRP sheet improves or decreases the efficiency of beam–column connection depending on %As in the beam.

  17. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A ampersand 038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports

  18. Isolation and identification of arctiin and arctigenin in leaves of burdock (Arctium lappa L.) by polyamide column chromatography in combination with HPLC-ESI/MS.

    Science.gov (United States)

    Liu, Shiming; Chen, Kaoshan; Schliemann, Willibald; Strack, Dieter

    2005-01-01

    A simple method involving polyamide column chromatography in combination with HPLC-PAD and HPLC-ESI/MS for isolating and identifying two kinds of lignans, arctiin and arctigenin, in the leaves of burdock (Arctium lappa L.) has been established. After extraction of burdock leaves with 80% methanol, the aqueous phase of crude extracts was partitioned between water and chloroform and the aqueous phase was fractionated on a polyamide glass column. The fraction, eluting with 100% methanol, was concentrated and gave a white precipitate at 4 degrees C from which two main compounds were purified by semi-preparative HPLC. In comparison with the UV and ESI-MS spectra and the HPLC retention time of authentic standards, the compounds were determined to be arctiin and arctigenin. The extraction/separation technique was validated using an internal standard method.

  19. 29 CFR 1926.755 - Column anchorage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor...

  20. Adsorption columns for use in radioimmunoassays

    International Nuclear Information System (INIS)

    1976-01-01

    Adsorption columns are provided which can be utilized in radioimmunoassay systems such as those involving the separation of antibody-antigen complexes from free antigens. The preparation of the columns includes the treatment of retaining substrate material to render it hydrophilic, preparation and degassing of the separation material and loading the column

  1. Assessing Potential Additional PFAS Retention Processes in the Subsurface

    Science.gov (United States)

    Brusseau, M. L.

    2017-12-01

    Understanding the transport and fate of per- and poly-fluorinated alkyl substances (PFASs) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. Current conceptual and mathematical models are based on an assumption that solid-phase adsorption is the sole source of retention for PFASs. However, additional retention processes may be relevant for PFAS compounds in vadose-zone systems and in source zones that contain trapped immiscible organic liquids. These include adsorption at the air-water interface, partitioning to the soil atmosphere, adsorption at the NAPL-water interface, and absorption by NAPL. A multi-process retention model is proposed to account for these potential additional sources of PFAS retardation. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for three representative PFASs, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (FTOH). Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for a representative porous medium. Adsorption at the air-water interface was shown to be a primary source of retention for PFOA and PFOS, contributing approximately 80% of total retardation. Adsorption to NAPL-water interfaces and absorption by bulk NAPL were also shown to be significant sources of retention for PFOS and PFOA. The latter process was the predominant source of retention for 8:2 FTOH, contributing 98% of total retardation. These results indicate that we may anticipate significant retention of PFASs by these additional processes. In such cases, retardation of PFASs in source areas may be significantly greater than what is typically estimated based on the standard assumption of solid-phase adsorption as the sole retention mechanism. This has significant ramifications for

  2. Behavior of Double-Web Angles Beam to column connections

    Science.gov (United States)

    Fakih, K. Al; Chin, S. C.; Doh, S. I.

    2018-04-01

    This paper contains the study performed on the behavior of double-web angles by using finite element analysis computer package known as “Abaqus”. The aim of this present study was simulating the behavior of double-web angles (DWA) steel connections. The purpose of this article is to provide the basis for the fastest and most economical design and analysis and to ensure the required steel connection strength. This study, started used review method of behavior of steel beam-to-column bolted connections. Two models of different cross-section were examined under the effect of concentrated load and different boundary conditions. In all the studied case, material nonlinearity was accounted. A sample study on DWA connections was carried out using both material and geometric nonlinearities. This object will be of great value to anyone who wants to better understand the behavior of the steel beam to column connection. The results of the study have a field of reference for future research for members of the development of the steel connection approach with simulation model design.

  3. Employee retention and motivation as correlates of organization ...

    African Journals Online (AJOL)

    This study examined the correlation between employee retention, motivation and organization performance among bank employees in Lagos, Nigeria. The study adopted an expo facto research design. Three hypotheses were generated and tested in the study. Respondent were two hundred and fifty (250) bankers that ...

  4. Urinary retention in women.

    Science.gov (United States)

    Juma, Saad

    2014-07-01

    This review is a summary of the most pertinent published studies in the literature in the last 18 months that address cause, diagnosis, and management of urinary retention in women. Symptoms, uroflow, and pressure-flow studies have a low predictive value for and do not correlate with elevated postvoid residual urine (PVR). Anterior and posterior colporrhaphy do not cause de-novo bladder outlet obstruction in the majority of patients with elevated PVR, and the cause of elevated PVR may be other factors such as pain or anxiety causing abnormal relaxation of the pelvic floor and contributing to voiding difficulty. The risk of urinary retention in a future pregnancy after mid-urethral sling (MUS) is small. The risk of urinary tract infection and urinary retention after chemodenervation of the bladder with onabotulinumtoxin-A (100 IU) in patients with non-neurogenic urge incontinence is 33 and 5%, respectively. There is a lack of consensus among experts on the timing of sling takedown in the management of acute urinary retention following MUS procedures. There has been a significant progress in the understanding of the causation of urinary retention. Important areas that need further research (basic and clinical) are post-MUS and pelvic organ prolapse repair urinary retention and obstruction, and urinary retention owing to detrusor underactivity.

  5. NMFS Water Column Sonar Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water column sonar data are an important component of fishery independent surveys, habitat studies and other research. NMFS water column sonar data are archived here.

  6. Actual drawing of histological images improves knowledge retention.

    Science.gov (United States)

    Balemans, Monique C M; Kooloos, Jan G M; Donders, A Rogier T; Van der Zee, Catharina E E M

    2016-01-01

    Medical students have to process a large amount of information during the first years of their study, which has to be retained over long periods of nonuse. Therefore, it would be beneficial when knowledge is gained in a way that promotes long-term retention. Paper-and-pencil drawings for the uptake of form-function relationships of basic tissues has been a teaching tool for a long time, but now seems to be redundant with virtual microscopy on computer-screens and printers everywhere. Several studies claimed that, apart from learning from pictures, actual drawing of images significantly improved knowledge retention. However, these studies applied only immediate post-tests. We investigated the effects of actual drawing of histological images, using randomized cross-over design and different retention periods. The first part of the study concerned esophageal and tracheal epithelium, with 384 medical and biomedical sciences students randomly assigned to either the drawing or the nondrawing group. For the second part of the study, concerning heart muscle cells, students from the previous drawing group were now assigned to the nondrawing group and vice versa. One, four, and six weeks after the experimental intervention, the students were given a free recall test and a questionnaire or drawing exercise, to determine the amount of knowledge retention. The data from this study showed that knowledge retention was significantly improved in the drawing groups compared with the nondrawing groups, even after four or six weeks. This suggests that actual drawing of histological images can be used as a tool to improve long-term knowledge retention. © 2015 American Association of Anatomists.

  7. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    Science.gov (United States)

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluation of Packed Distillation Columns I - Atmospheric Pressure

    National Research Council Canada - National Science Library

    Reynolds, Thaine

    1951-01-01

    .... Four column-packing combinations of the glass columns and four column-packing combinations of the steel columns were investigated at atmospheric pressure using a test mixture of methylcyclohexane...

  9. Laboratory-Scale SuperLig 639 Column Tests With Hanford Waste Simulants

    International Nuclear Information System (INIS)

    King, William D.; Spencer, William A.; Bussey, Myra Pettis

    2003-01-01

    This report describes the results of SuperLig 639 column tests conducted at the Savannah River Technology Center (SRTC) in support of the Hanford River Protection Project - Waste Treatment Plant (RPP-WTP). The RPP-WTP contract was awarded to Bechtel National Inc. (BNI) for the design, construction, and initial operation of a plant for the treatment and vitrification of millions of gallons of radioactive waste currently stored in tanks at Hanford, WA. Part of the current treatment process involves the removal of technetium from tank supernate solutions using columns containing SuperLig 639 resin. This report is part of a body of work intended to quantify and optimize the operation of the technetium removal columns with regard to various parameters (such as liquid flow rate, column aspect ratio, resin particle size, loading and elution temperature, etc.). The tests were conducted using nonradioactive simulants of the actual tank waste samples containing rhenium as a surrogate for the technetium in the actual waste. A previous report focused on the impacts of liquid flow rate and column aspect ratio upon performance. More recent studies have focused on the impacts of resin particle size, solution composition, and temperature. This report describes column loading experiments conducted varying temperature and solution composition. Each loading experiment was followed by high temperature elution of the sorbed rhenium. Results from limited testing are also described which were intended to evaluate the physical stability of SuperLig 639 resin during exposure to repeated temperature cycles covering the range of potential processing extremes

  10. Column-oriented database management systems

    OpenAIRE

    Možina, David

    2013-01-01

    In the following thesis I will present column-oriented database. Among other things, I will answer on a question why there is a need for a column-oriented database. In recent years there have been a lot of attention regarding a column-oriented database, even if the existence of a columnar database management systems dates back in the early seventies of the last century. I will compare both systems for a database management – a colum-oriented database system and a row-oriented database system ...

  11. Transparent Inflatable Column Film Dome for Nuclear Stations, Stadiums, and Cities

    Directory of Open Access Journals (Sweden)

    Alexander Bolonkin

    2011-01-01

    Full Text Available In a series of previous articles, one of the authors published designs of the AB Dome which can cover a city, important large installations or subregions by a transparent thin film supported by a small additional air overpressure. The AB Dome keeps the outside atmospheric conditions from the interior protecting a city from chemical, bacterial, and radioactive weapons (wastes. The design in this article differs from previous one as this design employs an inflatable columns which does not need an additional pressure (overpressure inside the dome and is cheaper in construction (no powered air pumping station and in operation (no special entrance airlock and permanent pumping expense. When dome is supported by columns, no overpressure is required inside the dome which is important when the dome covers a damaged nuclear reactor. The nuclear reactor may produce radioactive gases and dust, and, as inflatable domes are not typically hermetically sealed, the increased pressure inside the dome can leak out gas and dust into the atmosphere. The suggested design does not have this drawback. Positive pressure gradients expel dust particles—neutral pressure gradients will not. (Negative pressure gradients may even be possible in certain configurations.

  12. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    Science.gov (United States)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  13. Column-Oriented Storage Techniques for MapReduce

    OpenAIRE

    Floratou, Avrilia; Patel, Jignesh; Shekita, Eugene; Tata, Sandeep

    2011-01-01

    Users of MapReduce often run into performance problems when they scale up their workloads. Many of the problems they encounter can be overcome by applying techniques learned from over three decades of research on parallel DBMSs. However, translating these techniques to a MapReduce implementation such as Hadoop presents unique challenges that can lead to new design choices. This paper describes how column-oriented storage techniques can be incorporated in Hadoop in a way that preserves its pop...

  14. Effect of transient liquid flow on retention characteristics of screen acquisition systems. [design of Space Shuttle feed system

    Science.gov (United States)

    Cady, E. C.

    1977-01-01

    A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.

  15. Difference equation model for isothermal gas chromatography expresses retention behavior of homologues of n-alkanes excluding the influence of holdup time

    Science.gov (United States)

    Wu, Liejun; Chen, Yongli; Caccamise, Sarah A.L.; Li, Qing X.

    2012-01-01

    A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st–5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows the quadratic equation for C3–C30 n-alkanes at column temperatures of 24–260 °C. The first and second order forward differences of the expression (Δlog Δtz and Δ2log Δtz, respectively) are linear and constant, respectively, which validates the DE model. This DE model lays a necessary foundation for further developing a retention model to accurately describe the relationship between the adjusted retention time and z of n-alkanes. PMID:22939376

  16. Bubble retention in synthetic sludge: Testing of alternative gas retention apparatus

    International Nuclear Information System (INIS)

    Rassat, S.D.; Gauglitz, P.A.

    1995-07-01

    Several of the underground storage tanks currently used to store waste at Hanford have been placed on the Flammable Gas Watch List, because the waste is either known or suspected to generate, store, and episodically release flammable gases. The objective of this experimental study is to develop a method to measure gas bubble retention in simulated tank waste and in diluted simulant. The method and apparatus should (1) allow for reasonably rapid experiments, (2) minimize sample disturbance, and (3) provide realistic bubble nucleation and growth. The scope of this experimental study is to build an apparatus for measuring gas retention in simulated waste and to design the apparatus to be compatible with future testing on actual waste. The approach employed for creating bubbles in sludge involves dissolving a soluble gas into the supernatant liquid at an elevated pressure, recirculating the liquid containing the dissolved gas through the sludge, then reducing the pressure to allow bubbles to nucleate and grow. Results have been obtained for ammonia as the soluble gas and SY1-SIM-91A, a chemically representative simulated tank waste. In addition, proof-of-principle experiments were conducted with both ammonia and CO 2 as soluble gases and sludge composed of 90-micron glass beads. Results are described

  17. Blind column selection protocol for two-dimensional high performance liquid chromatography.

    Science.gov (United States)

    Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G

    2016-07-01

    The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of differentiated instructional strategies on students' retention ...

    African Journals Online (AJOL)

    The effect of differentiated instructional strategies on students' retention in geometry in senior secondary schools was examined. The study employed experimental research design of pretest, posttest control group. The area of this study is Abuja Municipal Area Council, the Federal Capital Territory. The target population ...

  19. Radiotracer Imaging of Sediment Columns

    Science.gov (United States)

    Moses, W. W.; O'Neil, J. P.; Boutchko, R.; Nico, P. S.; Druhan, J. L.; Vandehey, N. T.

    2010-12-01

    Nuclear medical PET and SPECT cameras routinely image radioactivity concentration of gamma ray emitting isotopes (PET - 511 keV; SPECT - 75-300 keV). We have used nuclear medical imaging technology to study contaminant transport in sediment columns. Specifically, we use Tc-99m (T1/2 = 6 h, Eγ = 140 keV) and a SPECT camera to image the bacteria mediated reduction of pertechnetate, [Tc(VII)O4]- + Fe(II) → Tc(IV)O2 + Fe(III). A 45 mL bolus of Tc-99m (32 mCi) labeled sodium pertechnetate was infused into a column (35cm x 10cm Ø) containing uranium-contaminated subsurface sediment from the Rifle, CO site. A flow rate of 1.25 ml/min of artificial groundwater was maintained in the column. Using a GE Millennium VG camera, we imaged the column for 12 hours, acquiring 44 frames. As the microbes in the sediment were inactive, we expected most of the iron to be Fe(III). The images were consistent with this hypothesis, and the Tc-99m pertechnetate acted like a conservative tracer. Virtually no binding of the Tc-99m was observed, and while the bolus of activity propagated fairly uniformly through the column, some inhomogeneity attributed to sediment packing was observed. We expect that after augmentation by acetate, the bacteria will metabolically reduce Fe(III) to Fe(II), leading to significant Tc-99m binding. Imaging sediment columns using nuclear medicine techniques has many attractive features. Trace quantities of the radiolabeled compounds are used (micro- to nano- molar) and the half-lives of many of these tracers are short (Image of Tc-99m distribution in a column containing Rifle sediment at four times.

  20. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation.

    Science.gov (United States)

    Cukrowska, Ewa M; Govender, Koovila; Viljoen, Morris

    2004-07-01

    New column leaching experiments were designed and used as an alternative rapid screening approach to element mobility assessment. In these experiments, field-moist material was treated with an extracting solution to assess the effects of acidification on element mobility in mine tailings. The main advantage of this version of column leaching experiments with partitioned segments is that they give quick information on current element mobility in conditions closely simulating field conditions to compare with common unrepresentative air-dried, sieved samples used for column leaching experiments. Layers from the tailings dump material were sampled and packed into columns. The design of columns allows extracting leachates from each layer. The extracting solutions used were natural (pH 6.8) and acidified (pH 4.2) rainwater. Metals and anions were determined in the leachates. The concentrations of metals (Ca, Mg, Fe, Mn, Al, Cr, Ni, Co, Zn, and Cu) in sample leachates were determined using ICP OES. The most important anions (NO3-, Cl-, and SO4(2)-) were determined using the closed system izotacophoresis ITP analyser. The chemical analytical data from tailings leaching and physico-chemical data from field measurements (including pH, conductivity, redox potential, temperature) were used for chemometric evaluation of element mobility. Principal factor analysis (PFA) was used to evaluate ions mobility from different layers of tailings dump arising from varied pH and redox conditions. It was found that the results from the partitioned column leaching illustrate much better complex processes of metals mobility from tailings dump than the total column. The chemometric data analysis (PFA) proofed the differences in the various layers leachability that are arising from physico-chemical processes due to chemical composition of tailings dump deposit. Copyright 2004 Elsevier Ltd.

  1. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  2. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    Science.gov (United States)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  3. Safety barriers and lighting columns.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1972-01-01

    Problems arising from the sitting of lighting columns on the central reserve are reviewed, and remedial measures such as break-away lighting supports and installation of safety fences on the central reserve on both sides of the lighting columns are examined.

  4. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz

    2016-09-01

    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  5. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    Science.gov (United States)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  6. Joint and column behaviour of slotted cold-formed steel studs

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2015-01-01

    the behaviour of the studs and the track joints. The experiments include a joint design with a special web stiffener used in practice. The studs are made of C-profiles and the tracks of U-profiles. Eight different test series are performed. The test series each have different column lengths, thicknesses...

  7. Joint and column behaviour of slotted cold-formed steel studs

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2015-01-01

    the behaviour of the studs and the track joints. The experiments included a joint design with a special web stiffener used in practice. The studs were C-sections and the tracks were U-sections. Eight different test series were performed. Each test series had different column lengths and thicknesses, both...

  8. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  9. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  10. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement

    International Nuclear Information System (INIS)

    Lin, J C; Chang, T K; Yang, J H; Jeng, J H; Lee, D L; Jiang, S B

    2009-01-01

    Micrometer Ni–Cu alloy columns have been fabricated by the micro-anode-guided electroplating (MAGE) process in the citrate bath. The surface morphology and chemical composition of the micro-columns were determined by copper concentration in the bath and by the electrical bias of MAGE. When fabricated in a bath of dilute copper (i.e. 4 mM) at lower voltages (e.g. 3.8 and 4.0 V), the alloy micro-columns revealed uniform diameter and smooth appearance. The alloy composition demonstrated an increase in the wt% ratio of Ni/Cu from 75/25, 80/20, 83/17 to 87/13 with increasing electrical bias from 3.8, 4.0, 4.2 to 4.4 V. However, it decreases from 75/25, 57/43 to 47/53 with increasing copper concentration from 4, 8 to 12 mM in the bath. Citrate plays a role in forming complexes with nickel and copper at similar reduction potentials, thus reducing simultaneously to Ni–Cu alloy. The mechanism for fabricating alloy micro-columns could be delineated on the basis of cathodic polarization of the complexes. A couple of micro-columns were fabricated using MAGE in constructing a pure copper micro-column on the top of a Ni/Cu (at 47/53) alloy micro-column. This micro-thermocouple provides a satisfactory measurement with good sensitivity and precision

  11. 2D fall of granular columns controlled by slow horizontal withdrawal of a retaining wall

    Science.gov (United States)

    Mériaux, C. A.

    2006-12-01

    This paper describes a series of experiments designed to investigate the fall of granular columns in quasi- static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall and the material properties was investigated within the quasi-static regime. A change in the behaviour of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau.

  12. Transport and retention of carbon-based engineered and natural nanoparticles through saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Hedayati, Maryeh [Uppsala University, Department of Earth Sciences (Sweden); Sharma, Prabhakar, E-mail: psharma@nalandauniv.com [Nalanda University, School of Ecology and Environment Studies (India); Katyal, Deeksha [Guru Gobind Singh Indraprastha University, School of Environment Management (India); Fagerlund, Fritjof [Uppsala University, Department of Earth Sciences (Sweden)

    2016-03-15

    Carbon-based engineered nanoparticles have been widely used due to their small size and unique physical and chemical properties. At the same time, the toxic effects of these nanoparticles on human and fish cells have also been observed; therefore, their release and distribution into the surface and subsurface environment is a subject of concern. The aim of this research is to evaluate and compare the transports and retentions of two types of engineered nanoparticles (multiwalled carbon nanotubes and C{sub 60}) and the natural carbon nanoparticles collected from a fire accident. Several laboratory experiments were conducted to observe the transport behavior of nanoparticles through a column packed with silica sand. The column experiments were intended to monitor the effect of ionic strength on transport of nanoparticles as a function of their shapes. It was observed that the mobilities of both types of engineered nanoparticles were reduced with the increasing ionic strength from 1.34 to 60 mM. However, at ionic strengths up to 10.89 mM, spherical nanoparticles were more mobile than cylindrical nanoparticles, but the mobility of the cylindrical nanoparticles became significantly higher than spherical nanoparticles at the ionic strength of 60 mM. In comparison with natural fire-born nanoparticles, both types of engineered nanoparticles were much less mobile under the selected experimental condition in this study. Furthermore, inverse modeling was used to calculate parameters such as attachment efficiency, the longitudinal dispersivity, and capacity of the solid phase for the attachment of nanoparticles. The results indicate that the combination of the shape and the solution chemistry of the NPs are responsible for the transport and the retention of nanoparticles in natural environment; however, fire-burned nanoparticles can be highly mobile at the natural groundwater chemistry.

  13. Results of the eruptive column model inter-comparison study

    Science.gov (United States)

    Costa, Antonio; Suzuki, Yujiro; Cerminara, M.; Devenish, Ben J.; Esposti Ongaro, T.; Herzog, Michael; Van Eaton, Alexa; Denby, L.C.; Bursik, Marcus; de' Michieli Vitturi, Mattia; Engwell, S.; Neri, Augusto; Barsotti, Sara; Folch, Arnau; Macedonio, Giovanni; Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.; Mastin, Larry G.; Woodhouse, Mark J.; Phillips, Jeremy C.; Hogg, Andrew J.; Degruyter, Wim; Bonadonna, Costanza

    2016-01-01

    This study compares and evaluates one-dimensional (1D) and three-dimensional (3D) numerical models of volcanic eruption columns in a set of different inter-comparison exercises. The exercises were designed as a blind test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models allows us to evaluate their capabilities and target areas for future improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in plume height, estimated from the standard deviation of model predictions, is within ~ 20% for the weak plume and ~ 10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. Our analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behaviour of the weak plume. However, it is inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly enhance entrainment in the lower atmosphere. We conclude that there is a need to more accurately quantify entrainment rates, improve the representation of plume radius, and incorporate the effects of column instability in future versions of 1D volcanic plume models.

  14. Twin column chromatography: A new technique for treating limited amounts of waste

    International Nuclear Information System (INIS)

    Wenzel, U.

    1995-01-01

    The authors set up a chromatographic unit for the decontamination of analytical discards from Am and Pu. The unit is based on the twin column concept, i.e. the chromatographic support is accommodated in two identical columns and the detector placed between the columns. Thus, they could employ the wall effects model allowing the evaluation of breakthrough chromatograms at low effluent concentrations and the determination of the design parameters for the lay-out of the unit. The authors verified the model with the unit and obtained a good agreement between measured and calculated parameters. In the test phase, they processed 47 liters discards, they obtained 56 liters decontaminated waste with a DF Am of 770 and a total DF α of 7,000 and 22 liters eluate which was reduced by evaporation to 0.8 liters

  15. A multicomponent ion-exchange equilibrium model for chabazite columns treating ORNL wastewaters

    International Nuclear Information System (INIS)

    Perona, J.J.

    1993-06-01

    Planned near-term and long-term upgrades of the Oak Ridge National Laboratory (ORNL) Process Waste Treatment Plant (PWTP) will use chabazite columns to remove 90 Sr and 137 Cs from process wastewater. A valid equilibrium model is required for the design of these columns and for evaluating their performance when influent wastewater composition changes. The cations exchanged, in addition to strontium and cesium, are calcium, magnesium, and sodium. A model was developed using the Wilson equation for the calculation of the solid-phase activity coefficients. The model was tested against chabazite column runs on two different wastewaters and found to be valid. A sensitivity analysis was carried out for the projected wastewater compositions, in which the model was used to predict changes in relative separation factors for strontium and cesium subject to changes in calcium, magnesium, and sodium concentrations

  16. Simplified tools for measuring retention in care in antiretroviral treatment program in Ethiopia: cohort and current retention in care.

    Science.gov (United States)

    Assefa, Yibeltal; Worku, Alemayehu; Wouters, Edwin; Koole, Olivier; Haile Mariam, Damen; Van Damme, Wim

    2012-01-01

    Patient retention in care is a critical challenge for antiretroviral treatment programs. This is mainly because retention in care is related to adherence to treatment and patient survival. It is therefore imperative that health facilities and programs measure patient retention in care. However, the currently available tools, such as Kaplan Meier, for measuring retention in care have a lot of practical limitations. The objective of this study was to develop simplified tools for measuring retention in care. Retrospective cohort data were collected from patient registers in nine health facilities in Ethiopia. Retention in care was the primary outcome for the study. Tools were developed to measure "current retention" in care during a specific period of time for a specific "ART-age group" and "cohort retention" in care among patients who were followed for the last "Y" number of years on ART. "Probability of retention" based on the tool for "cohort retention" in care was compared with "probability of retention" based on Kaplan Meier. We found that the new tools enable to measure "current retention" and "cohort retention" in care. We also found that the tools were easy to use and did not require advanced statistical skills. Both "current retention" and "cohort retention" are lower among patients in the first two "ART-age groups" and "ART-age cohorts" than in subsequent "ART-age groups" and "ART-age cohorts". The "probability of retention" based on the new tools were found to be similar to the "probability of retention" based on Kaplan Meier. The simplified tools for "current retention" and "cohort retention" will enable practitioners and program managers to measure and monitor rates of retention in care easily and appropriately. We therefore recommend that health facilities and programs start to use these tools in their efforts to improve retention in care and patient outcomes.

  17. Simplified tools for measuring retention in care in antiretroviral treatment program in Ethiopia: cohort and current retention in care.

    Directory of Open Access Journals (Sweden)

    Yibeltal Assefa

    Full Text Available INTRODUCTION: Patient retention in care is a critical challenge for antiretroviral treatment programs. This is mainly because retention in care is related to adherence to treatment and patient survival. It is therefore imperative that health facilities and programs measure patient retention in care. However, the currently available tools, such as Kaplan Meier, for measuring retention in care have a lot of practical limitations. The objective of this study was to develop simplified tools for measuring retention in care. METHODS: Retrospective cohort data were collected from patient registers in nine health facilities in Ethiopia. Retention in care was the primary outcome for the study. Tools were developed to measure "current retention" in care during a specific period of time for a specific "ART-age group" and "cohort retention" in care among patients who were followed for the last "Y" number of years on ART. "Probability of retention" based on the tool for "cohort retention" in care was compared with "probability of retention" based on Kaplan Meier. RESULTS: We found that the new tools enable to measure "current retention" and "cohort retention" in care. We also found that the tools were easy to use and did not require advanced statistical skills. Both "current retention" and "cohort retention" are lower among patients in the first two "ART-age groups" and "ART-age cohorts" than in subsequent "ART-age groups" and "ART-age cohorts". The "probability of retention" based on the new tools were found to be similar to the "probability of retention" based on Kaplan Meier. CONCLUSION: The simplified tools for "current retention" and "cohort retention" will enable practitioners and program managers to measure and monitor rates of retention in care easily and appropriately. We therefore recommend that health facilities and programs start to use these tools in their efforts to improve retention in care and patient outcomes.

  18. Guidewire retention following central venous catheterisation: a human factors and safe design investigation.

    Science.gov (United States)

    Horberry, Tim; Teng, Yi-Chun; Ward, James; Patil, Vishal; Clarkson, P John

    2014-01-01

    Central Venous Catheterisation (CVC) has occasionally been associated with cases of retained guidewires in patients after surgery. In theory, this is a completely avoidable complication; however, as with any human procedure, operator error leading to guidewires being occasionally retained cannot be fully eliminated. The work described here investigated the issue in an attempt to better understand it both from an operator and a systems perspective, and to ultimately recommend appropriate safe design solutions that reduce guidewire retention errors. Nine distinct methods were used: observations of the procedure, a literature review, interviewing CVC end-users, task analysis construction, CVC procedural audits, two human reliability assessments, usability heuristics and a comprehensive solution survey with CVC end-users. The three solutions that operators rated most highly, in terms of both practicality and effectiveness, were: making trainees better aware of the potential guidewire complications and strongly emphasising guidewire removal in CVC training, actively checking that the guidewire is present in the waste tray for disposal, and standardising purchase of central line sets so that differences that may affect chances of guidewire loss is minimised. Further work to eliminate/engineer out the possibility of guidewires being retained is proposed.

  19. Model Predictive Control of Mineral Column Flotation Process

    Directory of Open Access Journals (Sweden)

    Yahui Tian

    2018-06-01

    Full Text Available Column flotation is an efficient method commonly used in the mineral industry to separate useful minerals from ores of low grade and complex mineral composition. Its main purpose is to achieve maximum recovery while ensuring desired product grade. This work addresses a model predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled heterodirectional hyperbolic partial differential equations (PDEs and ordinary differential equations (ODEs, which accounts for the interconnection of well-stirred regions represented by continuous stirred tank reactors (CSTRs and transport systems given by heterodirectional hyperbolic PDEs, with these two regions combined through the PDEs’ boundaries. The model predictive control considers both optimality of the process operations and naturally present input and state/output constraints. For the discrete controller design, spatially varying steady-state profiles are obtained by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the Cayley–Tustin time discretization transformation without any spatial discretization and/or without model reduction. The model predictive controller is designed by solving an optimization problem with input and state/output constraints as well as input disturbance to minimize the objective function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally, the controller performance to keep the output at the steady state within the constraint range is demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in this work makes this flotation process more efficient.

  20. Theoretical study on separation of H2/HD by multi-column interlinking cryogenic distillation

    International Nuclear Information System (INIS)

    Xia Xiulong

    2010-01-01

    Multi-column interlinking is an effective separation method adopted for enrichment of trace deuterium and tritium. Conceptual design and proper operating mode were proposed for separation of H2/HD by cryogenic distillation with three interlinking columns,and separation performance were obtained.Enrichment of 20 x 10 x 10 achieved with proper operating mode indicating multi-column interlinking is specially suitable for trace composition enrichment. Pressure and reflux ratio' effect on separation performance were also investigated. As pressure increased from 0.6 atm to 1.5 atm, deuterium stripping efficiency dropped from 99.79% to 99.44%; As reflux ratio increased from 3 to 5, deuterium stripping efficiency increased from 99.67% to 99.81%. (authors)

  1. Model predictive control of a crude oil distillation column

    Directory of Open Access Journals (Sweden)

    Morten Hovd

    1999-04-01

    Full Text Available The project of designing and implementing model based predictive control on the vacuum distillation column at the Nynäshamn Refinery of Nynäs AB is described in this paper. The paper describes in detail the modeling for the model based control, covers the controller implementation, and documents the benefits gained from the model based controller.

  2. Numerical Evaluation on the Different Shapes of Gravelly Sand Columns to Increase the Loading Capacity of Soft Clay

    Directory of Open Access Journals (Sweden)

    Meghzili Sif Allah

    2017-01-01

    Full Text Available Improvement on soft clay by the installation of stone column is one of the most popular methods followed worldwide. Different analytical and numerical solutions have already been developed for understanding the load transfer mechanism of soft soil reinforced with stone column. This study investigated a bearing capacity of the gravelly sand column, installed in soft clay bed at 15kpa of undrained shear strength. The column variable of length and diameter ratio at 7, 8 and 9 were evaluated. On top of that, the combination of two diameters in single column was tested and the uniform diameter was used as a control. In the numerical analysis, Mohrcoulomb model was adopted in the idealization of the behaviour of the gravelly sand column and soft clay materials. The results revealed that the optimum design that gave the highest loading capacity of the combination 11=12 of column diameter was the length and diameter ratio of 8.

  3. Behavior of reinforced concrete columns strenghtened by partial jacketing

    Directory of Open Access Journals (Sweden)

    D. B. FERREIRA

    Full Text Available This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column e PR (reference column. The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.

  4. Facilitating student retention in online graduate nursing education programs: a review of the literature.

    Science.gov (United States)

    Gazza, Elizabeth A; Hunker, Diane F

    2014-07-01

    Online education, a form of distance education, provides students with opportunities to engage in lifelong learning without the restrictions of time and space. However, while this approach meets the needs of employed nursing professionals, it poses some challenges for educators. Student retention is one such challenge. Student retention rates serve as measures of program quality and are reported to accrediting bodies. Therefore, it is imperative that administrators and program faculty implement comprehensive programs to ensure student retention. This review of the literature was designed to identify strategies to improve student retention in online graduate nursing education programs. The review includes 23 articles that address models, research, and best practices supported in nursing and higher education. The findings indicate that student retention in online programs is a multidimensional problem requiring a multifaceted approach. Recommendations for facilitating retention in online nursing programs include ensuring social presence and program and course quality, and attentiveness to individual student characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Principles of Precision Prevention Science for Improving Recruitment and Retention of Participants.

    Science.gov (United States)

    Supplee, Lauren H; Parekh, Jenita; Johnson, Makedah

    2018-03-12

    Precision medicine and precision public health focus on identifying and providing the right intervention to the right population at the right time. Expanding on the concept, precision prevention science could allow the field to examine prevention programs to identify ways to make them more efficient and effective at scale, including addressing issues related to engagement and retention of participants. Research to date on engagement and retention has often focused on demographics and risk factors. The current paper proposes using McCurdy and Daro (Family Relations, 50, 113-121, 2001) model that posits a complex mixture of individual, provider, program, and community-level factors synergistically affect enrollment, engagement, and retention. The paper concludes recommending the use of research-practice partnerships and innovative, rapid cycle methods to design and improve prevention programs related to participant engagement and retention at scale.

  6. Seed Implant Retention Score Predicts the Risk of Prolonged Urinary Retention After Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Lee, Hoon K.; Adams, Marc T.; Shi, Qiuhu; Basillote, Jay; LaMonica, Joanne; Miranda, Luis; Motta, Joseph

    2010-01-01

    Purpose: To risk-stratify patients for urinary retention after prostate brachytherapy according to a novel seed implant retention score (SIRS). Patients and Methods: A total of 835 patients underwent transperineal prostate seed implant from March 1993 to January 2007; 197 patients had 125 I and 638 patients had 103 Pd brachytherapy. Four hundred ninety-four patients had supplemental external-beam radiation. The final downsized prostate volume was used for the 424 patients who had neoadjuvant hormone therapy. Retention was defined as reinsertion of a Foley catheter after the implant. Results: Retention developed in 7.4% of patients, with an average duration of 6.7 weeks. On univariate analysis, implant without supplemental external-beam radiation (10% vs. 5.6%; p = 0.02), neoadjuvant hormone therapy (9.4% vs. 5.4%; p = 0.02), baseline α-blocker use (12.5% vs. 6.3%; p = 0.008), and increased prostate volume (13.4% vs. 6.9% vs. 2.9%, >45 cm 3 , 25-45 cm 3 , 3 ; p = 0.0008) were significantly correlated with increased rates of retention. On multivariate analysis, implant without supplemental external-beam radiation, neoadjuvant hormone therapy, baseline α-blocker use, and increased prostate volume were correlated with retention. A novel SIRS was modeled as the combined score of these factors, ranging from 0 to 5. There was a significant correlation between the SIRS and retention (p < 0.0001). The rates of retention were 0, 4%, 5.6%, 9%, 20.9%, and 36.4% for SIRS of 0 to 5, respectively. Conclusions: The SIRS may identify patients who are at high risk for prolonged retention after prostate brachytherapy. A prospective validation study of the SIRS is planned.

  7. Supporting nurse practitioner education: Preceptorship recruitment and retention

    Directory of Open Access Journals (Sweden)

    Eric Staples

    2018-04-01

    Full Text Available Objectives: Clinical experience is an essential component of nurse practitioner (NP education that relies heavily on preceptors. Recruitment and retention of preceptors is challenging due to many variables that can affect NP education and practice. We surveyed Canadian NP programs to understand their preceptorship structures, how they support preceptorship, and to identify gaps and challenges to recruitment and retention of preceptors. Methods: An 18-item survey, developed by the NP Education Interest Group, was distributed to 24 universities across 10 Canadian provinces. Construct validity and reliability was assessed by experienced NPs and NP faculty. Data were analyzed using relative frequency statistics and thematic analysis. Participants consisted of administrative staff and/or faculty designated as responsible for recruitment and retention of NP preceptors. Results: Seventeen returned surveys were analyzed and demonstrated more similarities than differences across Canada's NP programs, particularly related to barriers affecting recruitment and retention of preceptors. The findings identified NP programs have too many students for the number of available clinical sites/preceptors, resulting in overutilization, burnout, or refusal to take students. Competition with other health disciplines for clinical placements was identified as a challenge to placements. Respondents commented they lack time to recruit, provide follow-up, offer support, or seek preceptors' feedback due to competing work demands. They identified the need for standardized funding for preceptor remuneration and recognition across the country. Conclusion: The findings suggest the need for exploring a wider intraprofessional collaboration among graduate NP programs/faculty, clinical placement sites, and NPs to facilitate the recruitment and retention of preceptors.

  8. Recent advances in column switching sample preparation in bioanalysis.

    Science.gov (United States)

    Kataoka, Hiroyuki; Saito, Keita

    2012-04-01

    Column switching techniques, using two or more stationary phase columns, are useful for trace enrichment and online automated sample preparation. Target fractions from the first column are transferred online to a second column with different properties for further separation. Column switching techniques can be used to determine the analytes in a complex matrix by direct sample injection or by simple sample treatment. Online column switching sample preparation is usually performed in combination with HPLC or capillary electrophoresis. SPE or turbulent flow chromatography using a cartridge column and in-tube solid-phase microextraction using a capillary column have been developed for convenient column switching sample preparation. Furthermore, various micro-/nano-sample preparation devices using new polymer-coating materials have been developed to improve extraction efficiency. This review describes current developments and future trends in novel column switching sample preparation in bioanalysis, focusing on innovative column switching techniques using new extraction devices and materials.

  9. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    Science.gov (United States)

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  10. Chromatographic properties PLOT multicapillary columns.

    Science.gov (United States)

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Israeli nurse practice environment characteristics, retention, and job satisfaction.

    Science.gov (United States)

    Dekeyser Ganz, Freda; Toren, Orly

    2014-02-24

    There is an international nursing shortage. Improving the practice environment has been shown to be a successful strategy against this phenomenon, as the practice environment is associated with retention and job satisfaction. The Israeli nurse practice environment has not been measured. The purpose of this study was to measure practice environment characteristics, retention and job satisfaction and to evaluate the association between these variables. A demographic questionnaire, the Practice Environment Scale, and a Job Satisfaction Questionnaire were administered to Israeli acute and intensive care nurses working in 7 hospitals across the country. Retention was measured by intent to leave the organization and work experience. A convenience sample of registered nurses was obtained using a bi-phasic, stratified, cluster design. Data were collected based on the preferences of each unit, either distribution during various shifts or at staff meetings; or via staff mailboxes. Descriptive statistics were used to describe the sample and results of the questionnaires. Pearson Product Moment Correlations were used to determine significant associations among the variables. A multiple regression model was designed where the criterion variable was the practice environment. Analyses of variance determined differences between groups on nurse practice environment characteristics. 610 nurses reported moderate levels of practice environment characteristics, where the lowest scoring characteristic was 'appropriate staffing and resources'. Approximately 9% of the sample reported their intention to leave and the level of job satisfaction was high. A statistically significant, negative, weak correlation was found between intention to leave and practice environment characteristics, with a moderate correlation between job satisfaction and practice environment characteristics. 'Appropriate staffing and resources' was the only characteristic found to be statistically different based on

  12. Controlled elastic postbuckling of bilaterally constrained non-prismatic columns: application to enhanced quasi-static energy harvesters

    Science.gov (United States)

    Liu, Suihan; Burgueño, Rigoberto

    2016-12-01

    Axially compressed bilaterally constrained columns, which can attain multiple snap-through buckling events in their elastic postbuckling response, can be used as energy concentrators and mechanical triggers to transform external quasi-static displacement input to local high-rate motions and excite vibration-based piezoelectric transducers for energy harvesting devices. However, the buckling location with highest kinetic energy release along the element, and where piezoelectric oscillators should be optimally placed, cannot be controlled or isolated due to the changing buckling configurations. This paper proposes the concept of stiffness variations along the column to gain control of the buckling location for optimal placement of piezoelectric transducers. Prototyped non-prismatic columns with piece-wise varying thickness were fabricated through 3D printing for experimental characterization and numerical simulations were conducted using the finite element method. A simple theoretical model was also developed based on the stationary potential energy principle for predicting the critical line contact segment that triggers snap-through events and the buckling morphologies as compression proceeds. Results confirm that non-prismatic column designs allow control of the buckling location in the elastic postbuckling regime. Compared to prismatic columns, non-prismatic designs can attain a concentrated kinetic energy release spot and a higher number of snap-buckling mode transitions under the same global strain. The direct relation between the column’s dynamic response and the output voltage from piezoelectric oscillator transducers allows the tailorable postbuckling response of non-prismatic columns to be used as multi-stable energy concentrators with enhanced performance in micro-energy harvesters.

  13. Mathematical solution of the stone column effect on the load bearing capacity and settlement using numerical analysis

    Science.gov (United States)

    Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.

    2018-04-01

    The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.

  14. A data-driven framework for investigating customer retention

    OpenAIRE

    Mgbemena, Chidozie Simon

    2016-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University London. This study presents a data-driven simulation framework in order to understand customer behaviour and therefore improve customer retention. The overarching system design methodology used for this study is aligned with the design science paradigm. The Social Media Domain Analysis (SoMeDoA) approach is adopted and evaluated to build a model on the determinants of customer satisfaction ...

  15. Type of adsorbent and column height in adsorption process of used cooking oil

    Science.gov (United States)

    Hasnelly, Hervelly, Taufik, Yusman; Melany, Ivo Nila

    2015-12-01

    The purpose of this research was to find out the best adsorbent and column height that can adsorb color and soluble impurities substances in used cooking oil. This research was meant for knowledge development of refined cooking oil technology. The used of this research was giving out information on the recycling process of used cooking oil. Research design used 2 × 2 factorial pattern in randomized group design with 6 repetitions. The first factor is adsorbent type (J) that consist of activated carbon (J1) and Zeolit (J2). The second factor is column height (K) with variations of 15 cm (k1) and 20 cm (k2). Chemical analysis parameter are free fatty acid, water content and saponification value. Physical parameter measurement was done on color with Hunter Lab system analysis and viscosity using viscometer method. Chemical analysis result of preliminary research on used cooking oil showed water content of 1,9%, free fatty acid 1,58%, saponification value 130,79 mg KOH/g oil, viscosity 0,6 d Pas and color with L value of -27,60, a value 1,04 and b value 1,54. Result on main research showed that adsorbent type only gave effect on water content whereas column height and its interaction was not gave significant effect on water content. Interaction between adsorbent type (J) and column height (K) gave significant effect to free fatty acid, saponification value, viscosity and color for L, a and b value of recycled cooking oil.

  16. Design, fabrication and initial evaluation of an upflow fixed-bed adsorption column for lead (Pb2+) using Carica papaya seeds

    International Nuclear Information System (INIS)

    Piquero, Ronald E.

    2005-03-01

    The study is about the adsorption pf lead (Pb 2+ ) using Carica papaya as biosorbent in an upflow continuous fixed-bed adsorption column. A column was designed and fabricated which was used in the experiment. It aimed to determine the effect of flowrates in the adsorption mechanism of the biosorbent. Three flowrates were used in the experiment: 100 mL/min, 150 mL/min, and 200 mL/min. A solution of 100 ppm of unbuffered lead was allowed to pass through a bed of biosorbent that has a length of 15 cm and the amount of lead ions was measured using flame atomic absorption spectroscopy in terms of residual concentration of lead in the outlet stream. The result showed that the 100 mL/min flowrate had the lowest amount of residual concentration measured compared to the 150 mL/min and 200 mL/min. This means that the 100 mL/min had the most lead ions adsorbed. Statistical test like the one-factor anova and t-test were also done in the research. Anova result showed that the flowrate has significant effect in the adsorption of lead ions of the biosorbent while the t-test results showed that the 100 ml/min is the most effective flowrate wherein the bed had adsorbed the most amounts of ions. (Author)

  17. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  18. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  19. A Low Leakage Autonomous Data Retention Flip-Flop with Power Gating Technique

    Directory of Open Access Journals (Sweden)

    Xiaohui Fan

    2014-01-01

    Full Text Available With the scaling of technology process, leakage power becomes an increasing portion of total power. Power gating technology is an effective method to suppress the leakage power in VLSI design. When the power gating technique is applied in sequential circuits, such as flip-flops and latches, the data retention is necessary to store the circuit states. A low leakage autonomous data retention flip-flop (ADR-FF is proposed in this paper. Two high-Vth transistors are utilized to reduce the leakage power consumption in the sleep mode. The data retention cell is composed of a pair of always powered cross-coupled inverters in the slave latch. No extra control signals and complex operations are needed for controlling the data retention and restoration. The data retention flip-flops are simulated with NCSU 45 nm technology. The postlayout simulation results show that the leakage power of the ADR-FF reduces 51.39% compared with the Mutoh-FF. The active power of the ADR-FF is almost equal to other data retention flip-flops. The average state mode transition time of ADR-FF decreases 55.98%, 51.35%, and 21.07% as compared with Mutoh-FF, Balloon-FF, and Memory-TG-FF, respectively. Furthermore, the area overhead of ADR-FF is smaller than other data retention flip-flops.

  20. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    Science.gov (United States)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.